
167© Dipanjan Sarkar 2016 
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_4

CHAPTER 4

Text Classification

Learning to process and understand text is one of the first steps on the journey to 
getting meaningful insights from textual data. Though it is important to understand 
how language is structured and specific text syntax patterns, that alone is not sufficient 
to be of much use to businesses and organizations who want to derive useful patterns 
and insights and get maximum use out of their vast volumes of text data. Knowledge of 
language processing coupled with concepts from analytics and machine learning (ML) 
help in building systems that can leverage text data and help solve real-world practical 
problems which benefit businesses.

Various aspects of ML include supervised learning, unsupervised learning, 
reinforcement learning, and more recently deep learning. Each of these concepts involves 
several techniques and algorithms that can be leveraged on text data and to build self-
learning systems that do not need too much manual supervision. An ML model is a 
combination of data and algorithms—you got a taste of that in Chapter 3 was we built our 
own parsers and taggers. The benefit of ML is that once a model is trained, we can directly 
use it on new and previously unseen data to start seeing useful insights and desired results.

One of the most relevant and challenging problems is text classification or 
categorization, which involves trying to organize text documents into various categories 
based on inherent properties or attributes of each text document. This is used in 
various domains, including email spam identification and news categorization. The 
concept may seem simple, and if you have a small number of documents, you can look 
at each document and gain some idea about what it is trying to indicate. Based on 
this knowledge, you can group similar documents into categories or classes. It’s more 
challenging when the number of text documents to be classified increases to several 
hundred thousands or millions. This is where techniques like feature extraction and 
supervised or unsupervised ML come in handy. Document classification is a generic 
problem not limited to text alone but also can be extended for other items like music, 
images, video, and other media.

To formalize our problem more clearly, we will have a given set of classes or 
categories and several text documents. Remember that documents are basically sentences 
or paragraphs of text. This forms a corpus. Our task would be to determine which class 
or classes each document belongs to. This entire process involves several steps which 
we will be discussing in detail later in this chapter. Briefly, for a supervised classification 
problem, we need to have some labelled data that we could use for training a text 
classification model. This data would essentially be curated documents that are already 
assigned to some specific class or category beforehand. Using this, we would essentially 
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extract features and attributes from each document and make our model learn these 
attributes corresponding to each particular document and its class/category by feeding 
it to a supervised ML algorithm. Of course, the data would need to be pre-processed and 
normalized before building the model. Once done, we would follow the same process of 
normalization and feature extraction and then feed it to the model to predict the class or 
category for new documents. However, for an unsupervised classification problem, we 
would essentially not have any pre-labelled training documents. We would use techniques 
like clustering and document similarity measures to cluster documents together based on 
their inherent properties and assign labels to them.

In this chapter, we will discuss the concept of text classification and how it can be 
formulated as a supervised ML problem. We will also talk about the various forms of 
classification and what they indicate. A clear depiction for the essential steps necessary 
to complete a text classification workflow will also be presented, and we will be covering 
some of the essential steps from the same workflow, which have not been discussed 
before, including feature extraction, classifiers, model evaluation, and finally we will put 
them all together in building a text classification system on real-world data.

What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and 
what we really mean by classification. The textual data involved here can be anything 
ranging from a phrase, sentence, or a complete document with paragraphs of text, which 
can be obtained from corpora, blogs, or anywhere from the Web. Text classification is 
also often called document classification just to cover all forms of textual content under 
the word document. The word document could be defined as some form of concrete 
representation of thoughts or events that could be in the form of writing, recorded 
speech, drawings, or presentations. I use the term document here to represent textual 
data such as sentences or paragraphs belonging to the English language.

Text classification is also often called text categorization, although I explicitly use 
the word classification here for two reasons. First, it depicts the same essence as text 
categorization, where we want to classify documents. The second reason is to also show 
that we would be using classification or a supervised ML approach here to classify or 
categorize the text. Text categorization can be done in many ways, as mentioned. We 
will be focusing explicitly on a supervised approach using classification. The process of 
classification is not restricted to text alone. It is used quite frequently in other domains 
including science, healthcare, weather forecasting, and technology.

Text or document classification is the process of assigning text documents into one 
or more classes or categories, assuming that we have a predefined set of classes. 
Documents here are textual documents, and each document can contain a sentence or 
even a paragraph of words. A text classification system would successfully be able to 
classify each document to its correct class(es) based on inherent properties of the 
document. Mathematically, we can define it like this: given some description and 
attributes d for a document D, where d DÎ , and we have a set of predefined classes or 

categories, C c c c cn= ¼{ }1 2 3, , , , . The actual document D can have many inherent 

properties and attributes that lead it to being an entity in a high-dimensional space. Using 
a subset of that space with a limit set of descriptions and features depicted by d, we 
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should be able to successfully assign the original document D to its correct class C
x
 using 

a text classification system T. This can be represented by T D Cx: ® .

We will talk more about the text classification system in detail later in the chapter. 
Figure 4-1 shows a high-level conceptual representation of the text classification process.

In Figure 4-1, we can see there are several documents representing products which 
can be assigned to various categories of food, mobile phones, and movies. Initially, 
these documents are all present together, just as a text corpus has various documents in 
it. Once it goes through a text classification system, represented as a black box here, we 
can see that each document is assigned to one specific class or category we had defined 
previously. Here the documents are just represented by their names, but in real data, they 
can contain much more, including descriptions of each product, specific attributes such 
as movie genre, product specifications, constituents, and many more properties that can 
be used as features in the text classification system to make document identification and 
classification easier.

There are various types of text classification. This chapter focuses on two major 
types, which are based on the type of content that makes up the documents:

•	 Content-based classification

•	 Request-based classification

Both types are more like different philosophies or ideals behind approaches to 
classifying text documents rather than specific technical algorithms or processes. Content-
based classification is the type of text classification where priorities or weights are given 
to specific subjects or topics in the text content that would help determine the class of the 
document. A conceptual example would be that a book with more than 30 percent of its 
content about food preparations can be classified under cooking/recipes. Request-based 
classification is influenced by user requests and is targeted towards specific user groups 
and audiences. This type of classification is governed by specific policies and ideals.

Figure 4-1. Conceptual overview of text classification



Chapter 4 ■ text ClassifiCation

170

Automated Text Classification
We now have an idea of the definition and scope of text classification. We have also 
formally defined text classification both conceptually and mathematically, where we 
talked about a “text classification system” being able to classify text documents to their 
respective categories or classes. Consider several humans doing the task of going through 
each document and classifying it. They would then be a part of the text classification 
system we are talking about. However, that would not scale very well once there were 
millions of text documents to be classified quickly. To make the process more efficient 
and faster, we can consider automating the task of text classification, which brings us to 
automated text classification.

To automate text classification, we can make use of several ML techniques and 
concepts. There are mainly two types of ML techniques that are relevant to solving this 
problem:

•	 Supervised machine learning

•	 Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms, 
such as reinforcement learning and semi-supervised learning. Let us look at both 
supervised and unsupervised learning algorithms in more detail, from both an ML 
perspective how it can be leveraged in classifying text documents.

Unsupervised learning refers to specific ML techniques or algorithms that do not 
require any pre-labelled training data samples to build a model. We usually have a 
collection of data points, which could be text or numeric, depending on the problem we 
are trying to solve. We extract features from each of the data points using a process known 
as feature extraction and then feed the feature set for each data point into our algorithm. 
We are trying to extract meaningful patterns from the data, such as trying to group 
together similar data points using techniques like clustering or summarizing documents 
based on topic models. This is extremely useful in text document categorization and is 
also called document clustering, where we cluster documents into groups purely based 
on their features, similarity, and attributes, without training any model on previously 
labelled data. Later chapters further discuss unsupervised learning, covering topic 
models, document summarization, similarity analysis, and clustering.

Supervised learning refers to specific ML techniques or algorithms that are trained 
on pre-labelled data samples known as training data. Features or attributes are extracted 
from this data using feature extraction, and for each data point we will have its own 
feature set and corresponding class/label. The algorithm learns various patterns for each 
type of class from the training data. Once this process is complete, we have a trained 
model. This model can then be used to predict the class for future test data samples once 
we feed their features to the model. Thus the machine has actually learned, based on 
previous training data samples, how to predict the class for new unseen data samples.

There are two major types of supervised learning algorithms:

•	 Classification: The process of supervised learning is referred to 
as classification when the outcomes to be predicted are distinct 
categories, thus the outcome variable is a categorical variable in 
this case. Examples would be news categories or movie genres.
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•	 Regression: Supervised learning algorithms are known as 
regression algorithms when the outcome we want to predict is a 
continuous numeric variable. Examples would be house prices or 
people’s weights.

We will be specifically focusing on classification for our problem (hence the name of 
the chapter—we are trying to classify or categorize text documents into distinct classes or 
categories. We will be following a supervised learning approach in our implementations 
later on.

Now we are ready to define the process of automated or ML-based text classification 
mathematically. Say we have a training set of documents labelled with their corresponding 
class or category. This can be represented by TS, which is a set of paired documents and 
labels, TS d c d c d cn n= ( ) ( ) ¼ ( ){ }1 1 2 2, , ,, , ,  where d

1
, d

2
, …, d

n
 is the list of text documents, 

and their corresponding labels are c
1
, c

2
, …, c

n
 such that c C c c cnx Î = ¼{ }1 2, , ,  where c

x
 

denotes the class label for document x and C denotes the set of all possible distinct classes, 
any of which can be the class or classes for each document. Assuming we have our training 
set, we can define a supervised learning algorithm F such that when it is trained on our 
training dataset TS, we build a classification model or classifier γ such that we can say 
that F TS( ) = g . Thus the supervised learning algorithm F takes the input set of (document, 

class) pairs TS and gives us the trained classifier γ, which is our model. This process is 
known as the training process.

This model can then take a new, previously unseen document ND and predict its 
class c

ND
 such that c CNDÎ . This process is known as the prediction process and can be 

represented by g :TD cND® . Thus we can see that there are two main processes in the 

supervised text classification process:

•	 Training

•	 Prediction

An important point to remember is that some manually labelled training data 
is necessary for supervised text classification, so even though we are talking about 
automated text classification, to kick start the process we need some manual efforts. Of 
course, the benefits of this are manifold because once we have a trained classifier, we can 
keep using it to predict and classify new documents with minimal efforts and manual 
supervision.

There are various learning methods or algorithms that we will be discussing in a 
future section. These learning algorithms are not specific to text data but are generic ML 
algorithms that can be applied toward various types of data after due pre-processing 
and feature extraction. I will touch upon a couple of supervised ML algorithms and use 
them in solving a real-world text classification problem. These algorithms are usually 
trained on the training data set and often an optional validation set such that the model 
that is trained does not overfit to the training data, which basically means it would then 
not be able to generalize well and predict properly for new instances of text documents. 
Often the model is tuned on several of its internal parameters based on the learning 
algorithm and by evaluating various performance metrics like accuracy on the validation 
set or by using cross-validation where we split the training dataset itself into training and 
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validation sets by random sampling. This comprises the training process, the outcome 
of which yields a fully trained model that is ready to predict. In the prediction stage, 
we usually have new data points from the test dataset. We can use them to feed into 
the model after normalization and feature extraction and see how well the model is 
performing by evaluating its prediction performance.

There are a few types of text classification based on the number of classes to predict 
and the nature of predictions. These types of classification are based on the dataset, the 
number of classes/categories pertaining to that dataset, and the number of classes that 
can be predicted on any data point:

•	 Binary classification is when the total number of distinct classes 
or categories is two in number and any prediction can contain 
either one of those classes.

•	 Multi-class classification, also known as multinomial 
classification, refers to a problem where the total number of 
classes is more than two, and each prediction gives one class 
or category that can belong to any of those classes. This is an 
extension of the binary classification problem where the total 
number of classes is more than two.

•	 Multi-label classification refers to problems where each prediction 
can yield more than one outcome/predicted class for any data 
point.

Text Classification Blueprint
Now that we know the basic scope of automated text classification, this section will look 
at a blueprint for a complete workflow of building an automated text classifier system. 
This will consist of a series of steps that must be followed in both the training and testing 
phases mentioned in the earlier section. For building a text classification system, we 
need to make sure we have our source of data and retrieve that data so that we can start 
feeding it to our system. The following main steps outline a typical workflow for a text 
classification system, assuming we have our dataset already downloaded and ready to  
be used:

 1. Prepare train and test datasets

 2. Text normalization

 3. Feature extraction

 4. Model training

 5. Model prediction and evaluation

 6. Model deployment

These steps are carried out in that order for building a text classifier. Figure 4-2 shows 
a detailed workflow for a text classification system with the main processes highlighted in 
training and prediction.
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Notice that there are two main boxes for Training and Prediction, which are the 
two main processes involved in building a text classifier. In general, the dataset we have 
is usually divided into two or three splits called the training, validation (optional), and 
testing datasets, respectively. You can see an overlap of the Text Normalization and Feature 
Extraction modules in Figure 4-2 for both processes, indicating that no matter which 
document we want to classify and predict its class, it must go through the same series 
of transformations in both the training and prediction process. Each document is first 
pre-processed and normalized, and then specific features pertaining to the document are 
extracted. These processes are always uniform in both the training and prediction processes 
to make sure that our classification model performs consistently in its predictions.

In the Training process, each document has its own corresponding class/category 
that was manually labeled or curated beforehand. These training text documents are 
processed and normalized in the Text Normalization module, giving us clean and 
standardized training text documents. They are then passed to the Feature Extraction 
module where different types of feature-extraction techniques are used to extract 
meaningful features from the processed text documents. We will cover some popular 
feature extraction techniques in a future section. These features are usually numeric 
arrays or vectors because standard ML algorithms work on numeric vectors. Once we 
have our features, we select a supervised ML algorithm and train our model.

Training the model involves feeding the feature vectors for the documents and 
the corresponding labels such that the algorithm is able to learn various patterns 
corresponding to each class/category and can reuse this learned knowledge to predict 
classes for future new documents. Often an optional validation dataset is used to evaluate 
the performance of the classification algorithm to make sure it generalizes well with 
the data during training. A combination of these features and the ML algorithm yields a 
Classification Model, which is the end stage of the Training process. Often this model is 
tuned using various model parameters with a process called hyperparameter tuning to 
build a better performing optimal model.

Figure 4-2. Blueprint for building an automated text classification system
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The Prediction process shown in the figure involves trying to either predict classes 
for new documents or evaluating how predictions are working on testing data. The test 
dataset documents go through the same process of normalization and feature extraction, 
and the test document features are passed to the trained Classification Model, which 
predicts the possible class for each of the documents based on previously learned 
patterns. If you have the true class labels for the documents that were manually labelled, 
you can evaluate the prediction performance of the model by comparing the true labels 
and the predicted labels using various metrics like accuracy. This would give an idea of 
how well the model performs its predictions for new documents. 

Once we have a stable and working model, the last step is usually deploying the 
model, which normally involves saving the model and its necessary dependencies 
and deploying it as a service or as a running program that predicts categories for new 
documents as a batch job, or based on serving user requests if accessed as a web service. 
There are various ways to deploy ML models, and this usually depends on how you want 
to access it later on.

We will now discuss some of the main modules from the preceding blueprint and 
implement these modules so that we can integrate them all together to build a real-world 
text classifier.

Text Normalization
Chapter 3 covered text processing and normalization in detail—refer it to see the various 
methods and techniques available. In this section, we will define a normalizer module to 
normalize text documents and will be using it later when we build our classifier. Although 
various techniques are available, we will keep it fairly simple and straightforward here so 
that is it not too hard to follow our implementations step by step. We will implement and 
use the following normalization techniques in our module:

•	 Expanding contractions

•	 Text standardization through lemmatization

•	 Removing special characters and symbols

•	 Removing stopwords

We are not focusing too much on correcting spellings and other advanced 
techniques, but you can integrate the functions from the previous chapter 
implementation if you are interested. Our normalization module is implemented and 
available in normalization.py, available in the code files for this chapter. I will also be 
explaining each function here for your convenience. We will first start with loading the 
necessary dependencies. Remember that you will need our custom-defined contractions 
mapping file from Chapter 3, named contractions.py, for expanding contractions.

The following snippet shows the necessary imports and dependencies:

from contractions import CONTRACTION_MAP
import re
import nltk
import string
from nltk.stem import WordNetLemmatizer

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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stopword_list = nltk.corpus.stopwords.words('english')
wnl = WordNetLemmatizer()

We load all the English stopwords, the contraction mappings in CONTRACTION_MAP, 
and an instance of WordNetLemmatizer for carrying our lemmatization. We now define 
a function to tokenize text into tokens that will be used by our other normalization 
functions. The following function tokenizes and removes any extraneous whitespace from 
the tokens:

def tokenize_text(text):
    tokens = nltk.word_tokenize(text)
    tokens = [token.strip() for token in tokens]
    return tokens

Now we define a function for expanding contractions. This function is similar to our 
implementation from Chapter 3—it takes in a body of text and returns the same with its 
contractions expanded if there is a match. The following snippet helps us achieve this:

def expand_contractions(text, contraction_mapping):

     contractions_pattern = re.compile('({})'.format('|'.join(contraction_
mapping.keys())),

                                      flags=re.IGNORECASE|re.DOTALL)
    def expand_match(contraction):
        match = contraction.group(0)
        first_char = match[0]
        expanded_contraction = contraction_mapping.get(match)\
                                if contraction_mapping.get(match)\
                                else contraction_mapping.get(match.lower())                      
        expanded_contraction = first_char+expanded_contraction[1:]
        return expanded_contraction

    expanded_text = contractions_pattern.sub(expand_match, text)
    expanded_text = re.sub("'", "", expanded_text)
    return expanded_text

Now that we have a function for expanding contractions, we implement a function 
for standardizing our text data by bringing word tokens to their base or root form using 
lemmatization. The following functions will help us in achieving that:

from pattern.en import tag
from nltk.corpus import wordnet as wn

# Annotate text tokens with POS tags
def pos_tag_text(text):
    # convert Penn treebank tag to wordnet tag

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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    def penn_to_wn_tags(pos_tag):
        if pos_tag.startswith('J'):
            return wn.ADJ
        elif pos_tag.startswith('V'):
            return wn.VERB
        elif pos_tag.startswith('N'):
            return wn.NOUN
        elif pos_tag.startswith('R'):
            return wn.ADV
        else:
            return None

    tagged_text = tag(text)
    tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag))
                         for word, pos_tag in
                         tagged_text]
    return tagged_lower_text

# lemmatize text based on POS tags    
def lemmatize_text(text):

    pos_tagged_text = pos_tag_text(text)
    lemmatized_tokens = [wnl.lemmatize(word, pos_tag) if pos_tag
                         else word                    
                         for word, pos_tag in pos_tagged_text]
    lemmatized_text = ' '.join(lemmatized_tokens)
    return lemmatized_text

The preceding snippet depicts two functions implemented for lemmatization. The 
main function is lemmatize_text, which takes in a body of text data and lemmatizes 
each word of the text based on its POS tag if it is present and then returns the lemmatized 
text back to the user. For this, we need to annotate the text tokens with their POS tags. 
We use the tag function from pattern to annotate POS tags for each token and then 
further convert the POS tags from the Penn treebank syntax to WordNet syntax, since 
the WordNetLemmatizer checks for POS tag annotations based on WordNet formats. We 
convert each word token to lowercase, annotate it with its correct, converted WordNet 
POS tag, and return these annotated tokens, which are finally fed into the lemmatize_
text function.

The following function helps us remove special symbols and characters:

def remove_special_characters(text):
    tokens = tokenize_text(text)
    pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
     filtered_tokens = filter(None, [pattern.sub('', token) for token in 

tokens])
    filtered_text = ' '.join(filtered_tokens)
    return filtered_text
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We remove special characters by tokenizing the text just so we can remove some of 
the tokens that are actually contractions, but we may have failed to remove them in our 
first step, like "s" or "re". We will do this when we remove stopwords. However, you can 
also remove special characters without tokenizing the text. We remove all special symbols 
defined in string.punctuation from our text using regular expression matches. The 
following function helps us remove stopwords from our text data:

def remove_stopwords(text):
    tokens = tokenize_text(text)
     filtered_tokens = [token for token in tokens if token not in  

stopword_list]
    filtered_text = ' '.join(filtered_tokens)    
    return filtered_text

Now that we have all our functions defined, we can build our text normalization 
pipeline by chaining all these functions one after another. The following function 
implements this, where it takes in a corpus of text documents and normalizes them and 
returns a normalized corpus of text documents:

def normalize_corpus(corpus, tokenize=False):

    normalized_corpus = []    
    for text in corpus:
        text = expand_contractions(text, CONTRACTION_MAP)
        text = lemmatize_text(text)
        text = remove_special_characters(text)
        text = remove_stopwords(text)
        normalized_corpus.append(text)
        if tokenize:
            text = tokenize_text(text)
            normalized_corpus.append(text)

    return normalized_corpus

That brings us to the end of our discussion and implementation of necessary 
functions for our text normalization module. We will now look at concepts and practical 
implementation for feature extraction.

Feature Extraction
There are various feature-extraction techniques that can be applied on text data, but 
before we jump into then, let us consider what we mean by features. Why do we need 
them, and how they are useful? In a dataset, there are typically many data points. Usually 
the rows of the dataset and the columns are various features or properties of the dataset, 
with specific values for each row or observation. In ML terminology, features are unique, 
measurable attributes or properties for each observation or data point in a dataset. 
Features are usually numeric in nature and can be absolute numeric values or categorical 
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features that can be encoded as binary features for each category in the list using a 
process called one-hot encoding. The process of extracting and selecting features is both 
art and science, and this process is called feature extraction or feature engineering.

Usually extracted features are fed into ML algorithms for learning patterns that can 
be applied on future new data points for getting insights. These algorithms usually expect 
features in the form of numeric vectors because each algorithm is at heart a mathematical 
operation of optimization and minimizing loss and error when it tries to learn patterns 
from data points and observations. So, with textual data there is the added challenge of 
figuring out how to transform textual data and extract numeric features from it.

Now we will look at some feature-extraction concepts and techniques specially 
aligned towards text data.

The Vector Space Model is a concept and model that is very useful in case we are 
dealing with textual data and is very popular in information retrieval and document 
ranking. The Vector Space Model, also known as the Term Vector Model, is defined as a 
mathematical and algebraic model for transforming and representing text documents as 
numeric vectors of specific terms that form the vector dimensions. Mathematically this 
can be defines as follows. Say we have a document D in a document vector space VS. The 
number of dimensions or columns for each document will be the total number of distinct 
terms or words for all documents in the vector space. So, the vector space can be denoted

VS W W Wn= ¼{ }1 2, , ,

where there are n distinct words across all documents. Now we can represent document 
D in this vector space as

D w w wD D Dn= ¼{ }1 2, , ,

where w
Dn

 denotes the weight for word n in document D. This weight is a numeric value 
and can represent anything, ranging from the frequency of that word in the document, to 
the average frequency of occurrence, or even to the TF-IDF weight (discussed shortly).

We will be talking about and implementing the following feature-extraction 
techniques:

•	 Bag of Words model

•	 TF-IDF model

•	 Advanced word vectorization models

An important thing to remember for feature extraction is that once we build a 
feature extractor using some transformations and mathematical operations, we need to 
make sure we reuse the same process when extracting features from new documents to 
be predicted, and not rebuild the whole algorithm again based on the new documents. 
We will be depicting this also with an example for each technique. Do note that for 
implementations based on practical examples in this section, we will be making use 
of the nltk, gensim, and scikit-learn libraries, which you can install using pip as 
discussed earlier (in case you do not have them installed already).
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The implementations are divided into two major modules. The file feature_
extractors.py contains the generic functions we will be using later on when building the 
classifier, and we have used the same functions in the feature_extraction_demo.py file to 
show how each technique works with some practical examples. You can access them from 
the code files, and as always I will be presenting the same code in this chapter for ease of 
understanding. We will be using the following documents depicted in the CORPUS variable 
to extract features from and building some of the vectorization models. To illustrate how 
feature extraction will work for a new document (as a part of test dataset), we will also use 
a separate document as shown in the variable new_doc in the following snippet:

CORPUS = [
'the sky is blue',
'sky is blue and sky is beautiful',
'the beautiful sky is so blue',
'i love blue cheese'
]

new_doc = ['loving this blue sky today']

Bag of Words Model
The Bag of Words model is perhaps one of the simplest yet most powerful techniques 
to extract features from text documents. The essence of this model is to convert text 
documents into vectors such that each document is converted into a vector that 
represents the frequency of all the distinct words that are present in the document 
vector space for that specific document. Thus, considering our sample vector from the 
previous mathematical notation for D, the weight for each word is equal to its frequency 
of occurrence in that document.

An interesting thing is that we can even create the same model for individual word 
occurrences as well as occurrences for n-grams, which would make it an n-gram Bag of 
Words model such that frequency of distinct n-grams in each document would also be 
considered.

The following code snippet gives us a function that implements a Bag of Words–
based feature-extraction model that also accepts an ngram_range parameter to take into 
account n-grams as features:

from sklearn.feature_extraction.text import CountVectorizer

def bow_extractor(corpus, ngram_range=(1,1)):

    vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features

The preceding function uses the CountVectorizer class. You can access its detailed 
API (Application Programming Interface) documentation at http://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
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html#sklearn.feature_extraction.text.CountVectorizer, which has a whole bunch 
of various parameters for more fine-tuning based on the type of features you want to 
extract. We use its default configuration, which is enough for most scenarios, with min_df 
set to 1 indicating taking terms having a minimum frequency of 1 in the overall document 
vector space. You can set ngram_range to various parameters like (1, 3) would build 
feature vectors consisting of all unigrams, bigrams, and trigrams. The following snippet 
shows the function in action on our sample corpora of four training documents and one 
test document:

# build bow vectorizer and get features
In [371]: bow_vectorizer, bow_features = bow_extractor(CORPUS)
     ...: features = bow_features.todense()
     ...: print features
[[0 0 1 0 1 0 1 0 1]
 [1 1 1 0 2 0 2 0 0]
 [0 1 1 0 1 0 1 1 1]
 [0 0 1 1 0 1 0 0 0]]

# extract features from new document using built vectorizer
In [373]: new_doc_features = bow_vectorizer.transform(new_doc)
     ...: new_doc_features = new_doc_features.todense()
     ...: print new_doc_features
[[0 0 1 0 0 0 1 0 0]]

# print the feature names
In [374]: feature_names = bow_vectorizer.get_feature_names()
     ...: print feature_names
[u'and', u'beautiful', u'blue', u'cheese', u'is', u'love', u'sky', u'so', 
u'the']

That output shows how each text document has been converted to vectors. Each row 
represents one document from our corpus, and we do the same for both our corpora. The 
vectorizer is built using documents from CORPUS. We extract features from it and also use 
this built vectorizer to extract features from a completely new document. Each column in 
a vector represents the words depicted in feature_names, and the value is the frequency 
of that word in the document represented by the vector. It may be hard to comprehend 
this at first glance, so I have prepared the following function, which I hope you can use to 
understand the feature vectors better:

import pandas as pd

def display_features(features, feature_names):
    df = pd.DataFrame(data=features,
                      columns=feature_names)
    print df

Now you can feed the feature names and vectors to this function and see the feature 
matrix in a much easier-to-understand structure, shown here: 

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
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In [379]: display_features(features, feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    0          0     1       0   1     0    1   0    1
1    1          1     1       0   2     0    2   0    0
2    0          1     1       0   1     0    1   1    1
3    0          0     1       1   0     1    0   0    0

In [380]: display_features(new_doc_features, feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    0          0     1       0   0     0    1   0    0

That makes things much clearer, right? Consider the second document of CORPUS, 
represented in the preceding in row 1 of the first table. You can see that 'sky is blue 
and sky is beautiful' has value 2 for the feature sky, 1 for beautiful, and so on. 
Values of 0 are assigned for words not present in the document. Note that for the new 
document new_doc, there is no feature for the words today, this, or loving in the 
sentence. The reason for this is what I mentioned before—that the feature-extraction 
process, model, and vocabulary are always based on the training data and will never 
change or get influenced on newer documents, which it will predict later as a part of 
testing or otherwise. You might have guessed that this is because a model is always 
trained on some training data and is never influenced by newer documents unless we 
plan on rebuilding that model. Hence, the features in this model are always limited based 
on the document vector space of the training corpus.

You have now started to get an idea of how to extract meaningful vector-based 
features from text data, which previously seemed impossible. Try out the preceding 
functions by setting ngram_range to (1, 3) and see the outputs.

TF-IDF Model
The Bag of Words model is good, but the vectors are completely based on absolute 
frequencies of word occurrences. This has some potential problems where words that 
may tend to occur a lot across all documents in the corpus will have higher frequencies 
and will tend to overshadow other words that may not occur as frequently but may 
be more interesting and effective as features to identify specific categories for the 
documents. This is where TF-IDF comes into the picture. TF-IDF stands for Term 
Frequency-Inverse Document Frequency, a combination of two metrics: term frequency 
and inverse document frequency. This technique was originally developed as a metric for 
ranking functions for showing search engine results based on user queries and has come 
to be a part of information retrieval and text feature extraction now.

Let us formally define TF-IDF now and look at the mathematical representations for 
it before diving into its implementation. Mathematically, TF-IDF is the product of two 
metrics and can be represented as tfidf tf idf= ´ , where term frequency (tf) and 

inverse-document frequency (idf) represent the two metrics.
Term frequency denoted by tf is what we had computed in the Bag of Words model. 

Term frequency in any document vector is denoted by the raw frequency value of that 
term in a particular document. Mathematically it can be represented as tf w D fwD

,( ) = , 

where fwD
 denotes frequency for word w in document D, which becomes the term 
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frequency (tf). There are various other representations and computations for term 
frequency, such as converting frequency to a binary feature where 1 means the term has 
occurred in the document and 0 means it has not. Sometimes you can also normalize the 
absolute raw frequency using logarithms or averaging the frequency. We will be using the 
raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency 
for each term. It is computed by dividing the total number of documents in our corpus 
by the document frequency for each term and then applying logarithmic scaling on the 
result. In our implementation we will be adding 1 to the document frequency for each 
term just to indicate that we also have one more document in our corpus that essentially 
has every term in the vocabulary. This is to prevent potential division-by-zero errors 
and smoothen the inverse document frequencies. We also add 1 to the result of our idf 
computation to avoid ignoring terms completely that might have zero idf. Mathematically 
our implementation for idf can be represented by

idf t
C

df t
( ) = +

+ ( )
1

1
log

where idf(t) represents the idf for the term t, C represents the count of the total number of 
documents in our corpus, and df(t) represents the frequency of the number of documents 
in which the term t is present.

Thus the term frequency-inverse document frequency can be computed by 
multiplying the above two measures together. The final TF-IDF metric we will be using is 
a normalized version of the tfidf matrix we get from the product of tf and idf. We will 
normalize the tfidf matrix by dividing it with the L2 norm of the matrix, also known as the 
Euclidean norm, which is the square root of the sum of the square of each term’s tfidf 

weight. Mathematically we can represent the final tfidf feature vector as tfidf
tfidf

tfidf
= , 

where tfidf  represents the Euclidean L2 norm for the tfidf matrix.

The following code snippet shows an implementation of getting the tfidf-based 
feature vectors, considering we have our Bag of Words feature vectors we obtained in the 
previous section:

from sklearn.feature_extraction.text import TfidfTransformer

def tfidf_transformer(bow_matrix):

    transformer = TfidfTransformer(norm='l2',
                                   smooth_idf=True,
                                   use_idf=True)
    tfidf_matrix = transformer.fit_transform(bow_matrix)
    return transformer, tfidf_matrix

You can see that we have used the L2 norm option in the parameters and also made 
sure we smoothen the idfs to give weightages also to terms that may have zero idf so that 
we do not ignore them. We can see this function in action in the following code snippet:
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import numpy as np
from feature_extractors import tfidf_transformer
feature_names = bow_vectorizer.get_feature_names()

# build tfidf transformer and show train corpus tfidf features
In [388]: tfidf_trans, tdidf_features = tfidf_transformer(bow_features)
     ...: features = np.round(tdidf_features.todense(), 2)
     ...: display_features(features, feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00

# show tfidf features for new_doc using built tfidf transformer
In [389]: nd_tfidf = tfidf_trans.transform(new_doc_features)
     ...: nd_features = np.round(nd_tfidf.todense(), 2)
     ...: display_features(nd_features, feature_names)
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

Thus the preceding outputs show the tfidf feature vectors for all our sample 
documents. We use the TfidfTransformer class, which helps us in computing the tfidfs 
for each document based on the equations described earlier.

Now we will show how the internals of this class work. You will also see how to 
implement the mathematical equations described earlier to compute the tfidf-based 
feature vectors. This section is dedicated to ML experts (and curious readers who are 
interested in how things work behind the scenes). We will start with loading necessary 
dependencies and computing the term frequencies (TF) by reusing our Bag of Words-
based features for our sample corpus, which can also act as the term frequencies for our 
training CORPUS:

import scipy.sparse as sp
from numpy.linalg import norm
feature_names = bow_vectorizer.get_feature_names()

# compute term frequency
tf = bow_features.todense()
tf = np.array(tf, dtype='float64')

# show term frequencies
In [391]: display_features(tf, feature_names)
   and  beautiful  blue  cheese   is  love  sky   so  the
0  0.0        0.0   1.0     0.0  1.0   0.0  1.0  0.0  1.0
1  1.0        1.0   1.0     0.0  2.0   0.0  2.0  0.0  0.0
2  0.0        1.0   1.0     0.0  1.0   0.0  1.0  1.0  1.0
3  0.0        0.0   1.0     1.0  0.0   1.0  0.0  0.0  0.0
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We will now compute our document frequencies (DF) for each term based on the 
number of documents in which it occurs. The following snippet shows how to obtain it 
from our Bag of Words feature matrix:

# build the document frequency matrix
df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)
df = 1 + df # to smoothen idf later

# show document frequencies
In [403]: display_features([df], feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    2          3     5       2   4     2    4   2    3

This tells us the document frequency (DF) for each term and you can verify it with 
the documents in CORPUS. Remember that we have added 1 to each frequency value to 
smoothen the idf values later and prevent division-by-zero errors by assuming we have a 
document (imaginary) that has all the terms once. Thus, if you check in the CORPUS, you 
will see that blue occurs 4(+1) times, sky occurs 3(+1) times, and so on, considering (+1) 
for our smoothening.

Now that we have the document frequencies, we will compute the inverse document 
frequency (idf) using our formula defined earlier. Remember to add 1 to the total count of 
documents in the corpus to add the document that we had assumed earlier to contain all 
the terms at least once for smoothening the idfs:

# compute inverse document frequencies
total_docs = 1 + len(CORPUS)
idf = 1.0 + np.log(float(total_docs) / df)

# show inverse document frequencies
In [406]: display_features([np.round(idf, 2)], feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  1.92       1.51   1.0    1.92  1.22  1.92  1.22  1.92  1.51

# compute idf diagonal matrix
total_features = bow_features.shape[1]
idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)
idf = idf_diag.todense()

# print the idf diagonal matrix
In [407]: print np.round(idf, 2)
[[ 1.92  0.    0.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    1.51  0.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    0.    1.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    0.    0.    1.92  0.    0.    0.    0.    0.  ]
 [ 0.    0.    0.    0.    1.22  0.    0.    0.    0.  ]
 [ 0.    0.    0.    0.    0.    1.92  0.    0.    0.  ]
 [ 0.    0.    0.    0.    0.    0.    1.22  0.    0.  ]
 [ 0.    0.    0.    0.    0.    0.    0.    1.92  0.  ]
 [ 0.    0.    0.    0.    0.    0.    0.    0.    1.51]]
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You can now see the idf matrix that we created based on our mathematical equation, 
and we also convert it to a diagonal matrix, which will be helpful later on when we want 
to compute the product with term frequency.

Now that we have our tfs and idfs, we can compute the tfidf feature matrix using 
matrix multiplication, as shown in the following snippet:

# compute tfidf feature matrix
tfidf = tf * idf

# show tfidf feature matrix
In [410]: display_features(np.round(tfidf, 2), feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00   1.0    0.00  1.22  0.00  1.22  0.00  1.51
1  1.92       1.51   1.0    0.00  2.45  0.00  2.45  0.00  0.00
2  0.00       1.51   1.0    0.00  1.22  0.00  1.22  1.92  1.51
3  0.00       0.00   1.0    1.92  0.00  1.92  0.00  0.00  0.00

We now have our tfidf feature matrix, but wait! It is not yet over. We have to divide it 
with the L2 norm, if you remember from our equations depicted earlier. The following 
snippet computes the tfidf norms for each document and then divides the tfidf weights 
with the norm to give us the final desired tfidf matrix:

# compute L2 norms
norms = norm(tfidf, axis=1)

# print norms for each document
In [412]: print np.round(norms, 2)
[ 2.5   4.35  3.5   2.89]

# compute normalized tfidf
norm_tfidf = tfidf / norms[:, None]

# show final tfidf feature matrix
In [415]: display_features(np.round(norm_tfidf, 2), feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00

Compare the preceding obtained tfidf feature matrix for the documents in CORPUS 
to the feature matrix obtained using TfidfTransformer earlier. Note they are exactly the 
same, thus verifying that our mathematical implementation was correct—and in fact this 
very same implementation is adopted by scikit-learn’s TfidfTransformer behind the 
scenes using some more optimizations. Now, suppose we want to compute the tfidf-
based feature matrix for our new document new_doc. We can do it using the following 
snippet. We reuse the new_doc_features Bag of Words vector from before for the term 
frequencies:
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# compute new doc term freqs from bow freqs
nd_tf = new_doc_features
nd_tf = np.array(nd_tf, dtype='float64')

# compute tfidf using idf matrix from train corpus
nd_tfidf = nd_tf*idf
nd_norms = norm(nd_tfidf, axis=1)
norm_nd_tfidf = nd_tfidf / nd_norms[:, None]

# show new_doc tfidf feature vector
In [418]: display_features(np.round(norm_nd_tfidf, 2), feature_names)
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

The preceding output depicts the tfidf-based feature vector for new_doc, and you can 
see it is the same as the one obtained by TfidfTransformer.

Now that we know how the internals work, we are going to implement a generic 
function that can directly compute the tfidf-based feature vectors for documents from the 
raw documents themselves. The following snippet depicts the same:

from sklearn.feature_extraction.text import TfidfVectorizer

def tfidf_extractor(corpus, ngram_range=(1,1)):

    vectorizer = TfidfVectorizer(min_df=1,
                                 norm='l2',
                                 smooth_idf=True,
                                 use_idf=True,
                                 ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features

The preceding function makes use of the TfidfVectorizer, which directly computes 
the tfidf vectors by taking the raw documents themselves as input and internally 
computing the term frequencies as well as the inverse document frequencies, eliminating 
the need to use the CountVectorizer for computing the term frequencies based on the 
Bag of Words model. Support is also present for adding n-grams to the feature vectors. We 
can see the function in action in the following snippet:

# build tfidf vectorizer and get training corpus feature vectors
In [425]: tfidf_vectorizer, tdidf_features = tfidf_extractor(CORPUS)
     ...:  display_features(np.round(tdidf_features.todense(), 2), feature_

names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00
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# get tfidf feature vector for the new document
In [426]: nd_tfidf = tfidf_vectorizer.transform(new_doc)
     ...: display_features(np.round(nd_tfidf.todense(), 2), feature_names)    
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

You can see from the preceding outputs that the tfidf feature vectors match to the 
ones we obtained previously. This brings us to the end of our discussion on feature 
extraction using tfidf. Now we will look at some advanced word vectorization techniques.

Advanced Word Vectorization Models
There are various approaches to creating more advanced word vectorization models for 
extracting features from text data. Here we will discuss a couple of them that use Google’s 
popular word2vec algorithm. The word2vec model, released in 2013 by Google, is a neural 
network–based implementation that learns distributed vector representations of words 
based on continuous Bag of Words and skip-gram–based architectures. The word2vec 
framework is much faster than other neural network–based implementations and does 
not require manual labels to create meaningful representations among words. You can 
find more details on Google’s word2vec project at https://code.google.com/archive/p/
word2vec/. You can even try out some of the implementations yourself if you are interested.

We will be using the gensim library in our implementation, which is Python 
implementation for word2vec that provides several high-level interfaces for easily building 
these models. The basic idea is to provide a corpus of documents as input and get feature 
vectors for them as output. Internally, it constructs a vocabulary based on the input text 
documents and learns vector representations for words based on various techniques 
mentioned earlier, and once this is complete, it builds a model that can be used to 
extract word vectors for each word in a document. Using various techniques like average 
weighting or tfidf weighting, we can compute the averaged vector representation of a 
document using its word vectors. You can get more details about the interface for gensim‘s 
word2vec implementation at http://radimrehurek.com/gensim/models/word2vec.html.

We will be mainly focusing on the following parameters when we build our model 
from our sample training corpus:

•	 size: This parameter is used to set the size or dimension for the 
word vectors and can range from tens to thousands. You can try 
out various dimensions to see which gives the best result.

•	 window: This parameter is used to set the context or window size. 
which specifies the length of the window of words that should be 
considered for the algorithm to take into account as context when 
training.

•	 min_count: This parameter specifies the minimum word count 
needed across the corpus for the word to be considered in the 
vocabulary. This helps in removing very specific words that may 
not have much significance because they occur very rarely in the 
documents.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://radimrehurek.com/gensim/models/word2vec.html
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•	 sample: This parameter is used to downsample effects of 
occurrence of frequent words. Values between 0.01 and 0.0001 are 
usually ideal.

Once we build a model, we will define and implement two techniques of combining 
word vectors together in text documents based on certain weighing schemes. We will 
implement two techniques mentioned as follows.

•	 Averaged word vectors

•	 TF-IDF weighted word vectors

Let us start the feature-extraction process by building our word2vec model on our 
sample training corpus before going into further implementations. The following code 
snippet shows how:

import gensim
import nltk

# tokenize corpora
TOKENIZED_CORPUS = [nltk.word_tokenize(sentence)
                    for sentence in CORPUS]
tokenized_new_doc = [nltk.word_tokenize(sentence)
                    for sentence in new_doc]                        

# build the word2vec model on our training corpus
model = gensim.models.Word2Vec(TOKENIZED_CORPUS, size=10, window=10,
                               min_count=2, sample=1e-3)

As you can see, we have built the model using the parameters described earlier; you 
can play around with these and also look at other parameters from the documentation to 
change the architecture type, number of workers, and so on. Now that we have our model 
ready, we can start implementing our feature extraction techniques.

Averaged Word Vectors
The preceding model creates a vector representation for each word in the vocabulary. We 
can access them by just typing in the following code:

In [430]: print model['sky']
[ 0.01608407 -0.04819566  0.04227461 -0.03011346  0.0254148   0.01728328
  0.0155535   0.00774884 -0.02752112  0.01646519]

In [431]: print model['blue']
[-0.0472235   0.01662185 -0.01221706 -0.04724348 -0.04384995  0.00193343
 -0.03163504 -0.03423524  0.02661656  0.03033725]

Each word vector is of length 10 based on the size parameter specified earlier. But 
when we deal with sentences and text documents, they are of unequal length, and we 
must carry out some form of combining and aggregation operations to make sure the 
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number of dimensions of the final feature vectors are the same, regardless of the length of 
the text document, number of words, and so on. In this technique, we will use an average 
weighted word vectorization scheme, where for each text document we will extract all 
the tokens of the text document, and for each token in the document we will capture the 
subsequent word vector if present in the vocabulary. We will sum up all the word vectors 
and divide the result by the total number of words matched in the vocabulary to get a 
final resulting averaged word vector representation for the text document. This can be 
mathematically represented using the equation

AWV D
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( ) =
( )å

1

where AVW(D) is the averaged word vector representation for document D, containing 
words w

1
, w

2
, …, w

n
, and wv(w) is the word vector representation for the word w.

The following snippet shows the pseudocode for the algorithm just described:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
matched_word_count := 0
vector := []

for word in words:
        if word in vocabulary:
                vector := vector + model[word]
                matched_word_count :=  matched_word_count + 1

averaged_word_vector := vector / matched_word_count

That snippet shows the flow of operations in a better way that is easier to understand.
We will now implement our algorithm in Python using the following code snippet:

import numpy as np    

# define function to average word vectors for a text document    
def average_word_vectors(words, model, vocabulary, num_features):

    feature_vector = np.zeros((num_features,),dtype="float64")
    nwords = 0.

    for word in words:
        if word in vocabulary:
            nwords = nwords + 1.
            feature_vector = np.add(feature_vector, model[word])



Chapter 4 ■ text ClassifiCation

190

    if nwords:
        feature_vector = np.divide(feature_vector, nwords)

    return feature_vector

# generalize above function for a corpus of documents  
def averaged_word_vectorizer(corpus, model, num_features):
    vocabulary = set(model.index2word)
     features = [average_word_vectors(tokenized_sentence, model, vocabulary, 

num_features)
                    for tokenized_sentence in corpus]
    return np.array(features)

The average_word_vectors() function must seem familiar to you—it is the concrete 
implementation of our algorithm shown using our pseudocode earlier. We also create a 
generic function averaged_word_vectorizer() to perform averaging of word vectors for 
a corpus of documents. The following snippet shows our function in action on our sample 
corpora:

# get averaged word vectors for our training CORPUS
In [445]: avg_word_vec_features = averaged_word_vectorizer(corpus=TOKENIZED_
CORPUS,
     ...:                                                  model=model,
     ...:                                                  num_features=10)
     ...: print np.round(avg_word_vec_features, 3)
[[ 0.006 -0.01   0.015 -0.014  0.004 -0.006 -0.024 -0.007 -0.001  0.   ]
 [-0.008 -0.01   0.021 -0.019 -0.002 -0.002 -0.011  0.002  0.003 -0.001]
 [-0.003 -0.007  0.008 -0.02  -0.001 -0.004 -0.014 -0.015  0.002 -0.01 ]
 [-0.047  0.017 -0.012 -0.047 -0.044  0.002 -0.032 -0.034  0.027  0.03 ]]

# get averaged word vectors for our test new_doc
In [447]: nd_avg_word_vec_features = averaged_word_
vectorizer(corpus=tokenized_new_doc,
     ...:                                                     model=model,
     ...:                                                      num_

features=10)
     ...: print np.round(nd_avg_word_vec_features, 3)
[[-0.016 -0.016  0.015 -0.039 -0.009  0.01  -0.008 -0.013  0.     0.023]]

From the preceding outputs, you can see that we have uniformly sized averaged 
word vectors for each document in the corpus, and these feature vectors can be used later 
for classification by feeding it to the ML algorithms.

TF-IDF Weighted Averaged Word Vectors
Our previous vectorizer simply sums up all the word vectors pertaining to any document 
based on the words in the model vocabulary and calculates a simple average by dividing 
with the count of matched words. This section introduces a new and novel technique 
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of weighing each matched word vector with the word TF-TDF score and summing up 
all the word vectors for a document and dividing it by the sum of all the TF-IDF weights 
of the matched words in the document. This would basically give us a TF-IDF weighted 
averaged word vector for each document.

This can be mathematically represented using the equation

TWA D
wv w tfidf w

n

n

( ) =
( )´ ( )å

1

where TWA(D) is the TF-IDF weighted averaged word vector representation for document 
D, containing wordsw

1
, w

2
, …, w

n
, where wv(w) is the word vector representation and 

tfidf(w) is the TF-IDF weight for the wordw. The following snippet shows the pseudocode 
for this algorithm:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
tfidfs := [tfidf(word) for each word in words]
matched_word_wts := 0
vector := []

for word in words:
        if word in vocabulary:
                word_vector := model[word]
                weighted_word_vector := tfidfs[word] x word_vector
                vector := vector + weighted_word_vector
                matched_word_wts :=  matched_word_wts + tfidfs[word]

tfidf_wtd_avgd_word_vector := vector / matched_word_wts

That pseudocode gives structure to our algorithm and shows how to implement the 
algorithm from the mathematical formula we defined earlier.

The following code snippet implements this algorithm in Python so we can use it for 
feature extraction:

# define function to compute tfidf weighted averaged word vector for a document
def tfidf_wtd_avg_word_vectors(words, tfidf_vector, tfidf_vocabulary, model, 
num_features):

    word_tfidfs = [tfidf_vector[0, tfidf_vocabulary.get(word)]
                   if tfidf_vocabulary.get(word)
                   else 0 for word in words]    
     word_tfidf_map = {word:tfidf_val for word, tfidf_val in zip(words, word_

tfidfs)}

    feature_vector = np.zeros((num_features,),dtype="float64")
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    vocabulary = set(model.index2word)
    wts = 0.
    for word in words:
        if word in vocabulary:
            word_vector = model[word]
            weighted_word_vector = word_tfidf_map[word] * word_vector
            wts = wts + word_tfidf_map[word]
            feature_vector = np.add(feature_vector, weighted_word_vector)
    if wts:
        feature_vector = np.divide(feature_vector, wts)

    return feature_vector

# generalize above function for a corpus of documents    
def tfidf_weighted_averaged_word_vectorizer(corpus, tfidf_vectors,
                                   tfidf_vocabulary, model, num_features):

    docs_tfidfs = [(doc, doc_tfidf)
                   for doc, doc_tfidf
                   in zip(corpus, tfidf_vectors)]
     features = [tfidf_wtd_avg_word_vectors(tokenized_sentence, tfidf, tfidf_

vocabulary,
                                   model, num_features)
                    for tokenized_sentence, tfidf in docs_tfidfs]
    return np.array(features)

The tfidf_wtd_avg_word_vectors() function helps us in getting the TF-IDF 
weighted averaged word vector representation for a document. We also create a 
corresponding generic function tfidf_weighted_averaged_word_vectorizer() to 
perform TF-IDF weighted averaging of word vectors for a corpus of documents. We 
can see our implemented function in action on our sample corpora using the following 
snippet:

# get tfidf weights and vocabulary from earlier results and compute result
In [453]: corpus_tfidf = tdidf_features
     ...: vocab = tfidf_vectorizer.vocabulary_
     ...: wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=TOKENIZED_CORPUS, tfidf_vectors=corpus_tfidf,
     ...:                               tfidf_vocabulary=vocab, model=model, 

num_features=10)
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     ...: print np.round(wt_tfidf_word_vec_features, 3)
[[ 0.011 -0.011  0.014 -0.011  0.007 -0.007 -0.024 -0.008 -0.004 -0.004]
 [ 0.    -0.014  0.028 -0.014  0.004 -0.003 -0.012  0.011 -0.001 -0.002]
 [-0.001 -0.008  0.007 -0.019  0.001 -0.004 -0.012 -0.018  0.001 -0.014]
 [-0.047  0.017 -0.012 -0.047 -0.044  0.002 -0.032 -0.034  0.027  0.03 ]]

# compute avgd word vector for test new_doc
In [454]: nd_wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=tokenized_new_doc, tfidf_vectors=nd_tfidf, tfidf_
vocabulary=vocab, model=model, num_features=10)
     ...: print np.round(nd_wt_tfidf_word_vec_features, 3)  
[[-0.012 -0.019  0.018 -0.038 -0.006  0.01  -0.006 -0.011 -0.003  0.023]]

From the preceding results, you can see how we can converted each document 
into TF-IDF weighted averaged numeric vectors. We also used our TF-IDF weights 
and vocabulary, obtained earlier when we implemented TF-IDF–based feature vector 
extraction from documents.

Now you have a good grasp on how to extract features from text data that can be used 
for training a classifier.

Classification Algorithms
Classification algorithms are supervised ML algorithms that are used to classify, 
categorize, or label data points based on what it has observed in the past. Each 
classification algorithm, being a supervised learning algorithm, requires training data. 
This training data consists of a set of training observations where each observation is a 
pair consisting of an input data point, usually a feature vector like we observed earlier, 
and a corresponding output outcome for that input observation. There are mainly three 
processes classification algorithms go through:

•	 Training is the process where the supervised learning algorithm 
analyzes and tries to infer patterns out of training data such that 
it can identify which patterns lead to a specific outcome. These 
outcomes are often known as the class labels/class variables/
response variables. We usually carry out the process of feature 
extraction or feature engineering to derive meaningful features 
from the raw data before training. These feature sets are fed to 
an algorithm of our choice, which then tries to identify and learn 
patterns from them and their corresponding outcomes. The 
result is an inferred function known as a model or a classification 
model. This model is expected to be generalized enough from 
learning patterns in the training set such that it can predict the 
classes or outcomes for new data points in the future.
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•	 Evaluation involves trying to test the prediction performance 
of our model to see how well it has trained and learned on the 
training dataset. For this we usually use a validation dataset and 
test the performance of our model by predicting on that dataset 
and testing our predictions against the actual class labels, also 
called as the ground truth. Often we also use cross-validation, 
where the data is divided into folds and a chunk of it is used 
for training, with the remainder used to validate the trained 
model. Note that we also tune the model based on the validation 
results to get to an optimal configuration that yields maximum 
accuracy and minimum error. We also evaluate our model against 
a holdout or test dataset, but we never tune our model against 
that dataset because that would lead to it being biased or overfit 
against very specific features from the dataset. The holdout or test 
dataset is something of a representative sample of what new, real 
data samples might look like for which the model will generate 
predictions and how it might perform on these new data samples. 
Later we will look at various metrics that are typically used to 
evaluate and measure model performance.

•	 Tuning, also known as hyperparameter tuning or optimization, 
is where we focus on trying to optimize a model to maximize its 
prediction power and reduce errors. Each model is at heart a 
mathematical function with several parameters that determine 
model complexity, learning capability, and so on. These are 
known as hyperparameters because they cannot be learned 
directly from data and must be set prior to running and training 
the model. Hence, the process of choosing an optimal set of 
model hyperparameters such that the performance of the model 
yields good prediction accuracy is known as model tuning, and we 
can carry it out in various ways, including randomized search and 
grid search. We will not be covering this in our implementations 
since this is more inclined towards core machine learning and is 
out of our current scope as the models we will be building work 
well with default hyperparameter configurations. But there are 
plenty of resources on the Web if you are interested in model 
tuning and optimization.

There are various types of classification algorithms, but we will not be venturing 
into each one in detail. Our focus remains text classification, and I do not want to bore 
everyone with excessive mathematical derivations for each algorithm. However, I will 
touch upon a couple of algorithms that are quite effective for text classification and 
try to explain them, keeping the mathematical formulae to the base essentials. These 
algorithms are the following:

•	 Multinomial Naïve Bayes

•	 Support vector machines
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There are also several other algorithms besides these you can look up, including 
logistic regression, decision trees, and neural networks. And ensemble techniques use 
a collection or ensemble of models to learn and predict outcomes that include random 
forests and gradient boosting, but they often don’t perform very well for text classification 
because they are very prone to overfitting. I recommend you be careful if you plan on 
experimenting with them. Besides these, deep learning–based techniques have also 
recently become popular. They use multiple hidden layers and combine several neural 
network models to build a complex classification model.

We will now briefly look at some of the concepts surrounding multinomial naïve 
Bayes and support vector machines before using them for our classification problem.

Multinomial Naïve Bayes
This algorithm is a special case of the popular naïve Bayes algorithm, which is used 
specifically for prediction and classification tasks where we have more than two classes. 
Before looking at multinomial naïve Bayes, let us look at the definition and formulation of 
the naïve Bayes algorithm. The naïve Bayes algorithm is a supervised learning algorithm 
that puts into action the very popular Bayes’ theorem. However, there is a “naïve” 
assumption here that each feature is independent of the others. Mathematically we can 
formulate this as follows: Given a response class variable y and a set of n features in the 
form of a feature vector {x
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where  i ranges from 1 to n. In simple terms, this can be written as
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This means that under the previous assumptions of independence among the 
features where each feature is conditionally independent of every other feature, the 
conditional distribution over the class variable which is to be predicted, y can be 
represented using the following mathematical equation as 
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where the evidence measure, Z p x= ( )  is a constant scaling factor dependent on the 
feature variables. From this equation, we can build the naïve Bayes classifier by 
combining it with a rule known as the MAP decision rule, which stands for maximum a 
posteriori. Going into the statistical details would be impossible in the current scope, but 
by using it, the classifier can be represented as a mathematical function that can assign a 
predicted class label ŷ Ck=  for some k using the following representation:
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This classifier is often said to be simple, quite evident from its name and also 
because of several assumptions we make about our data and features that might not 
be so in the real world. Nevertheless, this algorithm still works remarkably well in 
many use cases related to classification, including multi-class document classification, 
spam filtering, and so on. They can train really fast compared to other classifiers and 
also work well even when we do not have sufficient training data. Models often do not 
perform well when they have a lot of features, and this phenomenon is known as the 
curse of dimensionality. Naïve Bayes takes care of this problem by decoupling the class 
variable–related conditional feature distributions, thus leading to each distribution being 
independently estimated as a single dimension distribution.

Multinomial naïve Bayes is an extension of the preceding algorithm for predicting 
and classifying data points, where the number of distinct classes or outcomes is more 
than two. In this case the feature vectors are usually assumed to be word counts from the 
Bag of Words model, but TF-IDF–based weights will also work. One limitation is that 
negative weight-based features can‘t be fed into this algorithm. This distribution can be 
represented as p p p py y y yn= ¼{ }1 2, , ,  for each class label y, and the total number of 

features is n, which could be represented as the total vocabulary of distinct words or 
terms in text analytics. From the preceding equation, p P x yyi i= ( )|  represents the 

probability of feature i in any observation sample that has an outcome or classy. The 
parameter p

y
 can be estimated with a smoothened version of maximum likelihood 

estimation (with relative frequency of occurrences), and represented as

p̂
F

F nyi
yi

y

=
+
+

a
a

where F xyi
x TD

i=
Î
å  is the frequency of occurrence for the feature i in a sample for class 
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 is the total frequency of all features for 

the class label y. There is some amount of smoothening one with the help of priors a ³ 0 , 
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which accounts for the features that are not present in the learning data points and helps 
in getting rid of zero-probability–related issues. Some specific settings for this parameter 
are used quite often. The value of a =1  is known as Laplace smoothing, and a <1  is 
known as Lidstone smoothing. The scikit-learn library provides an excellent 
implementation for multinomial naïve Bayes in the class MultinomialNB, which we will 
be leveraging when we build our text classifier later on.

Support Vector Machines
In machine learning, support vector machines (SVM) are supervised learning algorithms 
used for classification, regression, novelty, and anomaly or outlier detection. Considering 
a binary classification problem, if we have training data such that each data point or 
observation belongs to a specific class, the SVM algorithm can be trained based on this 
data such that it can assign future data points into one of the two classes. This algorithm 
represents the training data samples as points in space such that points belonging to 
either class can be separated by a wide gap between them, called a hyperplane, and 
the new data points to be predicted are assigned classes based on which side of this 
hyperplane they fall into. This process is for a typical linear classification process. 
However, SVM can also perform non-linear classification by an interesting approach 
known as a kernel trick, where kernel functions are used to operate on high-dimensional 
feature spaces that are non-linear separable. Usually, inner products between data points 
in the feature space help achieve this. 

The SVM algorithm takes in a set of training data points and constructs a hyperplane 
of a collection of hyperplanes for a high dimensional feature space. The larger the 
margins of the hyperplane, the better the separation, so this leads to lower generalization 
errors of the classifier. Let us represent this formally and mathematically. Consider a 
training dataset of n data points 

 

x y x yn n1 1, , , ,( ) ¼ ( )  such that the class variable 

yiÎ -{ }1 1,  where each value indicates the class corresponding to the point 


xi . Each data 

point 


xi  is a feature vector. The objective of the SVM algorithm is to find the max-margin 

hyperplane that separates the set of data points having class label of yi =1  from the set of 

data points having class label yi = -1  such that the distance between the hyperplane and 

sample data points from either class nearest to it is maximized. These sample data points 
are known as the support vectors. Figure 4-3, courtesy of Wikipedia, shows what the 
vector space with the hyperplane looks like.
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You can clearly see the hyperplane and the support vectors in the figure. The 
hyperplane can be defined as the set of points 



x  which satisfy w x b
��� ���

× + = 0  where 


w  is 

the normal vector to the hyperplane, as shown in Figure 4-3, and b

w
�� ���  gives us the offset 

of the hyperplane from the origin toward the support vectors highlighted in the figure. 
There are two main types of margins that help in separating out the data points belonging 
to the different classes.

When the data is linearly separable, as in Figure 4-3, we can have hard margins that 
are basically represented by the two parallel hyperplanes depicted by the dotted lines, 
which help in separating the data points belonging to the two different classes. This is 
done taking into account that the distance between them is as large as possible. The 
region bounded by these two hyperplanes forms the margin with the max-margin 
hyperplane being in the middle. These hyperplanes are shown in the figure having the 
equations w x b

��� ���
× + =1  andw x b

��� ���
× + = -1 .

Often the data points are not linearly separable, for which we can use the hinge loss 
function, which can be represented as max( ,0 1- × +( )y w x bi i

��� � ��
 and in fact the scikit-

learn implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier where 
we will use the 'hinge' loss function (set by default) defined previously to optimize and 
build the model. This loss function helps us in getting the soft margins and is often known 
as a soft-margin SVM.

Figure 4-3. Two-class SVM depicting hyperplane and support vectors (courtesy: 
Wikipedia)
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For a multi-class classification problem, if we have n classes, for each class a binary 
classifier is trained and learned that helps in separating between each class and the other 
n-1 classes. During prediction, the scores (distances to hyperplanes) for each classifier 
are computed, and the maximum score is chosen for selecting the class label. Also often 
stochastic gradient descent is used for minimizing the loss function in SVM algorithms. 
Figure 4-4 shows how three classifiers are trained in total for a three-class SVM problem 
over the very popular iris dataset. This figure is built using a scikit-learn model and is 
obtained from the official documentation available at http://scikit-learn.org.

In Figure 4-4 you can clearly see that a total of three SVM classifiers have been 
trained for each of the three classes and are then combined for the final predictions 
so that data points belonging to each class can be labeled correctly. There are a lot 
of resources and books dedicated entirely towards supervised ML and classification. 
Interested readers should check them out to gain more in-depth knowledge on how these 
techniques work and how they can be applied to various problems in analytics.

Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics 
lifecycle, but even more important is knowing how well these models are performing. 
Performance of classification models is usually based on how well they predict outcomes 
for new data points. Usually this performance is measured against a test or holdout 
dataset that consists of data points which was not used to influence or train the classifier 
in any way. This test dataset usually has several observations and corresponding labels. 

Figure 4-4. Multi-class SVM on three classes (courtesy: scikit-learn.org)

http://scikit-learn.org/
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We extract features in the same way as it was followed when training the model. These 
features are fed to the already trained model, and we obtain predictions for each data 
point. These predictions are then matched with the actual labels to see how well or how 
accurately the model has predicted.

Several metrics determine a model’s prediction performance, but we will mainly 
focus on the following metrics:

•	 Accuracy

•	 Precision

•	 Recall

•	 F1 score

Let us look at a practical example to see how these metrics can be computed. 
Consider a binary classification problem of classifying emails as either 'spam' or 'ham'. 
Assuming we have a total of 20 emails, for which we already have the actual manual 
labels, we pass it through our built classifier to get predicted labels for each email. This 
gives us 20 predicted labels. Now we want to measure the classifier performance by 
comparing each prediction with its actual label. The following code snippet sets up the 
initial dependencies and the actual and predicted labels:

from sklearn import metrics
import numpy as np
import pandas as pd
from collections import Counter

actual_labels = ['spam', 'ham', 'spam', 'spam', 'spam',
                 'ham',  'ham', 'spam', 'ham',  'spam',
                 'spam', 'ham', 'ham',  'ham',  'spam',
                 'ham',  'ham', 'spam', 'spam', 'ham']

predicted_labels = ['spam', 'spam', 'spam', 'ham',  'spam',
                    'spam', 'ham',  'ham',  'spam', 'spam',
                    'ham',  'ham',  'spam', 'ham',  'ham',
                    'ham',  'spam', 'ham',  'spam', 'spam']

ac = Counter(actual_labels)                    
pc = Counter(predicted_labels)  

Let us now see the total number of emails belonging to either 'spam' or 'ham' based 
on the actual labels and our predicted labels using the following snippet:

In [517]: print 'Actual counts:', ac.most_common()
     ...: print 'Predicted counts:', pc.most_common()
Actual counts: [('ham', 10), ('spam', 10)]
Predicted counts: [('spam', 11), ('ham', 9)]
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Thus we see that there are a total of 10 emails that are 'spam' and 10 emails that are 
'ham'. Our classifier has predicted a total of 11 emails as 'spam' and 9 as 'ham'. How 
do we now compare which email was actually 'spam' and what it was classified as? A 
confusion matrix is an excellent way to measure this performance across the two classes. 
A confusion matrix is a tabular structure that helps visualize the performance of classifiers. 
Each column in the matrix represents classified instances based on predictions, and each 
row of the matrix represents classified instances based on the actual class labels. (It can 
be vice-versa if needed.) We usually have a class label defined as the positive class, which 
could be typically the class of our interest. Figure 4-5 shows a typical two-class confusion 
matrix where (p) denotes the positive class and (n) denotes the negative class.

You can see some terms in the matrix depicted in Figure 4-5. True Positive (TP) 
indicates the number of correct hits or predictions for our positive class. False Negative 
(FN) indicates the number of instances we missed for that class by predicting it falsely as 
the negative class. False Positive (FP) is the number of instances we predicted wrongly as 
the positive class when it was actually not. True Negative (TN) is the number of instances 
we correctly predicted as the negative class.

The following code snippet constructs a confusion matrix with our data:

In [519]: cm = metrics.confusion_matrix(y_true=actual_labels,
     ...:                          y_pred=predicted_labels,
     ...:                          labels=['spam','ham'])
     ...: print pd.DataFrame(data=cm,
     ...:                    columns=pd.MultiIndex(levels=[['Predicted:'],
     ...:                                                  ['spam','ham']],
     ...:                                          labels=[[0,0],[0,1]]),
     ...:                    index=pd.MultiIndex(levels=[['Actual:'],

Figure 4-5. A confusion matrix from a two-class classification problem
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     ...:                                                ['spam','ham']],
     ...:                                        labels=[[0,0],[0,1]]))
             Predicted:    
                   spam ham
Actual: spam          5   5
        ham           6   4

We now get a confusion matrix similar to the figure. In our case, let us consider 
'spam' to be the positive class. We can now define the preceding metrics in the following 
snippet:

positive_class = 'spam'

true_positive = 5.
false_positive = 6.
false_negative = 5.
true_negative = 4.

Now that we have the necessary values from the confusion matrix, we can calculate 
our four performance metrics one by one. We have taken the values from earlier as 
floats to help with computations involving divisions. We will use the metrics module 
from scikit-learn, which is very powerful and helps in computing these metrics with a 
single function. And we will define and compute these metrics manually so that you can 
understand them clearly and see what goes on behind the scenes of those functions from 
the metrics module.

Accuracy is defined as the overall accuracy or proportion of correct predictions of the 
model, which can be depicted by the formula

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

where we have our correct predictions in the numerator divided by all the outcomes in 
the denominator. The following snippet shows the computations for accuracy:

In [522]: accuracy = np.round(
     ...:                 metrics.accuracy_score(y_true=actual_labels,
     ...:                                        y_pred=predicted_labels),2)
     ...: accuracy_manual = np.round(
     ...:                     (true_positive + true_negative) /
     ...:                       (true_positive + true_negative +
     ...:                        false_negative + false_positive),2)
     ...: print 'Accuracy:', accuracy
     ...: print 'Manually computed accuracy:', accuracy_manual
Accuracy: 0.45
Manually computed accuracy: 0.45
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Precision is defined as the number of predictions made that are actually correct 
or relevant out of all the predictions based on the positive class. This is also known as 
positive predictive value and can be depicted by the formula

Precision
TP

TP FP
=

+

where we have our correct predictions in the numerator for the positive class divided 
by all the predictions for the positive class including the false positives. The following 
snippet shows the computations for precision:

In [523]: precision = np.round(
     ...:                 metrics.precision_score(y_true=actual_labels,
     ...:                                         y_pred=predicted_labels,
     ...:                                          pos_label=positive_

class),2)
     ...: precision_manual = np.round(
     ...:                         (true_positive) /
     ...:                         (true_positive + false_positive),2)
     ...: print 'Precision:', precision
     ...: print 'Manually computed precision:', precision_manual
Precision: 0.45
Manually computed precision: 0.45

Recall is defined as the number of instances of the positive class that were correctly 
predicted. This is also known as hit rate, coverage, or sensitivity and can be depicted by 
the formula

Recall
TP

TP FN
=

+

where we have our correct predictions for the positive class in the numerator divided by 
correct and missed instances for the positive class, giving us the hit rate. The following 
snippet shows the computations for recall:

In [524]: recall = np.round(
     ...:             metrics.recall_score(y_true=actual_labels,
     ...:                                  y_pred=predicted_labels,
     ...:                                  pos_label=positive_class),2)
     ...: recall_manual = np.round(
     ...:                     (true_positive) /
     ...:                     (true_positive + false_negative),2)
     ...: print 'Recall:', recall
     ...: print 'Manually computed recall:', recall_manual
Recall: 0.5
Manually computed recall: 0.5
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F1 score is another accuracy measure that is computed by taking the harmonic mean 
of the precision and recall and can be represented as follows:

F Score
Precision Recall

Precision Recall
1

2
=

´ ´
+

We can compute the same using the following code snippet:

In [526]: f1_score = np.round(
     ...:                 metrics.f1_score(y_true=actual_labels,
     ...:                                  y_pred=predicted_labels,
     ...:                                  pos_label=positive_class),2)
     ...: f1_score_manual = np.round(
     ...:                     (2 * precision * recall) /
     ...:                     (precision + recall),2)
     ...: print 'F1 score:', f1_score
     ...: print 'Manually computed F1 score:', f1_score_manual  
F1 score: 0.48
Manually computed F1 score: 0.47

This should give you a pretty good idea about the main metrics used most often 
when evaluating classification models. We will be measuring the performance of our 
models using the very same metrics, and you may remember seeing these metrics from 
Chapter 3, when we were building some of our taggers and parsers.

Building a Multi-Class Classification System
We have gone through all the steps necessary for building a classification system, from 
normalization to feature extraction, model building, and evaluation. In this section, we 
will be putting everything together and applying it on some real-world data to build a 
multi-class text classification system. For this, we will be using the 20 newsgroups dataset 
available for download using scikit-learn. The 20 newsgroups dataset comprises 
around 18,000 newsgroups posts spread across 20 different categories or topics, thus 
making this a 20-class classification problem! Remember the more classes, the more 
complex or difficult trying to build an accurate classifier gets. It is recommended that 
you remove the headers, footers, and quotes from the text documents to prevent the 
model from overfitting or not generalizing well due to certain specific headers or email 
addresses, so we will make sure we take care of this. We will also remove documents 
that are empty or have no content after removing these three items because it would be 
pointless to try and extract features from empty documents.

Let us start with loading the necessary dataset and defining functions for building 
the training and testing datasets:

from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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def get_data():
    data = fetch_20newsgroups(subset='all',
                              shuffle=True,
                              remove=('headers', 'footers', 'quotes'))
    return data

def prepare_datasets(corpus, labels, test_data_proportion=0.3):
    train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
                                                        test_size=0.33, 
random_state=42)
    return train_X, test_X, train_Y, test_Y

def remove_empty_docs(corpus, labels):
    filtered_corpus = []
    filtered_labels = []
    for doc, label in zip(corpus, labels):
        if doc.strip():
            filtered_corpus.append(doc)
            filtered_labels.append(label)

    return filtered_corpus, filtered_labels

We can now get the data, see the total number of classes in our dataset, and split our 
data into training and test datasets using the following snippet (in case you do not have 
the data downloaded, feel free to connect to the Internet and take some time to download 
the complete corpus):

# get the data
In [529]: dataset = get_data()

# print all the classes
In [530]: print dataset.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.
pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 
'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 
'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.
christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.
misc', 'talk.religion.misc']

# get corpus of documents and their corresponding labels
In [531]: corpus, labels = dataset.data, dataset.target
     ...: corpus, labels = remove_empty_docs(corpus, labels)

# see sample document and its label index, name
In [548]: print 'Sample document:', corpus[10]
     ...: print 'Class label:',labels[10]
     ...: print 'Actual class label:', dataset.target_names[labels[10]]
Sample document: the blood of the lamb.
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This will be a hard task, because most cultures used most animals
for blood sacrifices. It has to be something related to our current
post-modernism state. Hmm, what about used computers?

Cheers,
Kent
Class label: 19
Actual class label: talk.religion.misc

# prepare train and test datasets
In [549]: train_corpus, test_corpus, train_labels, test_labels = prepare_
datasets(corpus,
     ...:                                                      labels, test_
data_proportion=0.3)

You can see from the preceding snippet how a sample document and label looks. 
Each document has its own class label, which is one of the 20 topics it is categorized into. 
The labels obtained are numbers, but we can easily map it back to the original category 
name if needed using the preceding snippet. We also split our data into train and test 
datasets, where the test dataset is 30 percent of the total data. We will build our model on 
the training data and test its performance on the test data. In the following snippet, we 
will use the normalization module we built earlier to normalize our datasets:

from normalization import normalize_corpus

norm_train_corpus = normalize_corpus(train_corpus)
norm_test_corpus = normalize_corpus(test_corpus)  

Remember, a lot of normalization steps take place that we implemented earlier 
for each document in the corpora, so it may take some time to complete. Once we have 
normalized documents, we will use our feature extractor module built earlier to start 
extracting features from our documents. We will build models for Bag of Words, TF-IDF, 
averaged word vector, and TF-IDF weighted averaged word vector features separately and 
compare their performances.

The following snippet extracts necessary features based on the different techniques:

from feature_extractors import bow_extractor, tfidf_extractor
from feature_extractors import averaged_word_vectorizer
from feature_extractors import tfidf_weighted_averaged_word_vectorizer
import nltk
import gensim

# bag of words features
bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus)  
bow_test_features = bow_vectorizer.transform(norm_test_corpus)
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# tfidf features
tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)  
tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)    

# tokenize documents
tokenized_train = [nltk.word_tokenize(text)
                   for text in norm_train_corpus]
tokenized_test = [nltk.word_tokenize(text)
                   for text in norm_test_corpus]  
# build word2vec model                  
model = gensim.models.Word2Vec(tokenized_train,
                               size=500,
                               window=100,
                               min_count=30,
                               sample=1e-3)                  

# averaged word vector features
avg_wv_train_features = averaged_word_vectorizer(corpus=tokenized_train,
                                                 model=model,
                                                 num_features=500)                  
avg_wv_test_features = averaged_word_vectorizer(corpus=tokenized_test,
                                                model=model,
                                                num_features=500)                                                

# tfidf weighted averaged word vector features
vocab = tfidf_vectorizer.vocabulary_
tfidf_wv_train_features = 
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_train, 

tfidf_vectors=tfidf_train_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)
tfidf_wv_test_features =  
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_test,

tfidf_vectors=tfidf_test_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)

Once we extract all the necessary features from our text documents using the preceding 
feature extractors, we define a function that will be useful for evaluation our classification 
models based on the four metrics discussed earlier, as shown in the following snippet:

from sklearn import metrics
import numpy as np

def get_metrics(true_labels, predicted_labels):
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    print 'Accuracy:', np.round(
                        metrics.accuracy_score(true_labels,
                                               predicted_labels),
                        2)
    print 'Precision:', np.round(
                        metrics.precision_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)
    print 'Recall:', np.round(
                        metrics.recall_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)
    print 'F1 Score:', np.round(
                        metrics.f1_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)

We now define a function that trains the model using an ML algorithm and the 
training data, performs predictions on the test data using the trained model, and then 
evaluates the predictions using the preceding function to give us the model performance:

def train_predict_evaluate_model(classifier,
                                 train_features, train_labels,
                                 test_features, test_labels):
    # build model    
    classifier.fit(train_features, train_labels)
    # predict using model
    predictions = classifier.predict(test_features)
    # evaluate model prediction performance  
    get_metrics(true_labels=test_labels,
                predicted_labels=predictions)
    return predictions

We now import two ML algorithms (discussed in detail earlier) so that we can start 
building our models with them based on our extracted features. We will be using scikit-
learn as mentioned to import the necessary classification algorithms, saving us the time 
and effort that would have been spent otherwise reinventing the wheel:

from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier

mnb = MultinomialNB()
svm = SGDClassifier(loss='hinge', n_iter=100)
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Now we will train, predict, and evaluate models for all the different types of features 
using both multinomial naïve Bayes and support vector machines using the following 
snippet:

# Multinomial Naive Bayes with bag of words features
In [558]: mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
     ...:                                             train_features=bow_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=bow_test_

features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.67
Precision: 0.72
Recall: 0.67
F1 Score: 0.65

# Support Vector Machine with bag of words features
In [559]: svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
     ...:                                             train_features=bow_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=bow_test_

features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.61
Precision: 0.66
Recall: 0.61
F1 Score: 0.62

# Multinomial Naive Bayes with tfidf features                                          
In [560]: mnb_tfidf_predictions = train_predict_evaluate_
model(classifier=mnb,
     ...:                                             train_features=tfidf_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=tfidf_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.72
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Precision: 0.78
Recall: 0.72
F1 Score: 0.7

# Support Vector Machine with tfidf features
In [561]: svm_tfidf_predictions = train_predict_evaluate_
model(classifier=svm,
     ...:                                             train_features=tfidf_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=tfidf_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.77
Precision: 0.77
Recall: 0.77
F1 Score: 0.77

# Support Vector Machine with averaged word vector features
In [562]: svm_avgwv_predictions = train_predict_evaluate_
model(classifier=svm,
     ...:                                             train_features=avg_wv_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=avg_wv_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.55
Precision: 0.55
Recall: 0.55
F1 Score: 0.52

# Support Vector Machine with tfidf weighted averaged word vector features
In [563]: svm_tfidfwv_predictions = train_predict_evaluate_model(classifier
=svm,                  
     ...:                        
train_features=tfidf_wv_train_features,
     ...:                        
train_labels=train_labels, test_features=tfidf_wv_test_features,
     ...:                       test_labels=test_labels)
Accuracy: 0.53
Precision: 0.55
Recall: 0.53
F1 Score: 0.52
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We built a total of six models using various types of extracted features and evaluated 
the performance of the model on the test data. From the preceding results, we can see 
that the SVM-based model built using TF-IDF features yielded the best results of 77 
percent accuracy as well as precision, recall, and F1 score. We can build the confusion 
matrix for our SVM TF-IDF–based model to get an idea of the classes for which our model 
might not be performing well:

In [597]: import pandas as pd
     ...: cm = metrics.confusion_matrix(test_labels, svm_tfidf_predictions)
     ...: pd.DataFrame(cm, index=range(0,20), columns=range(0,20))  
Out[597]:

From the confusion matrix shown in Figure 4-6, we can see a large number of 
documents for class label 0 that got misclassified to class label 15, and similarly for class 
label 18, many documents got misclassified into class label 16. Many documents for class 
label 19 got misclassified into class label 15. On printing the class label names for them, 
we can observe the following output:

In [600]: class_names = dataset.target_names
     ...: print class_names[0], '->', class_names[15]
     ...: print class_names[18], '->', class_names[16]  
     ...: print class_names[19], '->', class_names[15]
alt.atheism -> soc.religion.christian
talk.politics.misc -> talk.politics.guns
talk.religion.misc -> soc.religion.christian

From the preceding output we can see that the misclassified categories are not vastly 
different from the actual correct category. Christian, religion, and atheism are based on 
some concepts related to the existence of God and religion and possibly have similar 
features. Talks about miscellaneous issues and guns related to politics also must be 

Figure 4-6. 20-class confusion matrix for our SVM based model
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having similar features. We can further analyze and look at the misclassified documents 
in detail using the following snippet (due to space constraints I only include the first few 
misclassified documents in each case):

In [621]: import re
     ...: num = 0
     ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
     ...:     if label == 0 and predicted_label == 15:
     ...:         print 'Actual Label:', class_names[label]
     ...:         print 'Predicted Label:', class_names[predicted_label]
     ...:         print 'Document:-'
     ...:         print re.sub('\n', ' ', document)
     ...:         print
     ...:         num += 1
     ...:         if num == 4:
     ...:             break
     ...:
     ...:
Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
I would like a list of Bible contadictions from those of you who dispite 
being free from Christianity are well versed in the Bible.

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
  They spent quite a bit of time on the wording of the Constitution.  They 
picked words whose meanings implied the intent.  We have already looked in 
the dictionary to define the word.  Isn't this sufficient?   But we were 
discussing it in relation to the death penalty.  And, the Constitution need 
not define each of the words within.  Anyone who doesn't know what cruel is 
can look in the dictionary (and we did).

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
Our Lord and Savior David Keresh has risen!     He has been seen 
alive!         Spread the word!     -----------------------------
-----------------------------------------------------------------

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
  "This is your god" (from John Carpenter's "They Live," natch)  

In [623]: num = 0
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     ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
     ...:     if label == 18 and predicted_label == 16:
     ...:         print 'Actual Label:', class_names[label]
     ...:         print 'Predicted Label:', class_names[predicted_label]
     ...:         print 'Document:-'
     ...:         print re.sub('\n', ' ', document)
     ...:         print
     ...:         num += 1
     ...:         if num == 4:
     ...:             break
     ...:
     ...:
Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
After the initial gun battle was over, they had 50 days to come out 
peacefully. They had their high priced lawyer, and judging by the posts here 
they had some public support. Can anyone come up with a rational explanation 
why the didn't come out (even after they negotiated coming out after the 
radio sermon) that doesn't include the Davidians wanting to commit suicide/
murder/general mayhem?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
Yesterday, the FBI was saying that at least three of the bodies had gunshot 
wounds, indicating that they were shot trying to escape the fire.  Today's 
paper quotes the medical examiner as saying that there is no evidence of 
gunshot wounds in any of the recovered bodies.  At the beginning of this 
siege, it was reported that while Koresh had a class III (machine gun) 
license, today's paper quotes the government as saying, no, they didn't have 
a license.  Today's paper reports that a number of the bodies were found 
with shoulder weapons next to them, as if they had been using them while 
dying -- which doesn't sound like the sort of action I would expect from a 
suicide.  Our government lies, as it tries to cover over its incompetence 
and negligence.  Why should I believe the FBI's claims about anything else, 
when we can see that they are LYING?  This system of government is beyond 
reform.

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
  Well, for one thing most, if not all the Dividians (depending on whether 
they could show they acted in self-defense and there were no illegal 
weapons), could have gone on with their life as they were living it. No one 
was forcing them to give up their religion or even their legal weapons. The 
Dividians had survived a change in leadership before so even if Koresch 
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himself would have been convicted and sent to jail, they still could have 
carried on.   I don't think the Dividians were insane, but I don't see a 
reason for mass suicide (if the fire was intentional set by some of the 
Dividians.) We also don't know that, if the fire was intentionally set from 
inside, was it a generally know plan or was this something only an inner 
circle knew about, or was it something two or three felt they had to do 
with or without Koresch's knowledge/blessing, etc.? I don't know much about 
Masada. Were some people throwing others over? Did mothers jump over with 
their babies in their arms?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
rja@mahogany126.cray.com (Russ Anderson) writes...      The fact is that 
Koresh and his followers involved themselves   in a gun battle to control 
the Mt Carmel complex. That is not   in dispute. From what I remember of the 
trial, the authories    couldn't reasonably establish who fired first, the 
big reason   behind the aquittal. Mitchell S Todd

Thus you can see how to analyze and look at documents that have been misclassified 
and then maybe go back and tune our feature extraction methods by removing certain 
words or weighing words differently to reduce or give prominence.

This brings us to the end of our discussion and implementation of our text 
classification system. Feel free to implement more models using other innovative feature-
extraction techniques or supervised learning algorithms and compare their performance.

Applications and Uses
Text classification and categorization is used in several real-world scenarios and 
applications, including the following:

•	 News articles categorization

•	 Spam filtering

•	 Music or movie genre categorization

•	 Sentiment analysis

•	 Language detection

The possibilities with text data are indeed endless, and with a little effort you can 
apply classification to solve various problems and automate otherwise time-consuming 
operations and scenarios.
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Summary
Text classification is indeed a powerful tool, and we have covered almost all aspects 
related to it in this chapter. We started off our journey with look at the definition and 
scope of text classification. Next, we defined automated text classification as a supervised 
learning problem and looked at the various types of text classification. We also briefly 
covered some ML concepts related to the various types of algorithms. A typical text 
classification system blueprint was also defined to describe the various modules and 
steps involved when building an end-to-end text classifier. Each module in the blueprint 
was then expanded upon. Normalization was touched upon in detail in Chapter 3, and 
we built a normalization module here specially for text classification. Various feature-
extraction techniques were explored in detail, including Bag of Words, TF-IDF, and 
advanced word vectorization techniques.

You should now be clear about not only the mathematical representations and 
concepts but also ways to implement them using our code samples. Various supervised 
learning methods were discussed with focus on multinomial naïve Bayes and support vector 
machines, which work well with text data, and we looked at ways to evaluate classification 
model performance and even implemented those metrics. Finally, we put everything we 
learned together into building a robust 20-class text classification system on real data, 
evaluated various models, and analyzed model performance in detail. We wrapped up our 
discussion by looking at some areas where text classification is used frequently.

We have just scratched the surface of text analytics here with classification. We 
will be looking at more ways to analyze and derive insights from textual data in future 
chapters.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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