
97© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_10

CHAPTER 10

Caching

Introduction to ORM Cache Types
Due to its nature and the way Doctrine 2 works, applications using Doctrine 2 naturally
run a bit slower than others. However, with good caching strategies applied, this issue
can be almost completely eliminated. Doctrine 2 ORM brings native support for three
different types of caches: the “meta cache,” the “query cache,” and the “result cache.”
When setting up the entity manager, the different caches can be added to the entity
manager’s configuration. In addition, the cache instance might be used for custom values
as well.

Caching Backends
Cached data can be stored in different so-called caching backends. Doctrine 2 supports
multiple technologies to be used as caching backends:

•	 ApcCache (requires ext/apc)

•	 ArrayCache (in memory, lifetime of the request)

•	 FilesystemCache (not optimal for high concurrency)

•	 MemcacheCache (requires ext/memcache)

•	 MemcachedCache (requires ext/memcached)

•	 PhpFileCache (not optimal for high concurrency)

•	 RedisCache.php (requires ext/phpredis)

•	 WinCacheCache.php (requires ext/wincache)

•	 XcacheCache.php (requires ext/xcache)

•	 ZendDataCache.php (requires Zend Server Platform)

Based on the situation or technologies used, you can choose between the different
technologies.

Chapter 10 ■ CaChing

98

Metadata Cache
The metadata cache holds the entity mapping data given as annotations or external
XML or YAML files. Caching this data means that Doctrine 2 does not need to perform
reflection or XML or YAML parsing for every single request, which saves a significant
amount of processing time.

When setting up the entity manager, the cache can easily be configured:

 1 <?php
 2 // [..]
 3 $paths = array(__DIR__ . "/../src/Entity/");
 4 $isDevMode = false;
 5
 6 $dbParams = array(
 7 'driver' => 'pdo_mysql',
 8 'user' => 'root',
 9 'password' => '',
10 'dbname' => 'app',
11);
12
13 $config = Setup::createAnnotationMetadataConfiguration(
14 $paths, $isDevMode
15);
16
17 $config->setMetadataCacheImpl(
18 new \Doctrine\Common\Cache\FilesystemCache('/tmp/doctrine2')
19);
20
21 $em = EntityManager::create($dbParams, $config);

In the configuration shown above, we tell Doctrine 2 to cache metadata locally in the
filesystem. We could use other caching backends here as well. The caching path needs
to be given when using the FilesystemCache. Next time, when entities are processed,
Doctrine 2 starts setting up a somewhat cryptic files and folders structure in the given
caching path. Luckily, you don’t need to care about it—Doctrine 2 takes care of all things
caching. We only need to make sure that the caching path given is writable to Doctrine
2. When caching via Memcached or Redis, these services need to be up and running and
accessible to Doctrine 2, as well. If not, an exception will be raised.

Query Cache
The query cache ensures that DQL statements need to be translated into SQL only once.
This again speeds up a Doctrine 2 application significantly:

 1 <?php
 2 // [..]
 3 $paths = array(__DIR__ . "/../src/Entity/");

Chapter 10 ■ CaChing

99

 4 $isDevMode = false;
 5
 6 $dbParams = array(
 7 'driver' => 'pdo_mysql',
 8 'user' => 'root',
 9 'password' => '',
10 'dbname' => 'app',
11);
12
13 $config = Setup::createAnnotationMetadataConfiguration($paths,

$isDevMode);
14 $cachingBackend = new \Doctrine\Common\Cache\FilesystemCache('/tmp/

doctrine2');
15 $config->setMetadataCacheImpl($cachingBackend);
16 $config->setQueryCacheImpl($cachingBackend);
17 $em = EntityManager::create($dbParams, $config);

In the configuration shown above, we first set up a general caching backend, which
now powers both the metadata cache and the query cache.

Result Cache
Last but not least, there is the result cache. The use of a result cache prevents executing
the same queries against the database again and again:

 1 <?php
 2 // [..]
 3 $paths = array(__DIR__ . "/../src/Entity/");
 4 $isDevMode = false;
 5
 6 $dbParams = array(
 7 'driver' => 'pdo_mysql',
 8 'user' => 'root',
 9 'password' => '',
10 'dbname' => 'app',
11);
12
13 $config = Setup::createAnnotationMetadataConfiguration($paths,

$isDevMode);
14 $cachingBackend = new \Doctrine\Common\Cache\FilesystemCache('/tmp/

doctrine2');
15 $config->setMetadataCacheImpl($cachingBackend);
16 $config->setQueryCacheImpl($cachingBackend);
17 $config->setResultCacheImpl($cachingBackend);
18 $em = EntityManager::create($dbParams, $config);

Chapter 10 ■ CaChing

100

Via method setResultCacheImpl(), the result cache now is ready for action. In
contrast to the two other caching types, you have to actively tell Doctrine 2 to cache
results for a given query:

1 <?php
2
3 // [..]
4 $query = $em->createQuery($dqlString);
5 $query->useResultCache(true);

Now, the result is cached.

Summary
Since object-relational-mapping results in a noticeable runtime overhead, caching is
essential for high speed. In fact, in production, caching is a must and should be setup
right from the beginning.

	Chapter 10: Caching
	Introduction to ORM Cache Types
	Caching Backends
	Metadata Cache
	Query Cache
	Result Cache

	Summary

