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    CHAPTER 7   

 Semantic and Sentiment 
Analysis                          

 Natural language understanding has gained significant importance in the last decade 
with the advent of machine learning (ML) and further advances like   deep learning    and 
artificial intelligence. Computers and other machines can be programmed to learn 
things and perform specific operations. The key limitation is their inability to perceive, 
understand, and comprehend things like humans do. With the resurgence in popularity 
of neural networks and advances made in computer architecture, we now have deep 
learning and artificial intelligence evolving rapidly to make some efforts into trying to 
engineer machines into learning, perceiving, understanding, and performing actions on 
their own. You may have seen or heard several of these efforts, such as self-driving cars, 
computers beating experienced players in games like chess and Go, and the proliferation 
of chatbots on the Internet. 

 In Chapters   4    –  6    , we have looked at various computational, language processing, and 
ML techniques to classify, cluster, and summarize text. Back in Chapter   3     we developed 
certain methods and programs to analyze and understand text syntax and structure. 
This chapter will deal with methods that try to answer the question  Can we analyze and 
understand the meaning and sentiment behind a body of text?  

  Natural Language Processing (NLP)   has a wide variety of applications that try to use 
natural language understanding to infer the meaning and context behind text and use it to 
solve various problems. We discussed several of these applications briefly in Chapter   1    . 
To refresh your memory, the following applications require extensive understanding of 
text from the semantic perspective:

•    Question Answering Systems  

•   Contextual recognition  

•   Speech recognition (for some applications)    

   Text semantics    specifically deals with understanding the meaning of text or language. 
When combined into sentences, words have lexical relations and contextual relations 
between them lead to various types of relationships and hierarchies, and semantics sits 
at the heart of all this in trying to analyze and understand these relationships and infer 
meaning from them. We will be exploring various types of semantic relationships in natural 
language and look at some NLP-based techniques for inferring and extracting meaningful 
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semantic information from text. Semantics is purely concerned with context and meaning, 
and the structure or format of text holds little significance here. But sometimes even the 
syntax or arrangement of words helps us in inferring the context of words and helps us 
differentiate things like  lead  as a metal from  lead  as in the lead of a movie. 

   Sentiment analysis    is perhaps the most popular application of text analytics, with a 
vast number of tutorials, web sites, and applications that focus on analyzing sentiment of 
various text resources ranging from corporate surveys to movie reviews. The key aspect of 
sentiment analysis is to analyze a body of text for understanding the opinion expressed by 
it and other factors like mood and modality. Usually sentiment analysis works best on text 
that has a subjective context than on that with only an objective context. This is because 
when a body of text has an objective context or perspective to it, the text usually depicts some 
normal statements or facts without expressing any emotion, feelings, or mood. Subjective 
text contains text that is usually expressed by a human having typical moods, emotions, and 
feelings. Sentiment analysis is widely used, especially as a part of social media analysis for 
any domain, be it a business, a recent movie, or a product launch, to understand its reception 
by the people and what they think of it based on their opinions or, you guessed it, sentiment. 

 In this chapter, we will be covering several aspects from both semantic and 
sentiment analysis for textual data. We will start with exploring WordNet, a lexical 
database, and introduce a new concept called  synsets . We will also explore various 
semantic relationships and representations in natural language and we will cover 
techniques such as  word sense disambiguation  and  named entity recognition . In 
sentiment analysis, we will be looking at how to use supervised ML techniques to analyze 
sentiment and also at several unsupervised lexical techniques with more detailed insights 
into natural language sentiment, mood, and modality. 

     Semantic Analysis 
 We have seen how terms or words get grouped into phrases that further form clauses 
and finally sentences. Chapter   3     showed various structural components in natural 
language, including  parts of speech (POS), chunking, and grammars  . All these concepts 
fall under the syntactic and structural analysis of text data. Whereas we do explore 
relationships of words, phrases, and clauses, these are purely based on their position, 
syntax, and structure. Semantic analysis is more about understanding the actual context 
and meaning behind words in text and how they relate to other words to convey some 
information as a whole. As mentioned in Chapter   1    , the definition of semantics itself is 
the study of meaning, and linguistic semantics is a complete branch under linguistics 
that deals with the study of meaning in  natural language  , including exploring various 
relationships between words, phrases and symbols. Besides this, there are also various 
ways to represent semantics associated with statements and propositions. We will be 
broadly covering the following topics under semantic analysis:

•    Exploring WordNet and synsets  

•   Analyzing lexical semantic relations  

•   Word sense disambiguation  

•   Named entity recognition  

•   Analyzing semantic representations    
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 The main objective of these topics is to give you a clear understanding of the 
resources you can leverage for semantic analysis as well as how to use these resources. 
We will explore various concepts related to semantic analysis, which was covered 
in Chapter   1    , with actual examples. You can refresh your memory by revisiting the 
“Language Semantics” section in Chapter   1    . Without any further delay, let's get started!  

     Exploring  WordNet   
  WordNet   is a huge lexical database for the English Language. The database is a part of 
Princeton University, and you can read more about it at    https://wordnet.princeton.edu     . 
It was originally created in around 1985, in Princeton University’s Cognitive Science 
Laboratory under the direction of Professor G. A. Miller. This lexical database consists 
of nouns, adjective, verbs, and adverbs, and related lexical terms are grouped together 
based on some common concepts into sets, known as  cognitive synonym sets  or  synsets . 
Each synset expresses a unique, distinct concept. At a high level, WordNet can be 
compared to a thesaurus or a dictionary that provides words and their synonyms. On a 
lower level, it is much more than that, with synsets and their corresponding terms having 
detailed relationships and hierarchies based on their semantic meaning and similar 
concepts. WordNet is used extensively as a lexical database, in text analytics, NLP, and 
artificial intelligence (AI)-based applications. 

 The WordNet database consists of over 155,000 words, represented in more than 
117,000 synsets, and contains over 206,000 word-sense pairs. The database is roughly 12 
MB in size and can be accessed through various interfaces and APIs. The official web site 
has a  web application interface   for accessing various details related to words, synsets, 
and concepts related to the entered word. You can access it at    http://wordnetweb.
princeton.edu/perl/webwn      or download it from    https://wordnet.princeton.edu/
wordnet/download/     . The download contains various packages, files, and tools related to 
WordNet. We will be accessing WordNet programmatically using the interface provided 
by the  nltk  package. We will start by exploring synsets and then various semantic 
relationships using synsets. 

     Understanding  Synsets   
 We will start exploring WordNet by looking at synsets since they are perhaps one of the 
most important concepts and structures that tie everything together. In general, based on 
concepts from NLP and information retrieval, a synset is a collection or set of data entities 
that are considered to be semantically similar. This doesn’t mean that they will be exactly 
the same, but they will be centered on similar context and concepts. Specifically in the 
context of WordNet, a synset is a set or collection of synonyms that are interchangeable 
and revolve around a specific concept. Synsets not only consist of simple words, but 
also collocations.   Polysemous    word forms (words that sound and look the same but 
have different but relatable meanings) are assigned to different synsets based on their 
meaning. Synsets are connected to other synsets using semantic relations, which we shall 
explore in a future section. Typically each synset has the term, a definition explaining 
the meaning of the term, and some optional examples and related lemmas (collection 
of synonyms) to the term. Some terms may have multiple synsets associated with them, 
where each synset has a particular context. 
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 Let’s look at a real example by using  nltk ’s WordNet interface to explore synsets 
associated with the term,  'fruit'  .  We can do this using the following code snippet: 

    from nltk.corpus import wordnet as wn 
 import pandas as pd 

   term = 'fruit' 
 synsets = wn.synsets(term) 
 # display total synsets 
 In [75]: print 'Total Synsets:', len(synsets) 
 Total Synsets: 5 

    We can see that there are a total of five synsets associated with the term  'fruit'  .  
What can these synsets indicate? We can dig deeper into each synset and its components 
using the following code snippet: 

    In [76]: for synset in synsets: 
     ...:     print 'Synset:', synset 
     ...:     print 'Part of speech:', synset.lexname() 
     ...:     print 'Definition:', synset.definition() 
     ...:     print 'Lemmas:', synset.lemma_names() 
     ...:     print 'Examples:', synset.examples() 
     ...:     print 
     ...:  
     ...:  
 Synset: Synset('fruit.n.01') 
 Part of speech: noun.plant 
 Definition: the ripened reproductive body of a seed plant 
 Lemmas: [u'fruit'] 
 Examples: [] 

   Synset: Synset('yield.n.03') 
 Part of speech: noun.artifact 
 Definition: an amount of a product 
 Lemmas: [u'yield', u'fruit'] 
 Examples: [] 

   Synset: Synset('fruit.n.03') 
 Part of speech: noun.event 
 Definition: the consequence of some effort or action 
 Lemmas: [u'fruit'] 
 Examples: [u'he lived long enough to see the fruit of his policies'] 

   Synset: Synset('fruit.v.01') 
 Part of speech: verb.creation 
 Definition: cause to bear fruit 
 Lemmas: [u'fruit'] 
 Examples: [] 
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   Synset: Synset('fruit.v.02') 
 Part of speech: verb.creation 
 Definition: bear fruit 
 Lemmas: [u'fruit'] 
 Examples: [u'the trees fruited early this year'] 

    The preceding output shows us details pertaining to each synset associated with 
the term  'fruit' , and the definitions give us the sense of each synset and the lemma 
associated with it. The part of speech for each synset is also mentioned, which includes 
nouns and verbs. Some examples are also depicted in the preceding output that show 
how the term is used in actual sentences. Now that we understand synsets better, let’s 
start exploring various semantic relationships as mentioned.     

     Analyzing  Lexical Semantic Relations   
  Text semantics  refers to the study of meaning and context. Synsets give a nice abstraction 
over various terms and provide useful information like definition, examples, POS, and 
lemmas. But can we explore semantic relationships among entities using synsets? The 
answer is definitely yes. We will be talking about many of the concepts related to semantic 
relations (covered in detail in the “Lexical Semantic Relations” subsection under the 
“Language Semantics” section in Chapter   1    . It would be useful for you to review that 
section to better understand each of the concepts when we illustrate them with real-world 
examples here. We will be using  nltk 's  wordnet  resource here, but you can use the same 
WordNet resource from the  pattern  package, which includes an interface similar to  nltk . 

    Entailments      
 The term  entailment  usually refers to some event or action that logically involves or is 
associated with some other action or event that has taken place or will take place. Ideally 
this applies very well to verbs indicating some specific action. The following snippet 
shows how to get entailments: 

   # entailments 
 In [80]: for action in ['walk', 'eat', 'digest']: 
     ...:     action_syn = wn.synsets(action, pos='v')[0] 
     ...:     print action_syn, '-- entails -->', action_syn.entailments() 
 Synset('walk.v.01') -- entails --> [Synset('step.v.01')] 
 Synset('eat.v.01') -- entails --> [Synset('chew.v.01'), 
Synset('swallow.v.01')] 
 Synset('digest.v.01') -- entails --> [Synset('consume.v.02')] 

   You can see how related synsets depict the concept of entailment in that output. 
Related actions are depicted in entailment, where actions like  walking  involve or entail 
 stepping , and  eating  entails  chewing  and  swallowing .  
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   Homonyms and  Homographs         
 On a high level,  homonyms  refer to words or terms having the same written form or 
pronunciation but different meanings. Homonyms are a superset of homographs, which 
are words with same spelling but may have different pronunciation and meaning. The 
following code snippet shows how we can get homonyms/homographs: 

   In [81]: for synset in wn.synsets('bank'): 
     ...:     print synset.name(),'-',synset.definition() 
     ...:  
     ...:  
 bank.n.01 - sloping land (especially the slope beside a body of water) 
 depository_financial_institution.n.01 - a financial institution that accepts 
deposits and channels the money into lending activities 
 bank.n.03 - a long ridge or pile 
 bank.n.04 - an arrangement of similar objects in a row or in tiers 
 ... 
 ... 
 deposit.v.02 - put into a bank account 
 bank.v.07 - cover with ashes so to control the rate of burning 
 trust.v.01 - have confidence or faith in 

   The preceding output shows a part of the result obtained for the various homographs 
for the term  'bank'  .  You can see that there are various different meanings associated with 
the word  'bank' , which is the core intuition behind homographs.           

    Synonyms   and  Antonyms      
  Synonyms  are words having similar meaning and context, and  antonyms  are words having 
opposite or contrasting meaning, as you may know already. The following snippet depicts 
synonyms and antonyms: 

    In [82]: term = 'large' 
     ...: synsets = wn.synsets(term) 
     ...: adj_large = synsets[1] 
     ...: adj_large = adj_large.lemmas()[0] 
     ...: adj_large_synonym = adj_large.synset() 
     ...: adj_large_antonym = adj_large.antonyms()[0].synset() 
     ...: # print synonym and antonym 
     ...: print 'Synonym:', adj_large_synonym.name() 
     ...: print 'Definition:', adj_large_synonym.definition() 
     ...: print 'Antonym:', adj_large_antonym.name() 
     ...: print 'Definition:', adj_large_antonym.definition() 
 Synonym: large.a.01 
 Definition: above average in size or number or quantity or magnitude or 
extent 
 Antonym: small.a.01 



CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

325

 Definition: limited or below average in number or quantity or magnitude or 
extent 

   In [83]: term = 'rich' 
     ...: synsets = wn.synsets(term)[:3] 
     ...: # print synonym and antonym for different synsets 
     ...: for synset in synsets: 
     ...:     rich = synset.lemmas()[0] 
     ...:     rich_synonym = rich.synset() 
     ...:     rich_antonym = rich.antonyms()[0].synset() 
     ...:     print 'Synonym:', rich_synonym.name() 
     ...:     print 'Definition:', rich_synonym.definition() 
     ...:     print 'Antonym:', rich_antonym.name() 
     ...:     print 'Definition:', rich_antonym.definition() 
 Synonym: rich_people.n.01 
 Definition: people who have possessions and wealth (considered as a group) 
 Antonym: poor_people.n.01 
 Definition: people without possessions or wealth (considered as a group) 

   Synonym: rich.a.01 
 Definition: possessing material wealth 
 Antonym: poor.a.02 
 Definition: having little money or few possessions 

   Synonym: rich.a.02 
 Definition: having an abundant supply of desirable qualities or substances 
(especially natural resources) 
 Antonym: poor.a.04 
 Definition: lacking in specific resources, qualities or substances 

    The preceding outputs show sample  synonyms   and  antonyms   for the term  'large'  
and the term  'rich'  .  Additionally, we explore several synsets associated with the term 
or concept  'rich' , which rightly give us distinct synonyms and their corresponding 
antonyms.     

    Hyponyms   and  Hypernyms      
 Synsets represent terms with unique semantics and concepts and are linked or related 
to each other based on some similarity and context. Several of these synsets represent 
abstract and generic concepts also besides concrete entities. Usually they are interlinked 
together in the form of a hierarchical structure representing  is-a  relationships. Hyponyms 
and hypernyms help us explore related concepts by navigating through this hierarchy. 
To be more specific,  hyponyms  refer to entities or concepts that are a subclass of a higher 
order concept or entity and have very specific sense or context compared to its superclass. 
The following snippet shows the hyponyms for the entity  'tree' : 
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    term = 'tree' 
 synsets = wn.synsets(term) 
 tree = synsets[0] 
 # print the entity and its meaning 
 In [86]: print 'Name:', tree.name() 
     ...: print 'Definition:', tree.definition() 
 Name: tree.n.01 
 Definition: a tall perennial woody plant having a main trunk and branches 
forming a distinct elevated crown; includes both gymnosperms and angiosperms 
 # print total hyponyms and some sample hyponyms for 'tree' 
 In [87]: hyponyms = tree.hyponyms() 
     ...: print 'Total Hyponyms:', len(hyponyms) 
     ...: print 'Sample Hyponyms' 
     ...: for hyponym in hyponyms[:10]: 
     ...:     print hyponym.name(), '-', hyponym.definition() 

   Total Hyponyms: 180 
 Sample  Hyponyms      
 aalii.n.01 - a small Hawaiian tree with hard dark wood 
 acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia 
 african_walnut.n.01 - tropical African timber tree with wood that resembles 
mahogany 
 albizzia.n.01 - any of numerous trees of the genus Albizia 
 alder.n.02 - north temperate shrubs or trees having toothed leaves and 
conelike fruit; bark is used in tanning and dyeing and the wood is rot-
resistant 
 angelim.n.01 - any of several tropical American trees of the genus  Andira   
 angiospermous_tree.n.01 - any tree having seeds and ovules contained in the 
ovary 
 anise_tree.n.01 - any of several evergreen shrubs and small trees of the 
genus Illicium 
 arbor.n.01 - tree (as opposed to shrub) 
 aroeira_blanca.n.01 - small resinous tree or shrub of Brazil 

    The preceding output tells us that there are a total of 180 hyponyms for  'tree' , 
and we see some of the sample hyponyms and their definitions. We can see that each 
hyponym is a specific type of tree, as expected. Hyponyms are entities or concepts that act 
as the superclass to hyponyms and have a more generic sense or context. The following 
snippet shows the immediate superclass hyponym for  'tree' : 

   In [88]: hypernyms = tree.hypernyms() 
     ...: print hypernyms 
 [Synset('woody_plant.n.01')] 

   You can even navigate up the entire entity/concept hierarchy depicting all the 
hyponyms or parent classes for  'tree'  using the following code snippet: 

    # get total hierarchy pathways for 'tree' 
 In [91]: hypernym_paths = tree.hypernym_paths() 
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     ...: print 'Total Hypernym paths:', len(hypernym_paths) 
 Total Hypernym paths: 1 

   # print the entire hypernym hierarchy 
 In [92]: print 'Hypernym Hierarchy' 
     ...: print ' -> '.join(synset.name() for synset in hypernym_paths[0])    
 Hypernym Hierarchy 
 entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_
thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_
plant.n.01 -> tree.n.01 

    From the preceding output, you can see that  'entity'  is the most generic concept 
in which  'tree'  is present, and the complete hypernym hierarchy showing the 
corresponding hypernym or superclass at each level is shown. As you navigate further 
down, you get into more specific concepts/entities, and if you go in the reverse direction 
you will get into more generic concepts/entities.           

    Holonyms   and  Meronyms      
  Holonyms  are entities that contain a specific entity of our interest. Basically  holonym  refers 
to the relationship between a term or entity that denotes the whole and a term denoting a 
specific part of the whole. The following snippet shows the holonyms for  'tree' : 

   In [94]: member_holonyms = tree.member_holonyms()     
     ...: print 'Total Member Holonyms:', len(member_holonyms) 
     ...: print 'Member Holonyms for [tree]:-' 
     ...: for holonym in member_holonyms: 
     ...:     print holonym.name(), '-', holonym.definition() 
 Total Member Holonyms: 1 
 Member Holonyms for [tree]:- 
 forest.n.01 - the trees and other plants in a large densely wooded area 

   From the output, we can see that  'forest'  is a holonym for  'tree' , which is 
semantically correct because, of course, a forest is a collection of trees.  Meronyms  are 
semantic relationships that relate a term or entity as a part or constituent of another term 
or entity. The following snippet depicts different types of meronyms for  'tree' : 

    # part based meronyms for tree 
 In [95]: part_meronyms = tree.part_meronyms() 
     ...: print 'Total Part Meronyms:', len(part_meronyms) 
     ...: print 'Part Meronyms for [tree]:-' 
     ...: for meronym in part_meronyms: 
     ...:     print meronym.name(), '-', meronym.definition() 
 Total Part Meronyms: 5 
 Part Meronyms for [tree]:- 
 burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree 
 crown.n.07 - the upper branches and leaves of a tree or other plant 
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 limb.n.02 - any of the main branches arising from the trunk or a bough of a 
tree 
 stump.n.01 - the base part of a tree that remains standing after the tree 
has been felled 
 trunk.n.01 - the main stem of a tree; usually covered with bark; the bole is 
usually the part that is commercially useful for lumber 

   # substance based meronyms for tree 
 In [96]: substance_meronyms = tree.substance_meronyms()     
     ...: print 'Total Substance Meronyms:', len(substance_meronyms) 
     ...: print 'Substance Meronyms for [tree]:-' 
     ...: for meronym in substance_meronyms: 
     ...:     print meronym.name(), '-', meronym.definition() 
 Total Substance Meronyms: 2 
 Substance Meronyms for [tree]:- 
 heartwood.n.01 - the older inactive central wood of a tree or woody plant; 
usually darker and denser than the surrounding sapwood 
 sapwood.n.01 - newly formed outer wood lying between the cambium and the 
heartwood of a tree or woody plant; usually light colored; active in water 
conduction 

    The preceding output shows various meronyms that include various constituents of 
trees like  stump  and  trunk  and also various derived substances from trees like  heartwood  
and  sapwood .           

    Semantic Relationships and Similarity   
 In the previous sections, we have looked at various concepts related to lexical semantic 
relationships. We will now look at ways to connect similar entities based on their 
semantic relationships and also measure semantic similarity between them. Semantic 
similarity is different from the conventional similarity metrics discussed in Chapter   6    . We 
will use some sample synsets related to living entities as shown in the following snippet 
for our analysis: 

    tree = wn.synset('tree.n.01') 
 lion = wn.synset('lion.n.01') 
 tiger = wn.synset('tiger.n.02') 
 cat = wn.synset('cat.n.01') 
 dog = wn.synset('dog.n.01') 
 # create entities and extract names and definitions 
 entities = [tree, lion, tiger, cat, dog] 
 entity_names = [entity.name().split('.')[0] for entity in entities] 
 entity_definitions = [entity.definition() for entity in entities] 

   # print entities and their definitions 
 In [99]: for entity, definition in zip(entity_names, entity_definitions):    
     ...:     print entity, '-', definition 
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 tree - a tall perennial woody plant having a main trunk and branches forming 
a distinct elevated crown; includes both gymnosperms and angiosperms 
 lion - large gregarious predatory feline of Africa and India having a tawny 
coat with a shaggy mane in the male 
 tiger - large feline of forests in most of Asia having a tawny coat with 
black stripes; endangered 
 cat - feline mammal usually having thick soft fur and no ability to roar: 
domestic cats; wildcats 
 dog - a member of the genus Canis (probably descended from the common wolf) 
that has been domesticated by man since prehistoric times; occurs in many 
breeds 

    Now that we know our entities a bit better from these definitions explaining them, we 
will try to correlate the entities based on common hypernyms. For each pair of entities, 
we will try to find the lowest common hypernym in the relationship hierarchy tree. 
Correlated entities are expected to have very specific hypernyms, and unrelated entities 
should have very abstract or generic hypernyms. The following code snippet illustrates: 

   common_hypernyms = []    
 for entity in entities: 
     # get pairwise lowest common hypernyms 
     common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0] 
                                       .name().split('.')[0] 
                              for compared_entity in entities]) 
 # build pairwise lower common hypernym matrix 
 common_hypernym_frame = pd.DataFrame(common_hypernyms, 
                                      index=entity_names,  
                                      columns=entity_names) 
 # print the matrix 
 In [101]: print common_hypernym_frame     
      ...:  
            tree       lion      tiger        cat        dog 
 tree       tree   organism   organism   organism   organism 
 lion   organism       lion    big_cat     feline  carnivore 
 tiger  organism    big_cat      tiger     feline  carnivore 
 cat    organism     feline     feline        cat  carnivore 
 dog    organism  carnivore  carnivore  carnivore        dog 

   Ignoring the main diagonal of the matrix, for each pair of entities, we can see their 
lowest common hypernym which depicts the nature of relationship between them.  Trees  are 
unrelated to the other animals except that they are all living organisms. Hence we get the 
 'organism'  relationship amongst them.  Cats  are related to  lions  and  tigers  with respect to 
being feline creatures, and we can see the same in the preceding output.  Tigers  and  lions  are 
connected to each other with the  'big cat'  relationship. Finally, we can see  dogs  having the 
relationship of  'carnivore'  with the other animals since they all typically eat meat. 

 We can also measure the semantic similarity between these entities using various 
semantic concepts. We will use  'path similarity' , which returns a value between  [0, 1]  
based on the shortest path connecting two terms based on their hypernym/hyponym based 
taxonomy. The following snippet shows us how to generate this similarity matrix:    
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    similarities = [] 
 for entity in entities: 
     # get pairwise similarities 
     similarities.append([round(entity.path_similarity(compared_entity), 2) 
                          for compared_entity in entities])         
 # build pairwise similarity matrix                              
 similarity_frame = pd.DataFrame(similarities, 
                                 index=entity_names,  
                                 columns=entity_names) 
 # print the matrix 
 print similarity_frame  

          tree  lion  tiger   cat   dog 
 tree   1.00  0.07   0.07  0.08  0.13 
 lion   0.07  1.00   0.33  0.25  0.17 
 tiger  0.07  0.33   1.00  0.25  0.17 
 cat    0.08  0.25   0.25  1.00  0.20 
 dog    0.13  0.17   0.17  0.20  1.00 

    From the preceding output, as expected,  lion  and  tiger  are the most similar with a 
value of 0.33, followed by their semantic similarity with  cat  having a value of 0.25. And 
 tree  has the lowest semantic similarity values when compared with other animals.    

 This concludes our discussion on analyzing lexical semantic relations. I encourage 
you to try exploring more concepts with different examples by leveraging WordNet.    

      Word Sense Disambiguation      
 In the previous section, we looked at homographs and homonyms, which are basically words 
that look or sound similar but have very different meanings. This meaning is contextual 
based on how it has been used and also depends on the word semantics, also called  word 
sense . Identifying the correct sense or semantics of a word based on its usage is called  word 
sense disambiguation  with the assumption that the word has multiple meanings based on its 
context. This is a very popular problem in NLP and is used in various applications, such as 
improving the relevance of search engine results, coherence, and so on. 

 There are various ways to solve this problem, including lexical and dictionary-based 
methods and supervised and unsupervised ML methods. Covering everything would be 
out of the current scope, so I will be showing word sense disambiguation using the Lesk 
algorithm, a classic algorithm invented by M. E. Lesk in 1986. The basic principle behind 
this algorithm is to leverage dictionary or vocabulary definitions for a word we want to 
disambiguate in a body of text and compare the words in these definitions with a section 
of text surrounding our word of interest. We will be using the WordNet definitions for 
words instead of a dictionary. The main objective for us would be to return the synset 
with the maximum number of overlapping words or terms between the context sentence 
and the different definitions from each synset for the word we target for disambiguation. 
The following snippet leverages  nltk  to depict how to use word sense disambiguation for 
various examples:       
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    from nltk.wsd import lesk 
 from nltk import word_tokenize 

   # sample text and word to disambiguate 
 samples = [('The fruits on that plant have ripened', 'n'), 
             ('He finally reaped the fruit of his hard work as he won the 

race', 'n')] 
 word = 'fruit' 
 # perform word sense disambiguation 
 In [106]: for sentence, pos_tag in samples: 
      ...:     word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag) 
      ...:     print 'Sentence:', sentence 
      ...:     print 'Word synset:', word_syn 
      ...:     print 'Corresponding definition:', word_syn.definition() 
      ...:     print 
 Sentence: The fruits on that plant have ripened 
 Word synset: Synset('fruit.n.01') 
 Corresponding definition: the ripened reproductive body of a seed plant 

   Sentence: He finally reaped the fruit of his hard work as he won the race 
 Word synset: Synset('fruit.n.03') 
 Corresponding definition: the consequence of some effort or  action      

   # sample text and word to disambiguate 
 samples = [('Lead is a very soft, malleable metal', 'n'), 
            ('John is the actor who plays the lead in that movie', 'n'), 
            ('This road leads to nowhere', 'v')] 
 word = 'lead' 
 # perform word sense disambiguation 
 In [108]: for sentence, pos_tag in samples: 
      ...:      word_syn = lesk(word_tokenize(sentence.lower()), word, 

pos_tag) 
      ...:     print 'Sentence:', sentence 
      ...:     print 'Word synset:', word_syn 
      ...:     print 'Corresponding definition:', word_syn.definition() 
      ...:     print 
 Sentence: Lead is a very soft, malleable metal 
 Word synset: Synset('lead.n.02') 
 Corresponding definition: a soft heavy toxic malleable metallic element; 
bluish white when freshly cut but tarnishes readily to dull grey 

   Sentence: John is the actor who plays the lead in that movie 
 Word synset: Synset('star.n.04') 
 Corresponding definition: an actor who plays a principal role 

   Sentence: This road leads to nowhere 
 Word synset: Synset('run.v.23') 
 Corresponding definition: cause something to pass or lead  somewhere      
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    We try to disambiguate two words,  'fruit'  and  'lead'  in various text documents 
in the preceding examples. You can see how we use the Lesk algorithm to get the correct 
word sense for the word we are disambiguating based on its usage and context in each 
document. This tells you how  fruit  can mean both an entity that is consumed as well as 
some consequence one faces on applying efforts. We also see how  lead  can mean the soft 
metal, causing something/someone to go somewhere, or even an actor who plays the 
main role in a play or movie.  

      Named Entity Recognition      
 In any text document, there are particular terms that represent entities that are more 
informative and have a unique context compared to the rest of the text. These entities are 
known as  named entities , which more specifically refers to terms that represent real-world 
objects like people, places, organizations, and so on, which are usually denoted by proper 
names. We can find these typically by looking at the noun phrases in text documents. 
 Named entity recognition , also known as  entity chunking/extraction , is a popular technique 
used in information extraction to identify and segment named entities and classify or 
categorize them under various predefined classes. Some of these classes that are used 
most frequently are shown in Figure  7-1  (courtesy of  nltk  and The Stanford NLP group).  

 There is some overlap between  GPE  and  LOCATION . The  GPE  entities are usually more 
generic and represent geo-political entities like cities, states, countries, and continents. 
 LOCATION  can also refer to these entities (it varies across different NER systems) along 
with very specific locations like a mountain, river, or hill-station.  FACILITY  on the other 
hand refers to popular monuments or artifacts that are usually man-made. The remaining 
categories are pretty self-explanatory from their names and the examples depicted in 
Figure  7-1 . 

 The Bundesliga is perhaps the most popular top-level professional association 
football league in Germany, and FC Bayern Munchen is one of the most popular clubs 
in this league with a global presence. We will now take a sample description of this club 

  Figure 7-1.    Common named entities with  examples            
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from Wikipedia and try to extract named entities from it. We will reuse our normalization 
module (accessible as  normalization.py  in the code files) from the last chapter in 
this section to parse the document to remove unnecessary new lines. We will start by 
leveraging  nltk ’s Named Entity Chunker:       

    # sample document 
 text = """ 
 Bayern Munich, or FC Bayern, is a German sports club based in Munich,  
 Bavaria, Germany. It is best known for its professional football team,  
 which plays in the Bundesliga, the top tier of the German football  
 league system, and is the most successful club in German football  
 history, having won a record 26 national titles and 18 national cups.  
 FC Bayern was founded in 1900 by eleven football players led by Franz John.  
 Although Bayern won its first national championship in 1932, the club  
 was not selected for the Bundesliga at its inception in 1963. The club  
 had its period of greatest success in the middle of the 1970s when,  
 under the captaincy of Franz Beckenbauer, it won the European Cup three  
 times in a row (1974-76). Overall, Bayern has reached ten UEFA Champions  
 League finals, most recently winning their fifth title in 2013 as part  
 of a continental treble.  
 """ 

   import nltk 
 from normalization import parse_document 
 import pandas as pd 

   # tokenize sentences 
 sentences = parse_document(text) 
 tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in 
sentences]  

   # tag sentences and use nltk's Named Entity Chunker 
 tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences] 
 ne_chunked_sents = [nltk.ne_chunk(tagged) for tagged in tagged_sentences]       

   # extract all named entities 
 named_entities = [] 
 for ne_tagged_sentence in ne_chunked_sents: 
     for tagged_tree in ne_tagged_sentence: 
         # extract only chunks having NE labels 
         if hasattr(tagged_tree, 'label'):  
                  entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) # 

get NE name 
                 entity_type = tagged_tree.label() # get NE category 
                 named_entities.append((entity_name, entity_type)) 
 # get unique named entities                 
 named_entities = list(set(named_entities)) 
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 # store named entities in a data frame 
 entity_frame = pd.DataFrame(named_entities,  
                             columns=['Entity Name', 'Entity Type']) 
 # display results 
 In [116]: print entity_frame     
           Entity Name   Entity Type 
 0              Bayern        PERSON 
 1          Franz John        PERSON 
 2   Franz Beckenbauer        PERSON 
 3              Munich  ORGANIZATION 
 4            European  ORGANIZATION 
 5          Bundesliga  ORGANIZATION 
 6              German           GPE 
 7             Bavaria           GPE 
 8             Germany           GPE 
 9           FC Bayern  ORGANIZATION 
 10               UEFA  ORGANIZATION 
 11             Munich           GPE 
 12             Bayern           GPE 
 13            Overall           GPE 

    The Named Entity Chunker identifies named entities from the preceding text 
document, and we extract these named entities from the tagged annotated sentences 
and display them in the data frame as shown. You can clearly see how it has correctly 
identified  PERSON ,  ORGANIZATION , and  GPE  related named entities, although a few of them 
are incorrectly identified.       

 We will now use the Stanford NER tagger on the same text and compare the results. 
For this, you need to have Java installed and then download the Stanford NER resources 
from    http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip     . Unzip them 
to a location of your choice (I used  E:/stanford  in my system). Once done, you can use 
 nltk ’s interface to access this, similar to what we did in Chapter   3     for constituency and 
dependency parsing. For more details on Stanford NER, visit    http://nlp.stanford.edu/
software/CRF-NER.shtml     , the official web site, which also contains the latest version of 
their Named Entity Recognizer (I used an older version):       

    from nltk.tag import StanfordNERTagger 
 import os 

   # set java path in environment variables 
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe' 
 os.environ['JAVAHOME'] = java_path 

   # load stanford NER 
 sn = StanfordNERTagger('E:/stanford/stanford-ner-2014-08-27/classifiers/
english.all.3class.distsim.crf.ser.gz', 
                         path_to_jar='E:/stanford/stanford-ner-2014-08-27/

stanford-ner.jar') 

http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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   # tag sentences                        
 ne_annotated_sentences = [sn.tag(sent) for sent in tokenized_sentences] 

   # extract named entities 
 named_entities = [] 
 for sentence in ne_annotated_sentences: 
     temp_entity_name = '' 
     temp_named_entity = None 
     for term, tag in sentence: 
         # get terms with NE tags 
         if tag != 'O':  
              temp_entity_name = ' '.join([temp_entity_name, term]).strip() # 

get NE name 
              temp_named_entity = (temp_entity_name, tag) # get NE and its 

category 
         else: 
             if temp_named_entity: 
                 named_entities.append(temp_named_entity) 
                 temp_entity_name = '' 
                 temp_named_entity = None 

   # get unique named entities 
 named_entities = list(set(named_entities)) 
 # store named entities in a data frame 
 entity_frame = pd.DataFrame(named_entities,  
                             columns=['Entity Name', 'Entity Type']) 

   # display results 
 In [118]: print entity_frame                        
          Entity Name   Entity Type 
 0         Franz John        PERSON 
 1  Franz Beckenbauer        PERSON 
 2            Germany      LOCATION 
 3             Bayern  ORGANIZATION 
 4            Bavaria      LOCATION 
 5             Munich      LOCATION 
 6          FC Bayern  ORGANIZATION 
 7               UEFA  ORGANIZATION 
 8      Bayern Munich  ORGANIZATION 

    The preceding output depicts various named entities obtained from our document. 
You can compare this with the results obtained from  nltk ’s NER chunker. The results here 
are definitely better—there are no misclassifications and each category is also assigned 
correctly. Some really interesting points: It has correctly identified  Munich  as a  LOCATION  
and  Bayern Munich  as an  ORGANIZATION . Does this mean the second NER tagger is better? 
Not really. It depends on the type of corpus you are analyzing, and you can even build 
your own NER tagger using supervised learning by training on pre-tagged corpora similar 
to what we did in Chapter   3    . In fact, both the taggers just discussed have been trained on 
pre-tagged corpora like CoNLL, MUC, and Penn Treebank.         

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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     Analyzing Semantic Representations 
 We usually communicate in the form of messages in spoken form or in written form 
with other people or interfaces. Each of these  messages   is typically a collection of words, 
phrases, or sentences, and they have their own semantics and context. So far, we’ve talked 
about semantics and relations between various lexical units. But how do we represent the 
meaning of semantics conveyed by a message or messages? How do humans understand 
what someone is telling them? How do we believe in statements and propositions and 
evaluate outcomes and what action to take? It feels easy because the brain helps us with 
logic and reasoning—but computationally can we do the same? 

 The answer is yes we can.  Frameworks   like propositional logic and first-order logic 
help us in representation of semantics. We discussed this in detail in Chapter   1     in the 
subsection “Representation of Semantics” under the “Language Semantics” section. I 
encourage you to go through that once more to refresh your memory. In the following 
sections, we will look at ways to represent propositional and first order logic and prove or 
disprove propositions, statements, and predicates using practical examples and code. 

     Propositional  Logic      
 We have already discussed propositional logic (PL) as the study of propositions, 
statements, and sentences. A  proposition  is usually declarative, having a binary value 
of being either true or false. There also exist various logical operators like conjunction, 
disjunction, implication, and equivalence, and we also study the effects of applying these 
operators on multiple propositions to understand their behavior and outcome. 

 Let us consider our example from Chapter   1     with regard to two propositions  P  and  Q  
such that they can be represented as follows: 

  P : He is hungry 
  Q : He will eat a sandwich 
 We will now try to build the truth tables for various operations on these propositions 

using  nltk  based on the various logical operators discussed in Chapter   1     (refer to the 
“Propositional Logic” section for more details) and derive outcomes computationally: 

    import nltk 
 import pandas as pd 
 import os 

   # assign symbols and propositions 
 symbol_P = 'P' 
 symbol_Q = 'Q' 
 proposition_P = 'He is hungry' 
 propositon_Q = 'He will eat a sandwich' 
 # assign various truth values to the propositions 
 p_statuses = [False, False, True, True] 
 q_statuses = [False, True, False, True] 
 # assign the various expressions combining the logical operators 
 conjunction = '(P & Q)' 
 disjunction = '(P | Q)' 
 implication = '(P -> Q)' 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 equivalence = '(P <-> Q)' 
 expressions = [conjunction, disjunction, implication, equivalence] 

   # evaluate each expression using propositional logic 
 results = [] 
 for status_p, status_q in zip(p_statuses, q_statuses): 
     dom = set([]) 
     val = nltk.Valuation([(symbol_P, status_p),  
                           (symbol_Q, status_q)]) 
     assignments = nltk.Assignment(dom) 
     model = nltk.Model(dom, val) 
     row = [status_p, status_q] 
     for expression in expressions: 
         # evaluate each expression based on proposition truth values 
         result = model.evaluate(expression, assignments)  
         row.append(result) 
     results.append(row)       
 # build the result table 
 columns = [symbol_P, symbol_Q, conjunction,  
            disjunction, implication, equivalence]            
 result_frame = pd.DataFrame(results, columns=columns) 

   # display results 
 In [125]: print 'P:', proposition_P 
      ...: print 'Q:', propositon_Q 
      ...: print 
      ...: print 'Expression Outcomes:-' 
      ...: print result_frame  
 P: He is hungry 
 Q: He will eat a sandwich 

   Expression Outcomes:- 
        P      Q (P & Q) (P | Q) (P -> Q) (P <-> Q) 
 0  False  False   False   False     True      True 
 1  False   True   False    True     True     False 
 2   True  False   False    True    False     False 
 3   True   True    True    True     True      True 

    The preceding output depicts the various truth values of the two propositions, and 
when we combine them with various logical operators, you will find the results matching 
with what we manually evaluated in Chapter   1    . For example,  P & Q  indicates  He is hungry 
and he will eat a sandwich  is  True  only when both of the individual propositions is  True . 
We use  nltk ’s  Valuation  class to create a dictionary of the propositions and their various 
outcome states. We use the  Model  class to evaluate each expression, where the  evaluate()  
function internally calls the recursive function  satisfy() , which helps in evaluating the 
outcome of each expression with the propositions based on the assigned truth values.            

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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     First Order  Logic      
 PL has several limitations, like the inability to represent facts or complex relationships 
and inferences. PL also has limited expressive power because for each new proposition 
we would need a unique symbolic representation, and it becomes very difficult to 
generalize facts. This is where first order logic (FOL) works really well with features 
like functions, quantifiers, relations, connectives, and symbols. It definitely provides a 
richer and more powerful representation for semantic information. The “First Order 
Logic” subsection under “Representation of Semantics” in Chapter   1     provides detailed 
information about how  FOL works.   

 In this section, we will build several FOL representations similar to what we did 
manually in Chapter   1     using mathematical representations. Here we will build them 
in our code using similar syntax and leverage  nltk  and some theorem provers to prove 
the outcome of various expressions based on predefined conditions and relationships, 
similar to what we did for PL. The key takeaway for you from this section should be 
getting to know how to represent FOL representations in Python and how to perform FOL 
inference using proofs based on some goal and predefined rules and events. There are 
several theorem provers you can use for evaluating expressions and proving theorems. 
The  nltk  package has three main different types of provers:  Prover9 ,  TableauProver , and 
 ResolutionProver . The first one is a free-to-use prover available for download at    www.
cs.unm.edu/~mccune/prover9/download/     . You can extract the contents in a location of 
your choice (I used  E:/prover9 ). We will be using both  ResolutionProver  and  Prover9  
in our examples. The following snippet helps in setting up the necessary dependencies 
for FOL expressions and evaluations: 

   import  nltk      
 import os 
 # for reading FOL expressions 
 read_expr = nltk.sem.Expression.fromstring 
 # initialize theorem provers (you can choose any) 
 os.environ['PROVER9'] = r'E:/prover9/bin' 
 prover = nltk.Prover9() 
 # I use the following one for our examples 
 prover = nltk.ResolutionProver()    

   Now that we have our dependencies ready, let us evaluate a few FOL expressions. 
Consider a simple expression that  If an entity jumps over another entity, the reverse cannot 
happen . Assuming the entities to be  x  and  y , we can represent this is FOL as ∀ x  ∀ y 
(jumps_over(x, y)  → ¬ jumps_over(y, x))  which signifies that for all  x  and  y , if  x  jumps 
over  y , it implies that  y  cannot jump over  x . Consider now that we have two entities  fox  
and  dog  such that the  fox  jumps over the  dog  is an event which has taken place and can 
be represented by  jumps_over(fox, dog) . Our end goal or objective is to evaluate the 
outcome of  jumps_over(dog, fox)  considering the preceding expression and the event 
that has occurred. The following snippet shows us how we can do this: 

    # set the rule expression 
 rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))') 
 # set the event occured 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cs.unm.edu/~mccune/prover9/download/
http://www.cs.unm.edu/~mccune/prover9/download/
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 event = read_expr('jumps_over(fox, dog)') 
 # set the outcome we want to evaluate -- the goal 
 test_outcome = read_expr('jumps_over(dog, fox)') 

   # get the  result      
 In [132]: prover.prove(goal=test_outcome,  
      ...:              assumptions=[event, rule], 
      ...:              verbose=True) 
 [1] {-jumps_over(dog,fox)}                    A  
 [2] {jumps_over(fox,dog)}                     A  
 [3] {-jumps_over(z4,z3), -jumps_over(z3,z4)}  A  
 [4] {-jumps_over(dog,fox)}                    (2, 3)  

   Out[132]: False 

    The preceding output depicts the final result for our goal  test_outcome  is  False , that 
is, the  dog  cannot jump over the  fox  if the  fox  has already jumped over the  dog  based on 
our rule expression and the events assigned to the assumptions parameter in the prover 
already given. The sequence of steps that lead to the result is also shown in the output. 
Let us now consider another FOL expression rule ∀ x studies(x, exam)  →  pass(x, 
exam) , which tells us that for all instances of  x , if  x  studies for the exam, he/she will pass 
the exam. Let us represent this rule and consider two students,  John  and  Pierre , such 
that  John  does not study for the exam and  Pierre  does. Can we then find out the outcome 
whether they will pass the exam based on the given expression rule? The following 
snippet shows us how:       

    # set the rule expression                           
 rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')  
 # set the events and outcomes we want to determine 
 event1 = read_expr('-studies(John, exam)')   
 test_outcome1 = read_expr('pass(John, exam)')  
 event2 = read_expr('studies(Pierre, exam)')   
 test_outcome2 = read_expr('pass(Pierre, exam)') 

   # get results 
 In [134]: prover.prove(goal=test_outcome1,  
      ...:              assumptions=[event1, rule], 
      ...:              verbose=True)  
 [1] {-pass(John,exam)}                  A  
 [2] {-studies(John,exam)}               A  
 [3] {-studies(z6,exam), pass(z6,exam)}  A  
 [4] {-studies(John,exam)}               (1, 3)  

   Out[134]: False 

   In [135]: prover.prove(goal=test_outcome2,  
      ...:              assumptions=[event2, rule], 
      ...:              verbose=True)    
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 [1] {-pass(Pierre,exam)}                A  
 [2] {studies(Pierre,exam)}              A  
 [3] {-studies(z8,exam), pass(z8,exam)}  A  
 [4] {-studies(Pierre,exam)}             (1, 3)  
 [5] {pass(Pierre,exam)}                 (2, 3)  
 [6] {}                                  (1, 5)  

   Out[135]:  True      

    Thus you can see from the above evaluations that  Pierre  does pass the exam 
because he studied for the exam, unlike  John  who doesn't pass the exam since he did not 
study for it. 

 Let us consider a more complex example with several entities. They perform several 
actions as follows:

•    There are two dogs  rover  ( r ) and  alex  ( a )  

•   There is one cat  garfield  ( g )  

•   There is one fox  felix  ( f )  

•   Two animals, alex ( a ) and felix ( f ) run, denoted by function 
 runs()   

•   Two animals  rover  ( r ) and  garfield  ( g ) sleep, denoted by 
function  sleeps()   

•   Two animals,  felix  ( f ) and  alex  ( a ) can jump over the other two, 
denoted by function  jumps_over()     

 Taking all these assumptions, the following snippet builds an FOL-based model 
with the previously mentioned domain and assignment values based on the entities 
and functions. Once we build this model, we evaluate various FOL-based expressions to 
determine their outcome and prove some theorems like we did earlier: 

    # define symbols (entities\functions) and their values 
 rules = """ 
     rover => r 
     felix => f 
     garfield => g 
     alex => a 
     dog => {r, a} 
     cat => {g} 
     fox => {f} 
     runs => {a, f} 
     sleeps => {r, g} 
     jumps_over => {(f, g), (a, g), (f, r), (a, r)} 
     """ 
 val = nltk.Valuation.fromstring(rules) 
 # view the valuation object of symbols and their assigned values 
(dictionary)       
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 In [143]: print val 
 {'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps': 
set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog': 
set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a', 
'r'), ('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'} 

   # define domain and build FOL based model 
 dom = {'r', 'f', 'g', 'a'} 
 m = nltk.Model(dom, val) 

   # evaluate various expressions 
 In [148]: print m.evaluate('jumps_over(felix, rover) & dog(rover) & 
runs(rover)', None) 
 False 

   In [149]: print m.evaluate('jumps_over(felix, rover) & dog(rover) & 
-runs(rover)', None) 
 True 

   In [150]: print m.evaluate('jumps_over(alex, garfield) & dog(alex) & 
cat(garfield) & sleeps(garfield)', None) 
 True 

   # assign rover to x and felix to y in the domain 
 g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])    

   # evaluate more expressions based on above assigned symbols 
 In [152]: print m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)    
 True 

   In [153]: print m.evaluate('exists y. (fox(y) & runs(y))', g)  
 True 

    The preceding snippet depicts the evaluation of various expressions based on the 
valuation of different symbols based on the rules and domain. We create various FOL-
based expressions and see their outcome based on the predefined assumptions. For 
example, the first expression gives us  False  because  rover  never  runs()  and the second 
and third expressions are  True  because they satisfy all the conditions like  felix  and  alex  
can  jump over rover  or  garfield  and  rover  is a  dog  that does not  run  and  garfield  is 
a  cat . The second set of expressions is evaluated based on assigning  felix  and  rover  to 
specific symbols in our domain ( dom ), and we pass that variable ( g ) when evaluating the 
expressions. We can even satisfy open formulae or expressions using the  satisfiers()  
function as shown here:       

    # who are the animals who run? 
 In [154]: formula = read_expr('runs(x)') 
      ...: print m.satisfiers(formula, 'x', g)  
 set(['a', 'f']) 
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   # animals who run and are also a fox? 
 In [155]: formula = read_expr('runs(x) & fox(x)') 
      ...: print m.satisfiers(formula, 'x', g) 
 set(['f']) 

    The preceding outputs are self-explanatory wherein we evaluate open-ended 
questions like  which animals run ? And also  which animals can run and are also foxes ? 
We get the relevant symbols in our outputs, which you can map back to the actual 
animal names (Hint:  a: alex, f: felix ). I encourage you to experiment with more 
propositions and FOL expressions by building your own assumptions, domain, and rules.   

     Sentiment Analysis 
 We will now discuss several concepts, techniques, and examples with regard to our second 
major topic in this chapter, sentiment analysis.  Textual data  , even though unstructured, 
mainly has two broad types of data points: factual based (objective) and opinion based 
(subjective). We briefly talked about these two categories at the beginning of this chapter 
when I introduced the concept of sentiment analysis and how it works best on text that has 
a subjective context. In general, social media, surveys, and feedback data all are heavily 
opinionated and express the beliefs, judgement, emotion, and feelings of human beings. 
Sentiment analysis, also popularly known as  opinion analysis/mining , is  defined   as the 
process of using techniques like NLP, lexical resources, linguistics, and machine learning 
(ML) to extract subjective and opinion related information like emotions, attitude, mood, 
modality, and so on and try to use these to compute the polarity expressed by a text 
document. By  polarity , I mean to find out whether the document expresses a positive, 
negative, or a neutral sentiment. More advanced analysis involves trying to find out more 
complex emotions like sadness, happiness, anger, and sarcasm. 

 Typically, sentiment analysis for text data can be computed on several levels, 
including on an individual sentence level, paragraph level, or the entire document as a 
whole. Often sentiment is computed on the document as a whole or some aggregations 
are done after computing the sentiment for individual sentences.   Polarity analysis       usually 
involves trying to assign some scores contributing to the positive and negative emotions 
expressed in the document and then finally assigning a label to the document based on 
the aggregate score. We will depict two major  techniques   for sentiment analysis here:

•    Supervised machine learning  

•   Unsupervised lexicon-based    

 The key idea is to learn the various techniques typically used to tackle sentiment 
analysis problems so that you can apply them to solve your own problems. We will 
see how to re-use the concepts of supervised machine learning based classification 
algorithms from Chapter   4     here to classify documents to their associated sentiment. We 
will also use  lexicons , which are dictionaries or vocabularies specially constructed to 
be used for sentiment analysis, and compute sentiment without using any supervised 
techniques. We will be carrying out our experiments on a large real-world dataset 
pertaining to movie reviews, which will make this task more interesting. We will compare 
the performance of the various algorithms and also try to perform some detailed analytics 
besides just analyzing polarity, which includes analyzing the subjectivity, mood, and 
modality of the movie reviews. Without further delay, let’s get started!  

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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     Sentiment Analysis of  IMDb Movie Reviews   
 We will be using a dataset of movie reviews obtained from the Internet Movie Database 
(IMDb) for sentiment analysis. This dataset, containing over 50,000 movie reviews, can be 
obtained from    http://ai.stanford.edu/~amaas/data/sentiment/     , courtesy of Stanford 
University and A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, Andrew Ng, and C. Potts, 
and this dataset was used in their famous paper, “Learning Word Vectors for Sentiment 
Analysis.” We will be using 50,000 movie reviews from this dataset, which contain the 
review and a corresponding sentiment polarity label which is either positive or negative. 
A positive review is basically a movie review which was rated with more than six stars in 
IMDb, and a negative  review   was rated with less than five stars in IMDb. An important 
thing to remember here before we begin our exercise is the fact that many of these reviews, 
even though labeled positive or negative, might have some elements of negative or positive 
context respectively. Hence, there is a possibility for some overlap in many reviews, which 
make this task harder. Sentiment is not a quantitative number that you can compute and 
prove mathematically. It expresses complex emotions, feelings, and judgement, and hence 
you should never focus on trying to get a cent-percent perfect model but a model that 
generalizes well on data and works decently. We will start with setting up some necessary 
dependencies and utilities before moving on to the various techniques. 

      Setting Up Dependencies    
 There are several utility functions, data, and package dependencies that we need to set 
up before we jump into sentiment analysis. We will need our movie review dataset, some 
specific packages that we will be using in our implementations, and we will be defining 
some utility functions for text normalization, feature extracting, and model evaluation, 
similar to what we have used in previous chapters. 

   Getting and Formatting the  Data   
 We will use the IMDb movie review dataset officially available in raw text files for each 
set (training and testing) from    http://ai.stanford.edu/~amaas/data/sentiment/      as 
mentioned. You can download and unzip the files to a location of your choice and use 
the  review_data_extractor.py  file included along with the code files of this chapter to 
extract each review from the unzipped directory, parse them, and neatly format them into 
a data frame, which is then stored as a csv file named  movie_reviews.csv . Otherwise, 
you can directly download the parsed and formatted file from    https://github.com/
dipanjanS/text-analytics-with-python/tree/master/Chapter-7     , which contains all 
datasets and code used and is the official repository for this book. The data frame consists 
of two columns,  review  and  sentiment , for each data point, which indicates the review 
for a movie and its corresponding sentiment (positive or negative).  

    Text Normalization   
 We will be normalizing and standardizing our text data similar to what we did in Chapter 
  6     as a part of text pre-processing and normalization. For this we will be re-using our 
 normalization.py  module from Chapter   6     with a few additions. This mainly includes 

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
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adding an HTML stripper to remove unnecessary HTML characters from text documents, 
as shown here: 

    from HTMLParser import HTMLParser 

   class MLStripper(HTMLParser): 
     def __init__(self): 
         self.reset() 
         self.fed = [] 
     def handle_data(self, d): 
         self.fed.append(d) 
     def get_data(self): 
         return ' '.join(self.fed) 

   def strip_html(text): 
     html_stripper = MLStripper() 
     html_stripper.feed(text) 
     return html_stripper.get_data() 

    We also add a new function to normalize special accented characters and convert 
them into regular ASCII characters so as to standardize the text across all documents. The 
following snippet helps us achieve this: 

   def normalize_accented_characters(text): 
     text = unicodedata.normalize('NFKD',  
                                  text.decode('utf-8') 
                                  ).encode('ascii', 'ignore') 
     return  text   

   The overall text normalization function is depicted in the following snippet and it 
re-uses the expand contractions, lemmatization, HTML unescaping, special characters 
removal, and stopwords removal functions from the previous chapter's normalization 
module: 

    def normalize_corpus(corpus, lemmatize=True,  
                      only_text_chars=False, 
                      tokenize=False): 

       normalized_corpus = []     
     for index, text in enumerate(corpus): 
         text = normalize_accented_characters(text) 
         text = html_parser.unescape(text) 
         text = strip_html(text) 
         text = expand_contractions(text, CONTRACTION_MAP) 
         if lemmatize: 
             text = lemmatize_text(text) 
         else: 
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             text = text.lower() 
         text = remove_special_characters(text) 
         text = remove_stopwords(text) 
         if only_text_chars: 
             text = keep_text_characters(text) 

           if tokenize: 
             text = tokenize_text(text) 
             normalized_corpus.append(text) 
         else: 
             normalized_corpus.append(text) 

       return normalized_ corpus   

    To re-use this code, you can make use of the  normalization.py  and  contractions.
py  files provided with the code files of this chapter.  

   Feature  Extraction   
 We will be reusing the same feature-extraction function we used in Chapter   6    , and it is 
available as a part of the  utils.py  module. The function is shown here for the sake of 
completeness: 

    from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer 

   def build_feature_matrix(documents, feature_type='frequency', 
                          ngram_range=(1, 1), min_df=0.0, max_df=1.0): 

       feature_type = feature_type.lower().strip()   

       if feature_type == 'binary': 
         vectorizer = CountVectorizer(binary=True, min_df=min_df, 
                                      max_df=max_df, ngram_range=ngram_range) 
     elif feature_type == 'frequency': 
         vectorizer = CountVectorizer(binary=False, min_df=min_df, 
                                      max_df=max_df, ngram_range=ngram_range) 
     elif feature_type == 'tfidf': 
         vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,  
                                      ngram_range=ngram_range) 
     else: 
          raise Exception("Wrong feature type entered. Possible values: 

'binary', 'frequency', 'tfidf'") 

       feature_matrix = vectorizer.fit_transform(documents).astype(float) 
     return vectorizer, feature_ matrix   

http://dx.doi.org/10.1007/978-1-4842-2388-8_6
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    You can experiment with various features provided by this function, which include 
Bag of Words-based frequencies, occurrences, and TF-IDF based features.  

    Model Performance Evaluation   
 We will be evaluating our models based on precision, recall, accuracy, and F1-score, 
similar to our evaluation methods in Chapter   4     for text classification. Additionally we 
will be looking at the confusion matrix and detailed classification reports for each class, 
that is, the positive and negative classes to evaluate model performance. You can refer to 
the “Evaluating Classification Models” section in Chapter   4     to refresh your memory on 
the various model-evaluation metrics. The following function will help us in getting the 
model accuracy, precision, recall, and F1-score: 

    from sklearn import metrics 
 import numpy as np 
 import pandas as pd 

   def display_evaluation_metrics(true_labels, predicted_labels, positive_
class=1): 
     print 'Accuracy:', np.round( 
                         metrics.accuracy_score(true_labels,  
                                                predicted_labels), 
                         2) 
     print 'Precision:', np.round( 
                         metrics.precision_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 
     print 'Recall:', np.round( 
                         metrics.recall_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 
     print 'F1 Score:', np.round( 
                         metrics.f1_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 

    We will also define a function to help us build the confusion matrix for evaluating 
the model predictions against the actual sentiment labels for the reviews. The following 
function will help us achieve that:    

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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   def display_confusion_matrix(true_labels, predicted_labels, classes=[1,0]): 
     cm = metrics.confusion_matrix(y_true=true_labels,  
                                   y_pred=predicted_labels,  
                                   labels=classes) 
     cm_frame = pd.DataFrame(data=cm,  
                              columns=pd.MultiIndex(levels=[['Predicted:'], 

classes],  
                                                   labels=[[0,0],[0,1]]),  
                              index=pd.MultiIndex(levels=[['Actual:'], 

classes],  
                                                 labels=[[0,0],[0,1]]))  
     print cm_frame   

   Finally, we will define a function for getting a detailed classification report per 
sentiment category (positive and negative) by displaying the precision, recall, F1-score, 
and support (number of reviews) for each of the classes: 

   def display_classification_report(true_labels, predicted_labels, 
classes=[1,0]): 
     report = metrics.classification_report(y_true=true_labels,  
                                            y_pred=predicted_labels,  
                                            labels=classes)  
     print report 

   You will find all the preceding functions in the  utils.py  module along with the other 
code files for this chapter and you can re-use them as needed. Besides this, you need to 
make sure you have  nltk  and  pattern  installed—which you should already have by this 
point of time because we have used them numerous times in our previous chapters.      

     Preparing  Datasets   
 We will be loading our movie reviews data and preparing two datasets, namely training 
and testing, similar to what we did in Chapter   4    . We will train our supervised model on 
the training data and evaluate model performance on the testing data. For unsupervised 
models, we will directly evaluate them on the testing data so as to compare their 
performance with the supervised model. Besides that, we will also pick some sample 
positive and negative reviews to see how the different models perform on them: 

    import pandas as pd 
 import numpy as np 
 # load movie reviews data 
 dataset = pd.read_csv(r'E:/aclImdb/movie_reviews.csv') 
 # print sample data 
 In [235]: print dataset.head() 
                                               review sentiment 
 0  One of the other reviewers has mentioned that ...  positive 
 1  A wonderful little production. <br /><br />The...  positive 
 2  I thought this was a wonderful way to spend ti...  positive 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4


CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

348

 3  Basically there's a family where a little boy ...  negative 
 4  Petter Mattei's "Love in the Time of Money" is...  positive 

   # prepare training and testing datasets 
 train_data = dataset[:35000] 
 test_data = dataset[35000:]    

   train_reviews = np.array(train_data['review']) 
 train_sentiments = np.array(train_data['sentiment']) 
 test_reviews = np.array(test_data['review']) 
 test_sentiments = np.array(test_data['sentiment']) 

   # prepare sample dataset for experiments 
 sample_docs = [100, 5817, 7626, 7356, 1008, 7155, 3533, 13010] 
 sample_data = [(test_reviews[index], 
                 test_sentiments[index]) 
                   for index in sample_docs] 

    We have taken a total of 35,000 reviews out of the 50,000 to be our training dataset 
and we will evaluate our models and test them on the remaining 15,000 reviews. This is in 
line with a typical 70:30 separation used for training and testing dataset building. We have 
also extracted a total of eight reviews from the test dataset and we will be looking closely 
at the results for these documents as well as evaluating the model performance on the 
complete test dataset in the following sections.     

     Supervised Machine Learning  Technique   
 As mentioned before, in this section we will be building a model to analyze sentiment 
using supervised ML. This model will learn from past reviews and their corresponding 
sentiment from the training dataset so that it can predict the sentiment for new reviews 
from the test dataset. The basic principle here is to use the same concepts we used for 
 text classification   such that the classes to predict here are positive and negative sentiment 
corresponding to the movie reviews. 

 We will be following the same workflow which we followed in Chapter   4     for  text 
classification   (refer to Figure 4-2 in Chapter   4    ) in the “Text Classification Blueprint” 
section. The following points summarize these steps:

    1.    Model training

   a.    Normalize training data  

   b.    Extract features and build feature set and feature 
vectorizer  

   c.    Use supervised learning algorithm (SVM) to build a 
predictive model      

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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    2.    Model testing

   a.    Normalize testing data  

   b.    Extract features using training feature vectorizer  

   c.    Predict the sentiment for testing reviews using training 
model  

   d.    Evaluate model performance         

 To start, we will be building our training model using the steps in point 1. We will be 
using our normalization and feature- extraction   modules discussed in previous sections: 

    from normalization import normalize_corpus 
 from utils import build_feature_matrix 

   # normalization 
 norm_train_reviews = normalize_corpus(train_reviews, lemmatize=True, only_
text_chars=True) 
 # feature extraction                                                                             
 vectorizer, train_features = build_feature_matrix(documents=norm_train_
reviews, 
                                                    feature_type='tfidf', 

ngram_range=(1, 1),  
                                                   min_df=0.0, max_df=1.0)    

    We will now build our model using the   support vector machine  (SVM)   algorithm which 
we used for text classification in Chapter   4    . Refer to the “Support Vector Machines” subsection 
under the “Classification Algorithms” section in Chapter   4     to refresh your memory: 

   from sklearn.linear_model import SGDClassifier 
 # build the model 
 svm = SGDClassifier(loss='hinge', n_iter=200) 
 svm.fit(train_features, train_sentiments) 

   The preceding snippet trainings the classifier and builds the model that is in the 
 svm  variable, which we can now use for predicting sentiment for new movie reviews (not 
used for training) from the test dataset. Let us normalize and extract  features   from the test 
dataset first as mentioned in step 2 in our workflow: 

   # normalize reviews                         
 norm_test_reviews = normalize_corpus(test_reviews, lemmatize=True, only_
text_chars=True)   
 # extract features                                      
 test_features = vectorizer.transform(norm_test_reviews) 

   Now that we have our features for the entire test dataset, before we predict the 
sentiment and measure model prediction performance for the entire test dataset, let us 
look at some of the  predictions   for the sample documents we extracted earlier: 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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    # predict sentiment for sample docs from test data 
 In [253]: for doc_index in sample_docs: 
      ...:     print 'Review:-' 
      ...:     print test_reviews[doc_index] 
      ...:     print 'Actual Labeled Sentiment:', test_sentiments[doc_index] 
      ...:     doc_features = test_features[doc_index] 
      ...:     predicted_sentiment = svm.predict(doc_features)[0] 
      ...:     print 'Predicted Sentiment:', predicted_sentiment 
      ...:     print 
      ...:  
      ...:  
 Review:- 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin  scorsese   
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 I hope this group of film-makers never re-unites. 
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)    
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 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: negative 

   Review:- 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment:  negative   

    You can look at each review, its actual labeled sentiment, and our predicted sentiment 
in the preceding output and see that we have some negative and positive reviews, and our 
model is able to correctly identify the sentiment for most of the sampled reviews except 
the last two reviews. If you look closely at the last two reviews, some part of the review has 
a negative sentiment ( "worst horror film" ,  "voted this movie to be bad" ) but the 
general sentiment or opinion of the person who wrote the review was intended positive. 
These are the examples I mentioned earlier about the overlap of  positive and negative 
emotions  , which makes it difficult for the model to predict the actual sentiment! 

 Let us now predict the sentiment for all our  test dataset reviews   and evaluate our 
model performance: 

    # predict the sentiment for test dataset movie reviews 
 predicted_sentiments = svm.predict(test_features)        

   # evaluate model prediction performance 
 from utils import display_evaluation_metrics, display_confusion_matrix, 
display_classification_report 

   # show performance metrics 
 In [270]: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=predicted_sentiments, 
      ...:                            positive_class='positive')   
 Accuracy: 0.89 
 Precision: 0.88 
 Recall: 0.9 
 F1 Score: 0.89 

   # show confusion matrix 
 In [271]: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=predicted_sentiments, 
      ...:                          classes=['positive', 'negative']) 



CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

352

                  Predicted:          
                    positive negative 
 Actual: positive       6770      740 
         negative        912     6578 

   # show detailed per-class classification report 
 In [272]: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=predicted_

sentiments, 
      ...:                               classes=['positive', 'negative'])     
              precision    recall  f1-score   support 

      positive       0.88      0.90      0.89      7510 
    negative       0.90      0.88      0.89      7490 

   avg / total       0.89      0.89      0.89     15000 

    The preceding outputs show the various  performance metrics   that depict the 
performance of our SVM model with regard to predicting sentiment for movie reviews. 
We have an average sentiment prediction accuracy of 89 percent, which is really good if 
you compare it with standard baselines for text classification using supervised techniques. 
The classification report also shows a per-class detailed report, and we see that our F1-
score (harmonic mean of precision and recall) is 89 percent for both positive and negative 
sentiment. The support metric shows the number of reviews having positive (7510) 
sentiment and negative (7490) sentiment. The  confusion matrix   shows how many reviews 
for which we predicted the correct sentiment ( positive : 6770/7510,  negative : 6578/7490) 
and the number of reviews for which we predicted the wrong sentiment ( positive : 740/7510, 
 negative : 912/7490). Do try out building more models with different features (Chapter 
  4     talks about different feature-extraction techniques) and different supervised learning 
algorithms. Can you get a better model which predicts sentiment more accurately?  

     Unsupervised Lexicon-based  Techniques   
 So far, we used labeled training data to learn patterns using features from the movie 
reviews and their corresponding sentiment. Then we applied this knowledge learned on 
new movie reviews (the testing dataset) to predict their sentiment. Often, you may not 
have the convenience of a well-labeled training dataset. In those situations, you need 
to use unsupervised techniques for predicting the sentiment by using knowledgebases, 
ontologies, databases, and lexicons that have detailed information specially curated and 
prepared just for sentiment analysis. 

 As mentioned, a  lexicon   is a dictionary, vocabulary, or a book of words. In our case, 
lexicons are special dictionaries or vocabularies that have been created for analyzing 
sentiment. Most of these lexicons have a list of positive and negative polar words with 
some score associated with them, and using various techniques like the position of words, 
surrounding words, context, parts of speech, phrases, and so on, scores are assigned to 
the text documents for which we want to compute the sentiment. After aggregating these 
scores, we get the final sentiment. More advanced analyses can also be done, including 
detecting the subjectivity, mood, and modality. Various popular lexicons are used for 
sentiment analysis, including the following:
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•    AFINN lexicon  

•   Bing Liu’s lexicon  

•   MPQA subjectivity lexicon  

•   SentiWordNet  

•   VADER lexicon  

•   Pattern lexicon    

 This is not an exhaustive list of lexicons that can be leveraged for sentiment analysis, 
and there are several other lexicons which can be easily obtained from the Internet. 
We will briefly discuss each lexicon and will be using the last three lexicons to analyze 
the sentiment for our testing dataset in more detail. Although these techniques are 
unsupervised, you can also use them to analyze and evaluate the sentiment for the 
training dataset too, but for the sake of consistency and to compare model performances 
with the supervised model, we will be performing all our analyses on the testing dataset. 

    AFINN Lexicon      
 The AFINN lexicon was curated and created by Finn Årup Nielsen, and more details are 
mentioned in his paper “A New ANEW: Evaluation of a Word List for Sentiment Analysis 
in Microblogs.” The latest version, known as AFINN-111, consists of a total of 2477 words 
and phrases with their own scores based on sentiment polarity. The polarity basically 
indicates how positive, negative, or neutral the term might be with some numerical 
score. You can download it from    www2.imm.dtu.dk/pubdb/views/publication_details.
php?id=6010     . It also talks about the lexicon in further details. The author of this lexicon 
has also built a Python wrapper over the AFINN lexicon, which you can directly use to 
predict the sentiment of text data. The repository is available from GitHub at    https://
github.com/fnielsen/afinn     . You can install the  afinn  library directly and start 
analyzing sentiment. This library even has support for emoticons and smileys. Following 
is a sample of the AFINN-111 lexicon: 

   abandon        -2 
 abandoned      -2 
 abandons       -2 
 abducted       -2 
 abduction      -2 
 ... 
 ... 
 youthful        2 
 yucky          -2 
 yummy           3 
 zealot         -2 
 zealots        -2 
 zealous         2 

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
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   The basic idea is to load the entire list of polar words and phrases in the lexicon 
along with their corresponding score (sample shown above) in memory and then find the 
same words/phrases and score them accordingly in a text document. Finally, these scores 
are aggregated, and the final sentiment and score can be obtained for a text document. 
Following is an example snippet based on the official documentation: 

    from afinn import Afinn 
 afn = Afinn(emoticons=True)  

   In [281]: print afn.score('I really hated the plot of this movie') 
 -3.0 
 In [282]: print afn.score('I really hated the plot of this movie :(') 
 -5.0 

    Thus you can use the  score()  function directly to evaluate the sentiment of your text 
documents, and from the preceding output you can see that they even give proper weightage 
to emoticons, which are used extensively in social media like Twitter and Facebook.        

    Bing Liu’s Lexicon      
 This lexicon has been developed by Bing Liu over several years and is discussed in 
further details in his paper, by Nitin Jindal and Bing Liu, “Identifying Comparative 
Sentences in Text Documents.” You can get more details about the lexicon at    https://
www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon     , which also includes a 
link to download it as an archive (RAR format). This lexicon consists of over 6800 words 
divided into two files named  positive-words.txt , containing around 2000+ words/
phrases, and  negative-words.txt , which contains around 4800+ words/phrases. The 
key idea is to leverage these words to contribute to the positive or negative polarity of 
any text document when they are identified in that document. This lexicon also includes 
many misspelled words, taking into account that words or terms are often misspelled on 
popular social media web sites.         

    MPQA Subjectivity Lexicon      
 MPQA stands for Multi-Perspective Question Answering, and it hosts a plethora of 
resources maintained by the University of Pittsburgh. It contains resources including 
opinion corpora, subjectivity lexicon, sense annotations, argument-based lexicon, and 
debate datasets. A lot of these can be leveraged for complex analysis of human emotions 
and sentiment. The subjectivity lexicon is maintained by Theresa Wilson, Janyce Wiebe, 
and Paul Hoffmann, and is discussed in detail in their paper, “Recognizing Contextual 
Polarity in Phrase-Level Sentiment Analysis,” which focuses on contextual polarity. You 
can download the subjectivity lexicon from    http://mpqa.cs.pitt.edu/lexicons/subj_
lexicon/     , which is their official website. It has subjectivity clues present in the dataset 
named  subjclueslen1-HLTEMNLP05.tff , which is available once you extract the archive. 
Some sample lines from the dataset are depicted as follows: 

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
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   type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n 
priorpolarity=negative 
 type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n 
priorpolarity=negative 
 type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y 
priorpolarity=negative 
 type=strongsubj len=1 word1=abase pos1=verb stemmed1=y 
priorpolarity=negative 
 ... 
 ... 
 type=strongsubj len=1 word1=zealously pos1=anypos stemmed1=n 
priorpolarity=negative 
 type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n 
priorpolarity=positive 
 type=strongsubj len=1 word1=zest pos1=noun stemmed1=n priorpolarity=positive  

   To understand this data, you can refer to the  readme  file provided along with the 
dataset. Basically, the clues in this dataset were curated and collected manually with 
efforts by the above-mentioned maintainers of this project. The various parameters 
mentioned above are explained briefly as follows:

•     type : This has values that are either  strongsubj  indicating the 
presence of a strongly subjective context or  weaksubj  which 
indicates the presence of a weak/part subjective context.  

•    len : This points to the number of words in the term of the clue (all 
are single words of length 1 for now).  

•    word1 : The actual term present as a token or a stem of the actual 
token.  

•    pos1 : The part of speech for the term (clue) and it can be  noun , 
 verb ,  adj ,  adverb , or  anypos .  

•    stemmed1 : This indicates if the clue (term) is stemmed ( y ) or not 
stemmed ( n ). If it is stemmed, it can match all its other variants 
having the same  pos1  tag.  

•    priorpolarity : This has values of negative, positive, both, or 
neutral, and indicates the polarity of the sentiment associated 
with this clue (term).    

 The idea is to load this lexicon into a database or memory (hint: Python dictionary 
works well) and then use it similarly to the previous lexicons to analyze the sentiment 
associated with any text document.        
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    SentiWordNet      
 We know that WordNet is perhaps one of the most popular corpora for the English 
language, used extensively in semantic analysis, and it introduces the concept of synsets. 
The SentiWordNet lexicon is a lexical resource used for sentiment analysis and opinion 
mining. For each synset present in WordNet, the SentiWordNet lexicon assigns three 
sentiment scores to it, including a positive polarity score, a negative polarity score, 
and an objectivity score. You can find more details on the official web site    http://
sentiwordnet.isti.cnr.it     , which includes research papers explaining the lexicon in 
detail and also a link to download the lexicon. The  nltk  package in Python provides an 
interface directly for accessing the SentiWordNet lexicon, and we will be using this to 
analyze the sentiment of our movie reviews. The following snippet shows an example 
synset and its sentiment scores using SentiWordNet: 

   import nltk 
 from nltk.corpus import sentiwordnet as swn 
 # get synset for 'good' 
 good = swn.senti_synsets('good', 'n')[0]   
 # print synset sentiment scores 
 In [287]: print 'Positive Polarity Score:', good.pos_score() 
      ...: print 'Negative Polarity Score:', good.neg_score() 
      ...: print 'Objective Score:', good.obj_score() 
 Positive Polarity Score: 0.5 
 Negative Polarity Score: 0.0 
 Objective Score: 0.5 

   Now that we know how to use the  sentiwordnet  interface, we define a function 
that can take in a body of text (movie review in our case) and analyze its sentiment by 
leveraging   sentiwordnet :      

    from normalization import normalize_accented_characters, html_parser, strip_
html 

   def analyze_sentiment_sentiwordnet_lexicon(review, 
                                            verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # tokenize and POS tag text tokens 
     text_tokens = nltk.word_tokenize(review) 
     tagged_text = nltk.pos_tag(text_tokens) 
     pos_score = neg_score = token_count = obj_score = 0 
     # get wordnet synsets based on POS tags 
     # get sentiment scores if synsets are found 
     for word, tag in tagged_text: 
         ss_set = None 

http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/
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         if 'NN' in tag and swn.senti_synsets(word, 'n'): 
             ss_set = swn.senti_synsets(word, 'n')[0] 
         elif 'VB' in tag and swn.senti_synsets(word, 'v'): 
             ss_set = swn.senti_synsets(word, 'v')[0] 
         elif 'JJ' in tag and swn.senti_synsets(word, 'a'): 
             ss_set = swn.senti_synsets(word, 'a')[0] 
         elif 'RB' in tag and swn.senti_synsets(word, 'r'): 
             ss_set = swn.senti_synsets(word, 'r')[0] 
         # if senti-synset is found     
         if ss_set: 
             # add scores for all found synsets 
             pos_score += ss_set.pos_score() 
             neg_score += ss_set.neg_score() 
             obj_score += ss_set.obj_score() 
             token_count += 1 

       # aggregate final  scores      
     final_score = pos_score - neg_score 
     norm_final_score = round(float(final_score) / token_count, 2) 
     final_sentiment = 'positive' if norm_final_score >= 0 else 'negative' 
     if verbose: 
         norm_obj_score = round(float(obj_score) / token_count, 2) 
         norm_pos_score = round(float(pos_score) / token_count, 2) 
         norm_neg_score = round(float(neg_score) / token_count, 2) 
         # to display results in a nice table 
         sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score, 
                                          norm_pos_score, norm_neg_score, 
                                          norm_final_score]], 
                                           columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],  
                                                        ['Predicted Sentiment',

 'Objectivity', 
                                                         'Positive', 'Negative',

 'Overall']],  
                                                       labels=[[0,0,0,0,0],

[0,1,2,3,4]])) 
                                                      print sentiment_frame 

       return final_ sentiment      

    The comments in the preceding function are pretty self-explanatory. We take in a 
body of text (a movie review), do some initial pre-processing, and then tokenize and POS 
tag the tokens. For each pair of (word, tag) we check if any senti-synsets exist for the same 
word and its corresponding tag. If there is a match, we take the first senti-synset and store 
its sentiment scores in corresponding variables, and finally we aggregate its scores. We 
can now see the preceding function in action for our sample reviews (in the  sample_data  
variable we created earlier from the test data) in the following snippet: 
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    # detailed sentiment analysis for sample reviews 
 In [292]: for review, review_sentiment in sample_data:   
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:      final_sentiment = analyze_sentiment_sentiwordnet_

lexicon(review, 
      ...:                                                               

verbose=True) 
      ...:     print '-'*60     
      ...:  
      ...:  
 Review:       
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment:  negative      

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.83     0.08     0.09   -0.01 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.71     0.04     0.25   -0.21 
 ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.81     0.04     0.15   -0.11 
 ------------------------------------------------------------ 
 Review: 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 



CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

359

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.76     0.18     0.06    0.13 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 

   Labeled Sentiment:  positive      

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.84     0.14     0.03    0.11 
 ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)       

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.75      0.2     0.05    0.15 
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.73     0.21     0.06    0.15 
 ------------------------------------------------------------ 
 Review: 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 

   Labeled Sentiment: positive 
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        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.79     0.13     0.08    0.05 
 ------------------------------------------------------------ 

    You can see detailed statistics related to each sentiment score and also the overall 
sentiment and compare it with the actual labeled sentiment for each review in the 
preceding output. Interestingly, we were able to predict the sentiment correctly for all 
our sampled reviews as compared to the supervised learning technique. But how well 
does this technique perform for our complete test movie reviews dataset? The following 
snippet will give us the answer!       

    # predict sentiment for test movie reviews dataset 
 sentiwordnet_predictions = [analyze_sentiment_sentiwordnet_lexicon(review) 
                             for review in test_reviews] 

   from utils import display_evaluation_metrics, display_confusion_matrix, 
display_classification_report 

   # get model performance statistics 
 In [295]: print 'Performance metrics:' 
      ...:       display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                             predicted_labels=sentiwordnet_

predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                           predicted_labels=sentiwordnet_

predictions, 
      ...:                          classes=['positive', 'negative']) 
      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=sentiwordnet_

predictions, 
      ...:                               classes=['positive', 'negative'])  
 Performance metrics: 
 Accuracy: 0.59 
 Precision: 0.56 
 Recall: 0.92 
 F1 Score: 0.7 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       6941      569 
         negative       5510     1980 

   Classification report:       
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              precision    recall  f1-score   support 

      positive       0.56      0.92      0.70      7510 
    negative       0.78      0.26      0.39      7490 

   avg / total       0.67      0.59      0.55     15000 

    Our model has a sentiment prediction accuracy of around 60% and an F1-score of 
70% approximately. If you look at the detailed classification report and the confusion 
matrix, you will observe that we correctly classify 6941/7510 positive movie reviews as 
positive, but we incorrectly classify 5510/7490 negative movie reviews as positive—which 
is quite high! A way to redress this would be to change our logic slightly in our function 
and relax the threshold for overall sentiment score to decide whether a document will 
have an overall positive or negative sentiment from 0 to maybe 0.1 or higher. Experiment 
with this threshold and see what kind of results you get.        

    VADER Lexicon      
 VADER stands for Valence Aware Dictionary and sEntiment Reasoner. It is a lexicon 
with a rule-based sentiment analysis framework that was specially built for analyzing 
sentiment from social media resources. This lexicon was developed by C. J. Hutto and 
Eric Gilbert, and you will find further details in the paper, “VADER: A Parsimonious Rule-
based Model for Sentiment Analysis of Social Media Text.” You can read more about it 
and even download the dataset or install the library from    https://github.com/cjhutto/
vaderSentiment     , which contains all the resources pertaining to the VADER lexicon. 
The file  vader_sentiment_lexicon.txt  contains all the necessary sentiment scores 
associated with various terms, including words, emoticons, and even slang language-
based tokens (like  lol ,  wtf ,  nah , and so on). There are over 9000 lexical features from 
which it was further curated to 7500 lexical features in this lexicon with proper validated 
valence scores. Each feature was rated on a scale from  "[-4] Extremely Negative"  to 
 "[4] Extremely Positive" , with allowance for  "[0] Neutral (or Neither, N/A)" . 
This curation was done by keeping all lexical features which had a non-zero mean rating 
and whose standard deviation was less than 2.5, which was determined by the aggregate 
of ten independent raters. A sample of the VADER lexicon is depicted as follows:          

   )-:<   -2.2   0.4     [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2] 
 )-:{   -2.1   0.9434  [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2] 
 ):     -1.8   0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2] 
 ... 
 ... 
 resolved      0.7   0.78102  [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] 
 resolvent     0.7   0.78102  [1, 0, 1, 2, 0, -1, 1, 1, 1, 1] 
 resolvents    0.4   0.66332  [2, 0, 0, 1, 0, 0, 1, 0, 0, 0] 
 ... 
 ... 
 }:-(   -2.1   0.7       [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2] 
 }:-)    0.3   1.61555   [1, 1, -2, 1, -1, -3, 2, 2, 1, 1] 

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment


CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

362

   Each line in the preceding lexicon depicts a unique term, which can be a word 
or even an emoticon. The first term indicates the word/emoticon, the second column 
indicates the mean or average score, the third column indicates the standard deviation, 
and the final column indicates a list of scores given by ten independent scorers. The  nltk  
package has a nice interface for leveraging the VADER lexicon, and the following function 
makes use of the same for analyzing sentiment for any text document:       

    from nltk.sentiment.vader import SentimentIntensityAnalyzer 

   def analyze_sentiment_vader_lexicon(review,  
                                     threshold=0.1, 
                                     verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # analyze the sentiment for review 
     analyzer = SentimentIntensityAnalyzer() 
     scores = analyzer.polarity_scores(review) 
     # get aggregate scores and final sentiment 
     agg_score = scores['compound'] 
     final_sentiment = 'positive' if agg_score >= threshold\ 
                                    else 'negative' 
     if verbose: 
         # display detailed sentiment statistics 
         positive = str(round(scores['pos'], 2)*100)+'%' 
         final = round(agg_score, 2) 
         negative = str(round(scores['neg'], 2)*100)+'%' 
         neutral = str(round(scores['neu'], 2)*100)+'%' 
         sentiment_frame = pd.DataFrame([[final_sentiment, final, positive, 
                                         negative, neutral]], 
                   columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'], 
                                                [ 'Predicted Sentiment', 

'Polarity Score', 
                                                 'Positive', 'Negative', 
                                                 'Neutral']],  
                                        labels=[[0,0,0,0,0],[0,1,2,3,4]])) 
         print sentiment_frame 

       return final_ sentiment      

    That function helps in computing the sentiment and various statistics associated with 
it for any text document (movie reviews in our case). The comments explain the main 
sections of the function, which include text-preprocessing, getting the necessary sentiment 
scores using the VADER lexicon, aggregating them, and computing the final sentiment 
(positive/negative) using a specific threshold we talked about earlier. A threshold of 0.1 
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seemed to work best on an average, but you can experiment further with it. The following 
snippet shows us how to use this function on our sampled test movie reviews:       

    # get detailed sentiment statistics 
 In [301]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:     final_sentiment = analyze_sentiment_vader_lexicon(review, 
      ...:                                                    threshold=0.1, 
      ...:                                                    verbose=True) 
      ...:     print '-'*60  

   Review: 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative           0.03    20.0%    18.0%   62.0% 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.44    33.0%     0.0%   67.0% 
 ------------------------------------------------------------ 
 Review:       
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative           -0.8     0.0%    40.0%   60.0% 
 ------------------------------------------------------------ 
 Review:       
 Add this little gem to your list of holiday regulars. It is<br /><br />sweet, 
funny, and endearing 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.82    40.0%     0.0%   60.0% 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.71    31.0%     0.0%   69.0% 
 ------------------------------------------------------------ 
 Review:       
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-) 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.99    37.0%     2.0%   61.0% 
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative          -0.16    17.0%    14.0%   69.0% 
 ------------------------------------------------------------ 
 Review:       
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.49    11.0%    11.0%   77.0% 
 ------------------------------------------------------------ 

    The preceding statistics are similar to our previous function except the  Positive , 
 Negative , and  Neutral  columns indicate the percentage or proportion of the document 
that is positive, negative, or neutral, and the final score is determined based on the 
polarity score and the threshold. The following snippet shows the model sentiment 
prediction performance on the entire test movie reviews dataset:       

    # predict sentiment for test movie reviews dataset 
 vader_predictions = [analyze_sentiment_vader_lexicon(review, threshold=0.1) 
                      for review in test_reviews] 

   # get model performance statistics 
 In [302]: print 'Performance metrics:' 
      ...: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=vader_predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=vader_predictions, 
      ...:                          classes=['positive', 'negative']) 
      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                               predicted_labels=vader_predictions, 
      ...:                               classes=['positive', 'negative'])  
 Performance metrics:       
 Accuracy: 0.7 
 Precision: 0.65 
 Recall: 0.86 
 F1 Score: 0.74 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       6434     1076 
         negative       3410     4080 

   Classification report: 
              precision    recall  f1-score   support 

      positive       0.65      0.86      0.74      7510 
    negative       0.79      0.54      0.65      7490 

   avg / total       0.72      0.70      0.69     15000 
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    The preceding metrics depict that our model has a sentiment prediction accuracy of 
around 70 percent and an F1-score close to 75 percent, which is definitely better than our 
previous model. Also notice that we are able to correctly predict positive sentiment for 
6434 out of 7510 positive movie reviews, and negative sentiment correctly for 4080 out of 
7490 negative movie reviews.        

    Pattern Lexicon   
 The  pattern   package   is a complete package for NLP, text analytics, and information 
retrieval. We discussed it in detail in previous chapters and have also used it several 
times to solve several problems. This package is developed by CLiPS (Computational 
Linguistics & Psycholinguistics), a research center associated with the Linguistics 
Department of the Faculty of Arts of the University of Antwerp. It has a sentiment module 
associated with it, along with modules for analyzing mood and modality of a body of text. 

 For sentiment analysis, it analyzes any body of text by decomposing it into sentences 
and then tokenizing it and tagging the various tokens with necessary parts of speech. 
It then uses its own subjectivity-based sentiment lexicon, which you can access from 
its official repository at    https://github.com/clips/pattern/blob/master/pattern/
text/en/en-sentiment.xml     . It contains scores like polarity, subjectivity, intensity, and 
confidence, along with other tags like the part of speech, WordNet identifier, and so 
on. It then leverages this lexicon to compute the overall polarity and subjectivity score 
associated with a text document. A threshold of 0.1 is recommended by  pattern  itself to 
compute the final sentiment of a document as positive, and anything below it as negative. 

 You can also analyze the mood and modality of text  documents   by leveraging the 
mood and modality functions provided by the  pattern  package. The mood function 
helps in determining the mood expressed by a particular text document. This function 
returns  INDICATIVE ,  IMPERATIVE ,  CONDITIONAL , or  SUBJUNCTIVE  for any text based on its 
content. The table in Figure  7-2  talks about each type of mood in further detail, courtesy 
of the official documentation provided by CLiPS  pattern . The column  Use  talks about 
the typical usage patterns for each type of mood, and the examples provide some actual 
examples from the English language.  

 Modality for any text represents the degree of certainty expressed by the text as 
a whole. This value is a number that ranges between 0 and 1. Values > 0.5 indicate 
factual texts having a high certainty, and < 0.5 indicate wishes and hopes and have a low 

  Figure 7-2.    Different types of mood and their examples (figure courtesy of CLiPS pattern)          

 

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
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certainty associated with them. We will define a function now to analyze the sentiment 
for text documents using the  pattern lexicon:   

    from pattern.en import sentiment, mood, modality 

   def analyze_sentiment_pattern_lexicon(review, threshold=0.1, 
                                       verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # analyze sentiment for the text document 
     analysis = sentiment(review) 
     sentiment_score = round(analysis[0], 2) 
     sentiment_subjectivity = round(analysis[1], 2) 
     # get final sentiment 
     final_sentiment = 'positive' if sentiment_score >= threshold\ 
                                    else 'negative' 
     if verbose:    
         # display detailed sentiment statistics 
         sentiment_frame = pd.DataFrame([[final_sentiment, sentiment_score, 
                                         sentiment_subjectivity]], 
                                          columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],  
                                                      ['Predicted Sentiment', 

'Polarity Score', 
                                                      'Subjectivity Score']],  
                                                       labels=[[0,0,0],

[0,1,2]])) 
         print sentiment_frame 
         assessment = analysis.assessments 
         assessment_frame = pd.DataFrame(assessment,  
                                    columns=pd.MultiIndex(levels=[['DETAILED 

ASSESSMENT STATS:'],  
                                                         ['Key Terms', 'Polarity 

Score', 
                                                       'Subjectivity Score', 

'Type']],  
                                                       labels=[[0,0,0,0],

[0,1,2,3]]))    
                                                      print assessment_frame 
                                                      print 

       return final_sentiment   
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    We will now test the function we defined to analyze the sentiment of our sample 
test movie reviews and observe the results. We take a threshold of 0.1 as the cut-off to 
decide between positive and negative sentiment for a document based on the aggregated 
sentiment polarity score, based on several experiments and recommendations from the 
official documentation:    

    # get detailed sentiment statistics 
 In [303]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:     final_sentiment = analyze_sentiment_pattern_lexicon(review, 
      ...:                                                         
threshold=0.1, 
      ...:                                                         
verbose=True) 
      ...:     print '-'* 60   

   Review: 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative           0.06               0.62 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                    [worst]           -1.0              1.000  None 
 1                     [best]            1.0              0.300  None 
 2                      [top]            0.5              0.500  None 
 3                   [acting]            0.0              0.000  None 
 4                     [more]            0.5              0.500  None 
 5                    [great]            0.8              0.750  None 
 6                 [appalled]           -0.8              1.000  None 
 7                    [silly]           -0.5              0.875   None   

   ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 
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   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative            0.0                0.0 
 Empty DataFrame 
 Columns: [(DETAILED ASSESSMENT STATS:, Key Terms), (DETAILED ASSESSMENT 
STATS:, Polarity Score), (DETAILED ASSESSMENT STATS:, Subjectivity Score), 
(DETAILED ASSESSMENT STATS:, Type)] 
 Index: []    

   ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative          -0.36                0.5 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                   [stupid]          -0.80                1.0  None 
 1                   [acting]           0.00                0.0  None 
 2                  [average]          -0.15                0.4  None 
 3                 [worse, !]          -0.50                0.6  None 

   ------------------------------------------------------------ 
 Review:    
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.19               0.67 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                   [little]        -0.1875                0.5  None 
 1                    [funny]         0.2500                1.0  None 
 2                [endearing]         0.5000                0.5  None 

   ------------------------------------------------------------ 
 Review:    
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive            0.4               0.71 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0              [mesmerizing]       0.300000           0.700000  None 
 1                [certainly]       0.214286           0.571429  None 
 2              [fascinating]       0.700000           0.850000  None 

   ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)    

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.66               0.73 
    DETAILED ASSESSMENT STATS:                                         
                     Key Terms Polarity Score Subjectivity Score  Type 
 0                   [perfect]       1.000000           1.000000  None 
 1                    [better]       0.500000           0.500000  None 
 2                   [best, !]       1.000000           0.300000  None 
 3                    [lovely]       0.500000           0.750000  None 
 4                 [much, fun]       0.300000           0.200000  None 
 5                 [excellent]       1.000000           1.000000  None 
 6                      [easy]       0.433333           0.833333  None 
 7                      [love]       0.500000           0.600000  None 
 8                      [sure]       0.500000           0.888889  None 
 9              [excellent, !]       1.000000           1.000000  None 
 10                      [:-)]       0.500000           1.000000  mood 

   ------------------------------------------------------------ 
 Review:    
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. 
You really should Get this one. 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.17               0.55 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                      [bad]           -0.7           0.666667  None 
 1            [very, good, !]            1.0           0.780000  None 
 2                   [really]            0.2           0.200000  None 

   ------------------------------------------------------------ 
 Review:    
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative          -0.04               0.63 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                    [worst]      -1.000000                1.0  None 
 1                    [cheap]       0.400000                0.7  None 
 2       [really, !, !, !, !]       0.488281                0.2   None   

   ------------------------------------------------------------ 

    The preceding analysis shows the sentiment, polarity, and subjectivity scores for 
each sampled review. Besides this, we also see key terms and emotions and their polarity 
scores, which mainly contributed to the overall sentiment of each review. You can see 
that even exclamations and emoticons are also given importance and weightage when 
computing sentiment and polarity. The following snippet depicts the mood and modality 
for the sampled test movie reviews:    

    In [304]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 'Labeled Sentiment:', review_sentiment  
      ...:     print 'Mood:', mood(review) 
      ...:     mod_score = modality(review) 
      ...:     print 'Modality Score:', round(mod_score, 2) 
      ...:     print 'Certainty:', 'Strong' if mod_score > 0.5 \ 
      ...:                                 else 'Medium' if mod_score > 0.35 \ 
      ...:                                                     else 'Low' 
      ...:     print '-'*60   
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   Review:    
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 
 Labeled Sentiment: negative 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 
 Labeled Sentiment: negative 
 Mood: subjunctive 
 Modality Score: -0.25 
 Certainty:  Low   
 ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 
 Labeled Sentiment: negative 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 
 Labeled Sentiment: positive 
 Mood: imperative 
 Modality Score: 1.0 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-) 
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 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.58 
 Certainty:  Strong   
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 
 Labeled Sentiment: positive 
 Mood: conditional 
 Modality Score: 0.28 
 Certainty:  Low   
 ------------------------------------------------------------ 
 Review: 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty:  Strong   
 ------------------------------------------------------------ 

    The preceding output depicts the mood, modality score, and the certainty factor 
expressed by each review. It is interesting to see phrases like  "Add this little gem…"  
are correctly associated with the right mood, which is an  imperative , and  "I hope 
this…"  is correctly associated with  subjunctive  mood. The other reviews have more of an 
 indicative  disposition, which is quite obvious since it expresses the beliefs of the review 
who wrote the movie review. Certainty is lower in cases of reviews that use words like 
 "hope" ,  "if" , and higher in case of strongly opinionated reviews. 

 Finally, we will evaluate the  sentiment prediction performance   of this model on our 
entire test review dataset as we have done before for our other models. The following 
snippet achieves the same: 

    # predict sentiment for test movie reviews dataset 
 pattern_predictions =  [analyze_sentiment_pattern_lexicon(review, 

threshold=0.1) 
                        for review in test_reviews]    

   # get model performance statistics 
 In [307]: print 'Performance metrics:' 
      ...: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=pattern_predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=pattern_predictions, 
      ...:                          classes=['positive', 'negative']) 
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      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=pattern_

predictions, 
      ...:                               classes=['positive', 'negative']) 
 Performance metrics:    
 Accuracy: 0.77 
 Precision: 0.76 
 Recall: 0.79 
 F1 Score: 0.77 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       5958     1552 
         negative       1924     5566 

   Classification report: 
              precision    recall  f1-score   support 

      positive       0.76      0.79      0.77      7510 
    negative       0.78      0.74      0.76      7490 

   avg / total       0.77      0.77      0.77     15000 

    This model gives a better and more balanced  performance   toward predicting the 
sentiment of both positive and negative classes. We have an average sentiment prediction 
accuracy of 77 percent and an average F1-score of 77 percent for this model. Although 
the number of correct positive predictions has dropped from our previous model to 
5958/7510 reviews, the number of correct predictions for negative reviews has increased 
significantly to 5566/7490 reviews.   

     Comparing Model  Performances   
 We have built a supervised classification model and three unsupervised lexicon-based 
models to predict sentiment for movie reviews. For each model, we looked at its detailed 
analysis and statistics for calculating sentiment. We also evaluated each model on 
standard metrics like precision, recall, accuracy, and F1-score. In this section, we will 
briefly look at how each model’s performance compares against the other models. 
Figure  7-3  shows the model performance metrics and a visualization comparing the 
metrics across all the models.  
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 From the visualization and the table in Figure  7-3 , it is clear that the supervised 
model using SVM gives us the best results, which are expected because it was trained on 
35,000 training movie reviews. Pattern lexicon performs the best among the unsupervised 
techniques for our test movie reviews. Does this mean these models will always perform 
the best? Absolutely not. It depends on the data you are analyzing. Remember to consider 
various models and also to evaluate all the metrics when evaluating any model, and not 
just one or two. Some of the models in the chart have really high recall but low precision, 
which indicates these models have a tendency to make more wrong predictions or 
false positives. You can re-use these benchmarks and evaluate more sentiment analysis 
models as you experiment with different features, lexicons, and techniques.      

  Figure 7-3.    Comparison of sentiment analysis model  performances         
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     Summary 
 In this final chapter, we have covered a variety of topics focused on semantic and 
sentiment analysis of textual data. We revisited several of our concepts from Chapter 
  1     with regard to language semantics. We looked at the WordNet corpus in detail and 
explored the concept of synsets with practical examples. We also analyzed various lexical 
semantic relations from Chapter   1     here, using synsets and real-world examples. We 
looked at relationships including entailments, homonyms and homographs, synonyms 
and antonyms, hyponyms and hypernyms, and holonyms and meronyms. Semantic 
relations and similarity computation techniques were also discussed in detail, with 
examples that leveraged common hypernyms among various synsets. Some popular 
techniques widely used in semantic and information extraction were discussed, including 
word sense disambiguation and named entity recognition, with examples. Besides 
semantic relations, we also revisited concepts related to semantic representations, 
namely propositional logic and first order logic. We leveraged the use of theorem provers 
and evaluated actual propositions and logical expressions computationally. 

 Next, we introduced the concept of sentiment analysis and opinion mining and saw 
how it is used in various domains like social media, surveys, and feedback data. We took 
a practical example of analyzing sentiment on actual movie reviews from IMDb and built 
several models that included supervised machine learning and unsupervised lexicon-
based models. We looked at each technique and its results in detail and compared the 
performance across all our models. 

 This brings us to the end of this book. I hope the various concepts and techniques 
discussed here will be helpful to and that you can use the knowledge and techniques 
from this book when you tackle challenging problems in the world of text analytics and 
natural language processing. You may have seen by now that there is a lot of unexplored 
territory out there in the world of analyzing unstructured text data. I wish you the very 
best and would like to leave you with the parting thought from Occam’s razor:  Sometimes 
the simplest solution is the best solution .     

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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