
53© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_12

 CHAPTER 12

 Static

 The static keyword can be used to declare properties and methods that can be accessed
without having to create an instance of the class. Static (class) members only exist in one
copy, which belongs to the class itself, whereas instance (non-static) members are created
as new copies for each new object.

 class MyCircle
 {
 // Instance members (one per object)
 public $r = 10;
 function getArea() {}

 // Static/class members (only one copy)
 static $pi = 3.14;
 static function newArea($a) {}
 }

 Static methods cannot use instance members since these methods are not part of an
instance. They can use other static members, however.

 Referencing Static Members
 Unlike instance members, static members are not accessed using the single arrow
operator (->). Instead, to reference static members inside a class, the member must be
prefixed with the self keyword followed by the scope resolution operator (::). The self
keyword is an alias for the class name, so alternatively, the actual name of the class can be
used.

 static function newArea($a)
 {
 return self::$pi * $a * $a; // ok
 return MyCircle::$pi * $a * $a; // alternative
 }

CHAPTER 12 ■ STATIC

54

 This same syntax is used to access static members from an instance method.
Note that in contrast to static methods, instance methods can use both static and instance
members.

 function getArea()
 {
 return self::newArea($this->$r);
 }

 To access static members from outside the class, the name of the class needs to be
used, followed by the scope resolution operator (::).

 class MyCircle
 {
 static $pi = 3.14;

 static function newArea($a)
 {
 return self::$pi * $a * $a;
 }
 }

 echo MyCircle::$pi; // "3.14"
 echo MyCircle::newArea(10); // "314"

 The advantage of static members can be seen here; they can be used without having
to create an instance of the class. Therefore, methods should be declared static if they
perform a generic function independently of instance variables. Likewise, properties
should be declared static if there is only need for a single instance of the variable.

 Static Variables
 Local variables can be declared static to make the function remember its value. Such a
static variable only exists in the local function’s scope, but it does not lose its value when
the function ends. This can be used to count the number of times a function is called, for
example.

 function add()
 {
 static $val = 0;
 echo $val++;
 }

 add(); // "0"
 add(); // "1"
 add(); // "2"

CHAPTER 12 ■ STATIC

55

 The initial value that a static variable is given is only set once. Keep in mind that
static properties and static variables may only be initialized with a constant; but not with
an expression, such as another variable or a function return value.

 Late Static Bindings
 As mentioned before, the self keyword is an alias for the class name of the enclosing
class. This means that the keyword refers to its enclosing class even when it is called from
the context of a child class.

 class MyParent
 {
 protected static $val = 'parent';

 public static function getVal()
 {
 return self::$val;
 }
 }

 class MyChild extends MyParent
 {
 protected static $val = 'child';
 }

 echo MyChild::getVal(); // "parent"

 To get the class reference to evaluate to the actual calling class, the static keyword
needs to be used instead of the self keyword. This feature is called late static bindings
and it was added in PHP 5.3.

 class MyParent
 {
 protected static $val = 'parent';

 public static function getLateBindingVal()
 {
 return static::$val;
 }
 }

 class MyChild extends MyParent
 {
 protected static $val = 'child';
 }
 echo MyChild::getLateBindingVal(); // "child"

	Chapter 12: Static
	Referencing Static Members
	Static Variables
	Late Static Bindings

