
101© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_11

CHAPTER 11

Advanced Topics

Framework Integrations
If one of the popular PHP frameworks is used for an application, integration of Doctrine
mostly can be easily done. As an example, we will walk through the process of integrating
Doctrine into a Zend Framework 2 application. If you are using a different framework,
the official framework documentation or a quick web search usually brings up a suited
tutorial.

The easiest way to use to Doctrine 2 with Zend Framework 2 (ZF2) is a Composer
based installation. The ZF2 module doctrine-orm-module1 not only ships the glue code
to make both libraries work together, but also ensures that the Doctrine 2 library itself is
downloaded and installed in an existing ZF2 application. One simply needs to add the
following line to the require block of the projects’ composer.json file:

1 "doctrine/doctrine-orm-module": "dev-master"

You must also add the following line above the require block:

1 "minimum-stability": "alpha"

If this configuration is missing, Composer might refuse to install the module. In fact,
with this configuration, we tell Composer to install even non-stable modules.

The following commands start the download and the installation process:

1 $ php composer.phar update

As you can see, a whole bunch of other ZF2 modules and additional libraries are
downloaded. Last but not least, two ZF2 modules must be activated via the application.
config.php:

 1 <?php
 2 return array(
 3 'modules' => array(
 4 'Application',

1https://github.com/doctrine/DoctrineORMModule

https://github.com/doctrine/DoctrineORMModule
https://github.com/doctrine/DoctrineORMModule

Chapter 11 ■ Advanced Topics

102

 5 'DoctrineModule',
 6 'DoctrineORMModule'
 7),
 8 'module_listener_options' => array(
 9 'config_glob_paths' => array(
10 'config/autoload/{,*.}{global,local}.php',
11),
12 'module_paths' => array(
13 './module',
14 './vendor',
15),
16),
17);

The modules register several services in Main Service Manager, all starting with
the label “doctrine,” such as doctrine.cache.apc and doctrine.sqlloggercollector.
ormdefault.

The entity manager can be obtained using a long-winded label:

1 <?php
2 // [..]
3 $this->getServiceLocator()->get('doctrine.entitymanager.orm_default');

But before this will work, some additional configuration is needed. Doctrine 2 needs
to know where the entity classes are located and what the caching strategy looks like.
The following example from the module.php tells Doctrine that the mappings are given
as annotation, the entities are located in __DIR__ . '/../src/Application /Entity',
and caching takes place via PHP arrays:

 1 <?php
 2 // [..]
 3 'doctrine' => array(
 4 'driver' => array(
 5 'my_annotation_driver' => array(
 6 �'class' => 'Doctrine\ORM\Mapping\Driver\

AnnotationDriver',
 7 'cache' => 'array',
 8 �'paths' => array(__DIR__ . '/../src/Application/

Entity')
 9)
10)
11)
12 // [..]

Chapter 11 ■ Advanced Topics

103

To allow other ZF2 modules to provide entities to the application, a so-called Driver
Chain allows us to combine multiple entity sources even with different mapping formats
and caching strategies:

 1 <?php
 2 // [..]
 3 'doctrine' => array(
 4 'driver' => array(
 5 'my_annotation_driver' => array(
 6 �'class' => 'Doctrine\ORM\Mapping\Driver\

AnnotationDriver',
 7 'cache' => 'array',
 8 �'paths' => array(__DIR__ . '/../src/

Application/Entity')
 9),
10 'orm_default' => array(
11 'drivers' => array(
12 'Application\Entity' => 'my_annotation_driver'
13)
14)
15)
16)
17 // [..]

Now the database connection must be configured. Usually, a dedicated config file in
the autoload folder is used, e.g. db.local.php:

 1 <?php
 2 return array(
 3 'doctrine' => array(
 4 'connection' => array(
 5 'orm_default' => array(
 6 �'driverClass' => 'Doctrine\DBAL\Driver\

PDOMySql\Driver',
 7 'params' => array(
 8 'host' => 'localhost',
 9 'port' => '3306',
10 'user' => 'username',
11 'password' => 'password',
12 'dbname' => 'database',
13)
14)
15)
16),
17);

Chapter 11 ■ Advanced Topics

104

Once done, we can start dealing with entities (e.g. a Product entity) through Doctrine 2:

 1 <?php
 2 namespace Application\Entity;
 3
 4 use Doctrine\ORM\Mapping as ORM;
 5
 6 /**
 7 * @ORM\Entity
 8 * @ORM\Table(name="product")
 9 */
10 class Product
11 {
12 /**
13 * @ORM\Id @ORM\Column(type="integer")
14 * @ORM\GeneratedValue
15 */
16 protected $productId;
17
18 /** @ORM\Column(type="string", nullable=true) */
19 protected $name;
20
21 /** @ORM\Column(type="integer") */
22 protected $stock;
23
24 /** @ORM\Column(type="string", nullable=true) */
25 protected $description;
26
27 /** @ORM\Column(type="string", nullable=true) */
28 protected $features;
29
30 public function setDescription($description)
31 {
32 $this->description = $description;
33 }
34
35 public function getDescription()
36 {
37 return $this->description;
38 }
39
40 public function setFeatures($features)
41 {
42 $this->features = $features;
43 }
44
45 public function getFeatures()
46 {

Chapter 11 ■ Advanced Topics

105

47 return $this->features;
48 }
49
50 public function setProductId($productId)
51 {
52 $this->productId = $productId;
53 }
54
55 public function getProductId()
56 {
57 return $this->productId;
58 }
59
60 public function setName($name)
61 {
62 $this->name = $name;
63 }
64
65 public function getName()
66 {
67 return $this->name;
68 }
69
70 public function setStock($stock)
71 {
72 $this->stock = $stock;
73 }
74
75 public function getStock()
76 {
77 return $this->stock;
78 }
79 }

From a controller, a finder method provided by a repository can be accessed like this:

1 <?php
2 // [..]
3 $this->getServiceLocator()->get('doctrine.entitymanager.orm_default')
4 ->getRepository('Application\Entity\Product')
5 ->findOneByProductId($id);
6 // [..]

Chapter 11 ■ Advanced Topics

106

The Doctrine 2 command line tools are available as well. You simply bring up a
command line and change to the project’s root folder:

1 $ php vendor/bin/doctrine-module orm:validate-schema

Native SQL Statements
Doctrine 2 ships with a special class called NativeQuery that allows you to execute
native SQL select statements and to map the results returned to entity objects. The same
operations that work out-of-the-box with Doctrine 2 can be implemented by hand in
cases where native queries are needed or where they are the better solution to a problem.
NativeQuery allows you to retrieve “raw data” and then subsequently work with entity
objects. The official documentation2 holds further information about how to properly
implement native SQL statements.

Lastly, in general, one needs to remember that it’s always possible to execute
arbitrary SQL statements via the underlying database connection:

1 <?php
2 // [..]
3 $em->getConnection()->exec('DELETE FROM posts');

While this is possible, it should always be the last resort. It bypasses the Entity
Manager and might produce hard-to-debug issues and data inconsistencies.

Doctrine 2 Extensions
While Doctrine 2 already ships with tons and tons of features, there is even more. In
the Doctrine 2 extension repository3 on GitHub, you will find several extensions with
solutions to typical problems which otherwise must be solved individually by each
application developer again and again:

Tree: Automates the tree handling process and adds some
tree-specific functions on repositories.

Translatable: Gives a very handy solution for translating
records into different languages.

Sluggable: Takes a specified field from an entity and makes it
compatible for URLs.

Timestampable: Updates date fields on creates, updates, and
even property changes.

Blameable: Updates string or reference fields on creates, updates,
and even property changes with a string or object (e.g. user).

2http://docs.doctrine-project.org/en/latest/reference/native-sql.html
3https://github.com/l3pp4rd/DoctrineExtensions

http://docs.doctrine-project.org/en/latest/reference/native-sql.html
https://github.com/l3pp4rd/DoctrineExtensions
https://github.com/l3pp4rd/DoctrineExtensions
http://docs.doctrine-project.org/en/latest/reference/native-sql.html
https://github.com/l3pp4rd/DoctrineExtensions

Chapter 11 ■ Advanced Topics

107

Loggable: Helps tracking changes and history of objects, also
supports version management.

Sortable: Makes any entity sortable.

Translator: Supports handling translations.

Softdeleteable: Allows you to mark entities as deleted,
without physically deleting them.

Uploadable: Provides file upload handling to entity fields.

References: Supports linking entities in Documents and vice
versa.

Summary
Congratulations! You made to it to the end of this book. I thank you very much for buying
and reading my book on Doctrine 2 ORM. I believe you now have all knowledge and tools
at hand to use Doctrine 2 in your own applications. As in every technical book, we didn’t
cover all of the features of Doctrine and it might be worth to continue learning by reading
the official documentation. The contents of this book will help you to grasp other features
and implementation details of Doctrine 2 not covered in this book.

Again, thanks for reading my book and happy coding!

	Chapter 11: Advanced Topics
	Framework Integrations
	Native SQL Statements
	Doctrine 2 Extensions
	Summary

