
57© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_13

 CHAPTER 13

 Constants

 A constant is a variable with a value that cannot be changed by the script. Therefore, such
a value must be assigned at the same time that the constant is created. PHP provides two
methods for creating constants: the const modifier and the define function.

 Const
 The const modifier is used to create class constants. Unlike regular properties, class
constants do not have an access level specified because they are always publicly visible.
They also do not use the dollar sign parser token ($). The naming convention for
constants is all uppercase, with underscores separating each word.

 class MyCircle
 {
 const PI = 3.14;
 }

 Constants must be assigned a value when they are created. Like static properties, a
constant may only be initialized with a constant value, and not with an expression. Class
constants are referenced in the same way as static properties, except that they do not use
the dollar sign.

 echo MyCircle::PI; // "3.14"

 The const modifier may not be applied to local variables or parameters. However, as
of PHP 5.3, const can be used to create global constants. Such a constant is defined in the
global scope and can be accessed anywhere in the script.

 const PI = 3.14;
 echo PI; // "3.14"

CHAPTER 13 ■ CONSTANTS

58

 Define
 The define function can create both global and local constants, but not class constants.
The first argument to this function is the constant’s name and the second is its value.

 define('DEBUG', 1);

 Just like constants created with const , define constants are used without the dollar
sign and their value cannot be modified.

 echo DEBUG; // "1"

 Like constants created with const , the value for define may be any scalar data
type: integer, float, string, or bool. Unlike const , however, the define function allows an
expression to be used in the assignment, such as a variable or the result of a mathematical
expression.

 define('ONE', 1); // 1
 define('TWO', ONE+1); // 2

 Constants are case sensitive by default. However, the define function takes a third
optional argument that may be set to true to create a case-insensitive constant.

 define('DEBUG', 1, true);
 echo debug; // "1"

 To check whether a constant already exists, the defined function can be used. This
function works for constants created with const or define .

 if (!defined('PI'))
 define('PI', 3.14);

 PHP 7 made it possible to create constant arrays using the define function. Support
for constant arrays created with const has existed since PHP 5.6.

 const CA = [1, 2, 3]; // PHP 5.6 or later
 define('DA', [1, 2, 3]); // PHP 7 or later

 Const and define
 The const modifier creates a compile-time constant, so the compiler replaces all usage of
the constant with its value. In contrast, define creates a run-time constant that is not set
until run-time. This is the reason why define constants may be assigned with expressional
values, whereas const requires constant values that are known at compile-time.

 const PI = 3.14; // compile-time constant
 define('E', 2.72); // run-time constant

CHAPTER 13 ■ CONSTANTS

59

 Only const may be used for class constants and only define for local constants.
However, when creating global constants, both const and define are allowed. In these
circumstances, using const is generally preferable, as compile-time constants are slightly
faster than run-time constants. The main exception is when the constant is conditionally
defined, or an expressional value is required, in which case define must be used.

 Constant Guideline
 In general, it is a good idea to create constants instead of variables if their values do not
need to be changed. This ensures that the variables are not changed anywhere in the
script by mistake, which in turn helps to prevent bugs.

 Magic Constants
 PHP provides eight predefined constants, as shown in Table 13-1 . These are called magic
 constants because their values change, depending on where they are used.

 Table 13-1. Magic Constants

 Name Description

 __LINE__ Current line number of the file.

 __FILE__ Full path and filename of the file.

 __DIR__ Directory of the file.

 __FUNCTION__ Function name.

 __CLASS__ Class name including namespace.

 __TRAIT__ Trait name including namespace.

 __METHOD__ Class method name.

 __NAMESPACE__ Current namespace.

 Magic constants are especially useful for debugging purposes. For example, the value
of __LINE__ depends on the line in which it appears in the script.

 if(!isset($var))
 {
 echo '$var not set on line ' . __LINE__;
 }

	Chapter 13: Constants
	Const
	Define
	Const and define
	Constant Guideline
	Magic Constants

