
107© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_4

 CHAPTER 4

 Using the Scripting API

 So far, all the C# code you’ve seen hasn’t been any different from what you’ve been able to
do in C# since version 1.0. That is, you still write C# code, you compile it, and an assembly
is generated. Although having the inner workings of the compiler available for public
consumption via the Compiler API empowers developers to analyze and transform their
code, nothing has substantially altered the flow of the compilation process. However, that
changes with the Update 1 release of Visual Studio 2015, because within the Compiler
API is a brand-new Scripting API. With the Scripting API, C# can be treated as a scripting
language. In this chapter, I’ll show you how to use the Scripting API to provide a dynamic
way to augment applications. But before we do that, let me briefly define what a scripting
language really is.

 What Is a Scripting Language?
 Before we get into the details of the Scripting API, let’s spend some time on scripting
languages in general. What makes a language a “scripting” language? What are its
characteristics? How does it work? Are scripting languages substantially different from
other languages? Knowing the realm that you’re entering in this chapter will help you
understand the Scripting API better and how C# fits in the domain of scripting languages.

 Orchestrating an Environment
 Traditionally, scripting languages have been viewed as “glue” languages . They’re
usually not as powerful as other popular programming languages if their feature sets
are compared and contrasted. However, their power lies in their simplicity. They’re not
designed to build complex domain layers or implement web servers; rather, they work with
a given system and extend it in ways that the original designers may not have intended.
They’ll tie different parts and members together to create new functionality without having
to go through a typical compile, test, and deploy scenario that most applications will
partake in. Essentially, they orchestrate different pieces available to them.

 Well-known scripting languages that developers have used are Bash, Python, and
Lua. Another that developers in the .NET arena may have heard of and used in their
applications is Visual Basic for Applications (VBA) . VBA allows developers to control
Office applications in a programmic way. The object model for an Office application may

CHAPTER 4 ■ USING THE SCRIPTING API

108

seem quite complex at first, but you can record macros in an Office application to see
the pieces of the object model in action. Figure 4-1 shows the VBA macro editor with a
snippet of code that was created by me just typing into Word.

 By using the Macros ➤ Record Macros feature in Word (which is on the View menu),
I was able to figure out that by using TypeText on the Selection object, I could insert
whatever text I wanted to. Of course, there are far more objects and methods available to
you to control whatever part of Word you want to, but you don’t have to remember every
one. All you have to do is record your interaction and let Word generate the code for you.

 Dynamic Capabilities
 Another common aspect of a scripting language is its dynamic nature. Dynamic
languages are those where the notion of types is a loose, or even nonexistent, one. Types
can also be changed as the code executes. Examples of languages like this are Ruby and
JavaScript. These languages have the notion of classes, but class definitions can change
dramatically as code executes. Keep in mind that a scripting language can also be
statically typed. There’s no hard-and-fast rule when it comes to the dynamic capabilities
of a language and whether that qualifies it as a scripting language.

 In essence, any language can be considered a scripting language if an environment
exists to provide the user with a dynamic experience. This is typically done with
something called a Read, Evaluate, Print, Loop (REPL). Developers will use a REPL to
try different ways to run their scripts and to immediately execute functionality available
to the REPL. Lots of languages have this capability, but C# has always lacked this within
the APIs provided by the .NET Framework. However, now with the Scripting API, you
can treat C# as a scripting language. Let’s start our investigation of the Scripting API by
looking at a tool that uses this API in Visual Studio: the C# REPL.

 Figure 4-1. Creating macros in Word

CHAPTER 4 ■ USING THE SCRIPTING API

109

 Using the C# REPL
 Shipping with Update 1 of Visual Studio 2015 is the C# Interactive window. It’s a REPL
that uses the Scripting API to allow developers to quickly experiment with snippets of
C#. You won’t see Scripting API usage just yet in this section, but keep in mind that this
Visual Studio feature is powered by the Scripting API. By seeing how this window works,
you’ll better understand the capabilities available in the Scripting API to power dynamic
programming experiences.

 To start working with the C# Interactive window, open Visual Studio, and go to
View ➤ Other Windows ➤ C# Interactive window. Note that you don’t have to open or
create a project to start working with this window. Type “3 + 5” in the window and press
the Enter key. Figure 4-2 shows what you should see.

 Figure 4-2. Performing simple calculations within the C# Interactive window

 As a developer would expect, executing simple arithmetic calculations works. Let’s
set the value of that calculation to a variable called x . Once we do that, we can print out its
value, as shown in Figure 4-3 .

CHAPTER 4 ■ USING THE SCRIPTING API

110

 What’s interesting to note in Figure 4-3 is that you get Intellisense within the
interactive window. It knows there’s a variable called x within the scope of this interactive
session. It also knows that the variable is typed as an int . Scripting languages have a
tendency to have very loose typing semantics, but even though the Interactive window
is a scripting environment, C# retains its strong typing semantic. Figure 4-4 shows that
assigning x to a string after it was initially assigned to an int won’t work.

 Figure 4-3. Printing the value of a variable

 Figure 4-4. Strong typing in the C# Interactive window

CHAPTER 4 ■ USING THE SCRIPTING API

111

 At any time in the window you can type # help to learn different commands that are
available during the session. A sample of the #help output is shown in Figure 4-5 .

 For example, you can type #cls to clear the screen. You can also use #reset to clear
any current script state. Figure 4-6 shows what happens after you type #reset and then
look at the value for x .

 Figure 4-5. Using help to display various commands

 Figure 4-6. Resetting the interactive session

CHAPTER 4 ■ USING THE SCRIPTING API

112

 You can also define types within the session. To do this, you start typing the
definition of a class, and then press Enter. The Interactive window will go into a multiline
edit mode, so you can add members to the class, like fields, properties, and constructors.
Figure 4-7 shows what the window looks like when you define a class.

 Figure 4-7. Creating a class in the Interactive window

 Figure 4-8. Using classes defined in the Interactive window

 Once the class is defined, you can use it in your session. Figure 4-8 demonstrates
code that creates an instance of the class.

CHAPTER 4 ■ USING THE SCRIPTING API

113

 Note that the Interactive window experience isn’t limited to Visual Studio. If you
bring up the Developer Command Prompt for VS2015 (from the Windows Start menu),
you can type “csi” and get the same experience from a command window
(without Intellisense). Figure 4-9 shows what that looks like.

 Figure 4-9. Getting an interactive C# experience from the command line

 Figure 4-10. Loading assemblies within the Interactive window

 That’s the basics of the Interactive window in Visual Studio. Now let’s look at how to
use code assets within the Interactive window.

 Loading Code in Script
 Creating code in the Interactive window is a great way to try different implementations
without needing to create a Visual Studio solution. However, you may want to load references
to other assemblies or previous code snippets in the Interactive window. Let’s tackle the
assembly loading issue first. To do this, you use the #r directive, which requires a full path to
the location of the assembly file. Once its loaded, you can reference types from that assembly
as you normally would. You can even include using statements in your session.

 To see assembly referencing in action, create a Class Library project in Visual Studio.
Add one class called MyValue that is structured the same way as the code in Figure 4-7
earlier in the chapter. After you’ve compiled the code, figure out the path where the
assembly file exists. When you know where that is, you can type in the code you see in
Figure 4-10 (notice that your path will be different than the one shown in the figure).

CHAPTER 4 ■ USING THE SCRIPTING API

114

 After the assembly is loaded, you can reference namespaces within that assembly via
the using statement.

 At this point, there is no easy way to save all the code entered in the session to a
file. The only way to do this is to manually navigate to every line in the session buffer via
the Alt + Arrow Up keystroke and then copy each line of code to a text file. But once you
have your code in a file, you can load it at any time via the #load directive. Let’s say you
captured code in Listing 4-1 to a text file.

 Listing 4-1. Creating a simple C# script file

 #r "C:\YourCodePath\PlayingWithInteractive.dll"
 using PlayingWithInteractive;
 var value = new MyValue(8);

 Notice that the path to load the assembly in Listing 4-1 would have to change based
on where your assembly is located. Once you have that file, you can load it and examine
variables that were created from the script, as shown in Figure 4-11 .

 Figure 4-11. Loading C# script in the Interactive window

 At this point, you should have a good understanding of how the Interactive window
works in Visual Studio. Let’s move our focus away from the Interactive window and direct
it toward the code that powers its implementation: the Scripting API.

 Making C# Interactive
 You’ve already seen how to use C# as a scripting language via the Interactive window in
Visual Studio and the csi.exe command line tool. Now we’ll look at the Scripting API so
you can use it to create extensible applications within .NET. You’ll execute C# code as it’s
entered, preserve state from script execution to script execution, and even analyze the
structure of C# script code.

CHAPTER 4 ■ USING THE SCRIPTING API

115

 Referencing the Scripting NuGet Package
 The first activity you need to do is get the right NuGet package installed into your project.
This is pretty simple to do. Let’s say you create a simple console application called
 ScriptingPlayground . All you need to do is reference the Microsoft.CodeAnalysis.
Scripting package, as shown in Figure 4-12 .

 Figure 4-12. Referencing the NuGet package for the Scripting API

 Figure 4-13. Scripting API assemblies referenced in a project

 Once NuGet is done, you should see two referenced assemblies with “Scripting” in
their name, as shown in Figure 4-13 .

 Now that the project has the right references in place, let’s start using members from
the Scripting API.

 Evaluating Scripts
 The main class you’ll use for scripting is called CSharpScript . Its API surface is pretty
small, meaning that it doesn’t have a lot of methods, but within those methods is all of the
power to make C# scriptable. Let’s start by creating a simple class that will evaluate any
code given to it in a console window. This is shown in Listing 4-2 .

CHAPTER 4 ■ USING THE SCRIPTING API

116

 Listing 4-2. Evaluating code via EvalulateAsync()

 using Microsoft.CodeAnalysis.CSharp.Scripting;
 using Nito.AsyncEx;
 using System;
 using System.Threading.Tasks;

 namespace ScriptingPlayground
 {
 class Program
 {
 static void Main(string[] args)
 {
 AsyncContext.Run(() => Program.MainAsync(args));
 }

 private static async Task MainAsync(string[] args)
 {
 await Program.EvaluateCodeAsync();
 }

 private static async Task EvaluateCodeAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine
 (await CSharpScript.EvaluateAsync(code));
 }
 }
 }

 ■ Note The AsyncContext class comes from a NuGet package called Nito.AsyncEx.
Currently in .NET you can’t create an async version of the Main() method in a console
application. But using AsyncContext makes this possible. Hopefully in a future version
of .NET console applications will have this capability without needing a helper class. It’s
currently a feature request on the Roslyn GitHub site (https://github.com/dotnet/roslyn/
issues/1695), but it’s unclear if it will be included in a future C# release.

https://github.com/dotnet/roslyn/issues/1695
https://github.com/dotnet/roslyn/issues/1695

CHAPTER 4 ■ USING THE SCRIPTING API

117

 Executing code via CSharpScript is as simple as calling EvaluateAsync() . Figure 4-14
shows what the console window looks like when the application evaluates code.

 Figure 4-14. Evaluating code via the Scripting API

 If you pass code that contains errors to EvaluateAsync() , you’ll get a
 CompilationErrorException . This exception has a Diagnostics property on it that you
can use to identify what the errors are with the code that was evaluated.

 Although EvaluateAsync() lets you run simple pieces of C# code, there’s more that
you can do with scripting than just code evaluation. You can allow the script to use types
and members for other assemblies. For example, let’s say you created this class in an
assembly called ScriptingContext :

 public sealed class Context
 {
 public Context(int value)
 {
 this.Value = value;
 }

 public int Value { get; }
 }

 Assuming that your console application has a reference to the ScriptingContext
assembly, you can allow script code to use the Context class by passing a ScriptOptions
object to EvaluateAsync() . Listing 4-3 shows how this works.

 Listing 4-3. Passing in assembly references to script evaluation

 private static async Task EvaluateCodeWithContextAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine(
 await CSharpScript.EvaluateAsync(code,
 options: ScriptOptions.Default
 .AddReferences(typeof(Context).Assembly)
 .AddImports(typeof(Context).Namespace)));
 }

CHAPTER 4 ■ USING THE SCRIPTING API

118

 All you need to do is add a reference to the assembly that houses the Context class
via AddReferences() . The AddImports() call essentially adds a using statement with the
namespace of the Context class to the script context. Therefore, a developer doesn’t have
to provide the full type name of the class. Once you change the console application to call
 EvaluateCodeWithContextAsync() on startup, you can reference the Context class in
your script. Figure 4-15 shows what this looks like.

 Figure 4-15. Using custom types in script

 As you can see in Figure 4-15 , the code can use the Context class without any issues.
 You can also provide an instance of an object to the script, allowing the script to use

members on that object. For example, you can create a class called CustomContext that
exposes a Context object and a TextWriter :

 using System.IO;

 namespace ScriptingContext
 {
 public class CustomContext
 {
 public CustomContext(Context context, TextWriter myOut)
 {
 this.Context = context;
 this.MyOut = myOut;
 }

 public Context Context { get; }
 public TextWriter MyOut { get; }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

119

 Then you can create an instance of CustomContext and set the globals argument to
 EvaluateAsync() to that CustomContext instance, as shown in Listing 4-4 .

 Listing 4-4. Using a global context object

 private static async Task EvaluateCodeWithGlobalContextAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine(
 await CSharpScript.EvaluateAsync(code,
 globals: new CustomContext(
 new Context(4), Console.Out)));
 }

 Note that the Out property of the Console class is given to the CustomContext
instance, letting the script print out information to the context. Figure 4-16 shows how you
can use a script to print the Value property of the Context instance to the console window
if you call EvaluateCodeWithGlobalContextAsync() from the async Main() method.

 Figure 4-16. Using a global object in a script

 So far, you’ve seen how to use EvaluateAsync() to immediately execute a piece of
valid C# code. In the next section, I’ll discuss how you can analyze the script before you
execute it.

 Analyzing Scripts
 Running code via EvaluateAsync() requires a bit more care than what I’ve shown so far.
For example, if there’s syntax errors, you’ll get a CompilationErrorException . Rather
than adding an exception handler to code, you can use Create() on the CSharpScript
class to be a bit more defensive in your script execution implementation. Furthermore,
these methods expose syntax trees and semantic models, so you can query the submitted
script for details on what it intends to do. Listing 4-5 demonstrates how you can perform
this script analysis (note: assume this method is part of the Program class defined in the
“Evaluating Scripts” section).

CHAPTER 4 ■ USING THE SCRIPTING API

120

 Listing 4-5. Analyzing a script’s content

 private static async Task CompileScriptAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 var script = CSharpScript.Create(code);
 var compilation = script.GetCompilation();
 var diagnostics = compilation.GetDiagnostics();

 if(diagnostics.Length > 0)
 {
 foreach (var diagnostic in diagnostics)
 {
 Console.Out.WriteLine(diagnostic);
 }
 }
 else
 {
 foreach (var tree in compilation.SyntaxTrees)
 {
 var model = compilation.GetSemanticModel(tree);
 foreach (var node in tree.GetRoot().DescendantNodes(
 _ => true))
 {
 var symbol = model.GetSymbolInfo(node).Symbol;
 Console.Out.WriteLine(
 $"{node.GetType().Name} {node.GetText().ToString()}");

 if (symbol != null)
 {
 var symbolKind = Enum.GetName(
 typeof(SymbolKind), symbol.Kind);
 Console.Out.WriteLine(
 $"\t{symbolKind} {symbol.Name}");
 }
 }
 }

 Console.Out.WriteLine((await script.RunAsync()).ReturnValue);
 }
 }

 The return value of Create() is based on a Script<T> type, with T specified as
an object (there’s also a generic version of Create() you can use if you know what
the script’s return value will be in advance). From this Script<T> class, you can get
compilation information with GetCompilation() , which returns a Compilation object.
The Compilation class is the base class for the CSharpCompilation class you saw in

CHAPTER 4 ■ USING THE SCRIPTING API

121

Chapter 1 in Listing 1-1 . Therefore, you can look at diagnostic information, syntax trees,
semantic models—everything that you learned about in Chapter 1 can be reused here to
query the structure of the given script. In this example, if we have diagnostic information,
we don’t run the script; instead, we print out the error information. Otherwise, we display
syntax and semantic information, and then run the script via RunAsync() .

 Let’s see what the code in Listing 4-5 does with a valid script. Figure 4-17 shows the
results of a successful script analysis.

 Figure 4-17. Analyzing a valid script

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://dx.doi.org/10.1007/978-1-4842-2111-2_1#Par33
http://dx.doi.org/10.1007/978-1-4842-2111-2_1

CHAPTER 4 ■ USING THE SCRIPTING API

122

 There’s one more aspect to scripts that I should mention: storing state. Let’s look at
how state works with scripts in the next section.

 State Management in Scripts
 So far the script examples within the “Making C# Interactive” section have all been done
via a single execution of script. That is, we get a line of code from the user, execute that
script, and then the program is done. As you saw with the C# REPL in the “Using the C#
REPL” section, you can type numerous lines of script code and refer to variables and
classes issued earlier in the code. Fortunately, we don’t have to do a lot to manage state
information with the Scripting API. There’s a ScriptState class that is returned from
 RunAsync() that you can use to retain information from one script execution to another.
Listing 4-6 shows you how to use ScriptState to manage a script session (assume that
this method is part of the Program class from the “Evaluating Scripts” section).

 Listing 4-6. Using state management for scripts

 private static async Task ExecuteScriptsWithStateAsync()
 {
 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

 ScriptState<object> state = null;

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }

 Figure 4-18 shows what happens when the submitted script contains errors.

 Figure 4-18. Analyzing an invalid script

CHAPTER 4 ■ USING THE SCRIPTING API

123

 else
 {
 state = state == null ?
 await CSharpScript.RunAsync(code) :
 await state.ContinueWithAsync(code);

 foreach(var variable in state.Variables)
 {
 Console.Out.WriteLine(
 $"\t{variable.Name} - {variable.Type.Name}");
 }

 if (state.ReturnValue != null)
 {
 Console.Out.WriteLine(
 $"\tReturn value: {state.ReturnValue}");
 }
 }
 }
 }

 As long as the given text doesn’t equal "STOP" , the code will continue running the
script. Note that we capture the return value of RunAsync() (or ContinueWithAsync() if
the state already exists). This return value will contain all of the code that was parsed in
previous script executions. For example, we can print out the variables that have been
created from each execution. Figure 4-19 shows how variables are retained as more script
is entered.

 Figure 4-19. Using state to retain script execution information

CHAPTER 4 ■ USING THE SCRIPTING API

124

 As Figure 4-19 shows, the first line of code creates a variable called x . The next
line creates a new variable y , but because we’re using ScriptState , we can reference the
 x variable.

 Keep in mind that you can always use a global context object as you saw in the code
in Listing 4-4 . You can also reuse that context object across different script executions.
Let’s say we defined a class called DictionaryContext:

 using System.Collections.Generic;

 namespace ScriptingContext
 {
 public sealed class DictionaryContext
 {
 public DictionaryContext()
 {
 this.Values = new Dictionary<string, object>();
 }

 public Dictionary<string, object> Values { get; }
 }
 }

 Listing 4-7 shows how you can manage state with a DictionaryContext instance
(again, this code is part of the Program class from the “Evaluating Scripts” section).

 Listing 4-7. Using a shared global object to store state

 private static async Task ExecuteScriptsWithGlobalContextAsync()
 {
 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

 var session = new DictionaryContext();

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }
 else
 {
 var result = await CSharpScript.RunAsync(code,
 globals: session);

CHAPTER 4 ■ USING THE SCRIPTING API

125

 if(result.ReturnValue != null)
 {
 Console.Out.WriteLine(
 $"\t{result.ReturnValue}");
 }
 }
 }
 }

 Figure 4-20 demonstrates how shared state, stored in DictionaryContext , can be used.

 Figure 4-20. Using a global object to share state

 We don’t preserve variables between script executions, but we can store and load
values from the shared context. Notice that because all of the values are stored as an
 object , we have to cast the value back to what we think it should be if we try to retrieve it
from the dictionary.

 Although we’ve spent a fair amount of time in this chapter looking at the cool
features of the Scripting API, there are a couple of aspects of this API that you should be
aware of if you decide to include its features in your applications. These are performance,
memory usage, and security. Before I close out this chapter, let’s take a look at these
concerns in detail.

 Concerns with the Scripting API
 Being able to use C# as a scripting language is a welcome addition to the language’s
capability. However, there are a couple of areas where care should be taken to minimize
potential problems from becoming actual issues. We’ll discuss security later in the
“Scripts and Security” section, but first we’ll start with performance concerns and
memory usage in scripts.

CHAPTER 4 ■ USING THE SCRIPTING API

126

 Scripts, Performance, and Memory Usage
 When you see the Scripting API for the first time, you may start thinking about adding the
ability to extend applications with dynamic C# code execution. As you saw with VBA in
the “Orchestrating an Environment” section, exposing an object model for an application
allows users to add features that aren’t included within the application. However, keep
in mind that there’s there a cost involved with using scripts, both in performance and
memory usage.

 Let’s create a small piece of code in a console application that will continually
generate a simplistic, random C# mathematical statement and run it with the Scripting
API. Once 1000 scripts are generated, it will generate the working set of the application
along with how long it took to execute those scripts. Listing 4-8 shows how this works.

 Listing 4-8. Executing random code via the Scripting API

 using System.Diagnostics;

 private static async Task EvaluateRandomScriptsAsync()
 {
 var random = new Random();
 var iterations = 0;
 var stopWatch = Stopwatch.StartNew();

 while (true)
 {
 var script = $@"({random.Next(1000)} + {random.Next(1000)}) *
 {random.Next(10000)}";
 await CSharpScript.EvaluateAsync(script);
 iterations++;

 if (iterations == 1000)
 {
 stopWatch.Stop();
 Console.Out.WriteLine(
 $"{Environment.WorkingSet} - time: {stopWatch.Elapsed}");
 stopWatch = Stopwatch.StartNew();
 iterations = 0;
 }
 }
 }

 The code in Listing 4-8 generates code that looks like this: (452 + 112) * 34 . To run
this method, we’ll put it into a Program class:

 using Microsoft.CodeAnalysis.CSharp.Scripting;
 using Nito.AsyncEx;
 using System;
 using System.Diagnostics;

CHAPTER 4 ■ USING THE SCRIPTING API

127

 using System.Linq.Expressions;
 using System.Threading.Tasks;

 namespace ScriptingAndMemory
 {
 class Program
 {
 static void Main(string[] args)
 {
 AsyncContext.Run(
 () => Program.MainAsync(args));
 }

 private static async Task MainAsync(string[] args)
 {
 await EvaluateRandomScriptsAsync();
 }

 private static async Task EvaluateRandomScriptsAsync()
 {
 /* ... */
 }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

128

 Figure 4-21 shows what happens when you run this code.

 Figure 4-21. Memory and performance characteristics of script execution

 Notice that the size of the working set slowly, but surely, increases over time. Also,
the time to execute 1000 scripts slowly increases as well.

 Let’s compare this approach of generating and executing dynamically generated
code using the Scripting API with another technique: expressions. The System.Linq.
Expressions namespace has types that allow you to create methods that are compiled
to IL, just like C# code. Listing 4-9 shows how the Expressions API is used to create
methods that are functionally the same as the script code generated in Listing 4-9
(note that this method exists in our Program class).

 Listing 4-9. Executing random code via the Expressions API

 private static void EvaluateRandomExpressions()
 {
 var random = new Random();
 var iterations = 0;
 var stopWatch = Stopwatch.StartNew();

CHAPTER 4 ■ USING THE SCRIPTING API

129

 while (true)
 {
 var lambda = Expression.Lambda(
 Expression.Multiply(
 Expression.Add(
 Expression.Constant(random.Next(1000)),
 Expression.Constant(random.Next(1000))),
 Expression.Constant(random.Next(10000))));
 (lambda.Compile() as Func<int>)();
 iterations++;

 if (iterations == 1000)
 {
 stopWatch.Stop();
 Console.Out.WriteLine(
 $"{Environment.WorkingSet} - time: {stopWatch.Elapsed}");
 stopWatch = Stopwatch.StartNew();
 iterations = 0;
 }
 }
 }

 Figure 4-22 shows the performance characteristics of the Expressions API approach
by calling EvaluateRandomExpressions() from the Program ’s Main() method.

 Figure 4-22. Memory and performance characteristics of expression execution

CHAPTER 4 ■ USING THE SCRIPTING API

130

 In this case, the working set size and performance values are stable. The working set
size is also smaller than the Scripting API approach. Furthermore, based on the values
generated by this code, the Expressions API approach is three orders of magnitude faster
than the Scripting API. For example, a script takes about 0.015 seconds to run. With an
expression, it takes 0.00003 seconds.

 The benefits of using the Expressions API doesn’t mean that you should avoid using
the Scripting API; far from it! Keep in mind that this test is literally creating thousands of
scripts, and that’s typically not how scripts are executed. Scripts are used to orchestrate
other pieces of code in an application in a way that the developers didn’t initially
anticipate. Running a script 1000 times a second continuously within this context isn’t
common. Scripts are also exploratory, especially with a REPL. Once a developer has done
enough C# scripting experimentation, that code can potentially be moved into a more
typical compilation pipeline where the result is an assembly that can be optimized in
numerous ways. Finally, a script can allow you to create new classes; the Expressions API
is limited to a method implementation.

 Another area where a developer should be cautious with scripts is with security. Let’s
investigate this issue next.

 Scripts and Security
 It’s tempting to give users the ability to interact with an application’s features in ways
that were not originally codified as pieces of accepted functionality. For example, I’ve
seen a number of applications at clients that I’ve consulted for where users can create
reports based on the information contained within the application’s database. Usually,
this means they can submit SQL statements and save the data into an Excel spreadsheet.
Initially, this sounds like a great idea, because the application empowers uses to go
beyond what the application can provide. Unfortunately, this can also be a source of
unexpected problems as well, such as:

• Performance. Queries that are submitted may cause significant
delays due to unexpected fields being seached, where those fields
do not have any indexes in place. This can affect the performance
of other areas of the application.

• Resource use. If the users enter queries that start with "SELECT *" ,
they may retrieve a large amount of data that will tax the system’s
resources.

• Security. Entering queries that take advantage of SQL injection
techniques may cause significant damage to the data contained
within the database.

 Security is the issue we’ll focus on. If you want to use the Scripting API, you have to
keep in mind what functionality the user will have available and ensure they can only
use certain .NET members in their script code, or prevent them from using potentially
harmful APIs. Let’s look at an example.

CHAPTER 4 ■ USING THE SCRIPTING API

131

 This demonstration uses a console application that provides an object model for a
user to interact with. The first step is to create a simple Person class defined as follows:

 public sealed class Person
 {
 public Person(string name, uint age)
 {
 this.Name = name;
 this.Age = age;
 }

 public void Save() { }

 public uint Age { get; set; }
 public string Name { get; set; }
 }

 We’ll also create a script context that exposes a list of people:

 public sealed class ScriptingContext
 {
 public ScriptingContext()
 {
 this.People = ImmutableArray.Create(
 new Person("Joe Smith", 30),
 new Person("Daniel Davis", 20),
 new Person("Sofia Wright", 25));
 }

 public ImmutableArray<Person> People { get; }
 }

 This is the object model that we’ll pass to the CSharpScript class so scripts can
query the list and find people that match a set of criteria the user defines. Listing 4-10
shows the asynchronous MainAsync() method that is created to handle this scenario.

 Listing 4-10. Running scripts with an accesssible application object model

 using System.IO;
 using System.Linq;

 private static async Task MainAsync(string[] args)
 {
 File.WriteAllLines("secrets.txt",
 new[] { "Secret password: 12345" });

 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

CHAPTER 4 ■ USING THE SCRIPTING API

132

 var context = new ScriptingContext();
 var options = ScriptOptions.Default
 .AddImports(
 typeof(ImmutableArrayExtensions).Namespace)
 .AddReferences(
 typeof(ImmutableArrayExtensions).Assembly);

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }
 else
 {
 var script = CSharpScript.Create(code,
 globalsType: typeof(ScriptingContext),
 options: options);
 var compilation = script.GetCompilation();
 var diagnostics = compilation.GetDiagnostics();

 if (diagnostics.Length > 0)
 {
 foreach (var diagnostic in diagnostics)
 {
 Console.Out.WriteLine(diagnostic);
 }
 }
 else
 {
 var result = await CSharpScript.RunAsync(code,
 globals: context,
 options: options);

 if(result.ReturnValue != null)
 {
 Console.Out.WriteLine($"\t{result.ReturnValue}");
 }
 }
 }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

133

 The code is similar to code you saw in Listing 4-5 . We create a global context object
so scripts can use members on that context. If there are no errors, we run the script.
Figure 4-23 shows what happens when a script is entered that uses LINQ to query the
 People array.

 Figure 4-24. Finding secrets in a scripting session

 Figure 4-23. Running a script to find specific people

 As expected, looking for people with a name that starts with “Joe” returns one
person. But notice that MainAsync() creates a file with secret information when it starts.
If a script user started using members from the System.IO namespace like this:

 System.IO.Directory.EnumerateFiles(".").ToList()
 .ForEach(_ => System.Console.Out.WriteLine(_));

 They’ll see “secrets.txt” in the resulting list printed out to the Console window .
Figure 4-24 shows the harm that can be done with this information.

 This isn’t good! With a small amount of code, a user can find files of interest, and
then read that file’s contents. Or, a malicious user could use System.IO types to delete
numerous files on the hard drive.

CHAPTER 4 ■ USING THE SCRIPTING API

134

 We definitely do not want users to have access to the file system in this application.
Therefore, we should prevent usage of anything from the System.IO namespace .
However, that’s not sufficient. Consider this line of code:

 System.Type.GetType("System.IO.File").GetMethod(
 "ReadAllLines", new[] { typeof(string) }).Invoke(null, new[] { "secrets.txt" });

 This code never uses any System.IO type or member directly. Rather, it uses the
Reflection API to make a method call that will read file contents. If we were specifically
looking for System.IO usage, this would circumvent it. Therefore, we definitely want to
stop any Reflection API usage.

 But there’s potentially one more issue at hand. Take a look at this script snippet:

 var person = People.Where(_ => _.Name.StartsWith("Joe"))
 .ToArray()[0]; person.Name = "Changed Name"; person.Save();

 Do we want users to have the ability to change a person’s name, along with calling
 Save() ? Granted, Save() doesn’t do anything in our example, but it’s easy to imagine a
real-world example where Save() may try to access a database and persist any changes.
Maybe the user won’t have that kind of authority with their account’s permissions, but
we can also prevent scripts that try to persist changes on a Person instance from being
executed in the first place.

 To implement all the security restrictions we just discussed, we’ll create a
 VerifyCompilation() method that will traverse nodes in the syntax tree from the script
and examine whether any undesirable members are being used in that code. Listing 4-11
shows how VerifyCompilation() is defined.

 Listing 4-11. Analyzing scripts for invalid member usage

 private static ImmutableArray<Diagnostic> VerifyCompilation(
 Compilation compilation)
 {
 var diagnostics = new List<Diagnostic>();

 foreach (var tree in compilation.SyntaxTrees)
 {
 var model = compilation.GetSemanticModel(tree);
 foreach (var node in tree.GetRoot().DescendantNodes(
 _ => true))
 {
 var symbol = model.GetSymbolInfo(node).Symbol;

 if (symbol != null)
 {
 var symbolNamespace = Program.GetFullNamespace(symbol);

CHAPTER 4 ■ USING THE SCRIPTING API

135

 if(symbol.Kind == SymbolKind.Method ||
 symbol.Kind == SymbolKind.Property ||
 symbol.Kind == SymbolKind.NamedType)
 {
 if(symbol.Kind == SymbolKind.Method)
 {
 if (symbolNamespace == typeof(Person).Namespace &&
 symbol.ContainingType.Name == nameof(Person) &&
 symbol.Name == nameof(Person.Save))
 {
 diagnostics.Add(Diagnostic.Create(
 new DiagnosticDescriptor("SCRIPT02",
 "Persistence Error", "Cannot save a person",
 "Usage", DiagnosticSeverity.Error, false),
 node.GetLocation()));
 }
 }

 if (symbolNamespace == "System.IO" ||
 symbolNamespace == "System.Reflection")
 {
 diagnostics.Add(Diagnostic.Create(
 new DiagnosticDescriptor("SCRIPT01",
 "Inaccessable Member",
 "Cannot allow a member from namespace {0} to be used",
 "Usage", DiagnosticSeverity.Error, false),
 node.GetLocation(), symbolNamespace));
 }
 }
 }
 }
 }

 return diagnostics.ToImmutableArray();
 }

 We attempt to get an ISymbol reference for every node in the syntax tree. If we come
across a method, property, or type, we look for two conditions. The first one is when the
 symbol reference is actually a call to Save() on a Person object. The other one is when
the symbol exists within either the System.IO or the System.Reflection namespace .
The GetFullNamespace() method gets us the namespace of the symbol; here’s how
 GetFullNamespace() is implemented:

 private static string GetFullNamespace(ISymbol symbol)
 {
 var namespaces = new List<string>();
 var @namespace = symbol.ContainingNamespace;

CHAPTER 4 ■ USING THE SCRIPTING API

136

 while(@namespace != null)
 {
 if(!string.IsNullOrWhiteSpace(@namespace.Name))
 {
 namespaces.Add(@namespace.Name);
 }

 @namespace = @namespace.ContainingNamespace;
 }

 namespaces.Reverse();

 return string.Join(".", namespaces);
 }

 With VerifyImplementation() in place, we need to change only one line of code in
 MainAsync() . Change this line:

 var diagnostics = compilation.GetDiagnostics();

 To this:

 var diagnostics = compilation.GetDiagnostics()
 .Union(Program.VerifyCompilation(
 compilation))
 .ToImmutableArray();

 This code combines the diagnostic results from the compilation of the script with
any custom diagnostics generated from our analysis.

 Now, let’s run a couple of tests against this new implementation. First, let’s run a script
that tries to modify and save a Person instance. Figure 4-25 shows you what happens.

 Figure 4-25. Preventing persistence on a Person object

CHAPTER 4 ■ USING THE SCRIPTING API

137

 As expected, the script isn’t executed and we get an error. Figure 4-26 shows similar
behavior when we try to use Reflection to read secret information in a file.

 Figure 4-26. Preventing Reflection calls in a script

 These security-based techniques should be kept in mind if you let users write C#
scripts in your applications. However, realize that these security measures don’t cover all
of the bases. Here are some other thoughts to consider:

• API Exclusion . There may be more APIs that you’ll need to blacklist
to prevent malicious activites from being executed. For example,
we don’t prevent members from System.Reflection.Emit from
being used here. You’d definitely want to include those members
because a user could write script that literally creates a new
assembly on the fly.

• Restricted UIs . Our example used a simple console application.
Real-world applications that users interact with are typically web-,
mobile-, or desktop-based. You can create a UI that allows users to
interact with the object model but in a restricted way. For example,
you can provide a drop down that allows the user to query the
 People list with standardized actions, like “Starts with” for the
name, and “less than” for the age. The user doesn’t enter code;
they interact with UI elements whose values are used to generate
script. However, this may limit the ability for the user to interact
with the application’s object model in ways you can’t anticipate.

• Use Restricted User Accounts . Ensure that the identity that is
used to execute the script is highly limited. For example, you
can create a user account that cannot interact with files on the
machine where the script is executed. This would prevent the
script from being able to use files even if malicious users figured
out how to write script to get around the prevention techniques
demonstrated in this section.

CHAPTER 4 ■ USING THE SCRIPTING API

138

 Trying to limit what a script can do is not a trivial endeavour. With flexibility and
extensibility comes responsibilty and governance. You must ensure that exposing script
execution in an application does not reveal any security holes for users to take advantage of.

 Conclusion
 In this chapter, you saw how you can treat C# as a scripting language with the
Scripting API. This included using the Interactive window in Visual Studio and using
the CSharpScript object to compile and execute script. Performance and security
considerations with C# as a scripting language were also investigated. In the next and
final chapter, you’ll learn how the Compiler API is already being used by open source
packages and how C# may change in the future using the Compiler API’s features.

	Chapter 4: Using the Scripting API
	What Is a Scripting Language?
	Orchestrating an Environment
	Dynamic Capabilities

	Using the C# REPL
	Loading Code in Script

	Making C# Interactive
	Referencing the Scripting NuGet Package
	Evaluating Scripts
	Analyzing Scripts
	State Management in Scripts

	Concerns with the Scripting API
	Scripts, Performance, and Memory Usage
	Scripts and Security

	Conclusion

