
31© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_4

 CHAPTER 4

 Objects and Object-Oriented
Programming: OOP Primer

 Now that you have had an overview of JSON in Chapter 2 and the JSON Schema Core
and its components in Chapter 3 , this chapter examines what defines object-oriented
programming (OOP), including the concepts behind it, advantages of using OOP, terms
used to describe OOP, and the difference between hard objects used in Java and soft
objects used in JavaScript. Remember that JSON is used with JavaScript, Java, C++, and
a great many other OOP languages, but it is best integrated with JavaScript and also
integrates seamlessly with ECMAScript-262.

 First you look at OOP concepts via Java, which is used on every OS as well as in the
popular Android operating system. Java uses a more complex, hard object paradigm,
because it requires classes and constructors to create an object. Then you examine OOP in
JavaScript, which uses a soft object paradigm: objects can be created without using special
classes and constructor methods. (By the way: methods are called functions in JavaScript.)

 Object-Oriented Programming: Overview
 The initial programming languages were top down or linear and either had line numbers,
as in BASIC, or processed lines of code in the order that they appeared. As you learned in
Chapter 2 , the first OOP was Simula, and it introduced some very advanced concepts that
made programming an order of magnitude more flexible, extensible, and powerful, all at
the same time. These faculties also made OOP more difficult to learn and comprehend,
which is why this book spends this chapter making sure you understand OOP and the two
types of objects created in the two most popular programming languages today: Java and
JavaScript.

 This chapter starts with Java because chances are you use it for application
development or mobile development; the chapter finishes with JavaScript and at that
point also introduces the JSON object value and how to define a JSON object. JavaScript
has fewer complexities than Java, so covering Java first gets those complexities out of the
way. Then you can look at how JavaScript differs; it is less rigid regarding rules, which
is why it is called a soft object model whereas Java is called a hard object model . As far
as JSON goes, it is as widely used with Java as it is with JavaScript, so all of this chapter

http://dx.doi.org/10.1007/978-1-4842-1863-1_2
http://dx.doi.org/10.1007/978-1-4842-1863-1_3
http://dx.doi.org/10.1007/978-1-4842-1863-1_2

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

32

is directly relevant to JSON no matter how you slice it. Java has extensive JSON class
libraries, just as JavaScript has a plethora of JSON functions. Some of these, such as
 JSON.parse() , you saw in Chapter 2 .

 Java OOP Concepts: Hard Object Construction
 Let’s make sure you and I are on the same page by reviewing the core concepts and
principles behind the Java programming language. This chapter gives you a primer or
comprehensive overview of an entire OOP language. The Java JDK (and JRE) that you
install in the appendixes of this book are the foundation for the JSON IDE and Java
applications as well as for the NetBeans 8.1 IDE, which you saw in Chapter 1 . You also
learned the basics of how the IDE you are using to code JSON using Java or JavaScript
(HTML5) applications functions as a code editor or application-testing tool.

 Many of the core Java OOP constructs and principles covered in this chapter go back
quite far in the Java programming language—most of them as far back as Java 1 (known
as 1.02). The most widely used version of Java SE currently is Java 6 (1.6); Java EE uses Java
8. Android 4.4 and earlier use Java 6, until the advent of Android 5 and 6, which use Java 7
(1.7). This chapter also covers the features added in Java 8 (1.8), which is the most recent
release, as well as the new features planned for Java 9 (1.9), which will be released in the
fourth quarter of 2016. All these versions of Java are used on billions of devices, including
Java 6, which is used in the 32-bit Android 2.x, 3.x, and 4.x OS, and applications; Java 7,
used in the 64-bit Android 5.x and 6.x OS and applications; Java 8, used across all popular
personal computer operating systems, such as Microsoft Windows, Apple, Open Solaris,
and a plethora of popular Linux distributions (custom Linux OS versions) such as: SUSE,
Ubuntu, Mint, Fedora, and Debian; and Java 9. This chapter covers the most foundational
Java programming language concepts, techniques, principles, and structures that span
these four major versions of Java that are currently in widespread use today on personal
computers, iTV sets, and handheld devices, such as tablets and phones.

 You start out with the easiest concepts and progress to the more difficult ones.
The chapter begins at the highest level of Java—the Java API and its package—and
progresses to the hands-on Java programming constructs contained in the Java
packages, which are called Java classes . You learn about methods, as well as the variables
or constants that classes contain, and what superclasses, subclasses, and nested classes
are. Finally, you learn about Java Object s and how they form the foundation of OOP.
You see what a constructor method is and how it creates a Java Objec t using a special kind
of method that has the same name as the class in which it is contained.

 Java Packages: Organizing a Java API Using Functional Classes
 At the highest level of a programming platform—such as Google’s 32-bit Android 4 or
earlier, which uses Java SE 6; or 64-bit Android 5 or later, which uses Java SE 7; or the
current Oracle Java SE platform, which was released as Java SE 8—there is a collection of
 packages that contain classes , interfaces , methods , and constants , which collectively form
the application programming interface (API) . This collection of Java code can be used by
application developers to create professional-level software across many OSs, platforms,
and consumer electronics devices, such as desktops, laptops, netbooks, tablets, HD iTV
sets, UHD iTV sets, eBook readers, and smartphones.

http://dx.doi.org/10.1007/978-1-4842-1863-1_2
http://dx.doi.org/10.1007/978-1-4842-1863-1_1

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

33

 To install any given version of a Java API, you install the software development
kit (SDK) as described in the book’s appendixes. The Java SDK has a special name: the
 Java development kit (JDK) . If you’re familiar with Android 5/6, which is actually Java 7
on top of Linux OS, you know that a new API level is released every time a few new
features are added.

 In addition to the API level defined by the SDK you install and use, the highest-level
construct in the Java programming language is the package . You always use the package
keyword to declare an application package at the top of your Java code. This needs to be
the first line of code declared other than comments, which are not processed.

 As you may have ascertained from the name, a Java package packages together all of
your Java programming constructs. These include classes and methods (functions) that
relate to the application: for example, a board game package contains all of your code,
as well as the code you import to create, compile, and run the 3D board game. You take
a look at the concept of importing and the Java import keyword next; they are closely
related to the package concept.

 A Java package is useful for organizing and containing your application code. But it is
even more useful for organizing and containing the SDK’s (API’s) Java code that you use
along with your own Java programming logic to create Java games or IoT applications .

 You can use any of the classes that are part of the API packages you are developing
with, by using the Java import keyword in conjunction with your package and the classes
that you wish to use. This is called an import statement .

 An import statement begins with import , followed by the package name and
class reference path (full proper name); the statement needs to be terminated using a
semicolon. For example, an import statement used to import the JavaFX EventHandler
class from the javafx.event package should look like the following (also see Figure 4-1):

 package invincibagel; // custom invincibagel package for game
 import javafx.event.EventHandler; // imports EventHandler into invincibagel

 Figure 4-1. The package and import keywords used in the Java code for the
InvinciBagel game

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

34

 You can see the Java single-line comment // and multiline comment convention in
this example, as well as in Figure 4-1 . If you are interested in learning more about Java
game programming, I took this example and screenshot from my book Beginning Java 8
Game Programming (Apress 2015), which covers the JavaFX new media engine.

 An import statement informs the Java compiler that it needs to bring a specified
external package into your custom package (in this example, import it into the
 invincibagel package), because you are using methods (and constants) from the class that
is referenced using the import keyword, as well as specifying what package the class you
are importing is stored in. If you use a class, method, or constants in your own Java class,
such as the BoardGame class, and you haven’t declared the class for use by using an import
statement, the Java compiler will throw an error because it can’t find the class it needs to
use in your package.

 Java Classes: OOP Modular Structures
 The next-largest programming structure beneath the package level is the Java class ; as you
just saw, the import statement references both the package that contains the class and
the class itself. Just as a package organizes all the related classes, a class organizes all of its
related methods, data variables or data constants, and sometimes other nested classes as
well (discussed in the next section). Classes let you make your code more modular,
so it’s not as structured (linear) as top-down programming languages. A Java class can be
used to organize your Java code at the next logical level of functional organization,
and therefore your classes contain Java code constructs that add specific functionality.
These include methods, variables, constants, and nested classes, all of which are covered
in this chapter.

 Java classes can also be used to create Java hard objects, which are discussed after
you learn about classes, nested classes, methods, and data fields. Java Object s are
constructed using a Java class and have the same name as the Java class and the exact
same name as the class’s constructor method, which you also see later in this chapter.

 You can preface the declaration with Java modifier keywords that declare the class as
being public or private or with other designators regarding what the class can and will do
and for whom. Java modifier keywords are always placed before the Java class keyword,
using the following format:

 <modifier keywords> class <your custom classname goes here>

 One of the powerful features of Java classes is that they can be used to modularize
Java code. Your core application features can be a part of a high-level class, which can be
subclassed to create more specialized versions of that class. This is a core feature of OOP.
Once a Java class has been used to create a subclass, it becomes the superclass . A class
always subclasses another superclass using the Java extends keyword.

 As you can see in Figure 4-2 , you declare a class using a Java public access modifier,
then the Java class keyword, and a name for the class (in this case, InvinciBagel), which
then uses the extends keyword to become a JavaFX Application . The import statement
for Application is shown in Figure 4-1 , under the package statement, naming the project
(custom) package invincibagel . Notice that I am using NetBeans 8, which can be
used for both Java and HTML5 development, supporting JSON development across all
environments.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

35

 Using the Java extends keyword tells a Java compiler that you want the superclass’s
capabilities and functionality added (extended) to your class, which, once it uses extends ,
becomes a subclass . A subclass extends the core functionality that is provided by the
superclass it is extending. To extend your class definition to include a superclass, you add
to (or extend, no pun intended) your existing class declaration using the following format:

 <modifier keywords> class <your custom classname> extends <superclass>

 When you extend a superclass using your class, which becomes the subclass of that
superclass, you can use all of that superclass’s features (nested classes, inner classes,
methods, constructors, variables, and constants) in your subclass. You can use this code
without having to explicitly rewrite (recode) these Java constructs in the body of your
class, which would be redundant (and disorganized), because your class extends this
superclass, making it a part of itself.

 The body of a class is coded in curly braces, shown in the outer red box in
Figure 4-2 , which follow your class declaration. In Figure 4-2 , the InvinciBagel class
extends the Application superclass from the JavaFX application package. Doing this
gives InvinciBagel everything it needs to host, or run, the JavaFX application. The
JavaFX Application class constructs this Application object so that it can use system
memory and call an .init() method to initialize anything that may need initializing,
and also call a .start() method, which you can see in Figure 4-2 in the second red
box. A .start() method is where you put Java code statements that will ultimately be
needed to fire up (start) any JavaFX application. When an end user finishes using your
InvinciBagel Java application, the Application (object) created by this Application class,
using the .Application() constructor method, will call its .stop() method and remove
your application from system memory. This will free up system memory space for other
applications used by your end users.

 Figure 4-2. Public class InvinciBagel extends Application , creating a JavaFX game
application

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

36

 The chapter explores Java methods, constructors, and objects next, as you progress
from the higher-level package and class constructs, to lower-level constructs.

 Java Methods: Code Constructs Providing Core Logic Functions
 In Java classes, you generally have methods and the data fields (variables or constants)
that the methods use for data they operate on. Because you are going from outer
structures to inner structures, or top-level structures to lower-level structures, this
chapter covers methods next. Methods are sometimes called functions in other
programming languages, such as JavaScript.

 You can see an example of the .start() method in Figure 4-2 ; this method holds
the programming logic that creates the basic Hello World application. The programming
logic in this .start() method uses Java programming statements to create a stage and a
scene, place a button on the screen in the StackPane , and define event-handling logic so
that when the button is clicked, the bootstrap Java code writes the “Hello World” text to
the NetBeans IDE output area.

 Declaring a Method: Modifier, Return Type, and Method Name
 A method declaration starts with an access-control modifier keyword: public , protected ,
 private , or package private. Package private is designated by not using any access-
control modifier keyword. In Figure 4-2 , the .start() method is declared using the
 public access-control modifier.

 After the access-control modifier, you declare the method’s return type . This is the
 type of data that the method will return after it is called (invoked). Because this .start()
method performs setup operations but doesn’t return any specific type of value, it uses the
 void return type, which signifies that the method performs tasks but does not return any
data to the calling entity. In this case, the calling entity is the JavaFX Application class,
because the .start() method is one of the key methods; the others are the .stop() and
 .init() methods provided by the Application superclass that the InvinciBagel class
extends. This class controls the application lifecycle stages for this JavaFX application.

 After the return type, you supply your method’s name, which, by convention (or
programming rules) should start with a lowercase letter (or word, preferably a verb). Any
subsequent (internal) words (nouns or adjectives) start with a capital letter.

 For instance, the method to display the SplashScreen should logically be named
 .displaySplashScreen() . Because it does something but does not return a value, it is
 void and is therefore declared using this empty Java code structure:

 public void displaySplashScreen() { Java code to display splashscreen here }

 You may need to pass parameters , which are named data values that need to be
passed in and operated on in the body of the method, which is the part in curly braces.
These parameters go in the parentheses attached to the end of the method name. In
Figure 4-2 , the .start() method receives the Stage object named primaryStage as its
parameter, using the following Java method declaration programming syntax:

 public void start(Stage primaryStage) { code to start your Application }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

37

 You can provide as many parameters as you like, using data type /parameter name
pairs, with each pair separated by a comma. Methods are not required to have any
parameters. If a method has no parameters, the parentheses are empty (right next to
each other). This is how method names are written in this book, so you know they are
methods: dot notation before and parentheses characters after the method name,
like this: .start() , .stop() , and so on.

 The programming logic that defines this method is contained in the body of the
method, which as you have already learned is in curly braces that define the beginning
and the end of the method. The programming logic in a method includes variable
declarations, programming logic statements, and iterative control structures (loops),
among other things, all of which you use to create JavaFX applications.

 Constructor Methods: Turning a Java Class into a Java Object
 This section covers a specialized type of Java method: a constructor method . This can be
used to create, or construct , Java Object s, as you see later in the chapter. A constructor
method could be considered a hard object in contrast to a JSON soft object, because Java
requires a constructor method to create a Java Object. Object s in Java are simply called
 objects ; the hard versus soft distinction is in JavaScript, which has both types of object
declarations, as you see soon.

 Objects are the foundation of OOP, so it is important for you to have an
understanding of constructor methods before you learn about the Java Object itself.
Because this section covers methods, this is the most logical place to look at object
constructors (as constructor methods are sometimes called by veteran Java developers).

 Creating a Java Object: Invoking the Class Constructor Method
 A Java class contains a constructor method that must use the exact same name as the
class itself. This method can be used to create Java Object s using the class. constructor
methods use the Java class that contains them as the blueprint to create an instance of
that class in system memory, which creates the Java Object . This constructor method
always returns a Java Object type and thus does not use any of the Java return types that
other methods typically use (void , String , float , int , byte , and so on). A constructor
method should always be invoked using the Java new keyword, because you are creating a
new Java Object ! If you do not create a constructor method, the Java compiler will auto-
create one for each class.

 You can see an example of this in the bootstrap JavaFX code in Figure 4-2 , in lines 20,
28, and 30. The new Button , StackPane , and Scene objects are created, respectively, using
the following object-declaration, object-naming, and object-creation Java code structure:

 <class name> <object instance name> = new <constructor method name> ;

 A Java Object is declared in this fashion, using the class name, the name of the object
you are constructing, the Java new keyword, and that class’s constructor method name
(and parameters, if any) in a single Java statement terminated with a semicolon character
because each Java Object is an instance of a Java class. For example, on line 20 of the Java

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

38

code in Figure 4-2 , the portion to the left of the equals operator tells the Java language
compiler that you want to create the Button object named btn using the JavaFX Button
class as that object’s blueprint. This declares the Button class (object type) and gives it a
unique name.

 The first part of creating the object is thus called the object declaration . The second
part of creating a Java Object is called the object instantiation ; it takes place on the right
side of the equals operator and involves the object (class) constructor method along with
the Java new keyword.

 To instantiate the Java Object , you invoke, or use, the Java new keyword in
conjunction with the object constructor method call. Because this takes place to the right
of the equals operator, the result of the object instantiation is placed into the declared
object, which is on the left side of the Java statement.

 This completes the process of declaring (class name), naming (object name),
creating (using the new keyword), configuring (using the constructor method), and
loading (using the equals operator) your very own custom Java Object .

 It’s important to note that the declaration and instantiation parts of this process
can be coded using separate lines of Java code as well. For instance, the Button object
instantiation (Figure 4-2 , line 20) could be coded as follows:

 Button btn; // Declare a Button object named btn
 btn = new Button(); // Instantiate btn object using the Java new keyword

 This is significant because coding object creation this way allows you to declare the
object at the top of your class, where each method in the class that uses or accesses the
objects can see it. In Java, objects or data fields are only visible in the Java programming
construct (class or method) that they are declared in. So if methods are nested in a class,
you should declare anything you want the methods to be able to access (see) at the top of
the class construct and before the method constructs.

 If you declare an object in a class, and therefore outside all the methods contained
in the class, the methods in the class can then access (see or use) that object. Similarly,
anything declared in a method is local to that method and is only visible to other members
of that method, meaning all Java statements in that method’s scope (what is within the
 {...} delimiters). In the current example, if you wanted to implement this separate object
declaration in the class, outside the methods and object instantiation in the .start()
method, the first few lines of the InvinciBagel class would look like the following:

 public class InvinciBagel extends Application {
 Button btn ; // Declared outside of your start() method construct
 @Override
 public void start(Stage primaryStage) {
 btn = new Button(); // Instantiated in your start() method
 btn.setText ("Say 'Hello World'"); // Object can now be utilized
 // other programming statements could continue in here
 }
 }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

39

 When the object declaration and instantiation are split up this way, the Button object
can be used or accessed by methods in the class other than .start() . In the previous
code, other methods of the InvinciBagel class could call .btn.setText() without the
Java compiler throwing any errors. The way the Button object is declared in Figure 4-2 ,
only the .start() method can see the object, so only .start() can implement the
method call; thus the btn Button object belongs solely to .start() , using the single-
statement declare and instantiate approach.

 Java Objects: Virtual Reality Using OOP with Java
 Objects are the foundation of OOP languages—in this use case, Java. Everything
in Java is based on the Java Object superclass. I like to call this the master class . The
 Object class is in the java.lang package, so an import statement for it references
java.lang.Object (the full pathname to the Java Object class). All other Java classes are
created (subclassed) using this class, because everything in Java is ultimately an Object .

 Java Object s can be used to virtualize reality by allowing objects you see in everyday
life. In Java applications, you can create objects using your imagination, to be realistically
simulated. You do so by using data fields (variables and constants) and methods.
These Java programming constructs make up your object’s characteristics or attributes
(constants), states (variables), and behaviors (methods). Java class constructs organize
each object definition (constants, variables, and methods) to give birth to an instance of
that object, using the constructor method for the class, which designs and defines the
object construction.

 Designing a Java Object: Constants, Variables, and Methods
 One way to think about Java Object s is that like they are nouns; things (objects) that exist
in and of themselves. The object behaviour is created using methods like verbs: things the
nouns can do. As an example, let’s consider that very popular object in everyone’s life: a
car. Let’s define the Car object’s attributes to see how an object can be defined using Java.
Some characteristics, or attributes that do not change, held in constants , might be defined
as follows:

 • Paint Color (Candy Apple Red, Metallic Blue, Silver, White, Black)
 • Engine Fuel (gas, diesel, biodiesel, hydrogen, propane, electric)
 • Drive Train (2 Wheel Drive or 4 Wheel Drive)

 Some states , which change, and which define the car in real time, held in variables ,
could be defined as follows. They hold the current values for direction, speed, and what
gear you are in:

 • Direction (N, S, E, W)
 • Speed (15 miles per hour)
 • Current Gear (1, 2, 3, 4, 5, Reverse, Park)

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

40

 The following are some things the Car object should be able do—its behaviors , or
how it functions. In JavaScript, these are called functions; in Java, however, they are called
methods. Java Object behaviors might be defined using these methods:

 • Accelerate!
 • Shift Gears
 • Apply Brake
 • Turn the wheels
 • Turn on the stereo
 • Use the headlights
 • Use the turn signals

 You get the idea. Figure 4-3 shows a simple diagram of this Java Object structure.
It includes the characteristics, or attributes, of the car that are central to defining the
 Car object, and the behaviors that can be used with the Car object. These attributes and
behaviors define the car to the outside world.

 Figure 4-3. The anatomy of a Car object, with methods encapsulating variables or constants

 Objects can be as complicated as you want them to be. Java Object s can also nest or
contain other Java Object s in the object structure (object hierarchy). An object hierarchy
is like a tree structure, with a main trunk, branches, and sub-branches as you move up (or
down) the tree, very similar to JavaFX or 3D software scene graph hierarchies.

 A perfect example of a hierarchy that you use every day is the multilevel directory
(file folder) structure on your computer’s hard disk drive (see Figure 1-1). Directories or
folders on a hard drive can contain other directories or folders, which can in turn contain
yet other directories and folders . This allows complex organizational hierarchies to be
created—and an object is similar in its hierarchical organizational capabilities.

 You’ll notice that, in real life, objects can be made up of other objects. For
example, a car engine object is made up of hundreds of discrete objects contained in
subcomponents (like the carburetor) that all function together to make the engine object
work as a whole.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

41

 This same construction of more complicated objects out of simpler objects should
be mirrored using OOP languages: complex hierarchies of objects can contain other
objects so the structure is well organized and logically defined. Many of these objects are
created using preexisting, or previously developed, Java or JavaScript code. This is one of
the objectives of object-oriented, modular programming practices.

 As a good exercise, you should practice identifying different complex objects in the
room around you and then break their definition, or description, down into variable
states and constant characteristics, as well as behaviors, or things that these objects
can do. Practice creating hypothetical object and sub-object hierarchies. This is a great
exercise, because this is how you eventually need to start thinking in order to become
more successful in your professional OOP endeavors using Java, JavaScript, or the JavaFX
engine in the Java 8 programming language framework.

 Encoding Objects: Turning an Object Design into Java Code
 To illustrate how to define an object in Java, let’s construct a basic class for the Car
example. To create a Car class, you use the Java keyword class , followed by the custom
name for the new class you are coding, and then curly brackets, which contain a Java
class definition. The first things that you usually put in the class (in the curly {} brackets)
are the data fields (variables). The variables hold the states, or characteristics, of this Car
object. In this case, six data fields define the car’s current gear, current speed, current
direction, fuel type, color, and drive-train (two-wheel drive or four-wheel drive), as
specified earlier in Figure 4-3 .

 With all six variables in place, the Car class (object blueprint) definition initially
looks something just like this:

 class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";
 }

 Remember that because you’re specifying the starting values using the equals sign
for all the variables, these object properties (variables) all contain these default data
values. These initial data values are set in the system memory as the Car object’s default
values at construction.

 The next part of the Java class definition file contains the object methods. Java
methods should define how your Car object functions—that is, how it operates on the
variables you defined at the beginning of the class. Remember, these hold the Car object’s
current state of operation. Calling these methods invokes the variable state change;
methods can also return data values to the entity that calls or invokes the method.
Return values may include data values that have been successfully changed, or the result
of an equation.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

42

 For instance, there should be a method to allow users to shift gears by setting the Car
object’s gear variable or attribute to a different value. This method should be declared
 void , because it performs a function but does not return any data values. In the Car class
and Car object definition example, you have four methods, as defined in Figure 4-3 .

 The .shiftGears() method sets the Car object’s gear attribute to the newGear value
passed in to the .shiftGears() method. You should allow an integer to be passed in to
this method to allow for user errors, just as in the real world a user might accidentally
shift from first into fourth gear:

 void shiftGears (int newGear) {
 gear = newGear;
 }

 The .accelerateSpeed() method takes your object’s speed state variable and
adds an acceleration factor to it. It then sets the result of this addition operation back
into the original speed variable, so that the object’s speed state now contains the new
(accelerated) speed value:

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 The .applyBrake() method takes the object’s speed state variable and subtracts
 brakingFactor from it. It then sets the result of this subtraction back into the original
 speed variable, so the object’s speed state now contains the updated (decelerated)
braking value:

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 The .turnWheels() method is straightforward, much like the .shiftGears()
method, except that it uses a String value of N , S , E , or W to control the direction in which
the car turns. When .turnWheels("W") is used, the Car object turns to the left; and when
 .turnWheels("E") is used, the car turns to the right—given, of course, that the Car object
is currently heading north, which, according to its default direction setting, it is:

 void turnWheels (String newDirection) {
 direction = newDirection;
 }

 The methods that make a Car object function go in the class after the variable
declarations, as follows:

 class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

43

 String direction = "N";
 String color = "Red";
 String fuel = "Gas";

 void shiftGears (int newGear) {
 gear = newGear;
 }

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 void turnWheels (String newDirection) {
 direction = newDirection;
 }
 }

 Next, let’s take a look at how to add the .Car() constructor method into this class.

 Constructing Objects: Coding Your Constructor Method
 This Car class lets you define a Car object even if you don’t specifically include a . Car()
constructor method , discussed in this section. This is why a collection of variable
settings becomes the Car object’s defaults. It is best to code your own constructor
method, however, so that you take total control over your object creation and don’t have
to preinitialize the variables to one value or another. The first thing to do is make your
variable declarations undefined, removing the equals sign and initial data values, as
shown in this modified Car class:

 class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;

 public Car (String carName) {
 name = carName;
 speed = 15;
 gear = 1;
 drivetrain = 4;

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

44

 direction = "N";
 color = "Red";
 fuel = "Gas";
 }
 }

 The . Car() constructor method sets the default data values as a part of the
construction and configuration of a Car object. As you can see, you add a String variable to
hold the Car object’s name, with a default name parameter set to the text data value carName .

 Java constructor methods differ from regular Java methods in a number of distinct
ways. First, they do not use any data return type, such as void or int , because they are
used to create Java Object s rather than to perform functions. They do not return nothing
(void keyword) or a number (int or float keyword), but rather return an object of
type java.lang.object . Note that every class that needs to create an object features
a constructor with the same name as the class itself, so a constructor is one method
type whose name can and should always start with a capital letter. If you do not code a
constructor, your Java compiler will create one for you.

 Another difference between constructor methods and standard Java methods is
that constructors need to use a public , private , or protected access-control modifier
and cannot use any non-access-control modifiers. Therefore, be sure not to declare your
constructor as static, final, abstract, or synchronized.

 Creating Objects: Object Instantiation Using the new Keyword
 The syntax for constructing an instance of a Java Object is similar to declaring a variable.
It also uses the Java new keyword and the constructor method, using this format:

 Car myCarObject = new Car();

 To access the Car object’s properties (variables) or characteristics (constants), you
can use dot notation , which is used to chain, or reference, Java constructs to each other.
For strict Java programming, you would follow the OOP principle of encapsulation and
use getter .getProperty() and setter .setProperty() methods that must be called to
access the object property in a more controlled fashion. I am covering the similarities
to JavaScript here: dot notation can be used in both Java and JavaScript to access object
properties directly without any encapsulation enforced.

 Once a Java Car object has been declared, named, and instantiated, you can then
reference its properties. This is done, for example, using the following Java Object format:

 objectName.propertyName;

 So to access the Car object name, you use the following Java code construct:

 myCarObject.name

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

45

 To invoke your Car object methods using this myCarObject Car object also requires
the use of dot notation. For example, you can use the following Java construct:

 objectName.methodName(parameter list variable);

 So, to shift a Car object into third gear, if this Car object instance is named
 myCarObject , you use the following Java programming statement:

 myCarObject.shiftGears(3);

 This calls or invokes the .shiftGears() method of the myCarObject Car object and
passes the gear parameter, which contains the integer value of 3. This is placed into the
 newGear variable, which is used by the .shiftGears() method’s internal code to change
the gear attribute of the myCarObject Car object instance to third gear. If you think about
it, how Java works is very logical, and pretty darned cool as well.

 Extending an Object Structure: The OOP Concept of Inheritance
 There is also support in Java for developing different types of enhanced classes, and
therefore enhanced (more complex or detailed) objects. This is done using a technique
called inheritance . Inheritance lets you create more specialized classes that contain
uniquely defined objects using your original (foundational) object. For instance, the Car
class can be subclassed using the original Car superclass. Once you subclass any class, it
becomes a superclass. Ultimately, there can be only one superclass, at the very top of the
class chain, but there can be an unlimited number of subclasses. All of these subclasses
inherit the methods and data fields from their superclass. The ultimate example of this in
Java is the java.lang.Object superclass (I sometimes call this the master class), which is
used to create all other classes in Java. Every class in Java, because it has a constructor, is
also an object! Mind-boggling, to say the least—but once you wrap your head around it,
OOP is both logical and powerful.

 As an example of inheritance using the Car class, you can subclass an SUV class, using
the Car class as the superclass. This is done by using the Java extends keyword, which
extends a Car class definition in order to create an SUV class definition. The SUV class
then defines only those additional attributes (constants), states (variables), and behaviors
(methods) that apply to the SUV type of Car object. The SUV object additionally extends
all the attributes (constants), states (variables), and behaviors (methods) that apply to all
types of Car objects as defined by the Car superclass.

 This is the functionality that the Java extends keyword provides for this subclassing
(or inheritance) operation, and this is one of the more important and useful features
of code modularization in OOP languages. You can see the modularization visually in
Figure 4-4 , which adds Car features for each of the subclasses (at the top, in orange).

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

46

 As an example, the SUV Car object subclass can have additional .onStarCall() and
 .turnTowLightOn() methods defined in addition to inheriting the usual operational methods
that allow a Car object to shift gears, accelerate, apply the brakes, and turn the wheels.

 Similarly, you can generate a second subclass called the Sport class, which creates
 Sport Car objects. These may, for example, include an .activateOverdrive() method
to provide faster gearing, and maybe an .openTop() method to put down the convertible
roof. To create the subclass using the superclass, you extend the subclass from the
superclass by using a Java extends keyword in your class declaration. The Java subclass
construct thus looks like the following Java SUV class construct, which uses the Java super
keyword to generate a new applyBrake() method programming structure that makes the
brakes twice as effective:

 class SUV extends Car {
 void applyBrake (int brakingFactor) {
 super .applyBrake(brakingFactor);
 speed = speed - brakingFactor;
 }
 }

 This extends the SUV object to have access to (essentially, to contain) all the data
fields and methods that the Car object (class) features. You can focus on just the new, or
different, data fields and methods, which relate to differentiating the SUV object from the
regular or master Car object superclass definition.

 To refer to one of your superclass’s methods from within the subclass you are
coding, you can use the Java super keyword. For example, in the new SUV class, you
may want to use the Car superclass’s .applyBrake() method and then apply some
additional functionality to the brake that is specific to the SUV . You call the Car object’s
 .applyBrake() method by using super.applyBrake(brakingFactor); in the Java code
for the SUV Car object.

 Figure 4-4. OOP inheritance of the Car object allows you to create an SUV object or
 Sport object

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

47

 The Java code shown previously adds functionality to the Car object’s .applyBrake()
method, in the SUV object’s .applyBrake() method, by using the super keyword to access
the Car object’s .applyBrake() method; it then adds logic to make brakingFactor apply
twice. This serves to give the SUV object twice the braking power of a standard car, which
an SUV needs in order to stop its far greater mass.

 Next, let’s take a closer look at JavaScript’s OOP approach. JavaScript is even more
closely aligned with JSON than the Java programming languages are.

 JavaScript OOP Concepts: Hard and Soft Objects
 JavaScript can create objects in a couple of different ways. There are hard (constructed)
objects and or soft (literal notation) objects, which is what you define using JSON. This
section looks at the difference between them and how you access JavaScript objects using
each of these two object-encoding approaches. This provides a parallel—at least, using the
hard-object approach—to what you looked at in the previous Java Object sections.
(I capitalize Object in Java usage because it is a proper class name, from the java.lang.Object
master class.) You will find, possibly due to the popularity of Java, that JavaScript allows
you to do things in a very similar fashion to Java, using constructor functions . Let’s look at
the hard-object encoding approach first and then look at the soft-object approach, which
is more compatible with JSON structures. Finally, you see the JavaScript Object Notation
(JSON) description format to finish this chapter.

 JavaScript Hard Objects: Using a Constructor Function
 Just as you saw with Java Object s and constructor methods, you can also create a
constructor function in JavaScript to create an object. This section doesn’t look at this
in much detail, because you already saw this approach using the Java 9 OOP language,
and because the JSON model is tailor-made for using the JavaScript soft-object approach
(discussed next). A Car object constructor function in JavaScript looks like the following
code, if you follow the object diagram shown in Figure 4-3 and the definition created in
the previous section:

 function carObject() {
 this.name = 'carName';
 this.speed = 15;
 this.gear = 1;
 this.drivetrain = 4;
 this.direction = 'North';
 this.color = 'Red';
 this.fuel = 'Gas';
 this.ApplyBrake = function() { Brake Application Code in Here };
 this.shiftGears = function() { Gear Shifting Code in Here };
 this.TurnWheels = function() { Wheel Turning Code in Here };
 this.accelerate = function() { Acceleration Code in Here };
 };

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

48

 JavaScript literal notation defines an object as a variable, using the var
keyword, instead of as a constructor function. Let’s take a look at that slightly different
approach next.

 JavaScript Soft Objects: Using Literal Notation to Define a
Variable
 The second way to define an object in JavaScript is as a variable using literal notation .
A Car object variable declaration in JavaScript using literal notation looks like the
following data construct, if you again follow the Car object diagram in Figure 4-3 :

 var carObject = {
 name : 'myCarsName',
 speed : 15,
 gear : 1,
 drivetrain : 4,
 direction : 'North',
 color : 'Red',
 fuel : 'Gas',
 ApplyBrake : function() { Brake Application Code in Here },
 shiftGears : function() { Gear Shifting Code in Here },
 TurnWheels : function() { Wheel Turning Code in Here },
 accelerate : function() { Acceleration Code in Here }
 };

 Let’s look at the differences between these two object-definition approaches.

 Differences Between a Constructor Function and Literal
Notation
 As you can see, the primary difference in the declaration of the constructor function is
that it uses the this keyword. The this keyword is used in both Java and JavaScript and
allows an object to reference itself. The literal notation does not use the this keyword.
Secondarily, a constructor function uses the equals operator (=) to assign values to the
object’s properties and functions, whereas the literal notation object definition uses the
colon assignment operator (:).

 A constructor function can use (optional) semicolons (;) at the end of each
assignment statement for both properties and functions. On the other hand, an object
defined as a variable via literal notation is supposed to use commas (,) after each
assignment statement if there is more than one, which there is in the majority of JSON
applications.

 As you can see, other than using different keywords (JavaScript uses function, and
Java uses method), the OOP languages JavaScript and Java define object construction
logic in a similar fashion. These also access object properties and functions in a similar
format, using dot notation. Let’s take a look at this next.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

49

 Accessing JavaScript Objects: Using Dot Notation
 To access an object property, you use the object name, then a dot (period), and then
the property name, like this: ObjectName.PropertyName . If you are using a constructor
function (or method in Java), you first instantiate the object using the OOP new keyword,
like this:

 var myCarObject = new carObject; (First Construct Your Object Instance)
 myCarObject.name (this will return a String: myCarName)
 myCarObject.accelerate() (executes code inside the accelerate() function)

 If you create an object using literal notation, you do not have to construct the object
first, so you can access the JavaScript object without having to first construct an instance
of it. The following code example accesses a property and a function:

 carObject.name (this will return the String myCarName)
 carObject.accelerate() (executes the code inside the accelerate() function)

 Now you’re ready to see the differences when you define objects using JSON.

 Defining Soft Objects: Using JavaScript Object Notation (JSON)
 As you can see from the json.org object definition diagram reproduced in Figure 4-5 , the
 JSON object definition uses the soft-object literal notation approach but does not support
the function definitions. The JSON object data definition is contained in curly braces ({})
and uses a colon (:) to separate the key (object attribute name) from the value (object
attribute data value) and a comma (,) to separate key-value pairs (object attributes and
values) from each other.

 Figure 4-5. The JSON object-definition diagram (from the json.org web site)

 This is what the Car object’s attributes (data definition) look like using JSON:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas" }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

50

 There are ways to get JavaScript functions into a JSON object by using String data
and parsing that into functions as part of your JSON parsing and evaluation process.
If you really need this functionality (no pun intended), this limitation can be worked
around. JSON is primarily designed to construct data object definitions that contain
object parameters and their corresponding data values, so functions are generally
externalized with JSON application development design approaches.

 Summary
 This chapter looked at two of the most popular object OOP languages in the world today:
Oracle Java and ECMAScript-262 JavaScript. You saw how OOP languages allow you
to logically stratify, define, and modularize your apps, and looked at how objects are
constructed and referenced using Java, JavaScript, and JSON. In the next chapter, you get
into arrays of data and how these are handled in JSON.

	Chapter 4: Objects and Object-Oriented Programming: OOP Primer
	Object-Oriented Programming: Overview
	Java OOP Concepts: Hard Object Construction
	Java Packages: Organizing a Java API Using Functional Classes
	Java Classes: OOP Modular Structures
	Java Methods: Code Constructs Providing Core Logic Functions
	Declaring a Method: Modifier, Return Type, and Method Name
	Constructor Methods: Turning a Java Class into a Java Object
	Creating a Java Object: Invoking the Class Constructor Method

	Java Objects: Virtual Reality Using OOP with Java
	Designing a Java Object: Constants, Variables, and Methods
	Encoding Objects: Turning an Object Design into Java Code
	Constructing Objects: Coding Your Constructor Method
	Creating Objects: Object Instantiation Using the new Keyword
	Extending an Object Structure: The OOP Concept of Inheritance

	JavaScript OOP Concepts: Hard and Soft Objects
	JavaScript Hard Objects: Using a Constructor Function
	JavaScript Soft Objects: Using Literal Notation to Define a Variable
	Differences Between a Constructor Function and Literal Notation
	Accessing JavaScript Objects: Using Dot Notation
	Defining Soft Objects: Using JavaScript Object Notation (JSON)

	Summary

