
77© Darl Kuhn, Sam R. Alapati and Bill Padfield 2016
D. Kuhn et al., Expert Oracle Indexing and Access Paths, DOI 10.1007/978-1-4842-1984-3_4

 CHAPTER 4

 Index-Organized Tables

 The simplest explanation of an index-organized table is that it is accessed like any other Oracle table (typically
a heap-organized table) but is physically stored like an Oracle B-tree index. Index-organized tables are typically
created on “thin” tables (tables without too many columns). Typically, multiple columns of the table make up the
primary key of the index-organized table. The non-key columns can also be stored as part of the B-tree index. The
proper configuration and use of index-organized tables is fairly specific and does not meet all application needs.

 Understanding the Structure
 From a user or developer perspective, an index-organized table (IOT) appears like a normal table. IOTs are
stored in a B-tree structure. There must be a primary key on an index-organized table, as the data is stored
in primary key order. Since there is no data segment, there are no physical ROWID values for index-organized
tables. Figure 4-1 presents an example of an IOT.

 Figure 4-1. Structure of an index-organized table

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

78

 IOTs support many of the same features found in heap-organized tables , such as

• Constraints

• Partitioning

• Triggers

• LOB columns

• Parallelism

• Indexes (e.g., secondary indexes on IOTs)

• Global hash-partitioned indexes

• Online reorganization

 Because all of the data within an index-organized table is stored within the index itself, there are
physical differences in the way an index-organized table is stored, as compared to a normal B-tree index that
supports a normal heap-organized table. Some of the unique aspects of IOTs are as follows:

• Secondary indexes use logical ROWID s rather than physical ROWID s.

• They require a primary key.

• Primary key compression can be used to save storage and reduce the size of an IOT.

• An overflow segment can be used for non-key column data.

• Secondary bitmap indexes require a defined mapping table.

• Non-key column data is stored in the leaf blocks of an IOT.

 There are limitations on index-organized tables, although many of the limitations do not affect their use
in the majority of applications. The following are some of these limitations:

• Rows exceeding 50% of a block must use an overflow segment.

• IOTs can’t use virtual columns.

• Tables with more than 255 columns must have an overflow segment.

• Tables can’t have more than 1,000 total columns.

• The primary key can’t be more than 32 columns.

 Understanding the Advantages
 There are specific advantages of IOTs, including the following:

• Storage space can be saved because the data is the index, so there is only one segment
or set of segments in the database for an index-organized table, rather than the normal
two segments that come with a heap-organized table and associated index(es).

• Query performance benefits can occur because there are fewer I/O requirements. Since
the data is stored as part of the index, there is a potentially significant I/O reduction.

• DML performance benefits can occur because there is only the need to update the
index segment(s), as there is no data segment(s) as part of the structure. There is
no need to update the table and then any associated index as with heap-organized
tables. Only the index needs to be updated.

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

79

 Index-organized tables are most beneficial in OLTP environments for the following reasons:

• IOTs allow fast primary key access.

• IOTs allow online reorganization, which is essential in an OLTP environment.

• IOTs allow fast data retrieval in applications like Internet search engines.

 The biggest challenge with index-organized tables is deciding when to use them. If you have tables that
have several columns that make up the primary key, and the table itself is not dense as far as the number
of columns, it may be a candidate as an IOT. However, this by itself is not reason enough to make a table
into an index-organized table. There should be a tangible benefit gained from having a table structure be
index-organized, and this may require some testing of your application. Generally, index-organized tables
provide fast lookup of the primary key. They can be slower for inserts. Likewise, secondary index access
isn’t as fast as a normal B-tree index because index-organized table rows don’t have the physical ROWID
that would be found in a heap-organized table. Instead, IOTs use a logical ROWID , which isn’t as exact as a
physical ROWID and can become outdated over time. Because of this, index-organized tables may have to be
rebuilt periodically for performance reasons. All in all, the use of index-organized tables should be limited
and specific to a particular need. They are best used when fast primary key access is required. As mentioned,
performing DML on index-organized tables is slower and over time can cause a degradation of query
performance. Therefore, IOTs are best suited for data that is fairly static, with minimal DML activity.

 Creating an Index-Organized Table
 The data definition language (DDL) for an index-organized table is very similar to the DDL for a heap-
organized table. The key difference is the use of the ORGANIZATION INDEX clause, which tells Oracle that you
are creating an index-organized table; for example:

 SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL
 6 ,STATE_PROVINCE VARCHAR2(25)
 7 ,COUNTRY_ID CHAR(2)
 8 ,CONSTRAINT locations_iot_pk PRIMARY KEY (location_id)
 9)
 10 ORGANIZATION INDEX;

 Table created.

 As previously stated, you must have a primary key defined on an IOT. Since the IOT is stored in a B-tree
index structure, there is no physical ROWID stored with each row. That’s why you must have a primary key
on an IOT—so that each row can be uniquely identified.

 The B-tree structure of an index-organized table is based on the primary key values. If you don't specify
a primary key, you will get the following error:

 SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

80

 6 ,STATE_PROVINCE VARCHAR2(25)
 7 ,COUNTRY_ID CHAR(2)
 8)
 9 ORGANIZATION INDEX;

 organization index
 *
 ERROR at line 10:
 ORA-25175: no PRIMARY KEY constraint found

 For the most part, index-organized tables can be partitioned just like a heap-organized table. You can
partition index-organized tables using the following partitioning methods: range , list , or hash partitioning.
Using the LOCATIONS_IOT from the previous example, you can list partition the table by STATE_PROVINCE
based on whether it is a domestic or an international state province, as shown in the following DDL:

 SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL
 6 ,STATE_PROVINCE VARCHAR2(25) NOT NULL
 7 ,COUNTRY_ID CHAR(2)
 8 ,constraint locations_iot_pk primary key (location_id, state_province)
 9)
 10 ORGANIZATION INDEX
 11 partition by list(STATE_PROVINCE)
 12 (partition p_intl values
 13 ('Maharashtra','Bavaria','New South Wales', 'BE','Geneve',
 14 'Tokyo Prefecture', 'Sao Paulo','Manchester','Utrecht',
 15 'Ontario','Yukon','Oxford'),
 16 partition p_domestic values ('Texas','New Jersey','Washington','California'));

 Table created.

 You can’t use composite partitioning in relation to index-organized tables. The following DDL snippet is
attempting to create a composite range-list partitioned table:

 SQL> CREATE TABLE locations_iot
 2 ...
 17 organization index
 18 partition by range(hire_date)
 19 subpartition by list(DEPARTMENT_ID)
 20 subpartition template
 21 (SUBPARTITION JOB10 VALUES ('10')
 22 ,SUBPARTITION JOB20 VALUES ('20')
 23 ,SUBPARTITION JOB30 VALUES ('30')
 24 ,SUBPARTITION JOB40 VALUES ('40')
 25 ,SUBPARTITION JOB50 VALUES ('50')
 26 ,SUBPARTITION JOB60 VALUES ('60')
 27 ,SUBPARTITION JOB70 VALUES ('70')
 28 ,SUBPARTITION JOB80 VALUES ('80')

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

81

 29 ,SUBPARTITION JOB90 VALUES ('90')
 30 ,SUBPARTITION JOB100 VALUES ('100')
 31 ,SUBPARTITION JOB110 VALUES ('110')
 32 (
 33 partition p1990 values less than ('1991-01-01'),
 ...
 45);

 subpartition template
 *
 ERROR at line 20:
 ORA-25198: only range, list, and hash partitioning are supported for
 index-organized table

 This error clearly indicates that composite partitioning is not supported. For more information on the
features of IOTs and their limitations, see the Oracle Database Administrator’s Guide for your release of the
database.

 Adding an Overflow Segment
 For index-organized tables, it is common, and even recommended, to create an overflow area for row data
as part of the overall index-organized table structure. The typical index-organized table that includes an
overflow area is structured as follows:

• B-tree index entry, which includes the following:

• Primary key columns

• Some non-key columns, depending on PCTTHRESHOLD and INCLUDING clause
values specified

• A physical ROWID pointer to the overflow segment

• Overflow segment, which contains the remaining non-key column values

 In a normal B-tree index, the leaf node contains the index column key value, and then the ROWID for the
row in the data segment. With index-organized tables, all the non-key column values are stored within the
leaf blocks of the index by default. If the row data becomes very wide, the B-tree entries can become very
large. This can slow data retrieval simply because the index must traverse more index blocks.

 The overflow segment can aid in the efficiency of the overall B-tree index of an index-organized table by
storing some of the non-key column values in an overflow data segment of the IOT, which is used solely to
store these non-key column values. Associated with the overflow area is the PCTTHRESHOLD parameter, which
specifies how column data goes to the overflow segment. If the length of a row is greater than the percentage
of the index block specified by the PCTTHRESHOLD parameter (the default is 50), every column that exceeds
the threshold will be stored in the overflow area. Also, you can specify the overflow segment to a specific
tablespace, if desired.

 ■ Tip Use the ANALYZE TABLE...LIST CHAINED ROWS command to determine if you have set PCTTHRESHOLD
appropriately.

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

82

 In contrast to the PCTTHRESHOLD parameter, there is the INCLUDING clause, which specifies the last
table column for the row data that will be stored in the B-tree index segment. All columns after the column
specified by the INCLUDING clause will be stored in the overflow area. It is possible to specify both the
 PCTTHRESHOLD and INCLUDING clauses, as shown in the following example:

 SQL> CREATE TABLE employees
 2 (
 3 EMPLOYEE_ID NUMBER(6) NOT NULL
 4 ,FIRST_NAME VARCHAR2(20)
 5 ,LAST_NAME VARCHAR2(25) NOT NULL
 6 ,EMAIL VARCHAR2(25) NOT NULL
 7 ,PHONE_NUMBER VARCHAR2(20)
 8 ,HIRE_DATE DATE NOT NULL
 9 ,JOB_ID VARCHAR2(10) NOT NULL
 10 ,SALARY NUMBER(8,2)
 11 ,COMMISSION_PCT NUMBER(2,2)
 12 ,MANAGER_ID NUMBER(6)
 13 ,DEPARTMENT_ID NUMBER(4)
 14 ,CONSTRAINT employees_pk PRIMARY KEY (employee_id)
 15)
 16 ORGANIZATION INDEX
 17 TABLESPACE empindex_s
 18 PCTTHRESHOLD 40
 19 INCLUDING salary
 20 OVERFLOW TABLESPACE overflow_s

 Table created.

 Figure 4-1 shows an illustration of an index-organized EMPLOYEES table row as stored in the table, as
well as the overflow segment. In the example, you can see that the primary key in the EMPLOYEES table is the
 EMPLOYEE_ID , and the root block, branch blocks, and leaf blocks are structured based on the primary key.
Within the leaf blocks themselves is the primary key, as well as all of the non-key columns up through the
 SALARY column, which corresponds to the INCLUDING clause in the CREATE TABLE DDL statement . All column
data after the SALARY column is therefore stored in the overflow segment.

 For performance reasons, the order of columns within an index-organized table is important,
unlike normal heap-organized tables. This is simply because of the overflow segment. The most queried
columns should not be placed in the overflow segment, simply because it is an extra I/O operation to
retrieve the remaining column data for a given row. For this reason, the least queried columns should
be placed on the trailing end of the table DDL, especially those after the column specified in the
 INCLUDING clause. In the table example, let’s say that you determine through user interviews that the
most queried columns on your EMPLOYEES table will be the JOB_ID , DEPARTMENT_ID , and MANAGER_ID
columns. The initial DDL placed the DEPARTMENT_ID and MANAGER_ID columns in the overflow
segment.

 Based on the user interviews, it may be beneficial to move these two columns above the INCLUDING
clause and possibly shift some other columns below the INCLUDING clause. The following example shows a
modified DDL that rearranges the column order such that the DEPARTMENT_ID and MANAGER_ID are moved
above the INCLUDING clause, and thus out of the overflow segment:

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

83

 CREATE TABLE employees
 (
 EMPLOYEE_ID NUMBER(6) NOT NULL
 ,FIRST_NAME VARCHAR2(20)
 ,LAST_NAME VARCHAR2(25) NOT NULL
 ,EMAIL VARCHAR2(25) NOT NULL
 ,PHONE_NUMBER VARCHAR2(20)
 ,HIRE_DATE DATE NOT NULL
 ,JOB_ID VARCHAR2(10) NOT NULL
 ,SALARY NUMBER(8,2)
 ,MANAGER_ID NUMBER(6)
 ,DEPARTMENT_ID NUMBER(4)
 ,COMMISSION_PCT NUMBER(2,2)
 ,MANAGER_ID NUMBER(6)
 ,DEPARTMENT_ID NUMBER(4)
 ,CONSTRAINT employees_pk PRIMARY KEY (employee_id)
)
 ORGANIZATION INDEX
 TABLESPACE empindex_s
 PCTTHRESHOLD 40
 INCLUDING DEPARTMENT_ID
 OVERFLOW TABLESPACE overflow_s;

 Based on your user interviews, it may also mean (based on the necessary queries against the EMPLOYEES
table) that you decide not to create an overflow segment for the EMPLOYEES table. Creation of the overflow
segment, and which columns to place there, should be done after careful analysis based on the proposed
usage of the table columns.

 If you choose to specify an INCLUDING clause within the DDL for an IOT, you must specify an OVERFLOW
area, else you will receive the following error:

 create table employees_iot
 *
 ERROR at line 1:
 ORA-25186: INCLUDING clause specified for index-organized table without
 OVERFLOW

 Also, the Oracle data dictionary can become cluttered with entries for the overflow areas that have been
dropped from an index-organized table. Recyclebin objects are normally seen in the DBA_SEGMENTS view,
but for IOT overflow segments, you can see them in the USER_TABLES view (or appropriate ALL or DBA views),
including those that have been dropped. The following query and results provide an example:

 SQL> select table_name, iot_type from user_tables
 2 where iot_type like '%IOT%';

 TABLE_NAME IOT_TYPE
 ------------------------------ ------------
 SYS_IOT_OVER_77689 IOT_OVERFLOW
 SYS_IOT_OVER_77692 IOT_OVERFLOW
 SYS_IOT_OVER_77697 IOT_OVERFLOW
 EMPLOYEES_IOT IOT

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

84

 Therefore, purge the recyclebin to get rid of superfluous overflow entries.

 SQL> purge recyclebin;

 Recyclebin purged.

 After you purge the recyclebin, the dropped overflow objects no longer show in the data dictionary.

 SQL> select table_name, iot_type from user_tables
 2 where iot_type like '%IOT%''

 TABLE_NAME IOT_TYPE
 ------------------------------ ------------
 SYS_IOT_OVER_77697 IOT_OVERFLOW
 EMPLOYEES_IOT IOT

 ■ Tip Always attempt to keep the most frequently accessed columns within the table itself—and outside of
the overflow segment—for better access performance.

 Compressing an Index-Organized Table
 You can use a concept called key compression on index-organized tables to save storage space and compress
data. It’s called “key compression” because it can eliminate repeated values of the key columns. You can
use key compression with either a CREATE TABLE statement or an ALTER TABLE statement. The following is a
sample DDL of a CREATE TABLE statement with key compression enabled:

 SQL> CREATE TABLE employees_iot
 2 (
 3 EMPLOYEE_ID NUMBER(7) NOT NULL
 4 ,FIRST_NAME VARCHAR2(20)
 5 ,LAST_NAME VARCHAR2(25) NOT NULL
 6 ,EMAIL VARCHAR2(25) NOT NULL
 7 ,PHONE_NUMBER VARCHAR2(20)
 8 ,HIRE_DATE DATE NOT NULL
 9 ,JOB_ID VARCHAR2(10) NOT NULL
 10 ,SALARY NUMBER(8,2)
 11 ,COMMISSION_PCT NUMBER(2,2)
 12 ,MANAGER_ID NUMBER(6)
 13 ,DEPARTMENT_ID NUMBER(4)
 15 ,CONSTRAINT employees_iot_pk PRIMARY KEY (employee_id, job_id)
 17)
 18 ORGANIZATION INDEX COMPRESS 1
 19 TABLESPACE empindex_s
 20 PCTTHRESHOLD 40
 21 INCLUDING salary
 22 OVERFLOW TABLESPACE overflow_s;

 Table created.

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

85

 If you have a pre-existing table on which you want to enable key compression, you can simply use the
 ALTER TABLE...MOVE statement to enable the compression.

 SQL> ALTER TABLE employees_iot MOVE TABLESPACE empindex_s COMPRESS 1;

 Table altered.

 You can only use key compression when there are multiple columns as part of the primary key;
otherwise, you receive the following message when creating the table:

 CREATE TABLE employees_iot
 *
 ERROR at line 1:
 ORA-25193: cannot use COMPRESS option for a single column key

 For obvious reasons, you can’t use the same number of key columns as is within the primary key for
the key compression factor specified in the COMPRESS clause because that represents a unique value, and
therefore no key compression is possible. You receive the following error if you attempt to create the table
with the same compression factor as the number of primary key columns:

 CREATE TABLE employees_iot
 *
 ERROR at line 1:
 ORA-25194: invalid COMPRESS prefix length value

 The compression occurs when there are duplicates within the columns of the primary key. For instance,
if the employee with EMPLOYEE_ID 100 worked several jobs over the years, they would have several entries
for the EMPLOYEE_ID/JOB_ID combination. For rows with duplicates of the EMPLOYEE_ID itself, all repeated
values would be compressed. Table 4-1 provides a brief example of the results from key compression.

 Table 4-1. Example of Key Compression for Employee_ID 100

 Employee_ID Job_ID Employee_ID Value Compressed?

 100 AD_ASST NO (first entry)

 100 IT_PROG YES

 100 AD_VP YES

 100 … YES for all subsequent entries

 Building Secondary Indexes
 The index-organized table can be viewed the same as a heap-organized table in that if other indexes are
needed to speed query performance, secondary indexes can be added to index-organized tables because
they can be added on heap-organized tables. The following example shows how to create a secondary index
on DEPARTMENT_ID in the EMPLOYEES_IOT table:

 SQL> CREATE INDEX employees_iot_1i
 2 ON employees_iot (department_id);

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

86

 You can also create secondary indexes on partitioned IOTs.

 SQL> CREATE INDEX employees_iot_1i
 2 on employees_iot (department_id)
 3 LOCAL;

 The key difference between secondary indexes on heap-organized tables and secondary indexes on
index-organized tables is that there is no physical ROWID for each row in an index-organized table because
the table data is stored as part of the B-tree index. Therefore, all access to data within an index-organized
table is based on the primary key.

 Instead of the normal physical ROWID s to locate table rows, index-organized tables use a logical ROWID ,
which is used by any secondary indexes on the IOT in order to retrieve data. The logical ROWID is the
equivalent to a physical guess of the row location based on the ROWID when the index entry was first created.
Based on the physical guess, Oracle scans through leaf blocks searching for a match. The physical guess
doesn’t change over time, even if a row’s physical location changes. For instance, leaf block splits can occur
over time, which can fragment the index and change a row’s physical location. Because the physical guess is
not updated even if a row location changes, the physical guesses can become outdated or stale over time.

 You can get information from the data dictionary to determine if the physical guesses for an IOT are
stale by querying the PCT_DIRECT_ACCESS column of USER_INDEXES , as follows:

 SQL> select index_name, index_type, pct_direct_access
 2 from user_indexes;

 INDEX_NAME INDEX_TYPE PCT_DIRECT_ACCESS
 ------------------------------ --------------------------- -----------------
 EMPLOYEES_IOT_PK IOT - TOP 0
 EMPLOYEES_PART_1I NORMAL 100

 If the PCT_DIRECT_ACCESS value falls below 100, it means that the secondary index entries are becoming
migrated, and the physical guess can start to be inaccurate enough that extra I/O operations start occurring
and performance starts to degrade. Once the PCT_DIRECT_ACCESS falls below 80, performance degradation
starts becoming more noticeable, and the index may be a good candidate for a rebuild operation.

 In order to refresh the logical ROWID s over time, there are two primary ways to address the issue:

• Rebuild the secondary index.

• Update the block references for the index.

 The first way to refresh the logical ROWID s within secondary indexes is simply by rebuilding the
index(es). Rebuilding secondary indexes built on index-organized tables is no different from rebuilding
indexes on heap-organized tables.

 SQL> ALTER INDEX employees_1i REBUILD;

 Of course, depending on the size of the table, rebuilding one or more secondary indexes can take time,
and with shrinking maintenance windows and ever-increasing availability windows on databases, it can be
problematic to rebuild indexes on large tables on a regular basis.

 An alternative to rebuilding your secondary indexes and a quick way to fix stale physical guesses within
your secondary indexes is to use the ALTER INDEX…UPDATE BLOCK REFERENCES command, which quickly
realigns stale physical guesses without having to rebuild an entire index.

 SQL> ALTER INDEX employees_part_1i UPDATE BLOCK REFERENCES;

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

87

 You can also place bitmap indexes on IOTs as secondary indexes. Refer to Chapter 3 for examples of
creating bitmap indexes on an IOT. Within the bitmap index, since there is an entry for each row in a given
table, there is normally a ROWID , along with the bitmap and data value corresponding to the indexed column.
Since there are no physical ROWID values with an index-organized table, a bitmap index that is built on an
index-organized table must be managed differently. When creating the bitmap index on the IOT, you must
include a mapping table within the bitmap index. Again, see Chapter 3 for an example of how to build a
bitmap index on an index-organized table.

 A mapping table is simply a heap-organized table that is used to store the logical ROWID values. The
mapping table is essentially an object that replaces the physical ROWID representation with a logical ROWID
representation for the rows in the table. So, within the bitmap index itself, the physical ROWID is from the
mapping table, rather than from the base table. Then the mapping table is accessed to retrieve the logical
 ROWID in order to access the data from the index-organized table. Figure 4-2 shows an example of a bitmap
index with a mapping table.

 Figure 4-2. A bitmap index within an index-organized table

http://dx.doi.org/10.1007/978-1-4842-1984-3_3
http://dx.doi.org/10.1007/978-1-4842-1984-3_3

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

88

 Rebuilding an Index-Organized Table
 An index-organized table is a B-tree index. It can become fragmented over time and can incur the same
issues as a normal B-tree index: an expanded index depth over time, an unbalanced tree, and sparse blocks,
to name a few. Therefore, you can rebuild an index-organized table as you would a normal B-tree index.
The obvious difference is that because it is regarded as a table, you rebuild an IOT with the ALTER TABLE
command, as shown in the following example:

 SQL> ALTER TABLE employees_iot MOVE;

 Table altered.

 If you want to move the IOT to a different tablespace, simply specify the tablespace within the ALTER
TABLE clause, as shown in the following example:

 SQL> ALTER TABLE employees_iot MOVE TABLESPACE emp_s;

 Table altered.

 When an IOT is rebuilt, the overflow segment is not rebuilt by default. Since similar fragmentation
issues can occur with the overflow segment, it’s a good idea to always rebuild the overflow segment
whenever you rebuild the IOT itself, as shown in the following examples:

 SQL> ALTER TABLE employees_iot MOVE overflow;

 SQL> ALTER TABLE employees_iot MOVE tablespace emp_s
 2 overflow tablespace overflow_s;

 Table altered.

 You can also rebuild an IOT with the ONLINE clause, which means that the existing structure can be
accessed during the rebuild operation.

 SQL> alter table employees_iot move tablespace users online;

 Table altered.

 An index-organized table can be partitioned just as any other heap-organized table can be partitioned.
If you are rebuilding a partitioned IOT, you can’t rebuild it in one step—that is, the entire table; if you do, you
receive the following error:

 SQL> ALTER TABLE employees_iot MOVE;
 ALTER TABLE employees_iot MOVE
 *
 ERROR at line 1:
 ORA-28660: Partitioned Index-Organized table may not be MOVEd as a whole

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

89

 If you wish to rebuild an entire partitioned IOT, you must do it one partition at a time. You need to get
the partition names from the index itself using the USER_IND_PARTITIONS view (or, of course, optionally the
equivalent ALL or DBA views), and then issue the ALTER TABLE…MOVE PARTITION command in order to move
each partition of an IOT, as shown in the following example:

 SQL> select partition_name
 2 from user_ind_partitions
 3* where index_name = 'EMPLOYEES_IOT_PK';

 PARTITION_NAME

 P1990
 ...
 P1999
 P2000
 PMAX

 SQL> ALTER TABLE employees_iot MOVE PARTITION p1990;

 Table altered.

 You must rebuild the IOT with an ALTER TABLE command. If you attempt to rebuild an IOT via the
primary key index, you receive the following error:

 SQL> alter index employees_iot_pk rebuild;
 alter index employees_iot_pk rebuild
 *
 ERROR at line 1:
 ORA-28650: Primary index on an IOT cannot be rebuilt

 Converting to or from an Index-Organized Table
 You may have an existing table that you want to convert either to an index-organized table or from an index-
organized table due to application needs. In either case, the conversion process is straightforward. The
simplest method is to use the “create table as select” syntax. The following examples show how to perform
these conversions using this method.

 First, let’s say you have a heap-organized table that meets the fundamental requirements of an index-
organized table, and you wish to convert that table to an IOT, as follows:

 CREATE TABLE locations_iot
 (LOCATION_ID
 ,STREET_ADDRESS
 ,POSTAL_CODE
 ,CITY
 ,STATE_PROVINCE
 ,COUNTRY_ID
 ,CONSTRAINT locations_iot_pk PRIMARY KEY (location_id)
)
 ORGANIZATION INDEX
 as select * from locations;

 Table created.

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

90

 Conversely, if you have an index-organized table that is causing performance problems, and you want
to convert to a heap-organized table, you could do as shown in the following example:

 CREATE TABLE locations
 (LOCATION_ID
 ,STREET_ADDRESS
 ,POSTAL_CODE
 ,CITY
 ,STATE_PROVINCE
 ,COUNTRY_ID
 ,CONSTRAINT locations_pk PRIMARY KEY (location_id)
)
 as select * from locations_iot;

 Table created.

 After you have completed the operation, you’d then have to drop the original table, of course, and if
necessary, rename the newly created table to the desired name.

 Based on how an application and its data can change over time, you may need to convert a table from a
heap-organized table to an IOT or from an IOT to a heap-organized table. The aforementioned examples are
one simple way to do this.

 Reporting on Index-Organized Tables
 Getting information from the Oracle data dictionary on index-organized tables is straightforward. Look at
the following query, which gives the fundamental information regarding the IOTs within your database:

 SQL> select i.table_name, i.index_name, i.index_type, i.pct_threshold,
 2 nvl(column_name,'NONE') include_column
 3 from user_indexes i left join user_tab_columns c
 4 on (i.table_name = c.table_name)
 5 and (i.include_column = c.column_id)
 6 where index_type = 'IOT - TOP';

 TABLE_NAME INDEX_NAME INDEX_TYPE PCT_THRESHOLD INCLUDE_COLUMN
 --------------- ------------------ ---------- ------------- ------------------
 LOCATIONS_IOT LOCATIONS_IOT_PK IOT - TOP 50 NONE
 EMPLOYEES_PART EMPLOYEES_PART_PK IOT - TOP 50 NONE
 COUNTRIES COUNTRY_C_ID_PK IOT - TOP 50 NONE
 EMPLOYEES_IOT EMPLOYEES_IOT_PK IOT - TOP 40 SALARY

 From this query, you get the following information:

• The table name

• The index name(s), which includes the primary key and any secondary indexes on
the table

• The index type, which will be designated as 'IOT - TOP' for index-organized tables

• The PCTTHRESHOLD for the table

• The INCLUDING column, if specified

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

91

 You need to do an outer join to the USER_TAB_COLUMNS view to get the column name for the column
specified by the INCLUDING clause, which is optional when creating an index-organized table. The COLUMN_ID
column on the USER_INDEXES view specifies the column number of the column for the INCLUDING clause.
If there is no INCLUDING clause specified on the index-organized table, the COLUMN_ID column will be
populated with a default value of '0' or with the value from the USER_TAB_COLUMNS COLUMN_ID column.

 If you look at the USER_TABLES view, both the IOT itself and the overflow segment are shown.

 SQL> select table_name, iot_type, segment_created from user_tables;

 TABLE_NAME IOT_TYPE SEG
 ------------------------------ ------------ ---
 SYS_IOT_OVER_77704 IOT_OVERFLOW YES
 EMPLOYEES_IOT IOT YES

 If querying DBA_SEGMENTS to get the actual physical characteristics of the IOT itself, as well as the
overflow segment, remember to use the primary key segment_name ; the table name itself will not be
specified within the DBA_SEGMENTS view, since the IOT is essentially an index segment.

 1 select segment_name, segment_type
 2 from dba_segments
 3* where segment_name like '%IOT%'
 SQL> /

 SEGMENT_NAME SEGMENT_TYPE
 ------------------------------ ------------------
 SYS_IOT_OVER_77704 TABLE
 EMPLOYEES_IOT_PK INDEX

 Summary
 Index-organized tables have a specific niche in applications and are not really suitable for extensive use. The
following are some guidelines to determine if a table is a good candidate for an IOT:

• Is it a table with a small number of columns?

• Is it a table made up of a composite primary key (several columns of the table)?

• Does the table require fast primary key access?

• Is the data in the table fairly static—with little DML activity?

 IOTs are generally better suited for OLTP applications than data warehouse applications, simply because
OLTP applications often have a requirement for very fast lookup of primary key data. IOTs are generally
avoided in the data warehouse simply because a data warehouse typically does bulk loading of data, and the
performance of inserts on IOTs is slower. This is especially noticeable with a large volume of data. Also, if there
are access requirements to place many secondary indexes on the IOT, it can generally be slower just because
no physical ROWID exists within an IOT. This can slow the access of data, especially over time, as physical
guesses become stale. Of course, these are guidelines. Deciding whether to use IOTs within your application
depends on your specific data loading and data retrieval requirements. You should also consider your available
maintenance windows, which can be used in part to rebuild IOTs when they become fragmented.

 All this said, the index-organized table is a valuable tool. Knowing the features, advantages, and
disadvantages can help you decide where and when to properly implement an index-organized table within
your application.

	Chapter 4: Index-Organized Tables
	Understanding the Structure
	Understanding the Advantages
	Creating an Index-Organized Table
	Adding an Overflow Segment
	Compressing an Index-Organized Table
	Building Secondary Indexes
	Rebuilding an Index-Organized Table
	Converting to or from an Index-Organized Table
	Reporting on Index-Organized Tables
	Summary

