
167© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_4

CHAPTER 4

Text Classification

Learning to process and understand text is one of the first steps on the journey to
getting meaningful insights from textual data. Though it is important to understand
how language is structured and specific text syntax patterns, that alone is not sufficient
to be of much use to businesses and organizations who want to derive useful patterns
and insights and get maximum use out of their vast volumes of text data. Knowledge of
language processing coupled with concepts from analytics and machine learning (ML)
help in building systems that can leverage text data and help solve real-world practical
problems which benefit businesses.

Various aspects of ML include supervised learning, unsupervised learning,
reinforcement learning, and more recently deep learning. Each of these concepts involves
several techniques and algorithms that can be leveraged on text data and to build self-
learning systems that do not need too much manual supervision. An ML model is a
combination of data and algorithms—you got a taste of that in Chapter 3 was we built our
own parsers and taggers. The benefit of ML is that once a model is trained, we can directly
use it on new and previously unseen data to start seeing useful insights and desired results.

One of the most relevant and challenging problems is text classification or
categorization, which involves trying to organize text documents into various categories
based on inherent properties or attributes of each text document. This is used in
various domains, including email spam identification and news categorization. The
concept may seem simple, and if you have a small number of documents, you can look
at each document and gain some idea about what it is trying to indicate. Based on
this knowledge, you can group similar documents into categories or classes. It’s more
challenging when the number of text documents to be classified increases to several
hundred thousands or millions. This is where techniques like feature extraction and
supervised or unsupervised ML come in handy. Document classification is a generic
problem not limited to text alone but also can be extended for other items like music,
images, video, and other media.

To formalize our problem more clearly, we will have a given set of classes or
categories and several text documents. Remember that documents are basically sentences
or paragraphs of text. This forms a corpus. Our task would be to determine which class
or classes each document belongs to. This entire process involves several steps which
we will be discussing in detail later in this chapter. Briefly, for a supervised classification
problem, we need to have some labelled data that we could use for training a text
classification model. This data would essentially be curated documents that are already
assigned to some specific class or category beforehand. Using this, we would essentially

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

168

extract features and attributes from each document and make our model learn these
attributes corresponding to each particular document and its class/category by feeding
it to a supervised ML algorithm. Of course, the data would need to be pre-processed and
normalized before building the model. Once done, we would follow the same process of
normalization and feature extraction and then feed it to the model to predict the class or
category for new documents. However, for an unsupervised classification problem, we
would essentially not have any pre-labelled training documents. We would use techniques
like clustering and document similarity measures to cluster documents together based on
their inherent properties and assign labels to them.

In this chapter, we will discuss the concept of text classification and how it can be
formulated as a supervised ML problem. We will also talk about the various forms of
classification and what they indicate. A clear depiction for the essential steps necessary
to complete a text classification workflow will also be presented, and we will be covering
some of the essential steps from the same workflow, which have not been discussed
before, including feature extraction, classifiers, model evaluation, and finally we will put
them all together in building a text classification system on real-world data.

What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and
what we really mean by classification. The textual data involved here can be anything
ranging from a phrase, sentence, or a complete document with paragraphs of text, which
can be obtained from corpora, blogs, or anywhere from the Web. Text classification is
also often called document classification just to cover all forms of textual content under
the word document. The word document could be defined as some form of concrete
representation of thoughts or events that could be in the form of writing, recorded
speech, drawings, or presentations. I use the term document here to represent textual
data such as sentences or paragraphs belonging to the English language.

Text classification is also often called text categorization, although I explicitly use
the word classification here for two reasons. First, it depicts the same essence as text
categorization, where we want to classify documents. The second reason is to also show
that we would be using classification or a supervised ML approach here to classify or
categorize the text. Text categorization can be done in many ways, as mentioned. We
will be focusing explicitly on a supervised approach using classification. The process of
classification is not restricted to text alone. It is used quite frequently in other domains
including science, healthcare, weather forecasting, and technology.

Text or document classification is the process of assigning text documents into one
or more classes or categories, assuming that we have a predefined set of classes.
Documents here are textual documents, and each document can contain a sentence or
even a paragraph of words. A text classification system would successfully be able to
classify each document to its correct class(es) based on inherent properties of the
document. Mathematically, we can define it like this: given some description and
attributes d for a document D, where d DÎ , and we have a set of predefined classes or

categories, C c c c cn= ¼{ }1 2 3, , , , . The actual document D can have many inherent

properties and attributes that lead it to being an entity in a high-dimensional space. Using
a subset of that space with a limit set of descriptions and features depicted by d, we

Chapter 4 ■ text ClassifiCation

169

should be able to successfully assign the original document D to its correct class C
x
 using

a text classification system T. This can be represented by T D Cx: ® .

We will talk more about the text classification system in detail later in the chapter.
Figure 4-1 shows a high-level conceptual representation of the text classification process.

In Figure 4-1, we can see there are several documents representing products which
can be assigned to various categories of food, mobile phones, and movies. Initially,
these documents are all present together, just as a text corpus has various documents in
it. Once it goes through a text classification system, represented as a black box here, we
can see that each document is assigned to one specific class or category we had defined
previously. Here the documents are just represented by their names, but in real data, they
can contain much more, including descriptions of each product, specific attributes such
as movie genre, product specifications, constituents, and many more properties that can
be used as features in the text classification system to make document identification and
classification easier.

There are various types of text classification. This chapter focuses on two major
types, which are based on the type of content that makes up the documents:

•	 Content-based classification

•	 Request-based classification

Both types are more like different philosophies or ideals behind approaches to
classifying text documents rather than specific technical algorithms or processes. Content-
based classification is the type of text classification where priorities or weights are given
to specific subjects or topics in the text content that would help determine the class of the
document. A conceptual example would be that a book with more than 30 percent of its
content about food preparations can be classified under cooking/recipes. Request-based
classification is influenced by user requests and is targeted towards specific user groups
and audiences. This type of classification is governed by specific policies and ideals.

Figure 4-1. Conceptual overview of text classification

Chapter 4 ■ text ClassifiCation

170

Automated Text Classification
We now have an idea of the definition and scope of text classification. We have also
formally defined text classification both conceptually and mathematically, where we
talked about a “text classification system” being able to classify text documents to their
respective categories or classes. Consider several humans doing the task of going through
each document and classifying it. They would then be a part of the text classification
system we are talking about. However, that would not scale very well once there were
millions of text documents to be classified quickly. To make the process more efficient
and faster, we can consider automating the task of text classification, which brings us to
automated text classification.

To automate text classification, we can make use of several ML techniques and
concepts. There are mainly two types of ML techniques that are relevant to solving this
problem:

•	 Supervised machine learning

•	 Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms,
such as reinforcement learning and semi-supervised learning. Let us look at both
supervised and unsupervised learning algorithms in more detail, from both an ML
perspective how it can be leveraged in classifying text documents.

Unsupervised learning refers to specific ML techniques or algorithms that do not
require any pre-labelled training data samples to build a model. We usually have a
collection of data points, which could be text or numeric, depending on the problem we
are trying to solve. We extract features from each of the data points using a process known
as feature extraction and then feed the feature set for each data point into our algorithm.
We are trying to extract meaningful patterns from the data, such as trying to group
together similar data points using techniques like clustering or summarizing documents
based on topic models. This is extremely useful in text document categorization and is
also called document clustering, where we cluster documents into groups purely based
on their features, similarity, and attributes, without training any model on previously
labelled data. Later chapters further discuss unsupervised learning, covering topic
models, document summarization, similarity analysis, and clustering.

Supervised learning refers to specific ML techniques or algorithms that are trained
on pre-labelled data samples known as training data. Features or attributes are extracted
from this data using feature extraction, and for each data point we will have its own
feature set and corresponding class/label. The algorithm learns various patterns for each
type of class from the training data. Once this process is complete, we have a trained
model. This model can then be used to predict the class for future test data samples once
we feed their features to the model. Thus the machine has actually learned, based on
previous training data samples, how to predict the class for new unseen data samples.

There are two major types of supervised learning algorithms:

•	 Classification: The process of supervised learning is referred to
as classification when the outcomes to be predicted are distinct
categories, thus the outcome variable is a categorical variable in
this case. Examples would be news categories or movie genres.

Chapter 4 ■ text ClassifiCation

171

•	 Regression: Supervised learning algorithms are known as
regression algorithms when the outcome we want to predict is a
continuous numeric variable. Examples would be house prices or
people’s weights.

We will be specifically focusing on classification for our problem (hence the name of
the chapter—we are trying to classify or categorize text documents into distinct classes or
categories. We will be following a supervised learning approach in our implementations
later on.

Now we are ready to define the process of automated or ML-based text classification
mathematically. Say we have a training set of documents labelled with their corresponding
class or category. This can be represented by TS, which is a set of paired documents and
labels, TS d c d c d cn n= () () ¼ (){ }1 1 2 2, , ,, , , where d

1
, d

2
, …, d

n
 is the list of text documents,

and their corresponding labels are c
1
, c

2
, …, c

n
 such that c C c c cnx Î = ¼{ }1 2, , , where c

x

denotes the class label for document x and C denotes the set of all possible distinct classes,
any of which can be the class or classes for each document. Assuming we have our training
set, we can define a supervised learning algorithm F such that when it is trained on our
training dataset TS, we build a classification model or classifier γ such that we can say
that F TS() = g . Thus the supervised learning algorithm F takes the input set of (document,

class) pairs TS and gives us the trained classifier γ, which is our model. This process is
known as the training process.

This model can then take a new, previously unseen document ND and predict its
class c

ND
 such that c CNDÎ . This process is known as the prediction process and can be

represented by g :TD cND® . Thus we can see that there are two main processes in the

supervised text classification process:

•	 Training

•	 Prediction

An important point to remember is that some manually labelled training data
is necessary for supervised text classification, so even though we are talking about
automated text classification, to kick start the process we need some manual efforts. Of
course, the benefits of this are manifold because once we have a trained classifier, we can
keep using it to predict and classify new documents with minimal efforts and manual
supervision.

There are various learning methods or algorithms that we will be discussing in a
future section. These learning algorithms are not specific to text data but are generic ML
algorithms that can be applied toward various types of data after due pre-processing
and feature extraction. I will touch upon a couple of supervised ML algorithms and use
them in solving a real-world text classification problem. These algorithms are usually
trained on the training data set and often an optional validation set such that the model
that is trained does not overfit to the training data, which basically means it would then
not be able to generalize well and predict properly for new instances of text documents.
Often the model is tuned on several of its internal parameters based on the learning
algorithm and by evaluating various performance metrics like accuracy on the validation
set or by using cross-validation where we split the training dataset itself into training and

Chapter 4 ■ text ClassifiCation

172

validation sets by random sampling. This comprises the training process, the outcome
of which yields a fully trained model that is ready to predict. In the prediction stage,
we usually have new data points from the test dataset. We can use them to feed into
the model after normalization and feature extraction and see how well the model is
performing by evaluating its prediction performance.

There are a few types of text classification based on the number of classes to predict
and the nature of predictions. These types of classification are based on the dataset, the
number of classes/categories pertaining to that dataset, and the number of classes that
can be predicted on any data point:

•	 Binary classification is when the total number of distinct classes
or categories is two in number and any prediction can contain
either one of those classes.

•	 Multi-class classification, also known as multinomial
classification, refers to a problem where the total number of
classes is more than two, and each prediction gives one class
or category that can belong to any of those classes. This is an
extension of the binary classification problem where the total
number of classes is more than two.

•	 Multi-label classification refers to problems where each prediction
can yield more than one outcome/predicted class for any data
point.

Text Classification Blueprint
Now that we know the basic scope of automated text classification, this section will look
at a blueprint for a complete workflow of building an automated text classifier system.
This will consist of a series of steps that must be followed in both the training and testing
phases mentioned in the earlier section. For building a text classification system, we
need to make sure we have our source of data and retrieve that data so that we can start
feeding it to our system. The following main steps outline a typical workflow for a text
classification system, assuming we have our dataset already downloaded and ready to
be used:

 1. Prepare train and test datasets

 2. Text normalization

 3. Feature extraction

 4. Model training

 5. Model prediction and evaluation

 6. Model deployment

These steps are carried out in that order for building a text classifier. Figure 4-2 shows
a detailed workflow for a text classification system with the main processes highlighted in
training and prediction.

Chapter 4 ■ text ClassifiCation

173

Notice that there are two main boxes for Training and Prediction, which are the
two main processes involved in building a text classifier. In general, the dataset we have
is usually divided into two or three splits called the training, validation (optional), and
testing datasets, respectively. You can see an overlap of the Text Normalization and Feature
Extraction modules in Figure 4-2 for both processes, indicating that no matter which
document we want to classify and predict its class, it must go through the same series
of transformations in both the training and prediction process. Each document is first
pre-processed and normalized, and then specific features pertaining to the document are
extracted. These processes are always uniform in both the training and prediction processes
to make sure that our classification model performs consistently in its predictions.

In the Training process, each document has its own corresponding class/category
that was manually labeled or curated beforehand. These training text documents are
processed and normalized in the Text Normalization module, giving us clean and
standardized training text documents. They are then passed to the Feature Extraction
module where different types of feature-extraction techniques are used to extract
meaningful features from the processed text documents. We will cover some popular
feature extraction techniques in a future section. These features are usually numeric
arrays or vectors because standard ML algorithms work on numeric vectors. Once we
have our features, we select a supervised ML algorithm and train our model.

Training the model involves feeding the feature vectors for the documents and
the corresponding labels such that the algorithm is able to learn various patterns
corresponding to each class/category and can reuse this learned knowledge to predict
classes for future new documents. Often an optional validation dataset is used to evaluate
the performance of the classification algorithm to make sure it generalizes well with
the data during training. A combination of these features and the ML algorithm yields a
Classification Model, which is the end stage of the Training process. Often this model is
tuned using various model parameters with a process called hyperparameter tuning to
build a better performing optimal model.

Figure 4-2. Blueprint for building an automated text classification system

Chapter 4 ■ text ClassifiCation

174

The Prediction process shown in the figure involves trying to either predict classes
for new documents or evaluating how predictions are working on testing data. The test
dataset documents go through the same process of normalization and feature extraction,
and the test document features are passed to the trained Classification Model, which
predicts the possible class for each of the documents based on previously learned
patterns. If you have the true class labels for the documents that were manually labelled,
you can evaluate the prediction performance of the model by comparing the true labels
and the predicted labels using various metrics like accuracy. This would give an idea of
how well the model performs its predictions for new documents.

Once we have a stable and working model, the last step is usually deploying the
model, which normally involves saving the model and its necessary dependencies
and deploying it as a service or as a running program that predicts categories for new
documents as a batch job, or based on serving user requests if accessed as a web service.
There are various ways to deploy ML models, and this usually depends on how you want
to access it later on.

We will now discuss some of the main modules from the preceding blueprint and
implement these modules so that we can integrate them all together to build a real-world
text classifier.

Text Normalization
Chapter 3 covered text processing and normalization in detail—refer it to see the various
methods and techniques available. In this section, we will define a normalizer module to
normalize text documents and will be using it later when we build our classifier. Although
various techniques are available, we will keep it fairly simple and straightforward here so
that is it not too hard to follow our implementations step by step. We will implement and
use the following normalization techniques in our module:

•	 Expanding contractions

•	 Text standardization through lemmatization

•	 Removing special characters and symbols

•	 Removing stopwords

We are not focusing too much on correcting spellings and other advanced
techniques, but you can integrate the functions from the previous chapter
implementation if you are interested. Our normalization module is implemented and
available in normalization.py, available in the code files for this chapter. I will also be
explaining each function here for your convenience. We will first start with loading the
necessary dependencies. Remember that you will need our custom-defined contractions
mapping file from Chapter 3, named contractions.py, for expanding contractions.

The following snippet shows the necessary imports and dependencies:

from contractions import CONTRACTION_MAP
import re
import nltk
import string
from nltk.stem import WordNetLemmatizer

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

175

stopword_list = nltk.corpus.stopwords.words('english')
wnl = WordNetLemmatizer()

We load all the English stopwords, the contraction mappings in CONTRACTION_MAP,
and an instance of WordNetLemmatizer for carrying our lemmatization. We now define
a function to tokenize text into tokens that will be used by our other normalization
functions. The following function tokenizes and removes any extraneous whitespace from
the tokens:

def tokenize_text(text):
 tokens = nltk.word_tokenize(text)
 tokens = [token.strip() for token in tokens]
 return tokens

Now we define a function for expanding contractions. This function is similar to our
implementation from Chapter 3—it takes in a body of text and returns the same with its
contractions expanded if there is a match. The following snippet helps us achieve this:

def expand_contractions(text, contraction_mapping):

 contractions_pattern = re.compile('({})'.format('|'.join(contraction_
mapping.keys())),

 flags=re.IGNORECASE|re.DOTALL)
 def expand_match(contraction):
 match = contraction.group(0)
 first_char = match[0]
 expanded_contraction = contraction_mapping.get(match)\
 if contraction_mapping.get(match)\
 else contraction_mapping.get(match.lower())
 expanded_contraction = first_char+expanded_contraction[1:]
 return expanded_contraction

 expanded_text = contractions_pattern.sub(expand_match, text)
 expanded_text = re.sub("'", "", expanded_text)
 return expanded_text

Now that we have a function for expanding contractions, we implement a function
for standardizing our text data by bringing word tokens to their base or root form using
lemmatization. The following functions will help us in achieving that:

from pattern.en import tag
from nltk.corpus import wordnet as wn

Annotate text tokens with POS tags
def pos_tag_text(text):
 # convert Penn treebank tag to wordnet tag

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

176

 def penn_to_wn_tags(pos_tag):
 if pos_tag.startswith('J'):
 return wn.ADJ
 elif pos_tag.startswith('V'):
 return wn.VERB
 elif pos_tag.startswith('N'):
 return wn.NOUN
 elif pos_tag.startswith('R'):
 return wn.ADV
 else:
 return None

 tagged_text = tag(text)
 tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag))
 for word, pos_tag in
 tagged_text]
 return tagged_lower_text

lemmatize text based on POS tags
def lemmatize_text(text):

 pos_tagged_text = pos_tag_text(text)
 lemmatized_tokens = [wnl.lemmatize(word, pos_tag) if pos_tag
 else word
 for word, pos_tag in pos_tagged_text]
 lemmatized_text = ' '.join(lemmatized_tokens)
 return lemmatized_text

The preceding snippet depicts two functions implemented for lemmatization. The
main function is lemmatize_text, which takes in a body of text data and lemmatizes
each word of the text based on its POS tag if it is present and then returns the lemmatized
text back to the user. For this, we need to annotate the text tokens with their POS tags.
We use the tag function from pattern to annotate POS tags for each token and then
further convert the POS tags from the Penn treebank syntax to WordNet syntax, since
the WordNetLemmatizer checks for POS tag annotations based on WordNet formats. We
convert each word token to lowercase, annotate it with its correct, converted WordNet
POS tag, and return these annotated tokens, which are finally fed into the lemmatize_
text function.

The following function helps us remove special symbols and characters:

def remove_special_characters(text):
 tokens = tokenize_text(text)
 pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
 filtered_tokens = filter(None, [pattern.sub('', token) for token in

tokens])
 filtered_text = ' '.join(filtered_tokens)
 return filtered_text

Chapter 4 ■ text ClassifiCation

177

We remove special characters by tokenizing the text just so we can remove some of
the tokens that are actually contractions, but we may have failed to remove them in our
first step, like "s" or "re". We will do this when we remove stopwords. However, you can
also remove special characters without tokenizing the text. We remove all special symbols
defined in string.punctuation from our text using regular expression matches. The
following function helps us remove stopwords from our text data:

def remove_stopwords(text):
 tokens = tokenize_text(text)
 filtered_tokens = [token for token in tokens if token not in

stopword_list]
 filtered_text = ' '.join(filtered_tokens)
 return filtered_text

Now that we have all our functions defined, we can build our text normalization
pipeline by chaining all these functions one after another. The following function
implements this, where it takes in a corpus of text documents and normalizes them and
returns a normalized corpus of text documents:

def normalize_corpus(corpus, tokenize=False):

 normalized_corpus = []
 for text in corpus:
 text = expand_contractions(text, CONTRACTION_MAP)
 text = lemmatize_text(text)
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 normalized_corpus.append(text)
 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)

 return normalized_corpus

That brings us to the end of our discussion and implementation of necessary
functions for our text normalization module. We will now look at concepts and practical
implementation for feature extraction.

Feature Extraction
There are various feature-extraction techniques that can be applied on text data, but
before we jump into then, let us consider what we mean by features. Why do we need
them, and how they are useful? In a dataset, there are typically many data points. Usually
the rows of the dataset and the columns are various features or properties of the dataset,
with specific values for each row or observation. In ML terminology, features are unique,
measurable attributes or properties for each observation or data point in a dataset.
Features are usually numeric in nature and can be absolute numeric values or categorical

Chapter 4 ■ text ClassifiCation

178

features that can be encoded as binary features for each category in the list using a
process called one-hot encoding. The process of extracting and selecting features is both
art and science, and this process is called feature extraction or feature engineering.

Usually extracted features are fed into ML algorithms for learning patterns that can
be applied on future new data points for getting insights. These algorithms usually expect
features in the form of numeric vectors because each algorithm is at heart a mathematical
operation of optimization and minimizing loss and error when it tries to learn patterns
from data points and observations. So, with textual data there is the added challenge of
figuring out how to transform textual data and extract numeric features from it.

Now we will look at some feature-extraction concepts and techniques specially
aligned towards text data.

The Vector Space Model is a concept and model that is very useful in case we are
dealing with textual data and is very popular in information retrieval and document
ranking. The Vector Space Model, also known as the Term Vector Model, is defined as a
mathematical and algebraic model for transforming and representing text documents as
numeric vectors of specific terms that form the vector dimensions. Mathematically this
can be defines as follows. Say we have a document D in a document vector space VS. The
number of dimensions or columns for each document will be the total number of distinct
terms or words for all documents in the vector space. So, the vector space can be denoted

VS W W Wn= ¼{ }1 2, , ,

where there are n distinct words across all documents. Now we can represent document
D in this vector space as

D w w wD D Dn= ¼{ }1 2, , ,

where w
Dn

 denotes the weight for word n in document D. This weight is a numeric value
and can represent anything, ranging from the frequency of that word in the document, to
the average frequency of occurrence, or even to the TF-IDF weight (discussed shortly).

We will be talking about and implementing the following feature-extraction
techniques:

•	 Bag of Words model

•	 TF-IDF model

•	 Advanced word vectorization models

An important thing to remember for feature extraction is that once we build a
feature extractor using some transformations and mathematical operations, we need to
make sure we reuse the same process when extracting features from new documents to
be predicted, and not rebuild the whole algorithm again based on the new documents.
We will be depicting this also with an example for each technique. Do note that for
implementations based on practical examples in this section, we will be making use
of the nltk, gensim, and scikit-learn libraries, which you can install using pip as
discussed earlier (in case you do not have them installed already).

Chapter 4 ■ text ClassifiCation

179

The implementations are divided into two major modules. The file feature_
extractors.py contains the generic functions we will be using later on when building the
classifier, and we have used the same functions in the feature_extraction_demo.py file to
show how each technique works with some practical examples. You can access them from
the code files, and as always I will be presenting the same code in this chapter for ease of
understanding. We will be using the following documents depicted in the CORPUS variable
to extract features from and building some of the vectorization models. To illustrate how
feature extraction will work for a new document (as a part of test dataset), we will also use
a separate document as shown in the variable new_doc in the following snippet:

CORPUS = [
'the sky is blue',
'sky is blue and sky is beautiful',
'the beautiful sky is so blue',
'i love blue cheese'
]

new_doc = ['loving this blue sky today']

Bag of Words Model
The Bag of Words model is perhaps one of the simplest yet most powerful techniques
to extract features from text documents. The essence of this model is to convert text
documents into vectors such that each document is converted into a vector that
represents the frequency of all the distinct words that are present in the document
vector space for that specific document. Thus, considering our sample vector from the
previous mathematical notation for D, the weight for each word is equal to its frequency
of occurrence in that document.

An interesting thing is that we can even create the same model for individual word
occurrences as well as occurrences for n-grams, which would make it an n-gram Bag of
Words model such that frequency of distinct n-grams in each document would also be
considered.

The following code snippet gives us a function that implements a Bag of Words–
based feature-extraction model that also accepts an ngram_range parameter to take into
account n-grams as features:

from sklearn.feature_extraction.text import CountVectorizer

def bow_extractor(corpus, ngram_range=(1,1)):

 vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range)
 features = vectorizer.fit_transform(corpus)
 return vectorizer, features

The preceding function uses the CountVectorizer class. You can access its detailed
API (Application Programming Interface) documentation at http://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

Chapter 4 ■ text ClassifiCation

180

html#sklearn.feature_extraction.text.CountVectorizer, which has a whole bunch
of various parameters for more fine-tuning based on the type of features you want to
extract. We use its default configuration, which is enough for most scenarios, with min_df
set to 1 indicating taking terms having a minimum frequency of 1 in the overall document
vector space. You can set ngram_range to various parameters like (1, 3) would build
feature vectors consisting of all unigrams, bigrams, and trigrams. The following snippet
shows the function in action on our sample corpora of four training documents and one
test document:

build bow vectorizer and get features
In [371]: bow_vectorizer, bow_features = bow_extractor(CORPUS)
 ...: features = bow_features.todense()
 ...: print features
[[0 0 1 0 1 0 1 0 1]
 [1 1 1 0 2 0 2 0 0]
 [0 1 1 0 1 0 1 1 1]
 [0 0 1 1 0 1 0 0 0]]

extract features from new document using built vectorizer
In [373]: new_doc_features = bow_vectorizer.transform(new_doc)
 ...: new_doc_features = new_doc_features.todense()
 ...: print new_doc_features
[[0 0 1 0 0 0 1 0 0]]

print the feature names
In [374]: feature_names = bow_vectorizer.get_feature_names()
 ...: print feature_names
[u'and', u'beautiful', u'blue', u'cheese', u'is', u'love', u'sky', u'so',
u'the']

That output shows how each text document has been converted to vectors. Each row
represents one document from our corpus, and we do the same for both our corpora. The
vectorizer is built using documents from CORPUS. We extract features from it and also use
this built vectorizer to extract features from a completely new document. Each column in
a vector represents the words depicted in feature_names, and the value is the frequency
of that word in the document represented by the vector. It may be hard to comprehend
this at first glance, so I have prepared the following function, which I hope you can use to
understand the feature vectors better:

import pandas as pd

def display_features(features, feature_names):
 df = pd.DataFrame(data=features,
 columns=feature_names)
 print df

Now you can feed the feature names and vectors to this function and see the feature
matrix in a much easier-to-understand structure, shown here:

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

Chapter 4 ■ text ClassifiCation

181

In [379]: display_features(features, feature_names)
 and beautiful blue cheese is love sky so the
0 0 0 1 0 1 0 1 0 1
1 1 1 1 0 2 0 2 0 0
2 0 1 1 0 1 0 1 1 1
3 0 0 1 1 0 1 0 0 0

In [380]: display_features(new_doc_features, feature_names)
 and beautiful blue cheese is love sky so the
0 0 0 1 0 0 0 1 0 0

That makes things much clearer, right? Consider the second document of CORPUS,
represented in the preceding in row 1 of the first table. You can see that 'sky is blue
and sky is beautiful' has value 2 for the feature sky, 1 for beautiful, and so on.
Values of 0 are assigned for words not present in the document. Note that for the new
document new_doc, there is no feature for the words today, this, or loving in the
sentence. The reason for this is what I mentioned before—that the feature-extraction
process, model, and vocabulary are always based on the training data and will never
change or get influenced on newer documents, which it will predict later as a part of
testing or otherwise. You might have guessed that this is because a model is always
trained on some training data and is never influenced by newer documents unless we
plan on rebuilding that model. Hence, the features in this model are always limited based
on the document vector space of the training corpus.

You have now started to get an idea of how to extract meaningful vector-based
features from text data, which previously seemed impossible. Try out the preceding
functions by setting ngram_range to (1, 3) and see the outputs.

TF-IDF Model
The Bag of Words model is good, but the vectors are completely based on absolute
frequencies of word occurrences. This has some potential problems where words that
may tend to occur a lot across all documents in the corpus will have higher frequencies
and will tend to overshadow other words that may not occur as frequently but may
be more interesting and effective as features to identify specific categories for the
documents. This is where TF-IDF comes into the picture. TF-IDF stands for Term
Frequency-Inverse Document Frequency, a combination of two metrics: term frequency
and inverse document frequency. This technique was originally developed as a metric for
ranking functions for showing search engine results based on user queries and has come
to be a part of information retrieval and text feature extraction now.

Let us formally define TF-IDF now and look at the mathematical representations for
it before diving into its implementation. Mathematically, TF-IDF is the product of two
metrics and can be represented as tfidf tf idf= ´ , where term frequency (tf) and

inverse-document frequency (idf) represent the two metrics.
Term frequency denoted by tf is what we had computed in the Bag of Words model.

Term frequency in any document vector is denoted by the raw frequency value of that
term in a particular document. Mathematically it can be represented as tf w D fwD

,() = ,

where fwD
 denotes frequency for word w in document D, which becomes the term

Chapter 4 ■ text ClassifiCation

182

frequency (tf). There are various other representations and computations for term
frequency, such as converting frequency to a binary feature where 1 means the term has
occurred in the document and 0 means it has not. Sometimes you can also normalize the
absolute raw frequency using logarithms or averaging the frequency. We will be using the
raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency
for each term. It is computed by dividing the total number of documents in our corpus
by the document frequency for each term and then applying logarithmic scaling on the
result. In our implementation we will be adding 1 to the document frequency for each
term just to indicate that we also have one more document in our corpus that essentially
has every term in the vocabulary. This is to prevent potential division-by-zero errors
and smoothen the inverse document frequencies. We also add 1 to the result of our idf
computation to avoid ignoring terms completely that might have zero idf. Mathematically
our implementation for idf can be represented by

idf t
C

df t
() = +

+ ()
1

1
log

where idf(t) represents the idf for the term t, C represents the count of the total number of
documents in our corpus, and df(t) represents the frequency of the number of documents
in which the term t is present.

Thus the term frequency-inverse document frequency can be computed by
multiplying the above two measures together. The final TF-IDF metric we will be using is
a normalized version of the tfidf matrix we get from the product of tf and idf. We will
normalize the tfidf matrix by dividing it with the L2 norm of the matrix, also known as the
Euclidean norm, which is the square root of the sum of the square of each term’s tfidf

weight. Mathematically we can represent the final tfidf feature vector as tfidf
tfidf

tfidf
= ,

where tfidf represents the Euclidean L2 norm for the tfidf matrix.

The following code snippet shows an implementation of getting the tfidf-based
feature vectors, considering we have our Bag of Words feature vectors we obtained in the
previous section:

from sklearn.feature_extraction.text import TfidfTransformer

def tfidf_transformer(bow_matrix):

 transformer = TfidfTransformer(norm='l2',
 smooth_idf=True,
 use_idf=True)
 tfidf_matrix = transformer.fit_transform(bow_matrix)
 return transformer, tfidf_matrix

You can see that we have used the L2 norm option in the parameters and also made
sure we smoothen the idfs to give weightages also to terms that may have zero idf so that
we do not ignore them. We can see this function in action in the following code snippet:

Chapter 4 ■ text ClassifiCation

183

import numpy as np
from feature_extractors import tfidf_transformer
feature_names = bow_vectorizer.get_feature_names()

build tfidf transformer and show train corpus tfidf features
In [388]: tfidf_trans, tdidf_features = tfidf_transformer(bow_features)
 ...: features = np.round(tdidf_features.todense(), 2)
 ...: display_features(features, feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

show tfidf features for new_doc using built tfidf transformer
In [389]: nd_tfidf = tfidf_trans.transform(new_doc_features)
 ...: nd_features = np.round(nd_tfidf.todense(), 2)
 ...: display_features(nd_features, feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

Thus the preceding outputs show the tfidf feature vectors for all our sample
documents. We use the TfidfTransformer class, which helps us in computing the tfidfs
for each document based on the equations described earlier.

Now we will show how the internals of this class work. You will also see how to
implement the mathematical equations described earlier to compute the tfidf-based
feature vectors. This section is dedicated to ML experts (and curious readers who are
interested in how things work behind the scenes). We will start with loading necessary
dependencies and computing the term frequencies (TF) by reusing our Bag of Words-
based features for our sample corpus, which can also act as the term frequencies for our
training CORPUS:

import scipy.sparse as sp
from numpy.linalg import norm
feature_names = bow_vectorizer.get_feature_names()

compute term frequency
tf = bow_features.todense()
tf = np.array(tf, dtype='float64')

show term frequencies
In [391]: display_features(tf, feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1 1.0 1.0 1.0 0.0 2.0 0.0 2.0 0.0 0.0
2 0.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0
3 0.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0

Chapter 4 ■ text ClassifiCation

184

We will now compute our document frequencies (DF) for each term based on the
number of documents in which it occurs. The following snippet shows how to obtain it
from our Bag of Words feature matrix:

build the document frequency matrix
df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)
df = 1 + df # to smoothen idf later

show document frequencies
In [403]: display_features([df], feature_names)
 and beautiful blue cheese is love sky so the
0 2 3 5 2 4 2 4 2 3

This tells us the document frequency (DF) for each term and you can verify it with
the documents in CORPUS. Remember that we have added 1 to each frequency value to
smoothen the idf values later and prevent division-by-zero errors by assuming we have a
document (imaginary) that has all the terms once. Thus, if you check in the CORPUS, you
will see that blue occurs 4(+1) times, sky occurs 3(+1) times, and so on, considering (+1)
for our smoothening.

Now that we have the document frequencies, we will compute the inverse document
frequency (idf) using our formula defined earlier. Remember to add 1 to the total count of
documents in the corpus to add the document that we had assumed earlier to contain all
the terms at least once for smoothening the idfs:

compute inverse document frequencies
total_docs = 1 + len(CORPUS)
idf = 1.0 + np.log(float(total_docs) / df)

show inverse document frequencies
In [406]: display_features([np.round(idf, 2)], feature_names)
 and beautiful blue cheese is love sky so the
0 1.92 1.51 1.0 1.92 1.22 1.92 1.22 1.92 1.51

compute idf diagonal matrix
total_features = bow_features.shape[1]
idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)
idf = idf_diag.todense()

print the idf diagonal matrix
In [407]: print np.round(idf, 2)
[[1.92 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1.51 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1.92 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1.22 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1.92 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1.22 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.92 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.51]]

Chapter 4 ■ text ClassifiCation

185

You can now see the idf matrix that we created based on our mathematical equation,
and we also convert it to a diagonal matrix, which will be helpful later on when we want
to compute the product with term frequency.

Now that we have our tfs and idfs, we can compute the tfidf feature matrix using
matrix multiplication, as shown in the following snippet:

compute tfidf feature matrix
tfidf = tf * idf

show tfidf feature matrix
In [410]: display_features(np.round(tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 1.0 0.00 1.22 0.00 1.22 0.00 1.51
1 1.92 1.51 1.0 0.00 2.45 0.00 2.45 0.00 0.00
2 0.00 1.51 1.0 0.00 1.22 0.00 1.22 1.92 1.51
3 0.00 0.00 1.0 1.92 0.00 1.92 0.00 0.00 0.00

We now have our tfidf feature matrix, but wait! It is not yet over. We have to divide it
with the L2 norm, if you remember from our equations depicted earlier. The following
snippet computes the tfidf norms for each document and then divides the tfidf weights
with the norm to give us the final desired tfidf matrix:

compute L2 norms
norms = norm(tfidf, axis=1)

print norms for each document
In [412]: print np.round(norms, 2)
[2.5 4.35 3.5 2.89]

compute normalized tfidf
norm_tfidf = tfidf / norms[:, None]

show final tfidf feature matrix
In [415]: display_features(np.round(norm_tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

Compare the preceding obtained tfidf feature matrix for the documents in CORPUS
to the feature matrix obtained using TfidfTransformer earlier. Note they are exactly the
same, thus verifying that our mathematical implementation was correct—and in fact this
very same implementation is adopted by scikit-learn’s TfidfTransformer behind the
scenes using some more optimizations. Now, suppose we want to compute the tfidf-
based feature matrix for our new document new_doc. We can do it using the following
snippet. We reuse the new_doc_features Bag of Words vector from before for the term
frequencies:

Chapter 4 ■ text ClassifiCation

186

compute new doc term freqs from bow freqs
nd_tf = new_doc_features
nd_tf = np.array(nd_tf, dtype='float64')

compute tfidf using idf matrix from train corpus
nd_tfidf = nd_tf*idf
nd_norms = norm(nd_tfidf, axis=1)
norm_nd_tfidf = nd_tfidf / nd_norms[:, None]

show new_doc tfidf feature vector
In [418]: display_features(np.round(norm_nd_tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

The preceding output depicts the tfidf-based feature vector for new_doc, and you can
see it is the same as the one obtained by TfidfTransformer.

Now that we know how the internals work, we are going to implement a generic
function that can directly compute the tfidf-based feature vectors for documents from the
raw documents themselves. The following snippet depicts the same:

from sklearn.feature_extraction.text import TfidfVectorizer

def tfidf_extractor(corpus, ngram_range=(1,1)):

 vectorizer = TfidfVectorizer(min_df=1,
 norm='l2',
 smooth_idf=True,
 use_idf=True,
 ngram_range=ngram_range)
 features = vectorizer.fit_transform(corpus)
 return vectorizer, features

The preceding function makes use of the TfidfVectorizer, which directly computes
the tfidf vectors by taking the raw documents themselves as input and internally
computing the term frequencies as well as the inverse document frequencies, eliminating
the need to use the CountVectorizer for computing the term frequencies based on the
Bag of Words model. Support is also present for adding n-grams to the feature vectors. We
can see the function in action in the following snippet:

build tfidf vectorizer and get training corpus feature vectors
In [425]: tfidf_vectorizer, tdidf_features = tfidf_extractor(CORPUS)
 ...: display_features(np.round(tdidf_features.todense(), 2), feature_

names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

Chapter 4 ■ text ClassifiCation

187

get tfidf feature vector for the new document
In [426]: nd_tfidf = tfidf_vectorizer.transform(new_doc)
 ...: display_features(np.round(nd_tfidf.todense(), 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

You can see from the preceding outputs that the tfidf feature vectors match to the
ones we obtained previously. This brings us to the end of our discussion on feature
extraction using tfidf. Now we will look at some advanced word vectorization techniques.

Advanced Word Vectorization Models
There are various approaches to creating more advanced word vectorization models for
extracting features from text data. Here we will discuss a couple of them that use Google’s
popular word2vec algorithm. The word2vec model, released in 2013 by Google, is a neural
network–based implementation that learns distributed vector representations of words
based on continuous Bag of Words and skip-gram–based architectures. The word2vec
framework is much faster than other neural network–based implementations and does
not require manual labels to create meaningful representations among words. You can
find more details on Google’s word2vec project at https://code.google.com/archive/p/
word2vec/. You can even try out some of the implementations yourself if you are interested.

We will be using the gensim library in our implementation, which is Python
implementation for word2vec that provides several high-level interfaces for easily building
these models. The basic idea is to provide a corpus of documents as input and get feature
vectors for them as output. Internally, it constructs a vocabulary based on the input text
documents and learns vector representations for words based on various techniques
mentioned earlier, and once this is complete, it builds a model that can be used to
extract word vectors for each word in a document. Using various techniques like average
weighting or tfidf weighting, we can compute the averaged vector representation of a
document using its word vectors. You can get more details about the interface for gensim‘s
word2vec implementation at http://radimrehurek.com/gensim/models/word2vec.html.

We will be mainly focusing on the following parameters when we build our model
from our sample training corpus:

•	 size: This parameter is used to set the size or dimension for the
word vectors and can range from tens to thousands. You can try
out various dimensions to see which gives the best result.

•	 window: This parameter is used to set the context or window size.
which specifies the length of the window of words that should be
considered for the algorithm to take into account as context when
training.

•	 min_count: This parameter specifies the minimum word count
needed across the corpus for the word to be considered in the
vocabulary. This helps in removing very specific words that may
not have much significance because they occur very rarely in the
documents.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://radimrehurek.com/gensim/models/word2vec.html

Chapter 4 ■ text ClassifiCation

188

•	 sample: This parameter is used to downsample effects of
occurrence of frequent words. Values between 0.01 and 0.0001 are
usually ideal.

Once we build a model, we will define and implement two techniques of combining
word vectors together in text documents based on certain weighing schemes. We will
implement two techniques mentioned as follows.

•	 Averaged word vectors

•	 TF-IDF weighted word vectors

Let us start the feature-extraction process by building our word2vec model on our
sample training corpus before going into further implementations. The following code
snippet shows how:

import gensim
import nltk

tokenize corpora
TOKENIZED_CORPUS = [nltk.word_tokenize(sentence)
 for sentence in CORPUS]
tokenized_new_doc = [nltk.word_tokenize(sentence)
 for sentence in new_doc]

build the word2vec model on our training corpus
model = gensim.models.Word2Vec(TOKENIZED_CORPUS, size=10, window=10,
 min_count=2, sample=1e-3)

As you can see, we have built the model using the parameters described earlier; you
can play around with these and also look at other parameters from the documentation to
change the architecture type, number of workers, and so on. Now that we have our model
ready, we can start implementing our feature extraction techniques.

Averaged Word Vectors
The preceding model creates a vector representation for each word in the vocabulary. We
can access them by just typing in the following code:

In [430]: print model['sky']
[0.01608407 -0.04819566 0.04227461 -0.03011346 0.0254148 0.01728328
 0.0155535 0.00774884 -0.02752112 0.01646519]

In [431]: print model['blue']
[-0.0472235 0.01662185 -0.01221706 -0.04724348 -0.04384995 0.00193343
 -0.03163504 -0.03423524 0.02661656 0.03033725]

Each word vector is of length 10 based on the size parameter specified earlier. But
when we deal with sentences and text documents, they are of unequal length, and we
must carry out some form of combining and aggregation operations to make sure the

Chapter 4 ■ text ClassifiCation

189

number of dimensions of the final feature vectors are the same, regardless of the length of
the text document, number of words, and so on. In this technique, we will use an average
weighted word vectorization scheme, where for each text document we will extract all
the tokens of the text document, and for each token in the document we will capture the
subsequent word vector if present in the vocabulary. We will sum up all the word vectors
and divide the result by the total number of words matched in the vocabulary to get a
final resulting averaged word vector representation for the text document. This can be
mathematically represented using the equation

AWV D
wv w

n

n

() =
()å

1

where AVW(D) is the averaged word vector representation for document D, containing
words w

1
, w

2
, …, w

n
, and wv(w) is the word vector representation for the word w.

The following snippet shows the pseudocode for the algorithm just described:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
matched_word_count := 0
vector := []

for word in words:
 if word in vocabulary:
 vector := vector + model[word]
 matched_word_count := matched_word_count + 1

averaged_word_vector := vector / matched_word_count

That snippet shows the flow of operations in a better way that is easier to understand.
We will now implement our algorithm in Python using the following code snippet:

import numpy as np

define function to average word vectors for a text document
def average_word_vectors(words, model, vocabulary, num_features):

 feature_vector = np.zeros((num_features,),dtype="float64")
 nwords = 0.

 for word in words:
 if word in vocabulary:
 nwords = nwords + 1.
 feature_vector = np.add(feature_vector, model[word])

Chapter 4 ■ text ClassifiCation

190

 if nwords:
 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

generalize above function for a corpus of documents
def averaged_word_vectorizer(corpus, model, num_features):
 vocabulary = set(model.index2word)
 features = [average_word_vectors(tokenized_sentence, model, vocabulary,

num_features)
 for tokenized_sentence in corpus]
 return np.array(features)

The average_word_vectors() function must seem familiar to you—it is the concrete
implementation of our algorithm shown using our pseudocode earlier. We also create a
generic function averaged_word_vectorizer() to perform averaging of word vectors for
a corpus of documents. The following snippet shows our function in action on our sample
corpora:

get averaged word vectors for our training CORPUS
In [445]: avg_word_vec_features = averaged_word_vectorizer(corpus=TOKENIZED_
CORPUS,
 ...: model=model,
 ...: num_features=10)
 ...: print np.round(avg_word_vec_features, 3)
[[0.006 -0.01 0.015 -0.014 0.004 -0.006 -0.024 -0.007 -0.001 0.]
 [-0.008 -0.01 0.021 -0.019 -0.002 -0.002 -0.011 0.002 0.003 -0.001]
 [-0.003 -0.007 0.008 -0.02 -0.001 -0.004 -0.014 -0.015 0.002 -0.01]
 [-0.047 0.017 -0.012 -0.047 -0.044 0.002 -0.032 -0.034 0.027 0.03]]

get averaged word vectors for our test new_doc
In [447]: nd_avg_word_vec_features = averaged_word_
vectorizer(corpus=tokenized_new_doc,
 ...: model=model,
 ...: num_

features=10)
 ...: print np.round(nd_avg_word_vec_features, 3)
[[-0.016 -0.016 0.015 -0.039 -0.009 0.01 -0.008 -0.013 0. 0.023]]

From the preceding outputs, you can see that we have uniformly sized averaged
word vectors for each document in the corpus, and these feature vectors can be used later
for classification by feeding it to the ML algorithms.

TF-IDF Weighted Averaged Word Vectors
Our previous vectorizer simply sums up all the word vectors pertaining to any document
based on the words in the model vocabulary and calculates a simple average by dividing
with the count of matched words. This section introduces a new and novel technique

Chapter 4 ■ text ClassifiCation

191

of weighing each matched word vector with the word TF-TDF score and summing up
all the word vectors for a document and dividing it by the sum of all the TF-IDF weights
of the matched words in the document. This would basically give us a TF-IDF weighted
averaged word vector for each document.

This can be mathematically represented using the equation

TWA D
wv w tfidf w

n

n

() =
()´ ()å

1

where TWA(D) is the TF-IDF weighted averaged word vector representation for document
D, containing wordsw

1
, w

2
, …, w

n
, where wv(w) is the word vector representation and

tfidf(w) is the TF-IDF weight for the wordw. The following snippet shows the pseudocode
for this algorithm:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
tfidfs := [tfidf(word) for each word in words]
matched_word_wts := 0
vector := []

for word in words:
 if word in vocabulary:
 word_vector := model[word]
 weighted_word_vector := tfidfs[word] x word_vector
 vector := vector + weighted_word_vector
 matched_word_wts := matched_word_wts + tfidfs[word]

tfidf_wtd_avgd_word_vector := vector / matched_word_wts

That pseudocode gives structure to our algorithm and shows how to implement the
algorithm from the mathematical formula we defined earlier.

The following code snippet implements this algorithm in Python so we can use it for
feature extraction:

define function to compute tfidf weighted averaged word vector for a document
def tfidf_wtd_avg_word_vectors(words, tfidf_vector, tfidf_vocabulary, model,
num_features):

 word_tfidfs = [tfidf_vector[0, tfidf_vocabulary.get(word)]
 if tfidf_vocabulary.get(word)
 else 0 for word in words]
 word_tfidf_map = {word:tfidf_val for word, tfidf_val in zip(words, word_

tfidfs)}

 feature_vector = np.zeros((num_features,),dtype="float64")

Chapter 4 ■ text ClassifiCation

192

 vocabulary = set(model.index2word)
 wts = 0.
 for word in words:
 if word in vocabulary:
 word_vector = model[word]
 weighted_word_vector = word_tfidf_map[word] * word_vector
 wts = wts + word_tfidf_map[word]
 feature_vector = np.add(feature_vector, weighted_word_vector)
 if wts:
 feature_vector = np.divide(feature_vector, wts)

 return feature_vector

generalize above function for a corpus of documents
def tfidf_weighted_averaged_word_vectorizer(corpus, tfidf_vectors,
 tfidf_vocabulary, model, num_features):

 docs_tfidfs = [(doc, doc_tfidf)
 for doc, doc_tfidf
 in zip(corpus, tfidf_vectors)]
 features = [tfidf_wtd_avg_word_vectors(tokenized_sentence, tfidf, tfidf_

vocabulary,
 model, num_features)
 for tokenized_sentence, tfidf in docs_tfidfs]
 return np.array(features)

The tfidf_wtd_avg_word_vectors() function helps us in getting the TF-IDF
weighted averaged word vector representation for a document. We also create a
corresponding generic function tfidf_weighted_averaged_word_vectorizer() to
perform TF-IDF weighted averaging of word vectors for a corpus of documents. We
can see our implemented function in action on our sample corpora using the following
snippet:

get tfidf weights and vocabulary from earlier results and compute result
In [453]: corpus_tfidf = tdidf_features
 ...: vocab = tfidf_vectorizer.vocabulary_
 ...: wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=TOKENIZED_CORPUS, tfidf_vectors=corpus_tfidf,
 ...: tfidf_vocabulary=vocab, model=model,

num_features=10)

Chapter 4 ■ text ClassifiCation

193

 ...: print np.round(wt_tfidf_word_vec_features, 3)
[[0.011 -0.011 0.014 -0.011 0.007 -0.007 -0.024 -0.008 -0.004 -0.004]
 [0. -0.014 0.028 -0.014 0.004 -0.003 -0.012 0.011 -0.001 -0.002]
 [-0.001 -0.008 0.007 -0.019 0.001 -0.004 -0.012 -0.018 0.001 -0.014]
 [-0.047 0.017 -0.012 -0.047 -0.044 0.002 -0.032 -0.034 0.027 0.03]]

compute avgd word vector for test new_doc
In [454]: nd_wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=tokenized_new_doc, tfidf_vectors=nd_tfidf, tfidf_
vocabulary=vocab, model=model, num_features=10)
 ...: print np.round(nd_wt_tfidf_word_vec_features, 3)
[[-0.012 -0.019 0.018 -0.038 -0.006 0.01 -0.006 -0.011 -0.003 0.023]]

From the preceding results, you can see how we can converted each document
into TF-IDF weighted averaged numeric vectors. We also used our TF-IDF weights
and vocabulary, obtained earlier when we implemented TF-IDF–based feature vector
extraction from documents.

Now you have a good grasp on how to extract features from text data that can be used
for training a classifier.

Classification Algorithms
Classification algorithms are supervised ML algorithms that are used to classify,
categorize, or label data points based on what it has observed in the past. Each
classification algorithm, being a supervised learning algorithm, requires training data.
This training data consists of a set of training observations where each observation is a
pair consisting of an input data point, usually a feature vector like we observed earlier,
and a corresponding output outcome for that input observation. There are mainly three
processes classification algorithms go through:

•	 Training is the process where the supervised learning algorithm
analyzes and tries to infer patterns out of training data such that
it can identify which patterns lead to a specific outcome. These
outcomes are often known as the class labels/class variables/
response variables. We usually carry out the process of feature
extraction or feature engineering to derive meaningful features
from the raw data before training. These feature sets are fed to
an algorithm of our choice, which then tries to identify and learn
patterns from them and their corresponding outcomes. The
result is an inferred function known as a model or a classification
model. This model is expected to be generalized enough from
learning patterns in the training set such that it can predict the
classes or outcomes for new data points in the future.

Chapter 4 ■ text ClassifiCation

194

•	 Evaluation involves trying to test the prediction performance
of our model to see how well it has trained and learned on the
training dataset. For this we usually use a validation dataset and
test the performance of our model by predicting on that dataset
and testing our predictions against the actual class labels, also
called as the ground truth. Often we also use cross-validation,
where the data is divided into folds and a chunk of it is used
for training, with the remainder used to validate the trained
model. Note that we also tune the model based on the validation
results to get to an optimal configuration that yields maximum
accuracy and minimum error. We also evaluate our model against
a holdout or test dataset, but we never tune our model against
that dataset because that would lead to it being biased or overfit
against very specific features from the dataset. The holdout or test
dataset is something of a representative sample of what new, real
data samples might look like for which the model will generate
predictions and how it might perform on these new data samples.
Later we will look at various metrics that are typically used to
evaluate and measure model performance.

•	 Tuning, also known as hyperparameter tuning or optimization,
is where we focus on trying to optimize a model to maximize its
prediction power and reduce errors. Each model is at heart a
mathematical function with several parameters that determine
model complexity, learning capability, and so on. These are
known as hyperparameters because they cannot be learned
directly from data and must be set prior to running and training
the model. Hence, the process of choosing an optimal set of
model hyperparameters such that the performance of the model
yields good prediction accuracy is known as model tuning, and we
can carry it out in various ways, including randomized search and
grid search. We will not be covering this in our implementations
since this is more inclined towards core machine learning and is
out of our current scope as the models we will be building work
well with default hyperparameter configurations. But there are
plenty of resources on the Web if you are interested in model
tuning and optimization.

There are various types of classification algorithms, but we will not be venturing
into each one in detail. Our focus remains text classification, and I do not want to bore
everyone with excessive mathematical derivations for each algorithm. However, I will
touch upon a couple of algorithms that are quite effective for text classification and
try to explain them, keeping the mathematical formulae to the base essentials. These
algorithms are the following:

•	 Multinomial Naïve Bayes

•	 Support vector machines

Chapter 4 ■ text ClassifiCation

195

There are also several other algorithms besides these you can look up, including
logistic regression, decision trees, and neural networks. And ensemble techniques use
a collection or ensemble of models to learn and predict outcomes that include random
forests and gradient boosting, but they often don’t perform very well for text classification
because they are very prone to overfitting. I recommend you be careful if you plan on
experimenting with them. Besides these, deep learning–based techniques have also
recently become popular. They use multiple hidden layers and combine several neural
network models to build a complex classification model.

We will now briefly look at some of the concepts surrounding multinomial naïve
Bayes and support vector machines before using them for our classification problem.

Multinomial Naïve Bayes
This algorithm is a special case of the popular naïve Bayes algorithm, which is used
specifically for prediction and classification tasks where we have more than two classes.
Before looking at multinomial naïve Bayes, let us look at the definition and formulation of
the naïve Bayes algorithm. The naïve Bayes algorithm is a supervised learning algorithm
that puts into action the very popular Bayes’ theorem. However, there is a “naïve”
assumption here that each feature is independent of the others. Mathematically we can
formulate this as follows: Given a response class variable y and a set of n features in the
form of a feature vector {x

1
, x

2
, …, x

n
}, using Bayes’ theorem we can denote the probability

of the occurrence of y given the features as

P y x x x
P y P x x x y

P x x xn
n

n

| , , ,
, , , |

, , ,1 2
1 2

1 2

¼() = ()´ ¼()
¼()

under the assumption that P x y x x x x x P x yi i i n i| , , , , , , , |1 2 1 1¼ ¼() = ()- + , and for all i we

can represent this as

P y x x x
P y P x y

P x x xn
i

n

i

n

| , , ,
|

, , ,1 2
1

1 2

¼() =
()´ ()

¼()
=
Õ

where i ranges from 1 to n. In simple terms, this can be written as

posterior
prior likelihood

evidence
=

´ and now, since P(x
1
, x

2
, …, x

n
) is constant, the model can be

expressed like this:

P y x x x P y P x yn
i

n

i| , , , |1 2
1

¼()µ ()´ ()
=
Õ

This means that under the previous assumptions of independence among the
features where each feature is conditionally independent of every other feature, the
conditional distribution over the class variable which is to be predicted, y can be
represented using the following mathematical equation as

Chapter 4 ■ text ClassifiCation

196

P y x x x
Z
P y P x yn

i

n

i| , , , |1 2
1

1
¼() = ()´ ()

=
Õ

where the evidence measure, Z p x= () is a constant scaling factor dependent on the
feature variables. From this equation, we can build the naïve Bayes classifier by
combining it with a rule known as the MAP decision rule, which stands for maximum a
posteriori. Going into the statistical details would be impossible in the current scope, but
by using it, the classifier can be represented as a mathematical function that can assign a
predicted class label ŷ Ck= for some k using the following representation:

ˆ |
, , ,

y argmax P C P x C
k K

k
i

n

i k= ()´ ()
Î ¼{ } =

Õ
1 2 1

This classifier is often said to be simple, quite evident from its name and also
because of several assumptions we make about our data and features that might not
be so in the real world. Nevertheless, this algorithm still works remarkably well in
many use cases related to classification, including multi-class document classification,
spam filtering, and so on. They can train really fast compared to other classifiers and
also work well even when we do not have sufficient training data. Models often do not
perform well when they have a lot of features, and this phenomenon is known as the
curse of dimensionality. Naïve Bayes takes care of this problem by decoupling the class
variable–related conditional feature distributions, thus leading to each distribution being
independently estimated as a single dimension distribution.

Multinomial naïve Bayes is an extension of the preceding algorithm for predicting
and classifying data points, where the number of distinct classes or outcomes is more
than two. In this case the feature vectors are usually assumed to be word counts from the
Bag of Words model, but TF-IDF–based weights will also work. One limitation is that
negative weight-based features can‘t be fed into this algorithm. This distribution can be
represented as p p p py y y yn= ¼{ }1 2, , , for each class label y, and the total number of

features is n, which could be represented as the total vocabulary of distinct words or
terms in text analytics. From the preceding equation, p P x yyi i= ()| represents the

probability of feature i in any observation sample that has an outcome or classy. The
parameter p

y
 can be estimated with a smoothened version of maximum likelihood

estimation (with relative frequency of occurrences), and represented as

p̂
F

F nyi
yi

y

=
+
+

a
a

where F xyi
x TD

i=
Î
å is the frequency of occurrence for the feature i in a sample for class

label y in our training dataset TD, and F Fy
i

TD

yi=
=
å

1

 is the total frequency of all features for

the class label y. There is some amount of smoothening one with the help of priors a ³ 0 ,

Chapter 4 ■ text ClassifiCation

197

which accounts for the features that are not present in the learning data points and helps
in getting rid of zero-probability–related issues. Some specific settings for this parameter
are used quite often. The value of a =1 is known as Laplace smoothing, and a <1 is
known as Lidstone smoothing. The scikit-learn library provides an excellent
implementation for multinomial naïve Bayes in the class MultinomialNB, which we will
be leveraging when we build our text classifier later on.

Support Vector Machines
In machine learning, support vector machines (SVM) are supervised learning algorithms
used for classification, regression, novelty, and anomaly or outlier detection. Considering
a binary classification problem, if we have training data such that each data point or
observation belongs to a specific class, the SVM algorithm can be trained based on this
data such that it can assign future data points into one of the two classes. This algorithm
represents the training data samples as points in space such that points belonging to
either class can be separated by a wide gap between them, called a hyperplane, and
the new data points to be predicted are assigned classes based on which side of this
hyperplane they fall into. This process is for a typical linear classification process.
However, SVM can also perform non-linear classification by an interesting approach
known as a kernel trick, where kernel functions are used to operate on high-dimensional
feature spaces that are non-linear separable. Usually, inner products between data points
in the feature space help achieve this.

The SVM algorithm takes in a set of training data points and constructs a hyperplane
of a collection of hyperplanes for a high dimensional feature space. The larger the
margins of the hyperplane, the better the separation, so this leads to lower generalization
errors of the classifier. Let us represent this formally and mathematically. Consider a
training dataset of n data points

x y x yn n1 1, , , ,() ¼ () such that the class variable

yiÎ -{ }1 1, where each value indicates the class corresponding to the point

xi . Each data

point

xi is a feature vector. The objective of the SVM algorithm is to find the max-margin

hyperplane that separates the set of data points having class label of yi =1 from the set of

data points having class label yi = -1 such that the distance between the hyperplane and

sample data points from either class nearest to it is maximized. These sample data points
are known as the support vectors. Figure 4-3, courtesy of Wikipedia, shows what the
vector space with the hyperplane looks like.

Chapter 4 ■ text ClassifiCation

198

You can clearly see the hyperplane and the support vectors in the figure. The
hyperplane can be defined as the set of points

x which satisfy w x b
��� ���

× + = 0 where

w is

the normal vector to the hyperplane, as shown in Figure 4-3, and b

w
�� ��� gives us the offset

of the hyperplane from the origin toward the support vectors highlighted in the figure.
There are two main types of margins that help in separating out the data points belonging
to the different classes.

When the data is linearly separable, as in Figure 4-3, we can have hard margins that
are basically represented by the two parallel hyperplanes depicted by the dotted lines,
which help in separating the data points belonging to the two different classes. This is
done taking into account that the distance between them is as large as possible. The
region bounded by these two hyperplanes forms the margin with the max-margin
hyperplane being in the middle. These hyperplanes are shown in the figure having the
equations w x b

��� ���
× + =1 andw x b

��� ���
× + = -1 .

Often the data points are not linearly separable, for which we can use the hinge loss
function, which can be represented as max(,0 1- × +()y w x bi i

��� � ��
 and in fact the scikit-

learn implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier where
we will use the 'hinge' loss function (set by default) defined previously to optimize and
build the model. This loss function helps us in getting the soft margins and is often known
as a soft-margin SVM.

Figure 4-3. Two-class SVM depicting hyperplane and support vectors (courtesy:
Wikipedia)

Chapter 4 ■ text ClassifiCation

199

For a multi-class classification problem, if we have n classes, for each class a binary
classifier is trained and learned that helps in separating between each class and the other
n-1 classes. During prediction, the scores (distances to hyperplanes) for each classifier
are computed, and the maximum score is chosen for selecting the class label. Also often
stochastic gradient descent is used for minimizing the loss function in SVM algorithms.
Figure 4-4 shows how three classifiers are trained in total for a three-class SVM problem
over the very popular iris dataset. This figure is built using a scikit-learn model and is
obtained from the official documentation available at http://scikit-learn.org.

In Figure 4-4 you can clearly see that a total of three SVM classifiers have been
trained for each of the three classes and are then combined for the final predictions
so that data points belonging to each class can be labeled correctly. There are a lot
of resources and books dedicated entirely towards supervised ML and classification.
Interested readers should check them out to gain more in-depth knowledge on how these
techniques work and how they can be applied to various problems in analytics.

Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics
lifecycle, but even more important is knowing how well these models are performing.
Performance of classification models is usually based on how well they predict outcomes
for new data points. Usually this performance is measured against a test or holdout
dataset that consists of data points which was not used to influence or train the classifier
in any way. This test dataset usually has several observations and corresponding labels.

Figure 4-4. Multi-class SVM on three classes (courtesy: scikit-learn.org)

http://scikit-learn.org/

Chapter 4 ■ text ClassifiCation

200

We extract features in the same way as it was followed when training the model. These
features are fed to the already trained model, and we obtain predictions for each data
point. These predictions are then matched with the actual labels to see how well or how
accurately the model has predicted.

Several metrics determine a model’s prediction performance, but we will mainly
focus on the following metrics:

•	 Accuracy

•	 Precision

•	 Recall

•	 F1 score

Let us look at a practical example to see how these metrics can be computed.
Consider a binary classification problem of classifying emails as either 'spam' or 'ham'.
Assuming we have a total of 20 emails, for which we already have the actual manual
labels, we pass it through our built classifier to get predicted labels for each email. This
gives us 20 predicted labels. Now we want to measure the classifier performance by
comparing each prediction with its actual label. The following code snippet sets up the
initial dependencies and the actual and predicted labels:

from sklearn import metrics
import numpy as np
import pandas as pd
from collections import Counter

actual_labels = ['spam', 'ham', 'spam', 'spam', 'spam',
 'ham', 'ham', 'spam', 'ham', 'spam',
 'spam', 'ham', 'ham', 'ham', 'spam',
 'ham', 'ham', 'spam', 'spam', 'ham']

predicted_labels = ['spam', 'spam', 'spam', 'ham', 'spam',
 'spam', 'ham', 'ham', 'spam', 'spam',
 'ham', 'ham', 'spam', 'ham', 'ham',
 'ham', 'spam', 'ham', 'spam', 'spam']

ac = Counter(actual_labels)
pc = Counter(predicted_labels)

Let us now see the total number of emails belonging to either 'spam' or 'ham' based
on the actual labels and our predicted labels using the following snippet:

In [517]: print 'Actual counts:', ac.most_common()
 ...: print 'Predicted counts:', pc.most_common()
Actual counts: [('ham', 10), ('spam', 10)]
Predicted counts: [('spam', 11), ('ham', 9)]

Chapter 4 ■ text ClassifiCation

201

Thus we see that there are a total of 10 emails that are 'spam' and 10 emails that are
'ham'. Our classifier has predicted a total of 11 emails as 'spam' and 9 as 'ham'. How
do we now compare which email was actually 'spam' and what it was classified as? A
confusion matrix is an excellent way to measure this performance across the two classes.
A confusion matrix is a tabular structure that helps visualize the performance of classifiers.
Each column in the matrix represents classified instances based on predictions, and each
row of the matrix represents classified instances based on the actual class labels. (It can
be vice-versa if needed.) We usually have a class label defined as the positive class, which
could be typically the class of our interest. Figure 4-5 shows a typical two-class confusion
matrix where (p) denotes the positive class and (n) denotes the negative class.

You can see some terms in the matrix depicted in Figure 4-5. True Positive (TP)
indicates the number of correct hits or predictions for our positive class. False Negative
(FN) indicates the number of instances we missed for that class by predicting it falsely as
the negative class. False Positive (FP) is the number of instances we predicted wrongly as
the positive class when it was actually not. True Negative (TN) is the number of instances
we correctly predicted as the negative class.

The following code snippet constructs a confusion matrix with our data:

In [519]: cm = metrics.confusion_matrix(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: labels=['spam','ham'])
 ...: print pd.DataFrame(data=cm,
 ...: columns=pd.MultiIndex(levels=[['Predicted:'],
 ...: ['spam','ham']],
 ...: labels=[[0,0],[0,1]]),
 ...: index=pd.MultiIndex(levels=[['Actual:'],

Figure 4-5. A confusion matrix from a two-class classification problem

Chapter 4 ■ text ClassifiCation

202

 ...: ['spam','ham']],
 ...: labels=[[0,0],[0,1]]))
 Predicted:
 spam ham
Actual: spam 5 5
 ham 6 4

We now get a confusion matrix similar to the figure. In our case, let us consider
'spam' to be the positive class. We can now define the preceding metrics in the following
snippet:

positive_class = 'spam'

true_positive = 5.
false_positive = 6.
false_negative = 5.
true_negative = 4.

Now that we have the necessary values from the confusion matrix, we can calculate
our four performance metrics one by one. We have taken the values from earlier as
floats to help with computations involving divisions. We will use the metrics module
from scikit-learn, which is very powerful and helps in computing these metrics with a
single function. And we will define and compute these metrics manually so that you can
understand them clearly and see what goes on behind the scenes of those functions from
the metrics module.

Accuracy is defined as the overall accuracy or proportion of correct predictions of the
model, which can be depicted by the formula

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

where we have our correct predictions in the numerator divided by all the outcomes in
the denominator. The following snippet shows the computations for accuracy:

In [522]: accuracy = np.round(
 ...: metrics.accuracy_score(y_true=actual_labels,
 ...: y_pred=predicted_labels),2)
 ...: accuracy_manual = np.round(
 ...: (true_positive + true_negative) /
 ...: (true_positive + true_negative +
 ...: false_negative + false_positive),2)
 ...: print 'Accuracy:', accuracy
 ...: print 'Manually computed accuracy:', accuracy_manual
Accuracy: 0.45
Manually computed accuracy: 0.45

Chapter 4 ■ text ClassifiCation

203

Precision is defined as the number of predictions made that are actually correct
or relevant out of all the predictions based on the positive class. This is also known as
positive predictive value and can be depicted by the formula

Precision
TP

TP FP
=

+

where we have our correct predictions in the numerator for the positive class divided
by all the predictions for the positive class including the false positives. The following
snippet shows the computations for precision:

In [523]: precision = np.round(
 ...: metrics.precision_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_

class),2)
 ...: precision_manual = np.round(
 ...: (true_positive) /
 ...: (true_positive + false_positive),2)
 ...: print 'Precision:', precision
 ...: print 'Manually computed precision:', precision_manual
Precision: 0.45
Manually computed precision: 0.45

Recall is defined as the number of instances of the positive class that were correctly
predicted. This is also known as hit rate, coverage, or sensitivity and can be depicted by
the formula

Recall
TP

TP FN
=

+

where we have our correct predictions for the positive class in the numerator divided by
correct and missed instances for the positive class, giving us the hit rate. The following
snippet shows the computations for recall:

In [524]: recall = np.round(
 ...: metrics.recall_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_class),2)
 ...: recall_manual = np.round(
 ...: (true_positive) /
 ...: (true_positive + false_negative),2)
 ...: print 'Recall:', recall
 ...: print 'Manually computed recall:', recall_manual
Recall: 0.5
Manually computed recall: 0.5

Chapter 4 ■ text ClassifiCation

204

F1 score is another accuracy measure that is computed by taking the harmonic mean
of the precision and recall and can be represented as follows:

F Score
Precision Recall

Precision Recall
1

2
=

´ ´
+

We can compute the same using the following code snippet:

In [526]: f1_score = np.round(
 ...: metrics.f1_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_class),2)
 ...: f1_score_manual = np.round(
 ...: (2 * precision * recall) /
 ...: (precision + recall),2)
 ...: print 'F1 score:', f1_score
 ...: print 'Manually computed F1 score:', f1_score_manual
F1 score: 0.48
Manually computed F1 score: 0.47

This should give you a pretty good idea about the main metrics used most often
when evaluating classification models. We will be measuring the performance of our
models using the very same metrics, and you may remember seeing these metrics from
Chapter 3, when we were building some of our taggers and parsers.

Building a Multi-Class Classification System
We have gone through all the steps necessary for building a classification system, from
normalization to feature extraction, model building, and evaluation. In this section, we
will be putting everything together and applying it on some real-world data to build a
multi-class text classification system. For this, we will be using the 20 newsgroups dataset
available for download using scikit-learn. The 20 newsgroups dataset comprises
around 18,000 newsgroups posts spread across 20 different categories or topics, thus
making this a 20-class classification problem! Remember the more classes, the more
complex or difficult trying to build an accurate classifier gets. It is recommended that
you remove the headers, footers, and quotes from the text documents to prevent the
model from overfitting or not generalizing well due to certain specific headers or email
addresses, so we will make sure we take care of this. We will also remove documents
that are empty or have no content after removing these three items because it would be
pointless to try and extract features from empty documents.

Let us start with loading the necessary dataset and defining functions for building
the training and testing datasets:

from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

205

def get_data():
 data = fetch_20newsgroups(subset='all',
 shuffle=True,
 remove=('headers', 'footers', 'quotes'))
 return data

def prepare_datasets(corpus, labels, test_data_proportion=0.3):
 train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
 test_size=0.33,
random_state=42)
 return train_X, test_X, train_Y, test_Y

def remove_empty_docs(corpus, labels):
 filtered_corpus = []
 filtered_labels = []
 for doc, label in zip(corpus, labels):
 if doc.strip():
 filtered_corpus.append(doc)
 filtered_labels.append(label)

 return filtered_corpus, filtered_labels

We can now get the data, see the total number of classes in our dataset, and split our
data into training and test datasets using the following snippet (in case you do not have
the data downloaded, feel free to connect to the Internet and take some time to download
the complete corpus):

get the data
In [529]: dataset = get_data()

print all the classes
In [530]: print dataset.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.
pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale',
'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey',
'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.
christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.
misc', 'talk.religion.misc']

get corpus of documents and their corresponding labels
In [531]: corpus, labels = dataset.data, dataset.target
 ...: corpus, labels = remove_empty_docs(corpus, labels)

see sample document and its label index, name
In [548]: print 'Sample document:', corpus[10]
 ...: print 'Class label:',labels[10]
 ...: print 'Actual class label:', dataset.target_names[labels[10]]
Sample document: the blood of the lamb.

Chapter 4 ■ text ClassifiCation

206

This will be a hard task, because most cultures used most animals
for blood sacrifices. It has to be something related to our current
post-modernism state. Hmm, what about used computers?

Cheers,
Kent
Class label: 19
Actual class label: talk.religion.misc

prepare train and test datasets
In [549]: train_corpus, test_corpus, train_labels, test_labels = prepare_
datasets(corpus,
 ...: labels, test_
data_proportion=0.3)

You can see from the preceding snippet how a sample document and label looks.
Each document has its own class label, which is one of the 20 topics it is categorized into.
The labels obtained are numbers, but we can easily map it back to the original category
name if needed using the preceding snippet. We also split our data into train and test
datasets, where the test dataset is 30 percent of the total data. We will build our model on
the training data and test its performance on the test data. In the following snippet, we
will use the normalization module we built earlier to normalize our datasets:

from normalization import normalize_corpus

norm_train_corpus = normalize_corpus(train_corpus)
norm_test_corpus = normalize_corpus(test_corpus)

Remember, a lot of normalization steps take place that we implemented earlier
for each document in the corpora, so it may take some time to complete. Once we have
normalized documents, we will use our feature extractor module built earlier to start
extracting features from our documents. We will build models for Bag of Words, TF-IDF,
averaged word vector, and TF-IDF weighted averaged word vector features separately and
compare their performances.

The following snippet extracts necessary features based on the different techniques:

from feature_extractors import bow_extractor, tfidf_extractor
from feature_extractors import averaged_word_vectorizer
from feature_extractors import tfidf_weighted_averaged_word_vectorizer
import nltk
import gensim

bag of words features
bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus)
bow_test_features = bow_vectorizer.transform(norm_test_corpus)

Chapter 4 ■ text ClassifiCation

207

tfidf features
tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)
tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)

tokenize documents
tokenized_train = [nltk.word_tokenize(text)
 for text in norm_train_corpus]
tokenized_test = [nltk.word_tokenize(text)
 for text in norm_test_corpus]
build word2vec model
model = gensim.models.Word2Vec(tokenized_train,
 size=500,
 window=100,
 min_count=30,
 sample=1e-3)

averaged word vector features
avg_wv_train_features = averaged_word_vectorizer(corpus=tokenized_train,
 model=model,
 num_features=500)
avg_wv_test_features = averaged_word_vectorizer(corpus=tokenized_test,
 model=model,
 num_features=500)

tfidf weighted averaged word vector features
vocab = tfidf_vectorizer.vocabulary_
tfidf_wv_train_features =
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_train,

tfidf_vectors=tfidf_train_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)
tfidf_wv_test_features =
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_test,

tfidf_vectors=tfidf_test_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)

Once we extract all the necessary features from our text documents using the preceding
feature extractors, we define a function that will be useful for evaluation our classification
models based on the four metrics discussed earlier, as shown in the following snippet:

from sklearn import metrics
import numpy as np

def get_metrics(true_labels, predicted_labels):

Chapter 4 ■ text ClassifiCation

208

 print 'Accuracy:', np.round(
 metrics.accuracy_score(true_labels,
 predicted_labels),
 2)
 print 'Precision:', np.round(
 metrics.precision_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)
 print 'Recall:', np.round(
 metrics.recall_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)
 print 'F1 Score:', np.round(
 metrics.f1_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)

We now define a function that trains the model using an ML algorithm and the
training data, performs predictions on the test data using the trained model, and then
evaluates the predictions using the preceding function to give us the model performance:

def train_predict_evaluate_model(classifier,
 train_features, train_labels,
 test_features, test_labels):
 # build model
 classifier.fit(train_features, train_labels)
 # predict using model
 predictions = classifier.predict(test_features)
 # evaluate model prediction performance
 get_metrics(true_labels=test_labels,
 predicted_labels=predictions)
 return predictions

We now import two ML algorithms (discussed in detail earlier) so that we can start
building our models with them based on our extracted features. We will be using scikit-
learn as mentioned to import the necessary classification algorithms, saving us the time
and effort that would have been spent otherwise reinventing the wheel:

from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier

mnb = MultinomialNB()
svm = SGDClassifier(loss='hinge', n_iter=100)

Chapter 4 ■ text ClassifiCation

209

Now we will train, predict, and evaluate models for all the different types of features
using both multinomial naïve Bayes and support vector machines using the following
snippet:

Multinomial Naive Bayes with bag of words features
In [558]: mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
 ...: train_features=bow_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=bow_test_

features,
 ...: test_labels=test_

labels)
Accuracy: 0.67
Precision: 0.72
Recall: 0.67
F1 Score: 0.65

Support Vector Machine with bag of words features
In [559]: svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
 ...: train_features=bow_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=bow_test_

features,
 ...: test_labels=test_

labels)
Accuracy: 0.61
Precision: 0.66
Recall: 0.61
F1 Score: 0.62

Multinomial Naive Bayes with tfidf features
In [560]: mnb_tfidf_predictions = train_predict_evaluate_
model(classifier=mnb,
 ...: train_features=tfidf_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=tfidf_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.72

Chapter 4 ■ text ClassifiCation

210

Precision: 0.78
Recall: 0.72
F1 Score: 0.7

Support Vector Machine with tfidf features
In [561]: svm_tfidf_predictions = train_predict_evaluate_
model(classifier=svm,
 ...: train_features=tfidf_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=tfidf_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.77
Precision: 0.77
Recall: 0.77
F1 Score: 0.77

Support Vector Machine with averaged word vector features
In [562]: svm_avgwv_predictions = train_predict_evaluate_
model(classifier=svm,
 ...: train_features=avg_wv_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=avg_wv_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.55
Precision: 0.55
Recall: 0.55
F1 Score: 0.52

Support Vector Machine with tfidf weighted averaged word vector features
In [563]: svm_tfidfwv_predictions = train_predict_evaluate_model(classifier
=svm,
 ...:
train_features=tfidf_wv_train_features,
 ...:
train_labels=train_labels, test_features=tfidf_wv_test_features,
 ...: test_labels=test_labels)
Accuracy: 0.53
Precision: 0.55
Recall: 0.53
F1 Score: 0.52

Chapter 4 ■ text ClassifiCation

211

We built a total of six models using various types of extracted features and evaluated
the performance of the model on the test data. From the preceding results, we can see
that the SVM-based model built using TF-IDF features yielded the best results of 77
percent accuracy as well as precision, recall, and F1 score. We can build the confusion
matrix for our SVM TF-IDF–based model to get an idea of the classes for which our model
might not be performing well:

In [597]: import pandas as pd
 ...: cm = metrics.confusion_matrix(test_labels, svm_tfidf_predictions)
 ...: pd.DataFrame(cm, index=range(0,20), columns=range(0,20))
Out[597]:

From the confusion matrix shown in Figure 4-6, we can see a large number of
documents for class label 0 that got misclassified to class label 15, and similarly for class
label 18, many documents got misclassified into class label 16. Many documents for class
label 19 got misclassified into class label 15. On printing the class label names for them,
we can observe the following output:

In [600]: class_names = dataset.target_names
 ...: print class_names[0], '->', class_names[15]
 ...: print class_names[18], '->', class_names[16]
 ...: print class_names[19], '->', class_names[15]
alt.atheism -> soc.religion.christian
talk.politics.misc -> talk.politics.guns
talk.religion.misc -> soc.religion.christian

From the preceding output we can see that the misclassified categories are not vastly
different from the actual correct category. Christian, religion, and atheism are based on
some concepts related to the existence of God and religion and possibly have similar
features. Talks about miscellaneous issues and guns related to politics also must be

Figure 4-6. 20-class confusion matrix for our SVM based model

Chapter 4 ■ text ClassifiCation

212

having similar features. We can further analyze and look at the misclassified documents
in detail using the following snippet (due to space constraints I only include the first few
misclassified documents in each case):

In [621]: import re
 ...: num = 0
 ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
 ...: if label == 0 and predicted_label == 15:
 ...: print 'Actual Label:', class_names[label]
 ...: print 'Predicted Label:', class_names[predicted_label]
 ...: print 'Document:-'
 ...: print re.sub('\n', ' ', document)
 ...: print
 ...: num += 1
 ...: if num == 4:
 ...: break
 ...:
 ...:
Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
I would like a list of Bible contadictions from those of you who dispite
being free from Christianity are well versed in the Bible.

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
 They spent quite a bit of time on the wording of the Constitution. They
picked words whose meanings implied the intent. We have already looked in
the dictionary to define the word. Isn't this sufficient? But we were
discussing it in relation to the death penalty. And, the Constitution need
not define each of the words within. Anyone who doesn't know what cruel is
can look in the dictionary (and we did).

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
Our Lord and Savior David Keresh has risen! He has been seen
alive! Spread the word! -----------------------------

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
 "This is your god" (from John Carpenter's "They Live," natch)

In [623]: num = 0

Chapter 4 ■ text ClassifiCation

213

 ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
 ...: if label == 18 and predicted_label == 16:
 ...: print 'Actual Label:', class_names[label]
 ...: print 'Predicted Label:', class_names[predicted_label]
 ...: print 'Document:-'
 ...: print re.sub('\n', ' ', document)
 ...: print
 ...: num += 1
 ...: if num == 4:
 ...: break
 ...:
 ...:
Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
After the initial gun battle was over, they had 50 days to come out
peacefully. They had their high priced lawyer, and judging by the posts here
they had some public support. Can anyone come up with a rational explanation
why the didn't come out (even after they negotiated coming out after the
radio sermon) that doesn't include the Davidians wanting to commit suicide/
murder/general mayhem?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
Yesterday, the FBI was saying that at least three of the bodies had gunshot
wounds, indicating that they were shot trying to escape the fire. Today's
paper quotes the medical examiner as saying that there is no evidence of
gunshot wounds in any of the recovered bodies. At the beginning of this
siege, it was reported that while Koresh had a class III (machine gun)
license, today's paper quotes the government as saying, no, they didn't have
a license. Today's paper reports that a number of the bodies were found
with shoulder weapons next to them, as if they had been using them while
dying -- which doesn't sound like the sort of action I would expect from a
suicide. Our government lies, as it tries to cover over its incompetence
and negligence. Why should I believe the FBI's claims about anything else,
when we can see that they are LYING? This system of government is beyond
reform.

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
 Well, for one thing most, if not all the Dividians (depending on whether
they could show they acted in self-defense and there were no illegal
weapons), could have gone on with their life as they were living it. No one
was forcing them to give up their religion or even their legal weapons. The
Dividians had survived a change in leadership before so even if Koresch

Chapter 4 ■ text ClassifiCation

214

himself would have been convicted and sent to jail, they still could have
carried on. I don't think the Dividians were insane, but I don't see a
reason for mass suicide (if the fire was intentional set by some of the
Dividians.) We also don't know that, if the fire was intentionally set from
inside, was it a generally know plan or was this something only an inner
circle knew about, or was it something two or three felt they had to do
with or without Koresch's knowledge/blessing, etc.? I don't know much about
Masada. Were some people throwing others over? Did mothers jump over with
their babies in their arms?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
rja@mahogany126.cray.com (Russ Anderson) writes... The fact is that
Koresh and his followers involved themselves in a gun battle to control
the Mt Carmel complex. That is not in dispute. From what I remember of the
trial, the authories couldn't reasonably establish who fired first, the
big reason behind the aquittal. Mitchell S Todd

Thus you can see how to analyze and look at documents that have been misclassified
and then maybe go back and tune our feature extraction methods by removing certain
words or weighing words differently to reduce or give prominence.

This brings us to the end of our discussion and implementation of our text
classification system. Feel free to implement more models using other innovative feature-
extraction techniques or supervised learning algorithms and compare their performance.

Applications and Uses
Text classification and categorization is used in several real-world scenarios and
applications, including the following:

•	 News articles categorization

•	 Spam filtering

•	 Music or movie genre categorization

•	 Sentiment analysis

•	 Language detection

The possibilities with text data are indeed endless, and with a little effort you can
apply classification to solve various problems and automate otherwise time-consuming
operations and scenarios.

Chapter 4 ■ text ClassifiCation

215

Summary
Text classification is indeed a powerful tool, and we have covered almost all aspects
related to it in this chapter. We started off our journey with look at the definition and
scope of text classification. Next, we defined automated text classification as a supervised
learning problem and looked at the various types of text classification. We also briefly
covered some ML concepts related to the various types of algorithms. A typical text
classification system blueprint was also defined to describe the various modules and
steps involved when building an end-to-end text classifier. Each module in the blueprint
was then expanded upon. Normalization was touched upon in detail in Chapter 3, and
we built a normalization module here specially for text classification. Various feature-
extraction techniques were explored in detail, including Bag of Words, TF-IDF, and
advanced word vectorization techniques.

You should now be clear about not only the mathematical representations and
concepts but also ways to implement them using our code samples. Various supervised
learning methods were discussed with focus on multinomial naïve Bayes and support vector
machines, which work well with text data, and we looked at ways to evaluate classification
model performance and even implemented those metrics. Finally, we put everything we
learned together into building a robust 20-class text classification system on real data,
evaluated various models, and analyzed model performance in detail. We wrapped up our
discussion by looking at some areas where text classification is used frequently.

We have just scratched the surface of text analytics here with classification. We
will be looking at more ways to analyze and derive insights from textual data in future
chapters.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

	Chapter 4: Text Classification
	What Is Text Classification?
	Automated Text Classification
	Text Classification Blueprint
	Text Normalization
	Feature Extraction
	Bag of Words Model
	TF-IDF Model
	Advanced Word Vectorization Models
	Averaged Word Vectors
	TF-IDF Weighted Averaged Word Vectors

	Classification Algorithms
	Multinomial Naïve Bayes
	Support Vector Machines

	Evaluating Classification Models
	Building a Multi-Class Classification System
	Applications and Uses
	Summary

