
319© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_7

 CHAPTER 7

 Semantic and Sentiment
Analysis

 Natural language understanding has gained significant importance in the last decade
with the advent of machine learning (ML) and further advances like deep learning and
artificial intelligence. Computers and other machines can be programmed to learn
things and perform specific operations. The key limitation is their inability to perceive,
understand, and comprehend things like humans do. With the resurgence in popularity
of neural networks and advances made in computer architecture, we now have deep
learning and artificial intelligence evolving rapidly to make some efforts into trying to
engineer machines into learning, perceiving, understanding, and performing actions on
their own. You may have seen or heard several of these efforts, such as self-driving cars,
computers beating experienced players in games like chess and Go, and the proliferation
of chatbots on the Internet.

 In Chapters 4 – 6 , we have looked at various computational, language processing, and
ML techniques to classify, cluster, and summarize text. Back in Chapter 3 we developed
certain methods and programs to analyze and understand text syntax and structure.
This chapter will deal with methods that try to answer the question Can we analyze and
understand the meaning and sentiment behind a body of text?

 Natural Language Processing (NLP) has a wide variety of applications that try to use
natural language understanding to infer the meaning and context behind text and use it to
solve various problems. We discussed several of these applications briefly in Chapter 1 .
To refresh your memory, the following applications require extensive understanding of
text from the semantic perspective:

• Question Answering Systems

• Contextual recognition

• Speech recognition (for some applications)

 Text semantics specifically deals with understanding the meaning of text or language.
When combined into sentences, words have lexical relations and contextual relations
between them lead to various types of relationships and hierarchies, and semantics sits
at the heart of all this in trying to analyze and understand these relationships and infer
meaning from them. We will be exploring various types of semantic relationships in natural
language and look at some NLP-based techniques for inferring and extracting meaningful

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

320

semantic information from text. Semantics is purely concerned with context and meaning,
and the structure or format of text holds little significance here. But sometimes even the
syntax or arrangement of words helps us in inferring the context of words and helps us
differentiate things like lead as a metal from lead as in the lead of a movie.

 Sentiment analysis is perhaps the most popular application of text analytics, with a
vast number of tutorials, web sites, and applications that focus on analyzing sentiment of
various text resources ranging from corporate surveys to movie reviews. The key aspect of
sentiment analysis is to analyze a body of text for understanding the opinion expressed by
it and other factors like mood and modality. Usually sentiment analysis works best on text
that has a subjective context than on that with only an objective context. This is because
when a body of text has an objective context or perspective to it, the text usually depicts some
normal statements or facts without expressing any emotion, feelings, or mood. Subjective
text contains text that is usually expressed by a human having typical moods, emotions, and
feelings. Sentiment analysis is widely used, especially as a part of social media analysis for
any domain, be it a business, a recent movie, or a product launch, to understand its reception
by the people and what they think of it based on their opinions or, you guessed it, sentiment.

 In this chapter, we will be covering several aspects from both semantic and
sentiment analysis for textual data. We will start with exploring WordNet, a lexical
database, and introduce a new concept called synsets . We will also explore various
semantic relationships and representations in natural language and we will cover
techniques such as word sense disambiguation and named entity recognition . In
sentiment analysis, we will be looking at how to use supervised ML techniques to analyze
sentiment and also at several unsupervised lexical techniques with more detailed insights
into natural language sentiment, mood, and modality.

 Semantic Analysis
 We have seen how terms or words get grouped into phrases that further form clauses
and finally sentences. Chapter 3 showed various structural components in natural
language, including parts of speech (POS), chunking, and grammars . All these concepts
fall under the syntactic and structural analysis of text data. Whereas we do explore
relationships of words, phrases, and clauses, these are purely based on their position,
syntax, and structure. Semantic analysis is more about understanding the actual context
and meaning behind words in text and how they relate to other words to convey some
information as a whole. As mentioned in Chapter 1 , the definition of semantics itself is
the study of meaning, and linguistic semantics is a complete branch under linguistics
that deals with the study of meaning in natural language , including exploring various
relationships between words, phrases and symbols. Besides this, there are also various
ways to represent semantics associated with statements and propositions. We will be
broadly covering the following topics under semantic analysis:

• Exploring WordNet and synsets

• Analyzing lexical semantic relations

• Word sense disambiguation

• Named entity recognition

• Analyzing semantic representations

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

321

 The main objective of these topics is to give you a clear understanding of the
resources you can leverage for semantic analysis as well as how to use these resources.
We will explore various concepts related to semantic analysis, which was covered
in Chapter 1 , with actual examples. You can refresh your memory by revisiting the
“Language Semantics” section in Chapter 1 . Without any further delay, let's get started!

 Exploring WordNet
 WordNet is a huge lexical database for the English Language. The database is a part of
Princeton University, and you can read more about it at https://wordnet.princeton.edu .
It was originally created in around 1985, in Princeton University’s Cognitive Science
Laboratory under the direction of Professor G. A. Miller. This lexical database consists
of nouns, adjective, verbs, and adverbs, and related lexical terms are grouped together
based on some common concepts into sets, known as cognitive synonym sets or synsets .
Each synset expresses a unique, distinct concept. At a high level, WordNet can be
compared to a thesaurus or a dictionary that provides words and their synonyms. On a
lower level, it is much more than that, with synsets and their corresponding terms having
detailed relationships and hierarchies based on their semantic meaning and similar
concepts. WordNet is used extensively as a lexical database, in text analytics, NLP, and
artificial intelligence (AI)-based applications.

 The WordNet database consists of over 155,000 words, represented in more than
117,000 synsets, and contains over 206,000 word-sense pairs. The database is roughly 12
MB in size and can be accessed through various interfaces and APIs. The official web site
has a web application interface for accessing various details related to words, synsets,
and concepts related to the entered word. You can access it at http://wordnetweb.
princeton.edu/perl/webwn or download it from https://wordnet.princeton.edu/
wordnet/download/ . The download contains various packages, files, and tools related to
WordNet. We will be accessing WordNet programmatically using the interface provided
by the nltk package. We will start by exploring synsets and then various semantic
relationships using synsets.

 Understanding Synsets
 We will start exploring WordNet by looking at synsets since they are perhaps one of the
most important concepts and structures that tie everything together. In general, based on
concepts from NLP and information retrieval, a synset is a collection or set of data entities
that are considered to be semantically similar. This doesn’t mean that they will be exactly
the same, but they will be centered on similar context and concepts. Specifically in the
context of WordNet, a synset is a set or collection of synonyms that are interchangeable
and revolve around a specific concept. Synsets not only consist of simple words, but
also collocations. Polysemous word forms (words that sound and look the same but
have different but relatable meanings) are assigned to different synsets based on their
meaning. Synsets are connected to other synsets using semantic relations, which we shall
explore in a future section. Typically each synset has the term, a definition explaining
the meaning of the term, and some optional examples and related lemmas (collection
of synonyms) to the term. Some terms may have multiple synsets associated with them,
where each synset has a particular context.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
https://wordnet.princeton.edu/
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/wordnet/download/
https://wordnet.princeton.edu/wordnet/download/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

322

 Let’s look at a real example by using nltk ’s WordNet interface to explore synsets
associated with the term, 'fruit' . We can do this using the following code snippet:

 from nltk.corpus import wordnet as wn
 import pandas as pd

 term = 'fruit'
 synsets = wn.synsets(term)
 # display total synsets
 In [75]: print 'Total Synsets:', len(synsets)
 Total Synsets: 5

 We can see that there are a total of five synsets associated with the term 'fruit' .
What can these synsets indicate? We can dig deeper into each synset and its components
using the following code snippet:

 In [76]: for synset in synsets:
 ...: print 'Synset:', synset
 ...: print 'Part of speech:', synset.lexname()
 ...: print 'Definition:', synset.definition()
 ...: print 'Lemmas:', synset.lemma_names()
 ...: print 'Examples:', synset.examples()
 ...: print
 ...:
 ...:
 Synset: Synset('fruit.n.01')
 Part of speech: noun.plant
 Definition: the ripened reproductive body of a seed plant
 Lemmas: [u'fruit']
 Examples: []

 Synset: Synset('yield.n.03')
 Part of speech: noun.artifact
 Definition: an amount of a product
 Lemmas: [u'yield', u'fruit']
 Examples: []

 Synset: Synset('fruit.n.03')
 Part of speech: noun.event
 Definition: the consequence of some effort or action
 Lemmas: [u'fruit']
 Examples: [u'he lived long enough to see the fruit of his policies']

 Synset: Synset('fruit.v.01')
 Part of speech: verb.creation
 Definition: cause to bear fruit
 Lemmas: [u'fruit']
 Examples: []

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

323

 Synset: Synset('fruit.v.02')
 Part of speech: verb.creation
 Definition: bear fruit
 Lemmas: [u'fruit']
 Examples: [u'the trees fruited early this year']

 The preceding output shows us details pertaining to each synset associated with
the term 'fruit' , and the definitions give us the sense of each synset and the lemma
associated with it. The part of speech for each synset is also mentioned, which includes
nouns and verbs. Some examples are also depicted in the preceding output that show
how the term is used in actual sentences. Now that we understand synsets better, let’s
start exploring various semantic relationships as mentioned.

 Analyzing Lexical Semantic Relations
 Text semantics refers to the study of meaning and context. Synsets give a nice abstraction
over various terms and provide useful information like definition, examples, POS, and
lemmas. But can we explore semantic relationships among entities using synsets? The
answer is definitely yes. We will be talking about many of the concepts related to semantic
relations (covered in detail in the “Lexical Semantic Relations” subsection under the
“Language Semantics” section in Chapter 1 . It would be useful for you to review that
section to better understand each of the concepts when we illustrate them with real-world
examples here. We will be using nltk 's wordnet resource here, but you can use the same
WordNet resource from the pattern package, which includes an interface similar to nltk .

 Entailments
 The term entailment usually refers to some event or action that logically involves or is
associated with some other action or event that has taken place or will take place. Ideally
this applies very well to verbs indicating some specific action. The following snippet
shows how to get entailments:

 # entailments
 In [80]: for action in ['walk', 'eat', 'digest']:
 ...: action_syn = wn.synsets(action, pos='v')[0]
 ...: print action_syn, '-- entails -->', action_syn.entailments()
 Synset('walk.v.01') -- entails --> [Synset('step.v.01')]
 Synset('eat.v.01') -- entails --> [Synset('chew.v.01'),
Synset('swallow.v.01')]
 Synset('digest.v.01') -- entails --> [Synset('consume.v.02')]

 You can see how related synsets depict the concept of entailment in that output.
Related actions are depicted in entailment, where actions like walking involve or entail
 stepping , and eating entails chewing and swallowing .

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

324

 Homonyms and Homographs
 On a high level, homonyms refer to words or terms having the same written form or
pronunciation but different meanings. Homonyms are a superset of homographs, which
are words with same spelling but may have different pronunciation and meaning. The
following code snippet shows how we can get homonyms/homographs:

 In [81]: for synset in wn.synsets('bank'):
 ...: print synset.name(),'-',synset.definition()
 ...:
 ...:
 bank.n.01 - sloping land (especially the slope beside a body of water)
 depository_financial_institution.n.01 - a financial institution that accepts
deposits and channels the money into lending activities
 bank.n.03 - a long ridge or pile
 bank.n.04 - an arrangement of similar objects in a row or in tiers
 ...
 ...
 deposit.v.02 - put into a bank account
 bank.v.07 - cover with ashes so to control the rate of burning
 trust.v.01 - have confidence or faith in

 The preceding output shows a part of the result obtained for the various homographs
for the term 'bank' . You can see that there are various different meanings associated with
the word 'bank' , which is the core intuition behind homographs.

 Synonyms and Antonyms
 Synonyms are words having similar meaning and context, and antonyms are words having
opposite or contrasting meaning, as you may know already. The following snippet depicts
synonyms and antonyms:

 In [82]: term = 'large'
 ...: synsets = wn.synsets(term)
 ...: adj_large = synsets[1]
 ...: adj_large = adj_large.lemmas()[0]
 ...: adj_large_synonym = adj_large.synset()
 ...: adj_large_antonym = adj_large.antonyms()[0].synset()
 ...: # print synonym and antonym
 ...: print 'Synonym:', adj_large_synonym.name()
 ...: print 'Definition:', adj_large_synonym.definition()
 ...: print 'Antonym:', adj_large_antonym.name()
 ...: print 'Definition:', adj_large_antonym.definition()
 Synonym: large.a.01
 Definition: above average in size or number or quantity or magnitude or
extent
 Antonym: small.a.01

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

325

 Definition: limited or below average in number or quantity or magnitude or
extent

 In [83]: term = 'rich'
 ...: synsets = wn.synsets(term)[:3]
 ...: # print synonym and antonym for different synsets
 ...: for synset in synsets:
 ...: rich = synset.lemmas()[0]
 ...: rich_synonym = rich.synset()
 ...: rich_antonym = rich.antonyms()[0].synset()
 ...: print 'Synonym:', rich_synonym.name()
 ...: print 'Definition:', rich_synonym.definition()
 ...: print 'Antonym:', rich_antonym.name()
 ...: print 'Definition:', rich_antonym.definition()
 Synonym: rich_people.n.01
 Definition: people who have possessions and wealth (considered as a group)
 Antonym: poor_people.n.01
 Definition: people without possessions or wealth (considered as a group)

 Synonym: rich.a.01
 Definition: possessing material wealth
 Antonym: poor.a.02
 Definition: having little money or few possessions

 Synonym: rich.a.02
 Definition: having an abundant supply of desirable qualities or substances
(especially natural resources)
 Antonym: poor.a.04
 Definition: lacking in specific resources, qualities or substances

 The preceding outputs show sample synonyms and antonyms for the term 'large'
and the term 'rich' . Additionally, we explore several synsets associated with the term
or concept 'rich' , which rightly give us distinct synonyms and their corresponding
antonyms.

 Hyponyms and Hypernyms
 Synsets represent terms with unique semantics and concepts and are linked or related
to each other based on some similarity and context. Several of these synsets represent
abstract and generic concepts also besides concrete entities. Usually they are interlinked
together in the form of a hierarchical structure representing is-a relationships. Hyponyms
and hypernyms help us explore related concepts by navigating through this hierarchy.
To be more specific, hyponyms refer to entities or concepts that are a subclass of a higher
order concept or entity and have very specific sense or context compared to its superclass.
The following snippet shows the hyponyms for the entity 'tree' :

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

326

 term = 'tree'
 synsets = wn.synsets(term)
 tree = synsets[0]
 # print the entity and its meaning
 In [86]: print 'Name:', tree.name()
 ...: print 'Definition:', tree.definition()
 Name: tree.n.01
 Definition: a tall perennial woody plant having a main trunk and branches
forming a distinct elevated crown; includes both gymnosperms and angiosperms
 # print total hyponyms and some sample hyponyms for 'tree'
 In [87]: hyponyms = tree.hyponyms()
 ...: print 'Total Hyponyms:', len(hyponyms)
 ...: print 'Sample Hyponyms'
 ...: for hyponym in hyponyms[:10]:
 ...: print hyponym.name(), '-', hyponym.definition()

 Total Hyponyms: 180
 Sample Hyponyms
 aalii.n.01 - a small Hawaiian tree with hard dark wood
 acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia
 african_walnut.n.01 - tropical African timber tree with wood that resembles
mahogany
 albizzia.n.01 - any of numerous trees of the genus Albizia
 alder.n.02 - north temperate shrubs or trees having toothed leaves and
conelike fruit; bark is used in tanning and dyeing and the wood is rot-
resistant
 angelim.n.01 - any of several tropical American trees of the genus Andira
 angiospermous_tree.n.01 - any tree having seeds and ovules contained in the
ovary
 anise_tree.n.01 - any of several evergreen shrubs and small trees of the
genus Illicium
 arbor.n.01 - tree (as opposed to shrub)
 aroeira_blanca.n.01 - small resinous tree or shrub of Brazil

 The preceding output tells us that there are a total of 180 hyponyms for 'tree' ,
and we see some of the sample hyponyms and their definitions. We can see that each
hyponym is a specific type of tree, as expected. Hyponyms are entities or concepts that act
as the superclass to hyponyms and have a more generic sense or context. The following
snippet shows the immediate superclass hyponym for 'tree' :

 In [88]: hypernyms = tree.hypernyms()
 ...: print hypernyms
 [Synset('woody_plant.n.01')]

 You can even navigate up the entire entity/concept hierarchy depicting all the
hyponyms or parent classes for 'tree' using the following code snippet:

 # get total hierarchy pathways for 'tree'
 In [91]: hypernym_paths = tree.hypernym_paths()

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

327

 ...: print 'Total Hypernym paths:', len(hypernym_paths)
 Total Hypernym paths: 1

 # print the entire hypernym hierarchy
 In [92]: print 'Hypernym Hierarchy'
 ...: print ' -> '.join(synset.name() for synset in hypernym_paths[0])
 Hypernym Hierarchy
 entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_
thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_
plant.n.01 -> tree.n.01

 From the preceding output, you can see that 'entity' is the most generic concept
in which 'tree' is present, and the complete hypernym hierarchy showing the
corresponding hypernym or superclass at each level is shown. As you navigate further
down, you get into more specific concepts/entities, and if you go in the reverse direction
you will get into more generic concepts/entities.

 Holonyms and Meronyms
 Holonyms are entities that contain a specific entity of our interest. Basically holonym refers
to the relationship between a term or entity that denotes the whole and a term denoting a
specific part of the whole. The following snippet shows the holonyms for 'tree' :

 In [94]: member_holonyms = tree.member_holonyms()
 ...: print 'Total Member Holonyms:', len(member_holonyms)
 ...: print 'Member Holonyms for [tree]:-'
 ...: for holonym in member_holonyms:
 ...: print holonym.name(), '-', holonym.definition()
 Total Member Holonyms: 1
 Member Holonyms for [tree]:-
 forest.n.01 - the trees and other plants in a large densely wooded area

 From the output, we can see that 'forest' is a holonym for 'tree' , which is
semantically correct because, of course, a forest is a collection of trees. Meronyms are
semantic relationships that relate a term or entity as a part or constituent of another term
or entity. The following snippet depicts different types of meronyms for 'tree' :

 # part based meronyms for tree
 In [95]: part_meronyms = tree.part_meronyms()
 ...: print 'Total Part Meronyms:', len(part_meronyms)
 ...: print 'Part Meronyms for [tree]:-'
 ...: for meronym in part_meronyms:
 ...: print meronym.name(), '-', meronym.definition()
 Total Part Meronyms: 5
 Part Meronyms for [tree]:-
 burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree
 crown.n.07 - the upper branches and leaves of a tree or other plant

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

328

 limb.n.02 - any of the main branches arising from the trunk or a bough of a
tree
 stump.n.01 - the base part of a tree that remains standing after the tree
has been felled
 trunk.n.01 - the main stem of a tree; usually covered with bark; the bole is
usually the part that is commercially useful for lumber

 # substance based meronyms for tree
 In [96]: substance_meronyms = tree.substance_meronyms()
 ...: print 'Total Substance Meronyms:', len(substance_meronyms)
 ...: print 'Substance Meronyms for [tree]:-'
 ...: for meronym in substance_meronyms:
 ...: print meronym.name(), '-', meronym.definition()
 Total Substance Meronyms: 2
 Substance Meronyms for [tree]:-
 heartwood.n.01 - the older inactive central wood of a tree or woody plant;
usually darker and denser than the surrounding sapwood
 sapwood.n.01 - newly formed outer wood lying between the cambium and the
heartwood of a tree or woody plant; usually light colored; active in water
conduction

 The preceding output shows various meronyms that include various constituents of
trees like stump and trunk and also various derived substances from trees like heartwood
and sapwood .

 Semantic Relationships and Similarity
 In the previous sections, we have looked at various concepts related to lexical semantic
relationships. We will now look at ways to connect similar entities based on their
semantic relationships and also measure semantic similarity between them. Semantic
similarity is different from the conventional similarity metrics discussed in Chapter 6 . We
will use some sample synsets related to living entities as shown in the following snippet
for our analysis:

 tree = wn.synset('tree.n.01')
 lion = wn.synset('lion.n.01')
 tiger = wn.synset('tiger.n.02')
 cat = wn.synset('cat.n.01')
 dog = wn.synset('dog.n.01')
 # create entities and extract names and definitions
 entities = [tree, lion, tiger, cat, dog]
 entity_names = [entity.name().split('.')[0] for entity in entities]
 entity_definitions = [entity.definition() for entity in entities]

 # print entities and their definitions
 In [99]: for entity, definition in zip(entity_names, entity_definitions):
 ...: print entity, '-', definition

http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

329

 tree - a tall perennial woody plant having a main trunk and branches forming
a distinct elevated crown; includes both gymnosperms and angiosperms
 lion - large gregarious predatory feline of Africa and India having a tawny
coat with a shaggy mane in the male
 tiger - large feline of forests in most of Asia having a tawny coat with
black stripes; endangered
 cat - feline mammal usually having thick soft fur and no ability to roar:
domestic cats; wildcats
 dog - a member of the genus Canis (probably descended from the common wolf)
that has been domesticated by man since prehistoric times; occurs in many
breeds

 Now that we know our entities a bit better from these definitions explaining them, we
will try to correlate the entities based on common hypernyms. For each pair of entities,
we will try to find the lowest common hypernym in the relationship hierarchy tree.
Correlated entities are expected to have very specific hypernyms, and unrelated entities
should have very abstract or generic hypernyms. The following code snippet illustrates:

 common_hypernyms = []
 for entity in entities:
 # get pairwise lowest common hypernyms
 common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0]
 .name().split('.')[0]
 for compared_entity in entities])
 # build pairwise lower common hypernym matrix
 common_hypernym_frame = pd.DataFrame(common_hypernyms,
 index=entity_names,
 columns=entity_names)
 # print the matrix
 In [101]: print common_hypernym_frame
 ...:
 tree lion tiger cat dog
 tree tree organism organism organism organism
 lion organism lion big_cat feline carnivore
 tiger organism big_cat tiger feline carnivore
 cat organism feline feline cat carnivore
 dog organism carnivore carnivore carnivore dog

 Ignoring the main diagonal of the matrix, for each pair of entities, we can see their
lowest common hypernym which depicts the nature of relationship between them. Trees are
unrelated to the other animals except that they are all living organisms. Hence we get the
 'organism' relationship amongst them. Cats are related to lions and tigers with respect to
being feline creatures, and we can see the same in the preceding output. Tigers and lions are
connected to each other with the 'big cat' relationship. Finally, we can see dogs having the
relationship of 'carnivore' with the other animals since they all typically eat meat.

 We can also measure the semantic similarity between these entities using various
semantic concepts. We will use 'path similarity' , which returns a value between [0, 1]
based on the shortest path connecting two terms based on their hypernym/hyponym based
taxonomy. The following snippet shows us how to generate this similarity matrix:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

330

 similarities = []
 for entity in entities:
 # get pairwise similarities
 similarities.append([round(entity.path_similarity(compared_entity), 2)
 for compared_entity in entities])
 # build pairwise similarity matrix
 similarity_frame = pd.DataFrame(similarities,
 index=entity_names,
 columns=entity_names)
 # print the matrix
 print similarity_frame

 tree lion tiger cat dog
 tree 1.00 0.07 0.07 0.08 0.13
 lion 0.07 1.00 0.33 0.25 0.17
 tiger 0.07 0.33 1.00 0.25 0.17
 cat 0.08 0.25 0.25 1.00 0.20
 dog 0.13 0.17 0.17 0.20 1.00

 From the preceding output, as expected, lion and tiger are the most similar with a
value of 0.33, followed by their semantic similarity with cat having a value of 0.25. And
 tree has the lowest semantic similarity values when compared with other animals.

 This concludes our discussion on analyzing lexical semantic relations. I encourage
you to try exploring more concepts with different examples by leveraging WordNet.

 Word Sense Disambiguation
 In the previous section, we looked at homographs and homonyms, which are basically words
that look or sound similar but have very different meanings. This meaning is contextual
based on how it has been used and also depends on the word semantics, also called word
sense . Identifying the correct sense or semantics of a word based on its usage is called word
sense disambiguation with the assumption that the word has multiple meanings based on its
context. This is a very popular problem in NLP and is used in various applications, such as
improving the relevance of search engine results, coherence, and so on.

 There are various ways to solve this problem, including lexical and dictionary-based
methods and supervised and unsupervised ML methods. Covering everything would be
out of the current scope, so I will be showing word sense disambiguation using the Lesk
algorithm, a classic algorithm invented by M. E. Lesk in 1986. The basic principle behind
this algorithm is to leverage dictionary or vocabulary definitions for a word we want to
disambiguate in a body of text and compare the words in these definitions with a section
of text surrounding our word of interest. We will be using the WordNet definitions for
words instead of a dictionary. The main objective for us would be to return the synset
with the maximum number of overlapping words or terms between the context sentence
and the different definitions from each synset for the word we target for disambiguation.
The following snippet leverages nltk to depict how to use word sense disambiguation for
various examples:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

331

 from nltk.wsd import lesk
 from nltk import word_tokenize

 # sample text and word to disambiguate
 samples = [('The fruits on that plant have ripened', 'n'),
 ('He finally reaped the fruit of his hard work as he won the

race', 'n')]
 word = 'fruit'
 # perform word sense disambiguation
 In [106]: for sentence, pos_tag in samples:
 ...: word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)
 ...: print 'Sentence:', sentence
 ...: print 'Word synset:', word_syn
 ...: print 'Corresponding definition:', word_syn.definition()
 ...: print
 Sentence: The fruits on that plant have ripened
 Word synset: Synset('fruit.n.01')
 Corresponding definition: the ripened reproductive body of a seed plant

 Sentence: He finally reaped the fruit of his hard work as he won the race
 Word synset: Synset('fruit.n.03')
 Corresponding definition: the consequence of some effort or action

 # sample text and word to disambiguate
 samples = [('Lead is a very soft, malleable metal', 'n'),
 ('John is the actor who plays the lead in that movie', 'n'),
 ('This road leads to nowhere', 'v')]
 word = 'lead'
 # perform word sense disambiguation
 In [108]: for sentence, pos_tag in samples:
 ...: word_syn = lesk(word_tokenize(sentence.lower()), word,

pos_tag)
 ...: print 'Sentence:', sentence
 ...: print 'Word synset:', word_syn
 ...: print 'Corresponding definition:', word_syn.definition()
 ...: print
 Sentence: Lead is a very soft, malleable metal
 Word synset: Synset('lead.n.02')
 Corresponding definition: a soft heavy toxic malleable metallic element;
bluish white when freshly cut but tarnishes readily to dull grey

 Sentence: John is the actor who plays the lead in that movie
 Word synset: Synset('star.n.04')
 Corresponding definition: an actor who plays a principal role

 Sentence: This road leads to nowhere
 Word synset: Synset('run.v.23')
 Corresponding definition: cause something to pass or lead somewhere

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

332

 We try to disambiguate two words, 'fruit' and 'lead' in various text documents
in the preceding examples. You can see how we use the Lesk algorithm to get the correct
word sense for the word we are disambiguating based on its usage and context in each
document. This tells you how fruit can mean both an entity that is consumed as well as
some consequence one faces on applying efforts. We also see how lead can mean the soft
metal, causing something/someone to go somewhere, or even an actor who plays the
main role in a play or movie.

 Named Entity Recognition
 In any text document, there are particular terms that represent entities that are more
informative and have a unique context compared to the rest of the text. These entities are
known as named entities , which more specifically refers to terms that represent real-world
objects like people, places, organizations, and so on, which are usually denoted by proper
names. We can find these typically by looking at the noun phrases in text documents.
 Named entity recognition , also known as entity chunking/extraction , is a popular technique
used in information extraction to identify and segment named entities and classify or
categorize them under various predefined classes. Some of these classes that are used
most frequently are shown in Figure 7-1 (courtesy of nltk and The Stanford NLP group).

 There is some overlap between GPE and LOCATION . The GPE entities are usually more
generic and represent geo-political entities like cities, states, countries, and continents.
 LOCATION can also refer to these entities (it varies across different NER systems) along
with very specific locations like a mountain, river, or hill-station. FACILITY on the other
hand refers to popular monuments or artifacts that are usually man-made. The remaining
categories are pretty self-explanatory from their names and the examples depicted in
Figure 7-1 .

 The Bundesliga is perhaps the most popular top-level professional association
football league in Germany, and FC Bayern Munchen is one of the most popular clubs
in this league with a global presence. We will now take a sample description of this club

 Figure 7-1. Common named entities with examples

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

333

from Wikipedia and try to extract named entities from it. We will reuse our normalization
module (accessible as normalization.py in the code files) from the last chapter in
this section to parse the document to remove unnecessary new lines. We will start by
leveraging nltk ’s Named Entity Chunker:

 # sample document
 text = """
 Bayern Munich, or FC Bayern, is a German sports club based in Munich,
 Bavaria, Germany. It is best known for its professional football team,
 which plays in the Bundesliga, the top tier of the German football
 league system, and is the most successful club in German football
 history, having won a record 26 national titles and 18 national cups.
 FC Bayern was founded in 1900 by eleven football players led by Franz John.
 Although Bayern won its first national championship in 1932, the club
 was not selected for the Bundesliga at its inception in 1963. The club
 had its period of greatest success in the middle of the 1970s when,
 under the captaincy of Franz Beckenbauer, it won the European Cup three
 times in a row (1974-76). Overall, Bayern has reached ten UEFA Champions
 League finals, most recently winning their fifth title in 2013 as part
 of a continental treble.
 """

 import nltk
 from normalization import parse_document
 import pandas as pd

 # tokenize sentences
 sentences = parse_document(text)
 tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in
sentences]

 # tag sentences and use nltk's Named Entity Chunker
 tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences]
 ne_chunked_sents = [nltk.ne_chunk(tagged) for tagged in tagged_sentences]

 # extract all named entities
 named_entities = []
 for ne_tagged_sentence in ne_chunked_sents:
 for tagged_tree in ne_tagged_sentence:
 # extract only chunks having NE labels
 if hasattr(tagged_tree, 'label'):
 entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) #

get NE name
 entity_type = tagged_tree.label() # get NE category
 named_entities.append((entity_name, entity_type))
 # get unique named entities
 named_entities = list(set(named_entities))

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

334

 # store named entities in a data frame
 entity_frame = pd.DataFrame(named_entities,
 columns=['Entity Name', 'Entity Type'])
 # display results
 In [116]: print entity_frame
 Entity Name Entity Type
 0 Bayern PERSON
 1 Franz John PERSON
 2 Franz Beckenbauer PERSON
 3 Munich ORGANIZATION
 4 European ORGANIZATION
 5 Bundesliga ORGANIZATION
 6 German GPE
 7 Bavaria GPE
 8 Germany GPE
 9 FC Bayern ORGANIZATION
 10 UEFA ORGANIZATION
 11 Munich GPE
 12 Bayern GPE
 13 Overall GPE

 The Named Entity Chunker identifies named entities from the preceding text
document, and we extract these named entities from the tagged annotated sentences
and display them in the data frame as shown. You can clearly see how it has correctly
identified PERSON , ORGANIZATION , and GPE related named entities, although a few of them
are incorrectly identified.

 We will now use the Stanford NER tagger on the same text and compare the results.
For this, you need to have Java installed and then download the Stanford NER resources
from http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip . Unzip them
to a location of your choice (I used E:/stanford in my system). Once done, you can use
 nltk ’s interface to access this, similar to what we did in Chapter 3 for constituency and
dependency parsing. For more details on Stanford NER, visit http://nlp.stanford.edu/
software/CRF-NER.shtml , the official web site, which also contains the latest version of
their Named Entity Recognizer (I used an older version):

 from nltk.tag import StanfordNERTagger
 import os

 # set java path in environment variables
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'
 os.environ['JAVAHOME'] = java_path

 # load stanford NER
 sn = StanfordNERTagger('E:/stanford/stanford-ner-2014-08-27/classifiers/
english.all.3class.distsim.crf.ser.gz',
 path_to_jar='E:/stanford/stanford-ner-2014-08-27/

stanford-ner.jar')

http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

335

 # tag sentences
 ne_annotated_sentences = [sn.tag(sent) for sent in tokenized_sentences]

 # extract named entities
 named_entities = []
 for sentence in ne_annotated_sentences:
 temp_entity_name = ''
 temp_named_entity = None
 for term, tag in sentence:
 # get terms with NE tags
 if tag != 'O':
 temp_entity_name = ' '.join([temp_entity_name, term]).strip() #

get NE name
 temp_named_entity = (temp_entity_name, tag) # get NE and its

category
 else:
 if temp_named_entity:
 named_entities.append(temp_named_entity)
 temp_entity_name = ''
 temp_named_entity = None

 # get unique named entities
 named_entities = list(set(named_entities))
 # store named entities in a data frame
 entity_frame = pd.DataFrame(named_entities,
 columns=['Entity Name', 'Entity Type'])

 # display results
 In [118]: print entity_frame
 Entity Name Entity Type
 0 Franz John PERSON
 1 Franz Beckenbauer PERSON
 2 Germany LOCATION
 3 Bayern ORGANIZATION
 4 Bavaria LOCATION
 5 Munich LOCATION
 6 FC Bayern ORGANIZATION
 7 UEFA ORGANIZATION
 8 Bayern Munich ORGANIZATION

 The preceding output depicts various named entities obtained from our document.
You can compare this with the results obtained from nltk ’s NER chunker. The results here
are definitely better—there are no misclassifications and each category is also assigned
correctly. Some really interesting points: It has correctly identified Munich as a LOCATION
and Bayern Munich as an ORGANIZATION . Does this mean the second NER tagger is better?
Not really. It depends on the type of corpus you are analyzing, and you can even build
your own NER tagger using supervised learning by training on pre-tagged corpora similar
to what we did in Chapter 3 . In fact, both the taggers just discussed have been trained on
pre-tagged corpora like CoNLL, MUC, and Penn Treebank.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

336

 Analyzing Semantic Representations
 We usually communicate in the form of messages in spoken form or in written form
with other people or interfaces. Each of these messages is typically a collection of words,
phrases, or sentences, and they have their own semantics and context. So far, we’ve talked
about semantics and relations between various lexical units. But how do we represent the
meaning of semantics conveyed by a message or messages? How do humans understand
what someone is telling them? How do we believe in statements and propositions and
evaluate outcomes and what action to take? It feels easy because the brain helps us with
logic and reasoning—but computationally can we do the same?

 The answer is yes we can. Frameworks like propositional logic and first-order logic
help us in representation of semantics. We discussed this in detail in Chapter 1 in the
subsection “Representation of Semantics” under the “Language Semantics” section. I
encourage you to go through that once more to refresh your memory. In the following
sections, we will look at ways to represent propositional and first order logic and prove or
disprove propositions, statements, and predicates using practical examples and code.

 Propositional Logic
 We have already discussed propositional logic (PL) as the study of propositions,
statements, and sentences. A proposition is usually declarative, having a binary value
of being either true or false. There also exist various logical operators like conjunction,
disjunction, implication, and equivalence, and we also study the effects of applying these
operators on multiple propositions to understand their behavior and outcome.

 Let us consider our example from Chapter 1 with regard to two propositions P and Q
such that they can be represented as follows:

 P : He is hungry
 Q : He will eat a sandwich
 We will now try to build the truth tables for various operations on these propositions

using nltk based on the various logical operators discussed in Chapter 1 (refer to the
“Propositional Logic” section for more details) and derive outcomes computationally:

 import nltk
 import pandas as pd
 import os

 # assign symbols and propositions
 symbol_P = 'P'
 symbol_Q = 'Q'
 proposition_P = 'He is hungry'
 propositon_Q = 'He will eat a sandwich'
 # assign various truth values to the propositions
 p_statuses = [False, False, True, True]
 q_statuses = [False, True, False, True]
 # assign the various expressions combining the logical operators
 conjunction = '(P & Q)'
 disjunction = '(P | Q)'
 implication = '(P -> Q)'

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

337

 equivalence = '(P <-> Q)'
 expressions = [conjunction, disjunction, implication, equivalence]

 # evaluate each expression using propositional logic
 results = []
 for status_p, status_q in zip(p_statuses, q_statuses):
 dom = set([])
 val = nltk.Valuation([(symbol_P, status_p),
 (symbol_Q, status_q)])
 assignments = nltk.Assignment(dom)
 model = nltk.Model(dom, val)
 row = [status_p, status_q]
 for expression in expressions:
 # evaluate each expression based on proposition truth values
 result = model.evaluate(expression, assignments)
 row.append(result)
 results.append(row)
 # build the result table
 columns = [symbol_P, symbol_Q, conjunction,
 disjunction, implication, equivalence]
 result_frame = pd.DataFrame(results, columns=columns)

 # display results
 In [125]: print 'P:', proposition_P
 ...: print 'Q:', propositon_Q
 ...: print
 ...: print 'Expression Outcomes:-'
 ...: print result_frame
 P: He is hungry
 Q: He will eat a sandwich

 Expression Outcomes:-
 P Q (P & Q) (P | Q) (P -> Q) (P <-> Q)
 0 False False False False True True
 1 False True False True True False
 2 True False False True False False
 3 True True True True True True

 The preceding output depicts the various truth values of the two propositions, and
when we combine them with various logical operators, you will find the results matching
with what we manually evaluated in Chapter 1 . For example, P & Q indicates He is hungry
and he will eat a sandwich is True only when both of the individual propositions is True .
We use nltk ’s Valuation class to create a dictionary of the propositions and their various
outcome states. We use the Model class to evaluate each expression, where the evaluate()
function internally calls the recursive function satisfy() , which helps in evaluating the
outcome of each expression with the propositions based on the assigned truth values.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

338

 First Order Logic
 PL has several limitations, like the inability to represent facts or complex relationships
and inferences. PL also has limited expressive power because for each new proposition
we would need a unique symbolic representation, and it becomes very difficult to
generalize facts. This is where first order logic (FOL) works really well with features
like functions, quantifiers, relations, connectives, and symbols. It definitely provides a
richer and more powerful representation for semantic information. The “First Order
Logic” subsection under “Representation of Semantics” in Chapter 1 provides detailed
information about how FOL works.

 In this section, we will build several FOL representations similar to what we did
manually in Chapter 1 using mathematical representations. Here we will build them
in our code using similar syntax and leverage nltk and some theorem provers to prove
the outcome of various expressions based on predefined conditions and relationships,
similar to what we did for PL. The key takeaway for you from this section should be
getting to know how to represent FOL representations in Python and how to perform FOL
inference using proofs based on some goal and predefined rules and events. There are
several theorem provers you can use for evaluating expressions and proving theorems.
The nltk package has three main different types of provers: Prover9 , TableauProver , and
 ResolutionProver . The first one is a free-to-use prover available for download at www.
cs.unm.edu/~mccune/prover9/download/ . You can extract the contents in a location of
your choice (I used E:/prover9). We will be using both ResolutionProver and Prover9
in our examples. The following snippet helps in setting up the necessary dependencies
for FOL expressions and evaluations:

 import nltk
 import os
 # for reading FOL expressions
 read_expr = nltk.sem.Expression.fromstring
 # initialize theorem provers (you can choose any)
 os.environ['PROVER9'] = r'E:/prover9/bin'
 prover = nltk.Prover9()
 # I use the following one for our examples
 prover = nltk.ResolutionProver()

 Now that we have our dependencies ready, let us evaluate a few FOL expressions.
Consider a simple expression that If an entity jumps over another entity, the reverse cannot
happen . Assuming the entities to be x and y , we can represent this is FOL as ∀ x ∀ y
(jumps_over(x, y) → ¬ jumps_over(y, x)) which signifies that for all x and y , if x jumps
over y , it implies that y cannot jump over x . Consider now that we have two entities fox
and dog such that the fox jumps over the dog is an event which has taken place and can
be represented by jumps_over(fox, dog) . Our end goal or objective is to evaluate the
outcome of jumps_over(dog, fox) considering the preceding expression and the event
that has occurred. The following snippet shows us how we can do this:

 # set the rule expression
 rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))')
 # set the event occured

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cs.unm.edu/~mccune/prover9/download/
http://www.cs.unm.edu/~mccune/prover9/download/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

339

 event = read_expr('jumps_over(fox, dog)')
 # set the outcome we want to evaluate -- the goal
 test_outcome = read_expr('jumps_over(dog, fox)')

 # get the result
 In [132]: prover.prove(goal=test_outcome,
 ...: assumptions=[event, rule],
 ...: verbose=True)
 [1] {-jumps_over(dog,fox)} A
 [2] {jumps_over(fox,dog)} A
 [3] {-jumps_over(z4,z3), -jumps_over(z3,z4)} A
 [4] {-jumps_over(dog,fox)} (2, 3)

 Out[132]: False

 The preceding output depicts the final result for our goal test_outcome is False , that
is, the dog cannot jump over the fox if the fox has already jumped over the dog based on
our rule expression and the events assigned to the assumptions parameter in the prover
already given. The sequence of steps that lead to the result is also shown in the output.
Let us now consider another FOL expression rule ∀ x studies(x, exam) → pass(x,
exam) , which tells us that for all instances of x , if x studies for the exam, he/she will pass
the exam. Let us represent this rule and consider two students, John and Pierre , such
that John does not study for the exam and Pierre does. Can we then find out the outcome
whether they will pass the exam based on the given expression rule? The following
snippet shows us how:

 # set the rule expression
 rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')
 # set the events and outcomes we want to determine
 event1 = read_expr('-studies(John, exam)')
 test_outcome1 = read_expr('pass(John, exam)')
 event2 = read_expr('studies(Pierre, exam)')
 test_outcome2 = read_expr('pass(Pierre, exam)')

 # get results
 In [134]: prover.prove(goal=test_outcome1,
 ...: assumptions=[event1, rule],
 ...: verbose=True)
 [1] {-pass(John,exam)} A
 [2] {-studies(John,exam)} A
 [3] {-studies(z6,exam), pass(z6,exam)} A
 [4] {-studies(John,exam)} (1, 3)

 Out[134]: False

 In [135]: prover.prove(goal=test_outcome2,
 ...: assumptions=[event2, rule],
 ...: verbose=True)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

340

 [1] {-pass(Pierre,exam)} A
 [2] {studies(Pierre,exam)} A
 [3] {-studies(z8,exam), pass(z8,exam)} A
 [4] {-studies(Pierre,exam)} (1, 3)
 [5] {pass(Pierre,exam)} (2, 3)
 [6] {} (1, 5)

 Out[135]: True

 Thus you can see from the above evaluations that Pierre does pass the exam
because he studied for the exam, unlike John who doesn't pass the exam since he did not
study for it.

 Let us consider a more complex example with several entities. They perform several
actions as follows:

• There are two dogs rover (r) and alex (a)

• There is one cat garfield (g)

• There is one fox felix (f)

• Two animals, alex (a) and felix (f) run, denoted by function
 runs()

• Two animals rover (r) and garfield (g) sleep, denoted by
function sleeps()

• Two animals, felix (f) and alex (a) can jump over the other two,
denoted by function jumps_over()

 Taking all these assumptions, the following snippet builds an FOL-based model
with the previously mentioned domain and assignment values based on the entities
and functions. Once we build this model, we evaluate various FOL-based expressions to
determine their outcome and prove some theorems like we did earlier:

 # define symbols (entities\functions) and their values
 rules = """
 rover => r
 felix => f
 garfield => g
 alex => a
 dog => {r, a}
 cat => {g}
 fox => {f}
 runs => {a, f}
 sleeps => {r, g}
 jumps_over => {(f, g), (a, g), (f, r), (a, r)}
 """
 val = nltk.Valuation.fromstring(rules)
 # view the valuation object of symbols and their assigned values
(dictionary)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

341

 In [143]: print val
 {'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps':
set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog':
set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a',
'r'), ('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'}

 # define domain and build FOL based model
 dom = {'r', 'f', 'g', 'a'}
 m = nltk.Model(dom, val)

 # evaluate various expressions
 In [148]: print m.evaluate('jumps_over(felix, rover) & dog(rover) &
runs(rover)', None)
 False

 In [149]: print m.evaluate('jumps_over(felix, rover) & dog(rover) &
-runs(rover)', None)
 True

 In [150]: print m.evaluate('jumps_over(alex, garfield) & dog(alex) &
cat(garfield) & sleeps(garfield)', None)
 True

 # assign rover to x and felix to y in the domain
 g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])

 # evaluate more expressions based on above assigned symbols
 In [152]: print m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)
 True

 In [153]: print m.evaluate('exists y. (fox(y) & runs(y))', g)
 True

 The preceding snippet depicts the evaluation of various expressions based on the
valuation of different symbols based on the rules and domain. We create various FOL-
based expressions and see their outcome based on the predefined assumptions. For
example, the first expression gives us False because rover never runs() and the second
and third expressions are True because they satisfy all the conditions like felix and alex
can jump over rover or garfield and rover is a dog that does not run and garfield is
a cat . The second set of expressions is evaluated based on assigning felix and rover to
specific symbols in our domain (dom), and we pass that variable (g) when evaluating the
expressions. We can even satisfy open formulae or expressions using the satisfiers()
function as shown here:

 # who are the animals who run?
 In [154]: formula = read_expr('runs(x)')
 ...: print m.satisfiers(formula, 'x', g)
 set(['a', 'f'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

342

 # animals who run and are also a fox?
 In [155]: formula = read_expr('runs(x) & fox(x)')
 ...: print m.satisfiers(formula, 'x', g)
 set(['f'])

 The preceding outputs are self-explanatory wherein we evaluate open-ended
questions like which animals run ? And also which animals can run and are also foxes ?
We get the relevant symbols in our outputs, which you can map back to the actual
animal names (Hint: a: alex, f: felix). I encourage you to experiment with more
propositions and FOL expressions by building your own assumptions, domain, and rules.

 Sentiment Analysis
 We will now discuss several concepts, techniques, and examples with regard to our second
major topic in this chapter, sentiment analysis. Textual data , even though unstructured,
mainly has two broad types of data points: factual based (objective) and opinion based
(subjective). We briefly talked about these two categories at the beginning of this chapter
when I introduced the concept of sentiment analysis and how it works best on text that has
a subjective context. In general, social media, surveys, and feedback data all are heavily
opinionated and express the beliefs, judgement, emotion, and feelings of human beings.
Sentiment analysis, also popularly known as opinion analysis/mining , is defined as the
process of using techniques like NLP, lexical resources, linguistics, and machine learning
(ML) to extract subjective and opinion related information like emotions, attitude, mood,
modality, and so on and try to use these to compute the polarity expressed by a text
document. By polarity , I mean to find out whether the document expresses a positive,
negative, or a neutral sentiment. More advanced analysis involves trying to find out more
complex emotions like sadness, happiness, anger, and sarcasm.

 Typically, sentiment analysis for text data can be computed on several levels,
including on an individual sentence level, paragraph level, or the entire document as a
whole. Often sentiment is computed on the document as a whole or some aggregations
are done after computing the sentiment for individual sentences. Polarity analysis usually
involves trying to assign some scores contributing to the positive and negative emotions
expressed in the document and then finally assigning a label to the document based on
the aggregate score. We will depict two major techniques for sentiment analysis here:

• Supervised machine learning

• Unsupervised lexicon-based

 The key idea is to learn the various techniques typically used to tackle sentiment
analysis problems so that you can apply them to solve your own problems. We will
see how to re-use the concepts of supervised machine learning based classification
algorithms from Chapter 4 here to classify documents to their associated sentiment. We
will also use lexicons , which are dictionaries or vocabularies specially constructed to
be used for sentiment analysis, and compute sentiment without using any supervised
techniques. We will be carrying out our experiments on a large real-world dataset
pertaining to movie reviews, which will make this task more interesting. We will compare
the performance of the various algorithms and also try to perform some detailed analytics
besides just analyzing polarity, which includes analyzing the subjectivity, mood, and
modality of the movie reviews. Without further delay, let’s get started!

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

343

 Sentiment Analysis of IMDb Movie Reviews
 We will be using a dataset of movie reviews obtained from the Internet Movie Database
(IMDb) for sentiment analysis. This dataset, containing over 50,000 movie reviews, can be
obtained from http://ai.stanford.edu/~amaas/data/sentiment/ , courtesy of Stanford
University and A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, Andrew Ng, and C. Potts,
and this dataset was used in their famous paper, “Learning Word Vectors for Sentiment
Analysis.” We will be using 50,000 movie reviews from this dataset, which contain the
review and a corresponding sentiment polarity label which is either positive or negative.
A positive review is basically a movie review which was rated with more than six stars in
IMDb, and a negative review was rated with less than five stars in IMDb. An important
thing to remember here before we begin our exercise is the fact that many of these reviews,
even though labeled positive or negative, might have some elements of negative or positive
context respectively. Hence, there is a possibility for some overlap in many reviews, which
make this task harder. Sentiment is not a quantitative number that you can compute and
prove mathematically. It expresses complex emotions, feelings, and judgement, and hence
you should never focus on trying to get a cent-percent perfect model but a model that
generalizes well on data and works decently. We will start with setting up some necessary
dependencies and utilities before moving on to the various techniques.

 Setting Up Dependencies
 There are several utility functions, data, and package dependencies that we need to set
up before we jump into sentiment analysis. We will need our movie review dataset, some
specific packages that we will be using in our implementations, and we will be defining
some utility functions for text normalization, feature extracting, and model evaluation,
similar to what we have used in previous chapters.

 Getting and Formatting the Data
 We will use the IMDb movie review dataset officially available in raw text files for each
set (training and testing) from http://ai.stanford.edu/~amaas/data/sentiment/ as
mentioned. You can download and unzip the files to a location of your choice and use
the review_data_extractor.py file included along with the code files of this chapter to
extract each review from the unzipped directory, parse them, and neatly format them into
a data frame, which is then stored as a csv file named movie_reviews.csv . Otherwise,
you can directly download the parsed and formatted file from https://github.com/
dipanjanS/text-analytics-with-python/tree/master/Chapter-7 , which contains all
datasets and code used and is the official repository for this book. The data frame consists
of two columns, review and sentiment , for each data point, which indicates the review
for a movie and its corresponding sentiment (positive or negative).

 Text Normalization
 We will be normalizing and standardizing our text data similar to what we did in Chapter
 6 as a part of text pre-processing and normalization. For this we will be re-using our
 normalization.py module from Chapter 6 with a few additions. This mainly includes

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

344

adding an HTML stripper to remove unnecessary HTML characters from text documents,
as shown here:

 from HTMLParser import HTMLParser

 class MLStripper(HTMLParser):
 def __init__(self):
 self.reset()
 self.fed = []
 def handle_data(self, d):
 self.fed.append(d)
 def get_data(self):
 return ' '.join(self.fed)

 def strip_html(text):
 html_stripper = MLStripper()
 html_stripper.feed(text)
 return html_stripper.get_data()

 We also add a new function to normalize special accented characters and convert
them into regular ASCII characters so as to standardize the text across all documents. The
following snippet helps us achieve this:

 def normalize_accented_characters(text):
 text = unicodedata.normalize('NFKD',
 text.decode('utf-8')
).encode('ascii', 'ignore')
 return text

 The overall text normalization function is depicted in the following snippet and it
re-uses the expand contractions, lemmatization, HTML unescaping, special characters
removal, and stopwords removal functions from the previous chapter's normalization
module:

 def normalize_corpus(corpus, lemmatize=True,
 only_text_chars=False,
 tokenize=False):

 normalized_corpus = []
 for index, text in enumerate(corpus):
 text = normalize_accented_characters(text)
 text = html_parser.unescape(text)
 text = strip_html(text)
 text = expand_contractions(text, CONTRACTION_MAP)
 if lemmatize:
 text = lemmatize_text(text)
 else:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

345

 text = text.lower()
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 if only_text_chars:
 text = keep_text_characters(text)

 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)
 else:
 normalized_corpus.append(text)

 return normalized_ corpus

 To re-use this code, you can make use of the normalization.py and contractions.
py files provided with the code files of this chapter.

 Feature Extraction
 We will be reusing the same feature-extraction function we used in Chapter 6 , and it is
available as a part of the utils.py module. The function is shown here for the sake of
completeness:

 from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

 def build_feature_matrix(documents, feature_type='frequency',
 ngram_range=(1, 1), min_df=0.0, max_df=1.0):

 feature_type = feature_type.lower().strip()

 if feature_type == 'binary':
 vectorizer = CountVectorizer(binary=True, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'frequency':
 vectorizer = CountVectorizer(binary=False, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'tfidf':
 vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,
 ngram_range=ngram_range)
 else:
 raise Exception("Wrong feature type entered. Possible values:

'binary', 'frequency', 'tfidf'")

 feature_matrix = vectorizer.fit_transform(documents).astype(float)
 return vectorizer, feature_ matrix

http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

346

 You can experiment with various features provided by this function, which include
Bag of Words-based frequencies, occurrences, and TF-IDF based features.

 Model Performance Evaluation
 We will be evaluating our models based on precision, recall, accuracy, and F1-score,
similar to our evaluation methods in Chapter 4 for text classification. Additionally we
will be looking at the confusion matrix and detailed classification reports for each class,
that is, the positive and negative classes to evaluate model performance. You can refer to
the “Evaluating Classification Models” section in Chapter 4 to refresh your memory on
the various model-evaluation metrics. The following function will help us in getting the
model accuracy, precision, recall, and F1-score:

 from sklearn import metrics
 import numpy as np
 import pandas as pd

 def display_evaluation_metrics(true_labels, predicted_labels, positive_
class=1):
 print 'Accuracy:', np.round(
 metrics.accuracy_score(true_labels,
 predicted_labels),
 2)
 print 'Precision:', np.round(
 metrics.precision_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)
 print 'Recall:', np.round(
 metrics.recall_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)
 print 'F1 Score:', np.round(
 metrics.f1_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)

 We will also define a function to help us build the confusion matrix for evaluating
the model predictions against the actual sentiment labels for the reviews. The following
function will help us achieve that:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

347

 def display_confusion_matrix(true_labels, predicted_labels, classes=[1,0]):
 cm = metrics.confusion_matrix(y_true=true_labels,
 y_pred=predicted_labels,
 labels=classes)
 cm_frame = pd.DataFrame(data=cm,
 columns=pd.MultiIndex(levels=[['Predicted:'],

classes],
 labels=[[0,0],[0,1]]),
 index=pd.MultiIndex(levels=[['Actual:'],

classes],
 labels=[[0,0],[0,1]]))
 print cm_frame

 Finally, we will define a function for getting a detailed classification report per
sentiment category (positive and negative) by displaying the precision, recall, F1-score,
and support (number of reviews) for each of the classes:

 def display_classification_report(true_labels, predicted_labels,
classes=[1,0]):
 report = metrics.classification_report(y_true=true_labels,
 y_pred=predicted_labels,
 labels=classes)
 print report

 You will find all the preceding functions in the utils.py module along with the other
code files for this chapter and you can re-use them as needed. Besides this, you need to
make sure you have nltk and pattern installed—which you should already have by this
point of time because we have used them numerous times in our previous chapters.

 Preparing Datasets
 We will be loading our movie reviews data and preparing two datasets, namely training
and testing, similar to what we did in Chapter 4 . We will train our supervised model on
the training data and evaluate model performance on the testing data. For unsupervised
models, we will directly evaluate them on the testing data so as to compare their
performance with the supervised model. Besides that, we will also pick some sample
positive and negative reviews to see how the different models perform on them:

 import pandas as pd
 import numpy as np
 # load movie reviews data
 dataset = pd.read_csv(r'E:/aclImdb/movie_reviews.csv')
 # print sample data
 In [235]: print dataset.head()
 review sentiment
 0 One of the other reviewers has mentioned that ... positive
 1 A wonderful little production.

The... positive
 2 I thought this was a wonderful way to spend ti... positive

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

348

 3 Basically there's a family where a little boy ... negative
 4 Petter Mattei's "Love in the Time of Money" is... positive

 # prepare training and testing datasets
 train_data = dataset[:35000]
 test_data = dataset[35000:]

 train_reviews = np.array(train_data['review'])
 train_sentiments = np.array(train_data['sentiment'])
 test_reviews = np.array(test_data['review'])
 test_sentiments = np.array(test_data['sentiment'])

 # prepare sample dataset for experiments
 sample_docs = [100, 5817, 7626, 7356, 1008, 7155, 3533, 13010]
 sample_data = [(test_reviews[index],
 test_sentiments[index])
 for index in sample_docs]

 We have taken a total of 35,000 reviews out of the 50,000 to be our training dataset
and we will evaluate our models and test them on the remaining 15,000 reviews. This is in
line with a typical 70:30 separation used for training and testing dataset building. We have
also extracted a total of eight reviews from the test dataset and we will be looking closely
at the results for these documents as well as evaluating the model performance on the
complete test dataset in the following sections.

 Supervised Machine Learning Technique
 As mentioned before, in this section we will be building a model to analyze sentiment
using supervised ML. This model will learn from past reviews and their corresponding
sentiment from the training dataset so that it can predict the sentiment for new reviews
from the test dataset. The basic principle here is to use the same concepts we used for
 text classification such that the classes to predict here are positive and negative sentiment
corresponding to the movie reviews.

 We will be following the same workflow which we followed in Chapter 4 for text
classification (refer to Figure 4-2 in Chapter 4) in the “Text Classification Blueprint”
section. The following points summarize these steps:

 1. Model training

 a. Normalize training data

 b. Extract features and build feature set and feature
vectorizer

 c. Use supervised learning algorithm (SVM) to build a
predictive model

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

349

 2. Model testing

 a. Normalize testing data

 b. Extract features using training feature vectorizer

 c. Predict the sentiment for testing reviews using training
model

 d. Evaluate model performance

 To start, we will be building our training model using the steps in point 1. We will be
using our normalization and feature- extraction modules discussed in previous sections:

 from normalization import normalize_corpus
 from utils import build_feature_matrix

 # normalization
 norm_train_reviews = normalize_corpus(train_reviews, lemmatize=True, only_
text_chars=True)
 # feature extraction
 vectorizer, train_features = build_feature_matrix(documents=norm_train_
reviews,
 feature_type='tfidf',

ngram_range=(1, 1),
 min_df=0.0, max_df=1.0)

 We will now build our model using the support vector machine (SVM) algorithm which
we used for text classification in Chapter 4 . Refer to the “Support Vector Machines” subsection
under the “Classification Algorithms” section in Chapter 4 to refresh your memory:

 from sklearn.linear_model import SGDClassifier
 # build the model
 svm = SGDClassifier(loss='hinge', n_iter=200)
 svm.fit(train_features, train_sentiments)

 The preceding snippet trainings the classifier and builds the model that is in the
 svm variable, which we can now use for predicting sentiment for new movie reviews (not
used for training) from the test dataset. Let us normalize and extract features from the test
dataset first as mentioned in step 2 in our workflow:

 # normalize reviews
 norm_test_reviews = normalize_corpus(test_reviews, lemmatize=True, only_
text_chars=True)
 # extract features
 test_features = vectorizer.transform(norm_test_reviews)

 Now that we have our features for the entire test dataset, before we predict the
sentiment and measure model prediction performance for the entire test dataset, let us
look at some of the predictions for the sample documents we extracted earlier:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

350

 # predict sentiment for sample docs from test data
 In [253]: for doc_index in sample_docs:
 ...: print 'Review:-'
 ...: print test_reviews[doc_index]
 ...: print 'Actual Labeled Sentiment:', test_sentiments[doc_index]
 ...: doc_features = test_features[doc_index]
 ...: predicted_sentiment = svm.predict(doc_features)[0]
 ...: print 'Predicted Sentiment:', predicted_sentiment
 ...: print
 ...:
 ...:
 Review:-
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 I hope this group of film-makers never re-unites.
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing
 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.
 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

351

 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.
 Actual Labeled Sentiment: positive
 Predicted Sentiment: negative

 Review:-
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot
 Actual Labeled Sentiment: positive
 Predicted Sentiment: negative

 You can look at each review, its actual labeled sentiment, and our predicted sentiment
in the preceding output and see that we have some negative and positive reviews, and our
model is able to correctly identify the sentiment for most of the sampled reviews except
the last two reviews. If you look closely at the last two reviews, some part of the review has
a negative sentiment ("worst horror film" , "voted this movie to be bad") but the
general sentiment or opinion of the person who wrote the review was intended positive.
These are the examples I mentioned earlier about the overlap of positive and negative
emotions , which makes it difficult for the model to predict the actual sentiment!

 Let us now predict the sentiment for all our test dataset reviews and evaluate our
model performance:

 # predict the sentiment for test dataset movie reviews
 predicted_sentiments = svm.predict(test_features)

 # evaluate model prediction performance
 from utils import display_evaluation_metrics, display_confusion_matrix,
display_classification_report

 # show performance metrics
 In [270]: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=predicted_sentiments,
 ...: positive_class='positive')
 Accuracy: 0.89
 Precision: 0.88
 Recall: 0.9
 F1 Score: 0.89

 # show confusion matrix
 In [271]: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=predicted_sentiments,
 ...: classes=['positive', 'negative'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

352

 Predicted:
 positive negative
 Actual: positive 6770 740
 negative 912 6578

 # show detailed per-class classification report
 In [272]: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=predicted_

sentiments,
 ...: classes=['positive', 'negative'])
 precision recall f1-score support

 positive 0.88 0.90 0.89 7510
 negative 0.90 0.88 0.89 7490

 avg / total 0.89 0.89 0.89 15000

 The preceding outputs show the various performance metrics that depict the
performance of our SVM model with regard to predicting sentiment for movie reviews.
We have an average sentiment prediction accuracy of 89 percent, which is really good if
you compare it with standard baselines for text classification using supervised techniques.
The classification report also shows a per-class detailed report, and we see that our F1-
score (harmonic mean of precision and recall) is 89 percent for both positive and negative
sentiment. The support metric shows the number of reviews having positive (7510)
sentiment and negative (7490) sentiment. The confusion matrix shows how many reviews
for which we predicted the correct sentiment (positive : 6770/7510, negative : 6578/7490)
and the number of reviews for which we predicted the wrong sentiment (positive : 740/7510,
 negative : 912/7490). Do try out building more models with different features (Chapter
 4 talks about different feature-extraction techniques) and different supervised learning
algorithms. Can you get a better model which predicts sentiment more accurately?

 Unsupervised Lexicon-based Techniques
 So far, we used labeled training data to learn patterns using features from the movie
reviews and their corresponding sentiment. Then we applied this knowledge learned on
new movie reviews (the testing dataset) to predict their sentiment. Often, you may not
have the convenience of a well-labeled training dataset. In those situations, you need
to use unsupervised techniques for predicting the sentiment by using knowledgebases,
ontologies, databases, and lexicons that have detailed information specially curated and
prepared just for sentiment analysis.

 As mentioned, a lexicon is a dictionary, vocabulary, or a book of words. In our case,
lexicons are special dictionaries or vocabularies that have been created for analyzing
sentiment. Most of these lexicons have a list of positive and negative polar words with
some score associated with them, and using various techniques like the position of words,
surrounding words, context, parts of speech, phrases, and so on, scores are assigned to
the text documents for which we want to compute the sentiment. After aggregating these
scores, we get the final sentiment. More advanced analyses can also be done, including
detecting the subjectivity, mood, and modality. Various popular lexicons are used for
sentiment analysis, including the following:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

353

• AFINN lexicon

• Bing Liu’s lexicon

• MPQA subjectivity lexicon

• SentiWordNet

• VADER lexicon

• Pattern lexicon

 This is not an exhaustive list of lexicons that can be leveraged for sentiment analysis,
and there are several other lexicons which can be easily obtained from the Internet.
We will briefly discuss each lexicon and will be using the last three lexicons to analyze
the sentiment for our testing dataset in more detail. Although these techniques are
unsupervised, you can also use them to analyze and evaluate the sentiment for the
training dataset too, but for the sake of consistency and to compare model performances
with the supervised model, we will be performing all our analyses on the testing dataset.

 AFINN Lexicon
 The AFINN lexicon was curated and created by Finn Årup Nielsen, and more details are
mentioned in his paper “A New ANEW: Evaluation of a Word List for Sentiment Analysis
in Microblogs.” The latest version, known as AFINN-111, consists of a total of 2477 words
and phrases with their own scores based on sentiment polarity. The polarity basically
indicates how positive, negative, or neutral the term might be with some numerical
score. You can download it from www2.imm.dtu.dk/pubdb/views/publication_details.
php?id=6010 . It also talks about the lexicon in further details. The author of this lexicon
has also built a Python wrapper over the AFINN lexicon, which you can directly use to
predict the sentiment of text data. The repository is available from GitHub at https://
github.com/fnielsen/afinn . You can install the afinn library directly and start
analyzing sentiment. This library even has support for emoticons and smileys. Following
is a sample of the AFINN-111 lexicon:

 abandon -2
 abandoned -2
 abandons -2
 abducted -2
 abduction -2
 ...
 ...
 youthful 2
 yucky -2
 yummy 3
 zealot -2
 zealots -2
 zealous 2

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://github.com/fnielsen/afinn
https://github.com/fnielsen/afinn

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

354

 The basic idea is to load the entire list of polar words and phrases in the lexicon
along with their corresponding score (sample shown above) in memory and then find the
same words/phrases and score them accordingly in a text document. Finally, these scores
are aggregated, and the final sentiment and score can be obtained for a text document.
Following is an example snippet based on the official documentation:

 from afinn import Afinn
 afn = Afinn(emoticons=True)

 In [281]: print afn.score('I really hated the plot of this movie')
 -3.0
 In [282]: print afn.score('I really hated the plot of this movie :(')
 -5.0

 Thus you can use the score() function directly to evaluate the sentiment of your text
documents, and from the preceding output you can see that they even give proper weightage
to emoticons, which are used extensively in social media like Twitter and Facebook.

 Bing Liu’s Lexicon
 This lexicon has been developed by Bing Liu over several years and is discussed in
further details in his paper, by Nitin Jindal and Bing Liu, “Identifying Comparative
Sentences in Text Documents.” You can get more details about the lexicon at https://
www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon , which also includes a
link to download it as an archive (RAR format). This lexicon consists of over 6800 words
divided into two files named positive-words.txt , containing around 2000+ words/
phrases, and negative-words.txt , which contains around 4800+ words/phrases. The
key idea is to leverage these words to contribute to the positive or negative polarity of
any text document when they are identified in that document. This lexicon also includes
many misspelled words, taking into account that words or terms are often misspelled on
popular social media web sites.

 MPQA Subjectivity Lexicon
 MPQA stands for Multi-Perspective Question Answering, and it hosts a plethora of
resources maintained by the University of Pittsburgh. It contains resources including
opinion corpora, subjectivity lexicon, sense annotations, argument-based lexicon, and
debate datasets. A lot of these can be leveraged for complex analysis of human emotions
and sentiment. The subjectivity lexicon is maintained by Theresa Wilson, Janyce Wiebe,
and Paul Hoffmann, and is discussed in detail in their paper, “Recognizing Contextual
Polarity in Phrase-Level Sentiment Analysis,” which focuses on contextual polarity. You
can download the subjectivity lexicon from http://mpqa.cs.pitt.edu/lexicons/subj_
lexicon/ , which is their official website. It has subjectivity clues present in the dataset
named subjclueslen1-HLTEMNLP05.tff , which is available once you extract the archive.
Some sample lines from the dataset are depicted as follows:

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

355

 type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n
priorpolarity=negative
 type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n
priorpolarity=negative
 type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y
priorpolarity=negative
 type=strongsubj len=1 word1=abase pos1=verb stemmed1=y
priorpolarity=negative
 ...
 ...
 type=strongsubj len=1 word1=zealously pos1=anypos stemmed1=n
priorpolarity=negative
 type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n
priorpolarity=positive
 type=strongsubj len=1 word1=zest pos1=noun stemmed1=n priorpolarity=positive

 To understand this data, you can refer to the readme file provided along with the
dataset. Basically, the clues in this dataset were curated and collected manually with
efforts by the above-mentioned maintainers of this project. The various parameters
mentioned above are explained briefly as follows:

• type : This has values that are either strongsubj indicating the
presence of a strongly subjective context or weaksubj which
indicates the presence of a weak/part subjective context.

• len : This points to the number of words in the term of the clue (all
are single words of length 1 for now).

• word1 : The actual term present as a token or a stem of the actual
token.

• pos1 : The part of speech for the term (clue) and it can be noun ,
 verb , adj , adverb , or anypos .

• stemmed1 : This indicates if the clue (term) is stemmed (y) or not
stemmed (n). If it is stemmed, it can match all its other variants
having the same pos1 tag.

• priorpolarity : This has values of negative, positive, both, or
neutral, and indicates the polarity of the sentiment associated
with this clue (term).

 The idea is to load this lexicon into a database or memory (hint: Python dictionary
works well) and then use it similarly to the previous lexicons to analyze the sentiment
associated with any text document.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

356

 SentiWordNet
 We know that WordNet is perhaps one of the most popular corpora for the English
language, used extensively in semantic analysis, and it introduces the concept of synsets.
The SentiWordNet lexicon is a lexical resource used for sentiment analysis and opinion
mining. For each synset present in WordNet, the SentiWordNet lexicon assigns three
sentiment scores to it, including a positive polarity score, a negative polarity score,
and an objectivity score. You can find more details on the official web site http://
sentiwordnet.isti.cnr.it , which includes research papers explaining the lexicon in
detail and also a link to download the lexicon. The nltk package in Python provides an
interface directly for accessing the SentiWordNet lexicon, and we will be using this to
analyze the sentiment of our movie reviews. The following snippet shows an example
synset and its sentiment scores using SentiWordNet:

 import nltk
 from nltk.corpus import sentiwordnet as swn
 # get synset for 'good'
 good = swn.senti_synsets('good', 'n')[0]
 # print synset sentiment scores
 In [287]: print 'Positive Polarity Score:', good.pos_score()
 ...: print 'Negative Polarity Score:', good.neg_score()
 ...: print 'Objective Score:', good.obj_score()
 Positive Polarity Score: 0.5
 Negative Polarity Score: 0.0
 Objective Score: 0.5

 Now that we know how to use the sentiwordnet interface, we define a function
that can take in a body of text (movie review in our case) and analyze its sentiment by
leveraging sentiwordnet :

 from normalization import normalize_accented_characters, html_parser, strip_
html

 def analyze_sentiment_sentiwordnet_lexicon(review,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # tokenize and POS tag text tokens
 text_tokens = nltk.word_tokenize(review)
 tagged_text = nltk.pos_tag(text_tokens)
 pos_score = neg_score = token_count = obj_score = 0
 # get wordnet synsets based on POS tags
 # get sentiment scores if synsets are found
 for word, tag in tagged_text:
 ss_set = None

http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

357

 if 'NN' in tag and swn.senti_synsets(word, 'n'):
 ss_set = swn.senti_synsets(word, 'n')[0]
 elif 'VB' in tag and swn.senti_synsets(word, 'v'):
 ss_set = swn.senti_synsets(word, 'v')[0]
 elif 'JJ' in tag and swn.senti_synsets(word, 'a'):
 ss_set = swn.senti_synsets(word, 'a')[0]
 elif 'RB' in tag and swn.senti_synsets(word, 'r'):
 ss_set = swn.senti_synsets(word, 'r')[0]
 # if senti-synset is found
 if ss_set:
 # add scores for all found synsets
 pos_score += ss_set.pos_score()
 neg_score += ss_set.neg_score()
 obj_score += ss_set.obj_score()
 token_count += 1

 # aggregate final scores
 final_score = pos_score - neg_score
 norm_final_score = round(float(final_score) / token_count, 2)
 final_sentiment = 'positive' if norm_final_score >= 0 else 'negative'
 if verbose:
 norm_obj_score = round(float(obj_score) / token_count, 2)
 norm_pos_score = round(float(pos_score) / token_count, 2)
 norm_neg_score = round(float(neg_score) / token_count, 2)
 # to display results in a nice table
 sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score,
 norm_pos_score, norm_neg_score,
 norm_final_score]],
 columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

 'Objectivity',
 'Positive', 'Negative',

 'Overall']],
 labels=[[0,0,0,0,0],

[0,1,2,3,4]]))
 print sentiment_frame

 return final_ sentiment

 The comments in the preceding function are pretty self-explanatory. We take in a
body of text (a movie review), do some initial pre-processing, and then tokenize and POS
tag the tokens. For each pair of (word, tag) we check if any senti-synsets exist for the same
word and its corresponding tag. If there is a match, we take the first senti-synset and store
its sentiment scores in corresponding variables, and finally we aggregate its scores. We
can now see the preceding function in action for our sample reviews (in the sample_data
variable we created earlier from the test data) in the following snippet:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

358

 # detailed sentiment analysis for sample reviews
 In [292]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_sentiwordnet_

lexicon(review,
 ...:

verbose=True)
 ...: print '-'*60
 ...:
 ...:
 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.83 0.08 0.09 -0.01
 --
 Review:
 I hope this group of film-makers never re-unites.

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.71 0.04 0.25 -0.21
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.81 0.04 0.15 -0.11
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

359

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.76 0.18 0.06 0.13
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.84 0.14 0.03 0.11
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.75 0.2 0.05 0.15
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.73 0.21 0.06 0.15
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

 Labeled Sentiment: positive

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

360

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.79 0.13 0.08 0.05
 --

 You can see detailed statistics related to each sentiment score and also the overall
sentiment and compare it with the actual labeled sentiment for each review in the
preceding output. Interestingly, we were able to predict the sentiment correctly for all
our sampled reviews as compared to the supervised learning technique. But how well
does this technique perform for our complete test movie reviews dataset? The following
snippet will give us the answer!

 # predict sentiment for test movie reviews dataset
 sentiwordnet_predictions = [analyze_sentiment_sentiwordnet_lexicon(review)
 for review in test_reviews]

 from utils import display_evaluation_metrics, display_confusion_matrix,
display_classification_report

 # get model performance statistics
 In [295]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: classes=['positive', 'negative'])
 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.59
 Precision: 0.56
 Recall: 0.92
 F1 Score: 0.7

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 6941 569
 negative 5510 1980

 Classification report:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

361

 precision recall f1-score support

 positive 0.56 0.92 0.70 7510
 negative 0.78 0.26 0.39 7490

 avg / total 0.67 0.59 0.55 15000

 Our model has a sentiment prediction accuracy of around 60% and an F1-score of
70% approximately. If you look at the detailed classification report and the confusion
matrix, you will observe that we correctly classify 6941/7510 positive movie reviews as
positive, but we incorrectly classify 5510/7490 negative movie reviews as positive—which
is quite high! A way to redress this would be to change our logic slightly in our function
and relax the threshold for overall sentiment score to decide whether a document will
have an overall positive or negative sentiment from 0 to maybe 0.1 or higher. Experiment
with this threshold and see what kind of results you get.

 VADER Lexicon
 VADER stands for Valence Aware Dictionary and sEntiment Reasoner. It is a lexicon
with a rule-based sentiment analysis framework that was specially built for analyzing
sentiment from social media resources. This lexicon was developed by C. J. Hutto and
Eric Gilbert, and you will find further details in the paper, “VADER: A Parsimonious Rule-
based Model for Sentiment Analysis of Social Media Text.” You can read more about it
and even download the dataset or install the library from https://github.com/cjhutto/
vaderSentiment , which contains all the resources pertaining to the VADER lexicon.
The file vader_sentiment_lexicon.txt contains all the necessary sentiment scores
associated with various terms, including words, emoticons, and even slang language-
based tokens (like lol , wtf , nah , and so on). There are over 9000 lexical features from
which it was further curated to 7500 lexical features in this lexicon with proper validated
valence scores. Each feature was rated on a scale from "[-4] Extremely Negative" to
 "[4] Extremely Positive" , with allowance for "[0] Neutral (or Neither, N/A)" .
This curation was done by keeping all lexical features which had a non-zero mean rating
and whose standard deviation was less than 2.5, which was determined by the aggregate
of ten independent raters. A sample of the VADER lexicon is depicted as follows:

)-:< -2.2 0.4 [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2]
)-:{ -2.1 0.9434 [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2]
): -1.8 0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2]
 ...
 ...
 resolved 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0]
 resolvent 0.7 0.78102 [1, 0, 1, 2, 0, -1, 1, 1, 1, 1]
 resolvents 0.4 0.66332 [2, 0, 0, 1, 0, 0, 1, 0, 0, 0]
 ...
 ...
 }:-(-2.1 0.7 [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2]
 }:-) 0.3 1.61555 [1, 1, -2, 1, -1, -3, 2, 2, 1, 1]

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

362

 Each line in the preceding lexicon depicts a unique term, which can be a word
or even an emoticon. The first term indicates the word/emoticon, the second column
indicates the mean or average score, the third column indicates the standard deviation,
and the final column indicates a list of scores given by ten independent scorers. The nltk
package has a nice interface for leveraging the VADER lexicon, and the following function
makes use of the same for analyzing sentiment for any text document:

 from nltk.sentiment.vader import SentimentIntensityAnalyzer

 def analyze_sentiment_vader_lexicon(review,
 threshold=0.1,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # analyze the sentiment for review
 analyzer = SentimentIntensityAnalyzer()
 scores = analyzer.polarity_scores(review)
 # get aggregate scores and final sentiment
 agg_score = scores['compound']
 final_sentiment = 'positive' if agg_score >= threshold\
 else 'negative'
 if verbose:
 # display detailed sentiment statistics
 positive = str(round(scores['pos'], 2)*100)+'%'
 final = round(agg_score, 2)
 negative = str(round(scores['neg'], 2)*100)+'%'
 neutral = str(round(scores['neu'], 2)*100)+'%'
 sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,
 negative, neutral]],
 columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

'Polarity Score',
 'Positive', 'Negative',
 'Neutral']],
 labels=[[0,0,0,0,0],[0,1,2,3,4]]))
 print sentiment_frame

 return final_ sentiment

 That function helps in computing the sentiment and various statistics associated with
it for any text document (movie reviews in our case). The comments explain the main
sections of the function, which include text-preprocessing, getting the necessary sentiment
scores using the VADER lexicon, aggregating them, and computing the final sentiment
(positive/negative) using a specific threshold we talked about earlier. A threshold of 0.1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

363

seemed to work best on an average, but you can experiment further with it. The following
snippet shows us how to use this function on our sampled test movie reviews:

 # get detailed sentiment statistics
 In [301]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_vader_lexicon(review,
 ...: threshold=0.1,
 ...: verbose=True)
 ...: print '-'*60

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative 0.03 20.0% 18.0% 62.0%
 --
 Review:
 I hope this group of film-makers never re-unites.

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.44 33.0% 0.0% 67.0%
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative -0.8 0.0% 40.0% 60.0%
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet,
funny, and endearing

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

364

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.82 40.0% 0.0% 60.0%
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.71 31.0% 0.0% 69.0%
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.99 37.0% 2.0% 61.0%
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative -0.16 17.0% 14.0% 69.0%
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

365

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.49 11.0% 11.0% 77.0%
 --

 The preceding statistics are similar to our previous function except the Positive ,
 Negative , and Neutral columns indicate the percentage or proportion of the document
that is positive, negative, or neutral, and the final score is determined based on the
polarity score and the threshold. The following snippet shows the model sentiment
prediction performance on the entire test movie reviews dataset:

 # predict sentiment for test movie reviews dataset
 vader_predictions = [analyze_sentiment_vader_lexicon(review, threshold=0.1)
 for review in test_reviews]

 # get model performance statistics
 In [302]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: classes=['positive', 'negative'])
 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.7
 Precision: 0.65
 Recall: 0.86
 F1 Score: 0.74

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 6434 1076
 negative 3410 4080

 Classification report:
 precision recall f1-score support

 positive 0.65 0.86 0.74 7510
 negative 0.79 0.54 0.65 7490

 avg / total 0.72 0.70 0.69 15000

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

366

 The preceding metrics depict that our model has a sentiment prediction accuracy of
around 70 percent and an F1-score close to 75 percent, which is definitely better than our
previous model. Also notice that we are able to correctly predict positive sentiment for
6434 out of 7510 positive movie reviews, and negative sentiment correctly for 4080 out of
7490 negative movie reviews.

 Pattern Lexicon
 The pattern package is a complete package for NLP, text analytics, and information
retrieval. We discussed it in detail in previous chapters and have also used it several
times to solve several problems. This package is developed by CLiPS (Computational
Linguistics & Psycholinguistics), a research center associated with the Linguistics
Department of the Faculty of Arts of the University of Antwerp. It has a sentiment module
associated with it, along with modules for analyzing mood and modality of a body of text.

 For sentiment analysis, it analyzes any body of text by decomposing it into sentences
and then tokenizing it and tagging the various tokens with necessary parts of speech.
It then uses its own subjectivity-based sentiment lexicon, which you can access from
its official repository at https://github.com/clips/pattern/blob/master/pattern/
text/en/en-sentiment.xml . It contains scores like polarity, subjectivity, intensity, and
confidence, along with other tags like the part of speech, WordNet identifier, and so
on. It then leverages this lexicon to compute the overall polarity and subjectivity score
associated with a text document. A threshold of 0.1 is recommended by pattern itself to
compute the final sentiment of a document as positive, and anything below it as negative.

 You can also analyze the mood and modality of text documents by leveraging the
mood and modality functions provided by the pattern package. The mood function
helps in determining the mood expressed by a particular text document. This function
returns INDICATIVE , IMPERATIVE , CONDITIONAL , or SUBJUNCTIVE for any text based on its
content. The table in Figure 7-2 talks about each type of mood in further detail, courtesy
of the official documentation provided by CLiPS pattern . The column Use talks about
the typical usage patterns for each type of mood, and the examples provide some actual
examples from the English language.

 Modality for any text represents the degree of certainty expressed by the text as
a whole. This value is a number that ranges between 0 and 1. Values > 0.5 indicate
factual texts having a high certainty, and < 0.5 indicate wishes and hopes and have a low

 Figure 7-2. Different types of mood and their examples (figure courtesy of CLiPS pattern)

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

367

certainty associated with them. We will define a function now to analyze the sentiment
for text documents using the pattern lexicon:

 from pattern.en import sentiment, mood, modality

 def analyze_sentiment_pattern_lexicon(review, threshold=0.1,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # analyze sentiment for the text document
 analysis = sentiment(review)
 sentiment_score = round(analysis[0], 2)
 sentiment_subjectivity = round(analysis[1], 2)
 # get final sentiment
 final_sentiment = 'positive' if sentiment_score >= threshold\
 else 'negative'
 if verbose:
 # display detailed sentiment statistics
 sentiment_frame = pd.DataFrame([[final_sentiment, sentiment_score,
 sentiment_subjectivity]],
 columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

'Polarity Score',
 'Subjectivity Score']],
 labels=[[0,0,0],

[0,1,2]]))
 print sentiment_frame
 assessment = analysis.assessments
 assessment_frame = pd.DataFrame(assessment,
 columns=pd.MultiIndex(levels=[['DETAILED

ASSESSMENT STATS:'],
 ['Key Terms', 'Polarity

Score',
 'Subjectivity Score',

'Type']],
 labels=[[0,0,0,0],

[0,1,2,3]]))
 print assessment_frame
 print

 return final_sentiment

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

368

 We will now test the function we defined to analyze the sentiment of our sample
test movie reviews and observe the results. We take a threshold of 0.1 as the cut-off to
decide between positive and negative sentiment for a document based on the aggregated
sentiment polarity score, based on several experiments and recommendations from the
official documentation:

 # get detailed sentiment statistics
 In [303]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_pattern_lexicon(review,
 ...:
threshold=0.1,
 ...:
verbose=True)
 ...: print '-'* 60

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative 0.06 0.62
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [worst] -1.0 1.000 None
 1 [best] 1.0 0.300 None
 2 [top] 0.5 0.500 None
 3 [acting] 0.0 0.000 None
 4 [more] 0.5 0.500 None
 5 [great] 0.8 0.750 None
 6 [appalled] -0.8 1.000 None
 7 [silly] -0.5 0.875 None

 --
 Review:
 I hope this group of film-makers never re-unites.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

369

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative 0.0 0.0
 Empty DataFrame
 Columns: [(DETAILED ASSESSMENT STATS:, Key Terms), (DETAILED ASSESSMENT
STATS:, Polarity Score), (DETAILED ASSESSMENT STATS:, Subjectivity Score),
(DETAILED ASSESSMENT STATS:, Type)]
 Index: []

 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative -0.36 0.5
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [stupid] -0.80 1.0 None
 1 [acting] 0.00 0.0 None
 2 [average] -0.15 0.4 None
 3 [worse, !] -0.50 0.6 None

 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.19 0.67
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [little] -0.1875 0.5 None
 1 [funny] 0.2500 1.0 None
 2 [endearing] 0.5000 0.5 None

 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

370

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.4 0.71
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [mesmerizing] 0.300000 0.700000 None
 1 [certainly] 0.214286 0.571429 None
 2 [fascinating] 0.700000 0.850000 None

 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.66 0.73
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [perfect] 1.000000 1.000000 None
 1 [better] 0.500000 0.500000 None
 2 [best, !] 1.000000 0.300000 None
 3 [lovely] 0.500000 0.750000 None
 4 [much, fun] 0.300000 0.200000 None
 5 [excellent] 1.000000 1.000000 None
 6 [easy] 0.433333 0.833333 None
 7 [love] 0.500000 0.600000 None
 8 [sure] 0.500000 0.888889 None
 9 [excellent, !] 1.000000 1.000000 None
 10 [:-)] 0.500000 1.000000 mood

 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have.
You really should Get this one.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

371

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.17 0.55
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [bad] -0.7 0.666667 None
 1 [very, good, !] 1.0 0.780000 None
 2 [really] 0.2 0.200000 None

 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative -0.04 0.63
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [worst] -1.000000 1.0 None
 1 [cheap] 0.400000 0.7 None
 2 [really, !, !, !, !] 0.488281 0.2 None

 --

 The preceding analysis shows the sentiment, polarity, and subjectivity scores for
each sampled review. Besides this, we also see key terms and emotions and their polarity
scores, which mainly contributed to the overall sentiment of each review. You can see
that even exclamations and emoticons are also given importance and weightage when
computing sentiment and polarity. The following snippet depicts the mood and modality
for the sampled test movie reviews:

 In [304]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print 'Mood:', mood(review)
 ...: mod_score = modality(review)
 ...: print 'Modality Score:', round(mod_score, 2)
 ...: print 'Certainty:', 'Strong' if mod_score > 0.5 \
 ...: else 'Medium' if mod_score > 0.35 \
 ...: else 'Low'
 ...: print '-'*60

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

372

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese
 Labeled Sentiment: negative
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 I hope this group of film-makers never re-unites.
 Labeled Sentiment: negative
 Mood: subjunctive
 Modality Score: -0.25
 Certainty: Low
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!
 Labeled Sentiment: negative
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing
 Labeled Sentiment: positive
 Mood: imperative
 Modality Score: 1.0
 Certainty: Strong
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.
 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

373

 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.58
 Certainty: Strong
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.
 Labeled Sentiment: positive
 Mood: conditional
 Modality Score: 0.28
 Certainty: Low
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot
 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --

 The preceding output depicts the mood, modality score, and the certainty factor
expressed by each review. It is interesting to see phrases like "Add this little gem…"
are correctly associated with the right mood, which is an imperative , and "I hope
this…" is correctly associated with subjunctive mood. The other reviews have more of an
 indicative disposition, which is quite obvious since it expresses the beliefs of the review
who wrote the movie review. Certainty is lower in cases of reviews that use words like
 "hope" , "if" , and higher in case of strongly opinionated reviews.

 Finally, we will evaluate the sentiment prediction performance of this model on our
entire test review dataset as we have done before for our other models. The following
snippet achieves the same:

 # predict sentiment for test movie reviews dataset
 pattern_predictions = [analyze_sentiment_pattern_lexicon(review,

threshold=0.1)
 for review in test_reviews]

 # get model performance statistics
 In [307]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=pattern_predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=pattern_predictions,
 ...: classes=['positive', 'negative'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

374

 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=pattern_

predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.77
 Precision: 0.76
 Recall: 0.79
 F1 Score: 0.77

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 5958 1552
 negative 1924 5566

 Classification report:
 precision recall f1-score support

 positive 0.76 0.79 0.77 7510
 negative 0.78 0.74 0.76 7490

 avg / total 0.77 0.77 0.77 15000

 This model gives a better and more balanced performance toward predicting the
sentiment of both positive and negative classes. We have an average sentiment prediction
accuracy of 77 percent and an average F1-score of 77 percent for this model. Although
the number of correct positive predictions has dropped from our previous model to
5958/7510 reviews, the number of correct predictions for negative reviews has increased
significantly to 5566/7490 reviews.

 Comparing Model Performances
 We have built a supervised classification model and three unsupervised lexicon-based
models to predict sentiment for movie reviews. For each model, we looked at its detailed
analysis and statistics for calculating sentiment. We also evaluated each model on
standard metrics like precision, recall, accuracy, and F1-score. In this section, we will
briefly look at how each model’s performance compares against the other models.
Figure 7-3 shows the model performance metrics and a visualization comparing the
metrics across all the models.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

375

 From the visualization and the table in Figure 7-3 , it is clear that the supervised
model using SVM gives us the best results, which are expected because it was trained on
35,000 training movie reviews. Pattern lexicon performs the best among the unsupervised
techniques for our test movie reviews. Does this mean these models will always perform
the best? Absolutely not. It depends on the data you are analyzing. Remember to consider
various models and also to evaluate all the metrics when evaluating any model, and not
just one or two. Some of the models in the chart have really high recall but low precision,
which indicates these models have a tendency to make more wrong predictions or
false positives. You can re-use these benchmarks and evaluate more sentiment analysis
models as you experiment with different features, lexicons, and techniques.

 Figure 7-3. Comparison of sentiment analysis model performances

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

376

 Summary
 In this final chapter, we have covered a variety of topics focused on semantic and
sentiment analysis of textual data. We revisited several of our concepts from Chapter
 1 with regard to language semantics. We looked at the WordNet corpus in detail and
explored the concept of synsets with practical examples. We also analyzed various lexical
semantic relations from Chapter 1 here, using synsets and real-world examples. We
looked at relationships including entailments, homonyms and homographs, synonyms
and antonyms, hyponyms and hypernyms, and holonyms and meronyms. Semantic
relations and similarity computation techniques were also discussed in detail, with
examples that leveraged common hypernyms among various synsets. Some popular
techniques widely used in semantic and information extraction were discussed, including
word sense disambiguation and named entity recognition, with examples. Besides
semantic relations, we also revisited concepts related to semantic representations,
namely propositional logic and first order logic. We leveraged the use of theorem provers
and evaluated actual propositions and logical expressions computationally.

 Next, we introduced the concept of sentiment analysis and opinion mining and saw
how it is used in various domains like social media, surveys, and feedback data. We took
a practical example of analyzing sentiment on actual movie reviews from IMDb and built
several models that included supervised machine learning and unsupervised lexicon-
based models. We looked at each technique and its results in detail and compared the
performance across all our models.

 This brings us to the end of this book. I hope the various concepts and techniques
discussed here will be helpful to and that you can use the knowledge and techniques
from this book when you tackle challenging problems in the world of text analytics and
natural language processing. You may have seen by now that there is a lot of unexplored
territory out there in the world of analyzing unstructured text data. I wish you the very
best and would like to leave you with the parting thought from Occam’s razor: Sometimes
the simplest solution is the best solution .

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

	Chapter 7: Semantic and Sentiment Analysis
	Semantic Analysis
	Exploring WordNet
	Understanding Synsets
	Analyzing Lexical Semantic Relations
	Entailments
	Homonyms and Homographs
	Synonyms and Antonyms
	Hyponyms and Hypernyms
	Holonyms and Meronyms
	Semantic Relationships and Similarity

	Word Sense Disambiguation
	Named Entity Recognition
	Analyzing Semantic Representations
	Propositional Logic
	First Order Logic

	Sentiment Analysis
	Sentiment Analysis of IMDb Movie Reviews
	Setting Up Dependencies
	Getting and Formatting the Data
	Text Normalization
	Feature Extraction
	Model Performance Evaluation

	Preparing Datasets
	Supervised Machine Learning Technique
	Unsupervised Lexicon-based Techniques
	AFINN Lexicon
	Bing Liu’s Lexicon
	MPQA Subjectivity Lexicon
	SentiWordNet
	VADER Lexicon
	Pattern Lexicon

	Comparing Model Performances

	Summary

