
139© Jason Bock 2016 
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_5

    CHAPTER 5   

 The Future of the Compiler API                          

 Although this is the last chapter in this book, the story of the Compiler API doesn’t end. 
What does the future hold for the Compiler API? To close out this book, we’ll look at 
tools and frameworks that are already taking advantage of the Compiler API in creative 
and versatile ways. We’ll also explore the upcoming possible transformation of C# with 
metaprogramming and code injection. 

     Current Usage 
 Throughout this book, you saw how the Compiler API is used to enable a developer to 
write diagnostics and refactorings, along with the Scripting API that makes C# into a 
scripting language. Although these are powerful capabilities that provide a developer 
with rich information about their code, there is no limitation in terms of where you can 
use these API sets in your C# code. You can include the Compiler API packages and tools 
that are taking advantage of the Compiler API into your own projects via NuGet. We’ll 
take a look at packages that user the Compiler API in this section, starting with a mocking 
framework I created called Rocks. 

     Generating Mocks 
 If you’ve ever done any unit testing in .NET, you’ve probably come across the need or 
desire to create “fake” versions of dependencies. Let’s use a very generic example to 
illustrate this. Let’s say you have a class that uses a dependency based on an interface 
called   IService      : 

   public interface IService 
 { 
   int GetId(); 
 } 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

140

   There’s a class called   ServiceUser       that uses an implementation of the service to get 
an ID value: 

    public sealed class ServiceUser 
 { 
   public ServiceUser(IService service) 
   { 
     if(service == null) 
     { 
       throw new ArgumentNullException(nameof(service)); 
     } 

       this.Id = service.GetId(); 
   } 

     public int Id { get; } 
 } 

    This is an example of dependency injection. The  ServiceUser  class needs to use an 
object that implements  IService , but it doesn’t care what that object does to get the ID 
value. It could be calling a REST service, it could be reading a file, or it could be accessing 
a database: the point is,  ServiceUser  doesn’t care. It only needs to call  GetId() . 

 Now, to test  ServiceUser , we need an instance of   IService   . But we don’t necessarily 
want to talk to the object that will be used at runtime during the unit test due to 
concerns like performance and isolation. For example, if the implementation is talking 
to a service, latency time may creep into the test along with other tests that need to 
use the dependency. In addition, we’re testing  ServiceUser ; we’re not testing how the 
implementation of  IService  works. Focusing our testing responsibilities on the code we 
want to test is essential. 

 A typical approach during a test is to create a mock object. This is an object that 
implements a given abstraction (like an interface), but it also allows the developer to 
specify expectations. That is, the developer can state the behaviors and interactions that 
should occur with the mock during the test run. There are great frameworks that already 
exist in the .NET space that create mocks, such as Moq (   http://www.moqthis.com     ) and 
NSubstitute (   http://nsubstitute.github.io     ). Listing  5-1  shows how you can run code 
that will test  ServiceUser ’s interaction with a mock of  IService . 

      Listing 5-1.    Using Moq to create a mock  object     

  using Moq; 

   private static void MockUsingMoq() 
 { 
   var service = new Mock<IService>(MockBehavior.Strict); 
   service.Setup(_ => _.GetId()).Returns(2); 

http://www.moqthis.com/
http://nsubstitute.github.io/


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

141

     var user = new ServiceUser(service.Object); 
   Debug.Assert(user.Id == 2); 

     service.VerifyAll(); 
 }    

    The  Mock  class allows the developer to create an expectation that   GetId()    will be 
called via  Setup() . Since this method returns a value,  Returns()  is used to specify that 
the value 2 will be returned.   Debug.Assert()    checks that the  Id  property is equal to 2, 
which should have been set from the  GetId()  call. Finally,   VerifyAll()    is called on the 
mock to ensure that all expectations were satisfied. 

 However, there’s one architecture issue with frameworks like Moq and NSubstitute. 
A mocking framework needs to synthesize a new class at runtime based on the 
abstraction that it’s given. To do this, the mocking framework typically use members from 
the   System.Reflection.Emit  namespace  , which allows you to create a class on the fly. 
The issue with this namespace is that you have to know how IL works in .NET. IL is the 
language that any language that wants to run on .NET must compile to. While it’s not as 
difficult as pure x86 assembly language, as mentioned in the “What Do Compilers Do?” 
section in Chapter   1    , it’s not trivial either. IL is not a language most .NET developers 
know, and even if they’ve spent time in it, it’s very easy to create code via IL that fails in 
ways that have never been seen before. What we need is a better way to create code on the 
fly in a language that most .NET developers know. And that’s exactly what the Compiler 
API gives us and the reason I created Rocks (   https://github.com/jasonbock/rocks     ). 
Rocks is a mocking framework that’s similar to Moq and NSubstitute but has one key 
difference: it uses the Compiler API to create a class at runtime rather than IL. To 
a developer using Rocks, it doesn’t seem much different than other .NET mocking 
frameworks. Listing  5-2  shows how to create a mock object using the same code from 
Listing  5-1  except instead of using Moq it uses Rocks. 

     Listing 5-2.    Using  Rocks   to create a mock object   

  using Rocks; 
 using Rocks.Options; 

   private static void MockUsingRocks() 
 { 
   var service = Rock.Create<IService>(); 
   service.Handle(_ => _.GetId()).Returns(2); 

     var user = new ServiceUser(service.Make()); 
   Debug.Assert(user.Id == 2); 

     service.Verify(); 
 } 

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
https://github.com/jasonbock/rocks


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

142

    But the mock generated when  Make()  is called is based on pure C# code. To see this, 
change the line of code with  Rock.Create()  from this:    

   var service = Rock.Create<IService>(); 

   to this: 

   var service = Rock.Create<IService>( 
   new RockOptions( 
     level: OptimizationSetting.Debug, 
     codeFile: CodeFileOptions.Create));    

   Then, put a breakpoint on the line of code that creates a new instance of 
 ServiceUser , and start Visual Studio in Debug mode. When the breakpoint is hit, press 
F11, which will step into the implementation of the mock. You should see a screen in 
Visual Studio similar to Figure  5-1 .  

  Figure 5-1.    Stepping into generated mock code in Visual Studio       

 Note that the generated class uses a  Guid  in its name to prevent any kind of name 
collision with other types. The class also inherits from  IService , so any code that needs 
to interact with an  IService  interface (like  ServiceUser ) can use this mock. 

 What’s amazing about creating mocks using the Compiler API is that the Compiler 
API makes it extremely simple to debug dynamic code generated at runtime based on 
how the Compiler API is supposed to work in the first place! Rocks takes advantage of the 
fact that you can compile code with debug symbols generated. There’s very little Rocks 

 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

143

has to do to implement debugging capabilities. If you want to do this with types from 
 System.Reflection.Emit,  well, it’s a long story, but it’s difficult. You have to manually 
generate an .il file yourself and match up all the lines of code to debug symbols manually. 
A Rocks user will probably never step into the generated mock code, but for me as the 
implementor of Rocks, it’s been a great feature to take advantage of when I’m trying to 
diagnose issues with my mock code generation.    

 Creating mocks is one area where you can take advantage of the Compiler API’s ability to 
generate code. Let’s look at another innovate package that helps you target the Web with C#.  

     Building Code with Code 
 Ever since .NET’s inception, MSBuild has been the standard way to build code. MSBuild 
understands solutions and projects and can orchestrate their builds as well as provide 
customizations to the process, such as running tests and deploying binaries. However, 
MSBuild is not the only way to build code. A vast array of build tools and scripting 
languages are available to use for your building concerns. One tool is called Cake 
(   http://cakebuild.net/      ) , which uses the Compiler API to execute build steps using 
a C#-like  domain specific language (DSL)  . Let’s create a solution that has two projects 
to see how we can use Cake to handle the build steps. One project is a class library 
called   RandomGeneration    that uses a NuGet package to generate a random number, and 
the other project called  RandomGeneration.Tests  has tests for our class library. The 
 RandomGeneration  project will also have a .nuspec file that can be used to generate a 
NuGet package. 

 Here’s what the  Randomness  class looks like (which exists in  RandomGeneration ): 

    using Spackle; 

   namespace RandomGeneration 
 { 
   public sealed class Randomness 
   { 
     public int GetValue(int start, int end) 
     { 
       return new SecureRandom().Next(start, end); 
     } 
   } 
 } 

    The   SecureRandom  class   comes from a NuGet package I’ve created called  Spackle   
(   https://www.nuget.org/packages/Spackle/     ). Speaking of NuGet, here’s what the 
RandomGeneration.nuspec file looks like for this project: 

   <?xml version="1.0" encoding="utf-8"?> 
 <package> 
   <metadata> 
     <id>RandomGeneration</id> 
     <version>1.0.0</version> 

http://cakebuild.net/)
https://www.nuget.org/packages/Spackle/


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

144

     <authors>Jason Bock</authors> 
     <owners>Jason Bock</owners> 
     <description>Generate random numbers within a range.</description> 
     <tags>netframework</tags> 
     <language>en-US</language> 
     <dependencies> 
       <dependency id="Spackle" version="7.1.0" /> 
     </dependencies> 
   </metadata>    
   <files> 
     <file src="RandomGeneration.dll" target="lib\net46" /> 
   </files> 
 </package> 

   Here’s the code that tests  GetValue() : 

    using Microsoft.VisualStudio.TestTools.UnitTesting; 

   namespace RandomGeneration.Tests 
 { 
   [TestClass] 
   public sealed class RandomnessTests 
   { 
     [TestMethod] 
     public void GetValue() 
     { 
       var value = new Randomness().GetValue(2, 10); 
       Assert.IsTrue(value >= 2); 
       Assert.IsTrue(value <= 10); 
     } 
   } 
 } 

    Now, let’s see how we can get Cake involved in the build process. Here are the steps 
we want to perform:

    1.    Build the  RandomGeneration  class library.  

    2.    Run the tests in  RandomGeneration.Tests .  

    3.    Create a NuGet package file based on the RandomGeneration.
nuspec definition.     

 The first action is to create a  Cake bootstrapper file  . This boostrapper file is a 
PowerShell script that will run our Cake build file. To make this file, open a PowerShell 
window, navigate to the directory that contains the  RandomGeneration  solution file, and 
run the following command: 

   Invoke-WebRequest http://cakebuild.net/bootstrapper/windows -OutFile build.ps1 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

145

   You should get a build.ps1 file in your solution directory when this is done. Now, you 
need to create a cake.build file in this directory. The cake.build file is just a text file so you 
can use any text editor you want to create it. Listing  5-3  shows what the build file looks 
like for our   RandomGeneration  solution  . 

     Listing 5-3.    Definition of the  Cake build file     

  var target = Argument<string>("target", "Default"); 
 var configuration = Argument<string>("configuration", "Release"); 
 var solution = "RandomGeneration.sln"; 

   Task("Clean") 
   .Does(() => 
   { 
     CleanDirectories("./**/bin/" + configuration); 
     CleanDirectories("./**/obj/" + configuration); 
   }); 

   Task("Restore") 
   .Does(() => 
   { 
     NuGetRestore(solution); 
   }); 

   Task("Build") 
   .IsDependentOn("Clean") 
   .IsDependentOn("Restore") 
   .Does(() => 
   { 
     MSBuild(solution, settings => 
       settings.SetPlatformTarget(PlatformTarget.MSIL) 
         .WithTarget("Build") 
         .SetConfiguration(configuration)); 
   }); 

   Task("Tests") 
   .IsDependentOn("Build") 
   .Does(() => 
   { 
     MSTest("./**/*.Tests.dll", 
       new MSTestSettings 
       { 
         NoIsolation = true 
       }); 
   }); 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

146

   Task("NuGetPack") 
   .IsDependentOn("Tests") 
   .Does(() => 
   { 
     CreateDirectory("./NuGet Pack"); 
     CopyFile("./RandomGeneration/RandomGeneration.nuspec", 
       "./NuGet Pack/RandomGeneration.nuspec"); 
     CopyDirectory("./RandomGeneration/bin/Release", 
       "./NuGet Pack"); 
     NuGetPack("./NuGet Pack/RandomGeneration.nuspec", 
       new NuGetPackSettings 
       {    
         OutputDirectory = "./NuGet Pack" 
       }); 
   }); 

   Task("Default") 
   .IsDependentOn("Build") 
   .IsDependentOn("Tests") 
   .IsDependentOn("NuGetPack"); 

   RunTarget(target); 

    Although it may look like a lot of code, it’s pretty easy to decipher a Cake script. You 
define tasks that should be run during a build with the   Task()  method  . Tasks can have 
dependencies on other tasks—for example, in this script, the “Clean” and “Restore” tasks 
must execute before the “Build” task runs. Each task can execute code in the   Does()  
action method  . It’s completely up to you to do what you think is necessary for each task. 
For example, in the “Build” task, the   MSBuild()  method   is used to build all the code in 
the solution. The “Tests” task runs all of the tests via the  MSTest()  method. Also, keep in 
mind that Cake is smart enough to run each task only once, even if tasks are declared as 
dependencies more than once. 

 Once you have the script file setup, you run “./build.ps1” in a PowerShell command 
window. This script will get the necessary Cake components if it can’t find them, and 
then the build.ps1 script will build your Cake script file. This is where the power of the 
Compiler API comes into play. Because your Cake script file is really C# code, you can 
write your build process in the language you code in. You can declare variables and use 
other .NET libraries—it’s completely up to you. Once the code is compiled, Cake runs the 
default task. 

 ■   Note    You'll find a number of built-in Cake tasks and methods at    http://cakebuild.
net/dsl     . Also, you can create your own aliases to extend the build process: you'll find 
the details at    http://cakebuild.net/docs/fundamentals/aliases     . Additionally, there 
are numerous add-ins you can use to control other tools, such as AppVeyor, Slack, and 
HockeyApp; this list is at    http://cakebuild.net/api     .  

http://cakebuild.net/dsl
http://cakebuild.net/dsl
http://cakebuild.net/docs/fundamentals/aliases
http://cakebuild.net/api


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

147

 If you haven’t set up a build server or done automated deployments, I highly 
recommend you consider using a tool like Cake to do it. Automating manual steps leads 
to greater productivity, and the Compiler API can empower your continuous integration 
and deployment needs.  

     Other Compiler API- Based Tools and Frameworks   
 The Rocks and Cake packages you saw earlier are just a small sample of what’s already 
available in the .NET space that use the Compiler API. Here are some other packages you 
should check out:

•    DotNetAnalyzers (   https://github.com/DotNetAnalyzers/
DotNetAnalyzers     ) and StyleCopAnalyzers (   https://github.com/
DotNetAnalyzers/StyleCopAnalyzers     )—a suite of diagnostics 
that enforce rules partially based on the StyleCop tool 
(   http://stylecop.codeplex.com/     ).  

•   ScriptCS (   http://scriptcs.net/     )—a C# scripting 
implementation  

•   OmniSharp (   http://www.omnisharp.net/     )—a .NET editor 
written entirely in .NET  

•   RefactoringEssentials (   http://vsrefactoringessentials.com/     )—
a suite of refactorings and analyzers  

•   ConfigR (   https://github.com/config-r/config-r     )—a package 
that uses C# code to power configuration files    

 This list is not exhaustive by any means. .NET code is being infused with the power of 
the Compiler API. More and more tools and packages are using its capabilities to power 
their features. But, what about the C# language itself? In the next section, you’ll examine 
how the Compiler API may affect the fundamental way you write code in C#.   

     Looking into C#’s Future 
 It’s great to see open-source packages use the Compiler API in innovative and creative 
ways. But wouldn’t it be ideal to share pieces of code in .NET to greatly simplify 
applications? Can we change how C# works so code generation is an integral part of the 
language? There are strong hints that the next version of C# will have this capability. To 
close out this chapter, let’s take a theoretical look at how source generators will affect the 
way you code in C# in a deep, revolutionary way. 

https://github.com/DotNetAnalyzers/DotNetAnalyzers
https://github.com/DotNetAnalyzers/DotNetAnalyzers
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
http://stylecop.codeplex.com/
http://scriptcs.net/
http://www.omnisharp.net/
http://vsrefactoringessentials.com/
https://github.com/config-r/config-r


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

148

 ■   Note   Keep in mind that this source generator feature is still experimental at the time 
of this writing, so I won't go into any specifics on its implementation. It was demonstrated 
at //BUILD (   https://channel9.msdn.com/Events/Build/2016/B889     —start watching at 
the 54:00 mark), and two GitHub issues are related to this feature at    https://github.com/
dotnet/roslyn/issues/5561      and    https://github.com/dotnet/roslyn/issues/5292     ; 
related issues are tagged with “New Language Feature—Replace/Original.” In addition, it’s 
in C#7's “strong interest” section for proposed features (   https://github.com/dotnet/
roslyn/issues/2136     ). That said, there is no guarantee that source generators will be in the 
next version of C#, but it's a feature that C# developers should be watching because it has 
the potential to radically change how they design their applications.  

     A Quick Story About  Property Change Notifications   
 One example of what .NET developers have been begging for in an automatic 
implementation of a specific scenario is property change notification. A property change 
notification happens when your class implements  INotifyPropertyChanged . Here’s 
one way you can implement this interface. You create a base class that implements 
 INotifyPropertyChanged , as shown in Listing  5-4 . 

      Listing 5-4.    Providing a reusable implementation of INotifyPropertyChanged   

  public abstract class Properties 
   : INotifyPropertyChanged 
 { 
   public event PropertyChangedEventHandler PropertyChanged; 

     protected Properties() { } 

     protected virtual void OnPropertyChanged(string propertyName) 
   { 
     this.PropertyChanged?.Invoke(this, 
       new PropertyChangedEventArgs(propertyName)); 
   } 

     protected void SetField<T>(ref T field, 
     T value, string propertyName) 
   { 
     if (!EqualityComparer<T>.Default.Equals(field, value)) 
     { 
       field = value; 
       this.OnPropertyChanged(propertyName);    
     } 
   } 
 } 

https://channel9.msdn.com/Events/Build/2016/B889
https://github.com/dotnet/roslyn/issues/5561
https://github.com/dotnet/roslyn/issues/5561
https://github.com/dotnet/roslyn/issues/5292
https://github.com/dotnet/roslyn/issues/2136
https://github.com/dotnet/roslyn/issues/2136


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

149

    Then, you can inherit from the  Properties  class to publish property change events: 

   public class IntegerData 
   : Properties 
 { 
   private int value; 
   public int Value 
   { 
     get { return this.value; } 
     set { this.SetField(ref this.value, value, nameof(Value)); } 
   } 
 } 

   If you use the code from Listing  5-4  and the  IntegerData  class in a console 
application like this, you change the  Value  property to different values: 

   private static void Main() 
 { 
   var properties = new IntegerData(); 
   properties.PropertyChanged += 
     (s, e) => Console.Out.WriteLine( 
       $"Property {e.PropertyName} changed."); 
   Console.Out.WriteLine( 
     $"properties.Value is {properties.Value}"); 
   properties.Value = 2; 
   Console.Out.WriteLine( 
     $"properties.Value is {properties.Value}"); 
   properties.Value = 3; 
   Console.Out.WriteLine( 
     $"properties.Value is {properties.Value}"); 
   properties.Value = 3; 
   Console.Out.WriteLine( 
     $"properties.Value is {properties.Value}"); 
   properties.Value = 4; 
   Console.Out.WriteLine( 
     $"properties.Value is {properties.Value}");    
 } 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

150

 As expected, you only get property change notifications when the property value 
actually changes. 

 Although this code works as expected, the result isn’t ideal. One problem with this 
approach of using a base class is that a developer cannot use inheritance effectively. 
Because you can only inherit from one class, you can’t inherit from any other classes 
other than  Properties . However, if you don’t provide a base class that handles 
 INotifyPropertyChanged , you force  every  class that wants to do change notifications to 
implement  INotifyPropertyChanged . There are ways to get around this issue of single 
class inheritance as well, but none of them solve the problem elegantly. The C# language 
could address this by adding a new keyword like “notify” that a developer could use 
on properties. The C# compiler would then be responsible for generating the property 
changed code machinery. But, this solution isn’t scalable. There are numerous cases 
where coding aspects like implementing  INotifyPropertyChanged  should be handled in 
a repeatable fashion. We can’t create keywords every time we run into conditions where 
we want to repeat an implementation of code in numerous places of an application. 

 In the next section, I’ll talk about how repeatable code generation scenarios may be 
improved in a future version of C#.  

     Reusing Common Implementations 
 A better approach to handling  INotifyPropertyChanged  is to provide a common, 
reusable approach independent of keywords and typical code reuse techniques. The 
following code snippet shows what a developer would want to do: 

   [PropertyChanged] 
 public partial class IntegerData 
 { 
   public int Value { get; set;} 
 } 

  Figure 5-2.    Receiving property change notifications       

   Figure  5-2  shows what happens.  

 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

151

   The idea here is that the C# compiler would see the  PropertyChangedAttribute  
and use the attribute’s implementation to generate code for the target class, correctly 
implementing  INotifyPropertyChanged . These attributes would be different than 
the attributes that we currently create in that these compile-time attributes wouldn’t 
be passive. The compiler would look for their presence and inform them to generate 
code to augment the code that they are tied to. In the case of this hypothetical 
 PropertyChangedAttribute , it would ensure the target class would implement 
 INotifyPropertyChanged  and implement the property changed logic within each 
property setter. This technique is a huge win for developers because they no longer have 
to manually write that code; the attribute will generate it for them! 

 But, let’s not stop with property changed notifications. Consider a scenario in which 
we have a class that implements  IDisposable  along with overriding  ToString()  and 
defining a method, which is shown in Listing  5-5 . 

      Listing 5-5.    Defining a class with embedded,  reusable implementations     

  public class Person 
   : IDisposable 
 { 
   private bool isDisposed; 
   private int disposedCallCount; 
   private int callTwiceCallCount; 

     public Person(string name, uint age) 
   { 
     this.Name = name; 
     this.Age = age; 
   } 

     public string Name { get; } 
   public uint Age { get; } 

     public override string ToString() 
   { 
     if(this.isDisposed) 
     { 
       throw new ObjectDisposedExcecption(nameof(Person)); 
     }   

       return $"{this.Name}, {this.Age}"; 
   } 

     public void Dispose() 
   { 
     if(this.isDisposed)    
     { 
       throw new ObjectDisposedExcecption(nameof(Person)); 
     }   



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

152

       if(Interlocked.Increment(ref this.disposedCallCount) > 1) 
     { 
       throw new MaximumCallCountExceededException(nameof(Dispose)); 
     } 

       // Do all the nasty gunk that you need 
     // to do to support Dispose()... 
   } 

     public void CallTwice() 
   { 
     if(this.isDisposed) 
     { 
       throw new ObjectDisposedExcecption(nameof(Person)); 
     }   

       if(Interlocked.Increment(ref this.callTwiceCallCount) > 2) 
     { 
       throw new MaximumCallCountExceededException(nameof(CallTwice)); 
     } 

       // Do what CallTwice() does... 
   } 
 } 

    For a simple class, there’s a fair amount of code in place that isn’t specific to the 
 Person  class, such as:

•    Object disposal. The  IDisposable  interface requires a number 
of steps that developers should follow to implement the idiom 
correctly (see    https://msdn.microsoft.com/en-us/library/
ms244737.aspx      for details). Also, each member on a disposable 
object should throw  ObjectDisposedException  if the object has 
been disposed.  

•   Method call thresholds. Sometimes a method should only be 
called a certain number of times. A typical scenario is  Dispose() , 
which should only be called once. In this class,  CallTwice()  
should only be invoked twice.     

•    ToString()  patterns. You may want to have a consistent format 
for  ToString()  for all of your classes, like the property values 
concatenated together with a comma and space delimiter.    

https://msdn.microsoft.com/en-us/library/ms244737.aspx
https://msdn.microsoft.com/en-us/library/ms244737.aspx


CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

153

 Now, compare the code in Listing  5-5  to the code in Listing  5-6 . 

     Listing 5-6.    Using generators in C# code   

  [Disposable] 
 [ToString] 
 public partial class Person 
 { 
   public Person(string name, uint age) 
   { 
     this.Name = name; 
     this.Age = age; 
   } 

     public string Name { get; } 
   public uint Age { get; } 

     [Throttle(2)] 
   public void CallTwice() 
   { 
     // Do what CallTwice() does... 
   } 
 } 

    The idea is that we’d use source generators to implement  IDisposable  on the 
class for us. We’d also implement  ToString()  for the developer based on a consistent, 
idiomatic pattern. Finally, we can throttle the number of times a method is called. 

 The ability to weave code into existing code via compile-time attributes will 
drastically reduce the amount of code a developer has to write in every class. 
Additionally, the implementation of a source generator would produce C# code that 
can be analyzed and debugged as easily as the code you wrote. The generator would 
use syntax trees and semantic information to determine the structure of the code and 
subseqently augment the tree so it contains the correct implementation. Now that you’ve 
read this book and have a solid understanding of the components of the Compiler API, 
you should be comfortable creating source generators for your applications.      

     Conclusion 
 This chapter showed you how tools and frameworks are already taking advantage of 
the Compiler API to build amazing products. Packages such as Rocks and Cake are 
empowered by the Compiler API to implement features that were difficult before it was 
introduced. You also got a glimpse into C#’s future where the Compiler API is used to 
allow developers to generate code so patterns and aspects can be exploited to simplify 
implementations. 

 And although you’ve come to the end of the book, the story of the Compiler API 
doesn’t stop here. .NET started a major transformation that was initialized in the late 
2000s when hints and small demos were given by Microsoft employees of a new world 



CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

154

with an accessible API to the internals of the compiler. This transformation was greatly 
accelerated when Roslyn was open-sourced in 2014. Now, the .NET community is 
thriving once again. The .NET Framework is being reimaged and rearchitected into .NET 
Core, a nimbler, performance-driven, open-source, cross-platform version of .NET that 
is evolving along with the compilation framework. Furthermore, there are even hints 
that .NET will target WebAssembly in the future, making C# work natively in the browser 
(see    https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_
icaza_i_started_xamarin_mono_gnome/d1v9xyd     ). The cool thing about all this work is 
that anyone can contribute to this effort. I hope that you not only consider writing your 
own diagnostics and refactorings along with using the Compiler and Scripting API to 
empower your applications, but also consider contributing to the continual evolution of 
the framework. Once again, it’s a great time to be a .NET developer!     

https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_icaza_i_started_xamarin_mono_gnome/d1v9xyd
https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_icaza_i_started_xamarin_mono_gnome/d1v9xyd

	Chapter 5: The Future of the Compiler API
	Current Usage
	Generating Mocks
	Building Code with Code
	Other Compiler API-Based Tools and Frameworks

	Looking into C#’s Future
	A Quick Story About Property Change Notifications
	Reusing Common Implementations

	Conclusion


