CHAPTER 9

Fast Data Patterns

In this chapter, we examine well-known patterns in developing fast data applications. As you know, there
are two approaches: (1) the batch, on disk, traditional approach and (2) the streaming, on memory, modern
approach. The patterns in this chapter apply to both approaches.

The chapter has three main sections. In the first, we discuss the concept of fast data to differentiate
it from big data. In the second section, we discuss the differences between ACID and CAP in order to
understand the capabilities and limitations of both in fast data. The third section features recipes with
design patterns to write certain types of streaming applications.

The chapter’s goal is to make a cookbook with a recipe collection for fast data application development.
Of course, there are many more recipes and patterns than revealed here, but recall that the fast data
approach is relatively new.

This chapter covers the following:

e Fastdata

e ACIDvs. CAP

e Integrating streaming and transactions
e Streaming transformations

e Faultrecovery strategies

e Tagdata identifiers

Fast Data

Lately, some marketing and IT companies have abused some important terms to create great illusions,
which only resulted in frustration when it was discovered that these buzzwords were not the panacea that
everyone expected; two of these terms were big data and the cloud.

If you are perceptive, you may have noticed that in this book we try to avoid the term “big data” because
although many organizations require data analysis, they do not have large volumes of data. Businesses do
not really want big data, they need fast data.

At this moment, we are living in the fast data explosion, driven by mobile-devices proliferation, the
Internet of Things (IoT), and machine-to-machine (M2M) communication. In regards to business needs, it
is due to close interaction with customers, personalized offers, and reaction recording.

One characteristic of fast data applications is the ingestion of vast amounts of data streams. Note the big
difference between ingestion and storage. Businesses require real-time analysis and the need to combine
transactions on live data with real-time analytics.

© Raul Estrada and Isaac Ruiz 2016 207
R. Estrada and I. Ruiz, Big Data SMACK, DOI 10.1007/978-1-4842-2175-4_9

CHAPTER 9 ' FAST DATA PATTERNS

Fast data applications solve three challenges:
e Data streams analysis
e Data pipelines
e Real-time user interaction

We are too close to this change, so we cannot accurately distinguish the border between big data and
fast data. Nor can we precisely identify which one has the greater value for business. All we know so far is
that each one brings different values.

Another distinguishing phenomenon is that we have reached the boundaries of traditional models. For
example, we consider the model of relational databases a pillar of all modern technological knowledge. We
have reached the level where questioning relational model transitions is no longer a far-fetched proposal but
a viable recurring option.

NoSQL solutions offer speed and scale in exchange for a lack on transactionality and query capabilities.
Today, developers do not use a single technology; they have to use several (a clear example is the SMACK
stack) because one technology is no longer enough. The problem with this approach is that it has a steep
learning curve, often adds unnecessary complexity, causes duplication of effort, and often sacrifices
performance to increase speed.

The question to answer in this chapter (and in the book) is this: How do we combine real-time data
stream analysis with a reliable, scalable, and simple architecture?

Many companies have opted for the traditional batch approach, but history has shown that it requires
too much infrastructure and both human and computational efforts. Or we can opt for a modern approach,
which often involves the challenge of traditional paradigms, such as Batch, SQL, and ACID processing.
Although there are many skeptics, this approach simplifies development and increases the performance by
reducing infrastructure costs.

Fast Data at a Glance

Today’s world is interactive. Information delivery should go to the right person at the right device in the right
place at the right moment; or using the correct terms—personalized, ubiquitous, geolocalized, and in real
time. That is what you call fast data.

However, building fast data applications requires a tremendous skill set. This chapter is a
compendium of some patterns to handle analysis of data streams with operational workloads. A pattern
is a recipe; this chapter is a cookbook to overcome the well-known challenges with new and more
predictable applications.

Fast data applications must scale across multiple machines and multiple coordinate systems, and above
all, reduce the complexity of the issue. Recall that an application must be simple, reliable, and extensible.

In order to quickly implement data, you need to understand the structure, the data flow, and the implicit
requirements of data management.

Right now fast data styles are being created for developers who are having problems with current
development scalability. Many fast data issues far exceed the capabilities of traditional tools and techniques,
creating new challenges still unresolved by systems that are slow and don’t scale.

Modern problems cannot be solved by traditional approaches. The new tools must be created
from thinking differently and using approaches that challenge traditional paradigms. That’s how
LinkedIn generated Kafka, Facebook generated Cassandra, and the AMPLab generated Spark and
Mesos. And in turn, this generated new companies, such as Confluent, DataStax, Databricks, and
Mesosphere.

If anything is certain it is that when each technology in the SMACK stack was coded, the thinking and
skills of the people involved were vastly different from what they gained from past experiences.

208

CHAPTER 9 ' FAST DATA PATTERNS

Beyond Big Data

In a world with abundant and mundane discussions on big data, where marketing makes more noise than
technology, fast data was born in a work context, midnight calls, and aggressive and excessive competition
between companies looking to provide the best service at the lowest cost. Fast data is the agent of change;
the engine that defines a new economy.

In a nutshell, you can say that fast data is data on the move. It is the streaming of hundreds of millions
of endpoints to applications and servers. Imagine if you can mobile devices, sensors, financial transactions,
logs, retail systems, telecommunication routers, authorization systems, and so forth. Everything changes
for developers; you can only say that the increase in data is constant. There is Moore’s law, which states
that each year the amount of data is doubled. As mentioned in earlier chapters, the world was a quiet and
peaceful place when data was stored for eternal rest; that’s what you call big data, which is stored in Hadoop,
in data warehouses, and in data lakes.

Fast data, on the other hand, is data arising from turmoil, data in motion, data streaming. An intrinsic
feature of fast data is that data streams have to be treated in real time. The big data era is based on the
analysis of structured and non-structured data stored in Hadoop and data warehouses through batch
processes.

The SMACK stack emerges across verticals to help developers build applications to process fast data
streams (note that here you also use the term fast data stream instead of big data stream). The sole purpose
of the SMACK stack is processing data in real time and outputting data analysis in the shortest possible
time, which is usually in milliseconds. For example, bank authorizations on credit cards can’t delay too long
before the client application times out. Although, some applications tolerate responses on minutes, the
scenario where the big data analysis is delivered tomorrow is no longer viable.

Fast Data Characteristics

Fast data applications meet several characteristics. As we will discuss later, they influence architecture
decisions. There are three main characteristics:

e Fastingestion
e Analysis streaming

° Per event transactions

Fast Ingestion

The first stage in the data streaming process is data ingestion. The purpose of ingestion is to have a direct
interface with data sources in order to make changes and the normalization of input data. Ingestion presents
the challenge of extracting value from data and labeling it by assigning key-value pairs.

There are two types of ingestion:

e Direct ingestion. Here a system module hooks directly with the API generation.
System speed depends on the speed of the API and the network. The analysis
engines have a direct adapter. One advantage is that it can be very simple; a
disadvantage is that it is not flexible—making changes that don'’t affect the
performance can be a complex process.

e Message queue. When you do not have access to the data generation API, you can
use a broker such as Apache Kafka. In this case, the data is managed in the form of
queues. The advantage, as you know, is that you can partition, replicate, sort, and
manage the pipeline in proportion to the pressure over the slower component.

209

CHAPTER 9 ' FAST DATA PATTERNS

Analysis Streaming

As the data is created, it reaches the analysis engine. Data can come in multiple types and formats. Often
the data is enriched with metadata about the transformation process. This information may come through
messages or events. Examples include sensor data of all types, user interaction with a web site, transaction
data, and so forth.

The increase in the amount of fast data has made analysis move from the backend layer to the
streaming layer. Every day there is less analysis in data warehouses. The ability to analyze data streams and
make decisions with live transaction is most wanted today.

Per Event Transactions

As analysis platforms have to produce real-time analysis over incoming data, analysis speed far exceeds
human speed. Hence, machine learning tools on streaming data are recent trending.

To generate value on streaming data, you must take action in real time. This has two reasons. The first
is a technical reason related to the fact that real-time data chunks are “stored” in memory, and you cannot
store them on a disk or another storage medium, because you quickly flood large amounts of space and
because you likely don’t have the money and hardware of Facebook or Twitter to indefinitely store the
data. The second is a business reason that has to do with decision making in real time; for example, online
authorization charges, real-time user interaction with web site recording, real-time multiplayer game
engines, and so forth.

The ability to extract information as it arrives and to combine it with business logic in real time makes
possible modern fraud detection systems, trading shares on the stock market, or the Uber operation.

On the data management layer, all the actions must be able to read and write many pieces of data,
storing only results, inferences, and recommendations. It is worth noting that online input data is not stored,
because there is no space or budget to store this amount of data.

All of this can be summarized as the interaction of the event when it arrives. The streams of high-speed
data required to have high-availability schemas are discussed later in a section on the at-least-one schema
on event delivery.

The modern challenge for data engineers is the extraction and capture of the value on per-event
transactions.

Fast Data and Hadoop

And what if you already have our big data model mounted on Apache Hadoop? Well, the important thing
here is to build a front end. The front end of a big data system must have every one of the following functions:
filter, de-dupe, aggregate, enrich, and denormalize.

If you already have a model like Hadoop, it is important to change the whole paradigm. You can
continue using Hadoop, but instead of storing all the information in Hadoop as it arrives, you use an engine
like Spark to move all Lambda Architecture to a streaming architecture, and from a batch processing model
to an online pipeline processing model.

The associated costs and the time to do common operations, as filter, de-dupe, aggregate, and so forth,
in a model such as the Spark is drastically reduced compared if you made it over Apache Hadoop with a
next-day batch model. Moreover, a batch model usually has no redundancy and high availability schemas,
and if so, they are very expensive.

The batch processing schemas always require the process of cleaning data before storing it. In a
pipelined architecture, the cleaning process is part of the ingestion process.

Another modern alternative is to dump the Hadoop Distributed File System (HDFS). An advantage of the
pipeline model is that very old and obsolete data can be eliminated as new data arrives. In the pipeline model,
no garbage is stored because the data stored is not input data, but those produced by the same engine.

210

CHAPTER 9 ' FAST DATA PATTERNS

A Hadoop developer’s recurring complaint is the difficulty of analysis to scale. With a pipeline model,
counting and aggregation reduces the problem by several orders of magnitude. By reducing the size of stored
data, you reduce the time to analyze it.

Hadoop developers also complain when they have to send aggregates to HDFS; with a fast data front
end, this doesn’t happen because the aggregates are sent as they arrive—no batch process and everything is
microbatching in Spark.

Data Enrichment

Data enrichment is another advantage of fast data over traditional models. The data always has to be filtered,
correlated, and enriched before being stored in the database. Performing the enrichment process at the
streaming stage provides the following advantages:

e NoOETL process. As you saw, unnecessary latency created by ETL processes is avoided
in a streaming model.

e Unnecessary disk I/0 is removed. As you saw, as Hadoop solutions are based on
disk, everything in fast data is based on memory. Everything is in real time because
there is no time for batch processes.

e The use of hardware is reduced. Because you don’t have to store everything and
you don’t have to do very complex analysis over data lakes, the cost of hardware is
dramatically reduced; resources (processor, memory, network, and disk) are used
more efficiently.

Since fast data entry feeds are information streams, maintaining the semantics between streams is
simpler because it creates a consistent and clean system. This can only be achieved if you act in each event
individually; here there are no big data windows or handling large data chunks susceptible to errors.

These per event transactions need three capacities:

e Stream connection oriented. You need clusters of Kafka, Cassandra, Spark, and
Hadoop/HDFS.

e Fastsearches. To enrich each event with metadata.

e Contextual filtering. Reassembles discrete input events in logical events that add
more meaning to the business.

In short, transactions per event require the entire system to be stateful; that is, everything is in memory
and has to store the minimum in disk.

Queries

Take the example of advertising based on user clicks on a given web page. How do you know which ad
the user clicked? How do you know that it wasn’t a robot? How do you know the amount to charge the
advertising agency at the end of month?

Another example is when you have a security system attack. How do you know when you are being
attacked by a denial of service? How do you know that an operation is fraudulent? To find out if another
machine is attacking, should you consider only the information from the last hour?

Today all contracts are based on a service-level agreement (SLA). In order to verify at the end of the
month that you meet those contracts, you need to make queries, sometimes very sophisticated, of the data
within your system.

Not meeting an SLA could lead to multimillion-dollar sanctions. Knowing that you met the SLA requires
the ability to make queries in your system. This fast data feature allows the user to query at any time and over
any time frame.

211

CHAPTER 9 ' FAST DATA PATTERNS

ACID vs. CAP

Fast data is a transformation process. There are two key concepts in modern data management: the ACID
properties and CAP theorem. In both acronyms, the C stands for consistency, but it means something
different to each. We will discuss the differences between the Cs later.

Let’s now delve into transactions. The core concepts of a transaction are semantics and guarantees. The
more data a computer handles, more important its function, but also more complex and prone to errors.

At the beginning of the computer age, when two computers had to write the same data at the same time,
the academia noted that the process should be regulated to ensure that data was not corrupted or written
incorrectly. When computers were exposed to human interaction, the risk of human error in the middle of a
calculation became a major concern.

The rules were defined by Jim Gray' and published by the Association for Computing Machinery
(ACM) in 1976. In the 1980s, IBM and other companies were responsible for popularizing ACID.

It was like everything in computer science: on paper things worked perfectly, but in practice
strong performance discussions are untied. Today, ACID transactions are a mainstay in any
database course.

A transaction consists of one or more operations in a linear sequence on the database state. All modern
database engines should start, stop, and cancel (or roll back) a set of operations (reads and writes) as a
metadata operation.

Transactional semantics alone do not make the transaction. You have to add ACID properties to prevent
developers from being lost when they have concurrent access on the same record.

ACID Properties

ACID means Atomic, Consistent, Isolated, and Durable.

e Atomic. All the transaction parts should be treated as a single action. This is the
mantra: All parts are completed or none is completed. In a nutshell, if part of the
transaction fails, the state of the database remains unchanged.

e Consistent. Transactions must follow the rules and restrictions defined by the
database (e.g. constraints, cascades, triggers). All data that is written to the database
must be valid. No transaction must invalidate the database state. (Note that this is
different from the C in the CAP theorem.)

e Isolated. To achieve concurrency control, transactions isolation must be the same
as if you were running the transactions in serial, sequentially. No transaction should
affect another transaction. In turn, any incomplete transaction should not affect
another transaction.

e Durable. Once the transaction is committed, the change must be persisted and
should not change anymore. Likewise, it should not cause conflicts with other
operations. Note that this has nothing to do with writing to disk and recent
controversies, because many modern databases live on memory or are distributed
on the users’ mobile devices.

'http://dl.acm.org/citation.cfm?doid=360363.360369

212

http://dl.acm.org/citation.cfm?doid=360363.360369

CHAPTER 9 ' FAST DATA PATTERNS

CAP Theorem

The CAP theorem is a tool to explain the problems of a distributed system. It was presented by Eric Brewer
at the 2000 Symposium on Principles of Distributed Computing, and formalized and demonstrated (as good
theorem) by Gilbert and Lynch? in 2002.

CAP means Consistent, Available, and Partition Tolerant.

e Consistent. All replicas of the same data must have the same value across the
distributed system.

e Available. Each living node in a distributed system must be able to process
transactions and respond to queries.

e Partition Tolerant. The system will continue to operate even if it has network
partitioning.

These are the original sad words of the CAP theorem: “In the face of network partitions, you can’t have
both perfect consistency and 100% availability. Plan accordingly.’

It is a very sad theorem because it does not mention what is possible, but the impossibility of
something. The CAP theorem is known as the “You-Pick-Two” theorem; however, you should avoid this
conception, because choosing AP does not mean that you will not be consistent, and choosing CP does not
mean that you will not be available. In fact, most systems are not any of the three. It means that designing a
system is to give preference to two of the three characteristics.

Furthermore, it is not possible to choose CA. There cannot be a distributed system in which the
partitions are ignored. By definition, a non-partitioned network means not having a distributed system. And
if you don’t have a distributed system, the CAP theorem is irrelevant. Thus, you can never exclude the P.

Consistency

The ACID consistency was formulated in terms of databases. Consistency in the CAP theorem is formulated
in terms of distributed systems.

In ACID, if a scheme states that a value must be unique, then a consistent system reinforces the
uniqueness of that value across all operations. A clear example is when you want to delete a primary key
when you have references to other tables using constraints; the database engine will indicate that there are
children records and you cannot erase the key.

The CAP consistency indicates that each replica of the original value—spread across the nodes of a
distributed system—will always have the same value. Note that this warranty is logical, not physical. Due
to network latency (even running over optic fiber at the speed of light), it is physically impossible for a
replication of all nodes to take zero seconds. However, the cluster can present a logical view to customers to
ensure that everyone sees the same value.

The two concepts reach their splendor when systems offer more than a simple key-value store. When
systems offer all ACID properties across the cluster, the CAP theorem makes its appearance, restricting the
CAP consistency.

On the other hand, when you have CAP consistency, through repeated readings and full transactions,
the ACID consistency should be offered in every node. Thus, the systems that prefer CAP availability over
CAP consistency rarely ensure ACID consistency.

*http://dl.acm.org/citation.cfm?id=564601:

213

http://dl.acm.org/citation.cfm?id=564601

CHAPTER 9 ' FAST DATA PATTERNS

CRDT

To explain eventual consistency, consider the example of a cluster with two machines. When the cluster
works, the writings are spread equally to both machines and everything works fine. Now suppose that
communication between the two machines fails but the service is still active. At the end of the day, you will
have two machines with different information.

To rectify this fault, traditional approaches offer very complex rectification processes to examine both
servers and try to resynchronize the state.

Eventual consistency (EC) is a process that facilitates the data administrator’s life. The original white
paper on Dynamo (the Amazon database)® formally defined eventual consistency as the method by which
several replicas may become temporarily different, but eventually converge to the same value. Dynamo
guarantees that the fix process is not complex.

It is worth noting that eventual consistency is not immediate; so two queries may yield different results until
synchronization is complete. The problem is that EC does not guarantee that the data converges to the latest
information, but to the more correct value. This is where the correctness definition becomes complicated.

Many techniques have been developed to offer an easier solution under these conditions. It’s important to
mention conflict-free replicated data types (CRDTs). The problem with these methods is that in practice, they offer
fewer guarantees on the final status of the system than those offered by the CAP theorem. The benefit of CRDT is
that under certain partitioning conditions, the high availability offer leaves nodes operating.

The EC Dynamo-style is very different from the log-based rectification methods offered by the bank
industry to move money between bank accounts. Both systems can diverge for a period of time, but banks
usually take longer and reach a more precise agreement.

Integrating Streaming and Transactions

Imagine the operation of these high-speed transactional applications: real-time payments, real-time
authorization, anti-fraud systems, and intelligent alerting. These applications would not be conceived today
if there weren’t a mix of real-time analysis and transaction processing.

Transactions in these applications require real-time analysis as input. Since it is impossible in real time
to redo the analysis based on data derived from a traditional data store, to scale, you must keep streaming
aggregation within the transaction. Unlike regular batch operations, aggregation streams maintain the
consistency, up-to-dateness, and accuracy of the analysis, which is necessary for the transaction.

In this pattern, you sacrifice the ability to make ad-hoc analyses in exchange for high-speed access to
the analysis, which is necessary for the application.

Pattern 1: Reject Requests Beyond a Threshold

Consider a high-volume-requests web page that implements sophisticated usage metrics for groups and
individual users as a function of each operation.
The metrics are used for two main purposes:

e Billing charges based on use

e To force the same contracted service quality level (expressed as the number of
requests per second, per user, and per group).

In this case, the platform implementation of the policy verification should have counters for every
user and group of users. These counters must be accurate (because they are inputs for billing and
implementation of service quality policies), and they must be accessible in real time to evaluate and
authorize (or deny) new accesses.

*http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

214

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

CHAPTER 9 ' FAST DATA PATTERNS

It is necessary to maintain a balance in real time for each user. To accurately maintain a balance, you
need an ACID OLTP system. The same system requires the ability to maintain high-speed aggregations.
The scalability of the solution is achieved by combining aggregation transactions with real-time high-
speed transmission. Examples of these systems include new credits granting systems and used credit
deductions).

Pattern 2: Alerting on Predicted Trends Variation

Imagine an operational monitoring platform where you need to issue warnings or alarms when a threshold
predicate is exceeded at a statistically significant level. This system combines two capabilities:

e Itkeeps the analysis on real time (counters, streaming add-ons, and status summary
of current use)

e It compares the analysis with the predicted trend. If the trend is exceeded, the system
should raise an alert.

The system records this alarm to suppress other alerts (limiting the intermittency of an alarm for
a single event). This is another system that requires the combination of analytical and transactional
capabilities.

Analyzed separately, this system needs three independent systems working simultaneously:

e Ananalysis system that is microdosing real-time analysis

e Anapplication reading these analyses and the trend line predicted to generate alerts
on the application

e Atransactional system that stores the generated alerts data and that implements
suppression logic

The execution of three tightly coupled systems like this (our solution requires the three systems
running) reduces the reliability and complicates the operation.

To achieve real time analysis you need to combine the request-response system with event processing
streaming applications.

When Not to Integrate Streaming and Transactions

OLAP (online analytical processing) systems offer the benefit of rapid analytical queries without pre-
aggregation. These systems can execute complex queries over huge data, but within the threshold, they work
in batch, reporting to human analysts in the data workflow. These systems are not compatible with high-
speed transactional workloads because they are optimized to batch reporting, not OLTP (online transaction
processing) applications.

Aggregation Techniques

Pre-aggregation is a technique with many algorithms and features developed. The following are common
techniques for implementing real-time aggregation:

e Windowed events. Used to express moving averages or a timeframe summary of a
continuous event. These techniques are found in CEP (complex event processing) or
microbatching systems like Apache Spark.

215

CHAPTER 9 ' FAST DATA PATTERNS

e Probabilistic data structures. Data is added within a certain margin of error
bounded by probability. These algorithms typically exchange precision for space,
allowing estimation in a smaller storage space. Examples of probabilistic data
structures and algorithms include Bloom filters, as in Apache Cassandra.

e Materialized views. A view could define aggregation, partition, filter, or join.
Materialized views group the base data and keep a physical copy of the resulting
data. Materialized views allow declarative aggregations, which eliminate coding and
offer easy, concise, and accurate aggregation. You find examples of this in Oracle DB,
Postgres, SQL Server, and MySQL.

Streaming Transformations

Effectively processing big data often requires multiple database engines, each with a special purpose.
Usually, systems good at online CEP (complex event processing) are not good at batch processing against
large data volumes. Some systems are good for high-velocity problems; others are good for large volume
problems. In most cases, you need to integrate these systems to run meaningful applications.

Usually, the data arrives at high-velocity ingest-oriented systems and is processed into the volume-
oriented systems. In more advanced cases, predictive models, analysis, and reports are generated on
the volume-oriented systems and sent as feedback to the velocity-oriented systems to support real-time
applications. The real-time analysis from the fast systems is integrated into downstream applications and
operational dashboards that process real-time alerts, alarms, insights, and trends.

In a nutshell, many fast data applications run on top of a set of tools. Usually, the platform components
include the following:

e Atleast one large shared storage pool (e.g., HDFS, Apache Cassandra)

e A high performance BI analytics query tool (e.g., a columnar SQL system, Apache
Spark)

e Abatch processing system (e.g., Map Reduce, Apache Spark)

e A streaming system (e.g. Apache Kafka)

The input data and processing output move across these systems. The key to solve many big data
challenges is the design of this dataflow as a processing pipeline that coordinates these different systems.

Pattern 3: Use Streaming Transformations to Avoid ETL

The new events captured into a long-term repository often require transformation, filtering, or processing
before being available for exploitation. For example, an application that captures user sessions consisting of
several discrete events, enriching those events with static data to avoid expensive repeated joins in the batch
layer, and/or filtering redundant events storing only unique values.

There are (at least) two approaches to run this process:

1. The data can be stored in a long-term repository and then ETLed (extracted,
transformed, and loaded) to its final form. This approach trades I/0, storage, and
time (results are delayed until the entire ETL process is completed) for a slightly
simpler architecture (e.g., move data directly from a queue to HDFS).

2. This approach is referred as schema on read. It reduces the choice of back-end
systems to those of schema-free systems, removing the non-optimal, depending
on your specific reporting requirements.

216

CHAPTER 9 ' FAST DATA PATTERNS

Execute the transformations in a streaming way before the data arrives at the
long-term repository. This approach adds a streaming component (Apache
Spark) between the source queue (Apache Kafka) and the final repository
(Apache Cassandra), creating a continuous processing pipeline.

Moving the entire process to a real-time processing pipeline has several
advantages. Writing I/0 to the back-end system is drastically reduced (in the first
model, raw data input is written, and then the ETLed data is written; with this
approach only ETLed data