
39© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_9

 CHAPTER 9

 Class

 A class is a template used to create objects. To define one, the class keyword is used,
followed by a name and a code block. The naming convention for classes is mixed case,
meaning that each word should be initially capitalized.

 class MyRectangle {}

 The class body can contain properties and methods. Properties are variables that
hold the state of the object, whereas methods are functions that define what the object
can do. Properties are also known as fields or attributes in other languages. In PHP, they
need to have an explicit access level specified. In the following, the public access level is
used, which gives unrestricted access to the property.

 class MyRectangle
 {
 public $x, $y;
 function newArea($a, $b) { return $a * $b; }
 }

 To access members from inside the class, the $ this pseudo variable is used along
with the single arrow operator (->). The $this variable is a reference to the current
instance of the class and can only be used within an object context. Without it, $x and $y
would just be seen as local variables.

 class MyRectangle
 {
 public $x, $y;

 function newArea($a, $b)
 {
 return $a * $b;
 }

CHAPTER 9 ■ CLASS

40

 function getArea()
 {
 return $this->newArea($this->x, $this->y);
 }
 }

 Instantiating an Object
 To use a class’s members from outside the enclosing class, an object of the class must first
be created. This is done using the new keyword , which creates a new object or instance.

 $r = new MyRectangle(); // object instantiated

 The object contains its own set of properties, which can hold values that are different
from those of other instances of the class. As with functions, objects of a class may be
created even if the class definition appears further down in the script file.

 $r = new MyDummy(); // ok
 class MyDummy {};

 Accessing Object Members
 To access members that belong to an object, the single arrow operator (->) is needed. It
can be used to call methods or to assign values to properties.

 $r->x = 5;
 $r->y = 10;
 $r->getArea(); // 50

 Another way to initialize properties is to use initial property values.

 Initial Property Values
 If a property needs to have an initial value , a clean way is to assign the property at the
same time that it is declared. This initial value is then set when the object is created.
Assignments of this kind must be a constant expression. It cannot, for example, be a
variable or a mathematical expression.

 class MyRectangle
 {
 public $x = 5, $y = 10;
 }

CHAPTER 9 ■ CLASS

41

 Constructor
 A class can have a constructor , which is a special method used to initialize (construct)
the object. This method provides a way to initialize properties, which is not limited to
constant expressions. In PHP, the constructor starts with two underscores followed by the
word construct . Methods like these are known as magic methods .

 class MyRectangle
 {
 public $x, $y;

 function __construct()
 {
 $this->x = 5;
 $this->y = 10;
 echo "Constructed";
 }
 }

 When a new instance of this class is created, the constructor is called, which in this
example sets the properties to the specified values. Note that any initial property values
are set before the constructor is run.

 $r = new MyRectangle(); // "Constructed"

 Since this constructor takes no arguments, the parentheses may optionally be left out.

 $r = new MyRectangle; // "Constructed"

 Just as any other method, the constructor can have a parameter list. It can be used to
set the property values to the arguments passed when the object is created.

 class MyRectangle
 {
 public $x, $y;

 function __construct($x, $y)
 {
 $this->x = $x;
 $this->y = $y;
 }
 }

 $r = new MyRectangle(5,10);

CHAPTER 9 ■ CLASS

42

 Destructor
 In addition to the constructor, classes can also have a destructor. This magic method
starts with two underscores followed by the word destruct . It is called as soon as there
are no more references to the object, before the object is destroyed by the PHP garbage
collector .

 class MyRectangle
 {
 // ...
 function __destruct() { echo "Destructed"; }
 }

 To test the destructor, the unset function can manually remove all references to the
object.

 unset($r); // "Destructed"

 Bear in mind that the object model was completely rewritten in PHP 5. Therefore,
many features of classes, such as destructors, do not work in earlier versions of the
language.

 Case Sensitivity
 Whereas variable names are case sensitive , class names in PHP are case insensitive—as
are function names, keywords, and built-in constructs such as echo . This means that a
class named MyClass can also be referenced as myclass or MYCLASS .

 class MyClass {}
 $o1 = new myclass(); // ok
 $o2 = new MYCLASS(); // ok

 Object Comparison
 When using the “equal to” operator (==) on objects, these objects are considered equal if
the objects are instances of the same class and their properties have the same values and
types. In contrast, the strict “equal to” operator (===) returns true only if the variables
refer to the same instance of the same class.

 class Flag
 {
 public $flag = true;
 }

CHAPTER 9 ■ CLASS

43

 $a = new Flag();
 $b = new Flag();

 $c = ($a == $b); // true (same values)
 $d = ($a === $b); // false (different instances)

 Anonymous Classes
 Support for anonymous classes were introduced in PHP 7. Such a class is useful in place
of a named class when only a single, throwaway object is needed.

 $obj = new class {};

 The implementation of the anonymous class, and the object created from it, are no
different from a named class; for instance, they can use constructors in the same way as
any named class.

 $o = new class('Hi')
 {
 public $x;
 public function __construct($a)
 {
 $this->x = $a;
 }
 };

 echo $o->x; // "Hi";

 Closure Object
 Anonymous functions in PHP are also closures , as they have the ability to capture a
context from outside of the function’s scope. In addition to variables, this context can
also be an object’s scope. This creates a so-called closure object , which has access to
the properties of that object. An object closure is made using the bindTo method. This
method accepts two arguments: the object to which the closure is bound and the class
scope that it is associated with. To access non-public members (private or protected), the
name of the class or object must be specified as the second argument.

 class C { private $x = 'Hi'; }

 $getC = function() { return $this->x; };
 $getX = $getC->bindTo(new C, 'C');
 echo $getX(); // "Hi"

CHAPTER 9 ■ CLASS

44

 This example uses two closures. The first closure, $getC , defines the method for
retrieving the property. The second closure, $getX , is a duplicate of $getC , to which
the object and class scope has been bound. PHP 7 simplified this by providing a
shorthand—a better-performing way of temporarily binding and then calling a closure in
the same operation.

 // PHP 7+ code
 $getX = function() { return $this->x; };
 echo $getX->call(new C); // "Hi"

	Chapter 9: Class
	Instantiating an Object
	Accessing Object Members
	Initial Property Values
	Constructor
	Destructor
	Case Sensitivity
	Object Comparison
	Anonymous Classes
	Closure Object

