
13© Rob Aley 2016
R. Aley, PHP CLI, DOI 10.1007/978-1-4842-2238-6_3

 CHAPTER 3

 Understanding and Using
the CLI SAPI

 As mentioned in the previous chapter, PHP CLI scripting involves using the PHP CLI
SAPI. It’s therefore important to have a good grasp of how to use it, know the options for
configuring and running it, and understand how it differs from the web-based SAPIs you
are used to using. Luckily, the differences are minimal, and many are intuitive.

 What’s Different About the CLI SAPI?
 The following are the main differences between the CLI SAPI and the standard web
 implementation :

• No HTTP headers are written to the output by default. This makes
sense because they hold no meaning in the command line and so
would be just extraneous text printed before your genuine output.
If your output will later be funneled out to a web browser, you will
need to manually add any necessary headers (for instance, by
using the header() PHP function).

• PHP does not change the working directory to that of the PHP
script being executed. To do this manually, use getcwd() and
 chdir() to get and set the current directory. Otherwise, the
current working directory will be that from which you invoked the
script. For instance, if you are currently in /home/rob and you type
 php /home/peter/some_script.php , the working directory used
in PHP will be /home/rob , not /home/peter .

• Any error or warning messages are output in plain text, rather
than HTML-formatted text. If you want HTMLified errors, for
instance, if you are producing static HTML files, you can override
this by setting the html_errors runtime configuration directive to
true in your script using ini_set('html_errors', 1); .

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

14

• PHP implicitly “flushes” all output immediately and doesn’t
buffer by default. Online performance can often be harmed
by sending output straight to a browser, so instead output is
buffered and sent in optimal-sized chunks when the chunk is
full. Offline this is not likely to be an issue, so HTML blocks and
output from constructs such as print and echo are sent to the
shell straightaway. There is no need to use flush() to clear a
buffer when you are waiting for further output. You can still use
PHP’s output buffering functions to capture and control output if
you want; see the “Output Control Functions” section in the PHP
manual for more information.

• There is no execution time limit set. Your script will run
continuously until it exits of its own volition; PHP will not
terminate it even if it hangs. If you want to set a time limit to rein
in misbehaving scripts, you can do so from within the script using
the set_time_limit() function.

• The variables $argc and $argv , which describe any command-
line arguments passed to your script, are automatically set. These
are discussed fully later in this chapter.

• PHP defines the constants STDIN , STDOUT , and STDERR , relating to
the standard streams of the same name, and automatically opens
input/output (I/O) streams for them. These give your application
instant access to “standard input” (STDIN), “standard output”
(STDOUT), and “standard error” (STDERR) streams.

 Further Reading
• “Output Control Functions” section in the PHP manual

• http://www.php.net/manual/en/ref.outcontrol.php

• “Standard streams” (STDIN , STDOUT , STDERR) on Wikipedia

• http://en.wikipedia.org/wiki/Standard_streams

 CLI SAPI Installation
 To use the PHP CLI SAPI, you may need to install it first. Appendix A gives details on
installing (and compiling, where necessary) PHP. However, you may find that it is
already installed if you have PHP installed (often in a folder called sapi/cli in the PHP
program folders), and if not, it is usually available in modern OS software repositories.
(For example, in Ubuntu a package called php5-cli exists and can be installed from any
package manager or via the command line with sudo apt-get install php5-cli .) If it is
installed in the command-line search path, typing php -v on the command line will print
the version details, confirming it is indeed installed.

http://www.php.net/manual/en/ref.outcontrol.php
http://en.wikipedia.org/wiki/Standard_streams

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

15

 PHP Command-Line Options
 The PHP binary will accept a number of command-line options/switches/arguments that
affect its operation. You can see a full list by typing php -h . Although some apply only to
the CGI SAPI (used when there is not a “module” such as the PHP Apache module), the
following are some of the more interesting and common ones used when interacting with
the CLI SAPI:

• -f or --file : This allows you to specify the file name of the
script to be run and is optional. The -f option exists to allow
compatibility with software and scripts such as automation
software, which can programmatically call command-line
programs but require file-name arguments to be formed in
this way. It also allows default file-type handlers to be easily set
on Windows for PHP scripts. The only real difference in usage
between the two versions of the earlier command come when
interpreting command-line arguments passed to the script,
which we look at in the “Command-Line Arguments for Your
Script” section. In most cases, the two following lines are mostly
equivalent:

 ~$ php -f myscript.php
 ~$ php myscript.php

• -a or - -interactive : This runs PHP interactively, which allows
you to type in PHP code, line by line, rather than executing a
saved PHP script. This mode of operation is often called a “REPL”
(Read-Eval-Print-Loop). As well as providing an interactive
interface for testing and developing code, it can act as an
enhanced PHP-enabled shell or command line, and I’ll cover this
more closely later in this chapter.

• -c or --php-ini : This specifies the PHP .ini file that PHP will
use for this application. This is particularly useful if you are also
running web services using PHP on the same machine; if it is not
specified, PHP will look in various default locations for php.ini and
may end up using the same one as your web service. By providing
one specifically for your CLI applications, you can “open up”
various restrictions that make more sense for offline applications.
Note that by using the CLI SAPI, PHP will automatically override
several php.ini settings regardless of whether you specify a custom
 .ini file using this option. These overridden settings are those
that affect the behavior outlined in the “What’s Different About
the CLI SAPI?” section, and while the php.ini file is ignored in
these cases, you can revert or change these settings directly in
your code using the ini_set() function or similar. You can also
use the -d or --define option to set options (for example, php -d
max_execution_time=2000 myscript.php). If you are deploying

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

16

software onto machines that you do not control (for example, if you
are selling software for users to install on their own machines), it
makes sense to use one of these mechanisms to ensure that PHP
will be running with the settings you expect, not the settings the
user may happen to have. See -n next as well.

• -n or --no-php-ini : This tells PHP not to load a php.ini file at
all. This can be useful if you do not want to ship one with your
application and instead set all of the settings directly within
your code using ini_set() or similar. PHP will use its default
settings if no .ini file is provided, and it is worth remembering
that these default settings may change from version to version of
PHP (and indeed have done so in the past). You shouldn’t rely
on the current defaults being suitable for your application. You
can use php --ini to show the default path that PHP will look
for .ini files when the -n option isn’t used and -c isn’t used to
specify a file.

• -e or --profile-info : This puts PHP into Extended Information
Mode (EIM). EIM generates extra information for use by profilers
and debuggers. If you’re not using a profiler or debugger that
requires this mode, you should not enable it because it can
degrade performance. You can find more information on profilers
and debuggers in Chapter 4 .

• -i or --info : This calls the phpinfo() function and prints the
output. This outputs a large range of information about the PHP
installation, in plain-text format rather than the usual HTML (it
detects you are calling it from the CLI SAPI). This can be useful
in tracking down issues with the installation, as well as giving
you version information, lists of extensions installed, relevant
file paths, and so on. As with any other shell command, the
output can be piped to other commands, such as grep. So if you
wanted to check whether IPv6 was enabled in your PHP binary for
instance, on Linux or OS X you could try the following:

 ~$ php -i | grep -i "ipv6"

 On Windows you could try the following:

 > php -i | finstr /I ipv6

• -l or --syntax-check : This parses the file, checking for syntax
errors . This is a basic “lint” type checker; more advanced static
code analysis tools are discussed in the next chapter. Be aware
that this option checks only for basic syntax errors—the sort that
cause the PHP engine to fail. More subtle bugs, problems in your
program logic, and errors that are created at run time will not
be detected. Your code is not executed, so it can help pick up

http://dx.doi.org/10.1007/978-1-4842-2238-6_4

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

17

basic errors before running code that may alter data and cause
problems if it fails. Even when you run such code in a testing
environment, resetting data and setting up for another test can
take time, so a quick check for basic syntax errors first can be a
time-saver. Some integrated development environments (IDEs)
and text editors run php -l in the background to highlight syntax
errors as you type. For instance, the linter-php1 package in
GitHub’s Atom editor uses this method for live linting of PHP code.

• -m or --modules : This lists all the loaded PHP and Zend modules/
extensions. These are modules that PHP has been compiled
with and may include things such as core , mysql , PDO , json , and
more. This is useful for checking the PHP installation has the
functionality that your application requires. You can also check
from within your scripts using the extension_loaded() function
or by calling the phpinfo() function. -m provides a subset of the
information given with the -i flag described earlier, and -i (or
the phpinfo() function) will return more information about the
configuration, version, and so on, of the modules.

• -r or --run : This runs a line of PHP code supplied as the
argument, rather than executing it from a file. The line of code
should be enclosed by single quotes because shells like bash will
try to interpolate PHP variables as if they were shell variables
if you use double quotes. This performs a similar role to the
 -a interactive mode, except that PHP’s “state” is cleared after
each line is executed. This means that the line of code supplied
is treated as the whole script to be executed, and execution is
terminated once it has been run. Here’s an example that will print
out “4” followed by a new line character:

 ~$ php -r "echo (2+2).\"\n\";"

 Note that the line must be well-formed syntactically correct PHP,
so don’t miss the semicolon at the end! I will return to -r later in
this chapter in the section “The Many Ways to Call PHP Scripts.”

• -B or --process-begin

 -R or --process-code

 -F or --process-file

 -E or --process-end : These four arguments allow you to specify
PHP code to be executed before, during, and after input from
 STDIN is processed by PHP. -B specifies a line of code to execute
before the input is processed, -R specifies a line of code to
execute for every line of input, and -F specifies a PHP file to
execute for each line. Finally, -E executes a line of code at the

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

18

end of the input process. In -R and -F , two special variables
are available; $argn sets the text of the line being processed,
and $argi sets the number of the line being processed. This
is mainly useful when using PHP directly in shell scripts. For
instance, to print a text file with line numbers, you can do
something like this:

 ~$ more my_text_file.txt | php -B "echo \"Lets add line
numbers...\n\";" -R "echo \"$argi: $argn\n\";" -E "echo \"That's
the end folks\n\";"

 This code will output something like this:

 Lets add line numbers...
 1: Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
 2: eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
 3: minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
 4: ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
 That's the end folks

• -s or --syntax-highlight : This outputs an HTML version of the
PHP script, with colored syntax highlighting. The PHP script is
not executed or validated; it’s simply made “pretty.” The pretty
HTML is printed to STDOUT and can be useful when pouring over
code looking for errors, issues, and optimizations. This works
only with PHP in files, not with code provided by the -r option.
Most modern IDEs and code editors provide syntax highlighting
by default; however, this can be useful if your only access to a
machine is on the command line and the editor you are using
doesn’t do syntax highlighting. In this case, use -s to create a
colored version of your script and either download it or view
it through your web browser if the machine has a web server
installed.

• -v or --version : This outputs the PHP version information. This
can also be found in the output of the -i option described earlier.
Be careful when assuming a particular format; some package
repositories (Ubuntu, for instance) include their name and their
own build numbers in the version string, so don’t just filter it for
any numerics.

• -w or --strip : This outputs the contents of the source code with
any unnecessary white space and any comments removed. This
can be used only with code files (not with lines of code supplied
by -r) and does not work with the syntax highlighting option
shown earlier. This is used to “minify” a file, in other words,
reduce the file size. Contrary to popular opinion, this will not

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

19

speed up most scripts; the overhead of parsing comments and
white space is extremely negligible. You should also be wary of
support and debugging issues, even if a copy of the “full” code
is kept, as line numbers in error reports will no longer match
between the original and stripped versions. It also does not
minify identifies such as variable names and so cannot be used
to obfuscate your code. There are few reason to use this option
these days. To make a file smaller for distribution, using proper
compression (for example, adding it to a zip file) is usually a
better method.

• -z or --zend-extension : This specifies the file name/path for
a Zend extension to be loaded before your script is run. This
allows dynamic loading of extensions, which can alternatively be
specified in the php.ini file if they are always to be loaded.

• --rf or --rfunction

 --rc or --rclass

 --re or --rextension

 --rz or --rzendextension

 --ri or --rextinfo : These options allow you to explore PHP
structures using reflection. Reflection is the process by which PHP
can perform runtime introspection , which is the means to allow
you to look into elements and structures of your code at run time.
The first three options print reflection information about a named
function, class, or extension. The last two print basic information
about a Zend extension or a standard extension, as returned by
the phpinfo() function. This reflection information, which is
very detailed, is available only if PHP is compiled with reflection
support. These options can be used as a quick but precise
reference guide to the entities listed earlier and are particularly
useful in interrogating unknown code written by others.

 Further Reading
• Reflection information in the PHP manual

• http://www.php.net/manual/en/book.reflection.php

• “Introspection and Reflection in PHP” by Octavia Anghel

• http://www.sitepoint.com/introspection-and-
reflection-in-php/

http://www.php.net/manual/en/book.reflection.php
http://www.sitepoint.com/introspection-and-reflection-in-php/
http://www.sitepoint.com/introspection-and-reflection-in-php/

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

20

 Command-Line Arguments for Your Script
 As you’ve seen, passing arguments to PHP is straightforward and done in the normal
way. However, passing arguments for use by your PHP script is a little more complicated,
as PHP needs to know where its own arguments stop and where your script’s start. The
best way to examine how PHP deals with this is through some examples. Consider the
following PHP script:

 <?

 echo "Number of arguments given :".$argc."\n";

 echo "List of arguments given :\n";

 print_r($argv);

 There are two special variables in the previous script.

• $argc : This records the number of command-line arguments
passed to the script.

• $argv : This is an array of the actual arguments passed.

 Let’s save the script as arguments.php . Now let’s call it as follows:

 ~$ php -e arguments.php -i -b=big -l red white "and blue"

 You will get the following output:

 Number of arguments given :7
 List of arguments given :
 Array
 (
 [0] => arguments.php
 [1] => -i
 [2] => -b=big
 [3] => -l
 [4] => red
 [5] => white
 [6] => and blue
)

 As you can see, all the arguments given from the file name onward in the command
are passed to the script. The first, -e , which is used by PHP itself, is not passed through.
So, as a general rule, everything after the file name is treated as an argument to the script,
anything before the file name is treated as an argument for PHP itself, and the file name is
shared between the two.

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

21

 There is, of course, an exception . As you learned earlier, in addition to specifying
the file name of your script on its own, you can also pass it as part of the -f flag. So if you
execute the following command

 ~$ php -e -f arguments.php -i -b=big -l red white "and blue"

 you get the following unexpected output:

 phpinfo()
 PHP Version => 5.4.6-1ubuntu1.3

 System => Linux dev-system 3.5.0-37-generic #58-Ubuntu SMP Mon Jul 8
22:10:28 UTC 2013 i686
 Build Date => Jul 15 2013 18:23:34
 Server API => Command Line Interface
 Virtual Directory Support => disabled
 Configuration File (php.ini) Path => /etc/php5/cli
 <rest of output removed for brevity>

 You may recognize this as the output of calling php -i . Rather than treating
arguments after the file name as belonging to the script, PHP has treated the -i
argument (and those afterward) as one of its own. As -i is a valid PHP argument, it
decides that it was what you wanted and invokes its “information” mode. If you need
to pass the file name as part of the -f flag rather than as an argument on its own,
you will need to separate your scripts arguments using two dashes (--). So, for the
previous command to work as expected, you need to alter it to read as follows:

 ~$ php -e -f arguments.php -- -i -b=big -l red white "and blue"

 Everything after the -- , plus the script file name, is passed as arguments to the script,
and you get the expected output.

 This can make your scripts a little messy, particularly if you are passing lots of
arguments, so you may want to look at the sections below on self executing scripts, which
show you how to embed PHPs arguments within the script, allowing the script to claim
any and all arguments passed as its own.

 The Many Ways to Call PHP Scripts
 As you can probably tell from the command-line options in the previous section, there
are several ways to execute PHP code when using the CLI SAPI. Although I’ve covered a
couple of these already, I will discuss them here again for completeness.

 From a File
 You can tell PHP to execute a particular PHP source code file. Here’s an example:

 ~$ php myscript.php
 ~$ php -f myscript.php

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

22

 Note that -f is optional; the previous two lines are functionally equivalent. The PHP
command-line options detailed earlier, where appropriate, work in this method. This
example

 ~$ php -e myscript.php

 will execute the file myscript.php in Extended Information Mode.
 As with the web version of PHP, source files can be interpolated (mixed) with HTML

(or, more usefully on the command line, plain text). So, you will still need your opening <?
or <?php tags; otherwise, your source code will just be printed straight out without being
executed.

 From a String
 You can execute a single line of code with the -r flag, as shown here:

 ~$ php -r "echo(\"Hello World!\n\");"

 Many of the other command-line options are not available with the -r method, such
as syntax highlighting. Watch out for shell variable substitution (use single quotes rather
than double quotes around your code) and other mangling of your code by the shell.
Unless it really is a quick one-off, it is likely safer and easier to pop the relevant line into
a file and execute that instead. One common use of the -r option is for executing PHP
generated by other (possibly non-PHP) shell commands where the whole shell script
needs to execute in memory without touching the disk (for instance, where permissions
prohibit disk write access).

 From STDIN
 If you do not specify a file or use the -r option, PHP will treat the contents of STDIN as the
PHP code to be executed, as shown here (note echo only works like this on Linux or OS X):

 ~$ echo '<? echo "hello\n";?>' | php

 You can also use this method with -B , -R , -F , and -E to make PHP a first-class citizen
in shell scripting, giving you the ability to pipe data in and out of PHP. For instance, to
reverse every line of a file (or any data source that you pipe into it), on Linux or OS X use
the following:

 ~$ cat file.txt | php -R 'echo strrev($argn)."\n";' | grep olleh

 On Windows use the following:

 > more file.txt | php -R "echo strrev($argn).\"\n\";" | findstr olleh

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

23

 In this line of code, you pipe the contents of a text file into PHP. The -R option tells
PHP to execute the following PHP code on each line of input, where the line is stored
in the special variable $argn . In this case, you reverse $argn using the string-reversing
function strrev() and then echo the reversed string out again. Any echo ’d output goes
to STDOUT , which either is printed to the shell or, as in this case, can be piped to another
shell command. In this case, you then use grep to display only the lines containing the
string olleh , which is hello backward. You can find more details on -R and its siblings in
the previous section.

 If you want to use options like -R but have too much PHP code to fit comfortably on
the command line, you can put the code in a normal PHP source code file and include it
with include() . Here’s an example:

 ~$ cat something.txt > php -R 'include("complicated.php");'

 If it is a nontrivial PHP script, it may be more efficient to package it up into functions
and include it once with -B (-B means it’s executed before the main code) and then
execute the function each time with -R . The following example loads the content of
 my_functions.php once at the start, and then the function complicated() from that file is
called on each line (each $argn) from the data file (data.txt).

 ~$ php -B 'include("my_functions.php");' -R 'complicated($argn);' -f
'data.txt'

 Although these commands look relatively simple, there is of course no arbitrary limit
to the PHP code you can put behind them. You can use classes and objects, multiple files,
and most of the code and techniques explored in this book, exposing only functions or
methods at the shell level as an interface for the user. You can also open the standard
streams as PHP streams within PHP and access their file pointers to read data in from,
negating the need to use -R , as discussed in the next chapter.

 As a Self-executing Script: Unix/Linux
 On Unix/Linux systems you can turn a PHP script file into a directly executable shell
command. Simply make the first line of the script file a #! line (usually pronounced
“shebang line” or “hashbang line”) with a path to the PHP binary, as in this example:

 #!/usr/bin/php
 <?

 echo('Hello World!');

 Then set the executable bit using c hmod or similar. Here’s an example:

 ~$ chmod a+x myscript.php

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

24

 Simply typing ./myscript.php at the command line will execute it. You can also
rename the file to remove the .php extension (assuming you had one in the first place), so
you would just type the following at the shell prompt to run it:

 ~$./myscript

 You can further simplify it to remove the initial ./ by moving it to a directory
somewhere in your shell’s search path. Note that when running a script in this manner,
any command-line options are passed directly to the script and not to PHP. In fact, you
cannot pass extra command-line parameters to PHP at runtime using this method; you
must include them in the shebang line when constructing your script. For instance, in the
previous example, if you wanted to use Extended Information Mode, you would alter the
first line of the script to read as follows:

 #!/usr/bin/php -e

 If you were to instead call the script as follows

 ~$ myscript -e

 then the -e flag would be passed as an argument to the script, not to PHP directly, and
so PHP would not enter EIM . This is useful for scripts that have lots of user-supplied
arguments but also makes options like -B and -R discussed in the previous method
cumbersome to use for processing STDIN data because you have to include all the PHP
on the shebang line where it is harder to change. However, you can simply use include()
to include the necessary files and use standard file streams to process the STDIN stream
(created and opened by the CLI SAPI automatically for you) line by line instead.

 If your script may be used on other systems, please bear in mind that the PHP binary
will quite often be located in a different directory than the one on your system. In this
scenario, you will need to change the shebang line for each system if you hard-code the
location in it. Fortunately, if installed correctly, PHP sets an environment variable with its
location, available via the /usr/bin/env shell command. So if you change the shebang
line as follows, your script should be executable wherever PHP is located:

 #!/usr/bin/env php

 On Windows, the shebang line can be left in because PHP will recognize it and
ignore it. However, it will not execute the file as it does on *nix.

 Further Reading
• Standard I/O streams information in the PHP manual

• http://php.net/manual/en/features.commandline.io-
streams.php

http://php.net/manual/en/features.commandline.io-streams.php
http://php.net/manual/en/features.commandline.io-streams.php

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

25

 As a Self-executing Script: Windows
 In a similar manner, scripts can be executed by calling them directly under Windows.
However, the process for setting up Windows to do this is slightly more involved.

 First, you need to add your PHP directory (the directory containing php.exe , php-
win.exe , or php-cli.exe) to the Windows search path (specified in the environment
variable PATH) so that you can call PHP without having to specify the full directory path.
To do this, follow these steps:

 1. From the Start menu, go to the Control Panel and select the
System icon from the System and Security group.

 2. On the Advanced tab, click the Environment Variables button.

 3. In the System Variables pane, find the Path entry (you may
need to scroll to find it).

 4. Double-click the Path entry to edit it and add your PHP
directory at the end, including a semicolon (;) before it (for
example, ;C:\php). Make sure that you do not overwrite or
remove any of the text already in the path box.

 You also need to amend the PATHEXT environment variable in the same way, so find
the PATHEXT entry in the same window and add .PHP , again using a semicolon to separate
it from the rest of the entries while taking care not to alter them.

 Next you need to associate the .php file extension with a file type and then tell
Windows which program to run for files of that type. To do this, run the following two
commands in the Windows command prompt, which you should run as administrator.
Make sure to change the path/file name in the second command to match your
installation.

 assoc .php=phpfile
 ftype phpfile="C:\PHP5\php.exe" -f "%1" -- %~2

 These changes will allow you to run myscript rather than C:\php\php.exe
myscript.php . Note that under Windows 10 you will not be able to run scripts in this
way in an elevated (administrator) command prompt because the PHP executable is
not run as administrator by default. To fix this, right-click the php.exe executable, select
Properties and Compatibility, and select “Run this program as an administrator” in
Settings. Apply the change to all users. Scripts should now execute as expected in all
command prompts.

 Windows php-win.exe
 PHP for Windows also ships with php-win.exe , which is similar to the CLI build of PHP,
except that it does not open a command-line window. This is useful for running system
software in the background or running scripts that create their own graphical interface.

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

26

 Quitting Your Script
 You’ve looked at starting your scripts, but what happens when it comes time to finish
running them?

 Like web-based PHP scripts, CLI scripts will terminate happily when you hit the end
of the script file and will tidy up all the resources used in the same way. Likewise, if you
want to end early, you can call the exit (or equivalent die) language construct.

 However, in the world of CLI scripts, this isn’t considered very polite. Because
CLI command are designed to work together, often in chains of commands, most shell
programs and scripts will provide an “ exit code ” when they terminate to let the other
programs around them know why they finished. Were they done? Did they encounter an
error? Were they called incorrectly? Inquiring minds want to know.

 It is particularly important to supply an exit code when your script may be the last
item in a shell script, as the exit code of the shell script as a whole is taken to be the last
exit code returned within it. You can make your PHP script provide an exit code simply
by including it as a parameter to exit or die . An exit code is an integer, and there are a
number of common exit codes.

• 0: Success. You’ve exited normally.

• 1: General error. This is usually used for application/language-
specific errors and syntax errors.

• 2: Incorrect usage.

• 126: Command is not executable. This is usually permissions
related.

• 127: Command not found.

• 128+N (up to 165): Command terminated by POSIX signal
number N. For example, in the case of kill -9 myscript.php , it
should return code 137 (128+9).

• 130: Command terminated by Ctrl-C (Ctrl-C is POSIX code 2, so,
as earlier, 128 + 2 = 130).

 Further Reading
• “POSIX signals” on Wikipedia

• http://en.wikipedia.org/wiki/Unix_signal#POSIX_
signals

 Any other positive integer is generally construed as exiting because of an unspecified
error. So, for instance, if you decide the command-line arguments provided by your user
are not in the correct format, you should terminate your script using exit(2) . If instead
all goes well and your script continues to the end of its script file, you can actually let
it exit by itself (or by calling exit without a parameter) because it returns status code 0
by default.

http://en.wikipedia.org/wiki/Unix_signal#POSIX_signals
http://en.wikipedia.org/wiki/Unix_signal#POSIX_signals

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

27

 As with web scripts, you can register functions to be executed when your PHP script
exits using the register_shutdown_function() function. One use for this may be to
check that all is well and evaluate which exit code should be returned. The exit code
used as the parameter to exit or die within a registered shutdown function overrides
the code used in the initial exit call that initiated shutdown. This means you can happily
exit with exit(0) everywhere and then exit with exit(76) from your shutdown function
if you detect that the foo conflaganation isn’t aligned with the bar initispations in your
metaspacialatific object. Or similar.

 PHP REPLs
 When you want to test a few lines of PHP, your default instinct may be to create a
new PHP file, save it, and then execute it with PHP. There is a better, faster, and more
interactive way, however. The PHP “interactive shell,” also known as the PHP REPL, is a
quick and easy way to type in code and have it execute immediately. Unlike executing
single lines of code using php -r , the REPL (started by calling php -a) keeps the script’s
state (for example, contents of variables and objects) in between each line that you type
until you exit. You can use all of PHP’s functions, although no libraries are loaded by
default, and you can use include() or require() to include existing files of PHP code.
This latter capability is useful for debugging the final output of a problematic script;
simply use include() to include your script, which will execute the script, and as long
the script doesn’t terminate prematurely, then you can use echo() or print_r() (or
otherwise) to explore the state of the variables and other resources at the end of the run.
Other brands of REPL are available and are listed later in this section. By its nature, it can
also be used as a CLI/shell in its own right, calling other PHP and non-PHP programs as
you would in, for instance, a bash shell.

 The following example is a capture of an actual interactive REPL session using the
standard PHP REPL:

 ~$ php -a
 Interactive shell

 php > # As we can type any valid PHP, I have added comments
 php > # directly to the REPL, rather than afterwards in editing!
 php >
 php > # Lets start with some simple assignments :
 php >
 php > $a = 5;
 php > $b = 6;
 php >
 php > # The REPL will throw Notices, Warnings and Errors as appropriate,
 php > # in real-time :
 php >
 php > $c = nothingdefined;
 PHP Notice: Use of undefined constant nothingdefined - assumed
 'nothingdefined' in php shell code on line 1
 php >

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

28

 php > # Just as with normal PHP source files, we can split commands across
 php > # lines. The interpreter only kicks in when it hits the terminating
 php > # semicolon :
 php >
 php > $d
 php > =
 php > 7
 php > ;
 php >
 php > # The following shows that the state in the variables above has been
 php > # kept :
 php >
 php > echo $a + $b + $c + $d ."\n";
 18
 php >
 php > # Next, a more interesting example. Use the REPL instead of the
 php > # shell to get the first line from a file :
 php >
 php > echo file ('/proc/version')[0];
 Linux version 3.5.0-21-generic (buildd@roseapple) (gcc version 4.7.2
 (Ubuntu/Linaro 4.7.2-2ubuntu1)) #32-Ubuntu SMP Tue Dec 11 18:52:46 UTC
 2012
 php >
 php > # Of course all of the usual protocol wrappers are available, so we
 php > # can see what is happening in the world...
 php >
 php > $page = file ('http://news.bbc.co.uk');
 php >
 php > echo $page[0];
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/
 MarkUp/DTD/xhtml-rdfa-1.dtd">
 php >
 php > # and maybe get a hash of that...
 php >
 php > echo md5 (implode ($page, "\n")) . "\n";
 0319bf4e62db39fb2c89210e48783d70
 php >
 php > # when we are done ...
 php >
 php > exit;
 php >
 php > # doesn't work, as its just evaluated as PHP (and the REPL ignores
 php > # exit/die calls. To exit the REPL, enter the word 'exit' on its own
 php > # on a new line
 php >
 php > exit
 ~$

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

29

 Sometimes you’ll want to execute your commands within the “environment”
of other scripts. For instance, you may have a script that declares constants, sets up
database connections, and does other routine tasks that you normally include with
 include() at the start of your main PHP scripts. As noted earlier, you can include these
files in the REPL too using include(), but you may forget to do so and then wonder why
things didn’t work as they should. One facility PHP offers you, which applies not only
to the REPL but to all forms of PHP execution, is the auto_prepend_file configuration
directive. This tells PHP to execute a given file each time PHP is run before it starts to do
anything else (such as executing the script you have asked it to execute). This can be set
either in php.ini or via the -d flag on the command line. The following is an example of
presetting some constants/variables . First, you create a script called initialise.php with
the following content:

 <?php

 const FOUR = 4; # Declare a constant value

 $five = 5; # Instantiate a variable with another value

 Then, at the command line, start and run a REPL session as follows, using -d to
execute the initialise.php script first:

 ~$ php -d auto_prepend_file=initialise.php -a
 Interactive shell

 php > echo (FOUR + $five)."\n";
 9
 php > exit
 ~$

 As you can see, the constant and variable you had set up in the initialise.php file
were available for use from the REPL without having to manually declare them. The -d
flag is used here, but the option could be set in php.ini as well if you want to always use
the same file. If you regularly use a few different initialization files like this, you can create
shell aliases to commands using the -d flag. For instance, you could add lines similar to
the following to your ~/.bash_profile :

 alias php-cl="php -d auto_prepend_file=clientSetup.php -a"
 alias php-in="php -d auto_prepend_file=ourSiteSetup.php -a"

 As well as the built-in PHP REPL explored earlier, there are a number of third-
party REPLs available, some of which include features such as a history of commands
typed, tab-completion of commands, protection from fatal errors, and even abbreviated
function documentation.

CHAPTER 3 ■ UNDERSTANDING AND USING THE CLI SAPI

30

 Toolbox phpsh

 Developed at Facebook, phpsh is an interactive shell for PHP that features readline
history, tab completion, and quick access to documentation.

 Main website and documentation http://phpsh.org

 Installation information https://github.com/facebook/phpsh/
 blob/master/README.md

 Toolbox Boris

 A small but robust REPL for PHP

 Main documentation and installation
information

 https://github.com/d11wtq/boris

 Extension for Symfony and Drupal http://vvv.tobiassjosten.net/php/php-
repl-for-symfony-and-drupal/

 Toolbox phpa

 A simple replacement for php -a , written in PHP

 Main website, installation information
and documentation

 http://david.acz.org/phpa/

 Toolbox PHP Interactive

 A web-based REPL that allows better support of displaying HTML output. The project is
an Alpha release.

 Main website http://www.hping.org/phpinteractive/

 Toolbox Sublime-worksheet

 An inline REPL for the Sublime Text editor

 Main website https://github.com/jcartledge/sublime-worksheet

 Toolbox iPHP

 An extensible PHP shell

 Main website https://github.com/apinstein/iphp

http://phpsh.org/
https://github.com/facebook/phpsh/
http://vvv.tobiassjosten.net/php/php-repl-for-symfony-and-drupal/
http://vvv.tobiassjosten.net/php/php-repl-for-symfony-and-drupal/
http://david.acz.org/phpa/
http://www.hping.org/phpinteractive/
https://github.com/jcartledge/sublime-worksheet
https://github.com/apinstein/iphp

	Chapter 3: Understanding and Using the CLI SAPI
	What’s Different About the CLI SAPI?
	Further Reading

	CLI SAPI Installation
	PHP Command-Line Options
	Further Reading

	Command-Line Arguments for Your Script
	The Many Ways to Call PHP Scripts
	From a File
	From a String
	From STDIN
	As a Self-executing Script: Unix/Linux
	Further Reading

	As a Self-executing Script: Windows
	Windows php-win.exe

	Quitting Your Script
	Further Reading

	PHP REPLs

