
f o r p r o f e s s i o n a l s b y p r o f e s s i o n a l s®

www.apress.com

C# 6.0 and
the .NET 4.6
Framework

Seventh Edition
—
Andrew Troelsen
Philip Japikse

This new 7th edition of Pro C# 6.0 and the .NET 4.6 Platform has been completely revised and
rewritten to reflect the latest changes to the C# language specification and new advances in
the .NET Framework. You’ll find new chapters covering all the important new features that
make .NET 4.6 the most comprehensive release yet, including:

• A Refined ADO.NET Entity Framework Programming Model
• Numerous IDE and MVVM Enhancements for WPF Desktop Development
• Numerous updates to the ASP.NET Web APIs

This comes on top of award winning coverage of core C# features, both old and new, that have
made the previous editions of this book so popular. Readers will gain a solid foundation of
object-oriented development techniques, attributes and reflection, generics and collections as
well as numerous advanced topics not found in other texts (such as CIL opcodes and emitting
dynamic assemblies).

The mission of this book is to provide you with a comprehensive foundation in the C#
 programming language and the core aspects of the .NET platform plus overviews of techno-
logies built on top of C# and .NET (ADO.NET and Entity Framework, Windows Communication
Foundation [WCF], Windows Presentation Foundation [WPF], and ASP.NET [WebForms, MVC,
 WebAPI]). Once you digest the information presented in these chapters, you’ll be in a perfect
position to apply this knowledge to your specific programming assignments, and you’ll be well
equipped to explore the .NET universe on your own terms.

C# 6.0 and the .neT 4.6 framework

Troelsen · Japikse
C# 6.0 and the .n

eT 4.6 fram
ew

ork
9 781484 213339

55999
ISBN 978-1-4842-1333-9

US $59.99

shelve in:
Programming Languages/C#
User level:
Beginning–Advanced

SOURCE CODE ONLINE

C# 6.0 and the .NET 4.6
Framework

Seventh Edition

Andrew Troelsen

Philip Japikse

C# 6.0 and the .NET 4.6 Framework

Copyright © 2015 by Andrew Troelsen and Philip Japikse

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1333-9

ISBN-13 (electronic): 978-1-4842-1332-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Technical Reviewer: Andy Olsen
Development Editor: Douglas Pundick
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editors: Mary Behr, Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To the entire Troelsen clan: Mary (mom), Walter (dad), Mandy (wife), and Soren (son).
We miss you, Mikko (the cat). —Andrew

To my family, Amy (wife), Conner (son), Logan (son), and Skylar (daughter), thank you
for all of the support and patience you have given me. —Philip

v

Contents at a Glance

About the Authors �� lvii

About the Technical Reviewer �� lix

Acknowledgments �� lxi

Introduction �� lxiii

 ■Part I: Introducing C# and the �NET Platform ������������������������������������� 1

 ■Chapter 1: The Philosophy of �NET ��� 3

 ■Chapter 2: Building C# Applications �� 35

 ■Part II: Core C# Programming ��� 59

 ■Chapter 3: Core C# Programming Constructs, Part I ��� 61

 ■Chapter 4: Core C# Programming Constructs, Part II �� 109

 ■Part III: Object-Oriented Programming with C# ������������������������������ 149

 ■Chapter 5: Understanding Encapsulation �� 151

 ■Chapter 6: Understanding Inheritance and Polymorphism �������������������������������� 205

 ■Chapter 7: Understanding Structured Exception Handling �������������������������������� 247

 ■Chapter 8: Working with Interfaces �� 275

 ■Part IV: Advanced C# Programming ��� 313

 ■Chapter 9: Collections and Generics �� 315

 ■Chapter 10: Delegates, Events, and Lambda Expressions ��������������������������������� 355

vi

■ Contents at a GlanCe

 ■Chapter 11: Advanced C# Language Features ��� 399

 ■Chapter 12: LINQ to Objects ��� 439

 ■Chapter 13: Understanding Object Lifetime ��� 473

 ■Part V: Programming with �NET Assemblies ����������������������������������� 501

 ■Chapter 14: Building and Configuring Class Libraries ��������������������������������������� 503

 ■Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming ����� 555

 ■Chapter 16: Dynamic Types and the Dynamic Language Runtime �������������������� 599

 ■Chapter 17: Processes, AppDomains, and Object Contexts ������������������������������� 623

 ■Chapter 18: Understanding CIL and the Role of Dynamic Assemblies ��������������� 651

 ■Part VI: Introducing the �NET Base Class Libraries ������������������������� 693

 ■Chapter 19: Multithreaded, Parallel, and Async Programming ������������������������� 695

 ■Chapter 20: File I/O and Object Serialization��� 749

 ■Chapter 21: ADO�NET Part I: The Connected Layer ��� 799

 ■Chapter 22: ADO�NET Part II: The Disconnected Layer ��������������������������������������� 859

 ■Chapter 23: ADO�NET Part III: Entity Framework ��� 929

 ■Chapter 24: Introducing LINQ to XML �� 1001

 ■Chapter 25: Introducing Windows Communication Foundation ���������������������� 1021

 ■Part VII: Windows Presentation Foundation ��������������������������������� 1083

 ■Chapter 26: Introducing Windows Presentation Foundation and XAML ���������� 1085

 ■Chapter 27: Programming with WPF Controls ��� 1147

 ■Chapter 28: WPF Graphics Rendering Services ��� 1229

 ■Chapter 29: WPF Resources, Animations, Styles, and Templates �������������������� 1277

 ■Chapter 30: Notifications, Commands, Validation, and MVVM ������������������������ 1329

vii

■ Contents at a GlanCe

 ■Part VIII: ASP�NET �� 1383

 ■Chapter 31: Introducing ASP�NET Web Forms �� 1385

 ■Chapter 32: ASP�NET Web Controls, Master Pages, and Themes ��������������������� 1435

 ■Chapter 33: ASP�NET State Management Techniques �������������������������������������� 1491

 ■Chapter 34: ASP�NET MVC and Web API ��� 1527

Index ��� 1603

ix

Contents

About the Authors �� lvii

About the Technical Reviewer �� lix

Acknowledgments �� lxi

Introduction �� lxiii

 ■Part I: Introducing C# and the �NET Platform ������������������������������������� 1

 ■Chapter 1: The Philosophy of �NET ��� 3

An Initial Look at the .NET Platform.. 3

Some Key Benefits of the .NET Platform .. 4

Introducing the Building Blocks of the .NET Platform (the CLR, CTS, and CLS) 4

The Role of the Base Class Libraries .. 5

What C# Brings to the Table.. 5

Managed vs. Unmanaged Code .. 7

Additional .NET-Aware Programming Languages ... 8

Life in a Multilanguage World ... 8

An Overview of .NET Assemblies .. 9

The Role of the Common Intermediate Language .. 10

Benefits of CIL .. 12

Compiling CIL to Platform-Specific Instructions ... 12

The Role of .NET Type Metadata ... 13

The Role of the Assembly Manifest .. 14

Understanding the Common Type System .. 14

CTS Class Types .. 15

CTS Interface Types .. 15

x

■ Contents

CTS Structure Types ... 16

CTS Enumeration Types .. 16

CTS Delegate Types .. 17

CTS Type Members ... 17

Intrinsic CTS Data Types ... 17

Understanding the Common Language Specification .. 18

Ensuring CLS Compliance ... 20

Understanding the Common Language Runtime .. 20

The Assembly/Namespace/Type Distinction... 22

The Role of the Microsoft Root Namespace ... 23

Accessing a Namespace Programmatically ... 25

Referencing External Assemblies ... 26

Exploring an Assembly Using ildasm.exe ... 27

Viewing CIL Code .. 28

Viewing Type Metadata ... 29

Viewing Assembly Metadata (aka the Manifest) ... 30

The Platform-Independent Nature of .NET ... 31

The Mono Project ... 32

Microsoft .NET Core ... 32

Summary .. 33

 ■Chapter 2: Building C# Applications �� 35

Building C# Applications on the Windows OS .. 35

The Visual Studio Express Family of IDEs .. 36

The Visual Studio Community Edition IDE ... 44

The Visual Studio 2015 Professional IDE .. 50

The .NET Framework Documentation System .. 50

Building .NET Applications Beyond the Windows OS .. 53

The Role of Xamarin Studio .. 53

Summary .. 57

xi

■ Contents

 ■Part II: Core C# Programming ��� 59

 ■Chapter 3: Core C# Programming Constructs, Part I ��� 61

The Anatomy of a Simple C# Program .. 61

Variations on the Main() Method .. 63

Specifying an Application Error Code ... 64

Processing Command-Line Arguments .. 65

Specifying Command-Line Arguments with Visual Studio .. 66

An Interesting Aside: Some Additional Members of the System.Environment Class 67

The System.Console Class ... 69

Basic Input and Output with the Console Class .. 69

Formatting Console Output ... 71

Formatting Numerical Data .. 71

Formatting Numerical Data Beyond Console Applications ... 73

System Data Types and Corresponding C# Keywords .. 74

Variable Declaration and Initialization .. 75

Intrinsic Data Types and the new Operator ... 77

The Data Type Class Hierarchy ... 77

Members of Numerical Data Types ... 79

Members of System.Boolean .. 80

Members of System.Char ... 80

Parsing Values from String Data ... 81

System.DateTime and System.TimeSpan ... 81

The System.Numerics.dll Assembly ... 82

Working with String Data ... 83

Basic String Manipulation... 84

String Concatenation .. 85

Escape Characters .. 86

Defining Verbatim Strings ... 87

Strings and Equality.. 87

Strings Are Immutable .. 88

xii

■ Contents

The System.Text.StringBuilder Type ... 89

String Interpolation ... 90

Narrowing and Widening Data Type Conversions ... 91

The checked Keyword .. 94

Setting Project-wide Overflow Checking .. 95

The unchecked Keyword .. 96

Understanding Implicitly Typed Local Variables ... 97

Restrictions on Implicitly Typed Variables .. 98

Implicit Typed Data Is Strongly Typed Data ... 99

Usefulness of Implicitly Typed Local Variables ... 100

C# Iteration Constructs ... 101

The for Loop .. 101

The foreach Loop .. 102

Use of Implicit Typing Within foreach Constructs ... 102

The while and do/while Looping Constructs... 103

Decision Constructs and the Relational/Equality Operators ... 104

The if/else Statement ... 104

Equality and Relational Operators .. 104

Conditional Operators ... 105

The switch Statement ... 105

Summary .. 108

 ■Chapter 4: Core C# Programming Constructs, Part II �� 109

Methods and Parameter Modifiers ... 109

The Default by Value Parameter-Passing Behavior ... 110

The out Modifier ... 111

The ref Modifier .. 112

The params Modifier .. 114

Defining Optional Parameters ... 115

xiii

■ Contents

Invoking Methods Using Named Parameters.. 116

Understanding Method Overloading ... 118

Understanding C# Arrays .. 120

C# Array Initialization Syntax .. 121

Implicitly Typed Local Arrays .. 122

Defining an Array of Objects ... 123

Working with Multidimensional Arrays ... 124

Arrays As Arguments or Return Values ... 125

The System.Array Base Class ... 126

Understanding the enum Type .. 127

Controlling the Underlying Storage for an enum .. 129

Declaring enum Variables ... 129

The System.Enum Type... 130

Dynamically Discovering an enum’s Name/Value Pairs ... 131

Understanding the Structure (aka Value Type) ... 133

Creating Structure Variables ... 135

Understanding Value Types and Reference Types .. 136

Value Types, References Types, and the Assignment Operator ... 137

Value Types Containing Reference Types .. 139

Passing Reference Types by Value .. 141

Passing Reference Types by Reference .. 142

Final Details Regarding Value Types and Reference Types ... 143

Understanding C# Nullable Types ... 144

Working with Nullable Types .. 145

The Null Coalescing Operator ... 146

The Null Conditional Operator ... 147

Summary .. 148

xiv

■ Contents

 ■Part III: Object-Oriented Programming with C# ������������������������������ 149

 ■Chapter 5: Understanding Encapsulation �� 151

Introducing the C# Class Type .. 151

Allocating Objects with the new Keyword .. 154

Understanding Constructors ... 155

The Role of the Default Constructor ... 155

Defining Custom Constructors .. 156

The Default Constructor Revisited .. 157

The Role of the this Keyword ... 159

Chaining Constructor Calls Using this .. 161

Observing Constructor Flow ... 163

Revisiting Optional Arguments ... 165

Understanding the static Keyword ... 166

Defining Static Field Data ... 167

Defining Static Methods ... 169

Defining Static Constructors ... 170

Defining Static Classes ... 173

Importing Static Members via the C# using Keyword .. 174

Defining the Pillars of OOP ... 175

The Role of Encapsulation .. 175

The Role of Inheritance ... 175

The Role of Polymorphism .. 177

C# Access Modifiers ... 179

The Default Access Modifiers ... 179

Access Modifiers and Nested Types ... 180

The First Pillar: C#’s Encapsulation Services ... 181

Encapsulation Using Traditional Accessors and Mutators .. 182

Encapsulation Using .NET Properties ... 184

Using Properties Within a Class Definition.. 187

Read-Only and Write-Only Properties ... 189

Revisiting the static Keyword: Defining Static Properties .. 190

xv

■ Contents

Understanding Automatic Properties .. 190

Interacting with Automatic Properties .. 192

Automatic Properties and Default Values ... 192

Initialization of Automatic Properties .. 194

Understanding Object Initialization Syntax ... 195

Calling Custom Constructors with Initialization Syntax .. 197

Initializing Data with Initialization Syntax ... 198

Working with Constant Field Data .. 199

Understanding Read-Only Fields .. 201

Static Read-Only Fields .. 201

Understanding Partial Classes ... 202

Use Cases for Partial Classes? ... 203

Summary .. 204

 ■Chapter 6: Understanding Inheritance and Polymorphism �������������������������������� 205

The Basic Mechanics of Inheritance .. 205

Specifying the Parent Class of an Existing Class .. 206

Regarding Multiple Base Classes ... 208

The sealed Keyword ... 208

Revising Visual Studio Class Diagrams .. 210

The Second Pillar of OOP: The Details of Inheritance ... 212

Controlling Base Class Creation with the base Keyword .. 213

Keeping Family Secrets: The protected Keyword ... 215

Adding a Sealed Class .. 216

Programming for Containment/Delegation ... 217

Understanding Nested Type Definitions .. 218

The Third Pillar of OOP: C#’s Polymorphic Support .. 220

The virtual and override Keywords ... 221

Overriding Virtual Members Using the Visual Studio IDE .. 223

Sealing Virtual Members... 225

Understanding Abstract Classes ... 225

xvi

■ Contents

Understanding the Polymorphic Interface .. 228

Understanding Member Shadowing ... 232

Understanding Base Class/Derived Class Casting Rules .. 234

The C# as Keyword ... 235

The C# is Keyword .. 237

The Master Parent Class: System.Object ... 237

Overriding System.Object.ToString() .. 240

Overriding System.Object.Equals() ... 241

Overriding System.Object.GetHashCode() .. 242

Testing Your Modified Person Class .. 243

The Static Members of System.Object ... 244

Summary .. 245

 ■Chapter 7: Understanding Structured Exception Handling �������������������������������� 247

Ode to Errors, Bugs, and Exceptions .. 247

The Role of .NET Exception Handling ... 248

The Building Blocks of .NET Exception Handling .. 249

The System.Exception Base Class .. 249

The Simplest Possible Example ... 251

Throwing a General Exception .. 253

Catching Exceptions ... 254

Configuring the State of an Exception .. 256

The TargetSite Property .. 256

The StackTrace Property ... 257

The HelpLink Property .. 257

The Data Property ... 258

System-Level Exceptions (System.SystemException) .. 260

Application-Level Exceptions (System.ApplicationException) 261

Building Custom Exceptions, Take 1 ... 261

Building Custom Exceptions, Take 2 ... 263

Building Custom Exceptions, Take 3 ... 264

xvii

■ Contents

Processing Multiple Exceptions ... 265

General catch Statements .. 268

Rethrowing Exceptions ... 268

Inner Exceptions ... 269

The finally Block ... 270

Exception Filters ... 271

Debugging Unhandled Exceptions Using Visual Studio .. 272

Summary .. 273

 ■Chapter 8: Working with Interfaces �� 275

Understanding Interface Types ... 275

Interface Types vs. Abstract Base Classes.. 276

Defining Custom Interfaces .. 278

Implementing an Interface ... 281

Invoking Interface Members at the Object Level .. 283

Obtaining Interface References: The as Keyword ... 284

Obtaining Interface References: The is Keyword .. 284

Interfaces As Parameters ... 285

Interfaces As Return Values ... 287

Arrays of Interface Types .. 288

Implementing Interfaces Using Visual Studio ... 289

Explicit Interface Implementation .. 291

Designing Interface Hierarchies ... 293

Multiple Inheritance with Interface Types ... 295

The IEnumerable and IEnumerator Interfaces .. 297

Building Iterator Methods with the yield Keyword .. 300

Building a Named Iterator ... 301

The ICloneable Interface... 302

A More Elaborate Cloning Example... 304

xviii

■ Contents

The IComparable Interface ... 307

Specifying Multiple Sort Orders with IComparer .. 310

Custom Properties and Custom Sort Types... 311

Summary .. 312

 ■Part IV: Advanced C# Programming ��� 313

 ■Chapter 9: Collections and Generics �� 315

The Motivation for Collection Classes .. 315

The System.Collections Namespace .. 317

A Survey of System.Collections.Specialized Namespace ... 318

The Problems of Nongeneric Collections ... 319

The Issue of Performance ... 320

The Issue of Type Safety ... 323

A First Look at Generic Collections ... 326

The Role of Generic Type Parameters .. 327

Specifying Type Parameters for Generic Classes/Structures ... 328

Specifying Type Parameters for Generic Members ... 330

Specifying Type Parameters for Generic Interfaces .. 330

The System.Collections.Generic Namespace ... 331

Understanding Collection Initialization Syntax ... 333

Working with the List<T> Class ... 334

Working with the Stack<T> Class .. 336

Working with the Queue<T> Class ... 337

Working with the SortedSet<T> Class ... 338

Working with the Dictionary<TKey, TValue> Class ... 340

The System.Collections.ObjectModel Namespace ... 341

Working with ObservableCollection<T> ... 341

Creating Custom Generic Methods ... 343

Inference of Type Parameters ... 346

xix

■ Contents

Creating Custom Generic Structures and Classes .. 347

The default Keyword in Generic Code... 349

Constraining Type Parameters .. 350

Examples Using the where Keyword .. 351

The Lack of Operator Constraints ... 352

Summary .. 353

 ■Chapter 10: Delegates, Events, and Lambda Expressions ��������������������������������� 355

Understanding the .NET Delegate Type .. 355

Defining a Delegate Type in C# ... 356

The System.MulticastDelegate and System.Delegate Base Classes .. 359

The Simplest Possible Delegate Example .. 360

Investigating a Delegate Object .. 362

Sending Object State Notifications Using Delegates .. 363

Enabling Multicasting ... 366

Removing Targets from a Delegate’s Invocation List .. 368

Method Group Conversion Syntax .. 369

Understanding Generic Delegates .. 371

The Generic Action<> and Func<> Delegates ... 372

Understanding C# Events ... 374

The C# event Keyword .. 376

Events Under the Hood ... 377

Listening to Incoming Events.. 378

Simplifying Event Registration Using Visual Studio .. 380

Cleaning Up Event Invocation Using the C# 6.0 Null-Conditional Operator 381

Creating Custom Event Arguments ... 382

The Generic EventHandler<T> Delegate .. 384

Understanding C# Anonymous Methods .. 385

Accessing Local Variables .. 387

xx

■ Contents

Understanding Lambda Expressions .. 388

Dissecting a Lambda Expression .. 391

Processing Arguments Within Multiple Statements .. 392

Lambda Expressions with Multiple (or Zero) Parameters ... 393

Retrofitting the CarEvents Example Using Lambda Expressions .. 395

Lambdas and Single Statement Member Implementations ... 395

Summary .. 397

 ■Chapter 11: Advanced C# Language Features ��� 399

Understanding Indexer Methods .. 399

Indexing Data Using String Values .. 401

Overloading Indexer Methods ... 402

Indexers with Multiple Dimensions .. 403

Indexer Definitions on Interface Types .. 404

Understanding Operator Overloading ... 404

Overloading Binary Operators ... 405

And What of the += and –+ Operators? ... 408

Overloading Unary Operators.. 408

Overloading Equality Operators .. 409

Overloading Comparison Operators .. 410

Final Thoughts Regarding Operator Overloading .. 411

Understanding Custom Type Conversions .. 411

Recall: Numerical Conversions ... 412

Recall: Conversions Among Related Class Types .. 412

Creating Custom Conversion Routines ... 413

Additional Explicit Conversions for the Square Type... 416

Defining Implicit Conversion Routines .. 417

Understanding Extension Methods ... 418

Defining Extension Methods ... 419

Invoking Extension Methods ... 420

Importing Extension Methods ... 421

xxi

■ Contents

The IntelliSense of Extension Methods ... 422

Extending Types Implementing Specific Interfaces .. 422

Understanding Anonymous Types .. 424

Defining an Anonymous Type .. 424

The Internal Representation of Anonymous Types .. 425

The Implementation of ToString() and GetHashCode() ... 427

The Semantics of Equality for Anonymous Types ... 427

Anonymous Types Containing Anonymous Types ... 429

Working with Pointer Types .. 429

The unsafe Keyword ... 431

Working with the * and & Operators ... 433

An Unsafe (and Safe) Swap Function ... 434

Field Access via Pointers (the -> Operator) .. 435

The stackalloc Keyword .. 435

Pinning a Type via the fixed Keyword ... 436

The sizeof Keyword .. 437

Summary .. 437

 ■Chapter 12: LINQ to Objects ��� 439

LINQ-Specific Programming Constructs ... 439

Implicit Typing of Local Variables ... 440

Object and Collection Initialization Syntax.. 440

Lambda Expressions ... 441

Extension Methods ... 442

Anonymous Types ... 443

Understanding the Role of LINQ ... 443

LINQ Expressions Are Strongly Typed ... 444

The Core LINQ Assemblies .. 444

Applying LINQ Queries to Primitive Arrays ... 445

Once Again, Without LINQ ... 447

Reflecting over a LINQ Result Set ... 447

xxii

■ Contents

LINQ and Implicitly Typed Local Variables .. 448

LINQ and Extension Methods .. 449

The Role of Deferred Execution .. 450

The Role of Immediate Execution ... 451

Returning the Result of a LINQ Query ... 452

Returning LINQ Results via Immediate Execution .. 453

Applying LINQ Queries to Collection Objects .. 454

Accessing Contained Subobjects ... 455

Applying LINQ Queries to Nongeneric Collections .. 456

Filtering Data Using OfType<T>() .. 457

Investigating the C# LINQ Query Operators .. 457

Basic Selection Syntax ... 459

Obtaining Subsets of Data .. 460

Projecting New Data Types ... 460

Obtaining Counts Using Enumerable .. 462

Reversing Result Sets ... 462

Sorting Expressions .. 463

LINQ As a Better Venn Diagramming Tool ... 463

Removing Duplicates .. 465

LINQ Aggregation Operations .. 465

The Internal Representation of LINQ Query Statements ... 466

Building Query Expressions with Query Operators (Revisited) ... 467

Building Query Expressions Using the Enumerable Type and Lambda Expressions 467

Building Query Expressions Using the Enumerable Type and Anonymous Methods 469

Building Query Expressions Using the Enumerable Type and Raw Delegates 469

Summary .. 471

 ■Chapter 13: Understanding Object Lifetime ��� 473

Classes, Objects, and References .. 473

The Basics of Object Lifetime ... 475

The CIL of new .. 475

Setting Object References to null ... 477

xxiii

■ Contents

The Role of Application Roots ... 477

Understanding Object Generations ... 479

Concurrent Garbage Collection Prior to .NET 4.0.. 480

Background Garbage Collection Under .NET 4.0 and Beyond 480

The System.GC Type ... 481

Forcing a Garbage Collection .. 482

Building Finalizable Objects ... 485

Overriding System.Object.Finalize() ... 486

Detailing the Finalization Process .. 488

Building Disposable Objects ... 488

Reusing the C# using Keyword ... 490

Building Finalizable and Disposable Types ... 492

A Formalized Disposal Pattern ... 493

Understanding Lazy Object Instantiation .. 495

Customizing the Creation of the Lazy Data ... 498

Summary .. 499

 ■Part V: Programming with �NET Assemblies ����������������������������������� 501

 ■Chapter 14: Building and Configuring Class Libraries ��������������������������������������� 503

Defining Custom Namespaces ... 503

Resolving Name Clashes with Fully Qualified Names .. 505

Resolving Name Clashes with Aliases .. 507

Creating Nested Namespaces .. 508

The Default Namespace of Visual Studio .. 509

The Role of .NET Assemblies .. 510

Assemblies Promote Code Reuse ... 510

Assemblies Establish a Type Boundary .. 510

Assemblies are Versionable Units ... 511

Assemblies are Self-Describing ... 511

Assemblies are Configurable .. 511

xxiv

■ Contents

Understanding the Format of a .NET Assembly .. 511

The Windows File Header ... 512

The CLR File Header ... 513

CIL Code, Type Metadata, and the Assembly Manifest .. 514

Optional Assembly Resources .. 514

Building and Consuming Custom Class Library .. 514

Exploring the Manifest .. 517

Exploring the CIL ... 520

Exploring the Type Metadata .. 521

Building a C# Client Application .. 522

Building a Visual Basic Client Application ... 523

Cross-Language Inheritance in Action .. 525

Understanding Private Assemblies ... 526

The Identity of a Private Assembly ... 526

Understanding the Probing Process ... 526

Configuring Private Assemblies .. 527

The Role of the App.Config File ... 529

Understanding Shared Assemblies .. 531

The Global Assembly Cache .. 532

Understanding Strong Names ... 533

Generating Strong Names at the Command Line ... 535

Generating Strong Names Using Visual Studio ... 537

Installing Strongly Named Assemblies to the GAC ... 539

Consuming a Shared Assembly .. 540

Exploring the Manifest of SharedCarLibClient .. 542

Configuring Shared Assemblies ... 542

Freezing the Current Shared Assembly .. 543

Building a Shared Assembly Version 2.0.0.0 .. 543

Dynamically Redirecting to Specific Versions of a Shared Assembly ... 546

xxv

■ Contents

Understanding Publisher Policy Assemblies .. 547

Disabling Publisher Policy .. 548

Understanding the <codeBase> Element .. 549

The System.Configuration Namespace .. 550

The Configuration File Schema Documentation ... 552

Summary .. 553

 ■Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming �������555

The Necessity of Type Metadata ... 555

Viewing (Partial) Metadata for the EngineState Enumeration .. 556

Viewing (Partial) Metadata for the Car Type ... 557

Examining a TypeRef .. 559

Documenting the Defining Assembly .. 559

Documenting Referenced Assemblies .. 559

Documenting String Literals ... 560

Understanding Reflection ... 561

The System.Type Class ... 561

Obtaining a Type Reference Using System.Object.GetType() .. 562

Obtaining a Type Reference Using typeof() .. 563

Obtaining a Type Reference Using System.Type.GetType() ... 563

Building a Custom Metadata Viewer .. 564

Reflecting on Methods .. 564

Reflecting on Fields and Properties .. 565

Reflecting on Implemented Interfaces.. 565

Displaying Various Odds and Ends ... 566

Implementing Main() .. 566

Reflecting on Generic Types ... 568

Reflecting on Method Parameters and Return Values .. 568

Dynamically Loading Assemblies ... 569

Reflecting on Shared Assemblies ... 572

xxvi

■ Contents

Understanding Late Binding ... 574

The System.Activator Class .. 574

Invoking Methods with No Parameters ... 576

Invoking Methods with Parameters .. 577

Understanding the Role of .NET Attributes ... 578

Attribute Consumers ... 579

Applying Attributes in C# .. 579

C# Attribute Shorthand Notation ... 581

Specifying Constructor Parameters for Attributes .. 581

The Obsolete Attribute in Action ... 581

Building Custom Attributes ... 582

Applying Custom Attributes .. 583

Named Property Syntax .. 583

Restricting Attribute Usage ... 584

Assembly-Level Attributes ... 585

The Visual Studio AssemblyInfo.cs File... 586

Reflecting on Attributes Using Early Binding .. 587

Reflecting on Attributes Using Late Binding ... 588

Putting Reflection, Late Binding, and Custom Attributes in Perspective 590

Building an Extendable Application .. 591

Building CommonSnappableTypes.dll .. 591

Building the C# Snap-In .. 592

Building the Visual Basic Snap-In ... 593

Building an Extendable Windows Forms Application .. 593

Summary .. 598

 ■Chapter 16: Dynamic Types and the Dynamic Language Runtime �������������������� 599

The Role of the C# dynamic Keyword ... 599

Calling Members on Dynamically Declared Data .. 601

The Role of the Microsoft.CSharp.dll Assembly .. 602

The Scope of the dynamic Keyword ... 603

xxvii

■ Contents

Limitations of the dynamic Keyword .. 604

Practical Uses of the dynamic Keyword ... 605

The Role of the Dynamic Language Runtime .. 605

The Role of Expression Trees .. 606

The Role of the System.Dynamic Namespace .. 606

Dynamic Runtime Lookup of Expression Trees ... 607

Simplifying Late-Bound Calls Using Dynamic Types .. 607

Leveraging the dynamic Keyword to Pass Arguments ... 608

Simplifying COM Interoperability Using Dynamic Data ... 611

The Role of Primary Interop Assemblies .. 612

Embedding Interop Metadata ... 613

Common COM Interop Pain Points .. 614

COM Interop Using C# Dynamic Data ... 615

COM interop Without C# Dynamic Data .. 619

Summary .. 621

 ■Chapter 17: Processes, AppDomains, and Object Contexts ������������������������������� 623

The Role of a Windows Process ... 623

The Role of Threads .. 624

Interacting with Processes Under the .NET Platform ... 626

Enumerating Running Processes .. 628

Investigating a Specific Process ... 629

Investigating a Process’s Thread Set .. 630

Investigating a Process’s Module Set ... 632

Starting and Stopping Processes Programmatically .. 633

Controlling Process Startup Using the ProcessStartInfo Class ... 634

Understanding .NET Application Domains .. 635

The System.AppDomain Class .. 636

Interacting with the Default Application Domain .. 638

Enumerating Loaded Assemblies ... 639

Receiving Assembly Load Notifications .. 640

xxviii

■ Contents

Creating New Application Domains .. 641

Loading Assemblies into Custom Application Domains .. 643

Programmatically Unloading AppDomains ... 644

Understanding Object Context Boundaries ... 645

Context-Agile and Context-Bound Types .. 646

Defining a Context-Bound Object ... 647

Inspecting an Object’s Context ... 647

Summarizing Processes, AppDomains, and Context .. 649

Summary .. 649

 ■Chapter 18: Understanding CIL and the Role of Dynamic Assemblies ��������������� 651

Motivations for Learning the Grammar of CIL .. 651

Examining CIL Directives, Attributes, and Opcodes .. 652

The Role of CIL Directives ... 653

The Role of CIL Attributes ... 653

The Role of CIL Opcodes ... 653

The CIL Opcode/CIL Mnemonic Distinction ... 654

Pushing and Popping: The Stack-Based Nature of CIL ... 654

Understanding Round-Trip Engineering ... 656

The Role of CIL Code Labels ... 659

Interacting with CIL: Modifying an *.il File .. 660

Compiling CIL Code Using ilasm.exe .. 661

The Role of peverify.exe ... 662

Understanding CIL Directives and Attributes .. 663

Specifying Externally Referenced Assemblies in CIL .. 663

Defining the Current Assembly in CIL ... 663

Defining Namespaces in CIL ... 664

Defining Class Types in CIL ... 665

Defining and Implementing Interfaces in CIL.. 666

Defining Structures in CIL ... 667

Defining Enums in CIL... 667

xxix

■ Contents

Defining Generics in CIL ... 668

Compiling the CILTypes.il file .. 668

.NET Base Class Library, C#, and CIL Data Type Mappings ... 669

Defining Type Members in CIL .. 670

Defining Field Data in CIL ... 670

Defining Type Constructors in CIL ... 671

Defining Properties in CIL ... 671

Defining Member Parameters ... 672

Examining CIL Opcodes .. 673

The .maxstack Directive ... 675

Declaring Local Variables in CIL ... 675

Mapping Parameters to Local Variables in CIL ... 676

The Hidden this Reference ... 677

Representing Iteration Constructs in CIL .. 677

Building a .NET Assembly with CIL ... 678

Building CILCars.dll... 678

Building CILCarClient.exe ... 681

Understanding Dynamic Assemblies .. 683

Exploring the System.Reflection.Emit Namespace ... 683

The Role of the System.Reflection.Emit.ILGenerator .. 684

Emitting a Dynamic Assembly .. 685

Emitting the Assembly and Module Set .. 687

The Role of the ModuleBuilder Type ... 688

Emitting the HelloClass Type and the String Member Variable ... 689

Emitting the Constructors ... 690

Emitting the SayHello() Method .. 691

Using the Dynamically Generated Assembly .. 691

Summary .. 692

xxx

■ Contents

 ■Part VI: Introducing the �NET Base Class Libraries ������������������������� 693

 ■Chapter 19: Multithreaded, Parallel, and Async Programming ������������������������� 695

The Process/AppDomain/Context/Thread Relationship .. 695

The Problem of Concurrency .. 696

The Role of Thread Synchronization ... 697

A Brief Review of the .NET Delegate .. 697

The Asynchronous Nature of Delegates ... 699

The BeginInvoke() and EndInvoke() Methods... 700

The System.IAsyncResult Interface .. 700

Invoking a Method Asynchronously .. 701

Synchronizing the Calling Thread ... 702

The Role of the AsyncCallback Delegate .. 703

The Role of the AsyncResult Class ... 706

Passing and Receiving Custom State Data ... 706

The System.Threading Namespace .. 707

The System.Threading.Thread Class .. 708

Obtaining Statistics About the Current Thread of Execution ... 709

The Name Property ... 710

The Priority Property ... 711

Manually Creating Secondary Threads ... 711

Working with the ThreadStart Delegate .. 712

Working with the ParameterizedThreadStart Delegate .. 714

The AutoResetEvent Class .. 715

Foreground Threads and Background Threads ... 716

The Issue of Concurrency ... 717

Synchronization Using the C# lock Keyword .. 719

Synchronization Using the System.Threading.Monitor Type ... 722

Synchronization Using the System.Threading.Interlocked Type ... 722

Synchronization Using the [Synchronization] Attribute .. 724

xxxi

■ Contents

Programming with Timer Callbacks ... 724

Understanding the CLR ThreadPool .. 726

Parallel Programming Using the Task Parallel Library ... 727

The System.Threading.Tasks Namespace .. 728

The Role of the Parallel Class ... 728

Data Parallelism with the Parallel Class ... 729

Accessing UI Elements on Secondary Threads ... 731

The Task Class .. 732

Handling Cancellation Request ... 733

Task Parallelism Using the Parallel Class ... 735

Parallel LINQ Queries (PLINQ) ... 738

Opting in to a PLINQ Query ... 739

Cancelling a PLINQ Query ... 740

Asynchronous Calls with the async Keyword ... 741

A First Look at the C# async and await Keywords .. 741

Naming Conventions for Async Methods .. 743

Async Methods Returning Void ... 744

Async Methods with Multiple Awaits .. 744

Retrofitting the AddWithThreads Example Using Asycn/Await ... 745

Summary .. 747

 ■Chapter 20: File I/O and Object Serialization��� 749

Exploring the System.IO Namespace ... 749

The Directory(Info) and File(Info) Types .. 750

The Abstract FileSystemInfo Base Class .. 751

Working with the DirectoryInfo Type .. 752

Enumerating Files with the DirectoryInfo Type ... 753

Creating Subdirectories with the DirectoryInfo Type .. 754

Working with the Directory Type .. 756

Working with the DriveInfo Class Type ... 757

xxxii

■ Contents

Working with the FileInfo Class .. 758

The FileInfo.Create() Method .. 759

The FileInfo.Open() Method .. 759

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods .. 761

The FileInfo.OpenText() Method .. 761

The FileInfo.CreateText() and FileInfo.AppendText() Methods .. 762

Working with the File Type ... 762

Additional File-Centric Members .. 763

The Abstract Stream Class ... 764

Working with FileStreams .. 765

Working with StreamWriters and StreamReaders.. 767

Writing to a Text File ... 768

Reading from a Text File ... 769

Directly Creating StreamWriter/StreamReader Types ... 770

Working with StringWriters and StringReaders ... 770

Working with BinaryWriters and BinaryReaders .. 772

Watching Files Programmatically ... 774

Understanding Object Serialization .. 776

The Role of Object Graphs .. 778

Configuring Objects for Serialization .. 779

Defining Serializable Types ... 779

Public Fields, Private Fields, and Public Properties .. 780

Choosing a Serialization Formatter .. 781

The IFormatter and IRemotingFormatter Interfaces ... 781

Type Fidelity Among the Formatters ... 782

Serializing Objects Using the BinaryFormatter .. 783

Deserializing Objects Using the BinaryFormatter ... 785

Serializing Objects Using the SoapFormatter ... 786

Serializing Objects Using the XmlSerializer ... 787

Controlling the Generated XML Data .. 788

xxxiii

■ Contents

Serializing Collections of Objects ... 790

Customizing the Soap/Binary Serialization Process ... 791

A Deeper Look at Object Serialization .. 792

Customizing Serialization Using ISerializable ... 793

Customizing Serialization Using Attributes ... 796

Summary .. 797

 ■Chapter 21: ADO�NET Part I: The Connected Layer ��� 799

A High-Level Definition of ADO.NET .. 800

The Three Faces of ADO.NET .. 801

Understanding ADO.NET Data Providers ... 802

The Microsoft-Supplied ADO.NET Data Providers ... 804

A Word Regarding System.Data.OracleClient.dll ... 805

Obtaining Third-Party ADO.NET Data Providers .. 805

Additional ADO.NET Namespaces ... 806

The Types of the System.Data Namespace .. 806

The Role of the IDbConnection Interface .. 807

The Role of the IDbTransaction Interface .. 808

The Role of the IDbCommand Interface .. 808

The Role of the IDbDataParameter and IDataParameter Interfaces ... 809

The Role of the IDbDataAdapter and IDataAdapter Interfaces .. 809

The Role of the IDataReader and IDataRecord Interfaces .. 810

Abstracting Data Providers Using Interfaces .. 811

Increasing Flexibility Using Application Configuration Files ... 813

Creating the AutoLot Database ... 814

Creating the Inventory Table ... 815

Adding Test Records to the Inventory Table .. 818

Authoring the GetPetName() Stored Procedure .. 819

Creating the Customers and Orders Tables .. 820

Creating Table Relationships in Visual Studio ... 822

xxxiv

■ Contents

The ADO.NET Data Provider Factory Model .. 823

A Complete Data Provider Factory Example ... 824

A Potential Drawback with the Data Provider Factory Model ... 827

The <connectionStrings> Element ... 828

Understanding the Connected Layer of ADO.NET ... 829

Working with Connection Objects ... 830

Working with ConnectionStringBuilder Objects .. 833

Working with Command Objects .. 834

Working with Data Readers .. 835

Obtaining Multiple Result Sets Using a Data Reader .. 836

Building a Reusable Data Access Library ... 837

Adding the Connection Logic .. 838

Adding the Insertion Logic .. 839

Adding the Deletion Logic ... 840

Adding the Update Logic... 841

Adding the Selection Logic ... 841

Working with Parameterized Command Objects .. 842

Specifying Parameters Using the DbParameter Type ... 843

Executing a Stored Procedure .. 844

Creating a Console UI–Based Front End ... 846

Implementing the Main() Method ... 847

Implementing the ShowInstructions() Method ... 849

Implementing the ListInventory() Method... 849

Implementing the DeleteCar() Method ... 850

Implementing the InsertNewCar() Method ... 850

Implementing the UpdateCarPetName() Method .. 851

Implementing LookUpPetName().. 851

Understanding Database Transactions ... 852

Key Members of an ADO.NET Transaction Object ... 853

Adding a CreditRisks Table to the AutoLot Database .. 854

xxxv

■ Contents

Adding a Transaction Method to InventoryDAL ... 855

Testing Your Database Transaction ... 857

Summary .. 858

 ■Chapter 22: ADO�NET Part II: The Disconnected Layer ��������������������������������������� 859

Understanding the Disconnected Layer of ADO.NET... 860

Understanding the Role of the DataSet .. 861

Key Properties of the DataSet ... 861

Key Methods of the DataSet ... 862

Building a DataSet .. 863

Working with DataColumns .. 863

Building a DataColumn ... 864

Enabling Autoincrementing Fields .. 865

Adding DataColumn Objects to a DataTable ... 866

Working with DataRows ... 866

Understanding the RowState Property ... 868

Understanding the DataRowVersion Property... 869

Working with DataTables .. 870

Inserting DataTables into DataSets ... 871

Obtaining Data in a DataSet ... 872

Processing DataTable Data Using DataTableReader Objects .. 873

Serializing DataTable/DataSet Objects As XML ... 874

Serializing DataTable/DataSet Objects in a Binary Format ... 876

Binding DataTable Objects to Windows Forms GUIs ... 877

Hydrating a DataTable from a Generic List<T> .. 878

Deleting Rows from a DataTable .. 881

Selecting Rows Based on Filter Criteria ... 882

Updating Rows Within a DataTable ... 885

Working with the DataView Type .. 885

xxxvi

■ Contents

Working with Data Adapters ... 888

A Simple Data Adapter Example ... 888

Mapping Database Names to Friendly Names .. 890

Adding Disconnected Functionality to AutoLotDAL.dll .. 891

Defining the Initial Class Type ... 892

Configuring the Data Adapter Using the SqlCommandBuilder .. 892

Implementing GetAllInventory() .. 894

Implementing UpdateInventory() .. 894

Setting Your Version Number .. 894

Testing the Disconnected Functionality .. 894

Multitabled DataSet Objects and Data Relationships ... 896

Prepping the Data Adapters .. 897

Building the Table Relationships ... 899

Updating the Database Tables .. 899

Navigating Between Related Tables ... 900

The Windows Forms Database Designer Tools ... 902

Visually Designing the DataGridView .. 902

The Generated App.config File .. 909

Examining the Strongly Typed DataSet ... 909

Examining the Strongly Typed DataTable .. 911

Examining the Strongly Typed DataRow ... 912

Examining the Strongly Typed Data Adapter ... 913

Completing the Windows Forms Application .. 914

Isolating Strongly Typed Database Code into a Class Library 915

Viewing the Generated Code .. 916

Selecting Data with the Generated Code .. 918

Inserting Data with the Generated Code ... 919

Deleting Data with the Generated Code .. 920

Invoking a Stored Procedure Using the Generated Code .. 921

xxxvii

■ Contents

Programming with LINQ to DataSet ... 921

The Role of the DataSet Extensions Library ... 923

Obtaining a LINQ-Compatible DataTable ... 924

The Role of the DataRowExtensions.Field<T>() Extension Method ... 926

Hydrating New DataTables from LINQ Queries ... 927

Summary .. 928

 ■Chapter 23: ADO�NET Part III: Entity Framework ��� 929

Understanding the Role of the Entity Framework .. 930

The Role of Entities ... 932

The Building Blocks of the Entity Framework ... 934

Code First from an Existing Database .. 938

Generating the Model ... 938

What Did That Do? .. 942

Changing the Default Mappings ... 945

Adding to the Generated Model Classes ... 946

Using the Model Classes in Code ... 947

Inserting a Record .. 947

Selecting Records ... 948

The Role of Navigation Properties .. 951

Deleting a Record ... 954

Updating a Record .. 955

Handling Database Changes .. 956

AutoLotDAL Version 4 ... 956

Entity Framework Data Annotations ... 957

Adding or Updating the Model Classes ... 958

Adding the DbContext ... 964

Adding the Repositories.. 966

Initializing the Database ... 975

xxxviii

■ Contents

Test-Driving AutoLotDAL ... 976

Printing All Inventory Records .. 977

Adding Inventory Records... 977

Editing Records... 978

Using Navigation Properties ... 979

Multitable Actions/Implicit Transactions ... 980

Entity Framework Migrations ... 982

Updating the Model .. 982

Testing the App ... 984

Entering EF Migrations ... 985

Creating the Baseline Migration ... 985

Seeding the Database... 989

Revisiting the Transaction Test ... 990

Concurrency ... 991

Correcting the Repositories .. 992

Testing Concurrency ... 992

Interception .. 993

The IDbCommandInterceptor Interface ... 993

Adding Interception to AutoLotDAL ... 994

Registering the Interceptor ... 995

Adding the DatabaseLogger Interceptor ... 995

ObjectMaterialized and SavingChanges Events ... 996

Accessing the Object Context ... 996

ObjectMaterialized .. 996

SavingChanges ... 997

Deploying to SQL Server ... 998

Summary .. 999

xxxix

■ Contents

 ■Chapter 24: Introducing LINQ to XML �� 1001

A Tale of Two XML APIs ... 1001

LINQ to XML As a Better DOM ... 1003

VB Literal Syntax As a Better LINQ to XML.. 1004

Members of the System.Xml.Linq Namespace .. 1005

The LINQ to XML Axis Methods ... 1008

The Oddness of XName (and XNamespace) ... 1009

Working with XElement and XDocument .. 1010

Generating Documents from Arrays and Containers .. 1012

Loading and Parsing XML Content .. 1014

Manipulating an In-Memory XML Document .. 1014

Building the UI of the LINQ to XML App ... 1014

Import the Inventory.xml File .. 1015

Defining a LINQ to XML Helper Class .. 1016

Attaching the UI to Your Helper Class ... 1017

Summary .. 1019

 ■Chapter 25: Introducing Windows Communication Foundation ���������������������� 1021

A Potpourri of Distributed Computing APIs ... 1021

The Role of DCOM ... 1022

The Role of COM+/Enterprise Services .. 1023

The Role of MSMQ .. 1023

The Role of .NET Remoting ... 1024

The Role of XML Web Services ... 1024

Web Service Standards .. 1025

The Role of WCF ... 1026

An Overview of WCF Features .. 1026

An Overview of Service-Oriented Architecture ... 1027

Tenet 1: Boundaries are Explicit ... 1027

Tenet 2: Services are Autonomous ... 1027

Tenet 3: Services Communicate via Contract, Not Implementation .. 1027

xl

■ Contents

Tenet 4: Service Compatibility is Based on Policy .. 1027

WCF: The Bottom Line ... 1028

Investigating the Core WCF Assemblies ... 1028

The Visual Studio WCF Project Templates .. 1029

The WCF Service Web Site Project Template .. 1030

The Basic Composition of a WCF Application ... 1031

The ABCs of WCF .. 1032

Understanding WCF Contracts .. 1033

Understanding WCF Bindings ... 1034

HTTP-Based Bindings ... 1034

TCP-Based Bindings ... 1035

MSMQ-Based Bindings ... 1036

Understanding WCF Addresses ... 1037

Building a WCF Service .. 1038

The [ServiceContract] Attribute .. 1039

The [OperationContract] Attribute ... 1040

Service Types As Operational Contracts ... 1040

Hosting the WCF Service .. 1041

Establishing the ABCs Within an App.config File .. 1042

Coding Against the ServiceHost Type ... 1043

Specifying Base Addresses .. 1043

Details of the ServiceHost Type .. 1045

Details of the <system.serviceModel> Element... 1046

Enabling Metadata Exchange ... 1047

Building the WCF Client Application ... 1050

Generating Proxy Code Using svcutil.exe ... 1050

Generating Proxy Code Using Visual Studio .. 1051

Configuring a TCP-Based Binding ... 1053

Simplifying Configuration Settings ... 1055

Leveraging Default Endpoints ... 1055

Exposing a Single WCF Service Using Multiple Bindings .. 1056

xli

■ Contents

Changing Settings for a WCF Binding ... 1058

Leveraging the Default MEX Behavior Configuration .. 1059

Refreshing the Client Proxy and Selecting the Binding .. 1060

Using the WCF Service Library Project Template ... 1062

Building a Simple Math Service ... 1063

Testing the WCF Service with WcfTestClient.exe .. 1063

Altering Configuration Files Using SvcConfigEditor.exe .. 1064

Hosting the WCF Service Within a Windows Service .. 1066

Specifying the ABCs in Code ... 1067

Enabling MEX .. 1069

Creating a Windows Service Installer ... 1069

Installing the Windows Service... 1071

Invoking a Service Asynchronously from the Client ... 1072

Designing WCF Data Contracts ... 1075

Using the Web-centric WCF Service Project Template .. 1076

Implementing the Service Contract .. 1078

The Role of the *.svc File .. 1079

Examining the Web.config File .. 1079

Testing the Service ... 1080

Summary .. 1081

 ■Part VII: Windows Presentation Foundation ��������������������������������� 1083

 ■Chapter 26: Introducing Windows Presentation Foundation and XAML ���������� 1085

The Motivation Behind WPF .. 1085

Unifying Diverse APIs .. 1086

Providing a Separation of Concerns via XAML .. 1086

Providing an Optimized Rendering Model .. 1087

Simplifying Complex UI Programming .. 1088

The Various Flavors of WPF .. 1088

Traditional Desktop Applications .. 1088

Navigation-Based WPF Applications ... 1090

xlii

■ Contents

XBAP Applications... 1091

The WPF/Silverlight Relationship .. 1093

Investigating the WPF Assemblies .. 1093

The Role of the Application Class ... 1095

Constructing an Application Class .. 1095

Enumerating the Windows Collection ... 1096

The Role of the Window Class .. 1096

Building a WPF Application Without XAML ... 1100

Creating a Strongly Typed Window ... 1102

Creating a Simple User Interface .. 1103

Interacting with Application-Level Data .. 1104

Handling the Closing of a Window Object ... 1105

Intercepting Mouse Events ... 1107

Intercepting Keyboard Events ... 1108

Building a WPF Application Using Only XAML ... 1109

Defining a Window Object in XAML... 1110

Defining the Application Object in XAML .. 1111

Processing the XAML Files Using msbuild.exe ... 1112

Transforming Markup into a .NET Assembly .. 1114

Mapping the Window XAML Markup to C# Code .. 1114

The Role of BAML ... 1115

Mapping the Application XAML Markup to C# Code ... 1116

XAML-to-Assembly Process Summary ... 1117

Understanding the Syntax of WPF XAML .. 1118

Introducing Kaxaml ... 1118

XAML XML Namespaces and XAML “Keywords” .. 1119

Controlling Class and Member Variable Visibility .. 1122

XAML Elements, XAML Attributes, and Type Converters ... 1122

Understanding XAML Property-Element Syntax ... 1123

Understanding XAML Attached Properties .. 1124

Understanding XAML Markup Extensions ... 1125

xliii

■ Contents

Building a WPF Application Using Code-Behind Files ... 1127

Adding a Code File for the MainWindow Class ... 1127

Adding a Code File for the MyApp Class ... 1128

Processing the Code Files with msbuild.exe .. 1129

Building WPF Applications Using Visual Studio .. 1130

The WPF Project Templates .. 1130

The Toolbox and XAML Designer/Editor .. 1132

Setting Properties Using the Properties Window .. 1134

Handling Events Using the Properties Window ... 1136

Handling Events in the XAML Editor ... 1137

The Document Outline Window... 1137

Viewing the Autogenerated Code Files ... 1138

Building a Custom XAML Editor with Visual Studio .. 1140

Designing the GUI of Your Window .. 1140

Implementing the Loaded Event ... 1142

Implementing the Button’s Click Event ... 1143

Implementing the Closed Event .. 1144

Testing Your Application .. 1144

Exploring the WPF Documentation ... 1146

Summary .. 1146

 ■Chapter 27: Programming with WPF Controls ��� 1147

A Survey of the Core WPF Controls .. 1147

The WPF Ink Controls .. 1148

The WPF Document Controls .. 1148

WPF Common Dialog Boxes .. 1149

The Details Are in the Documentation .. 1149

A Brief Review of the Visual Studio WPF Designer ... 1150

Working with WPF Controls Using Visual Studio ... 1151

Working with the Document Outline Editor... 1152

xliv

■ Contents

Controlling Content Layout Using Panels ... 1152

Positioning Content Within Canvas Panels ... 1155

Positioning Content Within WrapPanel Panels .. 1156

Positioning Content Within StackPanel Panels ... 1158

Positioning Content Within Grid Panels .. 1159

Grids with GridSplitter Types .. 1161

Positioning Content Within DockPanel Panels .. 1162

Enabling Scrolling for Panel Types ... 1163

Configuring Panels Using the Visual Studio Designers ... 1164

Building a Window’s Frame Using Nested Panels .. 1168

Building the Menu System .. 1170

Building Menus Visually .. 1171

Building the ToolBar .. 1172

Building the StatusBar .. 1173

Finalizing the UI Design .. 1173

Implementing the MouseEnter/MouseLeave Event Handlers ... 1174

Implementing the Spell Checking Logic ... 1175

Understanding WPF Commands ... 1175

The Intrinsic Command Objects .. 1176

Connecting Commands to the Command Property ... 1177

Connecting Commands to Arbitrary Actions ... 1178

Working with the Open and Save Commands .. 1180

Understanding Routed Events .. 1182

The Role of Routed Bubbling Events ... 1183

Continuing or Halting Bubbling ... 1184

The Role of Routed Tunneling Events ... 1184

A Deeper Look at WPF APIs and Controls ... 1186

Working with the TabControl ... 1186

Building the Ink API Tab .. 1189

Designing the ToolBar ... 1190

The RadioButton Control ... 1193

xlv

■ Contents

Handling Events for the Ink API Tab .. 1194

The InkCanvas Control .. 1195

The ComboBox Control ... 1198

Saving, Loading, and Clearing InkCanvas Data ... 1200

Introducing the Documents API .. 1201

Block Elements and Inline Elements .. 1201

Document Layout Managers ... 1201

Building the Documents Tab ... 1202

Populating a FlowDocument Using Code .. 1203

Enabling Annotations and Sticky Notes .. 1205

Saving and Loading a Flow Document ... 1207

Introducing the WPF Data-Binding Model .. 1208

Building the Data Binding Tab ... 1209

Establishing Data Bindings Using Visual Studio ... 1209

The DataContext Property ... 1212

Data Conversion Using IValueConverter ... 1213

Establishing Data Bindings in Code .. 1214

Building the DataGrid Tab ... 1215

Understanding the Role of Dependency Properties .. 1217

Examining an Existing Dependency Property ... 1218

Important Notes Regarding CLR Property Wrappers ... 1221

Building a Custom Dependency Property ... 1222

Adding a Data Validation Routine ... 1225

Responding to the Property Change ... 1226

Summary .. 1227

xlvi

■ Contents

 ■Chapter 28: WPF Graphics Rendering Services ��� 1229

Understanding WPF’s Graphical Rendering Services ... 1229

WPF Graphical Rendering Options .. 1230

Rendering Graphical Data Using Shapes .. 1231

Adding Rectangles, Ellipses, and Lines to a Canvas ... 1233

Removing Rectangles, Ellipses, and Lines from a Canvas .. 1236

Working with Polylines and Polygons ... 1238

Working with Paths... 1239

WPF Brushes and Pens .. 1243

Configuring Brushes Using Visual Studio.. 1243

Configuring Brushes in Code .. 1247

Configuring Pens .. 1248

Applying Graphical Transformations ... 1249

A First Look at Transformations .. 1250

Transforming Your Canvas Data .. 1251

Working with the Visual Studio Transform Editor ... 1253

Building the Initial Layout ... 1254

Applying Transformations at Design Time .. 1256

Transforming the Canvas in Code ... 1257

Rendering Graphical Data Using Drawings and Geometries 1258

Building a DrawingBrush Using Geometries ... 1259

Painting with the DrawingBrush ... 1260

Containing Drawing Types in a DrawingImage ... 1261

Working with Vector Images ... 1262

Converting a Sample Vector Graphic File into XAML .. 1262

Importing the Graphical Data into a WPF Project .. 1265

Interacting with the Sign .. 1266

Rendering Graphical Data Using the Visual Layer .. 1267

The Visual Base Class and Derived Child Classes .. 1268

A First Look at Using the DrawingVisual Class ... 1269

xlvii

■ Contents

Rendering Visual Data to a Custom Layout Manager .. 1271

Responding to Hit-Test Operations ... 1273

Summary .. 1275

 ■Chapter 29: WPF Resources, Animations, Styles, and Templates �������������������� 1277

Understanding the WPF Resource System ... 1277

Working with Binary Resources.. 1277

Working with Object (Logical) Resources ... 1285

The Role of the Resources Property ... 1285

Defining Window-Wide Resources.. 1285

The {StaticResource} Markup Extension ... 1289

The {DynamicResource} Markup Extension .. 1289

Application-Level Resources .. 1290

Defining Merged Resource Dictionaries ... 1292

Defining a Resource-Only Assembly ... 1294

Understanding WPF’s Animation Services .. 1296

The Role of the Animation Class Types ... 1296

The To, From, and By Properties ... 1297

The Role of the Timeline Base Class ... 1297

Authoring an Animation in C# Code .. 1298

Controlling the Pace of an Animation ... 1300

Reversing and Looping an Animation ... 1300

Authoring Animations in XAML ... 1301

The Role of Storyboards ... 1302

The Role of Event Triggers .. 1303

Animation Using Discrete Key Frames.. 1303

Understanding the Role of WPF Styles ... 1304

Defining and Applying a Style ... 1305

Overriding Style Settings .. 1306

Limiting Application of a Style with TargetType .. 1306

Automatically Applying a Style with TargetType ... 1307

xlviii

■ Contents

Subclassing Existing Styles .. 1308

Defining Styles with Triggers .. 1308

Defining Styles with Multiple Triggers .. 1309

Animated Styles .. 1310

Assigning Styles Programmatically .. 1310

Logical Trees, Visual Trees, and Default Templates .. 1312

Programmatically Inspecting a Logical Tree ... 1313

Programmatically Inspecting a Visual Tree ... 1314

Programmatically Inspecting a Control’s Default Template .. 1316

Building a Control Template with the Trigger Framework .. 1319

Templates as Resources ... 1321

Incorporating Visual Cues Using Triggers ... 1322

The Role of the {TemplateBinding} Markup Extension .. 1323

The Role of ContentPresenter ... 1324

Incorporating Templates into Styles ... 1325

Summary .. 1326

 ■Chapter 30: Notifications, Commands, Validation, and MVVM ������������������������ 1329

Introducing Model-View-ViewModel .. 1330

Model .. 1330

View .. 1330

ViewModel .. 1331

Anemic Models or ViewModels ... 1331

The WPF Binding Notification System .. 1331

Observable Models and Collections .. 1332

Adding Bindings and Data .. 1333

Programmatically Changing the Vehicle Data ... 1335

Observable Models ... 1336

Observable Collections ... 1339

xlix

■ Contents

Validation .. 1348

Updating the Sample for the Validation Examples .. 1348

The Validation Class .. 1349

Validation Options ... 1350

Using Data Annotations .. 1363

Adding Data Annotations .. 1363

Checking for Data Annotation-Based Validation Errors .. 1363

Customizing the ErrorTemplate .. 1365

Creating Custom Commands .. 1367

Implementing the ICommand Interface .. 1367

Updating MainWindow.xaml.cs... 1368

Updating MainWindow.xaml ... 1369

Attaching Command to the CommandManager .. 1369

Testing the Application ... 1370

Adding the Remaining Commands ... 1372

Fully Implementing MVVM .. 1374

Moving the Data Source Out of the View .. 1374

Moving the Commands to the ViewModel .. 1375

Updating AutoLotDAL for MVVM ... 1376

Updating the AutoLotDAL Models ... 1376

Full MVVM Example ... 1379

Using ObjectMaterialized with Entity Framework ... 1380

Summary .. 1381

 ■Part VIII: ASP�NET �� 1383

 ■Chapter 31: Introducing ASP�NET Web Forms �� 1385

The Role of HTTP .. 1385

The HTTP Request/Response Cycle .. 1385

HTTP Is a Stateless Protocol ... 1386

l

■ Contents

Understanding Web Applications and Web Servers .. 1386

The Role of IIS Virtual Directories ... 1387

IIS Express .. 1387

The Role of HTML ... 1388

HTML Document Structure ... 1388

The Role of an HTML Form ... 1390

The Visual Studio HTML Designer Tools .. 1390

Building an HTML Form .. 1394

The Role of Client-Side Scripting ... 1395

A Client-Side Scripting Example ... 1396

Posting Back to the Web Server ... 1397

Postbacks Under Web Forms .. 1398

An Overview of the Web Forms API .. 1398

Major Features of Web Forms 2.0 and Higher .. 1399

Major Features of Web Forms 3.5 (and .NET 3.5 SP1) and Higher ... 1400

Major Features of Web Forms 4.0 ... 1401

Major Features of Web Forms 4.5 and 4.6 .. 1401

Building a Single-File Web Forms Web App ... 1402

Referencing AutoLotDAL.dll .. 1404

Designing the UI ... 1406

Adding the Data Access Logic .. 1406

The Role of ASP.NET Directives ... 1409

Analyzing the “Script” Block... 1410

Analyzing the ASP.NET Control Declarations ... 1410

Building an ASP.NET Web Page Using Code Files ... 1411

Reference the AutoLotDAL Project .. 1413

Updating the Code File ... 1413

Debugging and Tracing ASP.NET Pages .. 1415

ASP.NET Web Sites vs. ASP.NET Web Applications .. 1416

Enabling C# 6 For ASP.NET Web Sites ... 1417

li

■ Contents

The ASP.NET Web Site Directory Structure ... 1417

Referencing Assemblies ... 1418

The Role of the App_Code Folder ... 1419

The Inheritance Chain of the Page Type ... 1419

Interacting with the Incoming HTTP Request ... 1421

Obtaining Browser Statistics .. 1422

Access to Incoming Form Data ... 1425

The IsPostBack Property ... 1426

Interacting with the Outgoing HTTP Response ... 1426

Emitting HTML Content ... 1427

Redirecting Users ... 1427

The Life Cycle of an ASP.NET Web Page ... 1428

The Role of the AutoEventWireup Attribute ... 1430

The Error Event ... 1430

The Role of the Web.config File .. 1431

The ASP.NET Web Site Administration Utility... 1432

Summary .. 1433

 ■Chapter 32: ASP�NET Web Controls, Master Pages, and Themes ��������������������� 1435

Understanding the Nature of Web Controls .. 1435

Understanding Server-Side Event Handling.. 1436

The AutoPostBack Property .. 1437

The Control and WebControl Base Classes ... 1438

Enumerating Contained Controls .. 1438

Dynamically Adding and Removing Controls .. 1442

Interacting with Dynamically Created Controls .. 1442

Functionality of the WebControl Base Class ... 1443

Major Categories of Web Forms Controls ... 1444

A Brief Word Regarding System.Web.UI.HtmlControls .. 1448

Web Control Documentation ... 1448

lii

■ Contents

Building the Web Forms Cars Web Site .. 1449

Working with Web Forms Master Pages ... 1449

Configuring the TreeView Control Site Navigation Logic ... 1453

Establishing Breadcrumbs with the SiteMapPath Type .. 1455

Configuring the AdRotator Control .. 1455

Defining the Default Content Page ... 1456

Designing the Inventory Content Page ... 1459

Adding AutoLotDAL and Entity Framework to AspNetCarsSite ... 1459

Filling the GridView with Data .. 1460

Enabling In-Place Editing .. 1461

Enabling Sorting and Paging .. 1464

Enabling Filtering .. 1465

Designing the Build-a-Car Content Page .. 1467

The Role of the Validation Controls .. 1470

Enabling Client-Side JavaScript Validation Support ... 1472

The RequiredFieldValidator ... 1472

The RegularExpressionValidator ... 1472

The RangeValidator... 1473

The CompareValidator .. 1473

Creating Validation Summaries .. 1474

Defining Validation Groups.. 1476

Validation with Data Annotations .. 1477

Working with Themes ... 1482

Understanding *.skin Files .. 1482

Applying Site-Wide Themes .. 1485

Applying Themes at the Page Level .. 1485

The SkinID Property .. 1486

Assigning Themes Programmatically ... 1486

Summary .. 1489

liii

■ Contents

 ■Chapter 33: ASP�NET State Management Techniques �������������������������������������� 1491

The Issue of State ... 1491

ASP.NET State Management Techniques .. 1494

Understanding the Role of ASP.NET View State .. 1494

Demonstrating View State .. 1494

Adding Custom View State Data ... 1496

The Role of the Global.asax File ... 1497

The Global Last-Chance Exception Event Handler .. 1499

The HttpApplication Base Class .. 1500

Understanding the Application/Session Distinction ... 1500

Maintaining Application-Level State Data... 1501

Modifying Application Data ... 1503

Handling Web Application Shutdown .. 1504

Working with the Application Cache ... 1505

Fun with Data Caching ... 1505

Modifying the *.aspx File .. 1508

Maintaining Session Data ... 1510

Additional Members of HttpSessionState ... 1513

Understanding Cookies .. 1514

Creating Cookies ... 1514

Reading Incoming Cookie Data ... 1516

The Role of the <sessionState> Element ... 1517

Storing Session Data in the ASP.NET Session State Server .. 1517

Storing Session Data in a Dedicated Database .. 1518

Introducing the ASP.NET Profile API .. 1519

The ASPNETDB.mdf Database .. 1519

Defining a User Profile Within web.config .. 1520

Accessing Profile Data Programmatically... 1522

Grouping Profile Data and Persisting Custom Objects .. 1524

Summary .. 1525

liv

■ Contents

 ■Chapter 34: ASP�NET MVC and Web API ��� 1527

Introducing the MVC Pattern .. 1527

The Model ... 1527

The View ... 1528

The Controller ... 1528

Why MVC? ... 1528

Enter ASP.NET MVC ... 1529

Building Your First ASP.NET MVC Application ... 1529

The New Project Wizard.. 1529

The Components of a Base MVC Project .. 1533

Updating NuGet Packages to Current Versions ... 1539

Test-Drive Your Site .. 1540

Routing ... 1542

URL Patterns ... 1542

Creating Routes for the Contact and About Pages .. 1543

Redirecting Users Using Routing .. 1544

Adding AutoLotDAL ... 1545

Controllers and Actions .. 1546

Adding the Inventory Controller .. 1546

Examine the Scaffolded Views ... 1548

MVC Controllers .. 1549

MVC Views .. 1558

The Razor View Engine ... 1558

Layouts ... 1561

Partial Views ... 1563

Sending Data to the View ... 1564

The Index View.. 1565

The Details View ... 1570

lv

■ Contents

The Create View .. 1571

The Delete View .. 1574

The Edit View .. 1576

Validation .. 1578

Finishing the UI ... 1580

The Final Word on ASP.NET MVC ... 1582

Introducing ASP.NET Web API ... 1583

Adding the Web API Project .. 1583

Examining the Web API Project ... 1585

Configuring the Project ... 1585

A Note About JSON ... 1586

Adding a Controller ... 1587

Updating CarLotMVC to Use CarLotWebAPI .. 1595

Summary .. 1601

Index ��� 1603

lvii

About the Authors

Andrew Troelsen has more than 20 years of experience in the software
industry. During this time he has worked as a developer, educator, author,
public speaker, and now team lead and lead engineer at Thomson Reuters.
He is the author of numerous books in the Microsoft universe covering
C++-based COM development with ATL, COM and .NET interoperability,
Visual Basic, and the award-winning C# and the .NET platform (which
would be this book right here). He has a master’s of science degree in
software engineering (MSSE) from the University of St. Thomas and
is working on a second master’s of science degree in computational
linguistics (CLMS) from the University of Washington.

Philip Japikse’s career with computers began in the mid-1980s building
PC’s, networking them, and writing software. Now, Phil focuses on the
software development, enterprise architecture, and agile transformation.
A Microsoft MVP since 2009, Phil is a passionate member of the developer
community, leads the Cincinnati .NET User Group (www.cinnug.org),
founded the Cincinnati Day of Agile (www.dayofagile.org), and is
content director and co-host for the Hallway Conversations podcast
(www.hallway conversations.com). You can find Phil in person speaking
at conferences in the US and Europe, and online (twitter) at @skimedic,
and (blogging) at http://www.skimedic.com. Outside of tech, Phil is a
proud husband and father of three, an avid skier (20 year member of the
National Ski Patrol), and boater.

www.cinnug.org
www.dayofagile.org
www.hallway conversations.com
mailto:@skimedic
http://www.skimedic.com

lix

About the Technical Reviewer

Andy Olsen is a freelance developer and instructor based in Swansea in
the United Kingdom. Andy has worked with .NET since its first release and
has worked with all versions up to and including .NET 4.6 and the beta
release of ASP.NET 5. Andy also spends much of his time working with
emerging and mature web technologies and frameworks such as Angular,
Ember, Bootstrap, and Node.

Away from work, Andy enjoys running, skiing, and watching football
(his playing days are over). You can reach Andy at andyo@olsensoft.com.

mailto:andyo@olsensoft.com

lxi

Acknowledgments

Andrew Troelsen: As always, I would like to offer a heartfelt thank-you to the entire team at Apress. I have
been lucky to have worked with Apress on a variety of books since 2001. Beyond publishing high-quality
technical material, the staff is excellent, and without them this book would not be possible. Thanks,
everyone!

I also want to thank my (new) co-author Philip Japikse. Thanks, Phil, for working hard to maintain the
same approachable vibe of the book, while still adding your own personal expertise and voice. I believe our
book (and those who read it) will most certainly benefit from this new partnership!

Last but not least, I want to thank my wife, Mandy, and my son, Soren, for supporting me on my latest
writing project: thanks, guys. Love you much.

Philip Japikse: I also want to thank Apress and the entire team involved in writing this book. This is my
second book effort with Apress, and I am very impressed with the dedication and level of support we
received during the writing process. I also want to thank Andrew for inviting me to sit at the table with him
on this project. This book has been a staple of my .NET career from the beginning; I have hard copies of
every single edition in my library! I am very proud of this work and the collaboration involved in getting this
edition to market. I want to also thank you, the reader, for reading this book and hope that you will find it
as helpful in your career as it has been in mine. Lastly, I couldn’t have done this without my family and the
support I’ve had from them. Between reading my work and proofing it and their understanding of the time
involved, I couldn’t have done it without you! Love you all!

lxiii

Introduction

The first edition of this book was released in 2001 at the same time Microsoft released the Beta 2 build
of .NET 1.0. Working on that first edition was certainly a challenge, given that the APIs and C# language
were in a bit of flux during the authoring process. At that time, the entirety of the .NET platform was quite
manageable from a developer’s point of view. Windows Forms was the only desktop GUI API option in
the platform, ASP.NET was exclusively focused on the web-form programming model, and C# was a lean and
mean OOP.

Throughout the first six editions of this text, I have been the sole author responsible for updating the
book to account for the numerous changes to the C# language and new APIs in the .NET platform. This book
has been updated over the last 14 years to account for the Language Integrated Query (LINQ) programming
model, Windows Presentation Foundation (WPF), Windows Communication Foundation (WCF), new
threading models and keywords, new development tools, and changes to the web-centric programming
framework (among many other things).

Beginning with this seventh edition, it became clear to me that a complete update of the book would
have taken an extremely long time on my own. To be sure, my own life has become much busier than it
was in 2001 (or even 2011; I suspect becoming a father has something to do with this or maybe too many
graduate school classes…hmm).

In any case, when Apress approached me to update the book for the latest edition of the .NET platform,
we considered a number of different approaches to get the book out in a timely manner. Eventually, we
agreed it might be time to bring in a helping and capable hand to update portions of the text. Apress
suggested that I meet with Philip Japikse to see whether he might be a good match. After a series of phone
conversations, e-mail threads, and some careful thought, I was happy to bring him onboard to work on this
project. I am happy to announce C# 6.0 and the .NET 4.6 Framework has been a joint effort between myself
and co-author Philip Japikse. Please allow Philip to introduce himself…

—Andrew Troelsen

Take It Away, Philip!
When Microsoft released the early betas of .NET, I was already firmly entrenched in Microsoft technology.
I had migrated over from other technologies to Visual Basic, building client applications as well as classic
ASP web sites using VB and MTS. While these tools worked well in their day, I could see the end coming.
I was examining other technology stacks, and that’s what brought me to the first edition of this book. I read
it cover to cover and saw not only the promise of .NET but the importance of this book in my technology
library. Having one book that covers C# and the complete .NET ecosystem is invaluable. I can’t tell how
many copies of the book I’ve sold for Apress over the years, but I’ve recommended every edition to my
customers and attendees as the first book to buy on C# and .NET. Whether you are getting started with
.NET or just need to know what’s new in the latest version, I have never found a better book.

lxiv

■ IntroduCtIon

I had already written one book for Apress on Windows 8.1 and C#, so I was familiar with the team and
impressed by the way Apress conducts business and supports their authors. When my editor reached out to
me to ask whether I would collaborate on the seventh edition of “the Troelsen book” (as I’ve always referred
to it), I was thrilled and honored. This has truly been a labor of love, and I can’t say enough how thrilled
and excited I am to be part of this book. I hope you enjoy reading it as much as I’ve enjoyed writing it and
working with Andrew and the awesome team at Apress.

—Philip Japikse

We’re a Team That Includes You
Technology authors write for a demanding group of people (for the best of possible reasons). You know
that building software solutions using any platform or language is extremely complicated and is specific to
your department, company, client base, and subject matter. Perhaps you work in the electronic publishing
industry, develop systems for the state or local government, or work at NASA or a branch of the military.
Collectively, we have worked in a variety of industries, including developing children’s educational software
(Oregon Trail/Amazon Trail), various enterprise systems, and projects within the medical and financial
industries. The chances are almost 100 percent that the code you write at your place of employment has little
to do with the code we have authored over the years.

Therefore, in this book, we have deliberately chosen to avoid creating demonstrations that tie the
example code to a specific industry or vein of programming. Given this, we explain C#, OOP, the CLR, and
the .NET base class libraries using industry-agnostic examples. Rather than having every blessed example
fill a grid with data, calculate payroll, or whatnot, we stick to subject matter we can all relate to: automobiles
(with some geometric structures and employee payroll systems thrown in for good measure). And that’s
where you come in.

Our job is to explain the C# programming language and the core aspects of the .NET platform the best
we possibly can. As well, we will do everything we can to equip you with the tools and strategies you need to
continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments. We obviously
understand that your projects most likely don’t revolve around automobiles with friendly pet names
(Zippy the BMW or a Yugo named Clunker, among others), but that’s what applied knowledge is all about!

Rest assured, once you understand the topics and concepts presented within this text, you will be in a
perfect position to build .NET solutions that map to your own unique programming environment.

An Overview of This Book
C# 6.0 and the .NET 4.6 Framework is logically divided into eight distinct parts, each of which contains a
number of related chapters. Here is a part-by-part and chapter-by-chapter breakdown of the text.

Part I: Introducing C# and the .NET Platform
The purpose of Part I is to acclimate you to the nature of the .NET platform and various development tools
(including cross-platform IDEs) used during the construction of .NET applications.

lxv

■ IntroduCtIon

Chapter 1: The Philosophy of .NET
This first chapter functions as the backbone for the remainder of the text. The primary goal of this chapter
is to acquaint you with a number of .NET-centric building blocks, such as the Common Language Runtime,
Common Type System, Common Language Specification, and base class libraries. Here, you will take an
initial look at the C# programming language and the .NET assembly format. We wrap up by examining the
platform-independent nature of the .NET platform.

Chapter 2: Building C# Applications
The goal of this chapter is to introduce you to the process of compiling C# source code files using various
tools and techniques. Here, you will learn about the role of the Microsoft Express development tools and the
completely free (and fully functional) Visual Studio Community Edition upon which this book is based. We
also touch on the role of the Xamarin IDE and how it enables development of .NET applications on Linux
and Mac OS X operating systems. You will also learn how to configure your development machine with a
local installation of the all-important .NET 4.6 Framework SDK documentation.

Part II: Core C# Programming
The topics presented in this part of the book are quite important because you will use them regardless of
which type of .NET software you intend to develop (e.g., web applications, desktop GUI applications, code
libraries, or Windows services). Here, you will learn about the fundamental data types of .NET, work with
text manipulation, and learn the role of various C# parameter modifiers (including optional and named
arguments).

Chapter 3: Core C# Programming Constructs, Part I
This chapter begins your formal investigation of the C# programming language. Here, you will learn about
the role of the Main() method and numerous details regarding the intrinsic data types of the .NET platform,
including the manipulation of textual data using System.String and System.Text.StringBuilder. You will
also examine iteration and decision constructs, narrowing and widening operations, and the unchecked
keyword.

Chapter 4: Core C# Programming Constructs, Part II
This chapter completes your examination of the core aspects of C#, beginning with the construction of
overloaded type methods and defining parameters using the out, ref, and params keywords. This chapter
will examine two C# features called arguments and optional parameters. You will also learn how to create
and manipulate arrays of data, define nullable data types (with the ? and ?? operators), and understand the
distinction between value types (including enumerations and custom structures) and reference types.

Part III: Object-Oriented Programming with C#
In this part, you will come to understand the core constructs of the C# language, including the details of
object-oriented programming. This part will also examine how to process runtime exceptions and will dive
into the details of working with strongly typed interfaces.

lxvi

■ IntroduCtIon

Chapter 5: Understanding Encapsulation
This chapter begins your examination of object-oriented programming (OOP) using the C# programming
language. After you are introduced to the pillars of OOP (encapsulation, inheritance, and polymorphism),
the remainder of this chapter will show you how to build robust class types using constructors, properties,
static members, constants, and read-only fields. You will wrap up with an examination of partial type
definitions, object initialization syntax, and automatic properties.

Chapter 6: Understanding Inheritance and Polymorphism
Here, you will examine the remaining pillars of OOP (inheritance and polymorphism), which allow you to
build families of related class types. As you do this, you will examine the role of virtual methods, abstract
methods (and abstract base classes), and the nature of the polymorphic interface. Last but not least, this
chapter will explain the role of the supreme base class of the .NET platform, System.Object.

Chapter 7: Understanding Structured Exception Handling
The point of this chapter is to discuss how to handle runtime anomalies in your code base through the use
of structured exception handling. Not only will you learn about the C# keywords that allow you to handle
such problems (try, catch, throw, when, and finally), but you will also come to understand the distinction
between application-level and system-level exceptions. In addition, this chapter will examine various tools
within Visual Studio that allow you to debug the exceptions that escape your notice.

Chapter 8: Working with Interfaces
The material in this chapter builds upon your understanding of object-based development by covering the
topic of interface-based programming. Here, you will learn how to define classes and structures that support
multiple behaviors, how to discover these behaviors at runtime, and how to selectively hide particular
behaviors using explicit interface implementation. In addition to creating a number of custom interfaces,
you will also learn how to implement standard interfaces found within the .NET platform. You will use these
to build objects that can be sorted, copied, enumerated, and compared.

Part IV: Advanced C# Programming
This part of the book will deepen your understanding of the C# language by walking you through a number
of more advanced (but important) concepts. Here, you will complete your examination of the .NET type
system by investigating interfaces and delegates. You will also learn about the role of generics, take a first
look at Language Integrated Query, and examine a number of more advanced features of C# (e.g., extension
methods, partial methods, and pointer manipulation).

Chapter 9: Collections and Generics
This chapter explores the topic of generics. As you will see, generic programming gives you a way to create
types and type members, which contain various placeholders that can be specified by the caller. In a nutshell,
generics greatly enhance application performance and type safety. Not only will you explore various generic
types within the System.Collections.Generic namespace, but you will also learn how to build your own
generic methods and types (with and without constraints).

lxvii

■ IntroduCtIon

Chapter 10: Delegates, Events, and Lambda Expressions
The purpose of Chapter 10 is to demystify the delegate type. Simply put, a .NET delegate is an object that
points to other methods in your application. Using this type, you can build systems that allow multiple
objects to engage in a two-way conversation. After you have examined the use of .NET delegates, you will
then be introduced to the C# event keyword, which you can use to simplify the manipulation of raw delegate
programming. You will wrap up this chapter by investigating the role of the C# lambda operator (=>) and
exploring the connection between delegates, anonymous methods, and lambda expressions.

Chapter 11: Advanced C# Language Features
This chapter deepens your understanding of the C# programming language by introducing you to a number
of advanced programming techniques. Here, you will learn how to overload operators and create custom
conversion routines (both implicit and explicit) for your types. You will also learn how to build and interact
with type indexers, as well as work with extension methods, anonymous types, partial methods, and C#
pointers using an unsafe code context.

Chapter 12: LINQ to Objects
This chapter begins your examination of Language Integrated Query (LINQ). LINQ allows you to build
strongly typed query expressions that can be applied to a number of LINQ targets to manipulate data in the
broadest sense of the word. Here, you will learn about LINQ to Objects, which allows you to apply LINQ
expressions to containers of data (e.g., arrays, collections, and custom types). This information will serve you
well as you encounter a number of additional LINQ APIs throughout the remainder of this book (e.g., LINQ
to XML, LINQ to DataSet, PLINQ, and LINQ to Entities).

Chapter 13: Understanding Object Lifetime
The final chapter of this section examines how the CLR manages memory using the .NET garbage collector.
Here, you will come to understand the role of application roots, object generations, and the System.GC type.
Once you understand the basics, you will examine the topics of disposable objects (using the IDisposable
interface) and the finalization process (using the System.Object.Finalize() method). This chapter will
also investigate the Lazy<T> class, which allows you to define data that will not be allocated until requested
by a caller. As you will see, this feature can be helpful when you want to ensure you do not clutter the heap
with objects that are not actually required by your programs.

Part V: Programming with .NET Assemblies
Part 5 dives into the details of the .NET assembly format. Not only will you learn how to deploy and configure
.NET code libraries, but you will also come to understand the internal composition of a .NET binary image.
This part also explains the role of .NET attributes and the role of resolving type information at runtime. This
section will also explain the role of the Dynamic Language Runtime (DLR) and the C# dynamic keyword.
Later chapters will examine some fairly advanced topics regarding assemblies, such as application domains,
the syntax of CIL, and the construction of in-memory assemblies.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

lxviii

■ IntroduCtIon

Chapter 14: Building and Configuring Class Libraries
At a high level, assembly is the term used to describe a *.dll or *.exe binary file created with a .NET
compiler. However, the true story of .NET assemblies is far richer than that. Here, you will learn the
distinction between single-file and multifile assemblies, as well as how to build and deploy each entity.
You’ll also examine how you can configure private and shared assemblies using XML-based *.config files
and publisher policy assemblies. Along the way, you will investigate the internal structure of the global
assembly cache (GAC).

Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming
Chapter 15 continues your examination of .NET assemblies by checking out the process of runtime type
discovery using the System.Reflection namespace. Using the types of this namespace, you can build
applications that can read an assembly’s metadata on the fly. You will also learn how to load and create
types at runtime dynamically using late binding. The final topic of this chapter will explore the role of .NET
attributes (both standard and custom). To illustrate the usefulness of each of these topics, the chapter shows
you how to construct an extendable Windows Forms application.

Chapter 16: Dynamic Types and the Dynamic Language Runtime
.NET 4.0 introduced a new aspect of the .NET runtime environment called the dynamic language runtime.
Using the DLR and the C# 2010 dynamic keyword, you can define data that is not truly resolved until runtime.
Using these features simplifies some complex .NET programming tasks dramatically. In this chapter, you
will learn some practical uses of dynamic data, including how to leverage the .NET reflection APIs in a
streamlined manner, as well as how to communicate with legacy COM libraries with a minimum of fuss and
bother.

Chapter 17: Processes, AppDomains, and Object Contexts
Now that you have a solid understanding of assemblies, this chapter dives deeper into the composition
of a loaded .NET executable. The goal of this chapter is to illustrate the relationship between processes,
application domains, and contextual boundaries. These topics provide the proper foundation for Chapter
19, where you will examine the construction of multithreaded applications.

Chapter 18: Understanding CIL and the Role of Dynamic Assemblies
The goal of the final chapter in this section is twofold. In the first half (more or less), you will examine the
syntax and semantics of CIL in much greater detail than in previous chapters. The remainder of this chapter
will cover the role of the System.Reflection.Emit namespace. You can use these types to build software
that can generate .NET assemblies in memory at runtime. Formally speaking, assemblies defined and
executed in memory are termed dynamic assemblies.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_19

lxix

■ IntroduCtIon

Part VI: Introducing the .NET Base Class Libraries
By this point in the text, you have a solid handle on the C# language and the details of the .NET assembly
format. Part VI leverages your newfound knowledge by exploring a number of commonly used services
found within the base class libraries, including the creation of multithreaded applications, file I/O, and
database access using ADO.NET. This part also covers the construction of distributed applications using
Windows Communication Foundation and the LINQ to XML API.

Chapter 19: Multithreaded, Parallel, and Async Programming
This chapter examines how to build multithreaded applications and illustrates a number of techniques
you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate type to ensure,
explaining a delegate’s intrinsic support for asynchronous method invocations. Next, you will investigate
the types within the System.Threading namespace. The remainder of this chapter covers the Task Parallel
Library (TPL). Using the TPL, .NET developers can build applications that distribute their workload across
all available CPUs in a wickedly simple manner. At this point, you will also learn about the role of Parallel
LINQ, which provides a way to create LINQ queries that scale across multiple machine cores. We wrap up by
examining various C# keywords, which integrate asynchronous method calls directly into the language.

Chapter 20: File I/O and Object Serialization
The System.IO namespace allows you to interact with a machine’s file and directory structure. Over the
course of this chapter, you will learn how to create (and destroy) a directory system programmatically. You
will also learn how to move data into and out of various streams (e.g., file based, string based, and memory
based). The latter part of this chapter will examine the object serialization services of the .NET platform.
Simply put, serialization allows you to persist the state of an object (or a set of related objects) into a stream
for later use. Deserialization (as you might expect) is the process of plucking an object from the stream
into memory for consumption by your application. After you understand the basics, you will learn how to
customize the serialization process using the ISerializable interface and a set of .NET attributes.

Chapter 21: ADO.NET Part I: The Connected Layer
In this first of three database-centric chapters, you will take your first look at the database access API of the
.NET platform, ADO.NET. Specifically, this chapter will introduce you to the role of .NET data providers and
how to communicate with a relational database using the connected layer of ADO.NET, which is represented
by connection objects, command objects, transaction objects, and data reader objects. Be aware that this
chapter will also walk you through the creation of a custom database and the first iteration of a custom data
access library (AutoLotDAL.dll).

Chapter 22: ADO.NET Part II: The Disconnected Layer
This chapter continues your study of database manipulation by examining the disconnected layer of ADO.
NET. Here, you will learn the role of the DataSet type and data adapter objects. You will also learn about the
many tools of Visual Studio 2010 that can greatly simplify the creation of data-driven applications. Along the
way, you will learn how to bind DataTable objects to user interface elements, as well as how to apply LINQ
queries to in-memory DataSet objects using LINQ to DataSet.

lxx

■ IntroduCtIon

Chapter 23: ADO.NET Part III: The Entity Framework
This chapter wraps up your investigation of ADO.NET by examining the role of the Entity Framework
(EF). Essentially, EF is a way for you to author data-access code using strongly typed classes that directly
map to your business model. Here, you will come to understand the role of the EF DbContext, using data
annotations to shape your database and implementing repositories for encapsulating common code,
transaction support, migrations, concurrency, and interception. While doing so, you will learn to interact
with relational databases using LINQ to Entities. You will also build the final version of your custom data-
access library (AutoLotDAL.dll), which you will use in several of the remaining chapters of the book.

Chapter 24: Introducing LINQ to XML
Chapter 12 introduced you to the core LINQ programming model—specifically LINQ to Objects. Here, you
will deepen your understanding of Language Integrated Query by examining how to apply LINQ queries
to XML documents. You will begin by learning about the “warts” that were present in .NET’s initial foray
into XML manipulation as you use the types of the System.Xml.dll assembly. With this brief history lesson
behind you, you will explore how to create XML documents in memory, how to persist them to the hard
drive, and how to navigate their contents using the LINQ programming model (LINQ to XML).

Chapter 25: Introducing Windows Communication Foundation
Until this point in the book, all the sample applications have executed on a single computer. In this
chapter, you will learn about the Windows Communication Foundation (WCF) API that allows you to build
distributed applications in a symmetrical manner, regardless of their underlying plumbing. This chapter
will expose you to the construction of WCF services, hosts, and clients. As you will see, WCF services are
extremely flexible because they allow clients and hosts to leverage XML-based configuration files to specify
addresses, bindings, and contracts declaratively.

Part VII: Windows Presentation Foundation
The initial desktop GUI API supported by the .NET Platform was termed Windows Forms. While this API is
still fully supported in the framework, .NET 3.0 introduced programmers to an amazing API called Windows
Presentation Foundation (WFP). This API has quickly become the heir apparent to the Windows Forms
desktop programming model. In essence, WPF allows you to build desktop applications that incorporate
vector graphics, interactive animations, and data-binding operations using a declarative markup grammar
called XAML. Furthermore, the WPF control architecture provides a trivial way to restyle the look and feel of
a typical control radically using little more than some well-formed XAML.

Chapter 26: Introducing Windows Presentation Foundation and XAML
Essentially, WPF allows you to build extremely interactive and media-rich front ends for desktop
applications (and indirectly, web applications). Unlike Windows Forms, this supercharged UI framework
integrates a number of key services (e.g., 2D and 3D graphics, animations, and rich documents) into a
single, unified object model. In this chapter, you will begin your examination of WPF and the Extendable
Application Markup Language (XAML). Here, you will learn how to build WPF programs without XAML,
as well as using nothing but XAML, and by using a combination of both approaches. You will wrap up the
chapter by building a custom XAML editor that you will use for the remainder of the WPF-centric chapters.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

lxxi

■ IntroduCtIon

Chapter 27: Programming with WPF Controls
This chapter will expose you to the process of using intrinsic WPF controls and layout managers. For
example, you will learn to build menu systems, splitter windows, toolbars, and status bars. This chapter will
also introduce you to a number of WPF APIs (and their related controls), including the WPF Documents API,
the WPF Ink API, commands, routed events, the data-binding model, and dependency properties.

Chapter 28: WPF Graphics Rendering Services
WPF is a graphically intensive API; given this fact, WPF provides three ways to render graphics: shapes,
drawings and geometrics, and visuals. In this chapter, you will evaluate each option and learn about a
number of important graphics primitives (e.g., brushes, pens, and transformations) along the way. This
chapter will also examine a ways to incorporate vector images into your WPF graphics, as well as how to
perform hit-testing operations against graphical data.

Chapter 29: Resources, Animations, Styles, and Templates
This chapter will introduce you to three important (and interrelated) topics that will deepen your
understanding of the Windows Presentation Foundation API. The first order of business is to learn the role
of logical resources. As you will see, the logical resource (also termed an object resource) system provides a
way for you to name and refer to commonly used objects within a WPF application. Next, you will learn how
to define, execute, and control an animation sequence. Despite what you might be thinking, however, WPF
animations are not limited to the confines of video game or multimedia applications. You will wrap up the
chapter by learning about the role of WPF styles. Similar to a web page that uses CSS or the ASP.NET theme
engine, a WPF application can define a common look and feel for a set of controls.

Chapter 30: Notifications, Commands, Validation, and MVVM
This chapter begins by examining three core framework capabilities: notifications, WPF commands, and
validation. In the notifications section, you will learn about observable models and collections and how
they keep your application data and UI in sync. Next, you dig deeper into commands, building custom
commands to encapsulate your code. In the validation section, you learn how to use the several validation
mechanisms available to use in WPF applications. The chapter closes with an examination of the Model
View ViewModel (MVVM) pattern and ends by creating an application that demonstrates the MVVM pattern
in action.

Part VIII: ASP.NET
Part 8 is devoted to an examination of constructing web applications using the ASP.NET programming API.
Microsoft designed ASP.NET to model the creation of desktop user interfaces by layering an event-driven,
object-oriented framework on top of a standard HTTP request/response. The first three chapters cover the
foundation of web programming and Web Forms, and the final chapter covers the two newest entries into
ASP.NET: MVC and Web API.

lxxii

■ IntroduCtIon

Chapter 31: Introducing ASP.NET Web Forms
This chapter begins your study of web application development using ASP.NET. As you will see, server-side
scripting code has now been replaced with real object-oriented languages (e.g., C# and VB .NET). This
chapter will examine the construction of an ASP.NET web page, the underlying programming model, and
other key aspects of ASP.NET, such as your choice of web server and the use of Web.config files.

Chapter 32: ASP.NET Web Controls, Master Pages, and Themes
Whereas the previous chapter showed you how to construct ASP.NET Page objects, this chapter will examine
the controls that populate the internal control tree. Here, you will examine the core ASP.NET web controls,
including validation controls, the intrinsic site navigation controls, and various data-binding operations.
This chapter will also illustrate the role of master pages and the ASP.NET theme engine, which is a server-
side alternative to traditional style sheets.

Chapter 33: ASP.NET State Management Techniques
This chapter extends your understanding of ASP.NET by examining various ways to handle state
management under .NET. Like classic ASP, ASP.NET allows you to create cookies and application-level and
session-level variables quite easily. However, ASP.NET also introduces a new state management technique:
the application cache. After you look at the numerous ways to handle state with ASP.NET, you will examine
the role of the HttpApplication base class and learn how to alter the runtime behavior of your web
application dynamically using the Web.config file.

Chapter 34: ASP.NET MVC and ASP.NET Web API
This chapter covers the two newest and related ASP.NET frameworks: MVC and Web API. ASP.NET MVC
is based on the Model View Controller pattern, and after getting an understanding, you will build an MVC
application. You will learn about Visual Studio scaffolding, routing, controllers, actions, and views. Next,
you will build a Web API RESTful service to handle all create, read, update, delete (CRUD) operations on the
Inventory data (using AutoLotDAL), and finally you will update your MVC application to use the new service
instead of calling AutoLotDAL directly.

Downloadable Appendixes
In addition to the printed material, the ZIP file containing the source code for this book (available from the
Apress web site, www.apress.com) contains additional appendix chapters distributed as PDFs. These bonus
chapters cover a number of additional APIs in the .NET platform that you might find useful in your line of
work. Specifically, you will find the following bonus material:

•	 Appendix A, “Programming with Windows Forms”

•	 Appendix B, “Platform-Independent .NET Development with Mono”

The first appendix will provide you with a foundation in the Windows Forms desktop API and give you the
background necessary to recreate some of the desktop GUIs found in the early chapters of the text (until we
cover Windows Presentation Foundation). The second chapter is taken from an older edition of this text;
it covers the role of the Mono platform in a bit more detail than found in Chapters 1 and 2 of this book. Do be
aware however that Appendix B shows screen shots of the older MonoDevelop IDE, which has been replaced
by Xamarin Studio (covered in Chapter 2). Nevertheless, the core Mono code examples work as expected.

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_1
http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

lxxiii

■ IntroduCtIon

Obtaining This Book’s Source Code
You can find all the code examples contained in this book available as a free download from the Apress
website (www.apress.com). Simply look up the title of this book and use the download link on the home
page. Once you have downloaded the correct *.zip file, unzip the contents. You will find that the code
projects have been partitioned on a chapter-by-chapter basis.

On a related note, be aware that you will find “Source Code” notes, such as the following, in all the
book’s chapters. These notes serve as your visual cue that you can load the example under discussion into
Visual Studio for further examination and modification.

 ■ Source Code this is a source code note that refers you to a specific directory in the ZIP archive.

To open a solution into Visual Studio, use the File ➤ Open ➤ Project/Solution… menu option and then
navigate to the correct *.sln file within the correct subdirectory of the unzipped archive.

Obtaining Updates for This Book
As you read through this text, you might find an occasional grammatical or code error (although we sure
hope not). If this is the case, please accept our apologies. Being human, a glitch or two might be present,
despite our best efforts. If this is the case, you can obtain the current errata list from the Apress web site at
www.apress.com (again, this is located on the home page for this book). As well, you can use this area to
notify us of any errors you might find.

http://www.apress.com/
http://www.apress.com/

Part I

Introducing C# and the .NET
Platform

3

Chapter 1

The Philosophy of .NET

Microsoft’s .NET platform (and the related C# programming language) were formally introduced circa 2002
and have quickly become a mainstay of modern-day software development. As mentioned in the book’s
introductory section, the goal of this text is twofold. The first order of business is to provide you with deep
and detailed examination of the syntax and semantics of C#. The second (equally important) order of
business is to illustrate the use of numerous .NET APIs, including database access with ADO.NET and the
Entity Framework (EF), the LINQ technology set, WPF, WCF and web site development using ASP.NET. As
they say, the journey of a thousand miles begins with a single step; and with this I welcome you to Chapter 1.

The point of this first chapter is to lay the conceptual groundwork for the remainder of the book. Here
you will find a high-level discussion of a number of .NET-related topics such as assemblies, the Common
Intermediate Language (CIL), and just-in-time (JIT) compilation. In addition to previewing some keywords
of the C# programming language, you will also come to understand the relationship between various aspects
of the .NET Framework, such as the Common Language Runtime (CLR), the Common Type System (CTS),
and the Common Language Specification (CLS).

This chapter also provides you with a survey of the functionality supplied by the .NET base class libraries,
sometimes abbreviated as BCLs. Here, you will also overview the language-agnostic and platform-independent
nature of the .NET platform (yes, it’s true; .NET is not confined to the Windows operating system). As you
would hope, many of these topics are explored in further detail throughout the remainder of this text.

An Initial Look at the .NET Platform
Before Microsoft released the C# language and .NET platform, software developers who created applications
for the Windows family of operating system frequently made use of the COM programming model. COM
(which stands for the Component Object Model) allowed individuals to build libraries of code that could be
shared across diverse programming languages. For example, a C++ programmer could build a COM library
that could be used by a Visual Basic developer. The language-independent nature of COM was certainly
useful; however, COM was plagued by complicated infrastructure and a fragile deployment model and was
possible only on the Windows operating system.

Despite the complexity and limitations of COM, countless applications have been successful created
with this architecture. However, nowadays, a majority of applications created for the Windows family of
operating systems are not created with the COM model. Rather, desktop applications, web sites, OS services,
and libraries of reusable data access/business logic are created using the .NET platform.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 1 ■ the philosophy of .Net

4

Some Key Benefits of the .NET Platform
As mentioned, C# and the .NET platform were first introduced to the world in 2002 and were intended to
offer a much more powerful, more flexible, and simpler programming model than COM. As you will see
during the remainder of this book, the .NET Framework is a software platform for building systems on the
Windows family of operating systems, as well as on numerous non-Microsoft operating systems such as Mac
OS X and various Unix/Linux distributions. To set the stage, here is a quick rundown of some core features
provided courtesy of .NET:

•	 Interoperability with existing code: This is (of course) a good thing. Existing COM
software can commingle (i.e., interop) with newer .NET software, and vice versa. As
of .NET 4.0 onward, interoperability has been further simplified with the addition of
the dynamic keyword (covered in Chapter 16).

•	 Support for numerous programming languages: .NET applications can be created
using any number of programming languages (C#, Visual Basic, F#, and so on).

•	 A common runtime engine shared by all .NET-aware languages: One aspect of this
engine is a well-defined set of types that each .NET-aware language understands.

•	 Language integration: .NET supports cross-language inheritance, cross-language
exception handling, and cross-language debugging of code. For example, you can
define a base class in C# and extend this type in Visual Basic.

•	 A comprehensive base class library: This library provides thousands of predefined
types that allow you to build code libraries, simple terminal applications, graphical
desktop application, and enterprise-level web sites.

•	 A simplified deployment model: Unlike COM, .NET libraries are not registered into
the system registry. Furthermore, the .NET platform allows multiple versions of the
same *.dll to exist in harmony on a single machine.

You will see each of these topics (and many more) examined in the chapters to come.

Introducing the Building Blocks of the .NET Platform
(the CLR, CTS, and CLS)
Now that you know some of the major benefits provided by .NET, let’s preview three key (and interrelated)
topics that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET can be
understood as a runtime environment and a comprehensive base class library. The runtime layer is properly
referred to as the Common Language Runtime, or CLR. The primary role of the CLR is to locate, load, and
manage .NET objects on your behalf. The CLR also takes care of a number of low-level details such as
memory management, application hosting, coordinating threads, and performing basic security checks
(among other low-level details).

Another building block of the .NET platform is the Common Type System, or CTS. The CTS specification
fully describes all possible data types and all programming constructs supported by the runtime, specifies
how these entities can interact with each other, and details how they are represented in the .NET metadata
format (more information on metadata later in this chapter; see Chapter 15 for complete details).

Understand that a given .NET-aware language might not support every feature defined by the CTS. The
Common Language Specification, or CLS, is a related specification that defines a subset of common types
and programming constructs that all .NET programming languages can agree on. Thus, if you build .NET
types that expose only CLS-compliant features, you can rest assured that all .NET-aware languages can
consume them. Conversely, if you make use of a data type or programming construct that is outside of the

http://dx.doi.org/10.1007/978-1-4842-1332-2_16
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 1 ■ the philosophy of .Net

5

bounds of the CLS, you cannot guarantee that every .NET programming language can interact with your
.NET code library. Thankfully, as you will see later in this chapter, it is simple to tell your C# compiler to
check all of your code for CLS compliance.

The Role of the Base Class Libraries
In addition to the CLR, CTS, and CLS specifications, the .NET platform provides a base class library that
is available to all .NET programming languages. Not only does this base class library encapsulate various
primitives such as threads, file input/output (I/O), graphical rendering systems, and interaction with various
external hardware devices, but it also provides support for a number of services required by most real-world
applications.

The base class libraries define types that can be used to build any type of software application. For example,
you can use ASP.NET to build web sites and REST services, WCF to build distributed systems, WPF to build
desktop GUI applications, and so forth. As well, the base class libraries provide types to interact with XML
documents, the directory and file system on a given computer, communicate with a relational databases
(via ADO.NET), and so forth. From a high level, you can visualize the relationship between the CLR, CTS,
CLS, and the base class library, as shown in Figure 1-1.

The Base Class Libraries

Database Access Desktop GUI APIs Security Remoting APIs

Web APIs (et al.)File I/OThreading

The Common Language Runtime

Common Language Specification

Common Type System

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

What C# Brings to the Table
C# is a programming language whose core syntax looks very similar to the syntax of Java. However, calling
C# a Java clone is inaccurate. In reality, both C# and Java are members of the C family of programming
languages (e.g., C, Objective C, C++) and, therefore, share a similar syntax.

The truth of the matter is that many of C#’s syntactic constructs are modeled after various aspects of
Visual Basic (VB) and C++. For example, like VB, C# supports the notion of class properties (as opposed
to traditional getter and setter methods) and optional parameters. Like C++, C# allows you to overload
operators, as well as create structures, enumerations, and callback functions (via delegates).

Moreover, as you work through this text, you will quickly see that C# supports a number of features
traditionally found in various functional languages (e.g., LISP or Haskell) such as lambda expressions
and anonymous types. Furthermore, with the advent of Language Integrated Query (LINQ), C# supports a
number of constructs that make it quite unique in the programming landscape. Nevertheless, the bulk of C#
is indeed influenced by C-based languages.

Chapter 1 ■ the philosophy of .Net

6

Because C# is a hybrid of numerous languages, the result is a product that is as syntactically clean
(if not cleaner) as Java, is about as simple as VB, and provides just about as much power and flexibility as
C++. Here is a partial list of core C# features that are found in all versions of the language:

•	 No pointers required! C# programs typically have no need for direct pointer
manipulation (although you are free to drop down to that level if absolutely
necessary, as shown in Chapter 11).

•	 Automatic memory management through garbage collection. Given this, C# does not
support a delete keyword.

•	 Formal syntactic constructs for classes, interfaces, structures, enumerations,
and delegates.

•	 The C++-like ability to overload operators for a custom type, without the complexity
(e.g., making sure to “return *this to allow chaining” is not your problem).

•	 Support for attribute-based programming. This brand of development allows you
to annotate types and their members to further qualify their behavior. For example,
if you mark a method with the [Obsolete] attribute, programmers will see your
custom warning message print out if they attempt to make use of the decorated
member.

With the release of .NET 2.0 (circa 2005), the C# programming language was updated to support
numerous new bells and whistles, most notability the following:

•	 The ability to build generic types and generic members. Using generics, you are able
to build efficient and type-safe code that defines numerous placeholders specified at
the time you interact with the generic item

•	 Support for anonymous methods, which allow you to supply an inline function
anywhere a delegate type is required

•	 The ability to define a single type across multiple code files (or if necessary, as an in-
memory representation) using the partial keyword

.NET 3.5 (released circa 2008) added even more functionality to the C# programming language,
including the following features:

•	 Support for strongly typed queries (e.g., LINQ) used to interact with various forms of
data. You will first encounter LINQ in Chapter 12.

•	 Support for anonymous types that allow you to model the structure of a type (rather
than its behavior) on the fly in code.

•	 The ability to extend the functionality of an existing type (without subclassing) using
extension methods.

•	 Inclusion of a lambda operator (=>), which even further simplifies working with .NET
delegate types.

•	 A new object initialization syntax, which allows you to set property values at the time
of object creation.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11
http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 1 ■ the philosophy of .Net

7

.NET 4.0 (released in 2010) updated C# yet again with a handful of features.

•	 Support for optional method parameters, as well as named method arguments.

•	 Support for dynamic lookup of members at runtime via the dynamic keyword. As
you will see in Chapter 18, this provides a unified approach to invoking members on
the fly, regardless of which framework the member implemented (COM, IronRuby,
IronPython, or via .NET reflection services).

•	 Working with generic types is much more intuitive, given that you can easily map
generic data to and from general System.Object collections via covariance and
contravariance.

With the release of .NET 4.5, C# received a pair of new keywords (async and await), which greatly
simplify multithreaded and asynchronous programming. If you have worked with previous versions of
C#, you might recall that calling methods via secondary threads required a fair amount of cryptic code
and the use of various .NET namespaces. Given that C# now supports language keywords that handle this
complexity for you, the process of calling methods asynchronously is almost as easy as calling a method in a
synchronous manner. Chapter 19 will cover these topics in detail.

This brings us to the current version of C# and .NET 4.6, which introduces a number of minor features
that help streamline your codebase. You will see a number of details as you go through this text; however,
here is a quick rundown of some of the new features found in C#:

•	 Inline initialization for automatic properties as well as support for read-only
automatic properties

•	 Single-line method implementations using the C# lambda operator

•	 Support of “static imports” to provide direct access to static members within a
namespace

•	 A null conditional operator, which helps check for null parameters in a method
implementation

•	 A new string formatting syntax termed string interpolation

•	 The ability to filter exceptions using the new when keyword

Managed vs. Unmanaged Code
It is important to note that the C# language can be used only to build software that is hosted under the.NET
runtime (you could never use C# to build a native COM server or an unmanaged C/C++-style application).
Officially speaking, the term used to describe the code targeting the .NET runtime is managed code. The
binary unit that contains the managed code is termed an assembly (more details on assemblies in just a bit).
Conversely, code that cannot be directly hosted by the .NET runtime is termed unmanaged code.

As mentioned previously (and detailed later in this chapter and the next), the .NET platform can run
on a variety of operating systems. Thus, it is quite possible to build a C# application on a Windows machine
using Visual Studio and run the program on a Mac OS X machine using the Mono .NET runtime. As well,
you could build a C# application on Linux using Xamarin Studio (see Chapter 2) and run the program on
Windows, Mac, and so on. To be sure, the notion of a managed environment makes it possible to build,
deploy, and run .NET programs on a wide variety of target machines.

http://dx.doi.org/10.1007/978-1-4842-1332-2_18
http://dx.doi.org/10.1007/978-1-4842-1332-2_19
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 1 ■ the philosophy of .Net

8

Additional .NET-Aware Programming Languages
Understand that C# is not the only language that can be used to build .NET applications. Out of the box,
Visual Studio provides you with five managed languages, specifically, C#, Visual Basic, C++/CLI, JavaScript,
and F#.

 ■ Note f# is a .Net language based on the syntax of functional languages. While f# can be used
as a purely functional language, it also has support for oop constructs and the .Net base class libraries. if you
are interested in learning more about this managed language, navigate online to the official f# home page,
http://msdn.microsoft.com/fsharp.

In addition to the managed languages provided by Microsoft, there are .NET compilers for Smalltalk,
Ruby, Python, COBOL, and Pascal (to name a few). Although this book focuses almost exclusively on C#, you
might want to consult the following Wikipedia page, which lists a large number of programming languages
that target the .NET framework:

https://en.wikipedia.org/wiki/List_of_CLI_languages

While I assume you are primarily interested in building .NET programs using the syntax of C#, I
encourage you to visit this site, as you are sure to find many .NET languages worth investigating at your
leisure (LISP.NET, anyone?).

Life in a Multilanguage World
As developers first come to understand the language-agnostic nature of .NET, numerous questions arise. The
most prevalent of these questions would have to be, “If all .NET languages compile down to managed code,
why do we need more than one language/compiler?”

There are a number of ways to answer this question. First, we programmers are a very particular lot
when it comes to our choice of programming language. Some of us prefer languages full of semicolons and
curly brackets with as few language keywords as possible. Others enjoy a language that offers more human-
readable syntactic tokens (such as Visual Basic). Still others might want to leverage their mainframe skills
while moving to the .NET platform (via the COBOL .NET compiler).

Now, be honest. If Microsoft were to build a single “official” .NET language derived from the BASIC
family of languages, can you really say all programmers would be happy with this choice? Or, if the only
“official” .NET language was based on Fortran syntax, imagine all the folks out there who would ignore
.NET altogether. Because the .NET runtime couldn’t care less which language was used to build a block of
managed code, .NET programmers can stay true to their syntactic preferences and share the compiled code
among teammates, departments, and external organizations (regardless of which .NET language others
choose to use).

Another excellent byproduct of integrating various .NET languages into a single, unified software
solution is the simple fact that all programming languages have their own sets of strengths and weaknesses.
For example, some programming languages offer excellent intrinsic support for advanced mathematical
processing. Others offer superior support for financial calculations, logical calculations, interaction with
mainframe computers, and so forth. When you take the strengths of a particular programming language and
then incorporate the benefits provided by the .NET platform, everybody wins.

http://msdn.microsoft.com/fsharp
https://en.wikipedia.org/wiki/List_of_CLI_languages

Chapter 1 ■ the philosophy of .Net

9

Of course, in reality the chances are quite good that you will spend much of your time building software
using your .NET language of choice. However, once you master the syntax of one .NET language, it is easy
to learn another. This is also quite beneficial, especially to the software consultants of the world. If your
language of choice happens to be C# but you are placed at a client site that has committed to Visual Basic,
you are still able to leverage the functionality of the .NET Framework, and you should be able to understand
the overall structure of the code base with minimal fuss and bother.

An Overview of .NET Assemblies
Regardless of which .NET language you choose to program with, understand that despite that .NET binaries
take the same file extension as unmanaged Windows binaries (*.dll or *.exe), they have absolutely no internal
similarities. Specifically, .NET binaries do not contain platform-specific instructions but rather platform-agnostic
Intermediate Language (IL) and type metadata. Figure 1-2 shows the big picture of the story thus far.

Figure 1-2. All .NET-aware compilers emit IL instructions and metadata

 ■ Note there is one point to be made regarding the abbreviation “il.” il is also known as Microsoft
intermediate language (Msil) or alternatively as the Common intermediate language (Cil). thus, as you read
the .Net literature, understand that il, Msil, and Cil are all describing essentially the same concept. in this text,
i will use the abbreviation Cil to refer to this low-level instruction set.

When a *.dll or *.exe has been created using a .NET-aware compiler, the binary blob is termed an
assembly. You will examine numerous details of .NET assemblies in Chapter 14. However, to facilitate the
current discussion, you do need to understand some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode in that it
is not compiled to platform-specific instructions until absolutely necessary. Typically, “absolutely necessary”
is the point at which a block of CIL instructions (such as a method implementation) is referenced for use by
the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail the
characteristics of every “type” within the binary. For example, if you have a class named SportsCar, the type
metadata describes details such as SportsCar’s base class, which interfaces are implemented by SportsCar
(if any), as well as a full description of each member supported by the SportsCar type. .NET metadata is
always present within an assembly and is automatically generated by a .NET-aware language compiler.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 1 ■ the philosophy of .Net

10

Finally, in addition to CIL and type metadata, assemblies themselves are also described using metadata,
which is officially termed a manifest. The manifest contains information about the current version of the
assembly, culture information (used for localizing string and image resources), and a list of all externally
referenced assemblies that are required for proper execution. You’ll examine various tools that can be used to
examine an assembly’s types, metadata, and manifest information over the course of the next few chapters.

The Role of the Common Intermediate Language
Let’s examine CIL code, type metadata, and the assembly manifest in a bit more detail. CIL is a language
that sits above any particular platform-specific instruction set. For example, the following C# code models a
trivial calculator. Don’t concern yourself with the exact syntax for now, but do notice the format of the
Add() method in the Calc class.

// Calc.cs
using System;
namespace CalculatorExample
{
 // This class contains the app's entry point.
 class Program
 {
 static void Main()
 {
 Calc c = new Calc();
 int ans = c.Add(10, 84);
 Console.WriteLine("10 + 84 is {0}.", ans);
 // Wait for user to press the Enter key before shutting down.
 Console.ReadLine();
 }
 }

 // The C# calculator.
 class Calc
 {
 public int Add(int x, int y)
 { return x + y; }
 }
}

After you compile this code file using the C# compiler (csc.exe), you end up with a single-file *.exe
assembly that contains a manifest, CIL instructions, and metadata describing each aspect of the Calc and
Program classes.

 ■ Note Chapter 2 examines how to use graphical iDes (such as Visual studio Community edition) to compile
your code files.

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 1 ■ the philosophy of .Net

11

For example, if you were to open this assembly using ildasm.exe (examined a little later in this
chapter), you would find that the Add() method is represented using CIL such as the following:

.method public hidebysig instance int32 Add(int32 x,
 int32 y) cil managed
{
 // Code size 9 (0x9)
 .maxstack 2
 .locals init (int32 V_0)
 IL_0000: nop
 IL_0001: ldarg.1
 IL_0002: ldarg.2
 IL_0003: add
 IL_0004: stloc.0
 IL_0005: br.s IL_0007
 IL_0007: ldloc.0
 IL_0008: ret
} // end of method Calc::Add

Don’t worry if you are unable to make heads or tails of the resulting CIL for this method—Chapter 18 will
describe the basics of the CIL programming language. The point to concentrate on is that the C# compiler
emits CIL, not platform-specific instructions.

Now, recall that this is true of all .NET-aware compilers. To illustrate, assume you created this same
application using Visual Basic, rather than C#.

' Calc.vb
Imports System

Namespace CalculatorExample
 ' A VB "Module" is a class that contains only
 ' static members.
 Module Program
 Sub Main()
 Dim c As New Calc
 Dim ans As Integer = c.Add(10, 84)
 Console.WriteLine("10 + 84 is {0}.", ans)
 Console.ReadLine()
 End Sub
 End Module

 Class Calc
 Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
 Return x + y
 End Function
 End Class
End Namespace

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 1 ■ the philosophy of .Net

12

If you examine the CIL for the Add() method, you find similar instructions (slightly tweaked by the
Visual Basic compiler, vbc.exe).

.method public instance int32 Add(int32 x,
 int32 y) cil managed
{
 // Code size 8 (0x8)
 .maxstack 2
 .locals init (int32 V_0)
 IL_0000: ldarg.1
 IL_0001: ldarg.2
 IL_0002: add.ovf
 IL_0003: stloc.0
 IL_0004: br.s IL_0006
 IL_0006: ldloc.0
 IL_0007: ret
} // end of method Calc::Add

 ■ Source Code the Calc.cs and Calc.vb code files are included in the Chapter 1 subdirectory.

Benefits of CIL
At this point, you might be wondering exactly what is gained by compiling source code into CIL rather than
directly to a specific instruction set. One benefit is language integration. As you have already seen, each
.NET-aware compiler produces nearly identical CIL instructions. Therefore, all languages are able to interact
within a well-defined binary arena.

Furthermore, given that CIL is platform-agnostic, the .NET Framework itself is platform-agnostic,
providing the same benefits Java developers have grown accustomed to (e.g., a single code base running
on numerous operating systems). In fact, there is an international standard for the C# language, and a large
subset of the .NET platform and implementations already exists for many non-Windows operating systems
(more details at the conclusion of this chapter).

Compiling CIL to Platform-Specific Instructions
Because assemblies contain CIL instructions rather than platform-specific instructions, CIL code must be
compiled on the fly before use. The entity that compiles CIL code into meaningful CPU instructions is a JIT
compiler, which sometimes goes by the friendly name of Jitter. The .NET runtime environment leverages a
JIT compiler for each CPU targeting the runtime, each optimized for the underlying platform.

For example, if you are building a .NET application to be deployed to a handheld device (such
as a Windows mobile device), the corresponding Jitter is well equipped to run within a low-memory
environment. On the other hand, if you are deploying your assembly to a back-end company server (where
memory is seldom an issue), the Jitter will be optimized to function in a high-memory environment. In
this way, developers can write a single body of code that can be efficiently JIT compiled and executed on
machines with different architectures.

Furthermore, as a given Jitter compiles CIL instructions into corresponding machine code, it will cache
the results in memory in a manner suited to the target operating system. In this way, if a call is made to a
method named PrintDocument(), the CIL instructions are compiled into platform-specific instructions on
the first invocation and retained in memory for later use. Therefore, the next time PrintDocument() is called,
there is no need to recompile the CIL.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 1 ■ the philosophy of .Net

13

 ■ Note it is also possible to perform a “pre-Jit” of an assembly when installing your application using the
ngen.exe command-line tool that ships with the .Net framework sDK. Doing so can improve startup time for
graphically intensive applications.

The Role of .NET Type Metadata
In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata, which
describes every type (e.g., class, structure, enumeration) defined in the binary, as well as the members
of each type (e.g., properties, methods, events). Thankfully, it is always the job of the compiler (not
the programmer) to emit the latest and greatest type metadata. Because .NET metadata is so wickedly
meticulous, assemblies are completely self-describing entities.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been generated
for the Add() method of the C# Calc class you examined previously (the metadata generated for the Visual
Basic version of the Add() method is similar; again, more on the use of ildasm in just a bit).

TypeDef #2 (02000003)

 TypDefName: CalculatorExample.Calc (02000003)
 Flags : [NotPublic] [AutoLayout] [Class]
 [AnsiClass] [BeforeFieldInit] (00100001)
 Extends : 01000001 [TypeRef] System.Object
 Method #1 (06000003)

 MethodName: Add (06000003)
 Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
 RVA : 0x00002090
 ImplFlags : [IL] [Managed] (00000000)
 CallCnvntn: [DEFAULT]
 hasThis
 ReturnType: I4
 2 Arguments
 Argument #1: I4
 Argument #2: I4
 2 Parameters
 (1) ParamToken : (08000001) Name : x flags: [none] (00000000)
 (2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Metadata is used by numerous aspects of the .NET runtime environment, as well as by various
development tools. For example, the IntelliSense feature provided by tools such as Visual Studio is made
possible by reading an assembly’s metadata at design time. Metadata is also used by various object- browsing
utilities, debugging tools, and the C# compiler itself. To be sure, metadata is the backbone of numerous .NET
technologies including Windows Communication Foundation (WCF), reflection, late binding, and object
serialization. Chapter 15 will formalize the role of .NET metadata.

Chapter 1 ■ the philosophy of .Net

14

The Role of the Assembly Manifest
Last but not least, remember that a .NET assembly also contains metadata that describes the assembly
itself (technically termed a manifest). Among other details, the manifest documents all external assemblies
required by the current assembly to function correctly, the assembly’s version number, copyright
information, and so forth. Like type metadata, it is always the job of the compiler to generate the assembly’s
manifest. Here are some relevant details of the manifest generated when compiling the Calc.cs code file
shown earlier in this chapter (assume you instructed the compiler to name your assembly Calc.exe):

.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}
.assembly Calc
{
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
.module Calc.exe
.imagebase 0x00400000
.subsystem 0x00000003
.file alignment 0x00000200
.corflags 0x00000001

In a nutshell, this manifest documents the set of external assemblies required by Calc.exe (via the
.assembly extern directive) as well as various characteristics of the assembly itself (e.g., version number,
module name). Chapter 14 will examine the usefulness of manifest data in much more detail.

Understanding the Common Type System
A given assembly may contain any number of distinct types. In the world of .NET, type is simply a general
term used to refer to a member from the set {class, interface, structure, enumeration, delegate}. When you
build solutions using a .NET-aware language, you will most likely interact with many of these types. For
example, your assembly might define a single class that implements some number of interfaces. Perhaps
one of the interface methods takes an enumeration type as an input parameter and returns a structure to
the caller.

Recall that the CTS is a formal specification that documents how types must be defined in order to be
hosted by the CLR. Typically, the only individuals who are deeply concerned with the inner workings of the
CTS are those building tools and/or compilers that target the .NET platform. It is important, however, for all
.NET programmers to learn about how to work with the five types defined by the CTS in their language of
choice. The following is a brief overview.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 1 ■ the philosophy of .Net

15

CTS Class Types
Every .NET-aware language supports, at the least, the notion of a class type, which is the cornerstone of
object-oriented programming (OOP). A class may be composed of any number of members (such as
constructors, properties, methods, and events) and data points (fields). In C#, classes are declared using the
class keyword, like so:

// A C# class type with 1 method.
class Calc
{
 public int Add(int x, int y)
 {
 return x + y;
 }
}

Chapter 5 will begin your formal examination of building class types with C#; however, Table 1-1
documents a number of characteristics pertaining to class types.

Table 1-1. CTS Class Characteristics

Class Characteristic Meaning in Life

Is the class sealed? Sealed classes cannot function as a base class to other classes.

Does the class implement
any interfaces?

An interface is a collection of abstract members that provide a
contract between the object and object user. The CTS allows a class to
implement any number of interfaces.

Is the class abstract or concrete? Abstract classes cannot be directly instantiated but are intended to
define common behaviors for derived types. Concrete classes can be
instantiated directly.

What is the visibility of this class? Each class must be configured with a visibility keyword such as public
or internal. Basically, this controls whether the class may be used by
external assemblies or only from within the defining assembly.

CTS Interface Types
Interfaces are nothing more than a named collection of abstract member definitions, which may be supported
(i.e., implemented) by a given class or structure. In C#, interface types are defined using the interface
keyword. By convention, all .NET interfaces begin with a capital letter I, as in the following example:

// A C# interface type is usually
// declared as public, to allow types in other
// assemblies to implement their behavior.
public interface IDraw
{
 void Draw();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 1 ■ the philosophy of .Net

16

On their own, interfaces are of little use. However, when a class or structure implements a given
interface in its unique way, you are able to request access to the supplied functionality using an interface
reference in a polymorphic manner. Interface-based programming will be fully explored in Chapter 8.

CTS Structure Types
The concept of a structure is also formalized under the CTS. If you have a C background, you should be
pleased to know that these user-defined types (UDTs) have survived in the world of .NET (although they
behave a bit differently under the hood). Simply put, a structure can be thought of as a lightweight class type
having value-based semantics. For more details on the subtleties of structures, see Chapter 4. Typically,
structures are best suited for modeling geometric and mathematical data and are created in C# using the
struct keyword, as follows:

// A C# structure type.
struct Point
{
 // Structures can contain fields.
 public int xPos, yPos;

 // Structures can contain parameterized constructors.
 public Point(int x, int y)
 { xPos = x; yPos = y;}

 // Structures may define methods.
 public void PrintPosition()
 {
 Console.WriteLine("({0}, {1})", xPos, yPos);
 }
}

CTS Enumeration Types
Enumerations are a handy programming construct that allow you to group name-value pairs. For example,
assume you are creating a video game application that allows the player to select one of three character
categories (Wizard, Fighter, or Thief). Rather than keeping track of simple numerical values to represent
each possibility, you could build a strongly typed enumeration using the enum keyword.

// A C# enumeration type.
enum CharacterType
{
 Wizard = 100,
 Fighter = 200,
 Thief = 300
}

By default, the storage used to hold each item is a 32-bit integer; however, it is possible to alter this
storage slot if need be (e.g., when programming for a low-memory device such as a mobile device). Also,
the CTS demands that enumerated types derive from a common base class, System.Enum. As you will see in
Chapter 4, this base class defines a number of interesting members that allow you to extract, manipulate,
and transform the underlying name-value pairs programmatically.

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 1 ■ the philosophy of .Net

17

CTS Delegate Types
Delegates are the .NET equivalent of a type-safe, C-style function pointer. The key difference is that a .NET
delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer to a raw
memory address. In C#, delegates are declared using the delegate keyword.

// This C# delegate type can "point to" any method
// returning an int and taking two ints as input.
delegate int BinaryOp(int x, int y);

Delegates are critical when you want to provide a way for one object to forward a call to another object
and provide the foundation for the .NET event architecture. As you will see in Chapters 10 and 19, delegates
have intrinsic support for multicasting (i.e., forwarding a request to multiple recipients) and asynchronous
method invocations (i.e., invoking the method on a secondary thread).

CTS Type Members
Now that you have previewed each of the types formalized by the CTS, realize that most types take any
number of members. Formally speaking, a type member is constrained by the set {constructor, finalizer, static
constructor, nested type, operator, method, property, indexer, field, read-only field, constant, event}.

The CTS defines various adornments that may be associated with a given member. For example, each
member has a given visibility trait (e.g., public, private, protected). Some members may be declared as
abstract (to enforce a polymorphic behavior on derived types) as well as virtual (to define a canned, but
overridable, implementation). Also, most members may be configured as static (bound at the class level) or
instance (bound at the object level). The creation of type members is examined over the course of the next
several chapters.

 ■ Note as described in Chapter 9, the C# language also supports the creation of generic types and
generic members.

Intrinsic CTS Data Types
The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set of
fundamental data types. Although a given language typically has a unique keyword used to declare a
fundamental data type, all .NET language keywords ultimately resolve to the same CTS type defined in
an assembly named mscorlib.dll. Consider Table 1-2, which documents how key CTS data types are
expressed in various .NET languages.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10
http://dx.doi.org/10.1007/978-1-4842-1332-2_19
http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 1 ■ the philosophy of .Net

18

Given that the unique keywords of a managed language are simply shorthand notations for a real type
in the System namespace, you no longer have to worry about overflow/underflow conditions for numerical
data or how strings and Booleans are internally represented across different languages. Consider the
following code snippets, which define 32-bit numerical variables in C# and Visual Basic, using language
keywords as well as the formal CTS data type:

// Define some "ints" in C#.
int i = 0;
System.Int32 j = 0;

' Define some "ints" in VB.
Dim i As Integer = 0
Dim j As System.Int32 = 0

Understanding the Common Language Specification
As you are aware, different languages express the same programming constructs in unique, language-
specific terms. For example, in C# you denote string concatenation using the plus operator (+), while
in VB you typically make use of the ampersand (&). Even when two distinct languages express the same
programmatic idiom (e.g., a function with no return value), the chances are good that the syntax will appear
quite different on the surface.

Table 1-2. The Intrinsic CTS Data Types

CTS Data Type VB Keyword C# Keyword C++/CLI Keyword

System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 UShort ushort unsigned short

System.UInt32 UInteger uint unsigned int or unsigned long

System.UInt64 ULong ulong unsigned __int64

System.Single Single float float

System.Double Double double double

System.Object Object object object^

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool bool

Chapter 1 ■ the philosophy of .Net

19

// C# method returning nothing.
public void MyMethod()
{
 // Some interesting code...
}

' VB method returning nothing.
Public Sub MyMethod()
 ' Some interesting code...
End Sub

As you have already seen, these minor syntactic variations are inconsequential in the eyes of the
.NET runtime, given that the respective compilers (csc.exe or vbc.exe, in this case) emit a similar set of
CIL instructions. However, languages can also differ with regard to their overall level of functionality. For
example, a .NET language might or might not have a keyword to represent unsigned data and might or might
not support pointer types. Given these possible variations, it would be ideal to have a baseline to which all
.NET-aware languages are expected to conform.

The CLS is a set of rules that describe in vivid detail the minimal and complete set of features a given
.NET-aware compiler must support to produce code that can be hosted by the CLR, while at the same time
be accessed in a uniform manner by all languages that target the .NET platform. In many ways, the CLS can
be viewed as a subset of the full functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to if they intend their products
to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g., CLS Rule 6) and
describes how this rule affects those who build the compilers as well as those who (in some way) interact
with them. The crème de la crème of the CLS is Rule 1.

•	 Rule 1: CLS rules apply only to those parts of a type that are exposed outside the
defining assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the logic
used to build the inner workings of a .NET type. The only aspects of a type that must conform to the CLS
are the member definitions themselves (i.e., naming conventions, parameters, and return types). The
implementation logic for a member may use any number of non-CLS techniques, as the outside world won’t
know the difference.

To illustrate, the following C# Add() method is not CLS compliant, as the parameters and return values
make use of unsigned data (which is not a requirement of the CLS):

class Calc
{
 // Exposed unsigned data is not CLS compliant!
 public ulong Add(ulong x, ulong y)
 {
 return x + y;
 }
}

Chapter 1 ■ the philosophy of .Net

20

However, if you were to only make use of unsigned data internally in a method, as follows:

class Calc
{
 public int Add(int x, int y)
 {
 // As this ulong variable is only used internally,
 // we are still CLS compliant.
 ulong temp = 0;
 ...
 return x + y;
 }
}

you have still conformed to the rules of the CLS and can rest assured that all .NET languages are able to
invoke the Add() method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the CLS describes
how a given language must represent text strings, how enumerations should be represented internally (the
base type used for storage), how to define static members, and so forth. Luckily, you don’t have to commit
these rules to memory to be a proficient .NET developer. Again, by and large, an intimate understanding of
the CTS and CLS specifications is typically of interest only to tool/compiler builders.

Ensuring CLS Compliance
As you will see over the course of this book, C# does define a number of programming constructs that are not
CLS compliant. The good news, however, is that you can instruct the C# compiler to check your code for CLS
compliance using a single .NET attribute.

// Tell the C# compiler to check for CLS compliance.
[assembly: CLSCompliant(true)]

Chapter 15 dives into the details of attribute-based programming. Until then, simply understand that the
[CLSCompliant] attribute will instruct the C# compiler to check every line of code against the rules of the CLS.
If any CLS violations are discovered, you receive a compiler error and a description of the offending code.

Understanding the Common Language Runtime
In addition to the CTS and CLS specifications, the final three-letter abbreviation (TLA) to contend with at
the moment is the CLR. Programmatically speaking, the term runtime can be understood as a collection
of services that are required to execute a given compiled unit of code. For example, when Java developers
deploy software to a new computer, they need to ensure the machine has been installed with the Java Virtual
Machine (JVM) in order to run their software.

The .NET platform offers yet another runtime system. The key difference between the .NET runtime and
the various other runtimes I just mentioned is that the .NET runtime provides a single, well-defined runtime
layer that is shared by all languages and platforms that are .NET-aware.

The crux of the CLR is physically represented by a library named mscoree.dll (aka the Common Object
Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is loaded automatically,
which in turn loads the required assembly into memory. The runtime engine is responsible for a number of
tasks. First, it is the agent in charge of resolving the location of an assembly and finding the requested type
within the binary by reading the contained metadata. The CLR then lays out the type in memory, compiles

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 1 ■ the philosophy of .Net

21

the associated CIL into platform-specific instructions, performs any necessary security checks, and then
executes the code in question.

In addition to loading your custom assemblies and creating your custom types, the CLR will also
interact with the types contained within the .NET base class libraries when required. Although the entire
base class library has been broken into a number of discrete assemblies, the key assembly is mscorlib.dll,
which contains a large number of core types that encapsulate a wide variety of common programming tasks,
as well as the core data types used by all .NET languages. When you build .NET solutions, you automatically
have access to this particular assembly.

Figure 1-3 illustrates the high-level workflow that takes place between your source code (which is
making use of base class library types), a given .NET compiler, and the .NET execution engine.

Figure 1-3. mscoree.dll in action

Chapter 1 ■ the philosophy of .Net

22

The Assembly/Namespace/Type Distinction
Each of us understands the importance of code libraries. The point of framework libraries is to give
developers a well-defined set of existing code to leverage in their applications. However, the C# language
does not come with a language-specific code library. Rather, C# developers leverage the language- neutral
.NET libraries. To keep all the types within the base class libraries well organized, the .NET platform makes
extensive use of the namespace concept.

A namespace is a grouping of semantically related types contained in an assembly or possibly spread
across multiple related assemblies. For example, the System.IO namespace contains file I/O-related types,
the System.Data namespace defines basic database types, and so on. It is important to point out that a single
assembly (such as mscorlib.dll) can contain any number of namespaces, each of which can contain any
number of types.

To clarify, Figure 1-4 shows the Visual Studio Object Browser utility (which can be found under the View
menu). This tool allows you to examine the assemblies referenced by your current project, the namespaces
within a particular assembly, the types within a given namespace, and the members of a specific type. Note
that the mscorlib.dll assembly contains many different namespaces (such as System.IO), each with its
own semantically related types (e.g., BinaryReader).

Figure 1-4. A single assembly can have any number of namespaces, and namespaces can have any number
of types

Chapter 1 ■ the philosophy of .Net

23

The key difference between this approach and a language-specific library is that any language targeting
the .NET runtime uses the same namespaces and same types. For example, the following three programs all
illustrate the ubiquitous “Hello World” application, written in C#, VB, and C++/CLI:

// Hello world in C#.
using System;

public class MyApp
{
 static void Main()
 {
 Console.WriteLine("Hi from C#");
 }
}

' Hello world in VB.
Imports System
Public Module MyApp
 Sub Main()
 Console.WriteLine("Hi from VB")
 End Sub
End Module

// Hello world in C++/CLI.
#include "stdafx.h"
using namespace System;

int main(array<System::String ^> ^args)
{
 Console::WriteLine(L"Hi from C++/CLI");
 return 0;
}

Notice that each language is using the Console class defined in the System namespace. Beyond some
obvious syntactic variations, these three applications look and feel very much alike, both physically and logically.

Clearly, one you are comfortable with your .NET programming language of choice, your next goal as a
.NET developer is to get to know the wealth of types defined in the (numerous) .NET namespaces. The most
fundamental namespace to get your hands around initially is named System. This namespace provides a
core body of types that you will need to leverage time and again as a .NET developer. In fact, you cannot
build any sort of functional C# application without at least making a reference to the System namespace,
as the core data types (e.g., System.Int32, System.String) are defined here. Table 1-3 offers a rundown of
some (but certainly not all) of the .NET namespaces grouped by related functionality.

The Role of the Microsoft Root Namespace
I’m sure you noticed while reading over the listings in Table 1-3 that System is the root namespace for a
majority of nested namespaces (e.g., System.IO, System.Data). As it turns out, however, the .NET base class
library defines a number of topmost root namespaces beyond System, the most useful of which is named
Microsoft.

Chapter 1 ■ the philosophy of .Net

24

Table 1-3. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System, you find numerous useful types dealing with intrinsic
data, mathematical computations, random number generation,
environment variables, and garbage collection, as well as a number
of commonly used exceptions and attributes.

System.Collections
System.Collections.Generic

These namespaces define a number of stock container types, as
well as base types and interfaces that allow you to build customized
collections.

System.Data
System.Data.Common
System.Data.EntityClient
System.Data.SqlClient

These namespaces are used for interacting with relational databases
using ADO.NET.

System.IO
System.IO.Compression
System.IO.Ports

These namespaces define numerous types used to work with file I/O,
compression of data, and port manipulation.

System.Reflection
System.Reflection.Emit

These namespaces define types that support runtime type discovery
as well as dynamic creation of types.

System.Runtime.InteropServices This namespace provides facilities to allow .NET types to interact
with unmanaged code (e.g., C-based DLLs and COM servers), and
vice versa.

System.Drawing
System.Windows.Forms

These namespaces define types used to build desktop applications
using .NET’s original UI toolkit (Windows Forms).

System.Windows
System.Windows.Controls
System.Windows.Shapes

The System.Windows namespace is the root for several namespaces
that represent the Windows Presentation Foundation (WPF) UI
toolkit.

System.Linq
System.Xml.Linq
System.Data.DataSetExtensions

These namespaces define types used when programming against the
LINQ API.

System.Web This is one of many namespaces that allow you to build ASP.NET web
applications.

System.Web.Http This is one of many namespaces that allow you to build RESTful web
services.

System.ServiceModel This is one of many namespaces used to build distributed
applications using the Windows Communication Foundation API.

System.Workflow.Runtime
System.Workflow.Activities

These are two of many namespaces that define types used to build
“workflow-enabled” applications using the Windows Workflow
Foundation API.

System.Threading
System.Threading.Tasks

This namespace defines numerous types to build multithreaded
applications that can distribute workloads across multiple CPUs.

System.Security Security is an integrated aspect of the .NET universe. In the
security-centric namespaces, you find numerous types dealing with
permissions, cryptography, and so on.

System.Xml The XML-centric namespaces contain numerous types used to
interact with XML data.

Chapter 1 ■ the philosophy of .Net

25

Any namespace nested within Microsoft (e.g., Microsoft.CSharp, Microsoft.ManagementConsole,
Microsoft.Win32) contains types that are used to interact with services unique to the Windows operating
system. Given this point, you should not assume that these types could be used successfully on other .NET-
enabled operating systems such as Mac OS X. For the most part, this text will not dig into the details of the
Microsoft rooted namespaces, so be sure to consult the .NET Framework 4.6 SDK documentation if you are
interested.

 ■ Note Chapter 2 will illustrate the use of the .Net framework 4.6 sDK documentation, which provides
details regarding every namespace, type, and member within the base class libraries.

Accessing a Namespace Programmatically
It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans
to logically understand and organize related types. Consider again the System namespace. From your
perspective, you can assume that System.Console represents a class named Console that is contained within
a namespace called System. However, in the eyes of the .NET runtime, this is not so. The runtime engine sees
only a single class named System.Console.

In C#, the using keyword simplifies the process of referencing types defined in a particular namespace.
Here is how it works. Let’s say you are interested in building a graphical desktop application using the WPF
API. While learning the types each namespace contains takes study and experimentation, here are some
possible candidates to reference in your program:

// Here are some possible namespaces used to build a WPF application.
using System; // General base class library types.
using System.Windows.Shapes; // Graphical rendering types.
using System.Windows.Controls; // Windows Forms GUI widget types.
using System.Data; // General data-centric types.
using System.Data.SqlClient; // MS SQL Server data-access types.

Once you have specified some number of namespaces (and set a reference to the assemblies that define
them), you are free to create instances of the types they contain. For example, if you are interested in creating
an instance of the Button class (defined in the System.Windows.Controls namespace), you can write the
following:

// Explicitly list the namespaces used by this file.
using System;
using System.Windows.Controls;

class MyGUIBuilder
{
 public void BuildUI()
 {
 // Create a button control.
 Button btnOK = new Button();
 ...
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 1 ■ the philosophy of .Net

26

Because your code file is importing the System.Windows.Controls namespace, the compiler is able
to resolve the Button class as a member of this namespace. If you did not import the System.Windows.
Controls namespace, you would be issued a compiler error. However, you are free to declare variables using
a fully qualified name as well.

// Not listing System.Windows.Controls namespace!
using System;

class MyGUIBuilder
{
 public void BuildUI()
 {
 // Using fully qualified name.
 System.Windows.Controls.Button btnOK =
 new System.Windows.Controls.Button();
 ...
 }
}

While defining a type using the fully qualified name provides greater readability, I think you’d agree that
the C# using keyword reduces keystrokes. In this text, I will avoid the use of fully qualified names (unless
there is a definite ambiguity to be resolved) and opt for the simplified approach of the C# using keyword.

However, always remember that the using keyword is simply a shorthand notation for specifying a
type’s fully qualified name, and either approach results in the same underlying CIL (given that CIL code
always uses fully qualified names) and has no effect on performance or the size of the assembly.

Referencing External Assemblies
In addition to specifying a namespace via the C# using keyword, you need to tell the C# compiler the name
of the assembly containing the actual CIL implementation for the referenced type. As mentioned, many core
.NET namespaces are defined within mscorlib.dll. However, by way of example, the System.Drawing.Bitmap
class is contained within a separate assembly named System.Drawing.dll. A vast majority of the .NET
Framework assemblies are located under a specific directory termed the global assembly cache (GAC). On a
Windows machine, this can be located by default under C:\Windows\Assembly\GAC, as shown in Figure 1-5.

Chapter 1 ■ the philosophy of .Net

27

Depending on the development tool you are using to build your .NET applications, you will have
various ways to inform the compiler which assemblies you want to include during the compilation cycle.
You’ll examine how to do so in Chapter 2, so I’ll hold off on the details for now.

 ■ Note as you will see in Chapter 14, a Windows os has multiple locations where framework libraries can
be installed; however, this is generally encapsulated from the developer. on a non-Windows machine (such as
Mac os X or linux), the location of the GaC depends on the .Net distribution.

Exploring an Assembly Using ildasm.exe
If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every namespace in
the .NET platform, just remember that what makes a namespace unique is that it contains types that are
somehow semantically related. Therefore, if you have no need for a user interface beyond a simple console
application, you can forget all about the desktop and web namespaces (among others). If you are building
a painting application, the database namespaces are most likely of little concern. Like any new set of
prefabricated code, you learn as you go.

The Intermediate Language Disassembler utility (ildasm.exe), which ships with the .NET Framework,
allows you to load up any .NET assembly and investigate its contents, including the associated manifest, CIL
code, and type metadata. This tool allows a programmer to dive deeply into how their C# code maps to CIL
and ultimately helps one understand the inner workings of the .NET platform. While you never need to use
ildasm.exe to become a proficient .NET programmer, I highly recommend you fire up this tool from time to
time to better understand how your C# code maps to runtime concepts.

Figure 1-5. Many .NET libraries reside in the GAC

http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 1 ■ the philosophy of .Net

28

 ■ Note you can easily run ildasm.exe by opening a Visual studio command prompt and typing ildasm
followed by the enter key.

After you launch ildasm.exe, proceed to the File ➤ Open menu command and navigate to an assembly
you would like to explore. By way of illustration, Figure 1-6 shows the Calc.exe assembly generated based
on the Calc.cs file shown earlier in this chapter. ildasm.exe presents the structure of an assembly using a
familiar tree-view format.

Figure 1-6. ildasm.exe allows you to see the CIL code, manifest, and metadata within a .NET assembly

Viewing CIL Code
In addition to showing the namespaces, types, and members contained in a given assembly, ildasm.exe
allows you to view the CIL instructions for a given member. For example, if you were to double-click the
Main() method of the Program class, a separate window would display the underlying CIL (see Figure 1-7).

Chapter 1 ■ the philosophy of .Net

29

Viewing Type Metadata
If you want to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-8 shows the
metadata for the Calc.Add() method.

Figure 1-7. Viewing the underlying CIL

Chapter 1 ■ the philosophy of .Net

30

Viewing Assembly Metadata (aka the Manifest)
Finally, if you are interested in viewing the contents of the assembly’s manifest (see Figure 1-9), simply
double-click the MANIFEST icon in the main window of ildasm.

Figure 1-8. Viewing type metadata via ildasm.exe

Figure 1-9. Viewing manifest data via ildasm.exe

Chapter 1 ■ the philosophy of .Net

31

To be sure, ildasm.exe has more options than shown here, and I will illustrate additional features of the
tool where appropriate in the text.

The Platform-Independent Nature of .NET
Allow me to briefly comment on the platform-independent nature of the .NET platform. To the surprise
of many developers, .NET applications can be developed and executed on non-Microsoft operating
systems, including Mac OS X, various Linux distributions, Solaris, and iOS and Android mobile devices.
To understand how this is possible, you need to come to terms with yet another abbreviation in the .NET
universe: CLI (Common Language Infrastructure).

When Microsoft released the C# programming language and the .NET platform, it also crafted a set of
formal documents that described the syntax and semantics of the C# and CIL languages, the .NET assembly
format, core .NET namespaces, and the mechanics of the .NET runtime engine. These documents have been
submitted to (and ratified by) Ecma International (www.ecma-international.org) as official international
standards. The specifications of interest are as follows:

•	 ECMA-334: The C# Language Specification

•	 ECMA-335: The Common Language Infrastructure (CLI)

The importance of these documents becomes clear when you understand that they enable third
parties to build distributions of the .NET platform for any number of operating systems and/or processors.
ECMA-335 is the “meatier” of the two specifications, so much so that it has been broken into various
partitions, including those shown in Table 1-4.

Table 1-4. Partitions of the CLI

Partitions of ECMA-335 Meaning in Life

Partition I: Concepts
and Architecture

Describes the overall architecture of the CLI, including the rules of the
CTS and CLS and the mechanics of the .NET runtime engine.

Partition II: Metadata
Definition and Semantics

Describes the details of .NET metadata and the assembly format.

Partition III: CIL Instruction Set Describes the syntax and semantics of CIL code.

Partition IV: Profiles
and Libraries

Gives a high-level overview of the minimal and complete class libraries
that must be supported by a .NET distribution.

Partition V: Binary Formats Describes a standard way to interchange debugging information
between CLI producers and consumers.

Partition VI: Annexes Provides a collection of odds-and-ends details such as class library
design guidelines and the implementation details of a CIL compiler.

Be aware that Partition IV (Profiles and Libraries) defines only a minimal set of namespaces that
represent the core services expected by a CLI distribution (e.g., collections, console I/O, file I/O, threading,
reflection, network access, core security needs, XML data manipulation). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop graphical
user interface (GUI) application development (Windows Presentation Foundation or Windows Forms).

The good news, however, is that the alternative .NET distribution (termed Mono) extends the CLI
libraries with Microsoft-compatible equivalents of ASP.NET implementations, ADO.NET implementations,
and various desktop GUI implementations to provide full-featured, production-level development
platforms. To date, there are two major implementations of the CLI beyond Microsoft’s Windows-specific
.NET platform. See Table 1-5.

http://www.ecma-international.org

Chapter 1 ■ the philosophy of .Net

32

Table 1-5. Open Source .NET Distributions

Distribution Meaning in Life

The Mono project The Mono project is an open source distribution of the CLI that targets various Linux
distributions (e.g., SuSe, Fedora), Mac OS X, iOS devices (iPad, iPhone), Android
devices, and (surprise!) Windows.

.NET Core 5 In addition to the Windows-Centric .NET Framework, Microsoft also supports a cross
platform version of .NET, which focuses on the construction of code libraries and
enterprise web applications.

The Mono Project
The Mono project is an excellent choice if you want to build .NET software that can run on a variety of
operating systems. In addition to all the key .NET namespaces, Mono provides additional libraries to allow
the construction of GUI-based desktop software, ASP.NET web applications, and software-targeting mobile
devices (iPad, iPhone, and Android). You can download the Mono distribution from the following URL:

www.mono-project.com/

Out of the box, the Mono project consists of a number of command-line tools and all of the associated
code libraries. However, as you will see in Chapter 2, there is a full-fledged graphical IDE typically used with
Mono named Xamarin Studio. In fact, Microsoft Visual Studio projects can be loaded into Xamarin Studio
projects, and vice versa. Again, you can find more information in Chapter 2, but you might want to check out
the Xamarin web site for more details.

http://xamarin.com/

 ■ Note appendix B in your code download folder provides an overview of the Mono platform.

Microsoft .NET Core
The other major cross-platform distribution of .NET comes from Microsoft Corporation. Beginning in 2014,
Microsoft announced an open source version of its full-scale (Windows specific) .NET 4.6 Framework called
.NET Core. The .NET Core distribution is not a complete carbon copy of the .NET 4.6 Framework. Rather,
.NET Core focuses on the construction of ASP.NET web applications that can run on Linux, Mac OS X, and
Windows. Thus, you can essentially consider .NET Core to be a subset of the full .NET Framework. You can
find a good article that compares and contrasts the full .NET Framework to the .NET Core framework on the
MSDN .NET Blog site. Here is a direct link (but if this changes, just do a web search for.NET Core is Open
Source):

http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx

As luck would have it, all the features of C#, as well as a number of key libraries, are included in .NET Core.
Therefore, a majority of this book will map directly to this distribution. Recall, though, that .NET Core is
focused on building web applications and does not provide implementations of desktop GUI APIs (such as
WPF or Windows Forms). If you need to build cross-platform desktop GUI applications, the Mono project
is the better choice.

http://www.mono-project.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://xamarin.com/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx

Chapter 1 ■ the philosophy of .Net

33

It is also worth noting that Microsoft has also released a free, light-weight, and cross-platform code
editor to help support development with .NET Core. This editor is simply named Visual Studio Code. While
it is certainly not as full featured as Microsoft Visual Studio or Xamarin Studio, it is a useful tool to edit C#
code in a cross-platform manner. While this text will not use Visual Studio Code, you might want to learn
more at the following web site:

https://code.visualstudio.com/

Summary
The point of this chapter was to lay out the conceptual framework necessary for the remainder of this book.
I began by examining a number of limitations and complexities found within the technologies prior to .NET
and followed up with an overview of how .NET and C# attempt to simplify the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class library
(mscorlib.dll and associates). The Common Language Runtime (CLR) is able to host any .NET binary
(aka assembly) that abides by the rules of managed code. As you have seen, assemblies contain CIL
instructions (in addition to type metadata and the assembly manifest) that are compiled to platform-specific
instructions using a just-in-time (JIT) compiler. In addition, you explored the role of the Common Language
Specification (CLS) and Common Type System (CTS). This was followed by an examination of the ildasm.exe
object browsing tool.

In the next chapter, you will take a tour of the common integrated development environments (IDEs)
you can use when you build your C# programming projects. You will be happy to know that in this book,
I will use completely free (and very feature rich) IDEs, so you can start exploring the .NET universe with no
money down.

https://code.visualstudio.com/

35

Chapter 2

Building C# Applications

As a C# programmer, you can choose from among numerous tools to build .NET applications. The tool
(or tools) you select will be based primarily on three factors: any associated costs, the OS you are using to
develop the software, and the computing platforms you are targeting. The point of this chapter is to
provide a survey of the most common integrated development environments (IDEs) that support the
C# language. Do understand that this chapter will not go over every single detail of each IDE; it will give you
enough information to select your programming environment as you work through this text and give you a
foundation to build on.

The first part of this chapter will examine a set of IDEs from Microsoft that enable development of .NET
applications on a Windows operating system (7, 8.x, and 10). As you will see, some of these IDEs can be used
to build Windows-centric applications only, while others support the construction of C# apps for alternative
operating systems and devices (such as Mac OS X, Linux, or Android). The latter part of this chapter will then
examine some IDEs that can run on a non-Windows OS. This enables developers to build C# programs using
Apple computers as well as Linux distributions.

 ■ Note This chapter will overview a good number of IDEs. However, this book will assume you are using
the (completely free) Visual Studio Community Edition IDE. If you want to build your applications on a different
OS (Mac OS X or Linux), this chapter will guide you in the right direction; however, your IDE will differ from the
various screenshots in this text.

Building C# Applications on the Windows OS
As you will see over the course of this chapter, you can choose from a variety of IDEs to build C# applications;
some come from Microsoft, and others come from third-party (many of which are open source) vendors.
Now, despite what you might be thinking, many Microsoft IDEs are completely free. Thus, if your primary
interest is to build .NET software on the Windows operating system (7, 8.x, or 10), you will find the following
major options:

•	 Visual Studio Express

•	 Visual Studio Community

•	 Visual Studio Professional (or higher)

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

36

While these IDEs provide similar functionally, they differ primarily by the number of enterprise-level
features and the number of supported project types. For example, the Express editions of Visual Studio
lack some sophisticated database integration tools and specialized project templates for alternative .NET
languages (such as F# and Python) that are included with Visual Studio 2015 Professional. The Visual Studio
Community Edition supports the same project types as Visual Studio 2015 Professional, but it still lacks
some features that would be most useful in a corporate development environment (such as full integration
with Team Foundation Server). Thankfully, each IDE ships with sophisticated code editors, key database
designers, integrated visual debuggers, GUI designers for desktop and web applications, and so forth. To
begin, let’s start by examining the role of the Express family of IDEs.

The Visual Studio Express Family of IDEs
The Visual Studio Express family of IDEs is completely free. In earlier versions of the .NET platform, the
Express editions were partitioned by their supported .NET language; for example, previously Microsoft
offered tools named C# Express, VB Express, Web Developer Express, and C++ Express. Recently, however,
the Express family has been repartitioned based exclusively on the type of application you are interested in
creating (web app, desktop app, etc.). Specifically, the Visual Studio Express family includes the following
members:

•	 Express for Windows Desktop: Supports development of console-based and desktop
GUI applications (Windows Forms and Windows Presentation Foundation) for the
Windows OS. C#, VB, and C++ are supported.

•	 Express for Windows 10: Supports development for core software targeted for the
Windows 10 “universal” application type that can run on multiple Microsoft devices
(Windows OS, Xbox, Windows Mobile devices, HoloLens, and so on). C#, VB, and
C++ are supported.

•	 Express for Web: Supports development for ASP.NET web applications, Azure cloud-
based applications, and Microsoft Silverlight applications. C#, VB, and C++ are
supported.

•	 Team Foundation Server 2015 Express: This version of the Express family is focused
on providing a GUI interface to version code, create and process stories and tasks,
and enable collaboration of software teams. Limited development tools are provided
with this edition, and thus I won’t comment on it further.

 ■ Note You can download the Express products from https://www.visualstudio.com/products/
visual-studio-express-vs (or simply search for Visual Studio Express online).

The Express tools are useful to those of you who are new to .NET development in that they provide all
the important features you would hope to find (visual GUI designers, debuggers, feature-rich code editors, etc.)
but do not overwhelm you with dozens of auxiliary or advanced features that would only get in the way.
To be sure, the Express tools can be a perfect fit for programming hobbyists or anybody wanting to use a
“minimal but complete” IDE.

If you want, you could download the Express for Windows Desktop and Express for Web IDEs and
work through this text successfully. Roughly speaking, Chapters 2–30 can be completed using Express for
Windows Desktop, as I will be focusing on console apps, WPF apps, and an occasional Windows Forms app.
The reminder of the book, which covers web application development (Chapters 31 onward), could use the
Express for Web IDE, or Visual Studio Community Edition (examined later in this chapter).

https://www.visualstudio.com/products/visual-studio-express-vs
https://www.visualstudio.com/products/visual-studio-express-vs
http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_31

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

37

Keep in mind that the Express IDEs, Visual Studio 2015 Community, and Visual Studio 2015
Professional all share a common core set of features. So, the good news is that it is easy to move between
them and feel quite comfortable with their basic operation. Given this, let’s dig a bit deeper into some of the
Express IDEs (which, again, are all completely free).

A Brief Overview of Express for Windows Desktop
This version of the Express family allows you to build desktop applications that run directly on a Windows
OS (version 7, 8.x, or Windows 10). To get your feet wet, let’s take some time to build a simple C# application
using Express for Windows Desktop and keep in mind that the topics illustrated here will be useful for all
Microsoft IDEs.

The New Project Dialog Box and C# Code Editor

Assuming you have downloaded and installed this IDE, activate the File ➤ New Project menu option.
As you can see in Figure 2-1, this IDE has support for console apps, WPF/Windows Forms apps, and
some lower-level C++ project types. To start, create a new C# Console Application project named
SimpleCSharpConsoleApp.

Figure 2-1. The New Project dialog box

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

38

Once the project has been created, you will see the initial C# code file (named Program.cs) has been
opened in the code editor. Add the following C# code to your Main() method. You’ll notice as you type that
IntelliSense will kick in as you apply the dot operator.

static void Main(string[] args)
{
 // Set up Console UI (CUI)
 Console.Title = "My Rocking App";
 Console.ForegroundColor = ConsoleColor.Yellow;
 Console.BackgroundColor = ConsoleColor.Blue;
 Console.WriteLine("*************************************");
 Console.WriteLine("***** Welcome to My Rocking App *****");
 Console.WriteLine("*************************************");
 Console.BackgroundColor = ConsoleColor.Black;

 // Wait for Enter key to be pressed.
 Console.ReadLine();
}

Here, you are using the Console class defined in the System namespace. Because the System namespace
has been automatically included at the top of your file via a using statement, you have no need to qualify the
namespace before the class name (e.g., System.Console.WriteLine()). This program does not do anything
too interesting; however, note the final call to Console.ReadLine(). This is in place simply to ensure the user
must press a key to terminate the application. If you did not do this, the program would disappear almost
instantly when debugging the program!

Running and Debugging your Project

Now, to run your program and see the output, you can simply press the Ctrl+F5 keyboard command (which
is also accessed from the Debug menu). Once you do, you will see a Windows console window pop on the
screen with your custom (and colorful) message. Be aware that when you “run” your program, you bypass
the integrated debugger.

If you need to debug your code (which will certainly be important when building larger programs), your
first step is to set breakpoints at the code statement you want to examine. Although there isn’t much code in
this example, set a breakpoint by clicking the leftmost gray bar of the code editor (note that breakpoints are
marked with a red dot icon; see Figure 2-2).

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

39

If you now press the F5 key (or use the Debug menu), your program will halt at each breakpoint. As you
would expect, you can interact with the debugger using the various toolbar buttons and menu options of
the IDE. Once you have evaluated all breakpoints, the application will eventually terminate once Main() has
completed.

 ■ Note Microsoft IDEs have sophisticated debuggers, and you will learn about various techniques over
the chapters to come. For now, be aware that when you are in a debugging session, a large number of useful
options will appear under the Debug menu. Take a moment to verify this for yourself.

The Solution Explorer

If you look at the right of the IDE, you will see a window named Solution Explorer, which shows you a few
important things. First, notice that the IDE has created a solution with a single project (see Figure 2-3). This
can be confusing at first, as they both have been given the same name (SimpleCSharpConsoleApp). The
idea here is that a “solution” can contain multiple projects that all work together. For example, your solution
might include three class libraries, one WPF application, and one WCF web service. The earlier chapters of
this book will always have a single project; however, when you build some more complex examples, you’ll
see how to add new projects to your initial solution space.

 ■ Note Be aware that when you select the topmost solution in the Solution Explorer window, the IDE’s
menu system will show you a different set of choices than when you select a project. If you ever find yourself
wondering where a certain menu item has disappeared to, double-check you did not accidentally select the
wrong node.

Figure 2-2. Setting breakpoints

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

40

You will also notice a References icon. You can use this node when your application needs to reference
additional .NET libraries beyond what are included for a project type by default. Because you have created a
C# Console Application project, you will notice a number of libraries have been automatically added such as
System.dll, System.Core.dll, System.Data.dll, and so forth (note the items listed under the References
node don’t show the .dll file extension). You will see how to add libraries to a project shortly.

 ■ Note recall from Chapter 1 that all .nET projects have access to a foundational library named mscorlib.dll.
This library is so necessary that it is not even listed explicitly in the Solution Explorer.

Figure 2-3. The Solution Explorer

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

41

The Object Browser

If you were to double-click any library under the References node, you will open the integrated Object
Browser (you can also open this using the View menu). Using this tool, you can see the various namespaces
in an assembly, the types in a namespace, and the members of each type. Figure 2-4 shows some
namespaces of the always-present mscorlib.dll assembly.

This tool can be useful when you want to see the internal organization of a .NET library as well as when
you want to get a brief description of a given item. Also notice the <Search> bar at the top of the window.
This can be helpful when you know the name of a type you want to use but have no idea where it might be
located. On a related note, keep in mind that the search feature will search only the libraries used in your
current solution by default (you can search the entire .NET Framework by changing the selection in the
Browse drop-down box).

Figure 2-4. The Object Browser

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

42

Referencing Additional Assemblies

To continue your test, let’s add an assembly (aka, code library) not automatically included in a Console
Application project. To do so, right-click the References tab of the Solution Explorer and select Add
Reference (or select the Project ➤ Add Reference menu option). From the resulting dialog box, find a
library named System.Windows.Forms.dll (again, you won’t see the file extension here) and check it off
(Figure 2-5).

Once you click the OK button, this new library is added to your reference set (you’ll see it listed under
the References node). As explained in Chapter 1, however, referencing a library is only the first step. To use
the types in a given C# code file, you need to define a using statement. Add the following line to the using
directives in your code file:

using System.Windows.Forms;

And then add the following line of code directly after the call to Console.ReadLine() in your Main() method:

MessageBox.Show("All done!");

When you run or debug your program once again, you will find a simple message box appears before
the program terminates.

Figure 2-5. The Add Reference dialog

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

43

Viewing Project Properties

Next, notice an icon named Properties within the Solution Explorer. When you double-click this item, you
are presented with a sophisticated project configuration editor. For example, in Figure 2-6, notice how you
can change the version of the .NET Framework you are targeting for the solution.

You will see various aspects of the Project Properties window as you progress through this book.
However, if you take some time to poke around, you will see that you can establish various security settings,
strongly name your assembly (see Chapter 14), deploy your application, insert application resources, and
configure pre- and post-build events.

That wraps up the brief overview of Express for Windows Desktop. To be sure, this tool has many more
features available than I have shown at this point. Recall that Visual Studio Community edition has the same
core GUI as found in Express for Windows Desktop. You’ll be introduced to other features that apply to either
IDE as you progress through the book, but do take the time to tinker with menu options, dialog boxes, and
property settings.

 ■ Source Code You can find the SimpleCSharpConsoleapp project in the Chapter 2 subdirectory.

Figure 2-6. The Project Properties window

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

44

A Brief Overview of Express for Web
If you want to build web applications with the .NET platform with the Express toolset, you can download and
install the free Express for Web IDE. The final chapters of this text (Chapters 31–34) will dive into a number of
important details regarding the construction of web apps under the .NET platform, so for now, simply check out
Figure 2-7, which shows the types of projects you can create with this IDE via the New ➤ Project menu option.

As you can see, Express for Web allows you to build ASP.NET web applications and Silverlight web GUIs and
has support for Microsoft Azure Cloud services. Additionally, this IDE provides a WCF template to allow you to
build service-oriented distributed solutions. Again, you will examine ASP.NET in the final chapters of this book.

That wraps up your quick overview of some of the members of the Express family. As mentioned, you
will find that these tools provide “just enough” functionality for your coding efforts. Next up, let’s examine
the role of Visual Studio Community.

The Visual Studio Community Edition IDE
Each of the Express tools is limited in that it allows you to build .NET software that will run only on the
Windows OS (7, 8.x, or 10). However, as mentioned in Chapter 1, the .NET platform runs on a wide variety
of operating systems and hardware devices. Thus, if you need to build a .NET program that can run on (for
example) Android or an Apple product, the Express products won’t offer much help. As luck would have it,
Microsoft offers another completely free IDE that allows you to build a much wider variety of project types
using a larger number of .NET languages: the Visual Studio Community IDE.

 ■ Note You can download Visual Studio Community from https://www.visualstudio.com/products/
visual-studio-community-vs.

Figure 2-7. The Project Properties window of Express for Web

http://dx.doi.org/10.1007/978-1-4842-1332-2_31
http://dx.doi.org/10.1007/978-1-4842-1332-2_34
http://dx.doi.org/10.1007/978-1-4842-1332-2_1
https://www.visualstudio.com/products/visual-studio-community-vs
https://www.visualstudio.com/products/visual-studio-community-vs

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

45

The first thing to be aware of is that Visual Studio Community provides a single environment for
building desktop and web apps (as well as “universal” .NET applications). Thus, unlike the Express family,
there is no need to download multiple products.

As well, this IDE provides support for a number of additional programming languages (F#, Python, and
JavaScript) and project types. Not only will you find more specialized Windows OS project types, but you will
also find project types that target non-Microsoft platforms. Here are a few notable examples:

•	 Projects that target Windows Phone and Windows 8.x applications

•	 Projects that target Android devices

•	 Projects that target the iOS family (iPad, iPhone, and Apple Watch)

•	 Projects that target lower-level C++ APIs such as MFC and ATL

•	 Several project types that target the construction of video games on various devices

•	 Projects that allow you to extend Visual Studio Community (as well as Visual Studio
Professional) with new functionality via extensibility plugins

•	 Projects to build custom PowerShell scripts

To get a better taste of all the language and project types provided by Visual Studio Community, take a
look at Figure 2-8, which shows the New Project dialog of this IDE.

Figure 2-8. The New Project dialog of Visual Studio Community

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

46

The Visual Class Designer
Visual Studio Community also gives you the ability to design classes and other types (such as interfaces
or delegates) in a visual manner (this functionality is not included in the Express IDEs). The Class
Designer utility allows you to view and modify the relationships of the types (classes, interfaces, structures,
enumerations, and delegates) in your project. Using this tool, you are able to visually add (or remove)
members to (or from) a type and have your modifications reflected in the corresponding C# file. Also, as you
modify a given C# file, changes are reflected in the class diagram.

Assuming you have installed Visual Studio Community, create a new C# Console Application project
named VisualTypeDesignerApp. To access the visual type designer tools, the first step is to insert a new class
diagram file. To do so, activate the Project ➤ Add New Item menu option and locate the Class Diagram type
(Figure 2-9).

Figure 2-9. Inserting a class diagram file into the current project

Initially, the designer will be empty; however, you can drag and drop files from your Solution Explorer
window on the surface. For example, once you drag Program.cs onto the designer, you will find a visual
representation of the Program class. If you click the arrow icon for a given type, you can show or hide the
type’s members (see Figure 2-10).

 ■ Note using the Class Designer toolbar, you can fine-tune the display options of the designer surface.

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

47

The Class Designer utility works in conjunction with two other aspects of Visual Studio: the Class
Details window (activated using the View ➤ Other Windows menu) and the Class Designer Toolbox
(activated using the View ➤ Toolbox menu item). The Class Details window not only shows you the details
of the currently selected item in the diagram but also allows you to modify existing members and insert new
members on the fly (see Figure 2-11).

The Class Designer Toolbox, which can also be activated using the View menu, allows you to insert
new types (and create relationships between these types) into your project visually (see Figure 2-12). (Be
aware you must have a class diagram as the active window to view this toolbox.) As you do so, the IDE
automatically creates new C# type definitions in the background.

Figure 2-10. The Class Diagram viewer

Figure 2-11. The Class Details window

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

48

By way of example, drag a new class from the Class Designer Toolbox onto your Class Designer. Name
this class Car in the resulting dialog box. This will result in the creation of a new C# file named Car.cs that is
automatically added to your project. Now, using the Class Details window, add a public string field named
petName (see Figure 2-13).

Figure 2-13. Adding a field with the Class Details window

Figure 2-12. The Class Designer Toolbox

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

49

If you now look at the C# definition of the Car class, you will see it has been updated accordingly (minus
the additional code comments shown here).

public class Car
{
 // Public data is typically a bad idea; however,
 // it keeps this example simple.
 public string petName;
}

Now, activate the designer file once again and drag another new class onto the designer and name it
SportsCar. Select the Inheritance icon from the Class Designer Toolbox and click the top of the SportsCar
icon. Next, click the mouse on top of the Car class icon. If you performed these steps correctly, you have just
derived the SportsCar class from Car (see Figure 2-14).

 ■ Note The concept of inheritance will be fully examined in Chapter 6.

To complete this example, update the generated SportsCar class with a public method named
GetPetName(), authored as follows:

public class SportsCar : Car
{
 public string GetPetName()
 {
 petName = "Fred";
 return petName;
 }
}

Figure 2-14. Visually deriving from an existing class

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

50

As you would expect, the visual type designer is one of the many features of Visual Studio Community.
As mentioned earlier, this edition of the book will assume you are using Visual Studio Community as your
IDE of choice. Over the chapters to come, you will learn many more features of this tool.

 ■ Source Code You can find the VisualTypeDesignerapp project in the Chapter 2 subdirectory.

The Visual Studio 2015 Professional IDE
To wrap up your examination of IDEs that run exclusively on the Windows OS, let’s take a quick look at
Visual Studio 2015 Professional. If you are currently employed as a software engineer, the chances are
good your company has purchased a copy of this IDE for you as your tool of choice. Visual Studio 2015
Professional has all the same features found in Visual Studio Community (the same project types, same
language choices, and same visual designers). In addition, this IDE has a number of features geared toward
corporate-level collaborative development. By way of a few examples, with Visual Studio Professional you
have the following:

•	 Integration with Team Foundation Server (TFS) to manage Agile and Kanban boards

•	 Tools to create and manage stories, tasks, and epics

•	 SharePoint integration and developer chat rooms

•	 Tools to manage sprint planning

To be sure, diving into the details of the software development life cycle is beyond the scope of this
book. Given this, I won’t be saying much more about Visual Studio 2015 Professional. If you choose to use
this IDE, that is perfectly fine. Remember, the functionality of Community and Professional is identical
beyond these team-centric development tools.

 ■ Note You can find a side-by-side comparison of Community vs. professional online at
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs.

The .NET Framework Documentation System
The final aspect of Visual Studio you must be comfortable with from the outset is the fully integrated
help system. The .NET Framework documentation is extremely good, very readable, and full of useful
information. Given the huge number of predefined .NET types (which number well into the thousands),
you must be willing to roll up your sleeves and dig into the provided documentation. If you resist, you are
doomed to a long, frustrating, and painful existence as a .NET developer.

If you have an Internet connection, you can view the .NET Framework SDK documentation online at
the following web address:

http://msdn.microsoft.com/library

http://dx.doi.org/10.1007/978-1-4842-1332-2_2
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
http://msdn.microsoft.com/library

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

51

Once you are on this main page, locate the Development Tools and Languages section of the page
and click ”.NET Framework class library.” From here, click the ”.NET Framework class library” link for the
version of the framework you are interested in (which I will assume is 4.6). At this point, you can use the
tree navigation window to view each namespace, type, and member of the platform. See Figure 2-15 for an
example of viewing the types of the System namespace.

 ■ Note It would not be surprising if Microsoft someday changes the location of the online .nET Framework
Class Library documentation. If this is the case, a web search for the same topic (.NET Framework Class Library
documentation) should quickly help you find the current location.

In addition to the online documentation, Visual Studio provides the option to install the same help
system locally to your computer (which can be helpful when you don’t have an active Internet connection).
If you want to perform a local installation of the help system after installing Visual Studio Community, access
the Help ➤ Add and Remove Help Content menu option. From here, you can select each of the help systems
you want to install locally (if hard drive space allows, I recommend adding all possible documentation). See
Figure 2-16.

Figure 2-15. Viewing the .NET Framework documentation online

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

52

Once you have installed all the documentation, you can launch the help viewer application (as well as
set up how you want Visual Studio to display help [locally or online]) using the Help menu. As well, an even
easier way to interact with the documentation is to highlight a C# keyword, type the name or member name
within the Visual Studio code window, and press the F1 key. This will automatically open a documentation
window for the selected item. For example, select the string keyword within your Car class definition. After
you press F1, you will see the help page for the string type appear.

Another useful aspect of the documentation is the Search tab of the display. Here you can enter in the
name of any namespace, type, or member and navigate to the correct location. If you were to try to search
for the System.Reflection namespace, you would be able to learn about the details of this namespace,
examine the contained types, view code examples, and so forth.

 ■ Note at the risk of sounding like a broken record, I really can’t emphasize enough how important it is that
you learn to use the .nET Framework SDK documentation. no book, no matter how lengthy, can cover every
aspect of the .nET platform. Make sure you take some time to get comfortable using the help system—you’ll
thank yourself later.

Figure 2-16. Installing a local help system

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

53

Building .NET Applications Beyond the Windows OS
The members of the Microsoft Visual Studio family are powerful and quite sophisticated. Indeed, if your
primary (if not your only) interest is to build .NET programs on a Windows machine and run them on a
Windows machine, then Visual Studio will most likely be the only IDE you will need. Recall from Chapter 1,
however, the .NET platform can run on a variety of operating systems. Given this, allow me to point out a key
cross-platform IDE.

The Role of Xamarin Studio
Chapter 1 mentioned the role of the Mono platform. Recall that this cross-platform implementation of .NET
ships with numerous command-line tools to build your software. While you could build a full-scale .NET
program using a simple text editor and the command-line C# compiler, this would quickly become quite
cumbersome!

Xamarin Studio is a free .NET IDE that runs on Windows, Mac OS X, and Linux. It is similar to Visual
Studio Community in that it supports a variety of programming languages (including C#) and provides
feature-rich code editors and visual debuggers and GUI designers. If you intend to build your .NET software
on a non-Microsoft operating system, this IDE is sure to be your tool of choice. You can download (and read
up on) this tool from the following URL:

http://xamarin.com/

 ■ Note It is perfectly fine to install Xamarin Studio on a machine that also has installed Visual Studio
Community. However, be sure to shut down the Visual Studio IDE before installing Xamarin Studio to ensure a
smooth installation.

Once you have installed this IDE, you can create a new project via the File ➤ New ➤ Solution menu
option. Here, you can select from a variety of templates and select your programming language of choice. In
Figure 2-17, you can see the now-familiar C# Console Application type.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1
http://dx.doi.org/10.1007/978-1-4842-1332-2_1
http://xamarin.com/

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

54

Once you create a new project, you should find the basics of this IDE fairly familiar given your
exploration of the Visual Studio IDEs examined thus far. In Figure 2-18, you can see IntelliSense and project
navigation are alive and well.

Figure 2-17. Creating a new solution in Xamarin Studio

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

55

Because Xamarin Studio is able to run on non-Microsoft operating systems, it should not be too
surprising that if this IDE is used on Mac OS X or Linux, it will be using the Mono runtime and Mono toolset.
However, Xamarin Studio can also run just fine on the Windows OS. Given this, you are able to compile
your C# code against either the Microsoft .NET platform or the Mono platform (provided you have indeed
installed Mono). To select your platform target, use the Tools ➤ Options menu option and then select .NET
Runtimes (see Figure 2-19).

Figure 2-18. The Xamarin Studio code editor

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

56

Although I will not be using Xamarin Studio in this book, you will be happy to know that a majority of
the coding projects created over the text will work perfectly on non-Microsoft systems. Thus, if you want to
work through the material using Mac OS X or Linux, you will be able to do so fairly cleanly. Do be aware,
however, that the Mono platform does not support the Windows Presentation Foundation (WPF) APIs, so
you would be unable to build WPF apps on a non-Microsoft OS. However, Mono does offer support for a
majority of the APIs used in this book (you’ll have no problem going through Chapters 3–24 and most of the
web development content).

 ■ Note See the Mono documentation (www.mono-project.com/docs/) for full details regarding which
aspects of Microsoft .nET are fully supported.

Figure 2-19. Selecting a .NET runtime in Xamarin Studio

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_24
http://www.mono-project.com/docs/

CHapTEr 2 ■ BuILDIng C# appLICaTIOnS

57

Summary
As you can see, you have many new toys at your disposal! The point of this chapter was to provide you with
a tour of the major programming tools a C# programmer may leverage during the development process. As
mentioned, if you are interested only in building .NET applications on a Windows development machine,
your best bet is to download Visual Studio Community Edition. As also mentioned, this edition of the book
will use this particular IDE going forward. Thus, the forthcoming screenshots, menu options, and visual
designers will all assume you are using Visual Studio Community.

If you want to build .NET applications using the Mono platform or want to build your software on a
non-Windows OS, Xamarin Studio will be your best choice. While this IDE is not identical to Visual Studio
Community, you should have little problem using this tool during a majority of the book. With this, Chapter 3
will begin your examination of the C# programming language.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Part II

Core C# Programming

61

Chapter 3

Core C# Programming
Constructs, Part I

This chapter begins your formal investigation of the C# programming language by presenting a number
of bite-sized, stand-alone topics you must be comfortable with as you explore the .NET Framework. The
first order of business is to understand how to build your program’s application object and to examine the
composition of an executable program’s entry point: the Main() method. Next, you will investigate the
fundamental C# data types (and their equivalent types in the System namespace) including an examination
of the System.String and System.Text.StringBuilder classes.

After you know the details of the fundamental .NET data types, you will then examine a number of
data type conversion techniques, including narrowing operations, widening operations, and the use of the
checked and unchecked keywords.

This chapter will also examine the role of the C# var keyword, which allows you to implicitly define
a local variable. As you will see later in this book, implicit typing is extremely helpful, if not occasionally
mandatory, when working with the LINQ technology set. You will wrap up this chapter by quickly examining
the C# keywords and operators that allow you to control the flow of an application using various looping and
decision constructs.

The Anatomy of a Simple C# Program
C# demands that all program logic be contained within a type definition (recall from Chapter 1 that type is
a general term referring to a member of the set {class, interface, structure, enumeration, delegate}). Unlike
many other languages, in C# it is not possible to create global functions or global points of data. Rather, all
data members and all methods must be contained within a type definition. To get the ball rolling, create a
new Console Application project named SimpleCSharpApp. You might agree that the code within the initial
Program.cs file is rather uneventful.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 3 ■ Core C# programming ConstruCts, part i

62

namespace SimpleCSharpApp
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Given this, update the Main() method of your Program class with the following code statements:

class Program
{
 static void Main(string[] args)
 {
 // Display a simple message to the user.
 Console.WriteLine("***** My First C# App *****");
 Console.WriteLine("Hello World!");
 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.
 Console.ReadLine();
 }
}

 ■ Note C# is a case-sensitive programming language. therefore, Main is not the same as main, and
Readline is not the same as ReadLine. Be aware that all C# keywords are lowercase (e.g., public, lock, class,
dynamic), while namespaces, types, and member names begin (by convention) with an initial capital letter
and have capitalized the first letter of any embedded words (e.g., Console.WriteLine,System.Windows.
MessageBox, System.Data.SqlClient). as a rule of thumb, whenever you receive a compiler error regarding
“undefined symbols,” be sure to check your spelling and casing first!

The previous code contains a definition for a class type that supports a single method named Main().
By default, Visual Studio names the class defining Main() Program; however, you are free to change this if you
so choose. Every executable C# application (console program, Windows desktop program, or Windows service)
must contain a class defining a Main() method, which is used to signify the entry point of the application.

Formally speaking, the class that defines the Main() method is termed the application object. While it is
possible for a single executable application to have more than one application object (which can be useful
when performing unit tests), you must inform the compiler which Main() method should be used as the
entry point via the /main option of the command-line compiler or via the Startup Object drop- down list box,
located on the Application tab of the Visual Studio project properties editor (see Chapter 2).

Note that the signature of Main() is adorned with the static keyword, which will be examined in detail
in Chapter 5. For the time being, simply understand that static members are scoped to the class level (rather
than the object level) and can thus be invoked without the need to first create a new class instance.

http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 3 ■ Core C# programming ConstruCts, part i

63

In addition to the static keyword, this Main() method has a single parameter, which happens to be
an array of strings (string[] args). Although you are not currently bothering to process this array, this
parameter may contain any number of incoming command-line arguments (you’ll see how to access them
momentarily). Finally, this Main() method has been set up with a void return value, meaning you do not
explicitly define a return value using the return keyword before exiting the method scope.

The logic of Program is within Main(). Here, you make use of the Console class, which is defined within
the System namespace. Among its set of members is the static WriteLine(), which, as you might assume,
sends a text string and carriage return to the standard output. You also make a call to Console.ReadLine()
to ensure the command prompt launched by the Visual Studio IDE remains visible during a debugging
session until you press the Enter key. (If you did not add this line, your application would terminate
immediately during a debugging session and you could not read the output!) You will learn more about the
System.Console class shortly.

Variations on the Main() Method
By default, Visual Studio will generate a Main() method that has a void return value and an array of string
types as the single input parameter. This is not the only possible form of Main(), however. It is permissible
to construct your application’s entry point using any of the following signatures (assuming it is contained
within a C# class or structure definition):

// int return type, array of strings as the parameter.
static int Main(string[] args)
{
 // Must return a value before exiting!
 return 0;
}

// No return type, no parameters.
static void Main()
{
}

// int return type, no parameters.
static int Main()
{
 // Must return a value before exiting!
 return 0;
}

 ■ Note the Main() method may also be defined as public as opposed to private, which is assumed if you
do not supply a specific access modifier. Visual studio automatically defines a program’s Main() method as
implicitly private.

Obviously, your choice of how to construct Main() will be based on two questions. First, do you want
to return a value to the system when Main() has completed and your program terminates? If so, you need to
return an int data type rather than void. Second, do you need to process any user-supplied, command-line
parameters? If so, they will be stored in the array of strings. Let’s examine all of the options in more detail.

Chapter 3 ■ Core C# programming ConstruCts, part i

64

Specifying an Application Error Code
While a vast majority of your Main() methods will return void as the return value, the ability to return an
int from Main() keeps C# consistent with other C-based languages. By convention, returning the value 0
indicates the program has terminated successfully, while another value (such as -1) represents an error
condition (be aware that the value 0 is automatically returned, even if you construct a Main() method
prototyped to return void).

On the Windows operating system, an application’s return value is stored within a system environment
variable named %ERRORLEVEL%. If you were to create an application that programmatically launches another
executable (a topic examined in Chapter 18), you can obtain the value of %ERRORLEVEL% using the static
System.Diagnostics.Process.ExitCode property.

Given that an application’s return value is passed to the system at the time the application terminates, it is
obviously not possible for an application to obtain and display its final error code while running. However, to
illustrate how to view this error level upon program termination, begin by updating the Main() method, as follows:

// Note we are now returning an int, rather than void.
static int Main(string[] args)
{
 // Display a message and wait for Enter key to be pressed.
 Console.WriteLine("***** My First C# App *****");
 Console.WriteLine("Hello World!");
 Console.WriteLine();
 Console.ReadLine();

 // Return an arbitrary error code.
 return -1;
}

Now let’s capture the return value of Main() with the help of a batch file. Using Windows Explorer,
navigate to the folder containing your compiled application (for example, C:\SimpleCSharpApp\bin\Debug).
Add a new text file (named SimpleCSharpApp.bat) to the Debug folder that contains the following
instructions (if you have not authored *.bat files before, don’t concern yourself with the details; this is a
test . . . this is only a test):

@echo off

rem A batch file for SimpleCSharpApp.exe
rem which captures the app's return value.

SimpleCSharpApp
@if "%ERRORLEVEL%" == "0" goto success

:fail
 echo This application has failed!
 echo return value = %ERRORLEVEL%
 goto end
:success
 echo This application has succeeded!
 echo return value = %ERRORLEVEL%
 goto end
:end
echo All Done.

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 3 ■ Core C# programming ConstruCts, part i

65

At this point, open a command prompt and navigate to the folder containing your executable and new
*.bat file. Execute the batch logic by typing its name and pressing the Enter key. You should find the output
shown next, given that your Main() method is returning -1. Had the Main() method returned 0, you would
see the message “This application has succeeded!” print to the console.

***** My First C# App *****
Hello World!

This application has failed!
return value = -1
All Done.

Again, a vast majority (if not all) of your C# applications will use void as the return value from Main(),
which, as you recall, implicitly returns the error code of zero. To this end, the Main() methods used in this
text (beyond the current example) will indeed return void (and the remaining projects will certainly not
need to make use of batch files to capture return codes).

Processing Command-Line Arguments
Now that you better understand the return value of the Main() method, let’s examine the incoming array of
string data. Assume that you now want to update your application to process any possible command-line
parameters. One way to do so is using a C# for loop. (Note that C#’s iteration constructs will be examined in
some detail near the end of this chapter.)

static int Main(string[] args)
{
...
 // Process any incoming args.
 for(int i = 0; i < args.Length; i++)
 Console.WriteLine("Arg: {0}", args[i]);

 Console.ReadLine();
 return -1;
}

Here, you are checking to see whether the array of strings contains some number of items
using the Length property of System.Array. As you’ll see in Chapter 4, all C# arrays actually alias the
System.Array class and, therefore, share a common set of members. As you loop over each item in
the array, its value is printed to the console window. Supplying the arguments at the command line is
equally simple, as shown here:

C:\SimpleCSharpApp\bin\Debug>SimpleCSharpApp.exe /arg1 -arg2

***** My First C# App *****
Hello World!
Arg: /arg1
Arg: -arg2

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 3 ■ Core C# programming ConstruCts, part i

66

As an alternative to the standard for loop, you may iterate over an incoming string array using the C#
foreach keyword. Here is some sample usage (but again, you will see specifics of looping constructs later in
this chapter):

// Notice you have no need to check the size of the array when using "foreach".
static int Main(string[] args)
{
...
 // Process any incoming args using foreach.
 foreach(string arg in args)
 Console.WriteLine("Arg: {0}", arg);

 Console.ReadLine();
 return -1;
}

Finally, you are also able to access command-line arguments using the static GetCommandLineArgs()
method of the System.Environment type. The return value of this method is an array of strings. The first
index identifies the name of the application itself, while the remaining elements in the array contain the
individual command-line arguments. Note that when using this approach, it is no longer necessary to define
Main() as taking a string array as the input parameter, although there is no harm in doing so.

static int Main(string[] args)
{
...
 // Get arguments using System.Environment.
 string[] theArgs = Environment.GetCommandLineArgs();
 foreach(string arg in theArgs)
 Console.WriteLine("Arg: {0}", arg);

 Console.ReadLine();
 return -1;
}

Of course, it is up to you to determine which command-line arguments your program will respond
to (if any) and how they must be formatted (such as with a - or / prefix). Here, I simply passed in a series
of options that were printed directly to the command prompt. Assume, however, you were creating a new
video game and programmed your application to process an option named -godmode. If the user starts your
application with the flag, you know he is, in fact, a cheater, and you can take an appropriate course of action.

Specifying Command-Line Arguments with Visual Studio
In the real world, an end user has the option of supplying command-line arguments when starting a
program. However, during the development cycle, you might want to specify possible command-line flags
for testing purposes. To do so with Visual Studio, double-click the Properties icon in Solution Explorer and
select the Debug tab on the left side. From there, specify values using the command-line arguments text box
(see Figure 3-1) and save your changes.

Chapter 3 ■ Core C# programming ConstruCts, part i

67

After you have established such command-line arguments, they will automatically be passed to the
Main() method when debugging or running your application within the Visual Studio IDE.

An Interesting Aside: Some Additional Members of the
System.Environment Class
The Environment class exposes a number of extremely helpful methods beyond GetCommandLineArgs().
Specifically, this class allows you to obtain a number of details regarding the operating system currently
hosting your .NET application using various static members. To illustrate the usefulness of System.Environment,
update your Main() method to call a helper method named ShowEnvironmentDetails().

static int Main(string[] args)
{
...
 // Helper method within the Program class.
 ShowEnvironmentDetails();

 Console.ReadLine();
 return -1;
}

Figure 3-1. Setting command arguments via Visual Studio

Chapter 3 ■ Core C# programming ConstruCts, part i

68

Implement this method within your Program class to call various members of the Environment type.

static void ShowEnvironmentDetails()
{
 // Print out the drives on this machine,
 // and other interesting details.
 foreach (string drive in Environment.GetLogicalDrives())
 Console.WriteLine("Drive: {0}", drive);

 Console.WriteLine("OS: {0}", Environment.OSVersion);
 Console.WriteLine("Number of processors: {0}",
 Environment.ProcessorCount);
 Console.WriteLine(".NET Version: {0}",
 Environment.Version);
}

The following output shows a possible test run of invoking this method. Of course, if you did not specify
command-line arguments via the Visual Studio Debug tab, you will not find them printed to the console.

***** My First C# App *****

Hello World!

Arg: -godmode
Arg: -arg1
Arg: /arg2

Drive: C:\
Drive: D:\
OS: Microsoft Windows NT 6.2.9200.0
Number of processors: 8
.NET Version: 4.0.30319.42000

The Environment type defines members other than those shown in the previous example. Table 3-1
documents some additional properties of interest; however, be sure to check out the .NET Framework 4.6
SDK documentation for full details.

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

ExitCode Gets or sets the exit code for the application

Is64BitOperatingSystem Returns a bool to represent whether the host machine is running a 64-bit OS

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment

SystemDirectory Returns the full path to the system directory

UserName Returns the name of the user that started this application

Version Returns a Version object that represents the version of the .NET platform

Chapter 3 ■ Core C# programming ConstruCts, part i

69

 ■ Source Code the simpleCsharpapp project is located in the Chapter 3 subdirectory.

The System.Console Class
Almost all the example applications created over the course of the initial chapters of this book make
extensive use of the System.Console class. While it is true that a console user interface (CUI) may not be
as enticing as a graphical user interface (GUI) or web application, restricting the early examples to console
programs will allow you to keep focused on the syntax of C# and the core aspects of the .NET platform, rather
than dealing with the complexities of building desktop GUIs or web sites.

As its name implies, the Console class encapsulates input, output, and error-stream manipulations
for console-based applications. Table 3-2 lists some (but definitely not all) members of interest. As
you can see, the Console class does provide some members that can spice up a simple command-line
application, such as the ability to change background and foreground colors and issue beep noises
(in a variety of frequencies!).

Table 3-2. Select Members of System.Console

Member Meaning in Life

Beep() This method forces the console to emit a beep of a specified frequency and
duration.

BackgroundColor These properties set the background/foreground colors for the current output.

ForegroundColor They may be assigned any member of the ConsoleColor enumeration.

BufferHeight These properties control the height/width of the console’s buffer area.

BufferWidth

Title This property gets or sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to the
established buffer.

WindowWidth

WindowTop

WindowLeft

Clear() This method clears the established buffer and console display area.

Basic Input and Output with the Console Class
In addition to the members in Table 3-2, the Console type defines a set of methods to capture input and
output, all of which are static and are, therefore, called by prefixing the name of the class (Console) to the
method name. As you have seen, WriteLine() pumps a text string (including a carriage return) to the output
stream. The Write() method pumps text to the output stream without a carriage return. ReadLine() allows
you to receive information from the input stream up until the Enter key is pressed, while Read() is used to
capture a single character from the input stream.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 3 ■ Core C# programming ConstruCts, part i

70

To illustrate basic I/O using the Console class, create a new Console Application project named
BasicConsoleIO and update your Main() method to call a helper method named GetUserData().

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Basic Console I/O *****");
 GetUserData();
 Console.ReadLine();
 }

 private static void GetUserData()
 {
 }
}

 ■ Note Visual studio supports a number of “code snippets” that will insert code once activated. the cw code
snippet is quite useful during the early chapters of this text, in that it will automatically expand to Console.
WriteLine()! to test this for yourself, type in cw somewhere within your Main() method and hit the tab key
twice (sadly, there is no code snippet for Console.ReadLine()). to see all code snippets, right-click in a C#
code file and choose the insert snippet menu option.

Implement this method within the Program class with logic that prompts the user for some bits of
information and echoes each item to the standard output stream. For example, you could ask the user for a
name and age (which will be treated as a text value for simplicity, rather than the expected numerical value),
as follows:

static void GetUserData()
{
 // Get name and age.
 Console.Write("Please enter your name: ");
 string userName = Console.ReadLine();
 Console.Write("Please enter your age: ");
 string userAge = Console.ReadLine();

 // Change echo color, just for fun.
 ConsoleColor prevColor = Console.ForegroundColor;
 Console.ForegroundColor = ConsoleColor.Yellow;

 // Echo to the console.
 Console.WriteLine("Hello {0}! You are {1} years old.",
 userName, userAge);

 // Restore previous color.
 Console.ForegroundColor = prevColor;
}

Chapter 3 ■ Core C# programming ConstruCts, part i

71

Not surprisingly, when you run this application, the input data is printed to the console (using a custom
color to boot!).

Formatting Console Output
During these first few chapters, you might have noticed numerous occurrences of tokens such as {0}
and {1} embedded within various string literals. The .NET platform supports a style of string formatting
slightly akin to the printf() statement of C. Simply put, when you are defining a string literal that contains
segments of data whose value is not known until runtime, you are able to specify a placeholder within
the literal using this curly-bracket syntax. At runtime, the values passed into Console.WriteLine() are
substituted for each placeholder.

The first parameter to WriteLine() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth. Be aware that the first ordinal number of a curly-bracket
placeholder always begins with 0. The remaining parameters to WriteLine() are simply the values to be
inserted into the respective placeholders.

 ■ Note if you have more uniquely numbered curly-bracket placeholders than fill arguments, you will receive
a format exception at runtime. however, if you have more fill arguments than placeholders, the unused fill
arguments are ignored.

It is permissible for a given placeholder to repeat within a given string. For example, if you are a Beatles
fan and want to build the string "9, Number 9, Number 9", you would write this:

// John says...
Console.WriteLine("{0}, Number {0}, Number {0}", 9);

Also, know that it is possible to position each placeholder in any location within a string literal, and it
need not follow an increasing sequence. For example, consider the following code snippet:

// Prints: 20, 10, 30
Console.WriteLine("{1}, {0}, {2}", 10, 20, 30);

Formatting Numerical Data
If you require more elaborate formatting for numerical data, each placeholder can optionally contain
various format characters. Table 3-3 shows the most common formatting options.

Chapter 3 ■ Core C# programming ConstruCts, part i

72

These format characters are suffixed to a given placeholder value using the colon token (e.g., {0:C},
{1:d}, {2:X}). To illustrate, update the Main() method to call a new helper function named
FormatNumericalData(). Implement this method in your Program class to format a fixed numerical value in
a variety of ways.

// Now make use of some format tags.
static void FormatNumericalData()
{
 Console.WriteLine("The value 99999 in various formats:");
 Console.WriteLine("c format: {0:c}", 99999);
 Console.WriteLine("d9 format: {0:d9}", 99999);
 Console.WriteLine("f3 format: {0:f3}", 99999);
 Console.WriteLine("n format: {0:n}", 99999);

 // Notice that upper- or lowercasing for hex
 // determines if letters are upper- or lowercase.
 Console.WriteLine("E format: {0:E}", 99999);
 Console.WriteLine("e format: {0:e}", 99999);
 Console.WriteLine("X format: {0:X}", 99999);
 Console.WriteLine("x format: {0:x}", 99999);
}

Table 3-3. .NET Numerical Format Characters

String Format Character Meaning in Life

C or c Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for U.S. English).

D or d Used to format decimal numbers. This flag may also specify the minimum
number of digits used to pad the value.

E or e Used for exponential notation. Casing controls whether the exponential
constant is uppercase (E) or lowercase (e).

F or f Used for fixed-point formatting. This flag may also specify the minimum
number of digits used to pad the value.

G or g Stands for general. This character can be used to format a number to fixed or
exponential format.

N or n Used for basic numerical formatting (with commas).

X or x Used for hexadecimal formatting. If you use an uppercase X, your hex format
will also contain uppercase characters.

Chapter 3 ■ Core C# programming ConstruCts, part i

73

The following output shows the result of calling the FormatNumericalData() method:

The value 99999 in various formats:

c format: $99,999.00
d9 format: 000099999
f3 format: 99999.000
n format: 99,999.00
E format: 9.999900E+004
e format: 9.999900e+004
X format: 1869F
x format: 1869f

You’ll see additional formatting examples where required throughout this text; however, if you are
interested in digging into .NET string formatting further, look up the topic “Formatting Types” within the
.NET Framework 4.6 SDK documentation.

 ■ Source Code the BasicConsoleio project is located in the Chapter 3 subdirectory.

Formatting Numerical Data Beyond Console Applications
On a final note, be aware that the use of the .NET string formatting characters is not limited to console
programs. This same formatting syntax can be used when calling the static string.Format() method. This
can be helpful when you need to compose textual data at runtime for use in any application type (e.g.,
desktop GUI app, ASP.NET web app, and so forth).

The string.Format() method returns a new string object, which is formatted according to the
provided flags. After this point, you are free to use the textual data as you see fit. For example, assume you are
building a graphical WPF desktop application and need to format a string for display in a message box. The
following code illustrates how to do so, but be aware that this code will not compile until you reference the
PresentationFramework.dll assembly for use by your project (see Chapter 2 for information on referencing
libraries using Visual Studio).

static void DisplayMessage()
{
 // Using string.Format() to format a string literal.
 string userMessage = string.Format("100000 in hex is {0:x}", 100000);

 // You need to reference PresentationFramework.dll
 // in order to compile this line of code!
 System.Windows.MessageBox.Show(userMessage);
}

 ■ Note .net 4.6 has introduced an alternative syntax to the curly-bracket placeholders termed string
interpolation syntax. You will examine this approach later in the chapter.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 3 ■ Core C# programming ConstruCts, part i

74

Table 3-4. The Intrinsic Data Types of C#

C# Shorthand CLS
Compliant?

System Type Range Meaning in Life

bool Yes System.Boolean true or false Represents truth or falsity

sbyte No System.SByte –128 to 127 Signed 8-bit number

byte Yes System.Byte 0 to 255 Unsigned 8-bit number

short Yes System.Int16 –32,768 to 32,767 Signed 16-bit number

ushort No System.UInt16 0 to 65,535 Unsigned 16-bit number

int Yes System.Int32 –2,147,483,648 to 2,147,483,647 Signed 32-bit number

uint No System.UInt32 0 to 4,294,967,295 Unsigned 32-bit number

long Yes System.Int64 –9,223,372,036,854,775,
808 to
9,223,372,036,854,775,807

Signed 64-bit to number

ulong No System.UInt64 0 to 18,446,744,073,709,551,615 Unsigned 64-bit number

char Yes System.Char U+0000 to U+ffff Single 16-bit Unicode
character

float Yes System.Single -3.4 1038 to +3.4 1038 32-bit floating-point
number

double Yes System.Double ±5.0 10–324 to ±1.7 10308 64-bit floating-point
number

decimal Yes System.Decimal (-7.9 x 1028 to 7.9 x 1028)/(100 to 28) 128-bit signed number

string Yes System.String Limited by system memory Represents a set of
Unicode characters

Object Yes System.Object Can store any data type in an
object variable

The base class of all types
in the .NET universe

System Data Types and Corresponding C# Keywords
Like any programming language, C# defines keywords for fundamental data types, which are used to
represent local variables, class data member variables, method return values, and parameters. Unlike
other programming languages, however, these keywords are much more than simple compiler- recognized
tokens. Rather, the C# data type keywords are actually shorthand notations for full-blown types in the System
namespace. Table 3-4 lists each system data type, its range, the corresponding C# keyword, and the type’s
compliance with the common language specification (CLS).

Chapter 3 ■ Core C# programming ConstruCts, part i

75

 ■ Note recall from Chapter 1 that CLs-compliant .net code can be used by any managed programming
language. if you expose non–CLs-compliant data from your programs, other .net languages might not be able
to make use of it.

By default, a floating-point number is treated as a double. to declare a float variable, use the suffix f or F
to the raw numerical value (5.3F), and use the suffix m or M to a floating-point number to declare a decimal
(300.5M). Finally, raw whole numbers default to an int data type. to set the underlying data type to a long,
suffix l or L (4L).

Variable Declaration and Initialization
When you are declaring a local variable (e.g., a variable within a member scope), you do so by specifying
the data type followed by the variable’s name. To begin, create a new Console Application project named
BasicDataTypes. Update the Program class with the following helper method that is called from within Main():

static void LocalVarDeclarations()
{
 Console.WriteLine("=> Data Declarations:");
 // Local variables are declared as so:
 // dataType varName;
 int myInt;
 string myString;
 Console.WriteLine();
}

Be aware that it is a compiler error to make use of a local variable before assigning an initial value. Given
this, it is good practice to assign an initial value to your local data points at the time of declaration. You may
do so on a single line or by separating the declaration and assignment into two code statements.

static void LocalVarDeclarations()
{
 Console.WriteLine("=> Data Declarations:");
 // Local variables are declared and initialized as follows:
 // dataType varName = initialValue;
 int myInt = 0;

 // You can also declare and assign on two lines.
 string myString;
 myString = "This is my character data";

 Console.WriteLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 3 ■ Core C# programming ConstruCts, part i

76

It is also permissible to declare multiple variables of the same underlying type on a single line of code,
as in the following three bool variables:

static void LocalVarDeclarations()
{
 Console.WriteLine("=> Data Declarations:");
 int myInt = 0;
 string myString;
 myString = "This is my character data";

 // Declare 3 bools on a single line.
 bool b1 = true, b2 = false, b3 = b1;
 Console.WriteLine();
}

Since the C# bool keyword is simply a shorthand notation for the System.Boolean structure, it is also
possible to allocate any data type using its full name (of course, the same point holds true for any C# data
type keyword). Here is the final implementation of LocalVarDeclarations(), which illustrates various ways
to declare a local variable:

static void LocalVarDeclarations()
{
 Console.WriteLine("=> Data Declarations:");
 // Local variables are declared and initialized as follows:
 // dataType varName = initialValue;
 int myInt = 0;

 string myString;
 myString = "This is my character data";

 // Declare 3 bools on a single line.
 bool b1 = true, b2 = false, b3 = b1;

 // Use System.Boolean data type to declare a bool.
 System.Boolean b4 = false;

 Console.WriteLine("Your data: {0}, {1}, {2}, {3}, {4}, {5}",
 myInt, myString, b1, b2, b3, b4);

 Console.WriteLine();
}

Chapter 3 ■ Core C# programming ConstruCts, part i

77

Intrinsic Data Types and the new Operator
All intrinsic data types support what is known as a default constructor (see Chapter 5). This feature allows
you to create a variable using the new keyword, which automatically sets the variable to its default value.

•	 bool variables are set to false.

•	 Numeric data is set to 0 (or 0.0 in the case of floating-point data types).

•	 char variables are set to a single empty character.

•	 BigInteger variables are set to 0.

•	 DateTime variables are set to 1/1/0001 12:00:00 AM.

•	 Object references (including strings) are set to null.

 ■ Note the BigInteger data type mentioned in the previous list will be explained in just a bit.

Although it is more cumbersome to use the new keyword when creating a basic data type variable, the
following is syntactically well-formed C# code:

static void NewingDataTypes()
{
 Console.WriteLine("=> Using new to create variables:");
 bool b = new bool(); // Set to false.
 int i = new int(); // Set to 0.
 double d = new double(); // Set to 0.
 DateTime dt = new DateTime(); // Set to 1/1/0001 12:00:00 AM
 Console.WriteLine("{0}, {1}, {2}, {3}", b, i, d, dt);
 Console.WriteLine();
}

The Data Type Class Hierarchy
It is interesting to note that even the primitive .NET data types are arranged in a class hierarchy. If you are
new to the world of inheritance, you will discover the full details in Chapter 6. Until then, just understand
that types at the top of a class hierarchy provide some default behaviors that are granted to the derived types.
The relationship between these core system types can be understood as shown in Figure 3-2.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 3 ■ Core C# programming ConstruCts, part i

78

Notice that each type ultimately derives from System.Object, which defines a set of methods
(e.g., ToString(), Equals(), GetHashCode()) common to all types in the .NET base class libraries (these
methods are fully detailed in Chapter 6).

Also note that many numerical data types derive from a class named System.ValueType. Descendants
of ValueType are automatically allocated on the stack and, therefore, have a predictable lifetime and are
quite efficient. On the other hand, types that do not have System.ValueType in their inheritance chain
(such as System.Type, System.String, System.Array, System.Exception, and System.Delegate) are not
allocated on the stack but on the garbage-collected heap. (You can find more information on this distinction
in Chapter 4.)

Figure 3-2. The class hierarchy of system types

http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 3 ■ Core C# programming ConstruCts, part i

79

Without getting too hung up on the details of System.Object and System.ValueType, just understand
that because a C# keyword (such as int) is simply shorthand notation for the corresponding system type
(in this case, System.Int32), the following is perfectly legal syntax, given that System.Int32 (the C# int)
eventually derives from System.Object and, therefore, can invoke any of its public members, as illustrated
by this additional helper function:

static void ObjectFunctionality()
{
 Console.WriteLine("=> System.Object Functionality:");

 // A C# int is really a shorthand for System.Int32,
 // which inherits the following members from System.Object.
 Console.WriteLine("12.GetHashCode() = {0}", 12.GetHashCode());
 Console.WriteLine("12.Equals(23) = {0}", 12.Equals(23));
 Console.WriteLine("12.ToString() = {0}", 12.ToString());
 Console.WriteLine("12.GetType() = {0}", 12.GetType());
 Console.WriteLine();
}

If you were to call this method from within Main(), you would find the output shown here:

=> System.Object Functionality:

12.GetHashCode() = 12
12.Equals(23) = False
12.ToString() = 12
12.GetType() = System.Int32

Members of Numerical Data Types
To continue experimenting with the intrinsic C# data types, understand that the numerical types of .NET
support MaxValue and MinValue properties that provide information regarding the range a given type can
store. In addition to the MinValue/MaxValue properties, a given numerical system type may define further
useful members. For example, the System.Double type allows you to obtain the values for epsilon and
infinity (which might be of interest to those of you with a mathematical flare). To illustrate, consider the
following helper function:

static void DataTypeFunctionality()
{
 Console.WriteLine("=> Data type Functionality:");

 Console.WriteLine("Max of int: {0}", int.MaxValue);
 Console.WriteLine("Min of int: {0}", int.MinValue);
 Console.WriteLine("Max of double: {0}", double.MaxValue);

Chapter 3 ■ Core C# programming ConstruCts, part i

80

 Console.WriteLine("Min of double: {0}", double.MinValue);
 Console.WriteLine("double.Epsilon: {0}", double.Epsilon);
 Console.WriteLine("double.PositiveInfinity: {0}",
 double.PositiveInfinity);
 Console.WriteLine("double.NegativeInfinity: {0}",
 double.NegativeInfinity);
 Console.WriteLine();
}

Members of System.Boolean
Next, consider the System.Boolean data type. The only valid assignment a C# bool can take is from
the set {true | false}. Given this point, it should be clear that System.Boolean does not support a
MinValue/MaxValue property set but rather TrueString/FalseString (which yields the string "True" or
"False", respectively). Here’s an example:

Console.WriteLine("bool.FalseString: {0}", bool.FalseString);
Console.WriteLine("bool.TrueString: {0}", bool.TrueString);

Members of System.Char
C# textual data is represented by the string and char keywords, which are simple shorthand notations for
System.String and System.Char, both of which are Unicode under the hood. As you might already know, a
string represents a contiguous set of characters (e.g., "Hello"), while the char can represent a single slot in
a string (e.g., 'H').

The System.Char type provides you with a great deal of functionality beyond the ability to hold a single
point of character data. Using the static methods of System.Char, you are able to determine whether a given
character is numerical, alphabetical, a point of punctuation, or whatnot. Consider the following method:

static void CharFunctionality()
{
 Console.WriteLine("=> char type Functionality:");
 char myChar = 'a';
 Console.WriteLine("char.IsDigit('a'): {0}", char.IsDigit(myChar));
 Console.WriteLine("char.IsLetter('a'): {0}", char.IsLetter(myChar));
 Console.WriteLine("char.IsWhiteSpace('Hello There', 5): {0}",
 char.IsWhiteSpace("Hello There", 5));
 Console.WriteLine("char.IsWhiteSpace('Hello There', 6): {0}",
 char.IsWhiteSpace("Hello There", 6));
 Console.WriteLine("char.IsPunctuation('?'): {0}",
 char.IsPunctuation('?'));
 Console.WriteLine();
}

Chapter 3 ■ Core C# programming ConstruCts, part i

81

As illustrated in the previous method, many members of System.Char have two calling conventions: a
single character or a string with a numerical index that specifies the position of the character to test.

Parsing Values from String Data
The .NET data types provide the ability to generate a variable of their underlying type given a textual
equivalent (e.g., parsing). This technique can be extremely helpful when you want to convert some user
input data (such as a selection from a GUI-based, drop-down list box) into a numerical value. Consider the
following parsing logic within a method named ParseFromStrings().

static void ParseFromStrings()
{
 Console.WriteLine("=> Data type parsing:");
 bool b = bool.Parse("True");
 Console.WriteLine("Value of b: {0}", b);
 double d = double.Parse("99.884");
 Console.WriteLine("Value of d: {0}", d);
 int i = int.Parse("8");
 Console.WriteLine("Value of i: {0}", i);
 char c = Char.Parse("w");
 Console.WriteLine("Value of c: {0}", c);
 Console.WriteLine();
}

System.DateTime and System.TimeSpan
The System namespace defines a few useful data types for which there are no C# keywords, such as the
DateTime and TimeSpan structures. (I’ll leave the investigation of System.Guid and System.Void, as shown
in Figure 3-2, to interested readers, but do be aware that these two data types in the System namespace are
seldom useful in most applications.)

The DateTime type contains data that represents a specific date (month, day, year) and time value, both
of which may be formatted in a variety of ways using the supplied members. The TimeSpan structure allows
you to easily define and transform units of time using various members.

static void UseDatesAndTimes()
{
 Console.WriteLine("=> Dates and Times:");

 // This constructor takes (year, month, day).
 DateTime dt = new DateTime(2015, 10, 17);

 // What day of the month is this?
 Console.WriteLine("The day of {0} is {1}", dt.Date, dt.DayOfWeek);

 // Month is now December.
 dt = dt.AddMonths(2);
 Console.WriteLine("Daylight savings: {0}", dt.IsDaylightSavingTime());

Chapter 3 ■ Core C# programming ConstruCts, part i

82

 // This constructor takes (hours, minutes, seconds).
 TimeSpan ts = new TimeSpan(4, 30, 0);
 Console.WriteLine(ts);

 // Subtract 15 minutes from the current TimeSpan and
 // print the result.
 Console.WriteLine(ts.Subtract(new TimeSpan(0, 15, 0)));
}

The System.Numerics.dll Assembly
The System.Numerics namespace defines a structure named BigInteger. As its name implies, the
BigInteger data type can be used when you need to represent humongous numerical values, which are not
constrained by a fixed upper or lower limit.

 ■ Note the System.Numerics namespace defines a second structure named Complex, which allows you to
model mathematically complex numerical data (e.g., imaginary units, real data, hyperbolic tangents). Consult
the .net Framework 4.6 sDK documentation if you are interested.

While many of your .NET applications might never need to make use of the BigInteger structure, if you
do find the need to define a massive numerical value, your first step is to reference the System.Numerics.dll
assembly into your project. If you want to follow along with the current example, perform the following tasks:

 1. Select the Project ➤ Add Reference menu option of Visual Studio.

 2. Locate and select the System.Numerics.dll assembly within the list of presented
libraries found in the Framework tab on the left side.

 3. Click the OK button.

After you have done so, add the following using directive to the file, which will be using the BigInteger
data type:

// BigInteger lives here!
using System.Numerics;

At this point, you can create a BigInteger variable using the new operator. Within the constructor, you
can specify a numerical value, including floating-point data. However, recall that when you define a literal
whole number (such as 500), the runtime will default the data type to an int. Likewise, literal floating-point
data (such as 55.333) will default to a double. How, then, can you set BigInteger to a massive value while
not overflowing the default data types used for raw numerical values?

The simplest approach is to establish the massive numerical value as a text literal, which can be
converted into a BigInteger variable via the static Parse() method. If required, you can also pass in a byte
array directly to the constructor of the BigInteger class.

Chapter 3 ■ Core C# programming ConstruCts, part i

83

 ■ Note after you assign a value to a BigInteger variable, you cannot change it, as the data is immutable.
however, the BigInteger class defines a number of members that will return new BigInteger objects based
on your data modifications (such as the static Multiply() method used in the proceeding code sample).

In any case, after you have defined a BigInteger variable, you will find this class defines similar
members as other intrinsic C# data types (e.g., float, int). In addition, the BigInteger class defines several
static members that allow you to apply basic mathematical expressions (such as adding and multiplying) to
BigInteger variables. Here is an example of working with the BigInteger class:

static void UseBigInteger()
{
 Console.WriteLine("=> Use BigInteger:");
 BigInteger biggy =
 BigInteger.Parse("99");
 Console.WriteLine("Value of biggy is {0}", biggy);
 Console.WriteLine("Is biggy an even value?: {0}", biggy.IsEven);
 Console.WriteLine("Is biggy a power of two?: {0}", biggy.IsPowerOfTwo);
 BigInteger reallyBig = BigInteger.Multiply(biggy,
 BigInteger.Parse("888"));
 Console.WriteLine("Value of reallyBig is {0}", reallyBig);
}

It is also important to note that the BigInteger data type responds to C#’s intrinsic mathematical
operators, such as +, -, and *. Therefore, rather than calling BigInteger.Multiply() to multiply two huge
numbers, you could author the following code:

BigInteger reallyBig2 = biggy * reallyBig;

At this point, I hope you understand that the C# keywords representing basic data types have a
corresponding type in the .NET base class libraries, each of which exposes a fixed functionality. While I have
not detailed each member of these data types, you are in a great position to dig into the details as you see fit.
Be sure to consult the .NET Framework 4.6 SDK documentation for full details regarding the various .NET
data types—you will likely be surprised at the amount of built-in functionality.

 ■ Source Code the BasicDatatypes project is located in the Chapter 3 subdirectory.

Working with String Data
System.String provides a number of methods you would expect from such a utility class, including methods
that return the length of the character data, find substrings within the current string, and convert to and from
uppercase/lowercase. Table 3-5 lists some (but by no means all) of the interesting members.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 3 ■ Core C# programming ConstruCts, part i

84

Basic String Manipulation
Working with the members of System.String is as you would expect. Simply declare a string variable
and make use of the provided functionality via the dot operator. Be aware that a few of the members of
System.String are static members and are, therefore, called at the class (rather than the object) level.
Assume you have created a new Console Application project named FunWithStrings. Author the following
method, which should be called from within Main():

static void BasicStringFunctionality()
{
 Console.WriteLine("=> Basic String functionality:");
 string firstName = "Freddy";
 Console.WriteLine("Value of firstName: {0}", firstName);
 Console.WriteLine("firstName has {0} characters.", firstName.Length);
 Console.WriteLine("firstName in uppercase: {0}", firstName.ToUpper());
 Console.WriteLine("firstName in lowercase: {0}", firstName.ToLower());
 Console.WriteLine("firstName contains the letter y?: {0}",
 firstName.Contains("y"));
 Console.WriteLine("firstName after replace: {0}", firstName.Replace("dy", ""));
 Console.WriteLine();
}

Table 3-5. Select Members of System.String

String Member Meaning in Life

Length This property returns the length of the current string.

Compare() This static method compares two strings.

Contains() This method determines whether a string contains a specific substring.

Equals() This method tests whether two string objects contain identical character data.

Format() This static method formats a string using other primitives (e.g., numerical data, other
strings) and the {0} notation examined earlier in this chapter.

Insert() This method inserts a string within a given string.

PadLeft() These methods are used to pad a string with some characters.

PadRight()

Remove() These methods are used to receive a copy of a string with modifications (characters
removed or replaced).

Replace()

Split() This method returns a String array containing the substrings in this instance that are
delimited by elements of a specified char array or string array.

Trim() This method removes all occurrences of a set of specified characters from the beginning
and end of the current string.

ToUpper() These methods create a copy of the current string in uppercase or lowercase format,
respectively.

ToLower()

Chapter 3 ■ Core C# programming ConstruCts, part i

85

There’s not too much to say here, as this method simply invokes various members, such as ToUpper()
and Contains(), on a local string variable to yield various formats and transformations. Here is the initial
output:

***** Fun with Strings *****

=> Basic String functionality:
Value of firstName: Freddy
firstName has 6 characters.
firstName in uppercase: FREDDY
firstName in lowercase: freddy
firstName contains the letter y?: True
firstName after replace: Fred

While this output might not seem too surprising, the output seen via calling the Replace() method is a
bit misleading. In reality, the firstName variable has not changed at all; rather, you receive a new string in a
modified format. You will revisit the immutable nature of strings in just a few moments.

String Concatenation
string variables can be connected together to build larger strings via the C# + (as well as +=) operator.
As you might know, this technique is formally termed string concatenation. Consider the following new
helper function:

static void StringConcatenation()
{
 Console.WriteLine("=> String concatenation:");
 string s1 = "Programming the ";
 string s2 = "PsychoDrill (PTP)";
 string s3 = s1 + s2;
 Console.WriteLine(s3);
 Console.WriteLine();
}

You might be interested to know that the C# + symbol is processed by the compiler to emit a call to
the static String.Concat() method. Given this, it is possible to perform string concatenation by calling
String.Concat() directly (although you really have not gained anything by doing so—in fact, you have
incurred additional keystrokes!).

static void StringConcatenation()
{
 Console.WriteLine("=> String concatenation:");
 string s1 = "Programming the ";
 string s2 = "PsychoDrill (PTP)";
 string s3 = String.Concat(s1, s2);
 Console.WriteLine(s3);
 Console.WriteLine();
}

Chapter 3 ■ Core C# programming ConstruCts, part i

86

Escape Characters
As in other C-based languages, C# string literals may contain various escape characters, which qualify how
the character data should be printed to the output stream. Each escape character begins with a backslash,
followed by a specific token. In case you are a bit rusty on the meanings behind these escape characters,
Table 3-6 lists the more common options.

Table 3-6. String Literal Escape Characters

Character Meaning in Life

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be
quite helpful when defining file or network paths.

\a Triggers a system alert (beep). For console programs,
this can be an audio clue to the user.

\n Inserts a new line (on Windows platforms).

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

For example, to print a string that contains a tab between each word, you can make use of the \t escape
character. Or assume you want to create a string literal that contains quotation marks, another that defines
a directory path, and a final string literal that inserts three blank lines after printing the character data. To
do so without compiler errors, you would need to make use of the \", \\, and \n escape characters. Also, to
annoy any person within a 10-foot radius from you, notice that I have embedded an alarm within each string
literal (to trigger a beep). Consider the following:

static void EscapeChars()
{
 Console.WriteLine("=> Escape characters:\a");
 string strWithTabs = "Model\tColor\tSpeed\tPet Name\a ";
 Console.WriteLine(strWithTabs);

 Console.WriteLine("Everyone loves \"Hello World\"\a ");
 Console.WriteLine("C:\\MyApp\\bin\\Debug\a ");

 // Adds a total of 4 blank lines (then beep again!).
 Console.WriteLine("All finished.\n\n\n\a ");
 Console.WriteLine();
}

Chapter 3 ■ Core C# programming ConstruCts, part i

87

Defining Verbatim Strings
When you prefix a string literal with the @ symbol, you have created what is termed a verbatim string. Using
verbatim strings, you disable the processing of a literal’s escape characters and print out a string as is. This
can be most useful when working with strings representing directory and network paths. Therefore, rather
than making use of \\ escape characters, you can simply write the following:

// The following string is printed verbatim,
// thus all escape characters are displayed.
Console.WriteLine(@"C:\MyApp\bin\Debug");

Also note that verbatim strings can be used to preserve white space for strings that flow over
multiple lines.

// White space is preserved with verbatim strings.
string myLongString = @"This is a very
 very
 very
 long string";
Console.WriteLine(myLongString);

Using verbatim strings, you can also directly insert a double quote into a literal string by doubling
the " token.

Console.WriteLine(@"Cerebus said ""Darrr! Pret-ty sun-sets""");

Strings and Equality
As fully explained in Chapter 4, a reference type is an object allocated on the garbage-collected managed
heap. By default, when you perform a test for equality on reference types (via the C# == and != operators),
you will be returned true if the references are pointing to the same object in memory. However, even though
the string data type is indeed a reference type, the equality operators have been redefined to compare the
values of string objects, not the object in memory to which they refer.

static void StringEquality()
{
 Console.WriteLine("=> String equality:");
 string s1 = "Hello!";
 string s2 = "Yo!";
 Console.WriteLine("s1 = {0}", s1);
 Console.WriteLine("s2 = {0}", s2);
 Console.WriteLine();

 // Test these strings for equality.
 Console.WriteLine("s1 == s2: {0}", s1 == s2);
 Console.WriteLine("s1 == Hello!: {0}", s1 == "Hello!");
 Console.WriteLine("s1 == HELLO!: {0}", s1 == "HELLO!");
 Console.WriteLine("s1 == hello!: {0}", s1 == "hello!");
 Console.WriteLine("s1.Equals(s2): {0}", s1.Equals(s2));
 Console.WriteLine("Yo.Equals(s2): {0}", "Yo!".Equals(s2));
 Console.WriteLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 3 ■ Core C# programming ConstruCts, part i

88

The C# equality operators perform a case-sensitive, character-by-character equality test on string
objects. Therefore, "Hello!" is not equal to "HELLO!", which is also different from "hello!". Also, keeping
the connection between string and System.String in mind, notice that you are able to test for equality
using the Equals() method of String as well as the baked-in equality operators. Finally, given that
every string literal (such as "Yo") is a valid System.String instance, you are able to access string-centric
functionality from a fixed sequence of characters.

Strings Are Immutable
One of the interesting aspects of System.String is that after you assign a string object with its initial value,
the character data cannot be changed. At first glance, this might seem like a flat-out lie, given that you are
always reassigning strings to new values and because the System.String type defines a number of methods
that appear to modify the character data in one way or another (such as uppercasing and lowercasing).
However, if you look more closely at what is happening behind the scenes, you will notice the methods of the
string type are, in fact, returning you a new string object in a modified format.

static void StringsAreImmutable()
{
 // Set initial string value.
 string s1 = "This is my string.";
 Console.WriteLine("s1 = {0}", s1);

 // Uppercase s1?
 string upperString = s1.ToUpper();
 Console.WriteLine("upperString = {0}", upperString);

 // Nope! s1 is in the same format!
 Console.WriteLine("s1 = {0}", s1);
}

If you examine the relevant output that follows, you can verify that the original string object (s1) is not
uppercased when calling ToUpper(). Rather, you are returned a copy of the string in a modified format.

s1 = This is my string.
upperString = THIS IS MY STRING.
s1 = This is my string.

The same law of immutability holds true when you use the C# assignment operator. To illustrate,
implement the following StringsAreImmutable2() method:

static void StringsAreImmutable2()
{
 string s2 = "My other string";
 s2 = "New string value";
}

Chapter 3 ■ Core C# programming ConstruCts, part i

89

Now, compile your application and load the assembly into ildasm.exe (see Chapter 1).
The following output shows what you would find if you were to generate CIL code for the
StringsAreImmutable2() method:

.method private hidebysig static void StringsAreImmutable2() cil managed
{
 // Code size 14 (0xe)
 .maxstack 1
 .locals init ([0] string s2)
 IL_0000: nop
 IL_0001: ldstr "My other string"
 IL_0006: stloc.0
 IL_0007: ldstr "New string value"
 IL_000c: stloc.0
 IL_000d: ret
} // end of method Program::StringAreImmutable2

Although you have yet to examine the low-level details of the CIL, note the numerous calls to the
ldstr (load string) opcode. Simply put, the ldstr opcode of the CIL loads a new string object on the
managed heap. The previous string object that contained the value "My other string" will eventually
be garbage collected.

So, what exactly are you to gather from this insight? In a nutshell, the string class can be inefficient and
result in bloated code if misused, especially when performing string concatenation or working with huge
amounts of text data. If you need to represent basic character data such as a U.S. Social Security number, first
or last names, or simple bits of text used within your application, the string class is the perfect choice.

However, if you are building an application that makes heavy use of frequently changing textual data
(such as a word processing program), it would be a bad idea to represent the word processing data using
string objects, as you will most certainly (and often indirectly) end up making unnecessary copies of string
data. So, what is a programmer to do? Glad you asked.

The System.Text.StringBuilder Type
Given that the string type can be inefficient when used with reckless abandon, the .NET base class
libraries provide the System.Text namespace. Within this (relatively small) namespace lives a class named
StringBuilder. Like the System.String class, the StringBuilder defines methods that allow you to replace
or format segments, for example. When you want to use this type in your C# code files, your first step is to
make sure the following namespace is imported into your code file (this should already be the case for a new
Visual Studio project):

// StringBuilder lives here!
using System.Text;

What is unique about the StringBuilder is that when you call members of this type, you are directly
modifying the object’s internal character data (making it more efficient), not obtaining a copy of the data in
a modified format. When you create an instance of the StringBuilder, you can supply the object’s initial
startup values via one of many constructors. If you are new to the topic of constructors, simply understand

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 3 ■ Core C# programming ConstruCts, part i

90

that constructors allow you to create an object with an initial state when you apply the new keyword. Consider
the following usage of StringBuilder:

static void FunWithStringBuilder()
{
 Console.WriteLine("=> Using the StringBuilder:");
 StringBuilder sb = new StringBuilder("**** Fantastic Games ****");
 sb.Append("\n");
 sb.AppendLine("Half Life");
 sb.AppendLine("Morrowind");
 sb.AppendLine("Deus Ex" + "2");
 sb.AppendLine("System Shock");
 Console.WriteLine(sb.ToString());
 sb.Replace("2", " Invisible War");
 Console.WriteLine(sb.ToString());
 Console.WriteLine("sb has {0} chars.", sb.Length);
 Console.WriteLine();
}

Here, I have constructed a StringBuilder set to the initial value "**** Fantastic Games ****". As you
can see, I am appending to the internal buffer and am able to replace or remove characters at will. By default,
a StringBuilder is only able to initially hold a string of 16 characters or fewer (but will expand automatically
if necessary); however, this default starting value can be changed via an additional constructor argument.

// Make a StringBuilder with an initial size of 256.
StringBuilder sb = new StringBuilder("**** Fantastic Games ****", 256);

If you append more characters than the specified limit, the StringBuilder object will copy its data into
a new instance and grow the buffer by the specified limit.

String Interpolation
The curly bracket syntax illustrated within this chapter ({0}, {1}, and so on) has existed within the .NET
platform since version 1.0. Starting with the current release, C# programmers can use an alternative syntax to
build string literals that contain placeholders for variables. Formally, this is called string interpolation. While
the output of the operation is identical to traditional string formatting syntax, this new approach allows you to
directly embed the variables themselves, rather than tacking them on as a comma-delimited list.

Consider the following additional method of your Program class (StringInterpolation()), which
builds a string variable using each approach:

static void StringInterpolation()
{
 // Some local variables we will plug into our larger string
 int age = 4;
 string name = "Soren";

 // Using curly bracket syntax.
 string greeting = string.Format("Hello {0} you are {1} years old.", name, age);

 // Using string interpolation
 string greeting2 = $"Hello {name} you are {age} years old.";
}

Chapter 3 ■ Core C# programming ConstruCts, part i

91

In the greeting2 variable, notice how the string you are construction begins with a dollar sign prefix ($).
Next, notice that the curly brackets still are used to mark a variable placeholder; however, rather than using
a numerical tag, you are able to place the variable directly into the scope. The assumed advantage is that this
new formatting syntax is a bit easier to read in a linear (left-to-right) fashion, given that you are not required
to “jump to the end” to see the list of values to plug in at runtime.

There is another interesting aspect of this new syntax: the curly brackets used in string interpolation
are a valid scope. Therefore, you can use the dot operation on the variables to change their state. Consider
updates to each assembled string variable.

string greeting = string.Format("Hello {0} you are {1} years old.", name.ToUpper(), age);
string greeting2 = $"Hello {name.ToUpper()} you are {age} years old.";

Here, I have uppercased the name via a call to ToUpper(). Do note that in the string interpolation
approach, you do not add a semicolon terminator when calling this method. Given this, you cannot use the
curly-bracket scope as a fully blown method scope that contains numerous lines of executable code. Rather,
you can invoke a single member on the object using the dot operator as well as define a simple general
expression such as {age += 1}.

It is also worth noting that you can still use escape characters in the string literal within this new syntax.
Thus, if you wanted to insert a tab, you can prefix a \t token as so:

string greeting = string.Format("\tHello {0} you are {1} years old.", name.ToUpper(), age);
string greeting2 = $"\tHello {name.ToUpper()} you are {age} years old.";

As you might expect, you are free to use either approach when building your string variables on the fly.
Do keep in mind, however, that if you are using an earlier version of the .NET platform, string interpolation
syntax will result in a compiler error. Thus, if you need to ensure your C# code will compile under multiple
versions of the compiler, it is safer to stick to the traditional numerical placeholder approach.

 ■ Source Code the FunWithstrings project is located in the Chapter 3 subdirectory.

Narrowing and Widening Data Type Conversions
Now that you understand how to work with intrinsic C# data types, let’s examine the related topic of data
type conversion. Assume you have a new Console Application project named TypeConversions that defines
the following class:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with type conversions *****");

 // Add two shorts and print the result.
 short numb1 = 9, numb2 = 10;
 Console.WriteLine("{0} + {1} = {2}",
 numb1, numb2, Add(numb1, numb2));
 Console.ReadLine();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 3 ■ Core C# programming ConstruCts, part i

92

 static int Add(int x, int y)
 {
 return x + y;
 }
}

Notice that the Add() method expects to be sent two int parameters. However, the Main() method is, in
fact, sending in two short variables. While this might seem like a complete and total mismatch of data types,
the program compiles and executes without error, returning the expected result of 19.

The reason the compiler treats this code as syntactically sound is because there is no possibility for
loss of data. Given that the maximum value of a short (32,767) is well within the maximum range of an int
(2,147,483,647), the compiler implicitly widens each short to an int. Formally speaking, widening is the
term used to define an implicit upward cast that does not result in a loss of data.

 ■ Note Look up “type Conversion tables” in the .net Framework 4.6 sDK documentation if you want to see
permissible widening (and narrowing, discussed next) conversions for each C# data type.

Although this implicit widening worked in your favor for the previous example, other times this
“feature” can be the source of compile-time errors. For example, assume that you have set values to numb1
and numb2 that (when added together) overflow the maximum value of a short. Also, assume you are storing
the return value of the Add() method within a new local short variable, rather than directly printing the
result to the console.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with type conversions *****");

 // Compiler error below!
 short numb1 = 30000, numb2 = 30000;
 short answer = Add(numb1, numb2);

 Console.WriteLine("{0} + {1} = {2}",
 numb1, numb2, answer);
 Console.ReadLine();
}

In this case, the compiler reports the following error:

Cannot implicitly convert type 'int' to 'short'. An explicit conversion exists (are you
missing a cast?)

The problem is that although the Add() method is capable of returning an int with the value 60,000
(as this fits within the range of a System.Int32), the value cannot be stored in a short, as it overflows the
bounds of this data type. Formally speaking, the CLR was unable to apply a narrowing operation. As you can
guess, narrowing is the logical opposite of widening, in that a larger value is stored within a smaller data
type variable.

Chapter 3 ■ Core C# programming ConstruCts, part i

93

It is important to point out that all narrowing conversions result in a compiler error, even when you can
reason that the narrowing conversion should indeed succeed. For example, the following code also results in
a compiler error:

// Another compiler error!
static void NarrowingAttempt()
{
 byte myByte = 0;
 int myInt = 200;
 myByte = myInt;

 Console.WriteLine("Value of myByte: {0}", myByte);
}

Here, the value contained within the int variable (myInt) is safely within the range of a byte; therefore,
you would expect the narrowing operation to not result in a runtime error. However, given that C# is a
language built with type safety in mind, you do indeed receive a compiler error.

When you want to inform the compiler that you are willing to deal with a possible loss of data because
of a narrowing operation, you must apply an explicit cast using the C# casting operator, (). Consider the
following update to the Program type:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with type conversions *****");
 short numb1 = 30000, numb2 = 30000;

 // Explicitly cast the int into a short (and allow loss of data).
 short answer = (short)Add(numb1, numb2);

 Console.WriteLine("{0} + {1} = {2}",
 numb1, numb2, answer);
 NarrowingAttempt();
 Console.ReadLine();
}

 static int Add(int x, int y)
{
 return x + y;
}

 static void NarrowingAttempt()
{
 byte myByte = 0;
 int myInt = 200;

 // Explicitly cast the int into a byte (no loss of data).
 myByte = (byte)myInt;
 Console.WriteLine("Value of myByte: {0}", myByte);
 }
}

Chapter 3 ■ Core C# programming ConstruCts, part i

94

At this point, the code compiles; however, the result of the addition is completely incorrect.

***** Fun with type conversions *****
30000 + 30000 = -5536
Value of myByte: 200

As you have just witnessed, an explicit cast allows you to force the compiler to apply a narrowing
conversion, even when doing so may result in a loss of data. In the case of the NarrowingAttempt() method,
this was not a problem because the value 200 can fit snuggly within the range of a byte. However, in the case
of adding the two shorts within Main(), the end result is completely unacceptable (30,000 + 30,000 = –5536?).

If you are building an application where loss of data is always unacceptable, C# provides the checked
and unchecked keywords to ensure data loss does not escape undetected.

The checked Keyword
Let’s begin by learning the role of the checked keyword. Assume you have a new method within Program that
attempts to add two bytes, each of which has been assigned a value that is safely below the maximum (255).
If you were to add the values of these types (casting the returned int to a byte), you would assume that the
result would be the exact sum of each member.

static void ProcessBytes()
{
 byte b1 = 100;
 byte b2 = 250;
 byte sum = (byte)Add(b1, b2);

 // sum should hold the value 350. However, we find the value 94!
 Console.WriteLine("sum = {0}", sum);
}

If you were to view the output of this application, you might be surprised to find that sum contains the
value 94 (rather than the expected 350). The reason is simple. Given that a System.Byte can hold a value only
between 0 and 255 (inclusive, for a grand total of 256 slots), sum now contains the overflow value (350 – 256 = 94).
By default, if you take no corrective course of action, overflow/underflow conditions occur without error.

To handle overflow or underflow conditions in your application, you have two options. Your first choice
is to leverage your wits and programming skills to handle all overflow/underflow conditions manually. Of
course, the problem with this technique is the simple fact that you are human, and even your best attempts
might result in errors that have escaped your eyes.

Thankfully, C# provides the checked keyword. When you wrap a statement (or a block of statements)
within the scope of the checked keyword, the C# compiler emits additional CIL instructions that test for overflow
conditions that may result when adding, multiplying, subtracting, or dividing two numerical data types.

If an overflow has occurred, you will receive a runtime exception: System.OverflowException. Chapter 7
will examine all the details of structured exception handling and the use of the try and catch keywords.
Without getting too hung up on the specifics at this point, observe the following update:

static void ProcessBytes()
{
 byte b1 = 100;
 byte b2 = 250;

http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 3 ■ Core C# programming ConstruCts, part i

95

 // This time, tell the compiler to add CIL code
 // to throw an exception if overflow/underflow
 // takes place.
 try
 {
 byte sum = checked((byte)Add(b1, b2));
 Console.WriteLine("sum = {0}", sum);
 }
 catch (OverflowException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Notice that the return value of Add() has been wrapped within the scope of the checked keyword.
Because the sum is greater than a byte, this triggers a runtime exception. Notice the error message printed
out via the Message property.

Arithmetic operation resulted in an overflow.

If you want to force overflow checking to occur over a block of code statements, you can do so by
defining a “checked scope” as follows:

try
{
 checked
 {
 byte sum = (byte)Add(b1, b2);
 Console.WriteLine("sum = {0}", sum);
 }
}
catch (OverflowException ex)
{
 Console.WriteLine(ex.Message);
}

In either case, the code in question will be evaluated for possible overflow conditions automatically,
which will trigger an overflow exception if encountered.

Setting Project-wide Overflow Checking
If you are creating an application that should never allow silent overflow to occur, you might find yourself in
the annoying position of wrapping numerous lines of code within the scope of the checked keyword. As an
alternative, the C# compiler supports the /checked flag. When enabled, all your arithmetic will be evaluated
for overflow without the need to make use of the C# checked keyword. If overflow has been discovered, you
will still receive a runtime exception.

To enable this flag using Visual Studio, open your project’s property page and click the Advanced button
on the Build tab. From the resulting dialog box, select the “Check for arithmetic overflow/underflow” check
box (see Figure 3-3).

Chapter 3 ■ Core C# programming ConstruCts, part i

96

Enabling this setting can be helpful when you’re creating a debug build. After all the overflow
exceptions have been squashed out of the code base, you’re free to disable the /checked flag for subsequent
builds (which can increase the runtime performance of your application).

The unchecked Keyword
Now, assuming you have enabled this project-wide setting, what are you to do if you have a block of code
where data loss is acceptable? Given that the /checked flag will evaluate all arithmetic logic, C# provides
the unchecked keyword to disable the throwing of an overflow exception on a case-by-case basis. This
keyword’s use is identical to that of the checked keyword in that you can specify a single statement or a block
of statements.

// Assuming /checked is enabled,
// this block will not trigger
// a runtime exception.
unchecked
{
 byte sum = (byte)(b1 + b2);
 Console.WriteLine("sum = {0} ", sum);
}

So, to summarize the C# checked and unchecked keywords, remember that the default behavior
of the .NET runtime is to ignore arithmetic overflow/underflow. When you want to selectively handle
discrete statements, make use of the checked keyword. If you want to trap overflow errors throughout your
application, enable the /checked flag. Finally, the unchecked keyword can be used if you have a block of
code where overflow is acceptable (and thus should not trigger a runtime exception).

Figure 3-3. Enabling project-wide overflow/underflow data checking

Chapter 3 ■ Core C# programming ConstruCts, part i

97

 ■ Source Code the typeConversions project is located in the Chapter 3 subdirectory.

Understanding Implicitly Typed Local Variables
Up until this point in the chapter, when you have been defining local variables, you’ve explicitly specified the
underlying data type of each variable being declared.

static void DeclareExplicitVars()
{
 // Explicitly typed local variables
 // are declared as follows:
 // dataType variableName = initialValue;
 int myInt = 0;
 bool myBool = true;
 string myString = "Time, marches on...";
}

While many (including yours truly) would argue that is it is always good practice to explicitly specify
the data type of each variable, the C# language does provide for implicitly typing of local variables using the
var keyword. The var keyword can be used in place of specifying a specific data type (such as int, bool, or
string). When you do so, the compiler will automatically infer the underlying data type based on the initial
value used to initialize the local data point.

To illustrate the role of implicit typing, create a new Console Application project named
ImplicitlyTypedLocalVars. Notice how the local variables within the previous method can now be declared
as follows:

static void DeclareImplicitVars()
{
 // Implicitly typed local variables
 // are declared as follows:
 // var variableName = initialValue;
 var myInt = 0;
 var myBool = true;
 var myString = "Time, marches on...";
}

 ■ Note strictly speaking, var is not a C# keyword. it is permissible to declare variables, parameters, and
fields named var without compile-time errors. however, when the var token is used as a data type, it is
contextually treated as a keyword by the compiler.

In this case, the compiler is able to infer, given the initially assigned value, that myInt is, in fact, a
System.Int32, myBool is a System.Boolean, and myString is indeed of type System.String. You can verify
this by printing the type name via reflection. As you will see in much more detail in Chapter 15, reflection
is the act of determining the composition of a type at runtime. For example, using reflection, you can

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 3 ■ Core C# programming ConstruCts, part i

98

determine the data type of an implicitly typed local variable. Update your method with the following code
statements:

static void DeclareImplicitVars()
{
 // Implicitly typed local variables.
 var myInt = 0;
 var myBool = true;
 var myString = "Time, marches on...";

 // Print out the underlying type.
 Console.WriteLine("myInt is a: {0}", myInt.GetType().Name);
 Console.WriteLine("myBool is a: {0}", myBool.GetType().Name);
 Console.WriteLine("myString is a: {0}", myString.GetType().Name);
}

 ■ Note Be aware that you can use this implicit typing for any type including arrays, generic types
(see Chapter 9), and your own custom types. You’ll see other examples of implicit typing over the course of
this book.

If you were to call the DeclareImplicitVars() method from within Main(), you’d find the output
shown here:

***** Fun with Implicit Typing *****

myInt is a: Int32
myBool is a: Boolean
myString is a: String

Restrictions on Implicitly Typed Variables
There are various restrictions regarding the use of the var keyword. First, implicit typing applies only to
local variables in a method or property scope. It is illegal to use the var keyword to define return values,
parameters, or field data of a custom type. For example, the following class definition will result in various
compile-time errors:

class ThisWillNeverCompile
{
 // Error! var cannot be used as field data!
 private var myInt = 10;

 // Error! var cannot be used as a return value
 // or parameter type!
 public var MyMethod(var x, var y){}
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 3 ■ Core C# programming ConstruCts, part i

99

Also, local variables declared with the var keyword must be assigned an initial value at the exact time of
declaration and cannot be assigned the initial value of null. This last restriction should make sense, given that
the compiler cannot infer what sort of type in memory the variable would be pointing to based only on null.

// Error! Must assign a value!
var myData;

// Error! Must assign value at exact time of declaration!
var myInt;
myInt = 0;

// Error! Can't assign null as initial value!
var myObj = null;

It is permissible, however, to assign an inferred local variable to null after its initial assignment
(provided it is a reference type).

// OK, if SportsCar is a reference type!
var myCar = new SportsCar();
myCar = null;

Furthermore, it is permissible to assign the value of an implicitly typed local variable to the value of
other variables, implicitly typed or not.

// Also OK!
var myInt = 0;
var anotherInt = myInt;

string myString = "Wake up!";
var myData = myString;

Also, it is permissible to return an implicitly typed local variable to the caller, provided the method
return type is the same underlying type as the var-defined data point.

static int GetAnInt()
{
 var retVal = 9;
 return retVal;
}

Implicit Typed Data Is Strongly Typed Data
Be aware that implicit typing of local variables results in strongly typed data. Therefore, use of the var
keyword is not the same technique used with scripting languages (such as JavaScript or Perl) or the COM
Variant data type, where a variable can hold values of different types over its lifetime in a program (often
termed dynamic typing).

 ■ Note C# does allow for dynamic typing in C# using a keyword called—surprise, surprise—dynamic.
You will learn about this aspect of the language in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

Chapter 3 ■ Core C# programming ConstruCts, part i

100

Rather, type inference keeps the strongly typed aspect of the C# language and affects only the
declaration of variables at compile time. After that, the data point is treated as if it were declared with that
type; assigning a value of a different type into that variable will result in a compile-time error.

static void ImplicitTypingIsStrongTyping()
{
 // The compiler knows "s" is a System.String.
 var s = "This variable can only hold string data!";
 s = "This is fine...";

 // Can invoke any member of the underlying type.
 string upper = s.ToUpper();

 // Error! Can't assign numerical data to a string!
 s = 44;
}

Usefulness of Implicitly Typed Local Variables
Now that you have seen the syntax used to declare implicitly typed local variables, I am sure you are
wondering when to make use of this construct. First, using var to declare local variables simply for the
sake of doing so brings little to the table. Doing so can be confusing to others reading your code because it
becomes harder to quickly determine the underlying data type and, therefore, more difficult to understand
the overall functionality of the variable. So, if you know you need an int, declare an int!

However, as you will see beginning in Chapter 12, the LINQ technology set makes use of query
expressions that can yield dynamically created result sets based on the format of the query itself. In these
cases, implicit typing is extremely helpful because you do not need to explicitly define the type that a
query may return, which in some cases would be literally impossible to do. Without getting hung up on the
following LINQ example code, see whether you can figure out the underlying data type of subset:

static void LinqQueryOverInts()
{
 int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

 // LINQ query!
 var subset = from i in numbers where i < 10 select i;

 Console.Write("Values in subset: ");
 foreach (var i in subset)
 {
 Console.Write("{0} ", i);
 }
 Console.WriteLine();

 // Hmm...what type is subset?
 Console.WriteLine("subset is a: {0}", subset.GetType().Name);
 Console.WriteLine("subset is defined in: {0}", subset.GetType().Namespace);
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 3 ■ Core C# programming ConstruCts, part i

101

You might be assuming that the subset data type is an array of integers. That seems to be the case, but,
in fact, it is a low level LINQ data type that you would never know about unless you have been doing LINQ
for a long time or you open the compiled image in ildasm.exe. The good news is that when you are using
LINQ, you seldom (if ever) care about the underlying type of the query’s return value; you will simply assign
the value to an implicitly typed local variable.

In fact, it could be argued that the only time you would make use of the var keyword is when defining
data returned from a LINQ query. Remember, if you know you need an int, just declare an int! Overuse of
implicit typing (via the var keyword) is considered by most developers to be poor style in production code.

 ■ Source Code the implicitlytypedLocalVars project can be found in the Chapter 3 subdirectory.

C# Iteration Constructs
All programming languages provide ways to repeat blocks of code until a terminating condition has been
met. Regardless of which language you have used in the past, I would guess the C# iteration statements
should not raise too many eyebrows and should require little explanation. C# provides the following four
iteration constructs:

•	 for loop

•	 foreach/in loop

•	 while loop

•	 do/while loop

Let’s quickly examine each looping construct in turn, using a new Console Application project named
IterationsAndDecisions.

 ■ Note i will keep this final section of the chapter short and to the point, as i am assuming you have
experience using similar keywords (if, for, switch, etc.) in your current programming language. if you require
more information, look up the topics “iteration statements (C# reference),” “Jump statements (C# reference),”
and “selection statements (C# reference)” within the .net Framework 4.6 sDK documentation.

The for Loop
When you need to iterate over a block of code a fixed number of times, the for statement provides a good
deal of flexibility. In essence, you are able to specify how many times a block of code repeats itself, as well as
the terminating condition. Without belaboring the point, here is a sample of the syntax:

// A basic for loop.
static void ForLoopExample()
{
 // Note! "i" is only visible within the scope of the for loop.
 for(int i = 0; i < 4; i++)

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 3 ■ Core C# programming ConstruCts, part i

102

 {
 Console.WriteLine("Number is: {0} ", i);
 }
 // "i" is not visible here.
}

All your old C, C++, and Java tricks still hold when building a C# for statement. You can create complex
terminating conditions, build endless loops, loop in reverse (via the -- operator), and use the goto,
continue, and break jump keywords.

The foreach Loop
The C# foreach keyword allows you to iterate over all items in a container without the need to test for an
upper limit. Unlike a for loop, however, the foreach loop will walk the container only in a linear (n+1)
fashion (thus, you cannot go backward through the container, skip every third element, or whatnot).

However, when you simply need to walk a collection item by item, the foreach loop is the perfect
choice. Here are two examples using foreach—one to traverse an array of strings and the other to traverse an
array of integers. Notice that the data type before the in keyword represents the type of data in the container.

// Iterate array items using foreach.
static void ForEachLoopExample()
{
 string[] carTypes = {"Ford", "BMW", "Yugo", "Honda" };
 foreach (string c in carTypes)
 Console.WriteLine(c);

 int[] myInts = { 10, 20, 30, 40 };
 foreach (int i in myInts)
 Console.WriteLine(i);
}

The item after the in keyword can be a simple array (seen here) or, more specifically, any class
implementing the IEnumerable interface. As you will see in Chapter 9, the .NET base class libraries ship with
a number of collections that contain implementations of common abstract data types (ADTs). Any of these
items (such as the generic List<T>) can be used within a foreach loop.

Use of Implicit Typing Within foreach Constructs
It is also possible to use implicit typing within a foreach looping construct. As you would expect, the
compiler will correctly infer the correct “type of type.” Recall the LINQ example method shown earlier in
this chapter. Given that you don’t know the exact underlying data type of the subset variable, you can iterate
over the result set using implicit typing.

static void LinqQueryOverInts()
{
 int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

 // LINQ query!
 var subset = from i in numbers where i < 10 select i;
 Console.Write("Values in subset: ");

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 3 ■ Core C# programming ConstruCts, part i

103

 foreach (var i in subset)
 {
 Console.Write("{0} ", i);
 }
}

The while and do/while Looping Constructs
The while looping construct is useful should you want to execute a block of statements until some
terminating condition has been reached. Within the scope of a while loop, you will need to ensure this
terminating event is indeed established; otherwise, you will be stuck in an endless loop. In the following
example, the message "In while loop" will be continuously printed until the user terminates the loop by
entering yes at the command prompt:

static void WhileLoopExample()
{
 string userIsDone = "";

 // Test on a lower-class copy of the string.
 while(userIsDone.ToLower() != "yes")
 {
 Console.WriteLine("In while loop");
 Console.Write("Are you done? [yes] [no]: ");
 userIsDone = Console.ReadLine();
 }
}

Closely related to the while loop is the do/while statement. Like a simple while loop, do/while is used
when you need to perform some action an undetermined number of times. The difference is that do/while
loops are guaranteed to execute the corresponding block of code at least once. In contrast, it is possible that
a simple while loop may never execute if the terminating condition is false from the onset.

static void DoWhileLoopExample()
{
 string userIsDone = "";

 do
 {
 Console.WriteLine("In do/while loop");
 Console.Write("Are you done? [yes] [no]: ");
 userIsDone = Console.ReadLine();
 }while(userIsDone.ToLower() != "yes"); // Note the semicolon!
}

Chapter 3 ■ Core C# programming ConstruCts, part i

104

Decision Constructs and the Relational/Equality Operators
Now that you can iterate over a block of statements, the next related concept is how to control the flow of
program execution. C# defines two simple constructs to alter the flow of your program, based on various
contingencies.

•	 The if/else statement

•	 The switch statement

The if/else Statement
First up is the if/else statement. Unlike in C and C++, the if/else statement in C# operates only on
Boolean expressions, not ad hoc values such as –1 or 0.

Equality and Relational Operators
C# if/else statements typically involve the use of the C# operators shown in Table 3-7 to obtain a literal
Boolean value.

Table 3-7. C# Relational and Equality Operators

C# Equality/Relational Operator Example Usage Meaning in Life

== if(age == 30) Returns true only if each expression is the same

!= if("Foo" != myStr) Returns true only if each expression is different

< if(bonus < 2000) Returns true if expression A (bonus) is less than,
greater than, less than or equal to, or greater
than or equal to expression B (2000)

> if(bonus > 2000)

<= if(bonus <= 2000)

>= if(bonus >= 2000)

Again, C and C++ programmers need to be aware that the old tricks of testing a condition for a value not
equal to zero will not work in C#. Let’s say you want to see whether the string you are working with is longer
than zero characters. You might be tempted to write this:

static void IfElseExample()
{
 // This is illegal, given that Length returns an int, not a bool.
 string stringData = "My textual data";
 if(stringData.Length)
 {
 Console.WriteLine("string is greater than 0 characters");
 }
}

Chapter 3 ■ Core C# programming ConstruCts, part i

105

If you want to use the String.Length property to determine truth or falsity, you need to modify your
conditional expression to resolve to a Boolean.

// Legal, as this resolves to either true or false.
if(stringData.Length > 0)
{
 Console.WriteLine("string is greater than 0 characters");
}

Conditional Operators
An if statement may be composed of complex expressions as well and can contain else statements to
perform more complex testing. The syntax is identical to C(++) and Java. To build complex expressions, C#
offers an expected set of conditional logical operators, as shown in Table 3-8.

Table 3-8. C# Conditional Operators

Operator Example Meaning in Life

&& if(age == 30 && name == "Fred") AND operator. Returns true if all expressions are true.

|| if(age == 30 || name == "Fred") OR operator. Returns true if at least one expression is true.

! if(!myBool) NOT operator. Returns true if false, or false if true.

 ■ Note the && and || operators both “short circuit” when necessary. this means that after a complex
expression has been determined to be false, the remaining subexpressions will not be checked. if you require
all expressions to be tested regardless, you can use the related & and | operators.

The switch Statement
The other simple selection construct offered by C# is the switch statement. As in other C-based languages,
the switch statement allows you to handle program flow based on a predefined set of choices. For example,
the following Main() logic prints a specific string message based on one of two possible selections
(the default case handles an invalid selection).

// Switch on a numerical value.
static void SwitchExample()
{
 Console.WriteLine("1 [C#], 2 [VB]");
 Console.Write("Please pick your language preference: ");

 string langChoice = Console.ReadLine();
 int n = int.Parse(langChoice);

Chapter 3 ■ Core C# programming ConstruCts, part i

106

 switch (n)
 {
 case 1:
 Console.WriteLine("Good choice, C# is a fine language.");
 break;
 case 2:
 Console.WriteLine("VB: OOP, multithreading, and more!");
 break;
 default:
 Console.WriteLine("Well...good luck with that!");
 break;
 }
}

 ■ Note C# demands that each case (including default) that contains executable statements have a
terminating break or goto to avoid fall-through.

One nice feature of the C# switch statement is that you can evaluate string data in addition to numeric
data. Here is an updated switch statement that does this very thing (notice there is no need to parse the user
data into a numeric value with this approach):

static void SwitchOnStringExample()
{
 Console.WriteLine("C# or VB");
 Console.Write("Please pick your language preference: ");

 string langChoice = Console.ReadLine();
 switch (langChoice)
 {
 case "C#":
 Console.WriteLine("Good choice, C# is a fine language.");
 break;
 case "VB":
 Console.WriteLine("VB: OOP, multithreading and more!");
 break;
 default:
 Console.WriteLine("Well...good luck with that!");
 break;
 }
}

Chapter 3 ■ Core C# programming ConstruCts, part i

107

It is also possible to switch on an enumeration data type. As you will see in Chapter 4, the C# enum
keyword allows you to define a custom set of name-value pairs. To whet your appetite, consider the following
final helper function, which performs a switch test on the System.DayOfWeek enum. You’ll notice some
syntax I have not yet examined, but focus on the issue of switching over the enum itself; the missing pieces
will be filled in over the chapters to come.

static void SwitchOnEnumExample()
{
 Console.Write("Enter your favorite day of the week: ");
 DayOfWeek favDay;

 try
 {
 favDay = (DayOfWeek)Enum.Parse(typeof(DayOfWeek), Console.ReadLine());
 }
 catch (Exception)
 {
 Console.WriteLine("Bad input!");
 return;
 }

 switch (favDay)
 {
 case DayOfWeek.Friday:
 Console.WriteLine("Yes, Friday rules!");
 break;
 case DayOfWeek.Monday:
 Console.WriteLine("Another day, another dollar");
 break;
 case DayOfWeek.Saturday:
 Console.WriteLine("Great day indeed.");
 break;
 case DayOfWeek.Sunday:
 Console.WriteLine("Football!!");
 break;
 case DayOfWeek.Thursday:
 Console.WriteLine("Almost Friday...");
 break;
 case DayOfWeek.Tuesday:
 Console.WriteLine("At least it is not Monday");
 break;
 case DayOfWeek.Wednesday:
 Console.WriteLine("A fine day.");
 break;
 }
}

 ■ Source Code the iterationsandDecisions project is located in the Chapter 3 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 3 ■ Core C# programming ConstruCts, part i

108

Summary
The goal of this chapter was to expose you to numerous core aspects of the C# programming language.
You examined the commonplace constructs in any application you may be interested in building. After
examining the role of an application object, you learned that every C# executable program must have a
type defining a Main() method, which serves as the program’s entry point. Within the scope of Main(), you
typically create any number of objects that work together to breathe life into your application.

Next, you dove into the details of the built-in data types of C# and came to understand that each
data type keyword (e.g., int) is really a shorthand notation for a full-blown type in the System namespace
(System.Int32, in this case). Given this, each C# data type has a number of built-in members. Along the
same vein, you also learned about the role of widening and narrowing, as well as the role of the checked and
unchecked keywords.

The chapter wrapped up by covering the role of implicit typing using the var keyword. As discussed,
the most useful place for implicit typing is when working with the LINQ programming model. Finally, you
quickly examined the various iteration and decision constructs supported by C#.

Now that you have an understanding of some of the basic nuts and bolts, the next chapter (Chapter 4)
will complete your examination of core language features. After that, you will be well prepared to examine
the object-oriented features of C# beginning in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

109

Chapter 4

Core C# Programming Constructs,
Part II

This chapter picks up where the Chapter 3 left off and completes your investigation of the core aspects of
the C# programming language. You will begin by examining various details regarding the construction of
C# methods, exploring the out, ref, and params keywords. Along the way, you will also examine the role of
optional and named parameters.

After you examine the topic of method overloading, the next task is to investigate the details behind
manipulating arrays using the syntax of C# and get to know the functionality contained within the related
System.Array class type.

In addition, this chapter discusses the construction of enumeration and structure types, including a
fairly detailed examination of the distinction between a value type and a reference type. This chapter wraps
up by examining the role of nullable data types and the related operators.

After you have completed this chapter, you will be in a perfect position to learn the object-oriented
capabilities of C#, beginning in Chapter 5.

Methods and Parameter Modifiers
To begin this chapter, let’s examine the details of defining methods. Just like the Main() method (see
Chapter 3), your custom methods may or may not take parameters and may or may not return values to
the caller. As you will see over the next several chapters, methods can be implemented within the scope
of classes or structures (as well as prototyped within interface types) and may be decorated with various
keywords (e.g., static, virtual, public, new) to qualify their behavior. At this point in the text, each of your
methods has followed the following basic format:

// Recall that static methods can be called directly
// without creating a class instance.
class Program
{
 // static returnType MethodName(paramater list) { /* Implementation */ }
 static int Add(int x, int y){ return x + y; }
}

While the definition of a method in C# is quite straightforward, you can use a handful of methods to
control how arguments are passed to the method in question, as listed in Table 4-1.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 4 ■ Core C# programming ConstruCts, part ii

110

To illustrate the use of these keywords, create a new Console Application project named
FunWithMethods. Now, let’s walk through the role of each keyword.

The Default by Value Parameter-Passing Behavior
The default manner in which a parameter is sent into a function is by value. Simply put, if you do not mark
an argument with a parameter modifier, a copy of the data is passed into the function. As explained at
the end of this chapter, exactly what is copied will depend on whether the parameter is a value type or a
reference type. For the time being, assume the following method within the Program class that operates on
two numerical data types passed by value:

// Arguments are passed by value by default.
static int Add(int x, int y)
{
 int ans = x + y;
 // Caller will not see these changes
 // as you are modifying a copy of the
 // original data.
 x = 10000;
 y = 88888;
 return ans;
}

Numerical data falls under the category of value types. Therefore, if you change the values of the
parameters within the scope of the member, the caller is blissfully unaware, given that you are changing the
values on a copy of the caller’s original data.

Table 4-1. C# Parameter Modifiers

Parameter Modifier Meaning in Life

(None) If a parameter is not marked with a parameter modifier, it is assumed to be passed by
value, meaning the called method receives a copy of the original data.

out Output parameters must be assigned by the method being called and, therefore, are
passed by reference. If the called method fails to assign output parameters, you are
issued a compiler error.

ref The value is initially assigned by the caller and may be optionally modified by
the called method (as the data is also passed by reference). No compiler error is
generated if the called method fails to assign a ref parameter.

params This parameter modifier allows you to send in a variable number of arguments as
a single logical parameter. A method can have only a single params modifier, and it
must be the final parameter of the method. In reality, you might not need to use the
params modifier all too often; however, be aware that numerous methods within the
base class libraries do make use of this C# language feature.

Chapter 4 ■ Core C# programming ConstruCts, part ii

111

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****\n");

 // Pass two variables in by value.
 int x = 9, y = 10;
 Console.WriteLine("Before call: X: {0}, Y: {1}", x, y);
 Console.WriteLine("Answer is: {0}", Add(x, y));
 Console.WriteLine("After call: X: {0}, Y: {1}", x, y);
 Console.ReadLine();
}

As you would hope, the values of x and y remain identical before and after the call to Add(), as shown in
the following output, as the data points were sent in by value. Thus, any changes on these parameters within
the Add() method are not seen by the caller, as the Add() method is operating on a copy of the data.

***** Fun with Methods *****

Before call: X: 9, Y: 10
Answer is: 19
After call: X: 9, Y: 10

The out Modifier
Next, you have the use of output parameters. Methods that have been defined to take output parameters
(via the out keyword) are under obligation to assign them to an appropriate value before exiting the method
scope (if you fail to do so, you will receive compiler errors).

To illustrate, here is an alternative version of the Add() method that returns the sum of two integers
using the C# out modifier (note the physical return value of this method is now void):

// Output parameters must be assigned by the called method.
static void Add(int x, int y, out int ans)
{
 ans = x + y;
}

Calling a method with output parameters also requires the use of the out modifier. However, the local
variables that are passed as output variables are not required to be assigned before passing them in as
output arguments (if you do so, the original value is lost after the call). The reason the compiler allows you
to send in seemingly unassigned data is because the method being called must make an assignment. The
following code is an example:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 // No need to assign initial value to local variables
 // used as output parameters, provided the first time
 // you use them is as output arguments.

Chapter 4 ■ Core C# programming ConstruCts, part ii

112

 int ans;
 Add(90, 90, out ans);
 Console.WriteLine("90 + 90 = {0}", ans);
 Console.ReadLine();
}

The previous example is intended to be illustrative in nature; you really have no reason to return the
value of your summation using an output parameter. However, the C# out modifier does serve a useful
purpose: it allows the caller to obtain multiple outputs from a single method invocation.

// Returning multiple output parameters.
static void FillTheseValues(out int a, out string b, out bool c)
{
 a = 9;
 b = "Enjoy your string.";
 c = true;
}

The caller would be able to invoke the FillTheseValues() method. Remember that you must use the
out modifier when you invoke the method, as well as when you implement the method.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 int i; string str; bool b;
 FillTheseValues(out i, out str, out b);

 Console.WriteLine("Int is: {0}", i);
 Console.WriteLine("String is: {0}", str);
 Console.WriteLine("Boolean is: {0}", b);
 Console.ReadLine();
}

Finally, always remember that a method that defines output parameters must assign the parameter to a
valid value before exiting the method scope. Therefore, the following code will result in a compiler error, as
the output parameter has not been assigned within the method scope:

static void ThisWontCompile(out int a)
{
 Console.WriteLine("Error! Forgot to assign output arg!");
}

The ref Modifier
Now consider the use of the C# ref parameter modifier. Reference parameters are necessary when you
want to allow a method to operate on (and usually change the values of) various data points declared in the
caller’s scope (such as a sorting or swapping routine). Note the distinction between output and reference
parameters.

Chapter 4 ■ Core C# programming ConstruCts, part ii

113

•	 Output parameters do not need to be initialized before they passed to the method.
The reason for this is that the method must assign output parameters before exiting.

•	 Reference parameters must be initialized before they are passed to the method.
The reason for this is that you are passing a reference to an existing variable. If you
don’t assign it to an initial value, that would be the equivalent of operating on an
unassigned local variable.

Let’s check out the use of the ref keyword by way of a method that swaps two string variables (of
course, any two data types could be used here, including int, bool, float, and so on).

// Reference parameters.
public static void SwapStrings(ref string s1, ref string s2)
{
 string tempStr = s1;
 s1 = s2;
 s2 = tempStr;
}

This method can be called as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 string str1 = "Flip";
 string str2 = "Flop";
 Console.WriteLine("Before: {0}, {1} ", str1, str2);
 SwapStrings(ref str1, ref str2);
 Console.WriteLine("After: {0}, {1} ", str1, str2);
 Console.ReadLine();
}

Here, the caller has assigned an initial value to local string data (str1 and str2). After the call to
SwapStrings() returns, str1 now contains the value "Flop", while str2 reports the value "Flip".

Before: Flip, Flop
After: Flop, Flip

 ■ Note the C# ref keyword will be revisited later in this chapter in the section “understanding Value types
and reference types.” as you will see, the behavior of this keyword changes just a bit depending on whether
the argument is a value type or reference type.

Chapter 4 ■ Core C# programming ConstruCts, part ii

114

The params Modifier
C# supports the use of parameter arrays using the params keyword. To understand this language feature, you
must (as the name implies) understand how to manipulate C# arrays. If this is not the case, you might want
to return to this section after you read the section “Understanding C# Arrays” later in this chapter.

The params keyword allows you to pass into a method a variable number of identically typed
parameters (or classes related by inheritance) as a single logical parameter. As well, arguments marked with
the params keyword can be processed if the caller sends in a strongly typed array or a comma- delimited list
of items. Yes, this can be confusing! To clear things up, assume you want to create a function that allows the
caller to pass in any number of arguments and return the calculated average.

If you were to prototype this method to take an array of doubles, this would force the caller to first define
the array, then fill the array, and finally pass it into the method. However, if you define CalculateAverage()
to take a params of double[] data types, the caller can simply pass a comma- delimited list of doubles. The
.NET runtime will automatically package the set of doubles into an array of type double behind the scenes.

// Return average of "some number" of doubles.
static double CalculateAverage(params double[] values)
{
 Console.WriteLine("You sent me {0} doubles.", values.Length);

 double sum = 0;
 if(values.Length == 0)
 return sum;
 for (int i = 0; i < values.Length; i++)
 sum += values[i];
 return (sum / values.Length);
}

This method has been defined to take a parameter array of doubles. What this method is in fact saying
is, “Send me any number of doubles (including zero), and I’ll compute the average.” Given this, you can call
CalculateAverage() in any of the following ways:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 // Pass in a comma-delimited list of doubles…
 double average;
 average = CalculateAverage(4.0, 3.2, 5.7, 64.22, 87.2);
 Console.WriteLine("Average of data is: {0}", average);

 // …or pass an array of doubles.
 double[] data = { 4.0, 3.2, 5.7 };
 average = CalculateAverage(data);
 Console.WriteLine("Average of data is: {0}", average);

 // Average of 0 is 0!
 Console.WriteLine("Average of data is: {0}", CalculateAverage());
 Console.ReadLine();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

115

If you did not make use of the params modifier in the definition of CalculateAverage(), the first
invocation of this method would result in a compiler error, as the compiler would be looking for a version of
CalculateAverage() that took five double arguments.

 ■ Note to avoid any ambiguity, C# demands a method support only a single params argument, which must
be the final argument in the parameter list.

As you might guess, this technique is nothing more than a convenience for the caller, given that the
array is created by the CLR as necessary. By the time the array is within the scope of the method being called,
you are able to treat it as a full-blown .NET array that contains all the functionality of the System.Array base
class library type. Consider the following output:

You sent me 5 doubles.
Average of data is: 32.864
You sent me 3 doubles.
Average of data is: 4.3
You sent me 0 doubles.
Average of data is: 0

Defining Optional Parameters
C# allows you to create methods that can take optional arguments. This technique allows the caller to invoke
a single method while omitting arguments deemed unnecessary, provided the caller is happy with the
specified defaults.

 ■ Note as you will see in Chapter 16, a key motivation for adding optional arguments to C# is to simplify
interacting with Com objects. several microsoft object models (e.g., microsoft office) expose their functionality
via Com objects, many of which were written long ago to make use of optional parameters, which earlier
versions of C# did not support.

To illustrate working with optional arguments, assume you have a method named EnterLogData(),
which defines a single optional parameter.

static void EnterLogData(string message, string owner = "Programmer")
{
 Console.Beep();
 Console.WriteLine("Error: {0}", message);
 Console.WriteLine("Owner of Error: {0}", owner);
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

Chapter 4 ■ Core C# programming ConstruCts, part ii

116

Here, the final string argument has been assigned the default value of "Programmer", via an
assignment within the parameter definition. Given this, you can call EnterLogData() from within Main() in
two manners.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 EnterLogData("Oh no! Grid can't find data");
 EnterLogData("Oh no! I can't find the payroll data", "CFO");

 Console.ReadLine();
}

Because the first invocation of EnterLogData() did not specify a second string argument, you would
find that the programmer is the one responsible for losing data for the grid, while the CFO misplaced the
payroll data (as specified by the second argument in the second method call).

One important thing to be aware of is that the value assigned to an optional parameter must be
known at compile time and cannot be resolved at runtime (if you attempt to do so, you’ll receive compile-
time errors!). To illustrate, assume you want to update EnterLogData() with the following extra optional
parameter:

// Error! The default value for an optional arg must be known
// at compile time!
static void EnterLogData(string message,
 string owner = "Programmer", DateTime timeStamp = DateTime.Now)
{
 Console.Beep();
 Console.WriteLine("Error: {0}", message);
 Console.WriteLine("Owner of Error: {0}", owner);
 Console.WriteLine("Time of Error: {0}", timeStamp);
}

This will not compile because the value of the Now property of the DateTime class is resolved at runtime,
not compile time.

 ■ Note to avoid ambiguity, optional parameters must always be packed onto the end of a method signature.
it is a compiler error to have optional parameters listed before nonoptional parameters.

Invoking Methods Using Named Parameters
Another language feature found in C# is support for named arguments. To be honest, at first glance,
this language construct might appear to do little more than result in confusing code. And to continue
being completely honest, this could be the case! Similar to optional arguments, including support for
named parameters is partially motivated by the desire to simplify the process of working with the COM
interoperability layer (again, see Chapter 16).

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

Chapter 4 ■ Core C# programming ConstruCts, part ii

117

Named arguments allow you to invoke a method by specifying parameter values in any order you
choose. Thus, rather than passing parameters solely by position (as you will do in most cases), you can
choose to specify each argument by name using a colon operator. To illustrate the use of named arguments,
assume you have added the following method to the Program class:

static void DisplayFancyMessage(ConsoleColor textColor,
 ConsoleColor backgroundColor, string message)
{
 // Store old colors to restore after message is printed.
 ConsoleColor oldTextColor = Console.ForegroundColor;
 ConsoleColor oldbackgroundColor = Console.BackgroundColor;

 // Set new colors and print message.
 Console.ForegroundColor = textColor;
 Console.BackgroundColor = backgroundColor;
 Console.WriteLine(message);

 // Restore previous colors.
 Console.ForegroundColor = oldTextColor;
 Console.BackgroundColor = oldbackgroundColor;
}

Now, the way DisplayFancyMessage() was written, you would expect the caller to invoke this method
by passing two ConsoleColor variables followed by a string type. However, using named arguments, the
following calls are completely fine:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Methods *****");
...
 DisplayFancyMessage(message: "Wow! Very Fancy indeed!",
 textColor: ConsoleColor.DarkRed,
 backgroundColor: ConsoleColor.White);

 DisplayFancyMessage(backgroundColor: ConsoleColor.Green,
 message: "Testing...",
 textColor: ConsoleColor.DarkBlue);
 Console.ReadLine();
}

One minor “gotcha” regarding named arguments is that if you begin to invoke a method using
positional parameters, you must list them before any named parameters. In other words, named arguments
must always be packed onto the end of a method call. The following code is an example:

// This is OK, as positional args are listed before named args.
DisplayFancyMessage(ConsoleColor.Blue,
 message: "Testing...",
 backgroundColor: ConsoleColor.White);

// This is an ERROR, as positional args are listed after named args.
DisplayFancyMessage(message: "Testing...",
 backgroundColor: ConsoleColor.White,
 ConsoleColor.Blue);

Chapter 4 ■ Core C# programming ConstruCts, part ii

118

This restriction aside, you might still be wondering when you would ever want to use this language
feature. After all, if you need to specify three arguments to a method, why bother flipping around their
position?

Well, as it turns out, if you have a method that defines optional arguments, this feature can actually be
really helpful. Assume DisplayFancyMessage() has been rewritten to now support optional arguments, as
you have assigned fitting defaults.

static void DisplayFancyMessage(ConsoleColor textColor = ConsoleColor.Blue,
 ConsoleColor backgroundColor = ConsoleColor.White,
 string message = "Test Message")
{
 ...
}

Given that each argument has a default value, named arguments allow the caller to specify only the
parameters for which they do not want to receive the defaults. Therefore, if the caller wants the value
"Hello!" to appear in blue text surrounded by a white background, they can simply specify the following:

DisplayFancyMessage(message: "Hello!");

Or, if the caller wants to see “Test Message” print out with a green background containing blue text, they
can invoke DisplayFancyMessage().

DisplayFancyMessage(backgroundColor: ConsoleColor.Green);

As you can see, optional arguments and named parameters tend to work hand in hand. To wrap up your
examination of building C# methods, I need to address the topic of method overloading.

 ■ Source Code the FunWithmethods application is located in the Chapter 4 subdirectory.

Understanding Method Overloading
Like other modern object-oriented languages, C# allows a method to be overloaded. Simply put, when you
define a set of identically named methods that differ by the number (or type) of parameters, the method in
question is said to be overloaded.

To understand why overloading is so useful, consider life as an old-school Visual Basic 6.0 (VB6)
developer. Assume you are using VB6 to build a set of methods that return the sum of various incoming
data types (Integers, Doubles, and so on). Given that VB6 does not support method overloading, you would
be required to define a unique set of methods that essentially do the same thing (return the sum of the
arguments).

' VB6 code examples.
Public Function AddInts(ByVal x As Integer, ByVal y As Integer) As Integer
 AddInts = x + y
End Function

Public Function AddDoubles(ByVal x As Double, ByVal y As Double) As Double
 AddDoubles = x + y
End Function

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 4 ■ Core C# programming ConstruCts, part ii

119

Public Function AddLongs(ByVal x As Long, ByVal y As Long) As Long
 AddLongs = x + y
End Function

Not only can code such as this become tough to maintain, but the caller must now be painfully aware of
the name of each method. Using overloading, you are able to allow the caller to call a single method named
Add(). Again, the key is to ensure that each version of the method has a distinct set of arguments (methods
differing only by return type are not unique enough).

 ■ Note as explained in Chapter 9, it is possible to build generic methods that take the concept of overloading
to the next level. using generics, you can define type placeholders for a method implementation that are
specified at the time you invoke the member in question.

To check this out firsthand, create a new Console Application project named MethodOverloading. Now,
consider the following class definition:

// C# code.
class Program
{
 static void Main(string[] args)
 {
 }

 // Overloaded Add() method.
 static int Add(int x, int y)
 { return x + y; }

 static double Add(double x, double y)
 { return x + y; }

 static long Add(long x, long y)
 { return x + y; }
}

The caller can now simply invoke Add() with the required arguments, and the compiler is happy to
comply, given that the compiler is able to resolve the correct implementation to invoke with the provided
arguments.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Method Overloading *****\n");

 // Calls int version of Add()
 Console.WriteLine(Add(10, 10));

 // Calls long version of Add()
 Console.WriteLine(Add(900000000000, 900000000000));

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 4 ■ Core C# programming ConstruCts, part ii

120

 // Calls double version of Add()
 Console.WriteLine(Add(4.3, 4.4));

 Console.ReadLine();
}

The Visual Studio IDE provides assistance when calling overloaded methods to boot. When you type
in the name of an overloaded method (such as your good friend Console.WriteLine()), IntelliSense will
list each version of the method in question. Note that you are able to cycle through each version of an
overloaded method using the up and down arrow keys shown in Figure 4-1.

Figure 4-1. Visual Studio IntelliSense for overloaded methods

 ■ Source Code the methodoverloading application is located in the Chapter 4 subdirectory.

That wraps up the initial examination of building methods using the syntax of C#. Next, let’s check out
how to build and manipulate arrays, enumerations, and structures.

Understanding C# Arrays
As I would guess you are already aware, an array is a set of data items, accessed using a numerical index.
More specifically, an array is a set of contiguous data points of the same type (an array of ints, an array
of strings, an array of SportsCars, and so on). Declaring, filling, and accessing an array with C# is quite
straightforward. To illustrate, create a new Console Application project (named FunWithArrays) that
contains a helper method named SimpleArrays(), invoked from within Main().

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Arrays *****");
 SimpleArrays();
 Console.ReadLine();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 4 ■ Core C# programming ConstruCts, part ii

121

 static void SimpleArrays()
 {
 Console.WriteLine("=> Simple Array Creation.");
 // Create an array of ints containing 3 elements indexed 0, 1, 2
 int[] myInts = new int[3];

 // Create a 100 item string array, indexed 0 - 99
 string[] booksOnDotNet = new string[100];
 Console.WriteLine();
 }
}

Look closely at the previous code comments. When declaring a C# array using this syntax, the number
used in the array declaration represents the total number of items, not the upper bound. Also note that the
lower bound of an array always begins at 0. Thus, when you write int[] myInts = new int[3], you end up
with an array holding three elements, indexed at positions 0, 1, 2.

After you have defined an array variable, you are then able to fill the elements index by index, as shown
here in the updated SimpleArrays() method:

static void SimpleArrays()
{
 Console.WriteLine("=> Simple Array Creation.");
 // Create and fill an array of 3 Integers
 int[] myInts = new int[3];
 myInts[0] = 100;
 myInts[1] = 200;
 myInts[2] = 300;

 // Now print each value.
 foreach(int i in myInts)
 Console.WriteLine(i);
 Console.WriteLine();
}

 ■ Note Do be aware that if you declare an array but do not explicitly fill each index, each item will be set to the
default value of the data type (e.g., an array of bools will be set to false or an array of ints will be set to 0).

C# Array Initialization Syntax
In addition to filling an array element by element, you are also able to fill the items of an array using C# array
initialization syntax. To do so, specify each array item within the scope of curly brackets ({}). This syntax can
be helpful when you are creating an array of a known size and want to quickly specify the initial values. For
example, consider the following alternative array declarations:

static void ArrayInitialization()
{
 Console.WriteLine("=> Array Initialization.");

Chapter 4 ■ Core C# programming ConstruCts, part ii

122

 // Array initialization syntax using the new keyword.
 string[] stringArray = new string[]
 { "one", "two", "three" };
 Console.WriteLine("stringArray has {0} elements", stringArray.Length);

 // Array initialization syntax without using the new keyword.
 bool[] boolArray = { false, false, true };
 Console.WriteLine("boolArray has {0} elements", boolArray.Length);

 // Array initialization with new keyword and size.
 int[] intArray = new int[4] { 20, 22, 23, 0 };
 Console.WriteLine("intArray has {0} elements", intArray.Length);
 Console.WriteLine();
}

Notice that when you make use of this “curly-bracket” syntax, you do not need to specify the size of the
array (seen when constructing the stringArray variable), given that this will be inferred by the number of
items within the scope of the curly brackets. Also notice that the use of the new keyword is optional (shown
when constructing the boolArray type).

In the case of the intArray declaration, again recall the numeric value specified represents the number
of elements in the array, not the value of the upper bound. If there is a mismatch between the declared size
and the number of initializers (whether you have too many or too few initializers), you are issued a compile-
time error. The following is an example:

// OOPS! Mismatch of size and elements!
int[] intArray = new int[2] { 20, 22, 23, 0 };

Implicitly Typed Local Arrays
In Chapter 3, you learned about the topic of implicitly typed local variables. Recall that the var keyword
allows you to define a variable, whose underlying type is determined by the compiler. In a similar vein, the
var keyword can be used to define implicitly typed local arrays. Using this technique, you can allocate a
new array variable without specifying the type contained within the array itself (note you must use the new
keyword when using this approach).

static void DeclareImplicitArrays()
{
 Console.WriteLine("=> Implicit Array Initialization.");

 // a is really int[].
 var a = new[] { 1, 10, 100, 1000 };
 Console.WriteLine("a is a: {0}", a.ToString());

 // b is really double[].
 var b = new[] { 1, 1.5, 2, 2.5 };
 Console.WriteLine("b is a: {0}", b.ToString());

 // c is really string[].
 var c = new[] { "hello", null, "world" };
 Console.WriteLine("c is a: {0}", c.ToString());
 Console.WriteLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 4 ■ Core C# programming ConstruCts, part ii

123

Of course, just as when you allocate an array using explicit C# syntax, the items in the array’s
initialization list must be of the same underlying type (e.g., all ints, all strings, or all SportsCars). Unlike
what you might be expecting, an implicitly typed local array does not default to System.Object; thus, the
following generates a compile-time error:

// Error! Mixed types!
var d = new[] { 1, "one", 2, "two", false };

Defining an Array of Objects
In most cases, when you define an array, you do so by specifying the explicit type of item that can be within
the array variable. While this seems quite straightforward, there is one notable twist. As you will come to
understand in Chapter 6, System.Object is the ultimate base class to every type (including fundamental
data types) in the .NET type system. Given this fact, if you were to define an array of System.Object data
types, the subitems could be anything at all. Consider the following ArrayOfObjects() method (which again
can be invoked from Main() for testing):

static void ArrayOfObjects()
{
 Console.WriteLine("=> Array of Objects.");

 // An array of objects can be anything at all.
 object[] myObjects = new object[4];
 myObjects[0] = 10;
 myObjects[1] = false;
 myObjects[2] = new DateTime(1969, 3, 24);
 myObjects[3] = "Form & Void";
 foreach (object obj in myObjects)
 {
 // Print the type and value for each item in array.
 Console.WriteLine("Type: {0}, Value: {1}", obj.GetType(), obj);
 }
 Console.WriteLine();
}

Here, as you are iterating over the contents of myObjects, you print the underlying type of each item
using the GetType() method of System.Object, as well as the value of the current item. Without going
into too much detail regarding System.Object.GetType() at this point in the text, simply understand that
this method can be used to obtain the fully qualified name of the item (Chapter 15 examines the topic
of type information and reflection services in detail). The following output shows the result of calling
ArrayOfObjects():

=> Array of Objects.
Type: System.Int32, Value: 10
Type: System.Boolean, Value: False
Type: System.DateTime, Value: 3/24/1969 12:00:00 AM
Type: System.String, Value: Form & Void

http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 4 ■ Core C# programming ConstruCts, part ii

124

Working with Multidimensional Arrays
In addition to the single-dimension arrays you have seen thus far, C# also supports two varieties of
multidimensional arrays. The first of these is termed a rectangular array, which is simply an array of multiple
dimensions, where each row is of the same length. To declare and fill a multidimensional rectangular array,
proceed as follows:

static void RectMultidimensionalArray()
{
 Console.WriteLine("=> Rectangular multidimensional array.");
 // A rectangular MD array.
 int[,] myMatrix;
 myMatrix = new int[3,4];

 // Populate (3 * 4) array.
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 4; j++)
 myMatrix[i, j] = i * j;

 // Print (3 * 4) array.
 for(int i = 0; i < 3; i++)
 {

 for(int j = 0; j < 4; j++)
 Console.Write(myMatrix[i, j] + "\t");
 Console.WriteLine();
 }
 Console.WriteLine();
}

The second type of multidimensional array is termed a jagged array. As the name implies, jagged arrays
contain some number of inner arrays, each of which may have a different upper limit. Here’s an example:

static void JaggedMultidimensionalArray()
{
 Console.WriteLine("=> Jagged multidimensional array.");
 // A jagged MD array (i.e., an array of arrays).
 // Here we have an array of 5 different arrays.
 int[][] myJagArray = new int[5][];

 // Create the jagged array.
 for (int i = 0; i < myJagArray.Length; i++)
 myJagArray[i] = new int[i + 7];

 // Print each row (remember, each element is defaulted to zero!).
 for(int i = 0; i < 5; i++)
 {
 for(int j = 0; j < myJagArray[i].Length; j++)
 Console.Write(myJagArray[i][j] + " ");
 Console.WriteLine();
 }
 Console.WriteLine();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

125

The output of calling each of the RectMultidimensionalArray() and JaggedMultidimensionalArray()
methods within Main() is shown next:

=> Rectangular multidimensional array:

0 0 0 0
0 1 2 3
0 2 4 6

=> Jagged multidimensional array:

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Arrays As Arguments or Return Values
After you have created an array, you are free to pass it as an argument or receive it as a member return value.
For example, the following PrintArray() method takes an incoming array of ints and prints each member to
the console, while the GetStringArray() method populates an array of strings and returns it to the caller:

static void PrintArray(int[] myInts)
{
 for(int i = 0; i < myInts.Length; i++)
 Console.WriteLine("Item {0} is {1}", i, myInts[i]);
}

static string[] GetStringArray()
{
 string[] theStrings = {"Hello", "from", "GetStringArray"};
 return theStrings;
}

These methods may be invoked as you would expect:

static void PassAndReceiveArrays()
{
 Console.WriteLine("=> Arrays as params and return values.");
 // Pass array as parameter.
 int[] ages = {20, 22, 23, 0} ;
 PrintArray(ages);

 // Get array as return value.
 string[] strs = GetStringArray();
 foreach(string s in strs)
 Console.WriteLine(s);

 Console.WriteLine();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

126

At this point, you should feel comfortable with the process of defining, filling, and examining the
contents of a C# array variable. To complete the picture, let’s now examine the role of the System.Array class.

The System.Array Base Class
Every array you create gathers much of its functionality from the System.Array class. Using these common
members, you are able to operate on an array using a consistent object model. Table 4-2 gives a rundown of
some of the more interesting members (be sure to check the .NET Framework 4.6 SDK documentation for
full details).

Table 4-2. Select Members of System.Array

Member of Array Class Meaning in Life

Clear() This static method sets a range of elements in the array to empty values (0 for
numbers, null for object references, false for Booleans).

CopyTo() This method is used to copy elements from the source array into the destination
array.

Length This property returns the number of items within the array.

Rank This property returns the number of dimensions of the current array.

Reverse() This static method reverses the contents of a one-dimensional array.

Sort() This static method sorts a one-dimensional array of intrinsic types. If the
elements in the array implement the IComparer interface, you can also sort your
custom types (see Chapter 9).

Let’s see some of these members in action. The following helper method makes use of the static
Reverse() and Clear() methods to pump out information about an array of string types to the console:

static void SystemArrayFunctionality()
{
 Console.WriteLine("=> Working with System.Array.");
 // Initialize items at startup.
 string[] gothicBands = {"Tones on Tail", "Bauhaus", "Sisters of Mercy"};

 // Print out names in declared order.
 Console.WriteLine("-> Here is the array:");
 for (int i = 0; i < gothicBands.Length; i++)
 {
 // Print a name.
 Console.Write(gothicBands[i] + ", ");
 }
 Console.WriteLine("\n");

 // Reverse them...
 Array.Reverse(gothicBands);
 Console.WriteLine("-> The reversed array");

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 4 ■ Core C# programming ConstruCts, part ii

127

 // ... and print them.
 for (int i = 0; i < gothicBands.Length; i++)
 {
 // Print a name.
 Console.Write(gothicBands[i] + ", ");
 }
 Console.WriteLine("\n");

 // Clear out all but the first member.
 Console.WriteLine("-> Cleared out all but one...");
 Array.Clear(gothicBands, 1, 2);

 for (int i = 0; i < gothicBands.Length; i++)
 {
 // Print a name.
 Console.Write(gothicBands[i] + ", ");
 }
 Console.WriteLine();
}

If you invoke this method from within Main(), you will get the output shown here:

=> Working with System.Array.
-> Here is the array:
Tones on Tail, Bauhaus, Sisters of Mercy,

-> The reversed array
Sisters of Mercy, Bauhaus, Tones on Tail,

-> Cleared out all but one...
Sisters of Mercy, , ,

Notice that many members of System.Array are defined as static members and are, therefore, called at
the class level (for example, the Array.Sort() and Array.Reverse() methods). Methods such as these are
passed in the array you want to process. Other members of System.Array (such as the Length property) are
bound at the object level; thus, you are able to invoke the member directly on the array.

 ■ Source Code the FunWitharrays application is located in the Chapter 4 subdirectory.

Understanding the enum Type
Recall from Chapter 1 that the .NET type system is composed of classes, structures, enumerations, interfaces,
and delegates. To begin exploration of these types, let’s check out the role of the enumeration (or simply,
enum) using a new Console Application project named FunWithEnums.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 4 ■ Core C# programming ConstruCts, part ii

128

 ■ Note Do not confuse the term enum with enumerator; they are completely different concepts. an enum is
a custom data type of name-value pairs. an enumerator is a class or structure that implements a .net interface
named IEnumerable. typically, this interface is implemented on collection classes, as well as the System.Array
class. as you will see later in Chapter 8, objects that support IEnumerable can work within the foreach loop.

When building a system, it is often convenient to create a set of symbolic names that map to known
numerical values. For example, if you are creating a payroll system, you might want to refer to the type of
employees using constants such as vice president, manager, contractor, and grunt. C# supports the notion
of custom enumerations for this very reason. For example, here is an enumeration named EmpType (you can
define this in the same file as your Program class, right before the class definition):

// A custom enumeration.
enum EmpType
{
 Manager, // = 0
 Grunt, // = 1
 Contractor, // = 2
 VicePresident // = 3
}

The EmpType enumeration defines four named constants, corresponding to discrete numerical values.
By default, the first element is set to the value zero (0), followed by an n+1 progression. You are free to
change the initial value as you see fit. For example, if it made sense to number the members of EmpType as
102 through 105, you could do so as follows:

// Begin with 102.
enum EmpType
{
 Manager = 102,
 Grunt, // = 103
 Contractor, // = 104
 VicePresident // = 105
}

Enumerations do not necessarily need to follow a sequential ordering and do not need to have unique
values. If (for some reason or another) it makes sense to establish your EmpType as shown here, the compiler
continues to be happy:

// Elements of an enumeration need not be sequential!
enum EmpType
{
 Manager = 10,
 Grunt = 1,
 Contractor = 100,
 VicePresident = 9
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 4 ■ Core C# programming ConstruCts, part ii

129

Controlling the Underlying Storage for an enum
By default, the storage type used to hold the values of an enumeration is a System.Int32 (the C# int);
however, you are free to change this to your liking. C# enumerations can be defined in a similar manner
for any of the core system types (byte, short, int, or long). For example, if you want to set the underlying
storage value of EmpType to be a byte rather than an int, you can write the following:

// This time, EmpType maps to an underlying byte.
enum EmpType : byte
{
 Manager = 10,
 Grunt = 1,
 Contractor = 100,
 VicePresident = 9
}

Changing the underlying type of an enumeration can be helpful if you are building a .NET application
that will be deployed to a low-memory device and need to conserve memory wherever possible. Of course,
if you do establish your enumeration to use a byte as storage, each value must be within its range! For
example, the following version of EmpType will result in a compiler error, as the value 999 cannot fit within
the range of a byte:

// Compile-time error! 999 is too big for a byte!
enum EmpType : byte
{
 Manager = 10,
 Grunt = 1,
 Contractor = 100,
 VicePresident = 999
}

Declaring enum Variables
Once you have established the range and storage type of your enumeration, you can use it in place of so-
called magic numbers. Because enumerations are nothing more than a user-defined data type, you are able
to use them as function return values, method parameters, local variables, and so forth. Assume you have a
method named AskForBonus(), taking an EmpType variable as the sole parameter. Based on the value of the
incoming parameter, you will print out a fitting response to the pay bonus request.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("**** Fun with Enums *****");
 // Make an EmpType variable.
 EmpType emp = EmpType.Contractor;
 AskForBonus(emp);
 Console.ReadLine();
 }

Chapter 4 ■ Core C# programming ConstruCts, part ii

130

 // Enums as parameters.
 static void AskForBonus(EmpType e)
 {
 switch (e)
 {
 case EmpType.Manager:
 Console.WriteLine("How about stock options instead?");
 break;
 case EmpType.Grunt:
 Console.WriteLine("You have got to be kidding...");
 break;
 case EmpType.Contractor:
 Console.WriteLine("You already get enough cash...");
 break;
 case EmpType.VicePresident:
 Console.WriteLine("VERY GOOD, Sir!");
 break;
 }
 }
}

Notice that when you are assigning a value to an enum variable, you must scope the enum name
(EmpType) to the value (Grunt). Because enumerations are a fixed set of name-value pairs, it is illegal to set an
enum variable to a value that is not defined directly by the enumerated type.

static void ThisMethodWillNotCompile()
{
 // Error! SalesManager is not in the EmpType enum!
 EmpType emp = EmpType.SalesManager;

 // Error! Forgot to scope Grunt value to EmpType enum!
 emp = Grunt;
}

The System.Enum Type
The interesting thing about .NET enumerations is that they gain functionality from the System.Enum
class type. This class defines a number of methods that allow you to interrogate and transform a given
enumeration. One helpful method is the static Enum.GetUnderlyingType(), which, as the name implies,
returns the data type used to store the values of the enumerated type (System.Byte in the case of the current
EmpType declaration).

static void Main(string[] args)
{
 Console.WriteLine("**** Fun with Enums *****");
 // Make a contractor type.
 EmpType emp = EmpType.Contractor;
 AskForBonus(emp);

Chapter 4 ■ Core C# programming ConstruCts, part ii

131

 // Print storage for the enum.
 Console.WriteLine("EmpType uses a {0} for storage",
 Enum.GetUnderlyingType(emp.GetType()));
 Console.ReadLine();
}

If you were to consult the Visual Studio object browser, you would be able to verify that the Enum.
GetUnderlyingType() method requires you to pass in a System.Type as the first parameter. As fully
examined in Chapter 15, Type represents the metadata description of a given .NET entity.

One possible way to obtain metadata (as shown previously) is to use the GetType() method, which is
common to all types in the .NET base class libraries. Another approach is to use the C# typeof operator.
One benefit of doing so is that you do not need to have a variable of the entity you want to obtain a metadata
description of.

// This time use typeof to extract a Type.
Console.WriteLine("EmpType uses a {0} for storage",
 Enum.GetUnderlyingType(typeof(EmpType)));

Dynamically Discovering an enum’s Name/Value Pairs
Beyond the Enum.GetUnderlyingType() method, all C# enumerations support a method named
ToString(), which returns the string name of the current enumeration’s value. The following code is an
example:

static void Main(string[] args)
{
 Console.WriteLine("**** Fun with Enums *****");
 EmpType emp = EmpType.Contractor;
 AskForBonus(emp);

 // Prints out "emp is a Contractor".
 Console.WriteLine("emp is a {0}.", emp.ToString());
 Console.ReadLine();
}

If you are interested in discovering the value of a given enumeration variable, rather than its name, you
can simply cast the enum variable against the underlying storage type. The following is an example:

static void Main(string[] args)
{
 Console.WriteLine("**** Fun with Enums *****");
 EmpType emp = EmpType.Contractor;
 ...

 // Prints out "Contractor = 100".
 Console.WriteLine("{0} = {1}", emp.ToString(), (byte)emp);
 Console.ReadLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 4 ■ Core C# programming ConstruCts, part ii

132

 ■ Note the static Enum.Format() method provides a finer level of formatting options by specifying a
desired format flag. Consult the .net Framework 4.6 sDK documentation for full details of the
System.Enum.Format() method.

System.Enum also defines another static method named GetValues(). This method returns an instance
of System.Array. Each item in the array corresponds to a member of the specified enumeration. Consider
the following method, which will print out each name-value pair within any enumeration you pass in as a
parameter:

// This method will print out the details of any enum.
static void EvaluateEnum(System.Enum e)
{
 Console.WriteLine("=> Information about {0}", e.GetType().Name);

 Console.WriteLine("Underlying storage type: {0}",
 Enum.GetUnderlyingType(e.GetType()));

 // Get all name/value pairs for incoming parameter.
 Array enumData = Enum.GetValues(e.GetType());
 Console.WriteLine("This enum has {0} members.", enumData.Length);

 // Now show the string name and associated value, using the D format
 // flag (see Chapter 3).
 for(int i = 0; i < enumData.Length; i++)
 {
 Console.WriteLine("Name: {0}, Value: {0:D}",
 enumData.GetValue(i));
 }
 Console.WriteLine();
}

To test this new method, update your Main() method to create variables of several enumeration types
declared in the System namespace (as well as an EmpType enumeration for good measure). The following
code is an example:

static void Main(string[] args)
{
 Console.WriteLine("**** Fun with Enums *****");
 ...
 EmpType e2 = EmpType.Contractor;

 // These types are enums in the System namespace.
 DayOfWeek day = DayOfWeek.Monday;
 ConsoleColor cc = ConsoleColor.Gray;

 EvaluateEnum(e2);
 EvaluateEnum(day);
 EvaluateEnum(cc);
 Console.ReadLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 4 ■ Core C# programming ConstruCts, part ii

133

Some partial output is shown here:

=> Information about DayOfWeek
Underlying storage type: System.Int32
This enum has 7 members.
Name: Sunday, Value: 0
Name: Monday, Value: 1
Name: Tuesday, Value: 2
Name: Wednesday, Value: 3
Name: Thursday, Value: 4
Name: Friday, Value: 5
Name: Saturday, Value: 6

As you will see over the course of this text, enumerations are used extensively throughout the .NET
base class libraries. For example, ADO.NET makes use of numerous enumerations to represent the state
of a database connection (e.g., opened or closed) or the state of a row in a DataTable (e.g., changed, new,
or detached). Therefore, when you make use of any enumeration, always remember that you are able to
interact with the name-value pairs using the members of System.Enum.

 ■ Source Code the FunWithenums project is located under the Chapter 4 subdirectory.

Understanding the Structure (aka Value Type)
Now that you understand the role of enumeration types, let’s examine the use of .NET structures (or simply
structs). Structure types are well suited for modeling mathematical, geometrical, and other “atomic” entities
in your application. A structure (such as an enumeration) is a user-defined type; however, structures are not
simply a collection of name-value pairs. Rather, structures are types that can contain any number of data
fields and members that operate on these fields.

 ■ Note if you have a background in oop, you can think of a structure as a “lightweight class type,” given that
structures provide a way to define a type that supports encapsulation but cannot be used to build a family of
related types. When you need to build a family of related types through inheritance, you will need to make use
of class types.

On the surface, the process of defining and using structures is simple, but as they say, the devil
is in the details. To begin understanding the basics of structure types, create a new project named
FunWithStructures. In C#, structures are defined using the struct keyword. Define a new structure named
Point, which defines two member variables of type int and a set of methods to interact with said data.

struct Point
{
 // Fields of the structure.
 public int X;
 public int Y;

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 4 ■ Core C# programming ConstruCts, part ii

134

 // Add 1 to the (X, Y) position.
 public void Increment()
 {
 X++; Y++;
 }

 // Subtract 1 from the (X, Y) position.
 public void Decrement()
 {
 X--; Y--;
 }

 // Display the current position.
 public void Display()
 {
 Console.WriteLine("X = {0}, Y = {1}", X, Y);
 }
}

Here, you have defined your two integer fields (X and Y) using the public keyword, which is an access
control modifier (Chapter 5 furthers this discussion). Declaring data with the public keyword ensures the
caller has direct access to the data from a given Point variable (via the dot operator).

 ■ Note it is typically considered bad style to define public data within a class or structure. rather, you will
want to define private data, which can be accessed and changed using public properties. these details will be
examined in Chapter 5.

Here is a Main() method that takes the Point type out for a test-drive:

static void Main(string[] args)
{
 Console.WriteLine("***** A First Look at Structures *****\n");

 // Create an initial Point.
 Point myPoint;
 myPoint.X = 349;
 myPoint.Y = 76;
 myPoint.Display();

 // Adjust the X and Y values.
 myPoint.Increment();
 myPoint.Display();
 Console.ReadLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 4 ■ Core C# programming ConstruCts, part ii

135

The output is as you would expect.

***** A First Look at Structures *****

X = 349, Y = 76
X = 350, Y = 77

Creating Structure Variables
When you want to create a structure variable, you have a variety of options. Here, you simply create a Point
variable and assign each piece of public field data before invoking its members. If you do not assign each
piece of public field data (X and Y in this case) before using the structure, you will receive a compiler error.

// Error! Did not assign Y value.
Point p1;
p1.X = 10;
p1.Display();

// OK! Both fields assigned before use.
Point p2;
p2.X = 10;
p2.Y = 10;
p2.Display();

As an alternative, you can create structure variables using the C# new keyword, which will invoke the
structure’s default constructor. By definition, a default constructor does not take any arguments. The benefit
of invoking the default constructor of a structure is that each piece of field data is automatically set to its
default value.

// Set all fields to default values
// using the default constructor.
Point p1 = new Point();

// Prints X=0,Y=0.
p1.Display();

It is also possible to design a structure with a custom constructor. This allows you to specify the values
of field data upon variable creation, rather than having to set each data member field by field. Chapter 5 will
provide a detailed examination of constructors; however, to illustrate, update the Point structure with the
following code:

struct Point
{
 // Fields of the structure.
 public int X;
 public int Y;

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 4 ■ Core C# programming ConstruCts, part ii

136

 // A custom constructor.
 public Point(int XPos, int YPos)
 {
 X = XPos;
 Y = YPos;
 }
...
}

With this, you could now create Point variables, as follows:

// Call custom constructor.
Point p2 = new Point(50, 60);

// Prints X=50,Y=60.
p2.Display();

As mentioned, working with structures on the surface is quite simple. However, to deepen your
understanding of this type, you need to explore the distinction between a .NET value type and a .NET
reference type.

 ■ Source Code the FunWithstructures project is located in the Chapter 4 subdirectory.

Understanding Value Types and Reference Types

 ■ Note the following discussion of value types and reference types assumes that you have a background in
object-oriented programming. if this is not the case, you might want to skip to the “understanding C# nullable
types” section of this chapter and return to this section after you have read Chapters 5 and 6.

Unlike arrays, strings, or enumerations, C# structures do not have an identically named representation
in the .NET library (that is, there is no System.Structure class) but are implicitly derived from System.
ValueType. Simply put, the role of System.ValueType is to ensure that the derived type (e.g., any structure) is
allocated on the stack, rather than the garbage-collected heap. Simply put, data allocated on the stack can be
created and destroyed quickly, as its lifetime is determined by the defining scope. Heap-allocated data, on
the other hand, is monitored by the .NET garbage collector and has a lifetime that is determined by a large
number of factors, which will be examined in Chapter 13.

Functionally, the only purpose of System.ValueType is to override the virtual methods defined by
System.Object to use value-based, versus reference-based, semantics. As you might know, overriding is
the process of changing the implementation of a virtual (or possibly abstract) method defined within a
base class. The base class of ValueType is System.Object. In fact, the instance methods defined by System.
ValueType are identical to those of System.Object.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Chapter 4 ■ Core C# programming ConstruCts, part ii

137

// Structures and enumerations implicitly extend System.ValueType.
public abstract class ValueType : object
{
 public virtual bool Equals(object obj);
 public virtual int GetHashCode();
 public Type GetType();
 public virtual string ToString();
}

Given that value types are using value-based semantics, the lifetime of a structure (which includes all
numerical data types [int, float], as well as any enum or structure) is predictable. When a structure variable
falls out of the defining scope, it is removed from memory immediately.

// Local structures are popped off
// the stack when a method returns.
static void LocalValueTypes()
{
 // Recall! "int" is really a System.Int32 structure.
 int i = 0;

 // Recall! Point is a structure type.
 Point p = new Point();
} // "i" and "p" popped off the stack here!

Value Types, References Types, and the Assignment Operator
When you assign one value type to another, a member-by-member copy of the field data is achieved. In the
case of a simple data type such as System.Int32, the only member to copy is the numerical value. However,
in the case of your Point, the X and Y values are copied into the new structure variable. To illustrate, create
a new Console Application project named ValueAndReferenceTypes and then copy your previous Point
definition into your new namespace. Next, add the following method to your Program type:

// Assigning two intrinsic value types results in
// two independent variables on the stack.
static void ValueTypeAssignment()
{
 Console.WriteLine("Assigning value types\n");

 Point p1 = new Point(10, 10);
 Point p2 = p1;

 // Print both points.
 p1.Display();
 p2.Display();

 // Change p1.X and print again. p2.X is not changed.
 p1.X = 100;
 Console.WriteLine("\n=> Changed p1.X\n");
 p1.Display();
 p2.Display();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

138

Here, you have created a variable of type Point (named p1) that is then assigned to another Point (p2).
Because Point is a value type, you have two copies of the MyPoint type on the stack, each of which can be
independently manipulated. Therefore, when you change the value of p1.X, the value of p2.X is unaffected.

Assigning value types
X = 10, Y = 10
X = 10, Y = 10
=> Changed p1.X
X = 100, Y = 10
X = 10, Y = 10

In stark contrast to value types, when you apply the assignment operator to reference types (meaning
all class instances), you are redirecting what the reference variable points to in memory. To illustrate, create
a new class type named PointRef that has the same members as the Point structures, beyond renaming the
constructor to match the class name.

// Classes are always reference types.
class PointRef
{
 // Same members as the Point structure...
 // Be sure to change your constructor name to PointRef!
 public PointRef(int XPos, int YPos)
 {
 X = XPos;
 Y = YPos;
 }
}

Now, use your PointRef type within the following new method. Note that beyond using the PointRef
class, rather than the Point structure, the code is identical to the ValueTypeAssignment() method.

static void ReferenceTypeAssignment()
{
 Console.WriteLine("Assigning reference types\n");
 PointRef p1 = new PointRef(10, 10);
 PointRef p2 = p1;

 // Print both point refs.
 p1.Display();
 p2.Display();

 // Change p1.X and print again.
 p1.X = 100;
 Console.WriteLine("\n=> Changed p1.X\n");
 p1.Display();
 p2.Display();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

139

In this case, you have two references pointing to the same object on the managed heap. Therefore, when
you change the value of X using the p1 reference, p2.X reports the same value. Assuming you have called this
new method within Main(), your output should look like the following:

Assigning reference types
X = 10, Y = 10
X = 10, Y = 10
=> Changed p1.X
X = 100, Y = 10
X = 100, Y = 10

Value Types Containing Reference Types
Now that you have a better feeling for the basic differences between value types and reference types, let’s
examine a more complex example. Assume you have the following reference (class) type that maintains an
informational string that can be set using a custom constructor:

class ShapeInfo
{
 public string infoString;
 public ShapeInfo(string info)
 {
 infoString = info;
 }
}

Now assume that you want to contain a variable of this class type within a value type named Rectangle.
To allow the caller to set the value of the inner ShapeInfo member variable, you also provide a custom
constructor. Here is the complete definition of the Rectangle type:

struct Rectangle
{
 // The Rectangle structure contains a reference type member.
 public ShapeInfo rectInfo;

 public int rectTop, rectLeft, rectBottom, rectRight;

 public Rectangle(string info, int top, int left, int bottom, int right)
 {
 rectInfo = new ShapeInfo(info);
 rectTop = top; rectBottom = bottom;
 rectLeft = left; rectRight = right;
 }

 public void Display()
 {
 Console.WriteLine("String = {0}, Top = {1}, Bottom = {2}, " +
 "Left = {3}, Right = {4}",
 rectInfo.infoString, rectTop, rectBottom, rectLeft, rectRight);
 }
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

140

At this point, you have contained a reference type within a value type. The million-dollar question now
becomes, what happens if you assign one Rectangle variable to another? Given what you already know
about value types, you would be correct in assuming that the integer data (which is indeed a structure—
System.Int32) should be an independent entity for each Rectangle variable. But what about the internal
reference type? Will the object’s state be fully copied, or will the reference to that object be copied? To
answer this question, define the following method and invoke it from Main():

static void ValueTypeContainingRefType()
{
 // Create the first Rectangle.
 Console.WriteLine("-> Creating r1");
 Rectangle r1 = new Rectangle("First Rect", 10, 10, 50, 50);

 // Now assign a new Rectangle to r1.
 Console.WriteLine("-> Assigning r2 to r1");
 Rectangle r2 = r1;

 // Change some values of r2.
 Console.WriteLine("-> Changing values of r2");
 r2.rectInfo.infoString = "This is new info!";
 r2.rectBottom = 4444;

 // Print values of both rectangles.
 r1.Display();
 r2.Display();
}

The output can be seen in the following:

-> Creating r1
-> Assigning r2 to r1
-> Changing values of r2
String = This is new info!, Top = 10, Bottom = 50, Left = 10, Right = 50
String = This is new info!, Top = 10, Bottom = 4444, Left = 10, Right = 50

As you can see, when you change the value of the informational string using the r2 reference, the r1
reference displays the same value. By default, when a value type contains other reference types, assignment
results in a copy of the references. In this way, you have two independent structures, each of which contains
a reference pointing to the same object in memory (i.e., a shallow copy). When you want to perform a deep
copy, where the state of internal references is fully copied into a new object, one approach is to implement
the ICloneable interface (as you will do in Chapter 8).

 ■ Source Code the Valueandreferencetypes project is located in the Chapter 4 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 4 ■ Core C# programming ConstruCts, part ii

141

Passing Reference Types by Value
Reference types or value types can, obviously, be passed as parameters to methods. However, passing
a reference type (e.g., a class) by reference is quite different from passing it by value. To understand the
distinction, assume you have a simple Person class defined in a new Console Application project named
RefTypeValTypeParams, defined as follows:

class Person
{
 public string personName;
 public int personAge;

 // Constructors.
 public Person(string name, int age)
 {
 personName = name;
 personAge = age;
 }
 public Person(){}

 public void Display()
 {
 Console.WriteLine("Name: {0}, Age: {1}", personName, personAge);
 }
}

Now, what if you create a method that allows the caller to send in the Person object by value (note the
lack of parameter modifiers, such as out or ref)?

static void SendAPersonByValue(Person p)
{
 // Change the age of "p"?
 p.personAge = 99;

 // Will the caller see this reassignment?
 p = new Person("Nikki", 99);
}

Notice how the SendAPersonByValue() method attempts to reassign the incoming Person reference to a
new Person object, as well as change some state data. Now let’s test this method using the following Main()
method:

static void Main(string[] args)
{
 // Passing ref-types by value.
 Console.WriteLine("***** Passing Person object by value *****");
 Person fred = new Person("Fred", 12);
 Console.WriteLine("\nBefore by value call, Person is:");
 fred.Display();

Chapter 4 ■ Core C# programming ConstruCts, part ii

142

 SendAPersonByValue(fred);
 Console.WriteLine("\nAfter by value call, Person is:");
 fred.Display();
 Console.ReadLine();
}

The following is the output of this call:

***** Passing Person object by value *****

Before by value call, Person is:
Name: Fred, Age: 12

After by value call, Person is:
Name: Fred, Age: 99

As you can see, the value of personAge has been modified. This behavior seems to fly in the face of
what it means to pass a parameter “by value.” Given that you were able to change the state of the incoming
Person, what was copied? The answer: a copy of the reference to the caller’s object. Therefore, as the
SendAPersonByValue() method is pointing to the same object as the caller, it is possible to alter the object’s
state data. What is not possible is to reassign what the reference is pointing to.

Passing Reference Types by Reference
Now assume you have a SendAPersonByReference() method, which passes a reference type by reference
(note the ref parameter modifier).

static void SendAPersonByReference(ref Person p)
{
 // Change some data of "p".
 p.personAge = 555;

 // "p" is now pointing to a new object on the heap!
 p = new Person("Nikki", 999);
}

As you might expect, this allows complete flexibility of how the callee is able to manipulate the
incoming parameter. Not only can the callee change the state of the object, but if it so chooses, it may also
reassign the reference to a new Person object. Now ponder the following updated Main() method:

static void Main(string[] args)
{
 // Passing ref-types by ref.
 Console.WriteLine("***** Passing Person object by reference *****");
 ...

 Person mel = new Person("Mel", 23);
 Console.WriteLine("Before by ref call, Person is:");
 mel.Display();

Chapter 4 ■ Core C# programming ConstruCts, part ii

143

 SendAPersonByReference(ref mel);
 Console.WriteLine("After by ref call, Person is:");
 mel.Display();
 Console.ReadLine();
}

Notice the following output:

***** Passing Person object by reference *****
Before by ref call, Person is:
Name: Mel, Age: 23
After by ref call, Person is:
Name: Nikki, Age: 999

As you can see, an object named Mel returns after the call as an object named Nikki, as the method was
able to change what the incoming reference pointed to in memory. The golden rule to keep in mind when
passing reference types is the following:

•	 If a reference type is passed by reference, the callee may change the values of the
object’s state data, as well as the object it is referencing.

•	 If a reference type is passed by value, the callee may change the values of the object’s
state data but not the object it is referencing.

 ■ Source Code the reftypeValtypeparams project is located in the Chapter 4 subdirectory.

Final Details Regarding Value Types and Reference Types
To wrap up this topic, consider the information in Table 4-3, which summarizes the core distinctions
between value types and reference types.

Table 4-3. Value Types and Reference Types Comparison

Intriguing Question Value Type Reference Type

Where are objects allocated? Allocated on the stack. Allocated on the managed heap.

How is a variable represented? Value type variables are local
copies.

Reference type variables are
pointing to the memory occupied by
the allocated instance.

What is the base type? Implicitly extends
System.ValueType.

Can derive from any other type
(except System. ValueType), as
long as that type is not “sealed”
(more details on this in Chapter 6).

Can this type function as a
base to other types?

No. Value types are always sealed
and cannot be inherited from.

Yes. If the type is not sealed, it may
function as a base to other types.

(continued)

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 4 ■ Core C# programming ConstruCts, part ii

144

Despite their differences, value types and reference types both have the ability to implement interfaces
and may support any number of fields, methods, overloaded operators, constants, properties, and events.

Understanding C# Nullable Types
To wrap up this chapter, let’s examine the role of nullable data type using a final Console Application project
named NullableTypes. As you know, C# data types have a fixed range and are represented as a type in the
System namespace. For example, the System.Boolean data type can be assigned a value from the set {true,
false}. Now, recall that all the numerical data types (as well as the Boolean data type) are value types. Value
types can never be assigned the value of null, as that is used to establish an empty object reference.

static void Main(string[] args)
{
 // Compiler errors!
 // Value types cannot be set to null!
 bool myBool = null;
 int myInt = null;

 // OK! Strings are reference types.
 string myString = null;
}

C# supports the concept of nullable data types. Simply put, a nullable type can represent all the values
of its underlying type, plus the value null. Thus, if you declare a nullable bool, it could be assigned a value
from the set {true, false, null}. This can be extremely helpful when working with relational databases,
given that it is quite common to encounter undefined columns in database tables. Without the concept of a
nullable data type, there is no convenient manner in C# to represent a numerical data point with no value.

To define a nullable variable type, the question mark symbol (?) is suffixed to the underlying data
type. Do note that this syntax is legal only when applied to value types. If you attempt to create a nullable
reference type (including strings), you are issued a compile-time error. Like a non-nullable variable, local
nullable variables must be assigned an initial value before you can use them.

Intriguing Question Value Type Reference Type

What is the default parameter
passing behavior?

Variables are passed by value
(i.e., a copy of the variable is
passed into the called function).

For reference types, the reference is
copied by value.

Can this type override
System.Object.Finalize()?

No. Yes, indirectly (more details on this
in Chapter 13).

Can I define constructors for
this type?

Yes, but the default constructor
is reserved (i.e., your custom
constructors must all have
arguments).

But, of course!

When do variables of this
type die?

When they fall out of the defining
scope.

When the object is garbage
collected.

Table 4-3. (continued)

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Chapter 4 ■ Core C# programming ConstruCts, part ii

145

static void LocalNullableVariables()
{
 // Define some local nullable variables.
 int? nullableInt = 10;
 double? nullableDouble = 3.14;
 bool? nullableBool = null;
 char? nullableChar = 'a';
 int?[] arrayOfNullableInts = new int?[10];

 // Error! Strings are reference types!
 // string? s = "oops";
}

In C#, the ? suffix notation is a shorthand for creating an instance of the generic System.Nullable<T>
structure type. Although you will not examine generics until Chapter 9, it is important to understand that the
System.Nullable<T> type provides a set of members that all nullable types can make use of.

For example, you are able to programmatically discover whether the nullable variable indeed has been
assigned a null value using the HasValue property or the != operator. The assigned value of a nullable type
may be obtained directly or via the Value property. In fact, given that the ? suffix is just a shorthand for using
Nullable<T>, you could implement your LocalNullableVariables() method as follows:

static void LocalNullableVariablesUsingNullable()
{
 // Define some local nullable types using Nullable<T>.
 Nullable<int> nullableInt = 10;
 Nullable<double> nullableDouble = 3.14;
 Nullable<bool> nullableBool = null;
 Nullable<char> nullableChar = 'a';
 Nullable<int>[] arrayOfNullableInts = new Nullable<int>[10];
}

Working with Nullable Types
As stated, nullable data types can be particularly useful when you are interacting with databases, given that
columns in a data table may be intentionally empty (e.g., undefined). To illustrate, assume the following
class, which simulates the process of accessing a database that has a table containing two columns that
may be null. Note that the GetIntFromDatabase() method is not assigning a value to the nullable integer
member variable, while GetBoolFromDatabase() is assigning a valid value to the bool? member.

class DatabaseReader
{
 // Nullable data field.
 public int? numericValue = null;
 public bool? boolValue = true;

 // Note the nullable return type.
 public int? GetIntFromDatabase()
 { return numericValue; }

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 4 ■ Core C# programming ConstruCts, part ii

146

 // Note the nullable return type.
 public bool? GetBoolFromDatabase()
 { return boolValue; }
}

Now, assume the following Main() method, which invokes each member of the DatabaseReader class
and discovers the assigned values using the HasValue and Value members, as well as using the C# equality
operator (not equal, to be exact):

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Nullable Data *****\n");
 DatabaseReader dr = new DatabaseReader();

 // Get int from "database".
 int? i = dr.GetIntFromDatabase();
 if (i.HasValue)
 Console.WriteLine("Value of 'i' is: {0}", i.Value);
 else
 Console.WriteLine("Value of 'i' is undefined.");
 // Get bool from "database".
 bool? b = dr.GetBoolFromDatabase();
 if (b != null)
 Console.WriteLine("Value of 'b' is: {0}", b.Value);
 else
 Console.WriteLine("Value of 'b' is undefined.");
 Console.ReadLine();
}

The Null Coalescing Operator
The next aspect to be aware of is any variable that might have a null value (i.e., a reference-type variable
or a nullable value-type variable) can make use of the C# ?? operator, which is formally termed the null
coalescing operator. This operator allows you to assign a value to a nullable type if the retrieved value is in
fact null. For this example, assume you want to assign a local nullable integer to 100 if the value returned
from GetIntFromDatabase() is null (of course, this method is programmed to always return null, but I am
sure you get the general idea).

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Nullable Data *****\n");
 DatabaseReader dr = new DatabaseReader();
...
 // If the value from GetIntFromDatabase() is null,
 // assign local variable to 100.
 int myData = dr.GetIntFromDatabase() ?? 100;
 Console.WriteLine("Value of myData: {0}", myData);
 Console.ReadLine();
}

Chapter 4 ■ Core C# programming ConstruCts, part ii

147

The benefit of using the ?? operator is that it provides a more compact version of a traditional if/else
condition. However, if you want, you could have authored the following functionally equivalent code to
ensure that if a value comes back as null, it will indeed be set to the value 100:

// Long-hand notation not using ?? syntax.
int? moreData = dr.GetIntFromDatabase();
if (!moreData.HasValue)
 moreData = 100;
Console.WriteLine("Value of moreData: {0}", moreData);

The Null Conditional Operator
When you are writing software, it is common to check incoming parameters, values returned from type
members (methods, properties, indexers) against the value null. For example, let’s assume you have a
method that takes a string array as a single parameter. To be safe, you might want to test for null before
proceeding. In that way, you will not get a runtime error if the array is empty. The following would be a
traditional way to perform such a check:

static void TesterMethod(string[] args)
{
 // We should check for null before accessing the array data!
 if (args != null)
 {
 Console.WriteLine($"You sent me {args.Length} arguments.");
 }
}

Here, you use a conditional scope to ensure that the Length property of the string array will not be
accessed if the array is null. If the caller failed to make an array of data and called your method like so, you
are still safe and will not trigger a runtime error:

TesterMethod(null);

With the current release of the C# language, it is now possible to leverage the null conditional operator
token (a question mark placed after a variable type but before an access operator) to simplify the previous
error checking. Rather than explicitly building a conditional statement to check for null, you can now write
the following:

static void TesterMethod(string[] args)
{
 // We should check for null before accessing the array data!
 Console.WriteLine($"You sent me {args?.Length} arguments.");
}

In this case, you are not using a conditional statement. Rather, you are suffixing the ? operator directly
after the string array variable. If this is null, its call to the Length property will not throw a runtime error. If
you want to print an actual value, you could leverage the null coalescing operator to assign a default value
as so:

Console.WriteLine($"You sent me {args?.Length ?? 0} arguments.");

Chapter 4 ■ Core C# programming ConstruCts, part ii

148

There are some additional areas of coding where the new C# 6.0 null conditional operator will be quite
handy, especially when working with delegates and events. However, since those topics are not addressed
until later in the book (see Chapter 10), you will hold on any additional use cases. With this, your initial
investigation of the C# programming language is complete! In Chapter 5, you will begin to dig into the details
of object-oriented development.

 ■ Source Code the nullabletypes application is located in the Chapter 4 subdirectory.

Summary
This chapter began with an examination of several C# keywords that allow you to build custom methods.
Recall that by default parameters are passed by value; however, you may pass a parameter by reference if you
mark it with ref or out. You also learned about the role of optional or named parameters and how to define
and invoke methods taking parameter arrays.

After you investigated the topic of method overloading, the bulk of this chapter examined several details
regarding how arrays, enumerations, and structures are defined in C# and represented within the .NET
base class libraries. Along the way, you examined several details regarding value types and reference types,
including how they respond when passing them as parameters to methods and how to interact with nullable
data types and variables that might be null (e.g., reference-type variables and nullable value-type variables)
using the ? and ?? operators.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Part III

Object-Oriented Programming
with C#

151

Chapter 5

Understanding Encapsulation

In the Chapters 3 and 4, you investigated a number of core syntactical constructs that are commonplace
to any .NET application you might be developing. Here, you will begin your examination of the object-
oriented capabilities of C#. The first order of business is to examine the process of building well-defined
class types that support any number of constructors. After you understand the basics of defining classes and
allocating objects, the remainder of this chapter will examine the role of encapsulation. Along the way, you
will learn how to define class properties and come to understand the details of the static keyword, object
initialization syntax, read-only fields, constant data, and partial classes.

Introducing the C# Class Type
As far as the .NET platform is concerned, the most fundamental programming construct is the class
type. Formally, a class is a user-defined type that is composed of field data (often called member
variables) and members that operate on this data (such as constructors, properties, methods, events,
and so forth). Collectively, the set of field data represents the “state” of a class instance (otherwise
known as an object). The power of object-oriented languages, such as C#, is that by grouping data and
related functionality in a unified class definition, you are able to model your software after entities in
the real world.

To get the ball rolling, create a new C# Console Application project named SimpleClassExample.
Next, insert a new class file (named Car.cs) into your project using the Project ➤ Add Class menu
selection. Choose the Class icon from the resulting dialog box, as shown in Figure 5-1, and click the
Add button.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 5 ■ Understanding enCapsUlation

152

A class is defined in C# using the class keyword. Here is the simplest possible declaration:

class Car
{
}

After you have defined a class type, you will need to consider the set of member variables that will be
used to represent its state. For example, you might decide that cars maintain an int data type to represent
the current speed and a string data type to represent the car’s friendly pet name. Given these initial design
notes, update your Car class as follows:

class Car
{
 // The 'state' of the Car.
 public string petName;
 public int currSpeed;
}

Notice that these member variables are declared using the public access modifier. Public members of
a class are directly accessible once an object of this type has been created. Recall the term object is used to
describe an instance of a given class type created using the new keyword.

 ■ Note Field data of a class should seldom (if ever) be defined as public. to preserve the integrity of your
state data, it is a far better design to define data as private (or possibly protected) and allow controlled access
to the data via properties (as shown later in this chapter). however, to keep this first example as simple as
possible, public data fits the bill.

Figure 5-1. Inserting a new C# class type

Chapter 5 ■ Understanding enCapsUlation

153

After you have defined the set of member variables that represent the state of the class, the next design
step is to establish the members that model its behavior. For this example, the Car class will define one
method named SpeedUp() and another named PrintState(). Update your class as so:

class Car
{
 // The 'state' of the Car.
 public string petName;
 public int currSpeed;

 // The functionality of the Car.
 public void PrintState()
 {
 Console.WriteLine("{0} is going {1} MPH.", petName, currSpeed);
 }

 public void SpeedUp(int delta)
 {
 currSpeed += delta;
 }
}

PrintState() is more or less a diagnostic function that will simply dump the current state of a given Car
object to the command window. SpeedUp() will increase the speed of the Car by the amount specified by the
incoming int parameter. Now, update your Main() method in the Program class with the following code:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");

 // Allocate and configure a Car object.
 Car myCar = new Car();
 myCar.petName = "Henry";
 myCar.currSpeed = 10;

 // Speed up the car a few times and print out the
 // new state.
 for (int i = 0; i <= 10; i++)
 {
 myCar.SpeedUp(5);
 myCar.PrintState();
 }
 Console.ReadLine();
}

Chapter 5 ■ Understanding enCapsUlation

154

After you run your program, you will see that the Car variable (myCar) maintains its current state
throughout the life of the application, as shown in the following code:

***** Fun with Class Types *****

Henry is going 15 MPH.
Henry is going 20 MPH.
Henry is going 25 MPH.
Henry is going 30 MPH.
Henry is going 35 MPH.
Henry is going 40 MPH.
Henry is going 45 MPH.
Henry is going 50 MPH.
Henry is going 55 MPH.
Henry is going 60 MPH.
Henry is going 65 MPH.

Allocating Objects with the new Keyword
As shown in the previous code example, objects must be allocated into memory using the new keyword. If
you do not use the new keyword and attempt to use your class variable in a subsequent code statement, you
will receive a compiler error. For example, the following Main() method will not compile:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");

 // Compiler error! Forgot to use 'new' to create object!
 Car myCar;
 myCar.petName = "Fred";
}

To correctly create an object using the new keyword, you may define and allocate a Car object on a single
line of code.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");
 Car myCar = new Car();
 myCar.petName = "Fred";
}

Chapter 5 ■ Understanding enCapsUlation

155

As an alternative, if you want to define and allocate a class instance on separate lines of code, you may
do so as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");
 Car myCar;
 myCar = new Car();
 myCar.petName = "Fred";
}

Here, the first code statement simply declares a reference to a yet-to-be-determined Car object. It is not
until you assign a reference to an object that this reference points to a valid object in memory.

In any case, at this point you have a trivial class that defines a few points of data and some basic
operations. To enhance the functionality of the current Car class, you need to understand the role of
constructors.

Understanding Constructors
Given that objects have state (represented by the values of an object’s member variables), a programmer will
typically want to assign relevant values to the object’s field data before use. Currently, the Car class demands
that the petName and currSpeed fields be assigned on a field-by-field basis. For the current example, this
is not too problematic, given that you have only two public data points. However, it is not uncommon for
a class to have dozens of fields to contend with. Clearly, it would be undesirable to author 20 initialization
statements to set 20 points of data!

Thankfully, C# supports the use of constructors, which allow the state of an object to be established at
the time of creation. A constructor is a special method of a class that is called indirectly when creating an
object using the new keyword. However, unlike a “normal” method, constructors never have a return value
(not even void) and are always named identically to the class they are constructing.

The Role of the Default Constructor
Every C# class is provided with a “freebie” default constructor that you can redefine if need be. By definition,
a default constructor never takes arguments. After allocating the new object into memory, the default
constructor ensures that all field data of the class is set to an appropriate default value (see Chapter 3 for
information regarding the default values of C# data types).

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 5 ■ Understanding enCapsUlation

156

If you are not satisfied with these default assignments, you may redefine the default constructor to suit
your needs. To illustrate, update your C# Car class as follows:

class Car
{
 // The 'state' of the Car.
 public string petName;
 public int currSpeed;

 // A custom default constructor.
 public Car()
 {
 petName = "Chuck";
 currSpeed = 10;
 }
...
}

In this case, you are forcing all Car objects to begin life named Chuck at a rate of 10 mph. With this, you
are able to create a Car object set to these default values as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");

 // Invoking the default constructor.
 Car chuck = new Car();

 // Prints "Chuck is going 10 MPH."
 chuck.PrintState();
...
}

Defining Custom Constructors
Typically, classes define additional constructors beyond the default. In doing so, you provide the object user
with a simple and consistent way to initialize the state of an object directly at the time of creation. Ponder the
following update to the Car class, which now supports a total of three constructors:

class Car
{
 // The 'state' of the Car.
 public string petName;
 public int currSpeed;

 // A custom default constructor.
 public Car()
 {
 petName = "Chuck";
 currSpeed = 10;
 }

Chapter 5 ■ Understanding enCapsUlation

157

 // Here, currSpeed will receive the
 // default value of an int (zero).
 public Car(string pn)
 {
 petName = pn;
 }

 // Let caller set the full state of the Car.
 public Car(string pn, int cs)
 {
 petName = pn;
 currSpeed = cs;
 }
...
}

Keep in mind that what makes one constructor different from another (in the eyes of the C# compiler) is
the number of and/or type of constructor arguments. Recall from Chapter 4, when you define a method of the
same name that differs by the number or type of arguments, you have overloaded the method. Thus, the Car
class has overloaded the constructor to provide a number of ways to create an object at the time of declaration.
In any case, you are now able to create Car objects using any of the public constructors. Here’s an example:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");

 // Make a Car called Chuck going 10 MPH.
 Car chuck = new Car();
 chuck.PrintState();

 // Make a Car called Mary going 0 MPH.
 Car mary = new Car("Mary");
 mary.PrintState();

 // Make a Car called Daisy going 75 MPH.
 Car daisy = new Car("Daisy", 75);
 daisy.PrintState();
...
}Encapsulation:constructors:

The Default Constructor Revisited
As you have just learned, all classes are provided with a free default constructor. Thus, if you insert a new
class into your current project named Motorcycle, defined like so:

class Motorcycle
{
 public void PopAWheely()
 {
 Console.WriteLine("Yeeeeeee Haaaaaeewww!");
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 5 ■ Understanding enCapsUlation

158

you are able to create an instance of the Motorcycle type via the default constructor out of the box.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Class Types *****\n");
 Motorcycle mc = new Motorcycle();
 mc.PopAWheely();
...
}

However, as soon as you define a custom constructor with any number of parameters, the default
constructor is silently removed from the class and is no longer available. Think of it this way: if you do not
define a custom constructor, the C# compiler grants you a default in order to allow the object user to allocate
an instance of your type with field data set to the correct default values. However, when you define a unique
constructor, the compiler assumes you have taken matters into your own hands.

Therefore, if you want to allow the object user to create an instance of your type with the default
constructor, as well as your custom constructor, you must explicitly redefine the default. To this end,
understand that in a vast majority of cases, the implementation of the default constructor of a class is
intentionally empty, as all you require is the ability to create an object with default values. Consider the
following update to the Motorcycle class:

class Motorcycle
{
 public int driverIntensity;

 public void PopAWheely()
 {
 for (int i = 0; i <= driverIntensity; i++)
 {
 Console.WriteLine("Yeeeeeee Haaaaaeewww!");
 }
 }

 // Put back the default constructor, which will
 // set all data members to default vaules.
 public Motorcycle() {}

 // Our custom constructor.
 public Motorcycle(int intensity)
 {
 driverIntensity = intensity;
 }
}

Chapter 5 ■ Understanding enCapsUlation

159

 ■ Note now that you better understand the role of class constructors, here is a nice shortcut. the Visual
studio ide provides the ctor code snippet. When you type ctor and press the tab key twice, the ide will
automatically define a custom default constructor. You can then add custom parameters and implementation
logic. give it a try.

The Role of the this Keyword
C# supplies a this keyword that provides access to the current class instance. One possible use of the this
keyword is to resolve scope ambiguity, which can arise when an incoming parameter is named identically
to a data field of the class. Of course, you could simply adopt a naming convention that does not result in
such ambiguity; however, to illustrate this use of the this keyword, update your Motorcycle class with a
new string field (named name) to represent the driver’s name. Next, add a method named SetDriverName()
implemented as follows:

class Motorcycle
{
 public int driverIntensity;

 // New members to represent the name of the driver.
 public string name;
 public void SetDriverName(string name)
 {
 name = name;
 }
...
}

Although this code will compile just fine, Visual Studio will display a warning message informing you
that you have assigned a variable back to itself! To illustrate, update Main() to call SetDriverName() and
then print out the value of the name field. You might be surprised to find that the value of the name field is an
empty string!

// Make a Motorcycle with a rider named Tiny?
Motorcycle c = new Motorcycle(5);
c.SetDriverName("Tiny");
c.PopAWheely();
Console.WriteLine("Rider name is {0}", c.name); // Prints an empty name value!

The problem is that the implementation of SetDriverName() is assigning the incoming parameter back
to itself given that the compiler assumes name is referring to the variable currently in the method scope rather
than the name field at the class scope. To inform the compiler that you want to set the current object’s name
data field to the incoming name parameter, simply use this to resolve the ambiguity.

public void SetDriverName(string name)
{
 this.name = name;
}

Chapter 5 ■ Understanding enCapsUlation

160

Do understand that if there is no ambiguity, you are not required to make use of the this keyword when
a class wants to access its own data fields or members, as this is implied. For example, if you rename the
string data member from name to driverName (which will also require you to update your Main() method),
the use of this is optional as there is no longer a scope ambiguity.

class Motorcycle
{
 public int driverIntensity;
 public string driverName;

 public void SetDriverName(string name)
 {
 // These two statements are functionally the same.
 driverName = name;
 this.driverName = name;
 }
...
}

Even though there is little to be gained when using this in unambiguous situations, you might still
find this keyword useful when implementing class members, as IDEs such as Visual Studio will enable
IntelliSense when this is specified. This can be helpful when you have forgotten the name of a class
member and want to quickly recall the definition. Consider Figure 5-2.

Figure 5-2. The IntelliSense of this

Chapter 5 ■ Understanding enCapsUlation

161

Chaining Constructor Calls Using this
Another use of the this keyword is to design a class using a technique termed constructor chaining. This
design pattern is helpful when you have a class that defines multiple constructors. Given that constructors
often validate the incoming arguments to enforce various business rules, it can be quite common to find
redundant validation logic within a class’s constructor set. Consider the following updated Motorcycle:

class Motorcycle
{
 public int driverIntensity;
 public string driverName;

 public Motorcycle() { }

 // Redundent constructor logic!
 public Motorcycle(int intensity)
 {
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 }

 public Motorcycle(int intensity, string name)
 {
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 driverName = name;
 }
...
}

Here (perhaps in an attempt to ensure the safety of the rider) each constructor is ensuring that
the intensity level is never greater than 10. While this is all well and good, you do have redundant code
statements in two constructors. This is less than ideal, as you are now required to update code in multiple
locations if your rules change (for example, if the intensity should not be greater than 5 rather than 10).

Chapter 5 ■ Understanding enCapsUlation

162

One way to improve the current situation is to define a method in the Motorcycle class that will validate
the incoming argument(s). If you were to do so, each constructor could make a call to this method before
making the field assignment(s). While this approach does allow you to isolate the code you need to update
when the business rules change, you are now dealing with the following redundancy:

class Motorcycle
{
 public int driverIntensity;
 public string driverName;

 // Constructors.
 public Motorcycle() { }

 public Motorcycle(int intensity)
 {
 SetIntensity(intensity);
 }

 public Motorcycle(int intensity, string name)
 {
 SetIntensity(intensity);
 driverName = name;
 }

 public void SetIntensity(int intensity)
 {
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 }
...
}

A cleaner approach is to designate the constructor that takes the greatest number of arguments as the
“master constructor” and have its implementation perform the required validation logic. The remaining
constructors can make use of the this keyword to forward the incoming arguments to the master
constructor and provide any additional parameters as necessary. In this way, you need to worry only about
maintaining a single constructor for the entire class, while the remaining constructors are basically empty.

Here is the final iteration of the Motorcycle class (with one additional constructor for the sake of
illustration). When chaining constructors, note how the this keyword is “dangling” off the constructor’s
declaration (via a colon operator) outside the scope of the constructor itself.

Chapter 5 ■ Understanding enCapsUlation

163

class Motorcycle
{
 public int driverIntensity;
 public string driverName;

 // Constructor chaining.
 public Motorcycle() {}
 public Motorcycle(int intensity)
 : this(intensity, "") {}
 public Motorcycle(string name)
 : this(0, name) {}

 // This is the 'master' constructor that does all the real work.
 public Motorcycle(int intensity, string name)
 {
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 driverName = name;
 }
...
}

Understand that using the this keyword to chain constructor calls is never mandatory. However,
when you make use of this technique, you do tend to end up with a more maintainable and concise class
definition. Again, using this technique, you can simplify your programming tasks, as the real work is
delegated to a single constructor (typically the constructor that has the most parameters), while the other
constructors simply “pass the buck.”

 ■ Note recall from Chapter 4 that C# supports optional parameters. if you use optional parameters in your
class constructors, you can achieve the same benefits as constructor chaining, with considerably less code. You
will see how to do so in just a moment.

Observing Constructor Flow
On a final note, do know that once a constructor passes arguments to the designated master constructor
(and that constructor has processed the data), the constructor invoked originally by the caller will finish
executing any remaining code statements. To clarify, update each of the constructors of the Motorcycle class
with a fitting call to Console.WriteLine().

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 5 ■ Understanding enCapsUlation

164

class Motorcycle
{
 public int driverIntensity;
 public string driverName;

 // Constructor chaining.
 public Motorcycle()
 {
 Console.WriteLine("In default ctor");
 }

 public Motorcycle(int intensity)
 : this(intensity, "")
 {
 Console.WriteLine("In ctor taking an int");
 }

 public Motorcycle(string name)
 : this(0, name)
 {
 Console.WriteLine("In ctor taking a string");
 }

 // This is the 'master' constructor that does all the real work.
 public Motorcycle(int intensity, string name)
 {
 Console.WriteLine("In master ctor ");
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 driverName = name;
 }
...
}

Now, ensure your Main() method exercises a Motorcycle object as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with class Types *****\n");

 // Make a Motorcycle.
 Motorcycle c = new Motorcycle(5);
 c.SetDriverName("Tiny");
 c.PopAWheely();
 Console.WriteLine("Rider name is {0}", c.driverName);
 Console.ReadLine();
}

Chapter 5 ■ Understanding enCapsUlation

165

With this, ponder the output from the previous Main() method.

***** Fun with class Types *****

In master ctor
In ctor taking an int
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Rider name is Tiny

As you can see, the flow of constructor logic is as follows:

•	 You create your object by invoking the constructor requiring a single int.

•	 This constructor forwards the supplied data to the master constructor and provides
any additional startup arguments not specified by the caller.

•	 The master constructor assigns the incoming data to the object’s field data.

•	 Control is returned to the constructor originally called and executes any remaining
code statements.

The nice thing about using constructor chaining is that this programming pattern will work with any
version of the C# language and .NET platform. However, if you are targeting .NET 4.0 and higher, you can
further simplify your programming tasks by making use of optional arguments as an alternative to traditional
constructor chaining.

Revisiting Optional Arguments
In Chapter 4, you learned about optional and named arguments. Recall that optional arguments allow you
to define supplied default values to incoming arguments. If the caller is happy with these defaults, they are
not required to specify a unique value; however, they may do so to provide the object with custom data.
Consider the following version of Motorcycle, which now provides a number of ways to construct objects
using a single constructor definition:

class Motorcycle
{
 // Single constructor using optional args.
 public Motorcycle(int intensity = 0, string name = "")
 {
 if (intensity > 10)
 {
 intensity = 10;
 }
 driverIntensity = intensity;
 driverName = name;
 }
...
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 5 ■ Understanding enCapsUlation

166

With this one constructor, you are now able to create a new Motorcycle object using zero, one, or two
arguments. Recall that named argument syntax allows you to essentially skip over acceptable default settings
(see Chapter 3).

static void MakeSomeBikes()
{
 // driverName = "", driverIntensity = 0
 Motorcycle m1 = new Motorcycle();
 Console.WriteLine("Name= {0}, Intensity= {1}",
 m1.driverName, m1.driverIntensity);

 // driverName = "Tiny", driverIntensity = 0
 Motorcycle m2 = new Motorcycle(name:"Tiny");
 Console.WriteLine("Name= {0}, Intensity= {1}",
 m2.driverName, m2.driverIntensity);

 // driverName = "", driverIntensity = 7
 Motorcycle m3 = new Motorcycle(7);
 Console.WriteLine("Name= {0}, Intensity= {1}",
 m3.driverName, m3.driverIntensity);
}

In any case, at this point you are able to define a class with field data (aka member variables) and
various operations such as methods and constructors. Next up, let’s formalize the role of the static
keyword.

 ■ Source Code the simpleClassexample project is included in the Chapter 5 subdirectory.

Understanding the static Keyword
A C# class may define any number of static members, which are declared using the static keyword. When
you do so, the member in question must be invoked directly from the class level, rather than from an object
reference variable. To illustrate the distinction, consider your good friend System.Console. As you have
seen, you do not invoke the WriteLine() method from the object level, as shown here:

// Compiler error! WriteLine() is not an object level method!
Console c = new Console();
c.WriteLine("I can't be printed...");

but instead simply prefix the class name to the static WriteLine() member.

// Correct! WriteLine() is a static method.
Console.WriteLine("Much better! Thanks...");

Simply put, static members are items that are deemed (by the class designer) to be so commonplace
that there is no need to create an instance of the class before invoking the member. While any class can
define static members, they are quite commonly found within utility classes. By definition, a utility class is a
class that does not maintain any object-level state and is not created with the new keyword. Rather, a utility
class exposes all functionality as class-level (aka static) members.

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

167

For example, if you were to use the Visual Studio object browser (via the View ➤ Object Browser menu
item) to view the System namespace of mscorlib.dll, you would see that all the members of the Console,
Math, Environment, and GC classes (among others) expose all their functionality via static members. These
are but a few utility classes found within the .NET base class libraries.

Again, be aware that static members are not only found in utility classes; they can be part of any class
definition at all. Just remember that static members promote a given item to the class level rather than the
object level. As you will see over the next few sections, the static keyword can be applied to the following:

•	 Data of a class

•	 Methods of a class

•	 Properties of a class

•	 A constructor

•	 The entire class definition

•	 In conjunction with the C# using keyword

Let’s see each of our options, beginning with the concept of static data.

 ■ Note You will examine the role of static properties later in this chapter, while examining the properties
themselves.

Defining Static Field Data
Most of the time when designing a class, you define data as instance-level data, said another way, as
nonstatic data. When you define instance-level data, you know that every time you create a new object, the
object maintains its own independent copy of the data. In contrast, when you define static data of a class, the
memory is shared by all objects of that category.

To see the distinction, create a new Console Application project named StaticDataAndMembers. Now,
insert a new class into your project named SavingsAccount. Begin by defining a point of instance-level data
(to model the current balance) and a custom constructor to set the initial balance.

// A simple savings account class.
class SavingsAccount
{
 // Instance-level data.
 public double currBalance;

 public SavingsAccount(double balance)
 {
 currBalance = balance;
 }
}

When you create SavingsAccount objects, memory for the currBalance field is allocated for each
object. Thus, you could create five different SavingsAccount objects, each with their own unique balance.
Furthermore, if you change the balance on one account, the other objects are not affected.

Chapter 5 ■ Understanding enCapsUlation

168

Static data, on the other hand, is allocated once and shared among all objects of the same class
category. Add a static point of data named currInterestRate to the SavingsAccount class, which is set to a
default value of 0.04.

// A simple savings account class.
class SavingsAccount
{
 // Instance-level data.
 public double currBalance;

 // A static point of data.
 public static double currInterestRate = 0.04;

 public SavingsAccount(double balance)
 {
 currBalance = balance;
 }
}

If you were to create three instances of SavingsAccount in Main() as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Static Data *****\n");
 SavingsAccount s1 = new SavingsAccount(50);
 SavingsAccount s2 = new SavingsAccount(100);
 SavingsAccount s3 = new SavingsAccount(10000.75);
 Console.ReadLine();
}

the in-memory data allocation would look something like Figure 5-3.

Figure 5-3. Static data is allocated once and shared among all instances of the class

Chapter 5 ■ Understanding enCapsUlation

169

Here, the assumption is that all saving accounts should have the same interest rate. Because static data
is shared by all objects of the same category, if you were to change it in any way, all objects will “see”
the new value the next time they access the static data, as they are all essentially looking at the same
memory location. To understand how to change (or obtain) static data, you need to consider the role of
static methods.

Defining Static Methods
Let’s update the SavingsAccount class to define two static methods. The first static method
(GetInterestRate()) will return the current interest rate, while the second static method
(SetInterestRate()) will allow you to change the interest rate.

// A simple savings account class.
class SavingsAccount
{
 // Instance-level data.
 public double currBalance;

 // A static point of data.
 public static double currInterestRate = 0.04;

 public SavingsAccount(double balance)
 {
 currBalance = balance;
 }

 // Static members to get/set interest rate.
 public static void SetInterestRate(double newRate)
 { currInterestRate = newRate; }

 public static double GetInterestRate()
 { return currInterestRate; }
}

Now, observe the following usage:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Static Data *****\n");
 SavingsAccount s1 = new SavingsAccount(50);
 SavingsAccount s2 = new SavingsAccount(100);

 // Print the current interest rate.
 Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());

 // Make new object, this does NOT 'reset' the interest rate.
 SavingsAccount s3 = new SavingsAccount(10000.75);
 Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());

 Console.ReadLine();
}

Chapter 5 ■ Understanding enCapsUlation

170

The output of the previous Main() is shown here:

***** Fun with Static Data *****

Interest Rate is: 0.04
Interest Rate is: 0.04

As you can see, when you create new instances of the SavingsAccount class, the value of the static data
is not reset, as the CLR will allocate the static data into memory exactly one time. After that point, all objects
of type SavingsAccount operate on the same value for the static currInterestRate field.

When designing any C# class, one of your design challenges is to determine which pieces of data should
be defined as static members and which should not. While there are no hard and fast rules, remember that
a static data field is shared by all objects of that type. Therefore, if you are defining a point of data that all
objects should share between them, static is the way to go.

Consider what would happen if the interest rate variable were not defined using the static keyword.
This would mean every SavingsAccount object would have its own copy of the currInterestRate field.
Now, assume you created 100 SavingsAccount objects and needed to change the interest rate. That would
require you to call the SetInterestRate() method 100 times! Clearly, this would not be a useful way to
model “shared data.” Again, static data is perfect when you have a value that should be common to all
objects of that category.

 ■ Note it is a compiler error for a static member to reference nonstatic members in its implementation.
on a related note, it is an error to use the this keyword on a static member because this implies an object!

Defining Static Constructors
A typical constructor is used to set the value of an object’s instance-level data at the time of creation.
However, what would happen if you attempted to assign the value of a static point of data in a typical
constructor? You might be surprised to find that the value is reset each time you create a new object!

To illustrate, assume you have updated the SavingsAccount class constructor as follows (also note you
are no longer assigning the currInterestRate field inline):

class SavingsAccount
{
 public double currBalance;
 public static double currInterestRate;

 // Notice that our constructor is setting
 // the static currInterestRate value.
 public SavingsAccount(double balance)
 {
 currInterestRate = 0.04; // This is static data!
 currBalance = balance;
 }
...
}

Chapter 5 ■ Understanding enCapsUlation

171

Now, assume you have authored the following code in Main():

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Static Data *****\n");

 // Make an account.
 SavingsAccount s1 = new SavingsAccount(50);

 // Print the current interest rate.
 Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());

 // Try to change the interest rate via property.
 SavingsAccount.SetInterestRate(0.08);

 // Make a second account.
 SavingsAccount s2 = new SavingsAccount(100);

 // Should print 0.08...right??
 Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());
 Console.ReadLine();
}

If you executed the previous Main() method, you would see that the currInterestRate variable is reset
each time you create a new SavingsAccount object, and it is always set to 0.04. Clearly, setting the value of
static data in a normal instance-level constructor sort of defeats the whole purpose. Every time you make a
new object, the class-level data is reset! One approach to setting a static field is to use member initialization
syntax, as you did originally.

class SavingsAccount
{
 public double currBalance;

 // A static point of data.
 public static double currInterestRate = 0.04;
...
}

This approach will ensure the static field is assigned only once, regardless of how many objects you
create. However, what if the value for your static data needed to be obtained at runtime? For example, in a
typical banking application, the value of an interest rate variable would be read from a database or external
file. Performing such tasks usually requires a method scope such as a constructor to execute the code
statements.

Chapter 5 ■ Understanding enCapsUlation

172

For this reason, C# allows you to define a static constructor, which allows you to safely set the values of
your static data. Consider the following update to your class:

class SavingsAccount
{
 public double currBalance;
 public static double currInterestRate;

 public SavingsAccount(double balance)
 {
 currBalance = balance;
 }

 // A static constructor!
 static SavingsAccount()
 {
 Console.WriteLine("In static ctor!");
 currInterestRate = 0.04;
 }
...
}

Simply put, a static constructor is a special constructor that is an ideal place to initialize the values of
static data when the value is not known at compile time (e.g., you need to read in the value from an external
file, read in the value from a database, generate a random number, or whatnot). If you were to rerun the
previous Main() method, you would find the output you expect. Note that the message “In static ctor!” prints
only one time, as the CLR calls all static constructors before the first use (and never calls them again for that
instance of the application).

***** Fun with Static Data *****

In static ctor!
Interest Rate is: 0.04
Interest Rate is: 0.08

Here are a few points of interest regarding static constructors:

•	 A given class may define only a single static constructor. In other words, the static
constructor cannot be overloaded.

•	 A static constructor does not take an access modifier and cannot take any
parameters.

•	 A static constructor executes exactly one time, regardless of how many objects of the
type are created.

•	 The runtime invokes the static constructor when it creates an instance of the class or
before accessing the first static member invoked by the caller.

•	 The static constructor executes before any instance-level constructors.

Chapter 5 ■ Understanding enCapsUlation

173

Given this modification, when you create new SavingsAccount objects, the value of the static data is
preserved, as the static member is set only one time within the static constructor, regardless of the number
of objects created.

 ■ Source Code the staticdataandMembers project is included in the Chapter 5 subdirectory.

Defining Static Classes
It is also possible to apply the static keyword directly on the class level. When a class has been defined as
static, it is not creatable using the new keyword, and it can contain only members or data fields marked with
the static keyword. If this is not the case, you receive compiler errors.

 ■ Note recall that a class (or structure) that exposes only static functionality is often termed a utility class.
When designing a utility class, it is good practice to apply the static keyword to the class definition.

At first glance, this might seem like a fairly odd feature, given that a class that cannot be created does
not appear all that helpful. However, if you create a class that contains nothing but static members and/
or constant data, the class has no need to be allocated in the first place! To illustrate, create a new Console
Application project named SimpleUtilityClass. Next, define the following class:

// Static classes can only
// contain static members!
static class TimeUtilClass
{
 public static void PrintTime()
 { Console.WriteLine(DateTime.Now.ToShortTimeString()); }

 public static void PrintDate()
 { Console.WriteLine(DateTime.Today.ToShortDateString()); }
}

Given that this class has been defined with the static keyword, you cannot create an instance of
TimeUtilClass using the new keyword. Rather, all functionality is exposed from the class level.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Static Classes *****\n");

 // This is just fine.
 TimeUtilClass.PrintDate();
 TimeUtilClass.PrintTime();

 // Compiler error! Can't create instance of static classes!
 TimeUtilClass u = new TimeUtilClass ();

 Console.ReadLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

174

Importing Static Members via the C# using Keyword
The latest version of the C# compiler supports a new way to use the using keyword. It is now possible to
define a C# using directive, which will import all static members into the declaring code file. To illustrate,
consider the C# file currently defining the utility class. Because you are making calls to the WriteLine()
method of the Console class, as well as the Now property of the DateTime class, you must have a using
statement for the System namespace. Since the members of these classes are all static, you could alter your
code file with the following static using directives:

// Import the static members of Console and DateTime.
using static System.Console;
using static System.DateTime;

With these “static imports,” the remainder of your code file is able to directly use the static members
of the Console and DateTime class, without the need to prefix the defining class (although that would still
be just fine, provided that you have imported the System namespace). For example, you could update your
utility class like so:

static class TimeUtilClass
{
 public static void PrintTime()
 { WriteLine(Now.ToShortTimeString()); }

 public static void PrintDate()
 { WriteLine(Today.ToShortDateString()); }
}

You could argue that this iteration of the class is a bit cleaner in that you have a slightly smaller code
base. A more realistic example of code simplification might involve a C# class that is making substantial
use of the System.Math class (or some other utility class). Since this class has nothing but static members,
it could be somewhat easier to have a static using statement for this type and then directly call into the
members of the Math class in your code file.

However, be aware that overuse of static import statements could result in potential confusion. First,
what if multiple classes define a WriteLine() method? The compiler is confused and so are others reading
your code. Second, unless a developer is familiar with the .NET code libraries, he or she might not know that
WriteLine() is a member of the Console class. Unless a person were to notice the set of static imports at the
top of a C# code file, they might be quite unsure where this method is actually defined. For these reasons,
I will limit the use of static using statements in this text.

In any case, at this point in the chapter, you should feel comfortable defining simple class types
containing constructors, fields, and various static (and nonstatic) members. Now that you have the basics
of class construction under your belt, you can formally investigate the three pillars of object-oriented
programming.

 ■ Source Code the simpleUtilityClass project is located in the Chapter 5 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

175

Defining the Pillars of OOP
All object-oriented languages (C#, Java, C++, Visual Basic, etc.) must contend with three core principles,
often called the pillars of object-oriented programming (OOP).

•	 Encapsulation: How does this language hide an object’s internal implementation
details and preserve data integrity?

•	 Inheritance: How does this language promote code reuse?

•	 Polymorphism: How does this language let you treat related objects in a similar way?

Before digging into the syntactic details of each pillar, it is important that you understand the basic role
of each. Here is an overview of each pillar, which will be examined in full detail over the remainder of this
chapter and the next.

The Role of Encapsulation
The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a class named
DatabaseReader, which has two primary methods named Open() and Close().

// Assume this class encapsulates the details of opening and closing a database.
DatabaseReader dbReader = new DatabaseReader();
dbReader.Open(@"C:\AutoLot.mdf");

// Do something with data file and close the file.
dbReader.Close();

The fictitious DatabaseReader class encapsulates the inner details of locating, loading, manipulating,
and closing a data file. Programmers love encapsulation, as this pillar of OOP keeps coding tasks simpler.
There is no need to worry about the numerous lines of code that are working behind the scenes to carry out
the work of the DatabaseReader class. All you do is create an instance and send the appropriate messages
(e.g., “Open the file named AutoLot.mdf located on my C drive”).

Closely related to the notion of encapsulating programming logic is the idea of data protection. Ideally,
an object’s state data should be specified using the private (or possibly protected) keyword. In this way,
the outside world must ask politely in order to change or obtain the underlying value. This is a good thing, as
publicly declared data points can easily become corrupted (ideally by accident rather than intent!). You will
formally examine this aspect of encapsulation in just a bit.

The Role of Inheritance
The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new class
definitions based on existing class definitions. In essence, inheritance allows you to extend the behavior of
a base (or parent) class by inheriting core functionality into the derived subclass (also called a child class).
Figure 5-4 shows a simple example.

You can read the diagram in Figure 5-4 as “A Hexagon is-a Shape that is-an Object.” When you have
classes related by this form of inheritance, you establish “is-a” relationships between types. The “is-a”
relationship is termed inheritance.

Chapter 5 ■ Understanding enCapsUlation

176

Here, you can assume that Shape defines some number of members that are common to all descendants
(maybe a value to represent the color to draw the shape and other values to represent the height and width).
Given that the Hexagon class extends Shape, it inherits the core functionality defined by Shape and Object, as
well as defines additional hexagon-related details of its own (whatever those may be).

 ■ Note Under the .net platform, System.Object is always the topmost parent in any class hierarchy, which
defines some general functionality for all types (fully described in Chapter 6).

There is another form of code reuse in the world of OOP: the containment/delegation model also
known as the “has-a” relationship or aggregation. This form of reuse is not used to establish parent-child
relationships. Rather, the “has-a” relationship allows one class to define a member variable of another class
and expose its functionality (if required) to the object user indirectly.

For example, assume you are again modeling an automobile. You might want to express the idea that
a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or vice versa (a Car
“is-a” Radio? I think not!). Rather, you have two independent classes working together, where the Car class
creates and exposes the Radio’s functionality.

class Radio
{
 public void Power(bool turnOn)
 {
 Console.WriteLine("Radio on: {0}", turnOn);
 }
}

class Car
{
 // Car 'has-a' Radio.
 private Radio myRadio = new Radio();

Figure 5-4. The “is-a” relationship

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 5 ■ Understanding enCapsUlation

177

 public void TurnOnRadio(bool onOff)
 {
 // Delegate call to inner object.
 myRadio.Power(onOff);
 }
}

Notice that the object user has no clue that the Car class is using an inner Radio object.

static void Main(string[] args)
{
 // Call is forwarded to Radio internally.
 Car viper = new Car();
 viper.TurnOnRadio(false);
}

The Role of Polymorphism
The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related objects in
a similar manner. Specifically, this tenant of an object-oriented language allows a base class to define a
set of members (formally termed the polymorphic interface) that are available to all descendants. A class’s
polymorphic interface is constructed using any number of virtual or abstract members (see Chapter 6 for
full details).

In a nutshell, a virtual member is a member in a base class that defines a default implementation that
may be changed (or more formally speaking, overridden) by a derived class. In contrast, an abstract method
is a member in a base class that does not provide a default implementation but does provide a signature.
When a class derives from a base class defining an abstract method, it must be overridden by a derived
type. In either case, when derived types override the members defined by a base class, they are essentially
redefining how they respond to the same request.

To preview polymorphism, let’s provide some details behind the shapes hierarchy shown in Figure 5-5.
Assume that the Shape class has defined a virtual method named Draw() that takes no parameters. Given
that every shape needs to render itself in a unique manner, subclasses such as Hexagon and Circle are free
to override this method to their own liking (see Figure 5-5).

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 5 ■ Understanding enCapsUlation

178

After a polymorphic interface has been designed, you can begin to make various assumptions in
your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an array of
Shape types could contain anything deriving from this base class. Furthermore, given that Shape defines
a polymorphic interface to all derived types (the Draw() method in this example), you can assume each
member in the array has this functionality.

Consider the following Main() method, which instructs an array of Shape-derived types to render
themselves using the Draw() method:

class Program
{
 static void Main(string[] args)
 {
 Shape[] myShapes = new Shape[3];
 myShapes[0] = new Hexagon();
 myShapes[1] = new Circle();
 myShapes[2] = new Hexagon();

 foreach (Shape s in myShapes)
 {
 // Use the polymorphic interface!
 s.Draw();
 }
 Console.ReadLine();
 }
}

This wraps up our brisk overview of the pillars of OOP. Now that you have the theory in your mind, the
remainder of this chapter explores further details of how encapsulation is handled under C#. Chapter 6 will
tackle the details of inheritance and polymorphism.

Figure 5-5. Classical polymorphism

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 5 ■ Understanding enCapsUlation

179

C# Access Modifiers
When working with encapsulation, you must always take into account which aspects of a type are visible
to various parts of your application. Specifically, types (classes, interfaces, structures, enumerations, and
delegates) as well as their members (properties, methods, constructors, and fields) are defined using a
specific keyword to control how “visible” the item is to other parts of your application. Although C# defines
numerous keywords to control access, they differ on where they can be successfully applied (type or
member). Table 5-1 documents the role of each access modifier and where it may be applied.

Table 5-1. C# Access Modifiers

C# Access Modifier May Be Applied To Meaning in Life

public Types or type
members

Public items have no access restrictions. A public
member can be accessed from an object, as well as any
derived class. A public type can be accessed from other
external assemblies.

private Type members or
nested types

Private items can be accessed only by the class
(or structure) that defines the item.

protected Type members or
nested types

Protected items can be used by the class that defines it
and any child class. However, protected items cannot
be accessed from the outside world using the C# dot
operator.

internal Types or type
members

Internal items are accessible only within the current
assembly. Therefore, if you define a set of internal types
within a .NET class library, other assemblies are not able
to use them.

protected internal Type members or
nested types

When the protected and internal keywords are
combined on an item, the item is accessible within the
defining assembly, within the defining class, and by
derived classes.

In this chapter, you are concerned only with the public and private keywords. Later chapters will
examine the role of the internal and protected internal modifiers (useful when you build .NET code
libraries) and the protected modifier (useful when you are creating class hierarchies).

The Default Access Modifiers
By default, type members are implicitly private while types are implicitly internal. Thus, the following
class definition is automatically set to internal, while the type’s default constructor is automatically set to
private (however, as you would suspect, there are few times you would want a private class constructor):

// An internal class with a private default constructor.
class Radio
{
 Radio(){}
}

Chapter 5 ■ Understanding enCapsUlation

180

If you want to be explicit, you could add these keywords yourself with no ill effect (beyond a few
additional keystrokes).

// An internal class with a private default constructor.
internal class Radio
{
 private Radio(){}
}

To allow other parts of a program to invoke members of an object, you must define them with the
public keyword (or possibly with the protected keyword, which you will learn about in the next chapter). As
well, if you want to expose the Radio to external assemblies (again, useful when building .NET code libraries;
see Chapter 14), you will need to add the public modifier.

// A public class with a public default constructor.
public class Radio
{
 public Radio(){}
}

Access Modifiers and Nested Types
As mentioned in Table 5-1, the private, protected, and protected internal access modifiers can be
applied to a nested type. Chapter 6 will examine nesting in detail. What you need to know at this point,
however, is that a nested type is a type declared directly within the scope of class or structure. By way of
example, here is a private enumeration (named CarColor) nested within a public class (named SportsCar):

public class SportsCar
{
 // OK! Nested types can be marked private.
 private enum CarColor
 {
 Red, Green, Blue
 }
}

Here, it is permissible to apply the private access modifier on the nested type. However, nonnested
types (such as the SportsCar) can be defined only with the public or internal modifiers. Therefore, the
following class definition is illegal:

// Error! Nonnested types cannot be marked private!
private class SportsCar
{}

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 5 ■ Understanding enCapsUlation

181

The First Pillar: C#’s Encapsulation Services
The concept of encapsulation revolves around the notion that an object’s data should not be directly
accessible from an object instance. Rather, class data is defined as private. If the object user wants to alter
the state of an object, it does so indirectly using public members. To illustrate the need for encapsulation
services, assume you have created the following class definition:

// A class with a single public field.
class Book
{
 public int numberOfPages;
}

The problem with public data is that the data itself has no ability to “understand” whether the current
value to which they are assigned is valid with regard to the current business rules of the system. As you
know, the upper range of a C# int is quite large (2,147,483,647). Therefore, the compiler allows the following
assignment:

// Humm. That is one heck of a mini-novel!
static void Main(string[] args)
{
 Book miniNovel = new Book();
 miniNovel.numberOfPages = 30000000;
}

Although you have not overflowed the boundaries of an int data type, it should be clear that a mini
novel with a page count of 30,000,000 pages is a bit unreasonable. As you can see, public fields do not
provide a way to trap logical upper (or lower) limits. If your current system has a business rule that states a
book must be between 1 and 1,000 pages, you are at a loss to enforce this programmatically. Because of this,
public fields typically have no place in a production-level class definition.

 ■ Note to be more specific, members of a class that represent an object’s state should not be marked as
public. as you will see later in this chapter, public constants and public read-only fields are quite useful.

Encapsulation provides a way to preserve the integrity of an object’s state data. Rather than defining
public fields (which can easily foster data corruption), you should get in the habit of defining private data,
which is indirectly manipulated using one of two main techniques.

•	 You can define a pair of public accessor (get) and mutator (set) methods.

•	 You can define a public .NET property.

Whichever technique you choose, the point is that a well-encapsulated class should protect its data
and hide the details of how it operates from the prying eyes of the outside world. This is often termed black-
box programming. The beauty of this approach is that an object is free to change how a given method is
implemented under the hood. It does this without breaking any existing code making use of it, provided that
the parameters and return values of the method remain constant.

Chapter 5 ■ Understanding enCapsUlation

182

Encapsulation Using Traditional Accessors and Mutators
Over the remaining pages in this chapter, you will be building a fairly complete class that models a general
employee. To get the ball rolling, create a new Console Application project named EmployeeApp and insert a
new class file (named Employee.cs) using the Project Add class menu item. Update the Employee class with
the following fields, methods, and constructors:

class Employee
{
 // Field data.
 private string empName;
 private int empID;
 private float currPay;

 // Constructors.
 public Employee() {}
 public Employee(string name, int id, float pay)
 {
 empName = name;
 empID = id;
 currPay = pay;
 }

 // Methods.
 public void GiveBonus(float amount)
 {
 currPay += amount;
 }

 public void DisplayStats()
 {
 Console.WriteLine("Name: {0}", empName);
 Console.WriteLine("ID: {0}", empID);
 Console.WriteLine("Pay: {0}", currPay);
 }
}

Notice that the fields of the Employee class are currently defined using the private keyword. Given this,
the empName, empID, and currPay fields are not directly accessible from an object variable. Therefore, the
following logic in Main() would result in compiler errors:

static void Main(string[] args)
{
 Employee emp = new Employee();

 // Error! Cannot directly access private members
 // from an object!
 emp.empName = "Marv";
}

Chapter 5 ■ Understanding enCapsUlation

183

If you want the outside world to interact with a worker’s full name, a traditional approach (which is
common in Java) is to define an accessor (get method) and a mutator (set method). The role of a get
method is to return to the caller the current value of the underlying state data. A set method allows the caller
to change the current value of the underlying state data, as long as the defined business rules are met.

To illustrate, let’s encapsulate the empName field. To do so, add the following public methods to the
Employee class. Notice that the SetName() method performs a test on the incoming data to ensure the string
is 15 characters or less. If it is not, an error prints to the console and returns without making a change to the
empName field.

 ■ Note if this were a production-level class, you would also make to check the character length for an
employee’s name within your constructor logic. ignore this detail for the time being, as you will clean up this
code in just a bit when you examine .net property syntax.

class Employee
{
 // Field data.
 private string empName;
 ...

 // Accessor (get method).
 public string GetName()
 {
 return empName;
 }

 // Mutator (set method).
 public void SetName(string name)
 {
 // Do a check on incoming value
 // before making assignment.
 if (name.Length > 15)
 Console.WriteLine("Error! Name length exceeds 15 characters!");
 else
 empName = name;
 }
}

This technique requires two uniquely named methods to operate on a single data point. To test your
new methods, update your Main() method as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Encapsulation *****\n");
 Employee emp = new Employee("Marvin", 456, 30000);
 emp.GiveBonus(1000);
 emp.DisplayStats();

Chapter 5 ■ Understanding enCapsUlation

184

 // Use the get/set methods to interact with the object's name.
 emp.SetName("Marv");
 Console.WriteLine("Employee is named: {0}", emp.GetName());
 Console.ReadLine();
}

Because of the code in your SetName() method, if you attempted to specify more than 15 characters
(see the following), you would find the hard-coded error message printed to the console.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Encapsulation *****\n");
...
 // Longer than 15 characters! Error will print to console.
 Employee emp2 = new Employee();
 emp2.SetName("Xena the warrior princess");

 Console.ReadLine();
}

So far, so good. You have encapsulated the private empName field using two public methods named
GetName() and SetName(). If you were to further encapsulate the data in the Employee class, you would need
to add various additional methods (such as GetID(), SetID(), GetCurrentPay(), SetCurrentPay()). Each of
the mutator methods could have within it various lines of code to check for additional business rules. While
this could certainly be done, the C# language has a useful alternative notation to encapsulate class data.

Encapsulation Using .NET Properties
Although you can encapsulate a piece of field data using traditional get and set methods, .NET languages
prefer to enforce data encapsulation state data using properties. First, understand that properties are just a
simplification for “real” accessor and mutator methods. Therefore, as a class designer, you are still able to
perform any internal logic necessary before making the value assignment (e.g., uppercase the value, scrub
the value for illegal characters, check the bounds of a numerical value, and so on).

Here is the updated Employee class, now enforcing encapsulation of each field using property syntax
rather than traditional get and set methods:

class Employee
{
 // Field data.
 private string empName;
 private int empID;
 private float currPay;

 // Properties!
 public string Name
 {
 get { return empName; }
 set
 {
 if (value.Length > 15)

Chapter 5 ■ Understanding enCapsUlation

185

 Console.WriteLine("Error! Name length exceeds 15 characters!");
 else
 empName = value;
 }
}

 // We could add additional business rules to the sets of these properties;
 // however, there is no need to do so for this example.
 public int ID
 {
 get { return empID; }
 set { empID = value; }
 }
 public float Pay
 {
 get { return currPay; }
 set { currPay = value; }
 }
...
}

A C# property is composed by defining a get scope (accessor) and set scope (mutator) directly within
the property itself. Notice that the property specifies the type of data it is encapsulating by what appears to
be a return value. Also take note that, unlike a method, properties do not make use of parentheses (not even
empty parentheses) when being defined. Consider the following commentary on your current ID property:

// The 'int' represents the type of data this property encapsulates.
public int ID // Note lack of parentheses.
{
 get { return empID; }
 set { empID = value; }
}

Within a set scope of a property, you use a token named value, which is used to represent the incoming
value used to assign the property by the caller. This token is not a true C# keyword but is what is known as
a contextual keyword. When the token value is within the set scope of the property, it always represents the
value being assigned by the caller, and it will always be the same underlying data type as the property itself.
Thus, notice how the Name property can still test the range of the string as so:

public string Name
{
 get { return empName; }
 set
 {
 // Here, value is really a string.
 if (value.Length > 15)
 Console.WriteLine("Error! Name length exceeds 15 characters!");
 else
 empName = value;
 }
}

Chapter 5 ■ Understanding enCapsUlation

186

After you have these properties in place, it appears to the caller that it is getting and setting a public
point of data; however, the correct get and set block is called behind the scenes to preserve encapsulation.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Encapsulation *****\n");
 Employee emp = new Employee("Marvin", 456, 30000);
 emp.GiveBonus(1000);
 emp.DisplayStats();

 // Reset and then get the Name property.
 emp.Name = "Marv";
 Console.WriteLine("Employee is named: {0}", emp.Name);
 Console.ReadLine();
}

Properties (as opposed to accessor and mutator methods) also make your types easier to manipulate,
in that properties are able to respond to the intrinsic operators of C#. To illustrate, assume that the Employee
class type has an internal private member variable representing the age of the employee. Here is the relevant
update (notice the use of constructor chaining):

class Employee
{
...
 // New field and property.
 private int empAge;
 public int Age
 {
 get { return empAge; }
 set { empAge = value; }
 }

 // Updated constructors.
 public Employee() {}
 public Employee(string name, int id, float pay)
 :this(name, 0, id, pay){}

 public Employee(string name, int age, int id, float pay)
 {
 empName = name;
 empID = id;
 empAge = age;
 currPay = pay;
 }

Chapter 5 ■ Understanding enCapsUlation

187

 // Updated DisplayStats() method now accounts for age.
 public void DisplayStats()
 {
 Console.WriteLine("Name: {0}", empName);
 Console.WriteLine("ID: {0}", empID);
 Console.WriteLine("Age: {0}", empAge);
 Console.WriteLine("Pay: {0}", currPay);
 }
}

Now assume you have created an Employee object named joe. On his birthday, you want to increment
the age by one. Using traditional accessor and mutator methods, you would need to write code such as the
following:

Employee joe = new Employee();
joe.SetAge(joe.GetAge() + 1);

However, if you encapsulate empAge using a property named Age, you are able to simply write this:

Employee joe = new Employee();
joe.Age++;

Using Properties Within a Class Definition
Properties, specifically the set portion of a property, are common places to package up the business rules
of your class. Currently, the Employee class has a Name property that ensures the name is no more than 15
characters. The remaining properties (ID, Pay, and Age) could also be updated with any relevant logic.

While this is well and good, also consider what a class constructor typically does internally. It will take
the incoming parameters, check for valid data, and then make assignments to the internal private fields.
Currently, your master constructor does not test the incoming string data for a valid range, so you could
update this member as so:

public Employee(string name, int age, int id, float pay)
{
 // Humm, this seems like a problem...
 if (name.Length > 15)
 Console.WriteLine("Error! Name length exceeds 15 characters!");
 else
 empName = name;

 empID = id;
 empAge = age;
 currPay = pay;
}

Chapter 5 ■ Understanding enCapsUlation

188

I am sure you can see the problem with this approach. The Name property and your master constructor
are performing the same error checking. If you were also making checks on the other data points, you would
have a good deal of duplicate code. To streamline your code and isolate all of your error checking to a central
location, you will do well if you always use properties within your class whenever you need to get or set the
values. Consider the following updated constructor:

public Employee(string name, int age, int id, float pay)
{
 // Better! Use properties when setting class data.
 // This reduces the amount of duplicate error checks.
 Name = name;
 Age = age;
 ID = id;
 Pay = pay;
}

Beyond updating constructors to use properties when assigning values, it is good practice to use
properties throughout a class implementation to ensure your business rules are always enforced. In many
cases, the only time when you directly make reference to the underlying private piece of data is within the
property itself. With this in mind, here is your updated Employee class:

class Employee
{
 // Field data.
 private string empName;
 private int empID;
 private float currPay;
 private int empAge;

 // Constructors.
 public Employee() { }
 public Employee(string name, int id, float pay)
 :this(name, 0, id, pay){}
 public Employee(string name, int age, int id, float pay)
 {
 Name = name;
 Age = age;
 ID = id;
 Pay = pay;
 }

 // Methods.
 public void GiveBonus(float amount)
 { Pay += amount; }

Chapter 5 ■ Understanding enCapsUlation

189

 public void DisplayStats()
 {
 Console.WriteLine("Name: {0}", Name);
 Console.WriteLine("ID: {0}", ID);
 Console.WriteLine("Age: {0}", Age);
 Console.WriteLine("Pay: {0}", Pay);
 }

 // Properties as before...
...
}

Read-Only and Write-Only Properties
When encapsulating data, you might want to configure a read-only property. To do so, simply omit the set
block. Likewise, if you want to have a write-only property, omit the get block. For example, assume you have
a new property named SocialSecurityNumber, which encapsulates a private string variable named empSSN.
If you want to make this a read-only property, you could write this:

public string SocialSecurityNumber
{
 get { return empSSN; }
}

Now assume your class constructor has a new parameter to let the caller set the SSN of the object. Since
the SocialSecurityNumber property is read-only, you cannot set the value as so:

public Employee(string name, int age, int id, float pay, string ssn)
{
 Name = name;
 Age = age;
 ID = id;
 Pay = pay;

 // OOPS! This is no longer possible if the property is read only.
 SocialSecurityNumber = ssn;
}

Unless you are willing to redesign the property as read-write, your only choice would be to use the
underlying empSSN member variable within your constructor logic as so:

public Employee(string name, int age, int id, float pay, string ssn)
{
 ...
 // Check incoming ssn parameter as required and then set the value.
 empSSN = ssn;
}

Chapter 5 ■ Understanding enCapsUlation

190

 ■ Source Code the employeeapp project can be found under the Chapter 5 subdirectory.

Revisiting the static Keyword: Defining Static Properties
Earlier in this chapter, you examined the role of the static keyword. Now that you understand the use of C#
property syntax, you can formalize static properties. In the StaticDataAndMembers project created earlier
in this chapter, your SavingsAccount class had two public static methods to get and set the interest rate.
However, it would be more standard to wrap this data point in a static property. Here’s an example (note the
use of the static keyword):

// A simple savings account class.
class SavingsAccount
{
 // Instance-level data.
 public double currBalance;

 // A static point of data.
 private static double currInterestRate = 0.04;

 // A static property.
 public static double InterestRate
 {
 get { return currInterestRate; }
 set { currInterestRate = value; }
 }
...
}

If you want to use this property in place of the previous static methods, you could update your Main()
method as so:

// Print the current interest rate via property.
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.InterestRate);

Understanding Automatic Properties
When you are building properties to encapsulate your data, it is common to find that the set scopes
have code to enforce business rules of your program. However, in some cases you may not need any
implementation logic beyond simply getting and setting the value. This means you can end up with a lot of
code looking like the following:

// A Car type using standard property
// syntax.
class Car
{
 private string carName = "";
 public string PetName

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

191

 {
 get { return carName; }
 set { carName = value; }
 }
}

In these cases, it can become rather verbose to define private backing fields and simple property
definitions multiple times. By way of an example, if you are modeling a class that requires nine private
points of field data, you end up authoring nine related properties that are little more than thin wrappers for
encapsulation services.

To streamline the process of providing simple encapsulation of field data, you may use automatic
property syntax. As the name implies, this feature will offload the work of defining a private backing field and
the related C# property member to the compiler using a new bit of syntax. To illustrate, create a new Console
Application project named AutoProps. Now, consider the reworking of the Car class, which uses this syntax
to quickly create three properties:

class Car
{
 // Automatic properties!No need to define backing fields.
 public string PetName { get; set; }
 public int Speed { get; set; }
 public string Color { get; set; }
}

 ■ Note Visual studio provides the prop code snippet. if you type prop inside a class definition and press the
tab key twice, the ide will generate starter code for a new automatic property. You can then use the tab key to
cycle through each part of the definition to fill in the details. give it a try!

When defining automatic properties, you simply specify the access modifier, underlying data type,
property name, and empty get/set scopes. At compile time, your type will be provided with an autogenerated
private backing field and a fitting implementation of the get/set logic.

 ■ Note the name of the autogenerated private backing field is not visible within your C# code base. the only
way to see it is to make use of a tool such as ildasm.exe.

With the current version of C#, it is now possible to define a “read-only automatic property” by omitting
the set scope. However, it is not possible to define a write-only property. To solidify, consider the following:

// Read-only property? This is OK!
public int MyReadOnlyProp { get; }

// Write only property? Error!
public int MyWriteOnlyProp { set; }

Chapter 5 ■ Understanding enCapsUlation

192

Interacting with Automatic Properties
Because the compiler will define the private backing field at compile time (and given that these fields are
not directly accessible in C# code), the class defining automatic properties will always need to use property
syntax to get and set the underlying value. This is important to note because many programmers make
direct use of the private fields within a class definition, which is not possible in this case. For example, if
the Car class were to provide a DisplayStats() method, it would need to implement this method using the
property name.

class Car
{
 // Automatic properties!
 public string PetName { get; set; }
 public int Speed { get; set; }
 public string Color { get; set; }

 public void DisplayStats()
 {
 Console.WriteLine("Car Name: {0}", PetName);
 Console.WriteLine("Speed: {0}", Speed);
 Console.WriteLine("Color: {0}", Color);
 }
}

When you are using an object defined with automatic properties, you will be able to assign and obtain
the values using the expected property syntax.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Automatic Properties *****\n");

 Car c = new Car();
 c.PetName = "Frank";
 c.Speed = 55;
 c.Color = "Red";

 Console.WriteLine("Your car is named {0}? That's odd...",
 c.PetName);
 c.DisplayStats();

 Console.ReadLine();
}

Automatic Properties and Default Values
When you use automatic properties to encapsulate numerical or Boolean data, you are able to use the
autogenerated type properties straightaway within your code base, as the hidden backing fields will be
assigned a safe default value (false for Booleans and 0 for numerical data). However, be aware that if you use
automatic property syntax to wrap another class variable, the hidden private reference type will also be set to
a default value of null (which can prove problematic if you are not careful).

Chapter 5 ■ Understanding enCapsUlation

193

Let’s insert into your current project a new class named Garage, which makes use of two automatic
properties (of course, a real garage class might maintain a collection of Car objects; however, ignore that
detail here).

class Garage
{
 // The hidden int backing field is set to zero!
 public int NumberOfCars { get; set; }

 // The hidden Car backing field is set to null!
 public Car MyAuto { get; set; }
}

Given C#’s default values for field data, you would be able to print out the value of NumberOfCars as is
(as it is automatically assigned the value of zero), but if you directly invoke MyAuto, you will receive a “null
reference exception” at runtime, as the Car member variable used in the background has not been assigned
to a new object.

static void Main(string[] args)
{
 ...
 Garage g = new Garage();

 // 0OK, prints default value of zero.
 Console.WriteLine("Number of Cars: {0}", g.NumberOfCars);

 // Runtime error! Backing field is currently null!
 Console.WriteLine(g.MyAuto.PetName);
 Console.ReadLine();
}

To solve this problem, you could update the class constructors to ensure the object comes to life in a
safe manner. Here’s an example:

class Garage
{
 // The hidden backing field is set to zero!
 public int NumberOfCars { get; set; }

 // The hidden backing field is set to null!
 public Car MyAuto { get; set; }

 // Must use constructors to override default
 // values assigned to hidden backing fields.
 public Garage()

Chapter 5 ■ Understanding enCapsUlation

194

 {
 MyAuto = new Car();
 NumberOfCars = 1;
 }
 public Garage(Car car, int number)
 {
 MyAuto = car;
 NumberOfCars = number;
 }
}

With this modification, you could now place a Car object into the Garage object as so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Automatic Properties *****\n");

 // Make a car.
 Car c = new Car();
 c.PetName = "Frank";
 c.Speed = 55;
 c.Color = "Red";
 c.DisplayStats();

 // Put car in the garage.
 Garage g = new Garage();
 g.MyAuto = c;
 Console.WriteLine("Number of Cars in garage: {0}", g.NumberOfCars);
 Console.WriteLine("Your car is named: {0}", g.MyAuto.PetName);

 Console.ReadLine();
}

Initialization of Automatic Properties
While the previous approach works just fine, with the release of the latest version of the C# language, you are
provided with a new language feature that can simplify how an automatic property receives its initial value
assignment. Recall from the onset of this chapter, a data field of a class can be directly assigned an initial
value upon declaration. Here’s an example:

class Car
{
 private int numberOfDoors = 2;
}

In a similar manner, C# now allows you to assign an initial value to the underlying backing field
generated by the compiler. This alleviates you from the hassle of adding additional code statements in class
constructors to ensure property data comes to life as intended.

Chapter 5 ■ Understanding enCapsUlation

195

Here is an updated version of the Garage class that is initializing automatic properties to fitting values.
Note you no longer need to add additional logic to your default class constructor to make safe assignments.
In this iteration, you are directly assigning a new Car object to the MyAuto property.

class Garage
{
 // The hidden backing field is set to 1.
 public int NumberOfCars { get; set; } = 1;

 // The hidden backing field is set to a new Car object.
 public Car MyAuto { get; set; } = new Car();

 public Garage(){}
 public Garage(Car car, int number)
 {
 MyAuto = car;
 NumberOfCars = number;
 }
}

As you may agree, automatic properties are a nice feature of the C# programming language, as you
can define a number of properties for a class using a streamlined syntax. Be aware of course that if you are
building a property that requires additional code beyond getting and setting the underlying private field
(such as data validation logic, writing to an event log, communicating with a database, etc.), you will be
required to define a “normal” .NET property type by hand. C# automatic properties never do more than
provide simple encapsulation for an underlying piece of (compiler-generated) private data.

 ■ Source Code the autoprops project can be found in the Chapter 5 subdirectory.

Understanding Object Initialization Syntax
As shown throughout this chapter, a constructor allows you specify startup values when creating a new
object. On a related note, properties allow you to get and set underlying data in a safe manner. When you
are working with other people’s classes, including the classes found within the .NET base class library, it
is not too uncommon to discover that there is not a single constructor that allows you to set every piece
of underlying state data. Given this point, a programmer is typically forced to pick the best constructor
possible, after which the programmer makes assignments using a handful of provided properties.

To help streamline the process of getting an object up and running, C# offers object initializer syntax.
Using this technique, it is possible to create a new object variable and assign a slew of properties and/or
public fields in a few lines of code. Syntactically, an object initializer consists of a comma-delimited list of
specified values, enclosed by the { and } tokens. Each member in the initialization list maps to the name of a
public field or public property of the object being initialized.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

196

To see this syntax in action, create a new Console Application project named ObjectInitializers. Now,
consider a simple class named Point, created using automatic properties (which is not mandatory for object
initialization syntax but helps you write some concise code).

class Point
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int xVal, int yVal)
 {
 X = xVal;
 Y = yVal;
 }
 public Point() { }

 public void DisplayStats()
 {
 Console.WriteLine("[{0}, {1}]", X, Y);
 }
}

Now consider how you can make Point objects using any of the following approaches:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Init Syntax *****\n");

 // Make a Point by setting each property manually.
 Point firstPoint = new Point();
 firstPoint.X = 10;
 firstPoint.Y = 10;
 firstPoint.DisplayStats();

 // Or make a Point via a custom constructor.
 Point anotherPoint = new Point(20, 20);
 anotherPoint.DisplayStats();

 // Or make a Point using object init syntax.
 Point finalPoint = new Point { X = 30, Y = 30 };
 finalPoint.DisplayStats();
 Console.ReadLine();
}

The final Point variable is not making use of a custom constructor (as one might do traditionally) but
is rather setting values to the public X and Y properties. Behind the scenes, the type’s default constructor is
invoked, followed by setting the values to the specified properties. To this end, object initialization syntax is
just shorthand notation for the syntax used to create a class variable using a default constructor and to set
the state data property by property.

Chapter 5 ■ Understanding enCapsUlation

197

Calling Custom Constructors with Initialization Syntax
The previous examples initialized Point types by implicitly calling the default constructor on the type.

// Here, the default constructor is called implicitly.
Point finalPoint = new Point { X = 30, Y = 30 };

If you want to be clear about this, it is permissible to explicitly call the default constructor as follows:

// Here, the default constructor is called explicitly.
Point finalPoint = new Point() { X = 30, Y = 30 };

Do be aware that when you are constructing a type using initialization syntax, you are able to invoke
any constructor defined by the class. Our Point type currently defines a two-argument constructor to set the
(x, y) position. Therefore, the following Point declaration results in an X value of 100 and a Y value of 100,
regardless of the fact that the constructor arguments specified the values 10 and 16:

// Calling a custom constructor.
Point pt = new Point(10, 16) { X = 100, Y = 100 };

Given the current definition of your Point type, calling the custom constructor while using initialization
syntax is not terribly useful (and more than a bit verbose). However, if your Point type provides a
new constructor that allows the caller to establish a color (via a custom enum named PointColor), the
combination of custom constructors and object initialization syntax becomes clear. Assume you have
updated Point as follows:

enum PointColor
{ LightBlue, BloodRed, Gold }

class Point
{
 public int X { get; set; }
 public int Y { get; set; }
 public PointColor Color{ get; set; }

 public Point(int xVal, int yVal)
 {
 X = xVal;
 Y = yVal;
 Color = PointColor.Gold;
 }

 public Point(PointColor ptColor)
 {
 Color = ptColor;
 }

 public Point()
 : this(PointColor.BloodRed){ }

Chapter 5 ■ Understanding enCapsUlation

198

 public void DisplayStats()
 {
 Console.WriteLine("[{0}, {1}]", X, Y);
 Console.WriteLine("Point is {0}", Color);
 }
}

With this new constructor, you can now create a gold point (positioned at 90, 20) as follows:

// Calling a more interesting custom constructor with init syntax.
Point goldPoint = new Point(PointColor.Gold){ X = 90, Y = 20 };
goldPoint.DisplayStats();

Initializing Data with Initialization Syntax
As briefly mentioned earlier in this chapter (and fully examined in Chapter 6), the “has-a” relationship
allows you to compose new classes by defining member variables of existing classes. For example, assume
you now have a Rectangle class, which makes use of the Point type to represent its upper-left/bottom right
coordinates. Since automatic properties set all fields of class variables to null, you will implement this new
class using “traditional” property syntax.

class Rectangle
{
 private Point topLeft = new Point();
 private Point bottomRight = new Point();

 public Point TopLeft
 {
 get { return topLeft; }
 set { topLeft = value; }
 }
 public Point BottomRight
 {
 get { return bottomRight; }
 set { bottomRight = value; }
 }

 public void DisplayStats()
 {
 Console.WriteLine("[TopLeft: {0}, {1}, {2} BottomRight: {3}, {4}, {5}]",
 topLeft.X, topLeft.Y, topLeft.Color,
 bottomRight.X, bottomRight.Y, bottomRight.Color);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 5 ■ Understanding enCapsUlation

199

Using object initialization syntax, you could create a new Rectangle variable and set the inner Points as
follows:

// Create and initialize a Rectangle.
Rectangle myRect = new Rectangle
{
 TopLeft = new Point { X = 10, Y = 10 },
 BottomRight = new Point { X = 200, Y = 200}
};

Again, the benefit of object initialization syntax is that it basically decreases the number of keystrokes
(assuming there is not a suitable constructor). Here is the traditional approach to establishing a similar
Rectangle:

// Old-school approach.
Rectangle r = new Rectangle();
Point p1 = new Point();
p1.X = 10;
p1.Y = 10;
r.TopLeft = p1;
Point p2 = new Point();
p2.X = 200;
p2.Y = 200;
r.BottomRight = p2;

While you might feel object initialization syntax can take a bit of getting used to, once you get
comfortable with the code, you’ll be quite pleased at how quickly you can establish the state of a new object
with minimal fuss and bother.

 ■ Source Code the objectinitilizers project can be found in the Chapter 5 subdirectory.

Working with Constant Field Data
C# offers the const keyword to define constant data, which can never change after the initial assignment. As
you might guess, this can be helpful when you are defining a set of known values for use in your applications
that are logically connected to a given class or structure.

Assume you are building a utility class named MyMathClass that needs to define a value for the value
PI (which you will assume to be 3.14 for simplicity). Begin by creating a new Console Application project
named ConstData. Given that you would not want to allow other developers to change this value in code, PI
could be modeled with the following constant:

namespace ConstData
{
 class MyMathClass
 {
 public const double PI = 3.14;
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

200

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Const *****\n");
 Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);
 // Error! Can't change a constant!
 // MyMathClass.PI = 3.1444;

 Console.ReadLine();
 }
 }
}

Notice that you are referencing the constant data defined by MyMathClass using a class name
prefix (i.e., MyMathClass.PI). This is because constant fields of a class are implicitly static. However, it is
permissible to define and access a local constant variable within the scope of a method or property. Here’s
an example:

static void LocalConstStringVariable()
{
 // A local constant data point can be directly accessed.
 const string fixedStr = "Fixed string Data";
 Console.WriteLine(fixedStr);

 // Error!
 // fixedStr = "This will not work!";
}

Regardless of where you define a constant piece of data, the one point to always remember is that the
initial value assigned to the constant must be specified at the time you define the constant. Thus, if you
were to modify your MyMathClass in such a way that the value of PI is assigned in a class constructor as
follows:

class MyMathClass
{
 // Try to set PI in ctor?
 public const double PI;

 public MyMathClass()
 {
 // Not possible- must assign at time of declaration.
 PI = 3.14;
 }
}

you would receive a compile-time error. The reason for this restriction has to do with the fact the value
of constant data must be known at compile time. Constructors (or any other method), as you know, are
invoked at runtime.

Chapter 5 ■ Understanding enCapsUlation

201

Understanding Read-Only Fields
Closely related to constant data is the notion of read-only field data (which should not be confused with
a read-only property). Like a constant, a read-only field cannot be changed after the initial assignment.
However, unlike a constant, the value assigned to a read-only field can be determined at runtime and,
therefore, can legally be assigned within the scope of a constructor but nowhere else.

This can be helpful when you don’t know the value of a field until runtime, perhaps because you need
to read an external file to obtain the value, but want to ensure that the value will not change after that point.
For the sake of illustration, assume the following update to MyMathClass:

class MyMathClass
{
 // Read-only fields can be assigned in ctors,
 // but nowhere else.
 public readonly double PI;

 public MyMathClass ()
 {
 PI = 3.14;
 }
}

Again, any attempt to make assignments to a field marked readonly outside the scope of a constructor
results in a compiler error.

class MyMathClass
{
 public readonly double PI;
 public MyMathClass ()
 {
 PI = 3.14;
 }

 // Error!
 public void ChangePI()
 { PI = 3.14444;}
}

Static Read-Only Fields
Unlike a constant field, read-only fields are not implicitly static. Thus, if you want to expose PI from the
class level, you must explicitly use the static keyword. If you know the value of a static read-only field at
compile time, the initial assignment looks similar to that of a constant (however, in this case, it would be
easier to simply use the const keyword in the first place, as you are assigning the data field at the time of
declaration).

Chapter 5 ■ Understanding enCapsUlation

202

class MyMathClass
{
 public static readonly double PI = 3.14;
}

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Const *****");
 Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);
 Console.ReadLine();
 }
}

However, if the value of a static read-only field is not known until runtime, you must use a static
constructor as described earlier in this chapter.

class MyMathClass
{
 public static readonly double PI;

 static MyMathClass()
 { PI = 3.14; }
}

 ■ Source Code the Constdata project is included in the Chapter 5 subdirectory.

Understanding Partial Classes
Last but not least, it is important to understand the role of the C# partial keyword. A production-level class could
easily consist of hundreds and hundreds (if not thousands) of lines of code within a single *.cs file. As it turns
out, when you are creating your classes, it is often the case that much of the boilerplate code can be basically
ignored after it is accounted for. For example, field data, properties, and constructors tend to remain as is during
production, while methods tend to be modified quite often to account for updated algorithms and so forth.

In C#, you can partition a single class across multiple code files to isolate the boilerplate code from
more readily useful (and complex) members. To illustrate where partial classes could be useful, open the
EmployeeApp project you created previously in this chapter in Visual Studio, and then open the Employee.
cs file for editing. As you recall, this single file contains code of all aspects of the class.

class Employee
{
 // Field Data

 // Constructors

 // Methods

 // Properties
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

203

Using partial classes, you could choose to move (for example) the properties, constructors, and field
data into a new file named Employee.Core.cs (the name of the file is irrelevant). The first step is to add the
partial keyword to the current class definition and cut the code to be placed into the new file.

// Employee.cs
partial class Employee
{
 // Methods

 // Properties
}

Next, assuming you have inserted a new class file into your project, you can move the data fields and
constructors to the new file using a simple cut/paste operation. In addition, you must add the partial
keyword to this aspect of the class definition. Here’s an example:

// Employee.Core.cs
partial class Employee
{
 // Field data

 // Constructors
}

 ■ Note remember that every aspect of a partial class definition must be marked with the partial keyword!

After you compile the modified project, you should see no difference whatsoever. The whole idea of
a partial class is realized only during design time. After the application has been compiled, there is just a
single, unified class within the assembly. The only requirement when defining partial types is that the type’s
name (Employee in this case) is identical and defined within the same .NET namespace.

Use Cases for Partial Classes?
Now that you understand the mechanics of how to define a partial class, you may be wondering exactly
when (and if) you will ever need to do so. To be honest, you may not need to make use of partial class
definitions too often. However, Visual Studio uses them in the background all the time. For example, if you
are building a graphical user interface using Windows Presentation Foundation (WPF), you will note that
Visual Studio places all the designer-generated code into a dedicated partial class file, leaving you to focus
on your custom programming logic (without the designer generated code getting in the way).

 ■ Source Code the employeeapppartial project can be found in the Chapter 5 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 5 ■ Understanding enCapsUlation

204

Summary
The point of this chapter was to introduce you to the role of the C# class type. As you have seen, classes can
take any number of constructors that enable the object user to establish the state of the object upon creation.
This chapter also illustrated several class design techniques (and related keywords). Recall that the this
keyword can be used to obtain access to the current object, the static keyword allows you to define fields
and members that are bound at the class (not object) level, and the const keyword (and readonly modifier)
allows you to define a point of data that can never change after the initial assignment.

The bulk of this chapter dug into the details of the first pillar of OOP: encapsulation. You learned about
the access modifiers of C# and the role of type properties, object initialization syntax, and partial classes.
With this behind you, you are now able to turn to the next chapter where you will learn to build a family of
related classes using inheritance and polymorphism.

205

Chapter 6

Understanding Inheritance and
Polymorphism

Chapter 5 examined the first pillar of OOP: encapsulation. At that time, you learned how to build a single
well-defined class type with constructors and various members (fields, properties, methods, constants,
and read-only fields). This chapter will focus on the remaining two pillars of OOP: inheritance and
polymorphism.

First, you will learn how to build families of related classes using inheritance. As you will see, this
form of code reuse allows you to define common functionality in a parent class that can be leveraged, and
possibly altered, by child classes. Along the way, you will learn how to establish a polymorphic interface into
class hierarchies using virtual and abstract members, as well as the role of explicit casting.

The chapter will wrap up by examining the role of the ultimate parent class in the .NET base class
libraries: System.Object.

The Basic Mechanics of Inheritance
Recall from Chapter 5 that inheritance is an aspect of OOP that facilitates code reuse. Specifically speaking,
code reuse comes in two flavors: inheritance (the “is-a” relationship) and the containment/delegation
model (the “has-a” relationship). Let’s begin this chapter by examining the classical inheritance model of the
“is-a” relationship.

When you establish “is-a” relationships between classes, you are building a dependency between two
or more class types. The basic idea behind classical inheritance is that new classes can be created using
existing classes as a starting point. To begin with a simple example, create a new Console Application project
named Basic Inheritance. Now assume you have designed a class named Car that models some basic details
of an automobile.

// A simple base class.
class Car
{
 public readonly int maxSpeed;
 private int currSpeed;

 public Car(int max)
 {
 maxSpeed = max;
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

206

 public Car()
 {
 maxSpeed = 55;
 }
 public int Speed
 {
 get { return currSpeed; }
 set
 {
 currSpeed = value;
 if (currSpeed > maxSpeed)
 {
 currSpeed = maxSpeed;
 }
 }
 }
}

Notice that the Car class is using encapsulation services to control access to the private currSpeed field
using a public property named Speed. At this point, you can exercise your Car type as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Basic Inheritance *****\n");
 // Make a Car object and set max speed.
 Car myCar = new Car(80);

 // Set the current speed, and print it.
 myCar.Speed = 50;
 Console.WriteLine("My car is going {0} MPH", myCar.Speed);
 Console.ReadLine();
}

Specifying the Parent Class of an Existing Class
Now assume you want to build a new class named MiniVan. Like a basic Car, you want to define the MiniVan
class to support data for a maximum speed, a current speed, and a property named Speed to allow the object
user to modify the object’s state. Clearly, the Car and MiniVan classes are related; in fact, it can be said that a
MiniVan “is-a” type of Car. The “is-a” relationship (formally termed classical inheritance) allows you to build
new class definitions that extend the functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base class, superclass, or parent
class. The role of a base class is to define all the common data and members for the classes that extend it.
The extending classes are formally termed derived or child classes. In C#, you make use of the colon operator
on the class definition to establish an “is-a” relationship between classes. Assume you have authored the
following new MiniVan class:

// MiniVan "is-a" Car.
class MiniVan : Car
{
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

207

Currently, this new class has not defined any members whatsoever. So, what have you gained by
extending your MiniVan from the Car base class? Simply put, MiniVan objects now have access to each public
member defined within the parent class.

 ■ Note although constructors are typically defined as public, a derived class never inherits the constructors
of a parent class. Constructors are used to construct only the class that they are defined within.

Given the relation between these two class types, you could now make use of the MiniVan class like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Basic Inheritance *****\n");
...
 // Now make a MiniVan object.
 MiniVan myVan = new MiniVan();
 myVan.Speed = 10;
 Console.WriteLine("My van is going {0} MPH",
 myVan.Speed);
 Console.ReadLine();
}

Again, notice that although you have not added any members to the MiniVan class, you have direct
access to the public Speed property of your parent class and have thus reused code. This is a far better
approach than creating a MiniVan class that has the same members as Car, such as a Speed property. If you
did duplicate code between these two classes, you would need to now maintain two bodies of code, which is
certainly a poor use of your time.

Always remember that inheritance preserves encapsulation; therefore, the following code results in a
compiler error, as private members can never be accessed from an object reference:

static void Main(string[] args)
{
 Console.WriteLine("***** Basic Inheritance *****\n");
...
 // Make a MiniVan object.
 MiniVan myVan = new MiniVan();
 myVan.Speed = 10;
 Console.WriteLine("My van is going {0} MPH",
 myVan.Speed);

 // Error! Can't access private members!
 myVan.currSpeed = 55;
 Console.ReadLine();
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

208

On a related note, if the MiniVan defined its own set of members, it would still not be able to access any
private member of the Car base class. Remember, private members can be accessed only by the class that
defines it. For example, the following method in MiniVan would result in a compiler error:

// MiniVan derives from Car.
class MiniVan : Car
{
 public void TestMethod()
 {
 // OK! Can access public members
 // of a parent within a derived type.
 Speed = 10;

 // Error! Cannot access private
 // members of parent within a derived type.
 currSpeed = 10;
 }
}

Regarding Multiple Base Classes
Speaking of base classes, it is important to keep in mind that C# demands that a given class have exactly one
direct base class. It is not possible to create a class type that directly derives from two or more base classes
(this technique, which is supported in unmanaged C++, is known as multiple inheritance, or simply MI).
If you attempted to create a class that specifies two direct parent classes, as shown in the following code, you
would receive compiler errors:

// Illegal! C# does not allow
// multiple inheritance for classes!
class WontWork
 : BaseClassOne, BaseClassTwo
{}

As you will see in Chapter 8, the .NET platform does allow a given class, or structure, to implement any
number of discrete interfaces. In this way, a C# type can exhibit a number of behaviors while avoiding the
complexities associated with MI. On a related note, while a class can have only one direct base class, it is
permissible for an interface to directly derive from multiple interfaces. Using this technique, you can build
sophisticated interface hierarchies that model complex behaviors (again, see Chapter 8).

The sealed Keyword
C# supplies another keyword, sealed, that prevents inheritance from occurring. When you mark a class as
sealed, the compiler will not allow you to derive from this type. For example, assume you have decided that
it makes no sense to further extend the MiniVan class.

// The MiniVan class cannot be extended!
sealed class MiniVan : Car
{
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 6 ■ Understanding inheritanCe and polymorphism

209

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-time error.

// Error! Cannot extend
// a class marked with the sealed keyword!
class DeluxeMiniVan
 : MiniVan
{}

Most often, sealing a class makes the best sense when you are designing a utility class. For example,
the System namespace defines numerous sealed classes. You can verify this for yourself by opening
the Visual Studio Object Browser (via the View menu) and selecting the String class within the System
namespace of the mscorlib.dll assembly. Notice in Figure 6-1 the icon used to denote a sealed class.

Thus, just like the MiniVan, if you attempt to build a new class that extends System.String, you will
receive a compile-time error.

// Another error! Cannot extend
// a class marked as sealed!
class MyString
 : String
{}

 ■ Note in Chapter 4, you learned that C# structures are always implicitly sealed (see table 4-3). therefore,
you can never derive one structure from another structure, a class from a structure, or a structure from a class.
structures can be used to model only stand-alone, atomic, user-defined data types. if you want to leverage the
is-a relationship, you must use classes.

Figure 6-1. The base class libraries define numerous sealed types, such as System.String

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 6 ■ Understanding inheritanCe and polymorphism

210

As you would guess, there are many more details to inheritance that you will come to know during the
remainder of this chapter. For now, simply keep in mind that the colon operator allows you to establish
base/derived class relationships, while the sealed keyword prevents subsequent inheritance from occurring.

Revising Visual Studio Class Diagrams
In Chapter 2, I briefly mentioned that Visual Studio allows you to establish base/derived class relationships
visually at design time. To leverage this aspect of the IDE, your first step is to include a new class diagram
file into your current project. To do so, access the Project ➤ Add New Item menu option and click the Class
Diagram icon (in Figure 6-2, I renamed the file from ClassDiagram1.cd to Cars.cd).

Figure 6-2. Inserting a new class diagram

After you click the Add button, you will be presented with a blank designer surface. To add types to a
class designer, simply drag each file from the Solution Explorer window onto the surface. Also recall that if
you delete an item from the visual designer (simply by selecting it and pressing the Delete key), this will not
destroy the associated source code but simply remove the item off the designer surface. Figure 6-3 shows the
current class hierarchy.

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 6 ■ Understanding inheritanCe and polymorphism

211

Beyond simply displaying the relationships of the types within your current application, recall from
Chapter 2 that you can also create new types and populate their members using the Class Designer toolbox
and Class Details window.

If you want to make use of these visual tools during the remainder of the book, feel free. However,
always make sure you analyze the generated code so you have a solid understanding of what these tools have
done on your behalf.

 ■ Source Code the Basic inheritance project is located in the Chapter 6 subdirectory.

Figure 6-3. The visual designer of Visual Studio

http://dx.doi.org/10.1007/978-1-4842-1332-2_2
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 6 ■ Understanding inheritanCe and polymorphism

212

The Second Pillar of OOP: The Details of Inheritance
Now that you have seen the basic syntax of inheritance, let’s create a more complex example and get to
know the numerous details of building class hierarchies. To do so, you will be reusing the Employee class you
designed in Chapter 5. To begin, create a new C# Console Application project named Employees.

Next, activate the Project ➤ Add Existing Item menu option and navigate to the location of your Employee.cs
and Employee.Core.cs files you created in the EmployeeApp example of Chapter 5. Select each of them
(via a Ctrl+click) and click the Add button. Visual Studio responds by copying each file into the current project
(because these are full copies, you will not need to worry about changing the original work you did in the
Chapter 5 project).

Before you start to build some derived classes, you have one detail to attend to. Because the original
Employee class was created in a project named EmployeeApp, the class has been wrapped within an
identically named .NET namespace. Chapter 14 will examine namespaces in detail; however, for simplicity,
rename the current namespace (in both file locations) to Employees to match your new project name.

// Be sure to change the namespace name in both C# files!
namespace Employees
{
 partial class Employee
 {...}
}

 ■ Note as a sanity check, compile and run your new project by pressing Ctrl+F5. the program will not do
anything at this point; however, this will ensure you do not have any compiler errors.

Your goal is to create a family of classes that model various types of employees in a company. Assume
you want to leverage the functionality of the Employee class to create two new classes (SalesPerson and
Manager). The new SalesPerson class “is-an” Employee (as is a Manager). Remember that under the classical
inheritance model, base classes (such as Employee) are used to define general characteristics that are
common to all descendants. Subclasses (such as SalesPerson and Manager) extend this general functionality
while adding more specific functionality.

For your example, you will assume that the Manager class extends Employee by recording the number
of stock options, while the SalesPerson class maintains the number of sales made. Insert a new class file
(Manager.cs) that defines the Manager class with the following automatic property:

// Managers need to know their number of stock options.
class Manager : Employee
{
 public int StockOptions { get; set; }
}

Next, add another new class file (SalesPerson.cs) that defines the SalesPerson class with a fitting
automatic property.

// Salespeople need to know their number of sales.
class SalesPerson : Employee
{
 public int SalesNumber { get; set; }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 6 ■ Understanding inheritanCe and polymorphism

213

Now that you have established an “is-a” relationship, SalesPerson and Manager have automatically
inherited all public members of the Employee base class. To illustrate, update your Main() method as follows:

// Create a subclass object and access base class functionality.
static void Main(string[] args)
{
 Console.WriteLine("***** The Employee Class Hierarchy *****\n");
 SalesPerson fred = new SalesPerson();
 fred.Age = 31;
 fred.Name = "Fred";
 fred.SalesNumber = 50;
 Console.ReadLine();
}

Controlling Base Class Creation with the base Keyword
Currently, SalesPerson and Manager can be created only using the “freebie” default constructor
(see Chapter 5). With this in mind, assume you have added a new six-argument constructor to the Manager
type, which is invoked as follows:

static void Main(string[] args)
{
...
 // Assume Manager has a constructor matching this signature:
 // (string fullName, int age, int empID,
 // float currPay, string ssn, int numbOfOpts)
 Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
 Console.ReadLine();
}

If you look at the parameter list, you can clearly see that most of these arguments should be stored
in the member variables defined by the Employee base class. To do so, you might implement this custom
constructor on the Manager class as follows:

public Manager(string fullName, int age, int empID,
 float currPay, string ssn, int numbOfOpts)
{
 // This property is defined by the Manager class.
 StockOptions = numbOfOpts;

 // Assign incoming parameters using the
 // inherited properties of the parent class.
 ID = empID;
 Age = age;
 Name = fullName;
 Pay = currPay;

 // OOPS! This would be a compiler error,
 // if the SSN property were read-only!
 SocialSecurityNumber = ssn;
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

214

The first issue with this approach is that if you defined any property as read-only (for example, the
SocialSecurityNumber property), you are unable to assign the incoming string parameter to this field, as
shown in the final code statement of this custom constructor.

The second issue is that you have indirectly created a rather inefficient constructor, given that under C#,
unless you say otherwise, the default constructor of a base class is called automatically before the logic of
the derived constructor is executed. After this point, the current implementation accesses numerous public
properties of the Employee base class to establish its state. Thus, you have really made seven hits
(five inherited properties and two constructor calls) during the creation of a Manager object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default. In this
way, you are able to reduce the number of calls to inherited initialization members (which saves processing
time). First, ensure your Employee parent class has the following five-argument constructor:

// Add to the Employee base class.
public Employee(string name, int age, int id, float pay, string ssn)
 :this(name, age, id, pay)
{
 empSSN = ssn;
}

Now, let’s retrofit the custom constructor of the Manager type to do this very thing using the base keyword.

public Manager(string fullName, int age, int empID,
 float currPay, string ssn, int numbOfOpts)
 : base(fullName, age, empID, currPay, ssn)
{
 // This property is defined by the Manager class.
 StockOptions = numbOfOpts;
}

Here, the base keyword is hanging off the constructor signature (much like the syntax used to chain
constructors on a single class using the this keyword, as was discussed in Chapter 5), which always
indicates a derived constructor is passing data to the immediate parent constructor. In this situation, you are
explicitly calling the five-parameter constructor defined by Employee and saving yourself unnecessary calls
during the creation of the child class. The custom SalesPerson constructor looks almost identical.

// As a general rule, all subclasses should explicitly call an appropriate
// base class constructor.
public SalesPerson(string fullName, int age, int empID,
 float currPay, string ssn, int numbOfSales)
 : base(fullName, age, empID, currPay, ssn)
{
 // This belongs with us!
 SalesNumber = numbOfSales;
}

 ■ Note you may use the base keyword whenever a subclass wants to access a public or protected member
defined by a parent class. Use of this keyword is not limited to constructor logic. you will see examples using
base in this manner during the examination of polymorphism, later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

215

Finally, recall that once you add a custom constructor to a class definition, the default constructor is
silently removed. Therefore, be sure to redefine the default constructor for the SalesPerson and Manager
types. Here’s an example:

// Add back the default ctor
// in the Manager class as well.
public SalesPerson() {}

Keeping Family Secrets: The protected Keyword
As you already know, public items are directly accessible from anywhere, while private items can be
accessed only by the class that has defined them. Recall from Chapter 5 that C# takes the lead of many other
modern object languages and provides an additional keyword to define member accessibility: protected.

When a base class defines protected data or protected members, it establishes a set of items that can be
accessed directly by any descendant. If you want to allow the SalesPerson and Manager child classes to directly
access the data sector defined by Employee, you can update the original Employee class definition as follows:

// Protected state data.
partial class Employee
{
 // Derived classes can now directly access this information.
 protected string empName;
 protected int empID;
 protected float currPay;
 protected int empAge;
 protected string empSSN;
...
}

The benefit of defining protected members in a base class is that derived types no longer have to
access the data indirectly using public methods or properties. The possible downfall, of course, is that when
a derived type has direct access to its parent’s internal data, it is possible to accidentally bypass existing
business rules found within public properties. When you define protected members, you are creating a level
of trust between the parent class and the child class, as the compiler will not catch any violation of your
type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as private (as
the user is “outside” the family). Therefore, the following is illegal:

static void Main(string[] args)
{
 // Error! Can't access protected data from client code.
 Employee emp = new Employee();
 emp.empName = "Fred";
}

 ■ Note although protected field data can break encapsulation, it is quite safe (and useful) to define
protected methods. When building class hierarchies, it is common to define a set of methods that are only for
use by derived types and are not intended for use by the outside world.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

216

Adding a Sealed Class
Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is most often
used when you are designing a utility class. However, when building class hierarchies, you might find that
a certain branch in the inheritance chain should be “capped off,” as it makes no sense to further extend
the linage. For example, assume you have added yet another class to your program (PTSalesPerson) that
extends the existing SalesPerson type. Figure 6-4 shows the current update.

Figure 6-4. The PTSalesPerson class

PTSalesPerson is a class representing, of course, a part-time salesperson. For the sake of argument, let’s say
you want to ensure that no other developer is able to subclass from PTSalesPerson. (After all, how much more
part-time can you get than “part-time”?) Again, to prevent others from extending a class, use the sealed keyword.

sealed class PTSalesPerson : SalesPerson
{
 public PTSalesPerson(string fullName, int age, int empID,
 float currPay, string ssn, int numbOfSales)
 :base (fullName, age, empID, currPay, ssn, numbOfSales)
 {
 }
 // Assume other members here...
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

217

Programming for Containment/Delegation
Recall that code reuse comes in two flavors. You have just explored the classical “is-a” relationship. Before
you examine the third pillar of OOP (polymorphism), let’s examine the “has-a” relationship (also known
as the containment/delegation model or aggregation). Assume you have created a new class that models an
employee benefits package, as follows:

// This new type will function as a contained class.
class BenefitPackage
{
 // Assume we have other members that represent
 // dental/health benefits, and so on.
 public double ComputePayDeduction()
 {
 return 125.0;
 }
}

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage class
and the employee types. (Employee “is-a” BenefitPackage? I don’t think so.) However, it should be clear that
some sort of relationship between the two could be established. In short, you would like to express the idea that
each employee “has-a” BenefitPackage. To do so, you can update the Employee class definition as follows:

// Employees now have benefits.
partial class Employee
{
 // Contain a BenefitPackage object.
 protected BenefitPackage empBenefits = new BenefitPackage();
...
}

At this point, you have successfully contained another object. However, exposing the functionality of
the contained object to the outside world requires delegation. Delegation is simply the act of adding public
members to the containing class that use the contained object’s functionality.

For example, you could update the Employee class to expose the contained empBenefits object
using a custom property, as well as make use of its functionality internally using a new method named
GetBenefitCost().

partial class Employee
{
 // Contain a BenefitPackage object.
 protected BenefitPackage empBenefits = new BenefitPackage();

 // Expose certain benefit behaviors of object.
 public double GetBenefitCost()
 { return empBenefits.ComputePayDeduction(); }

Chapter 6 ■ Understanding inheritanCe and polymorphism

218

 // Expose object through a custom property.
 public BenefitPackage Benefits
 {
 get { return empBenefits; }
 set { empBenefits = value; }
 }
...
}

In the following updated Main() method, notice how you can interact with the internal BenefitsPackage
type defined by the Employee type.

static void Main(string[] args)
{
 Console.WriteLine("***** The Employee Class Hierarchy *****\n");
 ...
 Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
 double cost = chucky.GetBenefitCost();
 Console.ReadLine();
}

Understanding Nested Type Definitions
Chapter 5 briefly mentioned the concept of nested types, which is a spin on the “has-a” relationship you
have just examined. In C# (as well as other .NET languages), it is possible to define a type (enum, class,
interface, struct, or delegate) directly within the scope of a class or structure. When you have done so, the
nested (or “inner”) type is considered a member of the nesting (or “outer”) class and in the eyes of the
runtime can be manipulated like any other member (fields, properties, methods, and events). The syntax
used to nest a type is quite straightforward.

public class OuterClass
{
 // A public nested type can be used by anybody.
 public class PublicInnerClass {}

 // A private nested type can only be used by members
 // of the containing class.
 private class PrivateInnerClass {}
}

Although the syntax is fairly clear, understanding why you would want to do this might not be readily
apparent. To understand this technique, ponder the following traits of nesting a type:

•	 Nested types allow you to gain complete control over the access level of the inner
type because they may be declared privately (recall that non-nested classes cannot
be declared using the private keyword).

•	 Because a nested type is a member of the containing class, it can access private
members of the containing class.

•	 Often, a nested type is useful only as a helper for the outer class and is not intended
for use by the outside world.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

219

When a type nests another class type, it can create member variables of the type, just as it would for any
point of data. However, if you want to use a nested type from outside the containing type, you must qualify it
by the scope of the nesting type. Consider the following code:

static void Main(string[] args)
{
 // Create and use the public inner class. OK!
 OuterClass.PublicInnerClass inner;
 inner = new OuterClass.PublicInnerClass();

 // Compiler Error! Cannot access the private class.
 OuterClass.PrivateInnerClass inner2;
 inner2 = new OuterClass.PrivateInnerClass();
}

To use this concept within the employees example, assume you have now nested the BenefitPackage
directly within the Employee class type.

partial class Employee
{
 public class BenefitPackage
 {
 // Assume we have other members that represent
 // dental/health benefits, and so on.
 public double ComputePayDeduction()
 {
 return 125.0;
 }
 }
...
}

The nesting process can be as “deep” as you require. For example, assume you want to create an
enumeration named BenefitPackageLevel, which documents the various benefit levels an employee
may choose. To programmatically enforce the tight connection between Employee, BenefitPackage, and
BenefitPackageLevel, you could nest the enumeration as follows:

// Employee nests BenefitPackage.
public partial class Employee
{
 // BenefitPackage nests BenefitPackageLevel.
 public class BenefitPackage
 {
 public enum BenefitPackageLevel
 {
 Standard, Gold, Platinum
 }

Chapter 6 ■ Understanding inheritanCe and polymorphism

220

 public double ComputePayDeduction()
 {
 return 125.0;
 }
 }
...
}

Because of the nesting relationships, note how you are required to make use of this enumeration:

static void Main(string[] args)
{
...
 // Define my benefit level.
 Employee.BenefitPackage.BenefitPackageLevel myBenefitLevel =
 Employee.BenefitPackage.BenefitPackageLevel.Platinum;
 Console.ReadLine();
}

Excellent! At this point, you have been exposed to a number of keywords (and concepts) that allow you
to build hierarchies of related types via classical inheritance, containment, and nested types. If the details
aren’t crystal clear right now, don’t sweat it. You will be building a number of additional hierarchies over the
remainder of this book. Next up, let’s examine the final pillar of OOP: polymorphism.

The Third Pillar of OOP: C#’s Polymorphic Support
Recall that the Employee base class defined a method named GiveBonus(), which was originally
implemented as follows:

public partial class Employee
{
 public void GiveBonus(float amount)
 {
 Pay += amount;
 }
...
}

Because this method has been defined with the public keyword, you can now give bonuses to
salespeople and managers (as well as part-time salespeople).

static void Main(string[] args)
{
 Console.WriteLine("***** The Employee Class Hierarchy *****\n");

 // Give each employee a bonus?
 Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
 chucky.GiveBonus(300);
 chucky.DisplayStats();
 Console.WriteLine();

Chapter 6 ■ Understanding inheritanCe and polymorphism

221

 SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
 fran.GiveBonus(200);
 fran.DisplayStats();
 Console.ReadLine();
}

The problem with the current design is that the publicly inherited GiveBonus() method operates
identically for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should take into
account the number of sales. Perhaps managers should gain additional stock options in conjunction with a
monetary bump in salary. Given this, you are suddenly faced with an interesting question: “How can related
types respond differently to the same request?” Again, glad you asked!

The virtual and override Keywords
Polymorphism provides a way for a subclass to define its own version of a method defined by its base class,
using the process termed method overriding. To retrofit your current design, you need to understand the
meaning of the virtual and override keywords. If a base class wants to define a method that may be (but
does not have to be) overridden by a subclass, it must mark the method with the virtual keyword.

partial class Employee
{
 // This method can now be "overridden" by a derived class.
 public virtual void GiveBonus(float amount)
 {
 Pay += amount;
 }
...
}

 ■ Note methods that have been marked with the virtual keyword are (not surprisingly) termed
virtual methods.

When a subclass wants to change the implementation details of a virtual method, it does so using the
override keyword. For example, the SalesPerson and Manager could override GiveBonus() as follows
(assume that PTSalesPerson will not override GiveBonus() and, therefore, simply inherits the version
defined by SalesPerson):

class SalesPerson : Employee
{
...
 // A salesperson's bonus is influenced by the number of sales.
 public override void GiveBonus(float amount)
 {
 int salesBonus = 0;
 if (SalesNumber >= 0 && SalesNumber <= 100)
 salesBonus = 10;

Chapter 6 ■ Understanding inheritanCe and polymorphism

222

 else
 {
 if (SalesNumber >= 101 && SalesNumber <= 200)
 salesBonus = 15;
 else
 salesBonus = 20;
 }
 base.GiveBonus(amount * salesBonus);
 }
}

class Manager : Employee
{
...
 public override void GiveBonus(float amount)
 {
 base.GiveBonus(amount);
 Random r = new Random();
 StockOptions += r.Next(500);
 }
}

Notice how each overridden method is free to leverage the default behavior using the base keyword.
In this way, you have no need to completely reimplement the logic behind GiveBonus() but can reuse

(and possibly extend) the default behavior of the parent class.
Also assume that the current DisplayStats() method of the Employee class has been declared virtually.

public virtual void DisplayStats()
{
 Console.WriteLine("Name: {0}", Name);
 Console.WriteLine("ID: {0}", ID);
 Console.WriteLine("Age: {0}", Age);
 Console.WriteLine("Pay: {0}", Pay);
 Console.WriteLine("SSN: {0}", SocialSecurityNumber);
}

By doing so, each subclass can override this method to account for displaying the number of sales
(for salespeople) and current stock options (for managers). For example, consider the Manager’s version of
the DisplayStats() method (the SalesPerson class would implement DisplayStats() in a similar manner
to show the number of sales).

public override void DisplayStats()
{
 base.DisplayStats();
 Console.WriteLine("Number of Stock Options: {0}", StockOptions);
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

223

Now that each subclass can interpret what these virtual methods mean for itself, each object instance
behaves as a more independent entity.

static void Main(string[] args)
{
 Console.WriteLine("***** The Employee Class Hierarchy *****\n");

 // A better bonus system!
 Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
 chucky.GiveBonus(300);
 chucky.DisplayStats();
 Console.WriteLine();

 SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
 fran.GiveBonus(200);
 fran.DisplayStats();
 Console.ReadLine();
}

The following output shows a possible test run of your application thus far:

***** The Employee Class Hierarchy *****

Name: Chucky
ID: 92
Age: 50
Pay: 100300
SSN: 333-23-2322
Number of Stock Options: 9337

Name: Fran
ID: 93
Age: 43
Pay: 5000
SSN: 932-32-3232
Number of Sales: 31

Overriding Virtual Members Using the Visual Studio IDE
As you might have already noticed, when you are overriding a member, you must recall the type of every
parameter—not to mention the method name and parameter passing conventions (ref, out, and params).
Visual Studio has a helpful feature that you can make use of when overriding a virtual member. If you type
the word override within the scope of a class type (then hit the spacebar), IntelliSense will automatically
display a list of all the overridable members defined in your parent classes, as you see in Figure 6-5.

Chapter 6 ■ Understanding inheritanCe and polymorphism

224

When you select a member and hit the Enter key, the IDE responds by automatically filling in the
method stub on your behalf. Note that you also receive a code statement that calls your parent’s version
of the virtual member (you are free to delete this line if it is not required). For example, if you used this
technique when overriding the DisplayStats() method, you might find the following autogenerated code:

public override void DisplayStats()
{
 base.DisplayStats();
}

Figure 6-5. Quickly viewing overridable methods à la Visual Studio

Chapter 6 ■ Understanding inheritanCe and polymorphism

225

Sealing Virtual Members
Recall that the sealed keyword can be applied to a class type to prevent other types from extending its
behavior via inheritance. As you might remember, you sealed PTSalesPerson because you assumed it made
no sense for other developers to extend this line of inheritance any further.

On a related note, sometimes you might not want to seal an entire class but simply want to prevent
derived types from overriding particular virtual methods. For example, assume you do not want part-time
salespeople to obtain customized bonuses. To prevent the PTSalesPerson class from overriding the virtual
GiveBonus() method, you could effectively seal this method in the SalesPerson class as follows:

// SalesPerson has sealed the GiveBonus() method!
class SalesPerson : Employee
{
...
 public override sealed void GiveBonus(float amount)
 {
 ...
 }
}

Here, SalesPerson has indeed overridden the virtual GiveBonus() method defined in the Employee
class; however, it has explicitly marked it as sealed. Thus, if you attempted to override this method in the
PTSalesPerson class, you would receive compile-time errors, as shown in the following code:

sealed class PTSalesPerson : SalesPerson
{
 public PTSalesPerson(string fullName, int age, int empID,
 float currPay, string ssn, int numbOfSales)
 :base (fullName, age, empID, currPay, ssn, numbOfSales)
 {
 }

 // Compiler error! Can't override this method
 // in the PTSalesPerson class, as it was sealed.
 public override void GiveBonus(float amount)
 {
 }
}

Understanding Abstract Classes
Currently, the Employee base class has been designed to supply various data members for its descendants,
as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be overridden by a given
descendant. While this is all well and good, there is a rather odd byproduct of the current design; you can
directly create instances of the Employee base class.

// What exactly does this mean?
Employee X = new Employee();

Chapter 6 ■ Understanding inheritanCe and polymorphism

226

In this example, the only real purpose of the Employee base class is to define common members for all
subclasses. In all likelihood, you did not intend anyone to create a direct instance of this class, reason being
that the Employee type itself is too general of a concept. For example, if I were to walk up to you and say, “I’m
an employee!” I would bet your first question to me would be, “What kind of employee are you?” Are you a
consultant, trainer, admin assistant, copyeditor, or White House aide?

Given that many base classes tend to be rather nebulous entities, a far better design for this example
is to prevent the ability to directly create a new Employee object in code. In C#, you can enforce this
programmatically by using the abstract keyword in the class definition, thus creating an abstract base class.

// Update the Employee class as abstract
// to prevent direct instantiation.
abstract partial class Employee
{
 ...
}

With this, if you now attempt to create an instance of the Employee class, you are issued a compile-time error.

// Error! Cannot create an instance of an abstract class!
Employee X = new Employee();

At first glance, it might seem strange to define a class that you cannot directly create an instance of.
Recall, however, that base classes (abstract or not) are useful, in that they contain all the common data
and functionality of derived types. Using this form of abstraction, you are able to model that the “idea” of
an employee is completely valid; it is just not a concrete entity. Also understand that although you cannot
directly create an instance of an abstract class, it is still assembled in memory when derived classes are
created. Thus, it is perfectly fine (and common) for abstract classes to define any number of constructors
that are called indirectly when derived classes are allocated.

At this point, you have constructed a fairly interesting employee hierarchy. You will add a bit more
functionality to this application later in this chapter when examining C# casting rules. Until then, Figure 6-6
illustrates the crux of your current design.

Chapter 6 ■ Understanding inheritanCe and polymorphism

227

Figure 6-6. The Employee hierarchy

 ■ Source Code the employees project is included in the Chapter 6 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 6 ■ Understanding inheritanCe and polymorphism

228

Figure 6-7. The shapes hierarchy

Understanding the Polymorphic Interface
When a class has been defined as an abstract base class (via the abstract keyword), it may define any
number of abstract members. Abstract members can be used whenever you want to define a member that
does not supply a default implementation but must be accounted for by each derived class. By doing so, you
enforce a polymorphic interface on each descendant, leaving them to contend with the task of providing the
details behind your abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual and abstract
methods. This is much more interesting than first meets the eye because this trait of OOP allows you to build
easily extendable and flexible software applications. To illustrate, you will be implementing (and slightly
modifying) the hierarchy of shapes briefly examined in Chapter 5 during the overview of the pillars of OOP.
To begin, create a new C# Console Application project named Shapes.

In Figure 6-7, notice that the Hexagon and Circle types each extend the Shape base class. Like any base
class, Shape defines a number of members (a PetName property and Draw() method, in this case) that are
common to all descendants.

http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 6 ■ Understanding inheritanCe and polymorphism

229

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the object user
to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent the direct creation
of the Shape type, you could define it as an abstract class. As well, given that you want the derived types to
respond uniquely to the Draw() method, let’s mark it as virtual and define a default implementation.

// The abstract base class of the hierarchy.
abstract class Shape
{
 public Shape(string name = "NoName")
 { PetName = name; }

 public string PetName { get; set; }

 // A single virtual method.
 public virtual void Draw()
 {
 Console.WriteLine("Inside Shape.Draw()");
 }
}

Notice that the virtual Draw() method provides a default implementation that simply prints out a
message that informs you that you are calling the Draw() method within the Shape base class. Now recall that
when a method is marked with the virtual keyword, the method provides a default implementation that all
derived types automatically inherit. If a child class so chooses, it may override the method but does not have
to. Given this, consider the following implementation of the Circle and Hexagon types:

// Circle DOES NOT override Draw().
class Circle : Shape
{
 public Circle() {}
 public Circle(string name) : base(name){}
}

// Hexagon DOES override Draw().
class Hexagon : Shape
{
 public Hexagon() {}
 public Hexagon(string name) : base(name){}
 public override void Draw()
 {
 Console.WriteLine("Drawing {0} the Hexagon", PetName);
 }
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

230

The usefulness of abstract methods becomes crystal clear when you once again remember that
subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if you create
an instance of the Hexagon and Circle types, you’d find that the Hexagon understands how to “draw” itself
correctly or at least print out an appropriate message to the console. The Circle, however, is more than a bit
confused.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Polymorphism *****\n");

 Hexagon hex = new Hexagon("Beth");
 hex.Draw();
 Circle cir = new Circle("Cindy");
 // Calls base class implementation!
 cir.Draw();
 Console.ReadLine();
}

Now consider the following output of the previous Main() method:

***** Fun with Polymorphism *****

Drawing Beth the Hexagon
Inside Shape.Draw()

Clearly, this is not an intelligent design for the current hierarchy. To force each child class to override
the Draw() method, you can define Draw() as an abstract method of the Shape class, which by definition
means you provide no default implementation whatsoever. To mark a method as abstract in C#, you use the
abstract keyword. Notice that abstract members do not provide any implementation whatsoever.

abstract class Shape
{
 // Force all child classes to define how to be rendered.
 public abstract void Draw();
 ...
}

 ■ Note abstract methods can be defined only in abstract classes. if you attempt to do otherwise, you will be
issued a compiler error.

Methods marked with abstract are pure protocol. They simply define the name, return type (if any),
and parameter set (if required). Here, the abstract Shape class informs the derived types that “I have a
method named Draw() that takes no arguments and returns nothing. If you derive from me, you figure out
the details.”

Chapter 6 ■ Understanding inheritanCe and polymorphism

231

Given this, you are now obligated to override the Draw() method in the Circle class. If you do not,
Circle is also assumed to be a noncreatable abstract type that must be adorned with the abstract keyword
(which is obviously not useful in this example). Here is the code update:

// If we did not implement the abstract Draw() method, Circle would also be
// considered abstract, and would have to be marked abstract!
class Circle : Shape
{
 public Circle() {}
 public Circle(string name) : base(name) {}
 public override void Draw()
 {
 Console.WriteLine("Drawing {0} the Circle", PetName);
 }
}

The short answer is that you can now assume that anything deriving from Shape does indeed have a
unique version of the Draw() method. To illustrate the full story of polymorphism, consider the following code:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Polymorphism *****\n");

 // Make an array of Shape-compatible objects.
 Shape[] myShapes = {new Hexagon(), new Circle(), new Hexagon("Mick"),
 new Circle("Beth"), new Hexagon("Linda")};

 // Loop over each item and interact with the
 // polymorphic interface.
 foreach (Shape s in myShapes)
 {
 s.Draw();
 }
 Console.ReadLine();
}

Here is the output from the modified Main() method:

***** Fun with Polymorphism *****

Drawing NoName the Hexagon
Drawing NoName the Circle
Drawing Mick the Hexagon
Drawing Beth the Circle
Drawing Linda the Hexagon

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly create
an instance of an abstract base class (the Shape), you are able to freely store references to any subclass with
an abstract base variable. Therefore, when you are creating an array of Shapes, the array can hold any object
deriving from the Shape base class (if you attempt to place Shape-incompatible objects into the array, you
receive a compiler error).

Chapter 6 ■ Understanding inheritanCe and polymorphism

232

Given that all items in the myShapes array do indeed derive from Shape, you know they all support the
same “polymorphic interface” (or said more plainly, they all have a Draw() method). As you iterate over the
array of Shape references, it is at runtime that the underlying type is determined. At this point, the correct
version of the Draw() method is invoked in memory.

This technique also makes it simple to safely extend the current hierarchy. For example, assume
you derived more classes from the abstract Shape base class (Triangle, Square, etc.). Because of the
polymorphic interface, the code within your foreach loop would not have to change in the slightest, as the
compiler enforces that only Shape-compatible types are placed within the myShapes array.

Understanding Member Shadowing
C# provides a facility that is the logical opposite of method overriding, termed shadowing. Formally
speaking, if a derived class defines a member that is identical to a member defined in a base class, the
derived class has shadowed the parent’s version. In the real world, the possibility of this occurring is the
greatest when you are subclassing from a class you (or your team) did not create yourself (such as when you
purchase a third-party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a co-worker (or
classmate) that defines a subroutine named Draw() taking no arguments.

class ThreeDCircle
{
 public void Draw()
 {
 Console.WriteLine("Drawing a 3D Circle");
 }
}

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type.

class ThreeDCircle : Circle
{
 public void Draw()
 {
 Console.WriteLine("Drawing a 3D Circle");
 }
}

After you recompile, you find the following warning:

'ThreeDCircle.Draw()' hides inherited member 'Circle.Draw()'. To make the
current member override that implementation, add the override keyword. Otherwise add the
new keyword.

The problem is that you have a derived class (ThreeDCircle) that contains a method that is identical
to an inherited method. To address this issue, you have a few options. You could simply update the parent’s
version of Draw() using the override keyword (as suggested by the compiler). With this approach, the
ThreeDCircle type is able to extend the parent’s default behavior as required. However, if you don’t have
access to the code defining the base class (again, as would be the case in many third- party libraries), you
would be unable to modify the Draw() method as a virtual member, as you don’t have access to the code file!

Chapter 6 ■ Understanding inheritanCe and polymorphism

233

As an alternative, you can include the new keyword to the offending Draw() member of the derived
type (ThreeDCircle, in this example). Doing so explicitly states that the derived type’s implementation is
intentionally designed to effectively ignore the parent’s version (again, in the real world, this can be helpful if
external .NET software somehow conflicts with your current software).

// This class extends Circle and hides the inherited Draw() method.
class ThreeDCircle : Circle
{
 // Hide any Draw() implementation above me.
 public new void Draw()
 {
 Console.WriteLine("Drawing a 3D Circle");
 }
}

You can also apply the new keyword to any member type inherited from a base class (field, constant,
static member, or property). As a further example, assume that ThreeDCircle wants to hide the inherited
PetName property.

class ThreeDCircle : Circle
{
 // Hide the PetName property above me.
 public new string PetName { get; set; }

 // Hide any Draw() implementation above me.
 public new void Draw()
 {
 Console.WriteLine("Drawing a 3D Circle");
 }
}

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed member
using an explicit cast, as described in the next section. For example, the following code shows:

static void Main(string[] args)
{
...
 // This calls the Draw() method of the ThreeDCircle.
 ThreeDCircle o = new ThreeDCircle();
 o.Draw();

 // This calls the Draw() method of the parent!
 ((Circle)o).Draw();
 Console.ReadLine();
}

 ■ Source Code the shapes project can be found in the Chapter 6 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 6 ■ Understanding inheritanCe and polymorphism

234

Understanding Base Class/Derived Class Casting Rules
Now that you can build a family of related class types, you need to learn the rules of class casting operations.
To do so, let’s return to the Employees hierarchy created earlier in this chapter and add some new methods
to the Program class (if you are following alone, open the Employee project in Visual Studio). As described
in the final section of this chapter, the ultimate base class in the system is System.Object. Therefore,
everything “is-an” Object and can be treated as such. Given this fact, it is legal to store an instance of any
type within an object variable.

static void CastingExamples()
{
 // A Manager "is-a" System.Object, so we can
 // store a Manager reference in an object variable just fine.
 object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
}

In the Employees example, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so you can store any of these objects in a valid base class reference. Therefore, the following statements are
also legal:

static void CastingExamples()
{
 // A Manager "is-a" System.Object, so we can
 // store a Manager reference in an object variable just fine.
 object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

 // A Manager "is-an" Employee too.
 Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-1321", 1);

 // A PTSalesPerson "is-a" SalesPerson.
 SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-1119", 90);
}

The first law of casting between class types is that when two classes are related by an “is-a” relationship,
it is always safe to store a derived object within a base class reference. Formally, this is called an implicit cast,
as “it just works” given the laws of inheritance. This leads to some powerful programming constructs. For
example, assume you have defined a new method within your current Program class.

static void GivePromotion(Employee emp)
{
 // Increase pay...
 // Give new parking space in company garage...

 Console.WriteLine("{0} was promoted!", emp.Name);
}

Because this method takes a single parameter of type Employee, you can effectively pass any descendant
from the Employee class into this method directly, given the “is-a” relationship.

Chapter 6 ■ Understanding inheritanCe and polymorphism

235

static void CastingExamples()
{
 // A Manager "is-a" System.Object, so we can
 // store a Manager reference in an object variable just fine.
 object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

 // A Manager "is-an" Employee too.
 Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-1321", 1);
 GivePromotion(moonUnit);

 // A PTSalesPerson "is-a" SalesPerson.
 SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-1119", 90);
 GivePromotion(jill);
}

The previous code compiles given the implicit cast from the base class type (Employee) to the derived
type. However, what if you also wanted to fire Frank Zappa (currently stored in a general System.Object
reference)? If you pass the frank object directly into this method, you will find a compiler error as follows:

object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
// Error!
GivePromotion(frank);

The problem is that you are attempting to pass in a variable that is not declared as an Employee but
a more general System.Object. Given that object is higher up the inheritance chain than Employee, the
compiler will not allow for an implicit cast, in an effort to keep your code as type-safe as possible.

Even though you can figure out that the object reference is pointing to an Employee-compatible class
in memory, the compiler cannot, as that will not be known until runtime. You can satisfy the compiler by
performing an explicit cast. This is the second law of casting: you can, in such cases, explicitly downcast
using the C# casting operator. The basic template to follow when performing an explicit cast looks
something like the following:

(ClassIWantToCastTo)referenceIHave

Thus, to pass the object variable into the GivePromotion() method, you could author the following code:

// OK!
GivePromotion((Manager)frank);

The C# as Keyword
Be aware that explicit casting is evaluated at runtime, not compile time. For the sake of argument, assume
your Employees project had a copy of the Hexagon class created earlier in this chapter. For simplicity, you
could add the following class to the current project:

class Hexagon
{
 public void Draw() { Console.WriteLine("Drawing a hexagon!"); }
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

236

Although casting the employee object to a shape object makes absolutely no sense, code such as the
following could compile without error:

// Ack! You can't cast frank to a Hexagon, but this compiles fine!
object frank = new Manager();
Hexagon hex = (Hexagon)frank;

However, you would receive a runtime error, or, more formally, a runtime exception. Chapter 7 will
examine the full details of structured exception handling; however, it is worth pointing out, for the time
being, that when you are performing an explicit cast, you can trap the possibility of an invalid cast using the
try and catch keywords (again, see Chapter 7 for full details).

// Catch a possible invalid cast.
object frank = new Manager();
Hexagon hex;
try
{
 hex = (Hexagon)frank;
}
catch (InvalidCastException ex)
{
 Console.WriteLine(ex.Message);
}

Obviously this is a contrived example; you would never bother casting between these types in this
situation. However, assume you have an array of System.Object types, only a few of which contain
Employee-compatible objects. In this case, you would like to determine whether an item in an array is
compatible to begin with and, if so, perform the cast.

C# provides the as keyword to quickly determine at runtime whether a given type is compatible with
another. When you use the as keyword, you are able to determine compatibility by checking against a null
return value. Consider the following:

// Use "as" to test compatability.
object[] things = new object[4];
things[0] = new Hexagon();
things[1] = false;
things[2] = new Manager();
things[3] = "Last thing";

foreach (object item in things)
{
 Hexagon h = item as Hexagon;
 if (h == null)
 Console.WriteLine("Item is not a hexagon");
 else
 {
 h.Draw();
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_7
http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 6 ■ Understanding inheritanCe and polymorphism

237

Here you loop over each item in the array of objects, checking each one for compatibility with the
Hexagon class. If (and only if!) you find a Hexagon-compatible object, you invoke the Draw() method.
Otherwise, you simply report the items are not compatible.

The C# is Keyword
In addition to the as keyword, the C# language provides the is keyword to determine whether two items are
compatible. Unlike the as keyword, however, the is keyword returns false, rather than a null reference if
the types are incompatible. In other words, the is keyword does not perform any sort of cast; it just checks
compatibility. If things are compatible, you can then perform a safe cast.

Currently, the GivePromotion() method has been designed to take any possible type derived from
Employee. Consider the following update, which now checks to see exactly which “type of employee” you
have been passed:

static void GivePromotion(Employee emp)
{
 Console.WriteLine("{0} was promoted!", emp.Name);

 if (emp is SalesPerson)
 {
 Console.WriteLine("{0} made {1} sale(s)!", emp.Name,
 ((SalesPerson)emp).SalesNumber);
 Console.WriteLine();
 }
 if (emp is Manager)
 {
 Console.WriteLine("{0} had {1} stock options...", emp.Name,
 ((Manager)emp).StockOptions);
 Console.WriteLine();
 }
}

Here, you are performing a runtime check to determine what the incoming base class reference is
actually pointing to in memory. After you determine whether you received a SalesPerson or Manager type,
you are able to perform an explicit cast to gain access to the specialized members of the class. Also notice
that you are not required to wrap your casting operations within a try/catch construct, as you know that the
cast is safe if you enter either if scope, given your conditional check.

The Master Parent Class: System.Object
To wrap up this chapter, I’d like to examine the details of the master parent class in the .NET platform:
Object. As you were reading the previous section, you might have noticed that the base classes in your
hierarchies (Car, Shape, Employee) never explicitly specify their parent classes.

// Who is the parent of Car?
class Car
{...}

Chapter 6 ■ Understanding inheritanCe and polymorphism

238

In the .NET universe, every type ultimately derives from a base class named System.Object, which can
be represented by the C# object keyword (lowercase o). The Object class defines a set of common members
for every type in the framework. In fact, when you do build a class that does not explicitly define its parent,
the compiler automatically derives your type from Object. If you want to be clear in your intentions, you are
free to define classes that derive from Object as follows (however again, there is no need to do so):

// Here we are explicitly deriving from System.Object.
class Car : object
{...}

Like any class, System.Object defines a set of members. In the following formal C# definition, note
that some of these items are declared virtual, which specifies that a given member may be overridden by a
subclass, while others are marked with static (and are therefore called at the class level):

public class Object
{
 // Virtual members.
 public virtual bool Equals(object obj);
 protected virtual void Finalize();
 public virtual int GetHashCode();
 public virtual string ToString();

 // Instance-level, nonvirtual members.
 public Type GetType();
 protected object MemberwiseClone();

 // Static members.
 public static bool Equals(object objA, object objB);
 public static bool ReferenceEquals(object objA, object objB);
}

Table 6-1 offers a rundown of the functionality provided by some of the methods you’re most likely to use.

Table 6-1. Core Members of System.Object

Instance Method of
Object Class

Meaning in Life

Equals() By default, this method returns true only if the items being compared refer to
the same item in memory. Thus, Equals() is used to compare object references,
not the state of the object. Typically, this method is overridden to return true
only if the objects being compared have the same internal state values (that is,
value-based semantics).

Be aware that if you override Equals(), you should also override GetHashCode(),
as these methods are used internally by Hashtable types to retrieve subobjects
from the container.

Also recall from Chapter 4, that the ValueType class overrides this method for all
structures, so they work with value-based comparisons.

(continued)

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 6 ■ Understanding inheritanCe and polymorphism

239

Instance Method of
Object Class

Meaning in Life

Finalize() For the time being, you can understand this method (when overridden) is called
to free any allocated resources before the object is destroyed. I talk more about the
CLR garbage collection services in Chapter 9.

GetHashCode() This method returns an int that identifies a specific object instance.

ToString() This method returns a string representation of this object, using the
<namespace>.<type name> format (termed the fully qualified name). This method
will often be overridden by a subclass to return a tokenized string of name/value
pairs that represent the object’s internal state, rather than its fully qualified name.

GetType() This method returns a Type object that fully describes the object you are currently
referencing. In short, this is a Runtime Type Identification (RTTI) method
available to all objects (discussed in greater detail in Chapter 15).

MemberwiseClone() This method exists to return a member-by-member copy of the current object,
which is often used when cloning an object (see Chapter 8).

To illustrate some of the default behavior provided by the Object base class, create a final C# Console
Application project named ObjectOverrides. Insert a new C# class type that contains the following empty
class definition for a type named Person:

// Remember! Person extends Object.
class Person {}

Now, update your Main() method to interact with the inherited members of System.Object as follows:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with System.Object *****\n");
 Person p1 = new Person();

 // Use inherited members of System.Object.
 Console.WriteLine("ToString: {0}", p1.ToString());
 Console.WriteLine("Hash code: {0}", p1.GetHashCode());
 Console.WriteLine("Type: {0}", p1.GetType());

 // Make some other references to p1.
 Person p2 = p1;
 object o = p2;
 // Are the references pointing to the same object in memory?
 if (o.Equals(p1) && p2.Equals(o))
 {
 Console.WriteLine("Same instance!");
 }
 Console.ReadLine();
 }
}

Table 6-1. (continued)

http://dx.doi.org/10.1007/978-1-4842-1332-2_9
http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 6 ■ Understanding inheritanCe and polymorphism

240

Here is the output of the current Main() method:

***** Fun with System.Object *****

ToString: ObjectOverrides.Person
Hash code: 46104728
Type: ObjectOverrides.Person
Same instance!

First, notice how the default implementation of ToString() returns the fully qualified name of the
current type (ObjectOverrides.Person). As you will see later during the examination of building custom
namespaces in Chapter 14, every C# project defines a “root namespace,” which has the same name of the
project itself. Here, you created a project named ObjectOverrides; thus, the Person type and the Program
class have both been placed within the ObjectOverrides namespace.

The default behavior of Equals() is to test whether two variables are pointing to the same object in
memory. Here, you create a new Person variable named p1. At this point, a new Person object is placed
on the managed heap. p2 is also of type Person. However, you are not creating a new instance but rather
assigning this variable to reference p1. Therefore, p1 and p2 are both pointing to the same object in memory,
as is the variable o (of type object, which was thrown in for good measure). Given that p1, p2, and o all point
to the same memory location, the equality test succeeds.

Although the canned behavior of System.Object can fit the bill in a number of cases, it is quite common
for your custom types to override some of these inherited methods. To illustrate, update the Person class to
support some properties representing an individual’s first name, last name, and age, each of which can be
set by a custom constructor.

// Remember! Person extends Object.
class Person
{
 public string FirstName { get; set; } = "";
 public string LastName { get; set; } = "";
 public int Age { get; set; }

 public Person(string fName, string lName, int personAge)
 {
 FirstName = fName;
 LastName = lName;
 Age = personAge;
 }
 public Person(){}
}

Overriding System.Object.ToString()
Many classes (and structures) that you create can benefit from overriding ToString() in order to return a
string textual representation of the type’s current state. This can be quite helpful for purposes of debugging
(among other reasons). How you choose to construct this string is a matter of personal choice; however, a
recommended approach is to separate each name-value pair with semicolons and wrap the entire string

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 6 ■ Understanding inheritanCe and polymorphism

241

within square brackets (many types in the .NET base class libraries follow this approach). Consider the
following overridden ToString() for your Person class:

public override string ToString()
{
 string myState;
 myState = string.Format("[First Name: {0}; Last Name: {1}; Age: {2}]",
 FirstName, LastName, Age);
 return myState;
}

This implementation of ToString() is quite straightforward, given that the Person class has only three
pieces of state data. However, always remember that a proper ToString() override should also account for
any data defined up the chain of inheritance.

When you override ToString() for a class extending a custom base class, the first order of business is to
obtain the ToString() value from your parent using the base keyword. After you have obtained your parent’s
string data, you can append the derived class’s custom information.

Overriding System.Object.Equals()
Let’s also override the behavior of Object.Equals() to work with value-based semantics. Recall that by
default, Equals() returns true only if the two objects being compared reference the same object instance in
memory. For the Person class, it may be helpful to implement Equals() to return true if the two variables
being compared contain the same state values (e.g., first name, last name, and age).

First, notice that the incoming argument of the Equals() method is a general System. Object. Given
this, your first order of business is to ensure the caller has indeed passed in a Person object and, as an extra
safeguard, to make sure the incoming parameter is not a null reference.

After you have established the caller has passed you an allocated Person, one approach to implement
Equals() is to perform a field-by-field comparison against the data of the incoming object to the data of the
current object.

public override bool Equals(object obj)
{
 if (obj is Person && obj != null)
 {
 Person temp;
 temp = (Person)obj;
 if (temp.FirstName == this.FirstName
 && temp.LastName == this.LastName
 && temp.Age == this.Age)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 return false;
}

Chapter 6 ■ Understanding inheritanCe and polymorphism

242

Here, you are examining the values of the incoming object against the values of your internal values
(note the use of the this keyword). If the name and age of each are identical, you have two objects with the
same state data and, therefore, return true. Any other possibility results in returning false.

While this approach does indeed work, you can certainly imagine how labor intensive it would be to
implement a custom Equals() method for nontrivial types that may contain dozens of data fields. One
common shortcut is to leverage your own implementation of ToString(). If a class has a prim-and- proper
implementation of ToString() that accounts for all field data up the chain of inheritance, you can simply
perform a comparison of the object’s string data.

public override bool Equals(object obj)
{
 // No need to cast "obj" to a Person anymore,
 // as everything has a ToString() method.
 return obj.ToString() == this.ToString();
}

Notice in this case that you no longer need to check whether the incoming argument is of the correct
type (a Person, in this example), as everything in .NET supports a ToString() method. Even better, you
no longer need to perform a property-by-property equality check, as you are not simply testing the value
returned from ToString().

Overriding System.Object.GetHashCode()
When a class overrides the Equals() method, you should also override the default implementation of
GetHashCode(). Simply put, a hash code is a numerical value that represents an object as a particular state. For
example, if you create two string variables that hold the value Hello, you would obtain the same hash code.
However, if one of the string objects were in all lowercase (hello), you would obtain different hash codes.

By default, System.Object.GetHashCode() uses your object’s current location in memory to yield the
hash value. However, if you are building a custom type that you intend to store in a Hashtable type (within
the System.Collections namespace), you should always override this member, as the Hashtable will be
internally invoking Equals() and GetHashCode() to retrieve the correct object.

 ■ Note to be more specific, the System.Collections.Hashtable class calls GetHashCode() internally to
gain a general idea where the object is located, but a subsequent (internal) call to Equals() determines the
exact match.

Although you are not going to place your Person into a System.Collections.Hashtable, for completion
let’s override GetHashCode(). There are many algorithms that can be used to create a hash code—some
fancy, others not so fancy. Most of the time, you are able to generate a hash code value by leveraging the
System.String’s GetHashCode() implementation.

Chapter 6 ■ Understanding inheritanCe and polymorphism

243

Given that the String class already has a solid hash code algorithm that is using the character data
of the String to compute a hash value, if you can identify a piece of field data on your class that should be
unique for all instances (such as a Social Security number), simply call GetHashCode() on that point of field
data. Thus, if the Person class defined an SSN property, you could author the following code:

// Assume we have an SSN property as so.
class Person
{
 public string SSN {get; set;} = "";

 // Return a hash code based on a point of unique string data.
 public override int GetHashCode()
 {
 return SSN.GetHashCode();
 }
}

If you cannot find a single point of unique string data but you have overridden ToString(),
call GetHashCode() on your own string representation:

// Return a hash code based on the person's ToString() value.
public override int GetHashCode()
{
 return this.ToString().GetHashCode();
}

Testing Your Modified Person Class
Now that you have overridden the virtual members of Object, update Main() to test your updates.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with System.Object *****\n");

 // NOTE: We want these to be identical to test
 // the Equals() and GetHashCode() methods.
 Person p1 = new Person("Homer", "Simpson", 50);
 Person p2 = new Person("Homer", "Simpson", 50);

 // Get stringified version of objects.
 Console.WriteLine("p1.ToString() = {0}", p1.ToString());
 Console.WriteLine("p2.ToString() = {0}", p2.ToString());

 // Test overridden Equals().
 Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));

 // Test hash codes.
 Console.WriteLine("Same hash codes?: {0}", p1.GetHashCode() == p2.GetHashCode());
 Console.WriteLine();

Chapter 6 ■ Understanding inheritanCe and polymorphism

244

 // Change age of p2 and test again.
 p2.Age = 45;
 Console.WriteLine("p1.ToString() = {0}", p1.ToString());
 Console.WriteLine("p2.ToString() = {0}", p2.ToString());
 Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));
 Console.WriteLine("Same hash codes?: {0}", p1.GetHashCode() == p2.GetHashCode());
 Console.ReadLine();
}

The output is shown here:

***** Fun with System.Object *****

p1.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p1 = p2?: True
Same hash codes?: True

p1.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 45]
p1 = p2?: False
Same hash codes?: False

The Static Members of System.Object
In addition to the instance-level members you have just examined, System.Object does define two
(very helpful) static members that also test for value-based or reference-based equality. Consider the
following code:

static void StaticMembersOfObject()
{
 // Static members of System.Object.
 Person p3 = new Person("Sally", "Jones", 4);
 Person p4 = new Person("Sally", "Jones", 4);
 Console.WriteLine("P3 and P4 have same state: {0}", object.Equals(p3, p4));
 Console.WriteLine("P3 and P4 are pointing to same object: {0}",
 object.ReferenceEquals(p3, p4));
}

Here, you are able to simply send in two objects (of any type) and allow the System.Object class to
determine the details automatically.

 ■ Source Code the objectoverrides project is located in the Chapter 6 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 6 ■ Understanding inheritanCe and polymorphism

245

Summary
This chapter explored the role and details of inheritance and polymorphism. Over these pages you were
introduced to numerous new keywords and tokens to support each of these techniques. For example, recall
that the colon token is used to establish the parent class of a given type. Parent types are able to define any
number of virtual and/or abstract members to establish a polymorphic interface. Derived types override
such members using the override keyword.

In addition to building numerous class hierarchies, this chapter also examined how to explicitly cast
between base and derived types and wrapped up by diving into the details of the cosmic parent class in the
.NET base class libraries: System.Object.

247

Chapter 7

Understanding Structured
Exception Handling

In this chapter, you will learn how to handle runtime anomalies in your C# code through the use of
structured exception handling. Not only will you examine the C# keywords that allow you to handle such
matters (try, catch, throw, finally, when), but you will also come to understand the distinction between
application-level and system-level exceptions, as well as the role of the System.Exception base class.
This discussion will lead into the topic of building custom exceptions and, finally, to a quick look at some
exception-centric debugging tools of Visual Studio.

Ode to Errors, Bugs, and Exceptions
Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software is a
complex undertaking, and given this complexity, it is quite common for even the best software to ship
with various problems. Sometimes the problem is caused by bad code (such as overflowing the bounds
of an array). Other times, a problem is caused by bogus user input that has not been accounted for in the
application’s code base (e.g., a phone number input field assigned to the value Chucky). Now, regardless of
the cause of the problem, the end result is that the application does not work as expected. To help frame the
upcoming discussion of structured exception handling, allow me to provide definitions for three commonly
used anomaly-centric terms.

•	 Bugs: These are, simply put, errors made by the programmer. For example, suppose
you are programming with unmanaged C++. If you fail to delete dynamically
allocated memory, resulting in a memory leak, you have a bug.

•	 User errors: User errors, on the other hand, are typically caused by the individual
running your application, rather than by those who created it. For example, an end
user who enters a malformed string into a text box could very well generate an error
if you fail to handle this faulty input in your code base.

•	 Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult,
if not impossible, to account for while programming your application. Possible
exceptions include attempting to connect to a database that no longer exists,
opening a corrupted XML file, or trying to contact a machine that is currently offline.
In each of these cases, the programmer (or end user) has little control over these
“exceptional” circumstances.

Chapter 7 ■ Understanding strUCtUred exCeption handling

248

Given these definitions, it should be clear that .NET structured exception handling is a technique
for dealing with runtime exceptions. However, even for the bugs and user errors that have escaped your
view, the CLR will often generate a corresponding exception that identifies the problem at hand. By way
of a few examples, the .NET base class libraries define numerous exceptions, such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException, and so forth.

Within the .NET nomenclature, an exception accounts for bugs, bogus user input, and runtime errors,
even though programmers may view each of these as a distinct issue. However, before I get too far ahead of
myself, let’s formalize the role of structured exception handling and check out how it differs from traditional
error-handling techniques.

 ■ Note to make the code examples used in this book as clean as possible, i will not catch every possible
exception that may be thrown by a given method in the base class libraries. in your production-level projects,
you should, of course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling
Prior to .NET, error handling under the Windows operating system was a confused mishmash of techniques.
Many programmers rolled their own error-handling logic within the context of a given application. For
example, a development team could define a set of numerical constants that represented known error
conditions and make use of them as method return values. By way of an example, consider the following
partial C code:

/* A very C-style error trapping mechanism. */
#define E_FILENOTFOUND 1000

int UseFileSystem()
{
 // Assume something happens in this function
 // that causes the following return value.
 return E_FILENOTFOUND;
}

void main()
{
 int retVal = UseFileSystem();
 if(retVal == E_FILENOTFOUND)
 printf("Cannot find file...");
}

This approach is less than ideal, given the fact that the constant E_FILENOTFOUND is little more than a
numerical value and is far from being a helpful agent regarding how to deal with the problem. Ideally, you
would like to wrap the error’s name, a descriptive message, and other helpful information about this error
condition into a single, well-defined package (which is exactly what happens under structured exception
handling). In addition to a developer’s ad hoc techniques, the Windows API defines hundreds of error codes
that come by way of #defines, HRESULTs, and far too many variations on the simple Boolean (bool, BOOL,
VARIANT_BOOL, and so on).

Chapter 7 ■ Understanding strUCtUred exCeption handling

249

The obvious problem with these older techniques is the tremendous lack of symmetry. Each approach is
more or less tailored to a given technology, a given language, and perhaps even a given project. To put an end
to this madness, the .NET platform provides a standard technique to send and trap runtime errors: structured
exception handling. The beauty of this approach is that developers now have a unified approach to error handling,
which is common to all languages targeting the .NET platform. Therefore, the way in which a C# programmer
handles errors is syntactically similar to that of a VB programmer, or a C++ programmer using C++/CLI.

As an added bonus, the syntax used to throw and catch exceptions across assemblies and machine
boundaries is identical. For example, if you use C# to build a Windows Communication Foundation (WCF)
service, you can throw a SOAP fault to a remote caller, using the same keywords that allow you to throw an
exception between methods in the same application.

Another bonus of .NET exceptions is that rather than receiving a cryptic numerical value, exceptions
are objects that contain a human-readable description of the problem, as well as a detailed snapshot of
the call stack that triggered the exception in the first place. Furthermore, you are able to give the end user
help-link information that points the user to a URL that provides details about the error, as well as custom
programmer-defined data.

The Building Blocks of .NET Exception Handling
Programming with structured exception handling involves the use of four interrelated entities.

•	 A class type that represents the details of the exception

•	 A member that throws an instance of the exception class to the caller under the
correct circumstances

•	 A block of code on the caller’s side that invokes the exception-prone member

•	 A block of code on the caller’s side that will process (or catch) the exception, should
it occur

The C# programming language offers five keywords (try, catch, throw, finally, and when) that allow
you to throw and handle exceptions. The object that represents the problem at hand is a class extending
System.Exception (or a descendent thereof). Given this fact, let’s check out the role of this exception-
centric base class.

The System.Exception Base Class
All exceptions ultimately derive from the System.Exception base class, which in turn derives from
System.Object. Here is the crux of this class (note that some of these members are virtual and may thus be
overridden by derived classes):

public class Exception : ISerializable, _Exception
{
 // Public constructors
 public Exception(string message, Exception innerException);
 public Exception(string message);
 public Exception();
...

 // Methods
 public virtual Exception GetBaseException();
 public virtual void GetObjectData(SerializationInfo info,
 StreamingContext context);

Chapter 7 ■ Understanding strUCtUred exCeption handling

250

 // Properties
 public virtual IDictionary Data { get; }
 public virtual string HelpLink { get; set; }
 public Exception InnerException { get; }
 public virtual string Message { get; }
 public virtual string Source { get; set; }
 public virtual string StackTrace { get; }
 public MethodBase TargetSite { get; }
...
}

As you can see, many of the properties defined by System.Exception are read-only in nature. This
is because derived types will typically supply default values for each property. For example, the default
message of the IndexOutOfRangeException type is “Index was outside the bounds of the array.”

 ■ Note the Exception class implements two .net interfaces. although you have yet to examine interfaces
(see Chapter 8), just understand that the _Exception interface allows a .net exception to be processed by
an unmanaged code base (such as a CoM application), while the iSerializable interface allows an exception
object to be persisted across boundaries (such as a machine boundary).

Table 7-1 describes the most important members of System.Exception.

Table 7-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data This read-only property retrieves a collection of key/value pairs
(represented by an object implementing IDictionary) that provide
additional, programmer-defined information about the exception. By
default, this collection is empty.

HelpLink This property gets or sets a URL to a help file or web site describing the
error in full detail.

InnerException This read-only property can be used to obtain information about the
previous exception(s) that caused the current exception to occur. The
previous exception(s) are recorded by passing them into the constructor
of the most current exception.

Message This read-only property returns the textual description of a given error.
The error message itself is set as a constructor parameter.

Source This property gets or sets the name of the assembly, or the object, that
threw the current exception.

StackTrace This read-only property contains a string that identifies the sequence of
calls that triggered the exception. As you might guess, this property is useful
during debugging or if you want to dump the error to an external error log.

TargetSite This read-only property returns a MethodBase object, which describes
numerous details about the method that threw the exception (invoking
ToString() will identify the method by name).

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 7 ■ Understanding strUCtUred exCeption handling

251

The Simplest Possible Example
To illustrate the usefulness of structured exception handling, you need to create a class that will throw an
exception under the correct (or one might say exceptional) circumstances. Assume you have created a new
C# Console Application project (named SimpleException) that defines two class types (Car and Radio)
associated by the “has-a” relationship. The Radio type defines a single method that turns the radio’s power
on or off.

class Radio
{
 public void TurnOn(bool on)
 {
 if(on)
 Console.WriteLine("Jamming...");
 else
 Console.WriteLine("Quiet time...");
 }
}

In addition to leveraging the Radio class via containment/delegation, the Car class (shown next)
is defined in such a way that if the user accelerates a Car object beyond a predefined maximum speed
(specified using a constant member variable named MaxSpeed), its engine explodes, rendering the Car
unusable (captured by a private bool member variable named carIsDead).

Beyond these points, the Car type has a few properties to represent the current speed and a user
supplied “pet name,” as well as various constructors to set the state of a new Car object. Here is the complete
definition (with code comments):

class Car
{
 // Constant for maximum speed.
 public const int MaxSpeed = 100;

 // Car properties.
 public int CurrentSpeed {get; set;} = 0;
 public string PetName {get; set;} = "";

 // Is the car still operational?
 private bool carIsDead;

 // A car has-a radio.
 private Radio theMusicBox = new Radio();

 // Constructors.
 public Car() {}
 public Car(string name, int speed)
 {
 CurrentSpeed = speed;
 PetName = name;
 }

Chapter 7 ■ Understanding strUCtUred exCeption handling

252

 public void CrankTunes(bool state)
 {
 // Delegate request to inner object.
 theMusicBox.TurnOn(state);
 }

 // See if Car has overheated.
 public void Accelerate(int delta)
 {
 if (carIsDead)
 Console.WriteLine("{0} is out of order...", PetName);
 else
 {
 CurrentSpeed += delta;
 if (CurrentSpeed > MaxSpeed)
 {
 Console.WriteLine("{0} has overheated!", PetName);
 CurrentSpeed = 0;
 carIsDead = true;
 }
 else
 Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);
 }
 }
}

Now, if you implement a Main() method that forces a Car object to exceed the predefined maximum
speed (set to 100, in the Car class) as shown here:

static void Main(string[] args)
{
 Console.WriteLine("***** Simple Exception Example *****");
 Console.WriteLine("=> Creating a car and stepping on it!");
 Car myCar = new Car("Zippy", 20);
 myCar.CrankTunes(true);

 for (int i = 0; i < 10; i++)
 myCar.Accelerate(10);
 Console.ReadLine();
}

you would see the following output:

***** Simple Exception Example *****
=> Creating a car and stepping on it!
Jamming...
=> CurrentSpeed = 30
=> CurrentSpeed = 40
=> CurrentSpeed = 50
=> CurrentSpeed = 60
=> CurrentSpeed = 70

Chapter 7 ■ Understanding strUCtUred exCeption handling

253

=> CurrentSpeed = 80
=> CurrentSpeed = 90
=> CurrentSpeed = 100
Zippy has overheated!
Zippy is out of order...

Throwing a General Exception
Now that you have a functional Car class, I’ll demonstrate the simplest way to throw an exception. The
current implementation of Accelerate() simply displays an error message if the caller attempts to speed up
the Car beyond its upper limit.

To retrofit this method to throw an exception if the user attempts to speed up the automobile after it
has met its maker, you want to create and configure a new instance of the System.Exception class, setting
the value of the read-only Message property via the class constructor. When you want to send the exception
object back to the caller, use the C# throw keyword. Here is the relevant code update to the Accelerate()
method:

// This time, throw an exception if the user speeds up beyond MaxSpeed.
public void Accelerate(int delta)
{
 if (carIsDead)
 Console.WriteLine("{0} is out of order...", PetName);
 else
 {
 CurrentSpeed += delta;
 if (CurrentSpeed >= MaxSpeed)
 {
 carIsDead = true;
 CurrentSpeed = 0;

 // Use the "throw" keyword to raise an exception.
 throw new Exception(string.Format("{0} has overheated!", PetName));
 }
 else
 Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);
 }
}

Before examining how a caller would catch this exception, let’s look at a few points of interest. First,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the error
in question and when an exception should be thrown. Here, you are making the assumption that if the
program attempts to increase the speed of a Car object beyond the maximum, a System.Exception object
should be thrown to indicate the Accelerate() method cannot continue (which may or may not be a valid
assumption; this will be a judgment call on your part based on the application you are creating).

Alternatively, you could implement Accelerate() to recover automatically without needing to throw an
exception in the first place. By and large, exceptions should be thrown only when a more terminal condition
has been met (for example, not finding a necessary file, failing to connect to a database, and the like).
Deciding exactly what justifies throwing an exception is a design issue you must always contend with. For
the current purposes, assume that asking a doomed automobile to increase its speed is cause to throw an
exception.

Chapter 7 ■ Understanding strUCtUred exCeption handling

254

In any case, if you were to rerun the application at this point using the previous logic in Main(), the
exception will eventually be thrown. As shown in the following output, the result of not handling this error is
less than ideal, given you receive a verbose error dump followed by the program’s termination:

 ***** Simple Exception Example *****
=> Creating a car and stepping on it!
Jamming...
=> CurrentSpeed = 30
=> CurrentSpeed = 40
=> CurrentSpeed = 50
=> CurrentSpeed = 60
=> CurrentSpeed = 70
=> CurrentSpeed = 80
=> CurrentSpeed = 90

Unhandled Exception: System.Exception: Zippy has overheated!
 at SimpleException.Car.Accelerate(Int32 delta) in C:\MyBooks\C# Book (7th ed)
\Code\Chapter_7\SimpleException\Car.cs:line 62
 at SimpleException.Program.Main(String[] args) in C:\MyBooks\C# Book (7th ed)
\Code\Chapter_7\SimpleException\Program.cs:line 20
Press any key to continue . . .

Catching Exceptions

 ■ Note For those coming to .net from a Java background, understand that type members are not prototyped
with the set of exceptions they may throw (in other words, .net does not support checked exceptions). For
better or for worse, you are not required to handle every exception thrown from a given member.

Because the Accelerate() method now throws an exception, the caller needs to be ready to handle the
exception, should it occur. When you are invoking a method that may throw an exception, you make use of
a try/catch block. After you have caught the exception object, you are able to invoke the members of the
exception object to extract the details of the problem.

What you do with this data is largely up to you. You might want to log this information to a report file,
write the data to the Windows event log, e-mail a system administrator, or display the problem to the end
user. Here, you will simply dump the contents to the console window:

// Handle the thrown exception.
static void Main(string[] args)
{
 Console.WriteLine("***** Simple Exception Example *****");
 Console.WriteLine("=> Creating a car and stepping on it!");
 Car myCar = new Car("Zippy", 20);
 myCar.CrankTunes(true);

Chapter 7 ■ Understanding strUCtUred exCeption handling

255

 // Speed up past the car's max speed to
 // trigger the exception.
 try
 {
 for(int i = 0; i < 10; i++)
 myCar. Accelerate(10);
 }
 catch(Exception e)
 {
 Console.WriteLine("\n*** Error! ***");
 Console.WriteLine("Method: {0}", e.TargetSite);
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 }

 // The error has been handled, processing continues with the next statement.
 Console.WriteLine("\n***** Out of exception logic *****");
 Console.ReadLine();
}

In essence, a try block is a section of statements that may throw an exception during execution. If an
exception is detected, the flow of program execution is sent to the appropriate catch block. On the other
hand, if the code within a try block does not trigger an exception, the catch block is skipped entirely, and all
is right with the world. The following output shows a test run of this program:

***** Simple Exception Example *****
=> Creating a car and stepping on it!
Jamming...
=> CurrentSpeed = 30
=> CurrentSpeed = 40
=> CurrentSpeed = 50
=> CurrentSpeed = 60
=> CurrentSpeed = 70
=> CurrentSpeed = 80
=> CurrentSpeed = 90

*** Error! ***
Method: Void Accelerate(Int32)
Message: Zippy has overheated!
Source: SimpleException

***** Out of exception logic *****

As you can see, after an exception has been handled, the application is free to continue on from the
point after the catch block. In some circumstances, a given exception could be critical enough to warrant the
termination of the application. However, in a good number of cases, the logic within the exception handler
will ensure the application can continue on its merry way (although it could be slightly less functional, such
as not being able to connect to a remote data source).

Chapter 7 ■ Understanding strUCtUred exCeption handling

256

Configuring the State of an Exception
Currently, the System.Exception object configured within the Accelerate() method simply establishes
a value exposed to the Message property (via a constructor parameter). As shown previously in Table 7-1,
however, the Exception class also supplies a number of additional members (TargetSite, StackTrace,
HelpLink, and Data) that can be useful in further qualifying the nature of the problem. To spruce up the
current example, let’s examine further details of these members on a case-by-case basis.

The TargetSite Property
The System.Exception.TargetSite property allows you to determine various details about the method
that threw a given exception. As shown in the previous Main() method, printing the value of TargetSite
will display the return type, name, and parameter types of the method that threw the exception. However,
TargetSite does not return just a vanilla-flavored string but rather a strongly typed System.Reflection.
MethodBase object. This type can be used to gather numerous details regarding the offending method, as
well as the class that defines the offending method. To illustrate, assume the previous catch logic has been
updated as follows:

static void Main(string[] args)
{
...
 // TargetSite actually returns a MethodBase object.
 catch(Exception e)
 {
 Console.WriteLine("\n*** Error! ***");
 Console.WriteLine("Member name: {0}", e.TargetSite);
 Console.WriteLine("Class defining member: {0}",
 e.TargetSite.DeclaringType);
 Console.WriteLine("Member type: {0}", e.TargetSite.MemberType);
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 }
 Console.WriteLine("\n***** Out of exception logic *****");
 Console.ReadLine();
}

This time, you make use of the MethodBase.DeclaringType property to determine the fully qualified
name of the class that threw the error (SimpleException.Car, in this case) as well as the MemberType
property of the MethodBase object to identify the type of member (such as a property versus a method)
where this exception originated. In this case, the catch logic would display the following:

*** Error! ***
Member name: Void Accelerate(Int32)
Class defining member: SimpleException.Car
Member type: Method
Message: Zippy has overheated!
Source: SimpleException

Chapter 7 ■ Understanding strUCtUred exCeption handling

257

The StackTrace Property
The System.Exception.StackTrace property allows you to identify the series of calls that resulted in the
exception. Be aware that you never set the value of StackTrace, as it is established automatically at the time
the exception is created. To illustrate, assume you have once again updated your catch logic.

catch(Exception e)
{
 ...
 Console.WriteLine("Stack: {0}", e.StackTrace);
}

If you were to run the program, you would find the following stack trace is printed to the console (your
line numbers and file paths may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)
in c:\MyApps\SimpleException\car.cs:line 65 at SimpleException.Program.Main()
in c:\MyApps\SimpleException\Program.cs:line 21

The string returned from StackTrace documents the sequence of calls that resulted in the throwing
of this exception. Notice how the bottommost line number of this string identifies the first call in the
sequence, while the topmost line number identifies the exact location of the offending member. Clearly, this
information can be quite helpful during the debugging or logging of a given application, as you are able to
“follow the flow” of the error’s origin.

The HelpLink Property
While the TargetSite and StackTrace properties allow programmers to gain an understanding of a given
exception, this information is of little use to the end user. As you have already seen, the System.Exception.
Message property can be used to obtain human-readable information that can be displayed to the current
user. In addition, the HelpLink property can be set to point the user to a specific URL or standard Windows
help file that contains more detailed information.

By default, the value managed by the HelpLink property is an empty string. If you want to fill this
property with a more interesting value, you need to do so before throwing the System.Exception object.
Here are the relevant updates to the Car.Accelerate() method:

public void Accelerate(int delta)
{
 if (carIsDead)
 Console.WriteLine("{0} is out of order...", PetName);
 else
 {
 CurrentSpeed += delta;
 if (CurrentSpeed >= MaxSpeed)
 {
 carIsDead = true;
 CurrentSpeed = 0;

Chapter 7 ■ Understanding strUCtUred exCeption handling

258

 // We need to call the HelpLink property, thus we need to
 // create a local variable before throwing the Exception object.
 Exception ex =
 new Exception(string.Format("{0} has overheated!", PetName));
 ex.HelpLink = "http://www.CarsRUs.com";
 throw ex;
 }
 else
 Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);
 }
}

The catch logic could now be updated to print this help link information as follows:

catch(Exception e)
{
 ...
 Console.WriteLine("Help Link: {0}", e.HelpLink);
}

The Data Property
The Data property of System.Exception allows you to fill an exception object with relevant auxiliary
information (such as a timestamp). The Data property returns an object implementing an interface named
IDictionary, defined in the System.Collections namespace. Chapter 8 examines the role of interface-
based programming, as well as the System.Collections namespace. For the time being, just understand
that dictionary collections allow you to create a set of values that are retrieved using a specific key. Observe
the next update to the Car.Accelerate() method:

public void Accelerate(int delta)
{
 if (carIsDead)
 Console.WriteLine("{0} is out of order...", PetName);
 else
 {
 CurrentSpeed += delta;
 if (CurrentSpeed >= MaxSpeed)
 {
 carIsDead = true;
 CurrentSpeed = 0;

 // We need to call the HelpLink property, thus we need
 // to create a local variable before throwing the Exception object.
 Exception ex =
 new Exception(string.Format("{0} has overheated!", PetName));
 ex.HelpLink = "http://www.CarsRUs.com";

http://www.carsrus.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://www.carsrus.com/

Chapter 7 ■ Understanding strUCtUred exCeption handling

259

 // Stuff in custom data regarding the error.
 ex.Data.Add("TimeStamp",
 string.Format("The car exploded at {0}", DateTime.Now));
 ex.Data.Add("Cause", "You have a lead foot.");
 throw ex;
 }
 else
 Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);
 }
}

To successfully enumerate over the key-value pairs, you must first make sure to specify a using directive
for the System.Collections namespace, since you will use a DictionaryEntry type in the file containing the
class implementing your Main() method.

using System.Collections;

Next, you need to update the catch logic to test that the value returned from the Data property is not
null (the default value). After that, you use the Key and Value properties of the DictionaryEntry type to
print the custom data to the console.

catch (Exception e)
{
...
 Console.WriteLine("\n-> Custom Data:");
 foreach (DictionaryEntry de in e.Data)
 Console.WriteLine("-> {0}: {1}", de.Key, de.Value);
}

With this, here’s the final output you’d see:

***** Simple Exception Example *****
=> Creating a car and stepping on it!
Jamming...
=> CurrentSpeed = 30
=> CurrentSpeed = 40
=> CurrentSpeed = 50
=> CurrentSpeed = 60
=> CurrentSpeed = 70
=> CurrentSpeed = 80
=> CurrentSpeed = 90

*** Error! ***
Member name: Void Accelerate(Int32)
Class defining member: SimpleException.Car
Member type: Method
Message: Zippy has overheated!
Source: SimpleException
Stack: at SimpleException.Car.Accelerate(Int32 delta)
 at SimpleException.Program.Main(String[] args)
Help Link: http://www.CarsRUs.com

http://www.carsrus.com/

Chapter 7 ■ Understanding strUCtUred exCeption handling

260

-> Custom Data:
-> TimeStamp: The car exploded at 9/12/2015 9:02:12 PM
-> Cause: You have a lead foot.

***** Out of exception logic *****

The Data property is useful in that it allows you to pack in custom information regarding the error at
hand, without requiring the building of a new class type to extend the Exception base class. As helpful as
the Data property may be, however, it is still common for .NET developers to build strongly typed exception
classes, which handle custom data using strongly typed properties.

This approach allows the caller to catch a specific exception-derived type, rather than having to dig
into a data collection to obtain additional details. To understand how to do this, you need to examine the
distinction between system-level and application-level exceptions.

 ■ Source Code the simpleexception project is included in the Chapter 7 subdirectory.

System-Level Exceptions (System.SystemException)
The .NET base class libraries define many classes that ultimately derive from System.Exception. For
example, the System namespace defines core exception objects such as ArgumentOutOfRangeException,
IndexOutOfRangeException, StackOverflowException, and so forth. Other namespaces define exceptions
that reflect the behavior of that namespace. For example, System.Drawing.Printing defines printing
exceptions, System.IO defines input/output-based exceptions, System.Data defines database-centric
exceptions, and so forth.

Exceptions that are thrown by the .NET platform are (appropriately) called system exceptions. These
exceptions are generally regarded as nonrecoverable, fatal errors. System exceptions derive directly from a
base class named System.SystemException, which in turn derives from System.Exception (which derives
from System.Object).

public class SystemException : Exception
{
 // Various constructors.
}

Given that the System.SystemException type does not add any additional functionality beyond a set
of custom constructors, you might wonder why SystemException exists in the first place. Simply put, when
an exception type derives from System.SystemException, you are able to determine that the .NET runtime
is the entity that has thrown the exception, rather than the code base of the executing application. You can
verify this quite simply using the is keyword.

// True! NullReferenceException is-a SystemException.
NullReferenceException nullRefEx = new NullReferenceException();
Console.WriteLine("NullReferenceException is-a SystemException? : {0}",
 nullRefEx is SystemException);

http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 7 ■ Understanding strUCtUred exCeption handling

261

Application-Level Exceptions (System.ApplicationException)
Given that all .NET exceptions are class types, you are free to create your own application-specific exceptions.
However, because the System.SystemException base class represents exceptions thrown from the CLR, you
might naturally assume that you should derive your custom exceptions from the System.Exception type. You
could do this, but you could instead derive from the System.ApplicationException class.

public class ApplicationException : Exception
{
 // Various constructors.
}

Like SystemException, ApplicationException does not define any additional members beyond a set
of constructors. Functionally, the only purpose of System.ApplicationException is to identify the source
of the error. When you handle an exception deriving from System.ApplicationException, you can assume
the exception was raised by the code base of the executing application, rather than by the .NET base class
libraries or .NET runtime engine.

 ■ Note in practice, few .net developers build custom exceptions that extend ApplicationException.
rather, it is more common to simply subclass System.Exception; however, either approach is technically valid.

Building Custom Exceptions, Take 1
While you can always throw instances of System.Exception to signal a runtime error (as shown in the
first example), it is sometimes advantageous to build a strongly typed exception that represents the unique
details of your current problem. For example, assume you want to build a custom exception (named
CarIsDeadException) to represent the error of speeding up a doomed automobile. The first step is to derive
a new class from System.Exception/System.ApplicationException (by convention, all exception classes
end with the Exception suffix; in fact, this is a .NET best practice).

 ■ Note as a rule, all custom exception classes should be defined as public classes (recall, the default access
modifier of a non-nested type is internal). the reason is that exceptions are often passed outside of assembly
boundaries and should therefore be accessible to the calling code base.

Create a new Console Application project named CustomException, and copy the previous Car.cs and
Radio.cs files into your new project using the Project Add Existing Item menu option (for clarity, be sure to
change the namespace that defines the Car and Radio types from SimpleException to CustomException).
Next, add the following class definition:

// This custom exception describes the details of the car-is-dead condition.
// (Remember, you can also simply extend Exception.)
public class CarIsDeadException : ApplicationException
{}

Chapter 7 ■ Understanding strUCtUred exCeption handling

262

As with any class, you are free to include any number of custom members that can be called within the
catch block of the calling logic. You are also free to override any virtual members defined by your parent
classes. For example, you could implement the CarIsDeadException by overriding the virtual Message
property.

As well, rather than populating a data dictionary (via the Data property) when throwing the exception,
the constructor allows the sender to pass in a timestamp and reason for the error. Finally, the time stamp
data and cause of the error can be obtained using strongly typed properties.

public class CarIsDeadException : ApplicationException
{
 private string messageDetails = String.Empty;
 public DateTime ErrorTimeStamp {get; set;}
 public string CauseOfError {get; set;}

 public CarIsDeadException(){}
 public CarIsDeadException(string message,
 string cause, DateTime time)
 {
 messageDetails = message;
 CauseOfError = cause;
 ErrorTimeStamp = time;
 }

 // Override the Exception.Message property.
 public override string Message
 {
 get
 {
 return string.Format("Car Error Message: {0}", messageDetails);
 }
 }
}

Here, the CarIsDeadException class maintains a private field (messageDetails) that represents data
regarding the current exception, which can be set using a custom constructor. Throwing this exception from
the Accelerate() method is straightforward. Simply allocate, configure, and throw a CarIsDeadException
type rather than a System.Exception (notice that in this case, you no longer need to fill the data collection
manually).

// Throw the custom CarIsDeadException.
public void Accelerate(int delta)
{
...
 CarIsDeadException ex =
 new CarIsDeadException (string.Format("{0} has overheated!", PetName),
 "You have a lead foot", DateTime.Now);
 ex.HelpLink = "http://www.CarsRUs.com";
 throw ex;
...
}

http://www.carsrus.com/

Chapter 7 ■ Understanding strUCtUred exCeption handling

263

To catch this incoming exception, your catch scope can now be updated to catch a specific
CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception, it is still
permissible to catch a System.Exception as well).

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Custom Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);

 try
 {
 // Trip exception.
 myCar.Accelerate(50);
 }
 catch (CarIsDeadException e)
 {
 Console.WriteLine(e.Message);
 Console.WriteLine(e.ErrorTimeStamp);
 Console.WriteLine(e.CauseOfError);
 }
 Console.ReadLine();
}

So, now that you understand the basic process of building a custom exception, you might wonder when
you are required to do so. Typically, you only need to create custom exceptions when the error is tightly
bound to the class issuing the error (for example, a custom file-centric class that throws a number of file-
related errors, a Car class that throws a number of car-related errors, a data access object that throws errors
regarding a particular database table, and so forth). In doing so, you provide the caller with the ability to
handle numerous exceptions on a descriptive error-by-error basis.

Building Custom Exceptions, Take 2
The current CarIsDeadException type has overridden the virtual System.Exception.Message property in
order to configure a custom error message and has supplied two custom properties to account for additional
bits of data. In reality, however, you are not required to override the virtual Message property, as you could
simply pass the incoming message to the parent’s constructor as follows:

public class CarIsDeadException : ApplicationException
{
 public DateTime ErrorTimeStamp { get; set; }
 public string CauseOfError { get; set; }

 public CarIsDeadException() { }

 // Feed message to parent constructor.
 public CarIsDeadException(string message, string cause, DateTime time)
 :base(message)
 {
 CauseOfError = cause;
 ErrorTimeStamp = time;
 }
}

Chapter 7 ■ Understanding strUCtUred exCeption handling

264

Notice that this time you have not defined a string variable to represent the message and have
not overridden the Message property. Rather, you are simply passing the parameter to your base class
constructor. With this design, a custom exception class is little more than a uniquely named class deriving
from System.ApplicationException (with additional properties if appropriate), devoid of any base class
overrides.

Don’t be surprised if most (if not all) of your custom exception classes follow this simple pattern. Many
times, the role of a custom exception is not necessarily to provide additional functionality beyond what is
inherited from the base classes but to supply a strongly named type that clearly identifies the nature of the
error, so the client can provide different handler-logic for different types of exceptions.

Building Custom Exceptions, Take 3
If you want to build a truly prim-and-proper custom exception class, you would want to make sure your type
adheres to .NET best practices. Specifically, this requires that your custom exception does the following:

•	 Derives from Exception/ApplicationException

•	 Is marked with the [System.Serializable] attribute

•	 Defines a default constructor

•	 Defines a constructor that sets the inherited Message property

•	 Defines a constructor to handle “inner exceptions”

•	 Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you might have no experience regarding the
role of attributes or object serialization, which is just fine. I’ll address these topics later (see Chapter 15
for information on attributes and Chapter 20 for details on serialization services). However, to complete
your examination of building custom exceptions, here is the final iteration of CarIsDeadException, which
accounts for each of these special constructors (the other custom properties and constructors would be as
shown in the example in “Building Custom Exceptions, Take 2”):

[Serializable]
public class CarIsDeadException : ApplicationException
{
 public CarIsDeadException() { }
 public CarIsDeadException(string message) : base(message) { }
 public CarIsDeadException(string message,
 System.Exception inner)
 : base(message, inner) { }
 protected CarIsDeadException(
 System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context)
 : base(info, context) { }
 // Any additional custom properties, constructors and data members...
}

Given that building custom exceptions that adhere to .NET best practices really differ by only their
name, you will be happy to know that Visual Studio provides a code snippet template named Exception
(see Figure 7-1) that will autogenerate a new exception class that adheres to .NET best practices. (Recall
from Chapter 2 that a code snippet can be activated by typing its name, which is exception in this case, and
pressing the Tab key twice.)

http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_20
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 7 ■ Understanding strUCtUred exCeption handling

265

 ■ Source Code the Customexception project is included in the Chapter 7 subdirectory.

Processing Multiple Exceptions
In its simplest form, a try block has a single catch block. In reality, though, you often run into situations
where the statements within a try block could trigger numerous possible exceptions. Create a new C# Console
Application project named ProcessMultipleExceptions; add the Car.cs, Radio.cs, and CarIsDeadException.cs
files from the previous CustomException example into the new project (via Project ➤ Add Existing Item); and
update your namespace names accordingly.

Now, update the Car’s Accelerate() method to also throw a predefined base class library
ArgumentOutOfRangeException if you pass an invalid parameter (which you can assume is any value less
than zero). Note the constructor of this exception class takes the name of the offending argument as the first
string, followed by a message describing the error.

// Test for invalid argument before proceeding.
public void Accelerate(int delta)
{
 if(delta < 0)
 throw new
 ArgumentOutOfRangeException("delta", "Speed must be greater than zero!");
 ...
}

Figure 7-1. The Exception code snippet template

http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 7 ■ Understanding strUCtUred exCeption handling

266

The catch logic could now specifically respond to each type of exception.

static void Main(string[] args)
{
 Console.WriteLine("***** Handling Multiple Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);
 try
 {
 // Trip Arg out of range exception.
 myCar.Accelerate(-10);
 }
 catch (CarIsDeadException e)
 {
 Console.WriteLine(e.Message);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine(e.Message);
 }
 Console.ReadLine();
}

When you are authoring multiple catch blocks, you must be aware that when an exception is thrown,
it will be processed by the first appropriate catch. To illustrate exactly what the “first appropriate” catch
means, assume you retrofitted the previous logic with an additional catch scope that attempts to handle all
exceptions beyond CarIsDeadException and ArgumentOutOfRangeException by catching a general
System.Exception as follows:

// This code will not compile!
static void Main(string[] args)
{
 Console.WriteLine("***** Handling Multiple Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);

 try
 {
 // Trigger an argument out of range exception.
 myCar.Accelerate(-10);
 }
 catch(Exception e)
 {
 // Process all other exceptions?
 Console.WriteLine(e.Message);
 }
 catch (CarIsDeadException e)
 {
 Console.WriteLine(e.Message);
 }

Chapter 7 ■ Understanding strUCtUred exCeption handling

267

 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine(e.Message);
 }
 Console.ReadLine();
}

This exception-handling logic generates compile-time errors. The problem is because the first catch
block can handle anything derived from System.Exception (given the “is-a” relationship), including the
CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the final two catch blocks are
unreachable!

The rule of thumb to keep in mind is to make sure your catch blocks are structured such that the first
catch is the most specific exception (i.e., the most derived type in an exception-type inheritance chain),
leaving the final catch for the most general (i.e., the base class of a given exception inheritance chain, in this
case System.Exception).

Thus, if you want to define a catch block that will handle any errors beyond CarIsDeadException and
ArgumentOutOfRangeException, you could write the following:

// This code compiles just fine.
static void Main(string[] args)
{
 Console.WriteLine("***** Handling Multiple Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);
 try
 {
 // Trigger an argument out of range exception.
 myCar.Accelerate(-10);
 }
 catch (CarIsDeadException e)
 {
 Console.WriteLine(e.Message);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine(e.Message);
 }
 // This will catch any other exception
 // beyond CarIsDeadException or
 // ArgumentOutOfRangeException.
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 Console.ReadLine();
}

Chapter 7 ■ Understanding strUCtUred exCeption handling

268

 ■ Note Where at all possible, always favor catching specific exception classes, rather than a general
System.Exception. though it might appear to make life simple in the short term (you may think, “ah! this
catches all the other things i don’t care about.”), in the long term you could end up with strange runtime
crashes, as a more serious error was not directly dealt with in your code. remember, a final catch block that
deals with System.Exception tends to be very general indeed.

General catch Statements
C# also supports a “general” catch scope that does not explicitly receive the exception object thrown by a
given member.

// A generic catch.
static void Main(string[] args)
{
 Console.WriteLine("***** Handling Multiple Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);
 try
 {
 myCar.Accelerate(90);
 }
 catch
 {
 Console.WriteLine("Something bad happened...");
 }
 Console.ReadLine();
}

Obviously, this is not the most informative way to handle exceptions since you have no way to obtain
meaningful data about the error that occurred (such as the method name, call stack, or custom message).
Nevertheless, C# does allow for such a construct, which can be helpful when you want to handle all errors in
a general fashion.

Rethrowing Exceptions
When you catch an exception, it is permissible for the logic in a try block to rethrow the exception up the
call stack to the previous caller. To do so, simply use the throw keyword within a catch block. This passes
the exception up the chain of calling logic, which can be helpful if your catch block is only able to partially
handle the error at hand.

// Passing the buck.
static void Main(string[] args)
{
...
 try
 {
 // Speed up car logic...
 }

Chapter 7 ■ Understanding strUCtUred exCeption handling

269

 catch(CarIsDeadException e)
 {
 // Do any partial processing of this error and pass the buck.
 throw;
 }
...
}

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR because it
is the Main() method rethrowing the exception. Because of this, your end user is presented with a system-
supplied error dialog box. Typically, you would only rethrow a partial handled exception to a caller that has
the ability to handle the incoming exception more gracefully.

Notice as well that you are not explicitly rethrowing the CarIsDeadException object but rather making
use of the throw keyword with no argument. You’re not creating a new exception object; you’re just
rethrowing the original exception object (with all its original information). Doing so preserves the context of
the original target.

Inner Exceptions
As you might suspect, it is entirely possible to trigger an exception at the time you are handling another
exception. For example, assume you are handling a CarIsDeadException within a particular catch scope
and during the process you attempt to record the stack trace to a file on your C: drive named carErrors.txt
(you must specify you are using the System.IO namespace to gain access to these I/O- centric types).

catch(CarIsDeadException e)
{
 // Attempt to open a file named carErrors.txt on the C drive.
 FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
 ...
}

Now, if the specified file is not located on your C: drive, the call to File.Open() results in a
FileNotFoundException! Later in this book, you will learn all about the System.IO namespace where you’ll
discover how to programmatically determine whether a file exists on the hard drive before attempting to
open the file in the first place (thereby avoiding the exception altogether). However, to stay focused on the
topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states that you
should record the new exception object as an “inner exception” within a new object of the same type as the
initial exception. (That was a mouthful!) The reason you need to allocate a new object of the exception being
handled is that the only way to document an inner exception is via a constructor parameter. Consider the
following code:

catch (CarIsDeadException e)
{
 try
 {
 FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
 ...
 }

Chapter 7 ■ Understanding strUCtUred exCeption handling

270

 catch (Exception e2)
 {
 // Throw an exception that records the new exception,
 // as well as the message of the first exception.
 throw new CarIsDeadException(e.Message, e2);
 }
}

Notice, in this case, I have passed in the FileNotFoundException object as the second parameter to the
CarIsDeadException constructor. After you have configured this new object, you throw it up the call stack to
the next caller, which in this case would be the Main() method.

Given that there is no “next caller” after Main() to catch the exception, you would be again presented
with an error dialog box. Much like the act of rethrowing an exception, recording inner exceptions is
usually useful only when the caller has the ability to gracefully catch the exception in the first place. If this
is the case, the caller’s catch logic can use the InnerException property to extract the details of the inner
exception object.

The finally Block
A try/catch scope may also define an optional finally block. The purpose of a finally block is to ensure
that a set of code statements will always execute, exception (of any type) or not. To illustrate, assume you
want to always power down the car’s radio before exiting Main(), regardless of any handled exception.

static void Main(string[] args)
{
 Console.WriteLine("***** Handling Multiple Exceptions *****\n");
 Car myCar = new Car("Rusty", 90);
 myCar.CrankTunes(true);
 try
 {
 // Speed up car logic.
 }
 catch(CarIsDeadException e)
 {
 // Process CarIsDeadException.
 }
 catch(ArgumentOutOfRangeException e)
 {
 // Process ArgumentOutOfRangeException.
 }
 catch(Exception e)
 {
 // Process any other Exception.
 }
 finally
 {
 // This will always occur. Exception or not.
 myCar.CrankTunes(false);
 }
 Console.ReadLine();
}

Chapter 7 ■ Understanding strUCtUred exCeption handling

271

If you did not include a finally block, the radio would not be turned off if an exception were
encountered (which might or might not be problematic). In a more real-world scenario, when you need to
dispose of objects, close a file, or detach from a database (or whatever), a finally block ensures a location
for proper cleanup.

Exception Filters
The current release of C# introduces a new (and completely optional) clause that can be placed on a catch
scope, via the when keyword. When you add this clause, you have the ability to ensure that the statements
within a catch block are executed only if some condition in your code holds true. This expression must
evaluate to a Boolean (true or false) and can be obtained by using a simple code statement in the when
definition itself or by calling an additional method in your code. In a nutshell, this approach allows you to
add “filters” to your exception logic.

First, assume you have added a few custom properties to your CarIsDeadException.

public class CarIsDeadException : ApplicationException
{
...
 // Custom members for our exception.
 public DateTime ErrorTimeStamp { get; set; }
 public string CauseOfError { get; set; }

 public CarIsDeadException(string message,
 string cause, DateTime time)
 : base(message)
 {
 CauseOfError = cause;
 ErrorTimeStamp = time;
 }
}

Also assume the Accelerate() method uses this new constructor when throwing the error.

CarIsDeadException ex =
 new CarIsDeadException(string.Format("{0} has overheated!", PetName),
 "You have a lead foot", DateTime.Now);

Now, consider the following modified exception logic. Here, I have added a when clause to the
CarIsDeadException handler to ensure the catch block is never executed on a Friday (a contrived example,
but who wants their automobile to break down on the weekend?). Notice that the single Boolean statement
in the when clause must be wrapped in parentheses (also note you are now printing out a new message in
this scope, which will output only when the when condition is true).

catch (CarIsDeadException e) when (e.ErrorTimeStamp.DayOfWeek != DayOfWeek.Friday)
{
 // This new line will only print if the when clause evaluates to true.
 Console.WriteLine("Catching car is dead!");

 Console.WriteLine(e.Message);
}

Chapter 7 ■ Understanding strUCtUred exCeption handling

272

While the chances are you will simply have a catch clause for a given error under any condition, as you
can see, the new when keyword allows you to get much more granular when responding to runtime errors.

Debugging Unhandled Exceptions Using Visual Studio
Do be aware that Visual Studio supplies a number of tools that help you debug unhandled custom
exceptions. Again, assume you have increased the speed of a Car object beyond the maximum but this time
did not bother to wrap your call within a try block.

Car myCar = new Car("Rusty", 90);
myCar.Accelerate(2000);

If you start a debugging session within Visual Studio (using the Debug ➤ Start Debugging menu
selection), Visual Studio automatically breaks at the time the uncaught exception is thrown. Better yet, you
are presented with a window (see Figure 7-2) displaying the value of the Message property.

 ■ Note if you fail to handle an exception thrown by a method in the .net base class libraries, the Visual
studio debugger breaks at the statement that called the offending method.

If you click the View Detail link, you will find the details regarding the state of the object (see Figure 7-3).

Figure 7-2. Debugging unhandled custom exceptions with Visual Studio

Chapter 7 ■ Understanding strUCtUred exCeption handling

273

 ■ Source Code the processMultipleexceptions project is included in the Chapter 7 subdirectory.

Summary
In this chapter, you examined the role of structured exception handling. When a method needs to send an
error object to the caller, it will allocate, configure, and throw a specific System.Exception-derived type via
the C# throw keyword. The caller is able to handle any possible incoming exceptions using the C# catch
keyword and an optional finally scope. As shown, C# 6.0 now supports the ability to create exception filters
using the optional when keyword.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently executing
application. In contrast, error objects deriving from System.SystemException represent critical (and fatal)
errors thrown by the CLR. Last but not least, this chapter illustrated various tools within Visual Studio that
can be used to create custom exceptions (according to .NET best practices) as well as debug exceptions.

Figure 7-3. Viewing exception details

http://dx.doi.org/10.1007/978-1-4842-1332-2_7

275

Chapter 8

Working with Interfaces

This chapter builds upon your current understanding of object-oriented development by examining the
topic of interface-based programming. Here you’ll learn how to define and implement interfaces and
come to understand the benefits of building types that support multiple behaviors. Along the way, you
will also examine a number of related topics, such as obtaining interface references, explicit interface
implementation, and the construction of interface hierarchies. You’ll also examine a number of standard
interfaces defined within the .NET base class libraries. As you will see, your custom classes and structures
are free to implement these predefined interfaces to support a number of useful behaviors, such as object
cloning, object enumeration, and object sorting.

Understanding Interface Types
To begin this chapter, allow me to provide a formal definition of the interface type. An interface is nothing
more than a named set of abstract members. Recall from Chapter 6 that abstract methods are pure protocol
in that they do not provide a default implementation. The specific members defined by an interface depend
on the exact behavior it is modeling. Said another way, an interface expresses a behavior that a given class
or structure may choose to support. Furthermore, as you will see in this chapter, a class or structure can
support as many interfaces as necessary, thereby supporting (in essence) multiple behaviors.

As you might guess, the .NET base class libraries ship with numerous predefined interface types that
are implemented by various classes and structures. For example, as you will see in Chapter 21, ADO.NET
ships with multiple data providers that allow you to communicate with a particular database management
system. Thus, under ADO.NET, you have numerous connection objects to choose from (SqlConnection,
OleDbConnection, OdbcConnection, etc.). In addition, third-party database vendors (as well as numerous
open source projects) provide .NET libraries to communicate with a wide number of other databases
(MySQL, Oracle, etc.), all of which contain objects implementing these interfaces.

Regardless of the fact that each connection class has a unique name, is defined within a different
namespace, and (in some cases) is bundled within a different assembly, all connection classes implement a
common interface named IDbConnection.

// The IDbConnection interface defines a common
// set of members supported by all connection objects.
public interface IDbConnection : IDisposable
{
 // Methods
 IDbTransaction BeginTransaction();
 IDbTransaction BeginTransaction(IsolationLevel il);
 void ChangeDatabase(string databaseName);
 void Close();

http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_21

Chapter 8 ■ Working With interfaCes

276

 IDbCommand CreateCommand();
 void Open();
 // Properties
 string ConnectionString { get; set;}
 int ConnectionTimeout { get; }
 string Database { get; }
 ConnectionState State { get; }
}

 ■ Note By convention, .net interfaces are prefixed with a capital letter I. When you are creating your own
custom interfaces, it is considered a best practice to do the same.

Don’t concern yourself with the details of what these members actually do at this point. Simply
understand that the IDbConnection interface defines a set of members that are common to all ADO.NET
connection classes. Given this, you are guaranteed that every connection object supports members such
as Open(), Close(), CreateCommand(), and so forth. Furthermore, given that interface members are always
abstract, each connection object is free to implement these methods in its own unique manner.

As you work through the remainder of this book, you’ll be exposed to dozens of interfaces that ship
with the .NET base class libraries. As you will see, these interfaces can be implemented on your own
custom classes and structures to define types that integrate tightly within the framework. As well, once you
understand the usefulness of the interface type, you will certainly find reasons to build your own.

Interface Types vs. Abstract Base Classes
Given your work in Chapter 6, the interface type might seem somewhat similar to an abstract base class.
Recall that when a class is marked as abstract, it may define any number of abstract members to provide
a polymorphic interface to all derived types. However, even when a class does define a set of abstract
members, it is also free to define any number of constructors, field data, nonabstract members (with
implementation), and so on. Interfaces, on the other hand, contain only member definitions.

The polymorphic interface established by an abstract parent class suffers from one major limitation
in that only derived types support the members defined by the abstract parent. However, in larger
software systems, it is common to develop multiple class hierarchies that have no common parent beyond
System.Object. Given that abstract members in an abstract base class apply only to derived types, you have
no way to configure types in different hierarchies to support the same polymorphic interface. By way of
example, assume you have defined the following abstract class:

public abstract class CloneableType
{
 // Only derived types can support this
 // "polymorphic interface." Classes in other
 // hierarchies have no access to this abstract
 // member.
 public abstract object Clone();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 8 ■ Working With interfaCes

277

Given this definition, only members that extend CloneableType are able to support the Clone()
method. If you create a new set of classes that do not extend this base class, you can’t gain this polymorphic
interface. Also, you might recall that C# does not support multiple inheritance for classes. Therefore, if you
wanted to create a MiniVan that is-a Car and is-a CloneableType, you are unable to do so.

// Nope! Multiple inheritance is not possible in C#
// for classes.
public class MiniVan : Car, CloneableType
{
}

As you might guess, interface types come to the rescue. After an interface has been defined, it can
be implemented by any class or structure, in any hierarchy, and within any namespace or any assembly
(written in any .NET programming language). As you can see, interfaces are highly polymorphic. Consider
the standard .NET interface named ICloneable, defined in the System namespace. This interface defines a
single method named Clone():

public interface ICloneable
{
 object Clone();
}

If you examine the .NET Framework 4.6 SDK documentation, you’ll find that a large number
of seemingly unrelated types (System.Array, System.Data.SqlClient.SqlConnection, System.
OperatingSystem, System.String, etc.) all implement this interface. Although these types have no common
parent (other than System.Object), you can treat them polymorphically via the ICloneable interface type.

For example, if you had a method named CloneMe() that took an ICloneable interface parameter, you
could pass this method any object that implements said interface. Consider the following simple Program
class defined within a Console Application project named ICloneableExample:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** A First Look at Interfaces *****\n");

 // All of these classes support the ICloneable interface.
 string myStr = "Hello";
 OperatingSystem unixOS = new OperatingSystem(PlatformID.Unix, new Version());
 System.Data.SqlClient.SqlConnection sqlCnn =
 new System.Data.SqlClient.SqlConnection();

 // Therefore, they can all be passed into a method taking ICloneable.
 CloneMe(myStr);
 CloneMe(unixOS);
 CloneMe(sqlCnn);
 Console.ReadLine();
 }

Chapter 8 ■ Working With interfaCes

278

 private static void CloneMe(ICloneable c)
 {
 // Clone whatever we get and print out the name.
 object theClone = c.Clone();
 Console.WriteLine("Your clone is a: {0}",
 theClone.GetType().Name);
 }
}

When you run this application, the class name of each class prints to the console via the GetType()
method you inherit from System.Object. As explained in Chapter 15, this method (and .NET reflection
services) allow you to understand the composition of any type at runtime. In any case, the output of the
previous program is shown next:

***** A First Look at Interfaces *****

Your clone is a: String
Your clone is a: OperatingSystem
Your clone is a: SqlConnection

 ■ Source Code the iCloneableexample project is located in the Chapter 8 subdirectory.

Another limitation of abstract base classes is that each derived type must contend with the set of abstract
members and provide an implementation. To see this problem, recall the shapes hierarchy you defined in
Chapter 6. Assume you defined a new abstract method in the Shape base class named GetNumberOfPoints(),
which allows derived types to return the number of points required to render the shape.

abstract class Shape
{
...
 // Every derived class must now support this method!
 public abstract byte GetNumberOfPoints();
}

Clearly, the only class that has any points in the first place is Hexagon. However, with this update,
every derived class (Circle, Hexagon, and ThreeDCircle) must now provide a concrete implementation of
this function, even if it makes no sense to do so. Again, the interface type provides a solution. If you define
an interface that represents the behavior of “having points,” you can simply plug it into the Hexagon type,
leaving Circle and ThreeDCircle untouched.

Defining Custom Interfaces
Now that you better understand the overall role of interface types, let’s see an example of defining
and implementing custom interfaces. To begin, create a new Console Application project named
CustomInterface. Using the Project ➤ Add Existing Item menu option, insert the file (or files) containing

http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 8 ■ Working With interfaCes

279

your shape type definitions (Shapes.cs in the book’s solution code) created in Chapter 6 during the
Shapes example. After you have done so, rename the namespace that defines your shape-centric types to
CustomInterface (simply to avoid having to import namespace definitions in your new project).

namespace CustomInterface
{
 // Your shape types defined here...
}

Now, insert a new interface into your project named IPointy using the Project ➤ Add New Item menu
option, as shown in Figure 8-1.

Figure 8-1. Interfaces, like classes, can be defined in any *.cs file

At a syntactic level, an interface is defined using the C# interface keyword. Unlike a class, interfaces
never specify a base class (not even System.Object; however, as you will see later in this chapter, an
interface can specify base interfaces). Moreover, the members of an interface never specify an access
modifier (as all interface members are implicitly public and abstract). To get the ball rolling, here is a custom
interface defined in C#:

// This interface defines the behavior of "having points."
public interface IPointy
{
 // Implicitly public and abstract.
 byte GetNumberOfPoints();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 8 ■ Working With interfaCes

280

Remember that when you define interface members, you do not define an implementation scope for
the members in question. Interfaces are pure protocol and, therefore, never define an implementation (that
is up to the supporting class or structure). Hence, the following version of IPointy would result in various
compiler errors:

// Ack! Errors abound!
public interface IPointy
{
 // Error! Interfaces cannot have data fields!
 public int numbOfPoints;

 // Error! Interfaces do not have constructors!
 public IPointy() { numbOfPoints = 0;}

 // Error! Interfaces don't provide an implementation of members!
 byte GetNumberOfPoints() { return numbOfPoints; }
}

In any case, this initial IPointy interface defines a single method. However, .NET interface types are
also able to define any number of property prototypes. For example, let’s update the IPointy interface to use
a read-only property rather than a traditional accessor method.

// The pointy behavior as a read-only property.
public interface IPointy
{
 // A read-write property in an interface would look like:
 // retType PropName { get; set; }
 //
 // while a write-only property in an interface would be:
 // retType PropName { set; }

 byte Points { get; }
}

 ■ Note interface types can also contain event (see Chapter 10) and indexer (see Chapter 11) definitions.

Interface types are quite useless on their own, as they are nothing more than a named collection of
abstract members. For example, you can’t allocate interface types as you would a class or structure.

// Ack! Illegal to allocate interface types.
static void Main(string[] args)
{
 IPointy p = new IPointy(); // Compiler error!
}

Interfaces do not bring much to the table until they are implemented by a class or structure. Here,
IPointy is an interface that expresses the behavior of “having points.” The idea is simple: some classes in the
shapes hierarchy have points (such as the Hexagon), while others (such as the Circle) do not.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10
http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 8 ■ Working With interfaCes

281

Implementing an Interface
When a class (or structure) chooses to extend its functionality by supporting interfaces, it does so using
a comma-delimited list in the type definition. Be aware that the direct base class must be the first item
listed after the colon operator. When your class type derives directly from System.Object, you are free to
simply list the interface (or interfaces) supported by the class, as the C# compiler will extend your types
from System.Object if you do not say otherwise. On a related note, given that structures always derive from
System.ValueType (see Chapter 4), simply list each interface directly after the structure definition. Ponder
the following examples:

// This class derives from System.Object and
// implements a single interface.
public class Pencil : IPointy
{...}

// This class also derives from System.Object
// and implements a single interface.
public class SwitchBlade : object, IPointy
{...}

// This class derives from a custom base class
// and implements a single interface.
public class Fork : Utensil, IPointy
{...}

// This struct implicitly derives from System.ValueType and
// implements two interfaces.
public struct PitchFork : ICloneable, IPointy
{...}

Understand that implementing an interface is an all-or-nothing proposition. The supporting type is
not able to selectively choose which members it will implement. Given that the IPointy interface defines a
single read-only property, this is not too much of a burden. However, if you are implementing an interface
that defines ten members (such as the IDbConnection interface shown earlier), the type is now responsible
for fleshing out the details of all ten abstract members.

For this example, insert a new class type named Triangle that is-a Shape and supports IPointy. Note
that the implementation of the read-only Points property simply returns the correct number of points (3).

// New Shape derived class named Triangle.
class Triangle : Shape, IPointy
{
 public Triangle() { }
 public Triangle(string name) : base(name) { }
 public override void Draw()
 { Console.WriteLine("Drawing {0} the Triangle", PetName); }

 // IPointy implementation.
 public byte Points
 {
 get { return 3; }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 8 ■ Working With interfaCes

282

Now, update your existing Hexagon type to also support the IPointy interface type.

// Hexagon now implements IPointy.
class Hexagon : Shape, IPointy
{
 public Hexagon(){ }
 public Hexagon(string name) : base(name){ }
 public override void Draw()
 { Console.WriteLine("Drawing {0} the Hexagon", PetName); }

 // IPointy implementation.
 public byte Points
 {
 get { return 6; }
 }
}

To sum up the story so far, the Visual Studio class diagram shown in Figure 8-2 illustrates IPointy-
compatible classes using the popular “lollipop” notation. Notice again that Circle and ThreeDCircle do not
implement IPointy, as this behavior makes no sense for these particular classes.

Figure 8-2. The shapes hierarchy, now with interfaces

 ■ Note to display or hide interface names in the class designer, right-click the interface icon and select the
Collapse or expand option.

Chapter 8 ■ Working With interfaCes

283

Invoking Interface Members at the Object Level
Now that you have some classes that support the IPointy interface, the next question is how you interact
with the new functionality. The most straightforward way to interact with functionality supplied by a given
interface is to invoke the members directly from the object level (provided the interface members are not
implemented explicitly; you can find more details later in the section “Explicit Interface Implementation”).
For example, consider the following Main() method:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interfaces *****\n");
 // Call Points property defined by IPointy.
 Hexagon hex = new Hexagon();
 Console.WriteLine("Points: {0}", hex.Points);
 Console.ReadLine();
}

This approach works fine in this particular case, given that you are well aware that the Hexagon type
has implemented the interface in question and, therefore, has a Points property. Other times, however, you
might not be able to determine which interfaces are supported by a given type. For example, suppose you
have an array containing 50 Shape-compatible types, only some of which support IPointy. Obviously, if you
attempt to invoke the Points property on a type that has not implemented IPointy, you would receive an
error. So, how can you dynamically determine whether a class or structure supports the correct interface?

One way to determine at runtime whether a type supports a specific interface is to use an explicit cast.
If the type does not support the requested interface, you receive an InvalidCastException. To handle this
possibility gracefully, use structured exception handling as in the following example:

static void Main(string[] args)
{
...
 // Catch a possible InvalidCastException.
 Circle c = new Circle("Lisa");
 IPointy itfPt = null;
 try
 {
 itfPt = (IPointy)c;
 Console.WriteLine(itfPt.Points);
 }
 catch (InvalidCastException e)
 {
 Console.WriteLine(e.Message);
 }
 Console.ReadLine();
}

While you could use try/catch logic and hope for the best, it would be ideal to determine which interfaces
are supported before invoking the interface members in the first place. Let’s see two ways of doing so.

Chapter 8 ■ Working With interfaCes

284

Obtaining Interface References: The as Keyword
You can determine whether a given type supports an interface by using the as keyword, introduced
in Chapter 6. If the object can be treated as the specified interface, you are returned a reference to the
interface in question. If not, you receive a null reference. Therefore, be sure to check against a null value
before proceeding.

static void Main(string[] args)
{
...
 // Can we treat hex2 as IPointy?
 Hexagon hex2 = new Hexagon("Peter");
 IPointy itfPt2 = hex2 as IPointy;

 if(itfPt2 != null)
 Console.WriteLine("Points: {0}", itfPt2.Points);
 else
 Console.WriteLine("OOPS! Not pointy...");
 Console.ReadLine();
}

Notice that when you use the as keyword, you have no need to use try/catch logic, given that if the
reference is not null, you know you are calling on a valid interface reference.

Obtaining Interface References: The is Keyword
You may also check for an implemented interface using the is keyword (also first discussed in Chapter 6).
If the object in question is not compatible with the specified interface, you are returned the value false.
On the other hand, if the type is compatible with the interface in question, you can safely call the members
without needing to use try/catch logic.

To illustrate, assume you have an array of Shape types containing some members that implement
IPointy. Notice how you are able to determine which items in the array support this interface using the is
keyword, as shown in this retrofitted Main() method:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interfaces *****\n");

 // Make an array of Shapes.
 Shape[] myShapes = { new Hexagon(), new Circle(),
 new Triangle("Joe"), new Circle("JoJo")} ;

 for(int i = 0; i < myShapes.Length; i++)
 {
 // Recall the Shape base class defines an abstract Draw()
 // member, so all shapes know how to draw themselves.
 myShapes[i].Draw();

http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 8 ■ Working With interfaCes

285

 // Who's pointy?
 if(myShapes[i] is IPointy)
 Console.WriteLine("-> Points: {0}", ((IPointy) myShapes[i]).Points);
 else
 Console.WriteLine("-> {0}\'s not pointy!", myShapes[i].PetName);
 Console.WriteLine();
 }
 Console.ReadLine();
}

The output is as follows:

***** Fun with Interfaces *****

Drawing NoName the Hexagon
-> Points: 6

Drawing NoName the Circle
-> NoName's not pointy!

Drawing Joe the Triangle
-> Points: 3

Drawing JoJo the Circle
-> JoJo's not pointy!

Interfaces As Parameters
Given that interfaces are valid .NET types, you may construct methods that take interfaces as parameters,
as illustrated by the CloneMe() method earlier in this chapter. For the current example, assume you have
defined another interface named IDraw3D.

// Models the ability to render a type in stunning 3D.
public interface IDraw3D
{
 void Draw3D();
}

Next, assume that two of your three shapes (ThreeDCircle and Hexagon) have been configured to
support this new behavior.

// Circle supports IDraw3D.
class ThreeDCircle : Circle, IDraw3D
{
...
 public void Draw3D()
 { Console.WriteLine("Drawing Circle in 3D!"); }
}

Chapter 8 ■ Working With interfaCes

286

// Hexagon supports IPointy and IDraw3D.
class Hexagon : Shape, IPointy, IDraw3D
{
...
 public void Draw3D()
 { Console.WriteLine("Drawing Hexagon in 3D!"); }
}

Figure 8-3 presents the updated Visual Studio class diagram.

Figure 8-3. The updated shapes hierarchy

If you now define a method taking an IDraw3D interface as a parameter, you can effectively send in any
object implementing IDraw3D. (If you attempt to pass in a type not supporting the necessary interface, you
receive a compile-time error.) Consider the following method defined within your Program class:

// I'll draw anyone supporting IDraw3D.
static void DrawIn3D(IDraw3D itf3d)
{
 Console.WriteLine("-> Drawing IDraw3D compatible type");
 itf3d.Draw3D();
}

You could now test whether an item in the Shape array supports this new interface and, if so, pass it into
the DrawIn3D() method for processing.

Chapter 8 ■ Working With interfaCes

287

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interfaces *****\n");
 Shape[] myShapes = { new Hexagon(), new Circle(),
 new Triangle("Joe"), new Circle("JoJo") } ;
 for(int i = 0; i < myShapes.Length; i++)
 {
 ...
 // Can I draw you in 3D?
 if(myShapes[i] is IDraw3D)
 DrawIn3D((IDraw3D)myShapes[i]);
 }
}

Here is the output of the updated application. Notice that only the Hexagon object prints out in 3D, as
the other members of the Shape array do not implement the IDraw3D interface.

***** Fun with Interfaces *****

Drawing NoName the Hexagon
-> Points: 6
-> Drawing IDraw3D compatible type
Drawing Hexagon in 3D!

Drawing NoName the Circle
-> NoName's not pointy!

Drawing Joe the Triangle
-> Points: 3

Drawing JoJo the Circle
-> JoJo's not pointy!

Interfaces As Return Values
Interfaces can also be used as method return values. For example, you could write a method that takes an
array of Shape objects and returns a reference to the first item that supports IPointy.

// This method returns the first object in the
// array that implements IPointy.
static IPointy FindFirstPointyShape(Shape[] shapes)
{
 foreach (Shape s in shapes)
 {
 if (s is IPointy)
 return s as IPointy;
 }
 return null;
}

Chapter 8 ■ Working With interfaCes

288

You could interact with this method as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interfaces *****\n");
 // Make an array of Shapes.
 Shape[] myShapes = { new Hexagon(), new Circle(),
 new Triangle("Joe"), new Circle("JoJo")};

 // Get first pointy item.
 // To be safe, you'd want to check firstPointyItem for null before proceeding.
 IPointy firstPointyItem = FindFirstPointyShape(myShapes);
 Console.WriteLine("The item has {0} points", firstPointyItem.Points);
...
}

Arrays of Interface Types
Recall that the same interface can be implemented by numerous types, even if they are not within the
same class hierarchy and do not have a common parent class beyond System.Object. This can yield
some powerful programming constructs. For example, assume you have developed three new class types
within your current project that model kitchen utensils (via Knife and Fork classes) and another modeling
gardening equipment (à la PitchFork). Consider Figure 8-4.

Figure 8-4. Recall that interfaces can be “plugged into” any type in any part of a class hierarchy

Chapter 8 ■ Working With interfaCes

289

If you defined the PitchFork, Fork, and Knife types, you could now define an array of IPointy-
compatible objects. Given that these members all support the same interface, you can iterate through the array
and treat each item as an IPointy-compatible object, regardless of the overall diversity of the class hierarchies.

static void Main(string[] args)
{
...
 // This array can only contain types that
 // implement the IPointy interface.
 IPointy[] myPointyObjects = {new Hexagon(), new Knife(),
 new Triangle(), new Fork(), new PitchFork()};

 foreach(IPointy i in myPointyObjects)
 Console.WriteLine("Object has {0} points.", i.Points);
 Console.ReadLine();
}

Just to highlight the importance of this example, remember this: when you have an array of a given
interface, the array can contain any class or structure that implements that interface.

 ■ Source Code the Custominterface project is located in the Chapter 8 subdirectory.

Implementing Interfaces Using Visual Studio
Although interface-based programming is a powerful technique, implementing interfaces may entail a
healthy amount of typing. Given that interfaces are a named set of abstract members, you are required
to type in the definition and implementation for each interface method on each type that supports the
behavior. Therefore, if you want to support an interface that defines a total of five methods and three
properties, you need to account for all eight members (or else you will receive compiler errors).

As you would hope, Visual Studio supports various tools that make the task of implementing
interfaces less burdensome. By way of a simple test, insert a final class into your current project named
PointyTestClass. When you add an interface such as IPointy (or any interface for that matter) to a class
type, you might have noticed that when you complete typing the interface’s name (or when you position
the mouse cursor on the interface name in the code window), the first letter is underlined (formally termed
a smart tag). When you click the smart tag, you will be presented with a drop-down list that allows you to
implement the interface (see Figure 8-5).

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 8 ■ Working With interfaCes

290

Notice you are presented with two options, the second of which (explicit interface implementation)
will be examined in the next section. For the time being, select the first option and you’ll see that Visual
Studio has generated stub code for you to update (note that the default implementation throws a
System.NotImplementedException, which can obviously be deleted).

namespace CustomInterface
{
 class PointyTestClass : IPointy
 {
 public byte Points
 {
 get { throw new NotImplementedException(); }
 }
 }
}

 ■ Note Visual studio also supports extract interface refactoring, available from the extract interface option of
the Quick actions menu. this allows you to pull out a new interface definition from an existing class definition.
for example, you might be halfway through writing a class when it dawns on you that you can generalize the
behavior into an interface (and thereby open up the possibility of alternative implementations).

Figure 8-5. Implementing interfaces using Visual Studio

Chapter 8 ■ Working With interfaCes

291

Explicit Interface Implementation
As shown earlier in this chapter, a class or structure can implement any number of interfaces. Given
this, there is always the possibility you might implement interfaces that contain identical members and,
therefore, have a name clash to contend with. To illustrate various manners in which you can resolve this
issue, create a new Console Application project named InterfaceNameClash. Now design three interfaces
that represent various locations to which an implementing type could render its output.

// Draw image to a form.
public interface IDrawToForm
{
 void Draw();
}

// Draw to buffer in memory.
public interface IDrawToMemory
{
 void Draw();
}

// Render to the printer.
public interface IDrawToPrinter
{
 void Draw();
}

Notice that each interface defines a method named Draw(), with the identical signature (which happen
to be no arguments). If you now want to support each of these interfaces on a single class type named
Octagon, the compiler would allow the following definition:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter
{
 public void Draw()
 {
 // Shared drawing logic.
 Console.WriteLine("Drawing the Octagon...");
 }
}

Although the code compiles cleanly, you do have a possible problem. Simply put, providing a single
implementation of the Draw() method does not allow you to take unique courses of action based on which
interface is obtained from an Octagon object. For example, the following code will invoke the same Draw()
method, regardless of which interface you obtain:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interface Name Clashes *****\n");
 // All of these invocations call the
 // same Draw() method!
 Octagon oct = new Octagon();

Chapter 8 ■ Working With interfaCes

292

 IDrawToForm itfForm = (IDrawToForm)oct;
 itfForm.Draw();

 IDrawToPrinter itfPriner = (IDrawToPrinter)oct;
 itfPriner.Draw();

 IDrawToMemory itfMemory = (IDrawToMemory)oct;
 itfMemory.Draw();

 Console.ReadLine();
}

Clearly, the sort of code required to render the image to a window is quite different from the code
needed to render the image to a networked printer or a region of memory. When you implement several
interfaces that have identical members, you can resolve this sort of name clash using explicit interface
implementation syntax. Consider the following update to the Octagon type:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter
{
 // Explicitly bind Draw() implementations
 // to a given interface.
 void IDrawToForm.Draw()
 {
 Console.WriteLine("Drawing to form...");
 }
 void IDrawToMemory.Draw()
 {
 Console.WriteLine("Drawing to memory...");
 }
 void IDrawToPrinter.Draw()
 {
 Console.WriteLine("Drawing to a printer...");
 }
}

As you can see, when explicitly implementing an interface member, the general pattern breaks down
to this:

returnType InterfaceName.MethodName(params){}

Note that when using this syntax, you do not supply an access modifier; explicitly implemented
members are automatically private. For example, the following is illegal syntax:

// Error! No access modifier!
public void IDrawToForm.Draw()
{
 Console.WriteLine("Drawing to form...");
}

Chapter 8 ■ Working With interfaCes

293

Because explicitly implemented members are always implicitly private, these members are no longer
available from the object level. In fact, if you were to apply the dot operator to an Octagon type, you would
find that IntelliSense does not show you any of the Draw() members. As expected, you must use explicit
casting to access the required functionality. Here’s an example:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Interface Name Clashes *****\n");
 Octagon oct = new Octagon();

 // We now must use casting to access the Draw()
 // members.
 IDrawToForm itfForm = (IDrawToForm)oct;
 itfForm.Draw();

 // Shorthand notation if you don't need
 // the interface variable for later use.
 ((IDrawToPrinter)oct).Draw();

 // Could also use the "is" keyword.
 if(oct is IDrawToMemory)
 ((IDrawToMemory)oct).Draw();

 Console.ReadLine();
}

While this syntax is quite helpful when you need to resolve name clashes, you can use explicit interface
implementation simply to hide more “advanced” members from the object level. In this way, when the object
user applies the dot operator, the user will see only a subset of the type’s overall functionality. However, those
who require the more advanced behaviors can extract the desired interface via an explicit cast.

 ■ Source Code the interfacenameClash project is located in the Chapter 8 subdirectory.

Designing Interface Hierarchies
Interfaces can be arranged in an interface hierarchy. Like a class hierarchy, when an interface extends an
existing interface, it inherits the abstract members defined by the parent (or parents). Of course, unlike
class-based inheritance, derived interfaces never inherit true implementation. Rather, a derived interface
simply extends its own definition with additional abstract members.

Interface hierarchies can be useful when you want to extend the functionality of an existing interface
without breaking existing code bases. To illustrate, create a new Console Application project named
InterfaceHierarchy. Now, let’s design a new set of rendering-centric interfaces such that IDrawable is the
root of the family tree.

public interface IDrawable
{
 void Draw();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 8 ■ Working With interfaCes

294

Given that IDrawable defines a basic drawing behavior, you could now create a derived interface that
extends this interface with the ability to render in modified formats. Here’s an example:

public interface IAdvancedDraw : IDrawable
{
 void DrawInBoundingBox(int top, int left, int bottom, int right);
 void DrawUpsideDown();
}

Given this design, if a class were to implement IAdvancedDraw, it would now be required to implement
every member defined up the chain of inheritance (specifically, the Draw(), DrawInBoundingBox(), and
DrawUpsideDown() methods).

public class BitmapImage : IAdvancedDraw
{
 public void Draw()
 {
 Console.WriteLine("Drawing...");
 }

 public void DrawInBoundingBox(int top, int left, int bottom, int right)
 {
 Console.WriteLine("Drawing in a box...");
 }

 public void DrawUpsideDown()
 {
 Console.WriteLine("Drawing upside down!");
 }
}

Now, when you use the BitmapImage, you are able to invoke each method at the object level (as they are
all public), as well as extract a reference to each supported interface explicitly via casting.

static void Main(string[] args)
{
 Console.WriteLine("***** Simple Interface Hierarchy *****");

 // Call from object level.
 BitmapImage myBitmap = new BitmapImage();
 myBitmap.Draw();
 myBitmap.DrawInBoundingBox(10, 10, 100, 150);
 myBitmap.DrawUpsideDown();

 // Get IAdvancedDraw explicitly.
 IAdvancedDraw iAdvDraw = myBitmap as IAdvancedDraw;
 if(iAdvDraw != null)
 iAdvDraw.DrawUpsideDown();
 Console.ReadLine();
}

Chapter 8 ■ Working With interfaCes

295

 ■ Source Code the interfacehierarchy project is located in the Chapter 8 subdirectory.

Multiple Inheritance with Interface Types
Unlike class types, an interface can extend multiple base interfaces, allowing you to design some powerful
and flexible abstractions. Create a new Console Application project named MIInterfaceHierarchy. Here is
another collection of interfaces that model various rendering and shape abstractions. Notice that the IShape
interface is extending both IDrawable and IPrintable.

// Multiple inheritance for interface types is a-okay.
interface IDrawable
{
 void Draw();
}

interface IPrintable
{
 void Print();
 void Draw(); // <-- Note possible name clash here!
}

// Multiple interface inheritance. OK!
interface IShape : IDrawable, IPrintable
{
 int GetNumberOfSides();
}

Figure 8-6 illustrates the current interface hierarchy.

Figure 8-6. Unlike classes, interfaces can extend multiple interface types

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 8 ■ Working With interfaCes

296

At this point, the million dollar question is, if you have a class supporting IShape, how many methods
will it be required to implement? The answer: it depends. If you want to provide a simple implementation of
the Draw() method, you need provide only three members, as shown in the following Rectangle type:

class Rectangle : IShape
{
 public int GetNumberOfSides()
 { return 4; }

 public void Draw()
 { Console.WriteLine("Drawing..."); }

 public void Print()
 { Console.WriteLine("Printing..."); }
}

If you’d rather have specific implementations for each Draw() method (which in this case would make
the most sense), you can resolve the name clash using explicit interface implementation, as shown in the
following Square type:

class Square : IShape
{
 // Using explicit implementation to handle member name clash.
 void IPrintable.Draw()
 {
 // Draw to printer ...
 }
 void IDrawable.Draw()
 {
 // Draw to screen ...
 }
 public void Print()
 {
 // Print ...
 }

 public int GetNumberOfSides()
 { return 4; }
}

Ideally, at this point you feel more comfortable with the process of defining and implementing
custom interfaces using the C# syntax. To be honest, interface-based programming can take a while to get
comfortable with, so if you are in fact still scratching your head just a bit, this is a perfectly normal reaction.

Do be aware, however, that interfaces are a fundamental aspect of the .NET Framework. Regardless of
the type of application you are developing (web-based, desktop GUIs, data-access libraries, etc.), working
with interfaces will be part of the process. To summarize the story thus far, remember that interfaces can be
extremely useful when

•	 You have a single hierarchy where only a subset of the derived types supports a
common behavior.

•	 You need to model a common behavior that is found across multiple hierarchies
with no common parent class beyond System.Object.

Chapter 8 ■ Working With interfaCes

297

Now that you have drilled into the specifics of building and implementing custom interfaces, the
remainder of this chapter examines a number of predefined interfaces contained within the .NET base class
libraries. As you will see, you can implement standard .NET interfaces on your custom types to ensure they
integrate into the framework seamlessly.

 ■ Source Code the Miinterfacehierarchy project is located in the Chapter 8 subdirectory.

The IEnumerable and IEnumerator Interfaces
To begin examining the process of implementing existing .NET interfaces, let’s first look at the role of
IEnumerable and IEnumerator. Recall that C# supports a keyword named foreach that allows you to iterate
over the contents of any array type.

// Iterate over an array of items.
int[] myArrayOfInts = {10, 20, 30, 40};

foreach(int i in myArrayOfInts)
{
 Console.WriteLine(i);
}

While it might seem that only array types can use this construct, the truth of the matter is any type
supporting a method named GetEnumerator() can be evaluated by the foreach construct. To illustrate,
begin by creating a new Console Application project named CustomEnumerator. Next, add the Car.cs and
Radio.cs files defined in the SimpleException example of Chapter 7 (via the Project ➤ Add Existing Item
menu option).

 ■ Note You might want to rename the namespace containing the Car and Radio types to CustomEnumerator
to avoid having to import the CustomException namespace within this new project.

Now, insert a new class named Garage that stores a set of Car objects within a System.Array.

// Garage contains a set of Car objects.
public class Garage
{
 private Car[] carArray = new Car[4];

 // Fill with some Car objects upon startup.
 public Garage()
 {
 carArray[0] = new Car("Rusty", 30);
 carArray[1] = new Car("Clunker", 55);
 carArray[2] = new Car("Zippy", 30);
 carArray[3] = new Car("Fred", 30);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 8 ■ Working With interfaCes

298

Ideally, it would be convenient to iterate over the Garage object’s subitems using the foreach construct,
just like an array of data values.

// This seems reasonable ...
public class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with IEnumerable / IEnumerator *****\n");
 Garage carLot = new Garage();

 // Hand over each car in the collection?
 foreach (Car c in carLot)
 {

 Console.WriteLine("{0} is going {1} MPH",
 c.PetName, c.CurrentSpeed);
 }
 Console.ReadLine();
 }
}

Sadly, the compiler informs you that the Garage class does not implement a method named
GetEnumerator(). This method is formalized by the IEnumerable interface, which is found lurking within
the System.Collections namespace.

 ■ Note in Chapter 9, you will learn about the role of generics and the System.Collections.Generic
namespace. as you will see, this namespace contains generic versions of IEnumerable/IEnumerator that
provide a more type-safe way to iterate over items.

Classes or structures that support this behavior advertise that they are able to expose contained items to
the caller (in this example, the foreach keyword itself). Here is the definition of this standard .NET interface:

// This interface informs the caller
// that the object's items can be enumerated.
public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

As you can see, the GetEnumerator() method returns a reference to yet another interface named
System.Collections.IEnumerator. This interface provides the infrastructure to allow the caller to traverse
the internal objects contained by the IEnumerable-compatible container.

// This interface allows the caller to
// obtain a container's items.
public interface IEnumerator

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 8 ■ Working With interfaCes

299

{
 bool MoveNext (); // Advance the internal position of the cursor.
 object Current { get;} // Get the current item (read-only property).
 void Reset (); // Reset the cursor before the first member.
}

If you want to update the Garage type to support these interfaces, you could take the long road
and implement each method manually. While you are certainly free to provide customized versions of
GetEnumerator(), MoveNext(), Current, and Reset(), there is a simpler way. As the System.Array type (as
well as many other collection classes) already implements IEnumerable and IEnumerator, you can simply
delegate the request to the System.Array as follows (note you will need to import the System.Collections
namespace into your code file):

using System.Collections;
...
public class Garage : IEnumerable
{
 // System.Array already implements IEnumerator!
 private Car[] carArray = new Car[4];

 public Garage()
 {
 carArray[0] = new Car("FeeFee", 200);
 carArray[1] = new Car("Clunker", 90);
 carArray[2] = new Car("Zippy", 30);
 carArray[3] = new Car("Fred", 30);
 }

 public IEnumerator GetEnumerator()
 {
 // Return the array object's IEnumerator.
 return carArray.GetEnumerator();
 }
}

After you have updated your Garage type, you can safely use the type within the C# foreach construct.
Furthermore, given that the GetEnumerator() method has been defined publicly, the object user could also
interact with the IEnumerator type.

// Manually work with IEnumerator.
IEnumerator i = carLot.GetEnumerator();
i.MoveNext();
Car myCar = (Car)i.Current;
Console.WriteLine("{0} is going {1} MPH", myCar.PetName, myCar.CurrentSpeed);

However, if you prefer to hide the functionality of IEnumerable from the object level, simply make use of
explicit interface implementation.

IEnumerator IEnumerable.GetEnumerator()
{
 // Return the array object's IEnumerator.
 return carArray.GetEnumerator();
}

Chapter 8 ■ Working With interfaCes

300

By doing so, the casual object user will not find the Garage’s GetEnumerator() method, while the
foreach construct will obtain the interface in the background when necessary.

 ■ Source Code the Customenumerator project is located in the Chapter 8 subdirectory.

Building Iterator Methods with the yield Keyword
There’s an alternative way to build types that work with the foreach loop via iterators. Simply put, an iterator
is a member that specifies how a container’s internal items should be returned when processed by foreach.
To illustrate, create a new Console Application project named CustomEnumeratorWithYield and insert the
Car, Radio, and Garage types from the previous example (again, renaming your namespace definitions to the
current project if you like). Now, retrofit the current Garage type as follows:

public class Garage : IEnumerable
{
 private Car[] carArray = new Car[4];
 ...
 // Iterator method.

 public IEnumerator GetEnumerator()
 {
 foreach (Car c in carArray)
 {
 yield return c;
 }
 }
}

Notice that this implementation of GetEnumerator() iterates over the subitems using internal foreach
logic and returns each Car to the caller using the yield return syntax. The yield keyword is used to specify
the value (or values) to be returned to the caller’s foreach construct. When the yield return statement is
reached, the current location in the container is stored, and execution is restarted from this location the next
time the iterator is called.

Iterator methods are not required to use the foreach keyword to return its contents. It is also
permissible to define this iterator method as follows:

public IEnumerator GetEnumerator()
{
 yield return carArray[0];
 yield return carArray[1];
 yield return carArray[2];
 yield return carArray[3];
}

In this implementation, notice that the GetEnumerator() method is explicitly returning a new value to
the caller with each pass through. Doing so for this example makes little sense, given that if you were to add
more objects to the carArray member variable, your GetEnumerator() method would now be out of sync.
Nevertheless, this syntax can be useful when you want to return local data from a method for processing by
the foreach syntax.

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 8 ■ Working With interfaCes

301

Building a Named Iterator
It is also interesting to note that the yield keyword can technically be used within any method, regardless
of its name. These methods (which are technically called named iterators) are also unique in that they can
take any number of arguments. When building a named iterator, be aware that the method will return the
IEnumerable interface, rather than the expected IEnumerator-compatible type. To illustrate, you could add
the following method to the Garage type:

public IEnumerable GetTheCars(bool ReturnRevesed)
{
 // Return the items in reverse.
 if (ReturnRevesed)
 {
 for (int i = carArray.Length; i != 0; i--)
 {
 yield return carArray[i-1];
 }
 }
 else
 {
 // Return the items as placed in the array.
 foreach (Car c in carArray)
 {
 yield return c;
 }
 }
}

Notice that the new method allows the caller to obtain the subitems in sequential order, as well as in reverse
order, if the incoming parameter has the value true. You could now interact with your new method as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with the Yield Keyword *****\n");
 Garage carLot = new Garage();

 // Get items using GetEnumerator().
 foreach (Car c in carLot)
 {
 Console.WriteLine("{0} is going {1} MPH",
 c.PetName, c.CurrentSpeed);
 }

 Console.WriteLine();

 // Get items (in reverse!) using named iterator.
 foreach (Car c in carLot.GetTheCars(true))
 {
 Console.WriteLine("{0} is going {1} MPH",
 c.PetName, c.CurrentSpeed);
 }
 Console.ReadLine();
}

Chapter 8 ■ Working With interfaCes

302

As you might agree, named iterators are helpful constructs, in that a single custom container can define
multiple ways to request the returned set.

So, to wrap up your look at building enumerable objects, remember that for your custom types to work
with the C# foreach keyword, the container must define a method named GetEnumerator(), which has
been formalized by the IEnumerable interface type. The implementation of this method is typically achieved
by simply delegating it to the internal member that is holding onto the subobjects; however, it is also
possible to use the yield return syntax to provide multiple “named iterator” methods.

 ■ Source Code the CustomenumeratorWithYield project is located in the Chapter 8 subdirectory.

The ICloneable Interface
As you might recall from Chapter 6, System.Object defines a method named MemberwiseClone(). This
method is used to obtain a shallow copy of the current object. Object users do not call this method directly,
as it is protected. However, a given object may call this method itself during the cloning process. To illustrate,
create a new Console Application project named CloneablePoint that defines a class named Point.

// A class named Point.
public class Point
{
 public int X {get; set;}
 public int Y {get; set;}

 public Point(int xPos, int yPos) { X = xPos; Y = yPos;}
 public Point(){}

 // Override Object.ToString().
 public override string ToString()
 { return string.Format("X = {0}; Y = {1}", X, Y); }
}

Given what you already know about reference types and value types (see Chapter 4), you are aware
that if you assign one reference variable to another, you have two references pointing to the same object in
memory. Thus, the following assignment operation results in two references to the same Point object on the
heap; modifications using either reference affect the same object on the heap:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Cloning *****\n");
 // Two references to same object!
 Point p1 = new Point(50, 50);
 Point p2 = p1;
 p2.X = 0;
 Console.WriteLine(p1);
 Console.WriteLine(p2);
 Console.ReadLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 8 ■ Working With interfaCes

303

When you want to give your custom type the ability to return an identical copy of itself to the caller, you
may implement the standard ICloneable interface. As shown at the start of this chapter, this type defines a
single method named Clone().

public interface ICloneable
{
 object Clone();
}

Obviously, the implementation of the Clone() method varies among your classes. However, the basic
functionality tends to be the same: copy the values of your member variables into a new object instance of
the same type and return it to the user. To illustrate, ponder the following update to the Point class:

// The Point now supports "clone-ability."
public class Point : ICloneable
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int xPos, int yPos) { X = xPos; Y = yPos; }
 public Point() { }

 // Override Object.ToString().
 public override string ToString()
 { return string.Format("X = {0}; Y = {1}", X, Y); }

 // Return a copy of the current object.
 public object Clone()
 { return new Point(this.X, this.Y); }
}

In this way, you can create exact stand-alone copies of the Point type, as illustrated by the following code:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Cloning *****\n");
 // Notice Clone() returns a plain object type.
 // You must perform an explicit cast to obtain the derived type.
 Point p3 = new Point(100, 100);
 Point p4 = (Point)p3.Clone();

 // Change p4.X (which will not change p3.X).
 p4.X = 0;

 // Print each object.
 Console.WriteLine(p3);
 Console.WriteLine(p4);
 Console.ReadLine();
}

Chapter 8 ■ Working With interfaCes

304

While the current implementation of Point fits the bill, you can streamline things just a bit. Because the
Point type does not contain any internal reference type variables, you could simplify the implementation of
the Clone() method as follows:

public object Clone()
{
 // Copy each field of the Point member by member.
 return this.MemberwiseClone();
}

Be aware, however, that if the Point did contain any reference type member variables,
MemberwiseClone() would copy the references to those objects (i.e., a shallow copy). If you want to support
a true deep copy, you will need to create a new instance of any reference type variables during the cloning
process. Let’s see an example next.

A More Elaborate Cloning Example
Now assume the Point class contains a reference type member variable of type PointDescription. This
class maintains a point’s friendly name as well as an identification number expressed as a System.Guid
(a globally unique identifier [GUID] is a statistically unique 128-bit number). Here is the implementation:

// This class describes a point.
public class PointDescription
{
 public string PetName {get; set;}
 public Guid PointID {get; set;}

 public PointDescription()
 {
 PetName = "No-name";
 PointID = Guid.NewGuid();
 }
}

The initial updates to the Point class itself included modifying ToString() to account for these new
bits of state data, as well as defining and creating the PointDescription reference type. To allow the outside
world to establish a pet name for the Point, you also update the arguments passed into the overloaded
constructor.

public class Point : ICloneable
{
 public int X { get; set; }
 public int Y { get; set; }
 public PointDescription desc = new PointDescription();

 public Point(int xPos, int yPos, string petName)
 {
 X = xPos; Y = yPos;
 desc.PetName = petName;
 }

Chapter 8 ■ Working With interfaCes

305

 public Point(int xPos, int yPos)
 {
 X = xPos; Y = yPos;
 }
 public Point() { }

 // Override Object.ToString().
 public override string ToString()
 {
 return string.Format("X = {0}; Y = {1}; Name = {2};\nID = {3}\n",
 X, Y, desc.PetName, desc.PointID);
 }

 // Return a copy of the current object.
 public object Clone()
 { return this.MemberwiseClone(); }
}

Notice that you did not yet update your Clone() method. Therefore, when the object user asks for a
clone using the current implementation, a shallow (member-by-member) copy is achieved. To illustrate,
assume you have updated Main() as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Cloning *****\n");
 Console.WriteLine("Cloned p3 and stored new Point in p4");
 Point p3 = new Point(100, 100, "Jane");
 Point p4 = (Point)p3.Clone();

 Console.WriteLine("Before modification:");
 Console.WriteLine("p3: {0}", p3);
 Console.WriteLine("p4: {0}", p4);
 p4.desc.PetName = "My new Point";
 p4.X = 9;

 Console.WriteLine("\nChanged p4.desc.petName and p4.X");
 Console.WriteLine("After modification:");
 Console.WriteLine("p3: {0}", p3);
 Console.WriteLine("p4: {0}", p4);
 Console.ReadLine();
}

Chapter 8 ■ Working With interfaCes

306

Notice in the following output that while the value types have indeed been changed, the internal
reference types maintain the same values, as they are “pointing” to the same objects in memory (specifically,
note that the pet name for both objects is now “My new Point”).

***** Fun with Object Cloning *****

Cloned p3 and stored new Point in p4
Before modification:
p3: X = 100; Y = 100; Name = Jane;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

p4: X = 100; Y = 100; Name = Jane;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

Changed p4.desc.petName and p4.X
After modification:
p3: X = 100; Y = 100; Name = My new Point;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

p4: X = 9; Y = 100; Name = My new Point;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

To have your Clone() method make a complete deep copy of the internal reference types, you
need to configure the object returned by MemberwiseClone() to account for the current point’s name
(the System.Guid type is in fact a structure, so the numerical data is indeed copied). Here is one
possible implementation:

// Now we need to adjust for the PointDescription member.
public object Clone()
{
 // First get a shallow copy.
 Point newPoint = (Point)this.MemberwiseClone();

 // Then fill in the gaps.
 PointDescription currentDesc = new PointDescription();
 currentDesc.PetName = this.desc.PetName;
 newPoint.desc = currentDesc;
 return newPoint;
}

If you rerun the application once again and view the output (shown next), you see that the Point
returned from Clone() does copy its internal reference type member variables (note the pet name is now
unique for both p3 and p4).

***** Fun with Object Cloning *****

Cloned p3 and stored new Point in p4
Before modification:
p3: X = 100; Y = 100; Name = Jane;
ID = 51f64f25-4b0e-47ac-ba35-37d263496406

Chapter 8 ■ Working With interfaCes

307

p4: X = 100; Y = 100; Name = Jane;
ID = 0d3776b3-b159-490d-b022-7f3f60788e8a

Changed p4.desc.petName and p4.X
After modification:
p3: X = 100; Y = 100; Name = Jane;
ID = 51f64f25-4b0e-47ac-ba35-37d263496406

p4: X = 9; Y = 100; Name = My new Point;
ID = 0d3776b3-b159-490d-b022-7f3f60788e8a

To summarize the cloning process, if you have a class or structure that contains nothing but value
types, implement your Clone() method using MemberwiseClone(). However, if you have a custom type
that maintains other reference types, you might want to create a new object that takes into account each
reference type member variable in order to get a “deep copy.”

 ■ Source Code the Cloneablepoint project is located in the Chapter 8 subdirectory.

The IComparable Interface
The System.IComparable interface specifies a behavior that allows an object to be sorted based on some
specified key. Here is the formal definition:

// This interface allows an object to specify its
// relationship between other like objects.
public interface IComparable
{
 int CompareTo(object o);
}

 ■ Note the generic version of this interface (IComparable<T>) provides a more type-safe manner to handle
comparisons between objects. You’ll examine generics in Chapter 9.

Let’s assume you have a new Console Application project named ComparableCar that updates the Car
class from Chapter 7 as so (notice that you have basically just added a new property to represent a unique ID
for each car and a modified constructor):

public class Car
{
...
 public int CarID {get; set;}
 public Car(string name, int currSp, int id)
 {
 CurrentSpeed = currSp;

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_9
http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 8 ■ Working With interfaCes

308

 PetName = name;
 CarID = id;
 }
 ...
}

Now assume you have an array of Car objects as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Sorting *****\n");

 // Make an array of Car objects.
 Car[] myAutos = new Car[5];
 myAutos[0] = new Car("Rusty", 80, 1);
 myAutos[1] = new Car("Mary", 40, 234);
 myAutos[2] = new Car("Viper", 40, 34);
 myAutos[3] = new Car("Mel", 40, 4);
 myAutos[4] = new Car("Chucky", 40, 5);

 Console.ReadLine();
}

The System.Array class defines a static method named Sort(). When you invoke this method on an
array of intrinsic types (int, short, string, etc.), you are able to sort the items in the array in numeric/
alphabetic order, as these intrinsic data types implement IComparable. However, what if you were to send an
array of Car types into the Sort() method as follows?

// Sort my cars? Not yet!
Array.Sort(myAutos);

If you run this test, you would get a runtime exception, as the Car class does not support the necessary
interface. When you build custom types, you can implement IComparable to allow arrays of your types to be
sorted. When you flesh out the details of CompareTo(), it will be up to you to decide what the baseline of the
ordering operation will be. For the Car type, the internal CarID seems to be the logical candidate.

// The iteration of the Car can be ordered
// based on the CarID.
public class Car : IComparable
{
...
 // IComparable implementation.
 int IComparable.CompareTo(object obj)
 {
 Car temp = obj as Car;
 if (temp != null)
 {
 if (this.CarID > temp.CarID)
 return 1;
 if (this.CarID < temp.CarID)
 return -1;

Chapter 8 ■ Working With interfaCes

309

 else
 return 0;
 }
 else
 throw new ArgumentException("Parameter is not a Car!");
 }
}

As you can see, the logic behind CompareTo() is to test the incoming object against the current instance
based on a specific point of data. The return value of CompareTo() is used to discover whether this type is
less than, greater than, or equal to the object it is being compared with (see Table 8-1).

Table 8-1. CompareTo() Return Values

CompareTo() Return Value Description

Any number less than zero This instance comes before the specified object in the sort order.

Zero This instance is equal to the specified object.

Any number greater than zero This instance comes after the specified object in the sort order.

You can streamline the previous implementation of CompareTo() given that the C# int data type (which
is just a shorthand notation for the CLR System.Int32) implements IComparable. You could implement the
Car’s CompareTo() as follows:

int IComparable.CompareTo(object obj)
{
 Car temp = obj as Car;
 if (temp != null)
 return this.CarID.CompareTo(temp.CarID);
 else
 throw new ArgumentException("Parameter is not a Car!");
}

In either case, so that your Car type understands how to compare itself to like objects, you can write the
following user code:

// Exercise the IComparable interface.
static void Main(string[] args)
{
 // Make an array of Car objects.
...
 // Display current array.
 Console.WriteLine("Here is the unordered set of cars:");
 foreach(Car c in myAutos)
 Console.WriteLine("{0} {1}", c.CarID, c.PetName);

 // Now, sort them using IComparable!
 Array.Sort(myAutos);
 Console.WriteLine();

Chapter 8 ■ Working With interfaCes

310

 // Display sorted array.
 Console.WriteLine("Here is the ordered set of cars:");
 foreach(Car c in myAutos)
 Console.WriteLine("{0} {1}", c.CarID, c.PetName);
 Console.ReadLine();
}

Here is the output from the previous Main() method:

***** Fun with Object Sorting *****

Here is the unordered set of cars:
1 Rusty
234 Mary
34 Viper
4 Mel
5 Chucky

Here is the ordered set of cars:
1 Rusty
4 Mel
5 Chucky
34 Viper
234 Mary

Specifying Multiple Sort Orders with IComparer
In this version of the Car type, you used the car’s ID as the base for the sort order. Another design might have
used the pet name of the car as the basis for the sorting algorithm (to list cars alphabetically). Now, what if
you wanted to build a Car that could be sorted by ID as well as by pet name? If this is the type of behavior
you are interested in, you need to make friends with another standard interface named IComparer, defined
within the System.Collections namespace as follows:

// A general way to compare two objects.
interface IComparer
{
 int Compare(object o1, object o2);
}

 ■ Note the generic version of this interface (IComparer<T>) provides a more type-safe manner to handle
comparisons between objects. You’ll examine generics in Chapter 9.

Unlike the IComparable interface, IComparer is typically not implemented on the type you are trying to
sort (i.e., the Car). Rather, you implement this interface on any number of helper classes, one for each sort
order (pet name, car ID, etc.). Currently, the Car type already knows how to compare itself against other cars
based on the internal car ID. Therefore, allowing the object user to sort an array of Car objects by pet name

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 8 ■ Working With interfaCes

311

will require an additional helper class that implements IComparer. Here’s the code (be sure to import the
System.Collections namespace in the code file):

// This helper class is used to sort an array of Cars by pet name.
public class PetNameComparer : IComparer
{
 // Test the pet name of each object.
 int IComparer.Compare(object o1, object o2)
 {

 Car t1 = o1 as Car;
 Car t2 = o2 as Car;
 if(t1 != null && t2 != null)
 return String.Compare(t1.PetName, t2.PetName);
 else
 throw new ArgumentException("Parameter is not a Car!");
 }
}

The object user code is able to use this helper class. System.Array has a number of overloaded Sort()
methods, one that just happens to take an object implementing IComparer.

static void Main(string[] args)
{
...
 // Now sort by pet name.
 Array.Sort(myAutos, new PetNameComparer());

 // Dump sorted array.
 Console.WriteLine("Ordering by pet name:");
 foreach(Car c in myAutos)
 Console.WriteLine("{0} {1}", c.CarID, c.PetName);
...
}

Custom Properties and Custom Sort Types
It is worth pointing out that you can use a custom static property to help the object user along when
sorting your Car types by a specific data point. Assume the Car class has added a static read-only property
named SortByPetName that returns an instance of an object implementing the IComparer interface
(PetNameComparer, in this case; be sure to import System.Collections).

// We now support a custom property to return
// the correct IComparer interface.
public class Car : IComparable
{
 ...
 // Property to return the PetNameComparer.
 public static IComparer SortByPetName
 { get { return (IComparer)new PetNameComparer(); } }
}

Chapter 8 ■ Working With interfaCes

312

The object user code can now sort by pet name using a strongly associated property, rather than just
“having to know” to use the stand-alone PetNameComparer class type.

// Sorting by pet name made a bit cleaner.
Array.Sort(myAutos, Car.SortByPetName);

 ■ Source Code the ComparableCar project is located in the Chapter 8 subdirectory.

Ideally, at this point you not only understand how to define and implement your own interfaces but also
understand their usefulness. To be sure, interfaces are found within every major .NET namespace, and you
will continue working with various standard interfaces in the remainder of this book.

Summary
An interface can be defined as a named collection of abstract members. Because an interface does not
provide any implementation details, it is common to regard an interface as a behavior that may be supported
by a given type. When two or more classes implement the same interface, you can treat each type the same
way (interface-based polymorphism) even if the types are defined within unique class hierarchies.

C# provides the interface keyword to allow you to define a new interface. As you have seen, a type
can support as many interfaces as necessary using a comma-delimited list. Furthermore, it is permissible to
build interfaces that derive from multiple base interfaces.

In addition to building your custom interfaces, the .NET libraries define a number of standard
(i.e., framework-supplied) interfaces. As you have seen, you are free to build custom types that implement
these predefined interfaces to gain a number of desirable traits such as cloning, sorting, and enumerating.

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Part IV

Advanced C# Programming

315

Chapter 9

Collections and Generics

Any application you create with the .NET platform will need to contend with the issue of maintaining and
manipulating a set of data points in memory. These data points can come from any variety of locations
including a relational database, a local text file, an XML document, a web service call, or perhaps via
user-provided input.

When the .NET platform was first released, programmers frequently used the classes of the
System.Collections namespace to store and interact with bits of data used within an application. In .NET 2.0,
the C# programming language was enhanced to support a feature termed generics; and with this change,
a brand new namespace was introduced in the base class libraries: System.Collections.Generic.

This chapter will provide you with an overview of the various collection (generic and nongeneric)
namespaces and types found within the .NET base class libraries. As you will see, generic containers are
often favored over their nongeneric counterparts because they typically provide greater type safety and
performance benefits. After you’ve learned how to create and manipulate the generic items found in the
framework, the remainder of this chapter will examine how to build your own generic methods and generic
types. As you do this, you will learn about the role of constraints (and the corresponding C# where keyword),
which allow you to build extremely type-safe classes.

The Motivation for Collection Classes
The most primitive container you could use to hold application data is undoubtedly the array. As you saw in
Chapter 4, C# arrays allow you to define a set of identically typed items (including an array of System.Objects,
which essentially represents an array of any type of data) of a fixed upper limit. Also recall from Chapter 4
that all C# array variables gather a good deal of functionality from the System.Array class. By way of a quick
review, consider the following Main() method, which creates an array of textual data and manipulates its
contents in various ways:

static void Main(string[] args)
{
 // Make an array of string data.
 string[] strArray = {"First", "Second", "Third" };

 // Show number of items in array using Length property.
 Console.WriteLine("This array has {0} items.", strArray.Length);
 Console.WriteLine();

 // Display contents using enumerator.
 foreach (string s in strArray)

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 9 ■ ColleCtions and GeneriCs

316

 {
 Console.WriteLine("Array Entry: {0}", s);
 }
 Console.WriteLine();

 // Reverse the array and print again.
 Array.Reverse(strArray);
 foreach (string s in strArray)
 {
 Console.WriteLine("Array Entry: {0}", s);
 }

 Console.ReadLine();
}

While basic arrays can be useful to manage small amounts of fixed-size data, there are many other times
where you require a more flexible data structure, such as a dynamically growing and shrinking container or
a container that can hold objects that meet only a specific criteria (e.g., only objects deriving from a specific
base class or only objects implementing a particular interface). When you make use of a simple array, always
remember they are “fixed size.” If you make an array of three items, you get only three items; therefore, the
following code would result in a runtime exception (an IndexOutOfRangeException, to be exact):

static void Main(string[] args)
{
 // Make an array of string data.
 string[] strArray = { "First", "Second", "Third" };

 // Try to add a new item at the end?? Runtime error!
 strArray[3] = "new item?";
...
}

 ■ Note it is actually possible to change the size of an array using the generic Resize()<T> method.
however, this will result in a copy of the data into a new array object and could be inefficient.

To help overcome the limitations of a simple array, the .NET base class libraries ship with a number of
namespaces containing collection classes. Unlike a simple C# array, collection classes are built to dynamically
resize themselves on the fly as you insert or remove items. Moreover, many of the collection classes offer increased
type safety and are highly optimized to process the contained data in a memory-efficient manner. As you read
over this chapter, you will quickly notice that a collection class can belong to one of two broad categories.

•	 Nongeneric collections (primarily found in the System.Collections namespace)

•	 Generic collections (primarily found in the System.Collections.Generic namespace)

Nongeneric collections are typically designed to operate on System.Object types and are, therefore,
loosely typed containers (however, some nongeneric collections do operate only on a specific type of data,
such as string objects). In contrast, generic collections are much more type safe, given that you must specify
the “type of type” they contain upon creation. As you will see, the telltale sign of any generic item is the “type
parameter” marked with angled brackets (for example, List<T>). You will examine the details of generics
(including the many benefits they provide) a bit later in this chapter. For now, let’s examine some of the key
nongeneric collection types in the System.Collections and System.Collections.Specialized namespaces.

Chapter 9 ■ ColleCtions and GeneriCs

317

The System.Collections Namespace
When the .NET platform was first released, programmers frequently used the nongeneric collection
classes found within the System.Collections namespace, which contains a set of classes used to manage
and organize large amounts of in-memory data. Table 9-1 documents some of the more commonly used
collection classes of this namespace and the core interfaces they implement.

Table 9-1. Useful Types of System.Collections

System.Collections Class Meaning in Life Key Implemented Interfaces

ArrayList Represents a dynamically sized collection of
objects listed in sequential order

IList, ICollection,
IEnumerable, and
ICloneable

BitArray Manages a compact array of bit values, which are
represented as Booleans, where true indicates that
the bit is on (1) and false indicates the bit is off (0)

ICollection, IEnumerable,
and ICloneable

Hashtable Represents a collection of key-value pairs that are
organized based on the hash code of the key

IDictionary, ICollection,
IEnumerable, and
ICloneable

Queue Represents a standard first-in, first-out (FIFO)
collection of objects

ICollection, IEnumerable,
and ICloneable

SortedList Represents a collection of key-value pairs that are
sorted by the keys and are accessible by key and
by index

IDictionary, ICollection,
IEnumerable, and
ICloneable

Stack A last-in, first-out (LIFO) stack providing push
and pop (and peek) functionality

ICollection, IEnumerable,
and ICloneable

The interfaces implemented by these collection classes provide huge insights into their overall
functionality. Table 9-2 documents the overall nature of these key interfaces, some of which you worked with
firsthand in Chapter 8.

Table 9-2. Key Interfaces Supported by Classes of System.Collections

System.Collections Interface Meaning in Life

ICollection Defines general characteristics (e.g., size, enumeration, and thread
safety) for all nongeneric collection types

ICloneable Allows the implementing object to return a copy of itself to the caller

IDictionary Allows a nongeneric collection object to represent its contents using
key-value pairs

IEnumerable Returns an object implementing the IEnumerator interface (see next
table entry)

IEnumerator Enables foreach style iteration of collection items

IList Provides behavior to add, remove, and index items in a sequential list of
objects

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 9 ■ ColleCtions and GeneriCs

318

An Illustrative Example: Working with the ArrayList
Based on your experience, you might have some firsthand experience using (or implementing) some of
these classic data structures such as stacks, queues, and lists. If this is not the case, I’ll provide some further
details on their differences when you examine their generic counterparts a bit later in this chapter. Until
then, here is a Main() method making use of an ArrayList object. Notice that you can add (or remove) items
on the fly and the container automatically resizes itself accordingly.

// You must import System.Collections to access the ArrayList.
static void Main(string[] args)
{
 ArrayList strArray = new ArrayList();
 strArray.AddRange(new string[] { "First", "Second", "Third" });

 // Show number of items in ArrayList.
 Console.WriteLine("This collection has {0} items.", strArray.Count);
 Console.WriteLine();

 // Add a new item and display current count.
 strArray.Add("Fourth!");
 Console.WriteLine("This collection has {0} items.", strArray.Count);

 // Display contents.
 foreach (string s in strArray)
 {
 Console.WriteLine("Entry: {0}", s);
 }
 Console.WriteLine();
}

As you would guess, the ArrayList class has many useful members beyond the Count property and
AddRange() and Add() methods, so be sure you consult the .NET Framework documentation for full
details. On a related note, the other classes of System.Collections (Stack, Queue, and so on) are also fully
documented in the .NET help system.

However, it is important to point out that a majority of your .NET projects will most likely not make
use of the collection classes in the System.Collections namespace! To be sure, these days it is far more
common to make use of the generic counterpart classes found in the System.Collections.Generic
namespace. Given this point, I won’t comment on (or provide code examples for) the remaining nongeneric
classes found in System.Collections.

A Survey of System.Collections.Specialized Namespace
System.Collections is not the only .NET namespace that contains nongeneric collection classes. The
System.Collections.Specialized namespace defines a number of (pardon the redundancy) specialized
collection types. Table 9-3 documents some of the more useful types in this particular collection-centric
namespace, all of which are nongeneric.

Chapter 9 ■ ColleCtions and GeneriCs

319

Beyond these concrete class types, this namespace also contains many additional interfaces and
abstract base classes that you can use as a starting point for creating custom collection classes. While these
“specialized” types might be just what your projects require in some situations, I won’t comment on their
usage here. Again, in many cases, you will likely find that the System.Collections.Generic namespace
provides classes with similar functionality and additional benefits.

 ■ Note there are two additional collection-centric namespaces (System.Collections.ObjectModel
and System.Collections.Concurrent) in the .net base class libraries. You will examine the former
namespace later in this chapter, after you are comfortable with the topic of generics. System.
Collections.Concurrent provides collection classes well-suited to a multithreaded environment (see
Chapter 19 for information on multithreading).

The Problems of Nongeneric Collections
While it is true that many successful .NET applications have been built over the years using these nongeneric
collection classes (and interfaces), history has shown that use of these types can result in a number of issues.

The first issue is that using the System.Collections and System.Collections.Specialized classes can
result in some poorly performing code, especially when you are manipulating numerical data (e.g., value
types). As you’ll see momentarily, the CLR must perform a number of memory transfer operations when you
store structures in any nongeneric collection class prototyped to operate on System.Objects, which can hurt
runtime execution speed.

The second issue is that most of the nongeneric collection classes are not type safe because (again)
they were developed to operate on System.Objects, and they could therefore contain anything at all. If
a .NET developer needed to create a highly type-safe collection (e.g., a container that can hold objects
implementing only a certain interface), the only real choice was to create a new collection class by hand.
Doing so was not too labor intensive, but it was a tad on the tedious side.

Table 9-3. Useful Classes of System.Collections.Specialized

System.Collections.Specialized Type Meaning in Life

HybridDictionary This class implements IDictionary by using a ListDictionary
while the collection is small and then switching to a Hashtable
when the collection gets large.

ListDictionary This class is useful when you need to manage a small number of
items (ten or so) that can change over time. This class makes use
of a singly linked list to maintain its data.

StringCollection This class provides an optimal way to manage large collections of
string data.

BitVector32 This class provides a simple structure that stores Boolean values
and small integers in 32 bits of memory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 9 ■ ColleCtions and GeneriCs

320

Before you look at how to use generics in your programs, you’ll find it helpful to examine the issues
of nongeneric collection classes a bit closer; this will help you better understand the problems generics
intend to solve in the first place. If you want to follow along, create a new Console Application project named
IssuesWithNonGenericCollections. Next, make sure you import the System.Collections namespace to the
top of your C# code file.

using System.Collections;

The Issue of Performance
As you might recall from Chapter 4, the .NET platform supports two broad categories of data: value types
and reference types. Given that .NET defines two major categories of types, you might occasionally need
to represent a variable of one category as a variable of the other category. To do so, C# provides a simple
mechanism, termed boxing, to store the data in a value type within a reference variable. Assume that you
have created a local variable of type int in a method called SimpleBoxUnboxOperation(). If, during the
course of your application, you were to represent this value type as a reference type, you would box the
value, as follows:

static void SimpleBoxUnboxOperation()
{
 // Make a ValueType (int) variable.
 int myInt = 25;

 // Box the int into an object reference.
 object boxedInt = myInt;
}

Boxing can be formally defined as the process of explicitly assigning a value type to a System.Object
variable. When you box a value, the CLR allocates a new object on the heap and copies the value type’s
value (25, in this case) into that instance. What is returned to you is a reference to the newly allocated
heap-based object.

The opposite operation is also permitted through unboxing. Unboxing is the process of converting the
value held in the object reference back into a corresponding value type on the stack. Syntactically speaking,
an unboxing operation looks like a normal casting operation. However, the semantics are quite different.
The CLR begins by verifying that the receiving data type is equivalent to the boxed type, and if so, it copies
the value back into a local stack-based variable. For example, the following unboxing operations work
successfully, given that the underlying type of the boxedInt is indeed an int:

static void SimpleBoxUnboxOperation()
{
 // Make a ValueType (int) variable.
 int myInt = 25;

 // Box the int into an object reference.
 object boxedInt = myInt;

 // Unbox the reference back into a corresponding int.
 int unboxedInt = (int)boxedInt;
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 9 ■ ColleCtions and GeneriCs

321

When the C# compiler encounters boxing/unboxing syntax, it emits CIL code that contains the
box/unbox op codes. If you were to examine your compiled assembly using ildasm.exe, you would find
the following:

.method private hidebysig static void SimpleBoxUnboxOperation() cil managed
{
 // Code size 19 (0x13)
 .maxstack 1
 .locals init ([0] int32 myInt, [1] object boxedInt, [2] int32 unboxedInt)
 IL_0000: nop
 IL_0001: ldc.i4.s 25
 IL_0003: stloc.0
 IL_0004: ldloc.0
 IL_0005: box [mscorlib]System.Int32
 IL_000a: stloc.1
 IL_000b: ldloc.1
 IL_000c: unbox.any [mscorlib]System.Int32
 IL_0011: stloc.2
 IL_0012: ret
} // end of method Program::SimpleBoxUnboxOperation

Remember that unlike when performing a typical cast, you must unbox into an appropriate data type.
If you attempt to unbox a piece of data into the incorrect data type, an InvalidCastException exception
will be thrown. To be perfectly safe, you should wrap each unboxing operation in try/catch logic; however,
this would be quite labor intensive to do for every unboxing operation. Consider the following code update,
which will throw an error because you’re attempting to unbox the boxed int into a long:

static void SimpleBoxUnboxOperation()
{
 // Make a ValueType (int) variable.
 int myInt = 25;

 // Box the int into an object reference.
 object boxedInt = myInt;

 // Unbox in the wrong data type to trigger
 // runtime exception.
 try
 {
 long unboxedInt = (long)boxedInt;
 }
 catch (InvalidCastException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

At first glance, boxing/unboxing might seem like a rather uneventful language feature that is more
academic than practical. After all, you will seldom need to store a local value type in a local object variable,
as shown here. However, it turns out that the boxing/unboxing process is quite helpful because it allows you
to assume everything can be treated as a System.Object, while the CLR takes care of the memory-related
details on your behalf.

Chapter 9 ■ ColleCtions and GeneriCs

322

Let’s look at a practical use of these techniques. Assume you have created a nongeneric
System.Collections.ArrayList to hold onto a batch of numeric (stack-allocated) data. If you were to
examine the members of ArrayList, you would find they are prototyped to operate on System.Object
data. Now consider the Add(), Insert(), and Remove() methods, as well as the class indexer.

public class ArrayList : object,
 IList, ICollection, IEnumerable, ICloneable
{
...
 public virtual int Add(object value);
 public virtual void Insert(int index, object value);
 public virtual void Remove(object obj);
 public virtual object this[int index] {get; set; }
}

ArrayList has been built to operate on objects, which represent data allocated on the heap, so it might
seem strange that the following code compiles and executes without throwing an error:

static void WorkWithArrayList()
{
 // Value types are automatically boxed when
 // passed to a method requesting an object.
 ArrayList myInts = new ArrayList();
 myInts.Add(10);
 myInts.Add(20);
 myInts.Add(35);
}

Although you pass in numerical data directly into methods requiring an object, the runtime
automatically boxes the stack-based data on your behalf. Later, if you want to retrieve an item from the
ArrayList using the type indexer, you must unbox the heap-allocated object into a stack-allocated integer
using a casting operation. Remember that the indexer of the ArrayList is returning System.Objects, not
System.Int32s.

static void WorkWithArrayList()
{
 // Value types are automatically boxed when
 // passed to a member requesting an object.
 ArrayList myInts = new ArrayList();
 myInts.Add(10);
 myInts.Add(20);
 myInts.Add(35);

 // Unboxing occurs when an object is converted back to
 // stack-based data.
 int i = (int)myInts[0];

 // Now it is reboxed, as WriteLine() requires object types!
 Console.WriteLine("Value of your int: {0}", i);
}

Chapter 9 ■ ColleCtions and GeneriCs

323

Again, note that the stack-allocated System.Int32 is boxed prior to the call to ArrayList.Add(), so
it can be passed in the required System.Object. Also note that the System.Object is unboxed back into a
System.Int32 once it is retrieved from the ArrayList via the casting operation, only to be boxed again when
it is passed to the Console.WriteLine() method, as this method is operating on System.Object variables.

Boxing and unboxing are convenient from a programmer’s viewpoint, but this simplified approach to
stack/heap memory transfer comes with the baggage of performance issues (in both speed of execution and
code size) and a lack of type safety. To understand the performance issues, ponder the steps that must occur
to box and unbox a simple integer.

 1. A new object must be allocated on the managed heap.

 2. The value of the stack-based data must be transferred into that memory location.

 3. When unboxed, the value stored on the heap-based object must be transferred
back to the stack.

 4. The now unused object on the heap will (eventually) be garbage collected.

Although this particular WorkWithArrayList() method won’t cause a major bottleneck in terms
of performance, you could certainly feel the impact if an ArrayList contained thousands of integers
that your program manipulates on a somewhat regular basis. In an ideal world, you could manipulate
stack-based data in a container without any performance issues. Ideally, it would be nice if you did not
have to have to bother plucking data from this container using try/catch scopes (this is exactly what
generics let you achieve).

The Issue of Type Safety
I touched on the issue of type safety when covering unboxing operations. Recall that you must unbox your
data into the same data type it was declared as before boxing. However, there is another aspect of type safety
you must keep in mind in a generic-free world: the fact that a majority of the classes of System.Collections
can typically hold anything whatsoever because their members are prototyped to operate on System.
Objects. For example, this method builds an ArrayList of random bits of unrelated data:

static void ArrayListOfRandomObjects()
{
 // The ArrayList can hold anything at all.
 ArrayList allMyObjects = new ArrayList();
 allMyObjects.Add(true);
 allMyObjects.Add(new OperatingSystem(PlatformID.MacOSX, new Version(10, 0)));
 allMyObjects.Add(66);
 allMyObjects.Add(3.14);
}

In some cases, you will require an extremely flexible container that can hold literally anything (as shown
here). However, most of the time you desire a type-safe container that can operate only on a particular type
of data point. For example, you might need a container that can hold only database connections, bitmaps, or
IPointy-compatible objects.

Chapter 9 ■ ColleCtions and GeneriCs

324

Prior to generics, the only way you could address this issue of type safety was to create a custom
(strongly typed) collection class manually. Assume you want to create a custom collection that can contain
only objects of type Person.

public class Person
{
 public int Age {get; set;}
 public string FirstName {get; set;}
 public string LastName {get; set;}

 public Person(){}
 public Person(string firstName, string lastName, int age)
 {
 Age = age;
 FirstName = firstName;
 LastName = lastName;
 }

 public override string ToString()
 {
 return string.Format("Name: {0} {1}, Age: {2}",
 FirstName, LastName, Age);
 }
}

To build a collection that can hold only Person objects, you could define a System.Collections.
ArrayList member variable within a class named PersonCollection and configure all members to
operate on strongly typed Person objects, rather than on System.Object types. Here is a simple example (a
production-level custom collection could support many additional members and might extend an abstract
base class from the System.Collections or System.Collections.Specialized namespace):

public class PersonCollection : IEnumerable
{
 private ArrayList arPeople = new ArrayList();

 // Cast for caller.
 public Person GetPerson(int pos)
 { return (Person)arPeople[pos]; }

 // Insert only Person objects.
 public void AddPerson(Person p)
 { arPeople.Add(p); }

 public void ClearPeople()
 { arPeople.Clear(); }

 public int Count
 { get { return arPeople.Count; } }

 // Foreach enumeration support.
 IEnumerator IEnumerable.GetEnumerator()
 { return arPeople.GetEnumerator(); }
}

Chapter 9 ■ ColleCtions and GeneriCs

325

Notice that the PersonCollection class implements the IEnumerable interface, which allows a
foreach-like iteration over each contained item. Also notice that your GetPerson() and AddPerson()
methods have been prototyped to operate only on Person objects, not bitmaps, strings, database
connections, or other items. With these types defined, you are now assured of type safety, given that the C#
compiler will be able to determine any attempt to insert an incompatible data type.

static void UsePersonCollection()
{
 Console.WriteLine("***** Custom Person Collection *****\n");
 PersonCollection myPeople = new PersonCollection();
 myPeople.AddPerson(new Person("Homer", "Simpson", 40));
 myPeople.AddPerson(new Person("Marge", "Simpson", 38));
 myPeople.AddPerson(new Person("Lisa", "Simpson", 9));
 myPeople.AddPerson(new Person("Bart", "Simpson", 7));
 myPeople.AddPerson(new Person("Maggie", "Simpson", 2));

 // This would be a compile-time error!
 // myPeople.AddPerson(new Car());

 foreach (Person p in myPeople)
 Console.WriteLine(p);
}

While custom collections do ensure type safety, this approach leaves you in a position where you must
create an (almost identical) custom collection for each unique data type you want to contain. Thus, if you
need a custom collection that can operate only on classes deriving from the Car base class, you need to build
a highly similar collection class.

public class CarCollection : IEnumerable
{
 private ArrayList arCars = new ArrayList();

 // Cast for caller.
 public Car GetCar(int pos)
 { return (Car) arCars[pos]; }

 // Insert only Car objects.
 public void AddCar(Car c)
 { arCars.Add(c); }

 public void ClearCars()
 { arCars.Clear(); }

 public int Count
 { get { return arCars.Count; } }

 // Foreach enumeration support.
 IEnumerator IEnumerable.GetEnumerator()
 { return arCars.GetEnumerator(); }
}

Chapter 9 ■ ColleCtions and GeneriCs

326

However, a custom collection class does nothing to solve the issue of boxing/unboxing penalties.
Even if you were to create a custom collection named IntCollection that you designed to operate only on
System.Int32 items, you would have to allocate some type of object to hold the data (e.g., System.Array and
ArrayList).

public class IntCollection : IEnumerable
{
 private ArrayList arInts = new ArrayList();

 // Get an int (performs unboxing!).
 public int GetInt(int pos)
 { return (int)arInts[pos]; }

 // Insert an int (performs boxing)!
 public void AddInt(int i)
 { arInts.Add(i); }

 public void ClearInts()
 { arInts.Clear(); }

 public int Count
 { get { return arInts.Count; } }

 IEnumerator IEnumerable.GetEnumerator()
 { return arInts.GetEnumerator(); }
}

Regardless of which type you might choose to hold the integers, you cannot escape the boxing dilemma
using nongeneric containers.

A First Look at Generic Collections
When you use generic collection classes, you rectify all the previous issues, including boxing/unboxing
penalties and a lack of type safety. Also, the need to build a custom (generic) collection class becomes quite
rare. Rather than having to build unique classes that can contain people, cars, and integers, you can use a
generic collection class and specify the type of type.

Consider the following method, which uses the generic List<T> class (in the System.Collections.
Generic namespace) to contain various types of data in a strongly typed manner (don’t fret the details of
generic syntax at this time):

static void UseGenericList()
{
 Console.WriteLine("***** Fun with Generics *****\n");

 // This List<> can hold only Person objects.
 List<Person> morePeople = new List<Person>();
 morePeople.Add(new Person ("Frank", "Black", 50));
 Console.WriteLine(morePeople[0]);

Chapter 9 ■ ColleCtions and GeneriCs

327

 // This List<> can hold only integers.
 List<int> moreInts = new List<int>();
 moreInts.Add(10);
 moreInts.Add(2);
 int sum = moreInts[0] + moreInts[1];

 // Compile-time error! Can't add Person object
 // to a list of ints!
 // moreInts.Add(new Person());
}

The first List<T> object can contain only Person objects. Therefore, you do not need to perform a
cast when plucking the items from the container, which makes this approach more type safe. The second
List<T> can contain only integers, all of which are allocated on the stack; in other words, there is no hidden
boxing or unboxing as you found with the nongeneric ArrayList. Here is a short list of the benefits generic
containers provide over their nongeneric counterparts:

•	 Generics provide better performance because they do not result in boxing or
unboxing penalties when storing value types.

•	 Generics are type safe because they can contain only the type of type you specify.

•	 Generics greatly reduce the need to build custom collection types because you
specify the “type of type” when creating the generic container.

 ■ Source Code You can find the issuesWithnonGenericCollections project in the Chapter 9 subdirectory.

The Role of Generic Type Parameters
You can find generic classes, interfaces, structures, and delegates throughout the .NET base class libraries,
and these might be part of any .NET namespace. Also be aware that generics have far more uses than simply
defining a collection class. To be sure, you will see many different generics used in the remainder of this
book for various reasons.

 ■ Note only classes, structures, interfaces, and delegates can be written generically; enum types cannot.

When you see a generic item listed in the .NET Framework documentation or the Visual Studio object
browser, you will notice a pair of angled brackets with a letter or other token sandwiched within. Figure 9-1
shows the Visual Studio object browser displaying a number of generic items located within the
System.Collections.Generic namespace, including the highlighted List<T> class.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 9 ■ ColleCtions and GeneriCs

328

Formally speaking, you call these tokens type parameters; however, in more user-friendly terms, you can
simply call them placeholders. You can read the symbol <T> as “of T.” Thus, you can read IEnumerable<T> “as
IEnumerable of T” or, to say it another way, “IEnumerable of type T.”

 ■ Note the name of a type parameter (placeholder) is irrelevant, and it is up to the developer who created
the generic item. however, typically T is used to represent types, TKey or K is used for keys, and TValue or V is
used for values.

When you create a generic object, implement a generic interface, or invoke a generic member, it is up
to you to supply a value to the type parameter. You’ll see many examples in this chapter and throughout
the remainder of the text. However, to set the stage, let’s see the basics of interacting with generic types
and members.

Specifying Type Parameters for Generic Classes/Structures
When you create an instance of a generic class or structure, you specify the type parameter when you
declare the variable and when you invoke the constructor. As you saw in the preceding code example,
UseGenericList() defined two List<T> objects.

// This List<> can hold only Person objects.
List<Person> morePeople = new List<Person>();

Figure 9-1. Generic items supporting type parameters

Chapter 9 ■ ColleCtions and GeneriCs

329

You can read the preceding snippet as “a List<> of T, where T is of type Person.” Or, more simply, you
can read it as “a list of person objects.” After you specify the type parameter of a generic item, it cannot be
changed (remember, generics are all about type safety). When you specify a type parameter for a generic
class or structure, all occurrences of the placeholder(s) are now replaced with your supplied value.

If you were to view the full declaration of the generic List<T> class using the Visual Studio object
browser, you would see that the placeholder T is used throughout the definition of the List<T> type. Here is
a partial listing (note the items in bold):

// A partial listing of the List<T> class.
namespace System.Collections.Generic
{
 public class List<T> :
 IList<T>, ICollection<T>, IEnumerable<T>, IReadOnlyList<T>
 IList, ICollection, IEnumerable
 {
...
 public void Add(T item);
 public ReadOnlyCollection<T> AsReadOnly();
 public int BinarySearch(T item);
 public bool Contains(T item);
 public void CopyTo(T[] array);
 public int FindIndex(System.Predicate<T> match);
 public T FindLast(System.Predicate<T> match);
 public bool Remove(T item);
 public int RemoveAll(System.Predicate<T> match);
 public T[] ToArray();
 public bool TrueForAll(System.Predicate<T> match);
 public T this[int index] { get; set; }
 }
}

When you create a List<T> specifying Person objects, it is as if the List<T> type were defined as follows:

namespace System.Collections.Generic
{
 public class List<Person> :
 IList<Person>, ICollection<Person>, IEnumerable<Person>, IReadOnlyList<Person>
 IList, ICollection, IEnumerable
 {
...
 public void Add(Person item);
 public ReadOnlyCollection<Person> AsReadOnly();
 public int BinarySearch(Person item);
 public bool Contains(Person item);
 public void CopyTo(Person[] array);
 public int FindIndex(System.Predicate<Person> match);
 public Person FindLast(System.Predicate<Person> match);
 public bool Remove(Person item);
 public int RemoveAll(System.Predicate<Person> match);
 public Person[] ToArray();

Chapter 9 ■ ColleCtions and GeneriCs

330

 public bool TrueForAll(System.Predicate<Person> match);
 public Person this[int index] { get; set; }
 }
}

Of course, when you create a generic List<T> variable, the compiler does not literally create a new
implementation of the List<T> class. Rather, it will address only the members of the generic type you
actually invoke.

Specifying Type Parameters for Generic Members
It is fine for a nongeneric class or structure to support a handful of generic members (e.g., methods and
properties). In these cases, you would also need to specify the placeholder value at the time you invoke the
method. For example, System.Array supports a several generic methods. Specifically, the nongeneric static
Sort() method now has a generic counterpart named Sort<T>(). Consider the following code snippet,
where T is of type int:

int[] myInts = { 10, 4, 2, 33, 93 };

// Specify the placeholder to the generic
// Sort<>() method.
Array.Sort<int>(myInts);

foreach (int i in myInts)
{
 Console.WriteLine(i);
}

Specifying Type Parameters for Generic Interfaces
It is common to implement generic interfaces when you build classes or structures that need to support
various framework behaviors (e.g., cloning, sorting, and enumeration). In Chapter 8, you learned about a
number of nongeneric interfaces, such as IComparable, IEnumerable, IEnumerator, and IComparer. Recall
that the nongeneric IComparable interface was defined like this:

public interface IComparable
{
 int CompareTo(object obj);
}

In Chapter 8, you also implemented this interface on your Car class to enable sorting in a standard
array. However, the code required several runtime checks and casting operations because the parameter was
a general System.Object.

public class Car : IComparable
{
...
 // IComparable implementation.
 int IComparable.CompareTo(object obj)

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 9 ■ ColleCtions and GeneriCs

331

 {
 Car temp = obj as Car;
 if (temp != null)
 {
 if (this.CarID > temp.CarID)
 return 1;
 if (this.CarID < temp.CarID)
 return -1;
 else
 return 0;
 }
 else
 throw new ArgumentException("Parameter is not a Car!");
 }
}

Now assume you use the generic counterpart of this interface.

public interface IComparable<T>
{
 int CompareTo(T obj);
}

In this case, your implementation code will be cleaned up considerably.

public class Car : IComparable<Car>
{
...
 // IComparable<T> implementation.
 int IComparable<Car>.CompareTo(Car obj)
 {
 if (this.CarID > obj.CarID)
 return 1;
 if (this.CarID < obj.CarID)
 return -1;
 else
 return 0;
 }
}

Here, you do not need to check whether the incoming parameter is a Car because it can only be a Car! If
someone were to pass in an incompatible data type, you would get a compile-time error. Now that you have a
better handle on how to interact with generic items, as well as the role of type parameters (a.k.a. placeholders),
you’re ready to examine the classes and interfaces of the System.Collections.Generic namespace.

The System.Collections.Generic Namespace
When you are building a .NET application and need a way to manage in-memory data, the classes of
System.Collections.Generic will most likely fit the bill. At the opening of this chapter, I briefly mentioned
some of the core nongeneric interfaces implemented by the nongeneric collection classes. Not too
surprisingly, the System.Collections.Generic namespace defines generic replacements for many of them.

Chapter 9 ■ ColleCtions and GeneriCs

332

In fact, you can find a number of the generic interfaces that extend their nongeneric counterparts. This
might seem odd; however, by doing so, implementing classes will also support the legacy functionally found
in their nongeneric siblings. For example, IEnumerable<T> extends IEnumerable. Table 9-4 documents the
core generic interfaces you’ll encounter when working with the generic collection classes.

Table 9-5. Classes of System.Collections.Generic

Generic Class Supported Key Interfaces Meaning in Life

Dictionary<TKey, TValue> ICollection<T>, IDictionary<TKey,
TValue>, IEnumerable<T>

This represents a generic collection
of keys and values.

LinkedList<T> ICollection<T>, IEnumerable<T> This represents a doubly linked list.

List<T> ICollection<T>,
IEnumerable<T>,IList<T>

This is a dynamically resizable
sequential list of items.

Queue<T> ICollection (Not a typo! This is the
nongeneric collection interface),
IEnumerable<T>

This is a generic implementation of
a first-in, first-out (FIFO) list.

SortedDictionary<TKey,
TValue>

ICollection<T>, IDictionary<TKey,
TValue>, IEnumerable<T>

This is a generic implementation of
a sorted set of key-value pairs.

SortedSet<T> ICollection<T>, IEnumerable<T>,
ISet<T>

This represents a collection of
objects that is maintained in sorted
order with no duplication.

Stack<T> ICollection (Not a typo! This is the
nongeneric collection interface),
IEnumerable<T>

This is a generic implementation of
a last-in, first-out (LIFO) list.

Table 9-4. Key Interfaces Supported by Classes of System.Collections.Generic

System.Collections.Generic Interface Meaning in Life

ICollection<T> Defines general characteristics (e.g., size, enumeration, and
thread safety) for all generic collection types

IComparer<T> Defines a way to compare to objects

IDictionary<TKey, TValue> Allows a generic collection object to represent its contents using
key-value pairs

IEnumerable<T> Returns the IEnumerator<T> interface for a given object

IEnumerator<T> Enables foreach-style iteration over a generic collection

IList<T> Provides behavior to add, remove, and index items in a sequential
list of objects

ISet<T> Provides the base interface for the abstraction of sets

The System.Collections.Generic namespace also defines several classes that implement many of
these key interfaces. Table 9-5 describes some commonly used classes of this namespace, the interfaces they
implement, and their basic functionality.

Chapter 9 ■ ColleCtions and GeneriCs

333

The System.Collections.Generic namespace also defines many auxiliary classes and structures that
work in conjunction with a specific container. For example, the LinkedListNode<T> type represents a node
within a generic LinkedList<T>, the KeyNotFoundException exception is raised when attempting to grab an
item from a container using a nonexistent key, and so forth.

It is also worth pointing out that mscorlib.dll and System.dll are not the only assemblies that add
new types to the System.Collections.Generic namespace. For example, System.Core.dll adds the
HashSet<T> class to the mix. Be sure to consult the .NET Framework documentation for full details of the
System.Collections.Generic namespace.

In any case, your next task is to learn how to use some of these generic collection classes. Before you do,
however, allow me to illustrate a C# language feature (first introduced in .NET 3.5) that simplifies the way
you populate generic (and nongeneric) collection containers with data.

Understanding Collection Initialization Syntax
In Chapter 4, you learned about object initialization syntax, which allows you to set properties on a new
variable at the time of construction. Closely related to this is collection initialization syntax. This C# language
feature makes it possible to populate many containers (such as ArrayList or List<T>) with items by using
syntax similar to what you use to populate a basic array.

 ■ Note You can apply collection initialization syntax only to classes that support an Add() method, which is
formalized by the ICollection<T>/ICollection interfaces.

Consider the following examples:

// Init a standard array.
int[] myArrayOfInts = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init a generic List<> of ints.
List<int> myGenericList = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init an ArrayList with numerical data.
ArrayList myList = new ArrayList { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

If your container is managing a collection of classes or a structure, you can blend object initialization
syntax with collection initialization syntax to yield some functional code. You might recall the Point class
from Chapter 5, which defined two properties named X and Y. If you wanted to build a generic List<T> of
Point objects, you could write the following:

List<Point> myListOfPoints = new List<Point>
{
 new Point { X = 2, Y = 2 },
 new Point { X = 3, Y = 3 },
 new Point(PointColor.BloodRed){ X = 4, Y = 4 }
};

foreach (var pt in myListOfPoints)
{
 Console.WriteLine(pt);
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_4
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 9 ■ ColleCtions and GeneriCs

334

Again, the benefit of this syntax is that you save yourself numerous keystrokes. While the nested curly
brackets can become difficult to read if you don’t mind your formatting, imagine the amount of code that
would be required to fill the following List<T> of Rectangles if you did not have collection initialization
syntax (you might recall from Chapter 4 that you created a Rectangle class that contained two properties
encapsulating Point objects).

List<Rectangle> myListOfRects = new List<Rectangle>
{
 new Rectangle {TopLeft = new Point { X = 10, Y = 10 },
 BottomRight = new Point { X = 200, Y = 200}},
 new Rectangle {TopLeft = new Point { X = 2, Y = 2 },
 BottomRight = new Point { X = 100, Y = 100}},
 new Rectangle {TopLeft = new Point { X = 5, Y = 5 },
 BottomRight = new Point { X = 90, Y = 75}}
};

foreach (var r in myListOfRects)
{
 Console.WriteLine(r);
}

Working with the List<T> Class
Create a new Console Application project named FunWithGenericCollections. Note that your initial C# code
file already imports the System.Collections.Generic namespace.

The first generic class you will examine is List<T>, which you’ve already seen once or twice in this
chapter. The List<T> class is bound to be your most frequently used type in the System.Collections.
Generic namespace because it allows you to resize the contents of the container dynamically. To illustrate
the basics of this type, ponder the following method in your Program class, which leverages List<T> to
manipulate the set of Person objects shown earlier in this chapter; you might recall that these Person objects
defined three properties (Age, FirstName, and LastName) and a custom ToString() implementation:

static void UseGenericList()
{
 // Make a List of Person objects, filled with
 // collection/object init syntax.
 List<Person> people = new List<Person>()
 {
 new Person {FirstName= "Homer", LastName="Simpson", Age=47},
 new Person {FirstName= "Marge", LastName="Simpson", Age=45},
 new Person {FirstName= "Lisa", LastName="Simpson", Age=9},
 new Person {FirstName= "Bart", LastName="Simpson", Age=8}
 };

 // Print out # of items in List.
 Console.WriteLine("Items in list: {0}", people.Count);

 // Enumerate over list.
 foreach (Person p in people)
 Console.WriteLine(p);

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 9 ■ ColleCtions and GeneriCs

335

 // Insert a new person.
 Console.WriteLine("\n->Inserting new person.");
 people.Insert(2, new Person { FirstName = "Maggie", LastName = "Simpson", Age = 2 });
 Console.WriteLine("Items in list: {0}", people.Count);

 // Copy data into a new array.
 Person[] arrayOfPeople = people.ToArray();
 for (int i = 0; i < arrayOfPeople.Length; i++)
 {
 Console.WriteLine("First Names: {0}", arrayOfPeople[i].FirstName);
 }
}

Here, you use initialization syntax to populate your List<T> with objects, as a shorthand notation for
calling Add() multiple times. After you print out the number of items in the collection (as well as enumerate
over each item), you invoke Insert(). As you can see, Insert() allows you to plug a new item into the
List<T> at a specified index.

Finally, notice the call to the ToArray() method, which returns an array of Person objects based on the
contents of the original List<T>. From this array, you loop over the items again using the array’s indexer
syntax. If you call this method from within Main(), you get the following output:

***** Fun with Generic Collections *****

Items in list: 4
Name: Homer Simpson, Age: 47
Name: Marge Simpson, Age: 45
Name: Lisa Simpson, Age: 9
Name: Bart Simpson, Age: 8

->Inserting new person.
Items in list: 5
First Names: Homer
First Names: Marge
First Names: Maggie
First Names: Lisa
First Names: Bart

The List<T> class defines many additional members of interest, so be sure to consult the .NET
Framework documentation for more information. Next, let’s look at a few more generic collections,
specifically Stack<T>, Queue<T>, and SortedSet<T>. This should get you in a great position to understand
your basic choices regarding how to hold your custom application data.

Chapter 9 ■ ColleCtions and GeneriCs

336

Working with the Stack<T> Class
The Stack<T> class represents a collection that maintains items using a last-in, first-out manner. As you
might expect, Stack<T> defines members named Push() and Pop() to place items onto or remove items
from the stack. The following method creates a stack of Person objects:

static void UseGenericStack()
{
 Stack<Person> stackOfPeople = new Stack<Person>();
 stackOfPeople.Push(new Person
 { FirstName = "Homer", LastName = "Simpson", Age = 47 });
 stackOfPeople.Push(new Person
 { FirstName = "Marge", LastName = "Simpson", Age = 45 });
 stackOfPeople.Push(new Person
 { FirstName = "Lisa", LastName = "Simpson", Age = 9 });

 // Now look at the top item, pop it, and look again.
 Console.WriteLine("First person is: {0}", stackOfPeople.Peek());
 Console.WriteLine("Popped off {0}", stackOfPeople.Pop());
 Console.WriteLine("\nFirst person is: {0}", stackOfPeople.Peek());
 Console.WriteLine("Popped off {0}", stackOfPeople.Pop());
 Console.WriteLine("\nFirst person item is: {0}", stackOfPeople.Peek());
 Console.WriteLine("Popped off {0}", stackOfPeople.Pop());

 try
 {
 Console.WriteLine("\nnFirst person is: {0}", stackOfPeople.Peek());
 Console.WriteLine("Popped off {0}", stackOfPeople.Pop());
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine("\nError! {0}", ex.Message);
 }
}

Here, you build a stack that contains three people, added in the order of their first names: Homer, Marge,
and Lisa. As you peek into the stack, you will always see the object at the top first; therefore, the first call to
Peek() reveals the third Person object. After a series of Pop() and Peek() calls, the stack eventually empties, at
which time additional Peek() and Pop() calls raise a system exception. You can see the output for this here:

***** Fun with Generic Collections *****

First person is: Name: Lisa Simpson, Age: 9
Popped off Name: Lisa Simpson, Age: 9

First person is: Name: Marge Simpson, Age: 45
Popped off Name: Marge Simpson, Age: 45

First person item is: Name: Homer Simpson, Age: 47
Popped off Name: Homer Simpson, Age: 47

Error! Stack empty.

Chapter 9 ■ ColleCtions and GeneriCs

337

Working with the Queue<T> Class
Queues are containers that ensure items are accessed in a first-in, first-out manner. Sadly, we humans
are subject to queues all day long: lines at the bank, lines at the movie theater, and lines at the morning
coffeehouse. When you need to model a scenario in which items are handled on a first-come, first- served
basis, you will find the Queue<T> class fits the bill. In addition to the functionality provided by the supported
interfaces, Queue defines the key members shown in Table 9-6.

Table 9-6. Members of the Queue<T> Type

Select Member of Queue<T> Meaning in Life

Dequeue() Removes and returns the object at the beginning of the Queue<T>

Enqueue() Adds an object to the end of the Queue<T>

Peek() Returns the object at the beginning of the Queue<T> without removing it

Now let’s put these methods to work. You can begin by leveraging your Person class again and building
a Queue<T> object that simulates a line of people waiting to order coffee. First, assume you have the following
static helper method:

static void GetCoffee(Person p)
{
 Console.WriteLine("{0} got coffee!", p.FirstName);
}

Now assume you have this additional helper method, which calls GetCoffee() internally:

static void UseGenericQueue()
{
 // Make a Q with three people.
 Queue<Person> peopleQ = new Queue<Person>();
 peopleQ.Enqueue(new Person {FirstName= "Homer",
 LastName="Simpson", Age=47});
 peopleQ.Enqueue(new Person {FirstName= "Marge",
 LastName="Simpson", Age=45});
 peopleQ.Enqueue(new Person {FirstName= "Lisa",
 LastName="Simpson", Age=9});

 // Peek at first person in Q.
 Console.WriteLine("{0} is first in line!", peopleQ.Peek().FirstName);

 // Remove each person from Q.
 GetCoffee(peopleQ.Dequeue());
 GetCoffee(peopleQ.Dequeue());
 GetCoffee(peopleQ.Dequeue());

Chapter 9 ■ ColleCtions and GeneriCs

338

 // Try to de-Q again?
 try
 {
 GetCoffee(peopleQ.Dequeue());
 }
 catch(InvalidOperationException e)
 {
 Console.WriteLine("Error! {0}", e.Message);
 }
}

Here, you insert three items into the Queue<T> class using its Enqueue() method. The call to Peek()
allows you to view (but not remove) the first item currently in the Queue. Finally, the call to Dequeue()
removes the item from the line and sends it into the GetCoffee() helper function for processing. Note that
if you attempt to remove items from an empty queue, a runtime exception is thrown. Here is the output you
receive when calling this method:

***** Fun with Generic Collections *****

Homer is first in line!
Homer got coffee!
Marge got coffee!
Lisa got coffee!
Error! Queue empty.

Working with the SortedSet<T> Class
The SortedSet<T> class is useful because it automatically ensures that the items in the set are sorted when
you insert or remove items. However, you do need to inform the SortedSet<T> class exactly how you
want it to sort the objects, by passing in as a constructor argument an object that implements the generic
IComparer<T> interface.

Begin by creating a new class named SortPeopleByAge, which implements IComparer<T>, where T is
of type Person. Recall that this interface defines a single method named Compare(), where you can author
whatever logic you require for the comparison. Here is a simple implementation of this class:

class SortPeopleByAge : IComparer<Person>
{
 public int Compare(Person firstPerson, Person secondPerson)
 {
 if (firstPerson.Age > secondPerson.Age)
 return 1;
 if (firstPerson.Age < secondPerson.Age)
 return -1;
 else
 return 0;
 }
}

Chapter 9 ■ ColleCtions and GeneriCs

339

Now update your Program class with the following new method, which I assume you will call from Main():

static void UseSortedSet()
{
 // Make some people with different ages.
 SortedSet<Person> setOfPeople = new SortedSet<Person>(new SortPeopleByAge())
 {
 new Person {FirstName= "Homer", LastName="Simpson", Age=47},
 new Person {FirstName= "Marge", LastName="Simpson", Age=45},
 new Person {FirstName= "Lisa", LastName="Simpson", Age=9},
 new Person {FirstName= "Bart", LastName="Simpson", Age=8}
 };

 // Note the items are sorted by age!
 foreach (Person p in setOfPeople)
 {
 Console.WriteLine(p);
 }
 Console.WriteLine();

 // Add a few new people, with various ages.
 setOfPeople.Add(new Person { FirstName = "Saku", LastName = "Jones", Age = 1 });
 setOfPeople.Add(new Person { FirstName = "Mikko", LastName = "Jones", Age = 32 });

 // Still sorted by age!
 foreach (Person p in setOfPeople)
 {
 Console.WriteLine(p);
 }
}

When you run your application, the listing of objects is now always ordered based on the value of the
Age property, regardless of the order you inserted or removed objects.

***** Fun with Generic Collections *****

Name: Bart Simpson, Age: 8
Name: Lisa Simpson, Age: 9
Name: Marge Simpson, Age: 45
Name: Homer Simpson, Age: 47

Name: Saku Jones, Age: 1
Name: Bart Simpson, Age: 8
Name: Lisa Simpson, Age: 9
Name: Mikko Jones, Age: 32
Name: Marge Simpson, Age: 45
Name: Homer Simpson, Age: 47

Chapter 9 ■ ColleCtions and GeneriCs

340

Working with the Dictionary<TKey, TValue> Class
Another handy generic collection is the Dictionary<TKey,TValue> type, which allows you to hold any
number of objects that may be referred to via a unique key. Thus, rather than obtaining an item from a
List<T> using a numerical identifier (for example, “Give me the second object”), you could use the unique
text key (for example, “Give me the object I keyed as Homer”).

Like other collection objects, you can populate a Dictionary<TKey,TValue> by calling the generic
Add() method manually. However, you can also fill a Dictionary<TKey,TValue> using collection
initialization syntax. Do be aware that when you are populating this collection object, key names must be
unique. If you mistakenly specify the same key multiple times, you will receive a runtime exception.

Consider the following method that fills a Dictionary<K,V> with various objects. Notice when you
create the Dictionary<TKey,TValue> object, you specify the key type (TKey) and underlying object type
(TValue) as constructor arguments. Here, you are using a string data type as the key (although this is not
required; the key can be any type) and a Person type as the value.

private static void UseDictionary()
{
 // Populate using Add() method
 Dictionary<string, Person> peopleA = new Dictionary<string, Person>();
 peopleA.Add("Homer", new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 });
 peopleA.Add("Marge", new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 });
 peopleA.Add("Lisa", new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 });

 // Get Homer.
 Person homer = peopleA["Homer"];
 Console.WriteLine(homer);

 // Populate with initialization syntax.
 Dictionary<string, Person> peopleB = new Dictionary<string, Person>()
 {
 { "Homer", new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 } },
 { "Marge", new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 } },
 { "Lisa", new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 } }
 };

 // Get Lisa.
 Person lisa = peopleB["Lisa"];
 Console.WriteLine(lisa);
}

It is also possible to populate a Dictionary<TKey,TValue> using a related initialization syntax
introduced with the current version of .NET that is specific to this type of container (not surprisingly termed
dictionary initialization). Similar to the syntax used to populate the personB object in the previous code
example, you still define an initialization scope for the collection object; however, you can use the indexer to
specify the key and assign this to a new object as so:

// Populate with dictionary initialization syntax.
Dictionary<string, Person> peopleC = new Dictionary<string, Person>()

Chapter 9 ■ ColleCtions and GeneriCs

341

{
 ["Homer"] = new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 },
 ["Marge"] = new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 },
 ["Lisa"] = new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 }
};

 ■ Note You can find the FunWithGenericCollections project in the Chapter 9 subdirectory.

The System.Collections.ObjectModel Namespace
Now that you understand how to work with the major generic classes, you can briefly examine an additional
collection-centric namespace, System.Collections.ObjectModel. This is a relatively small namespace, which
contains a handful of classes. Table 9-7 documents the two classes that you should most certainly be aware of.

Table 9-7. Useful Members of System.Collections.ObjectModel

System.Collections.ObjectModel Type Meaning in Life

ObservableCollection<T> Represents a dynamic data collection that provides notifications
when items get added, removed, or when the whole list is
refreshed

ReadOnlyObservableCollection<T> Represents a read-only version of ObservableCollection<T>

The ObservableCollection<T> class is useful in that it has the ability to inform external objects when
its contents have changed in some way (as you might guess, working with ReadOnlyObservableCollection
<T> is similar but read-only in nature).

Working with ObservableCollection<T>
Create a new Console Application project named FunWithObservableCollection and import the System.
Collections.ObjectModel namespace into your initial C# code file. In many ways, working with
ObservableCollection<T> is identical to working with List<T>, given that both of these classes implement
the same core interfaces. What makes the ObservableCollection<T> class unique is that this class supports
an event named CollectionChanged. This event will fire whenever a new item is inserted, a current item is
removed (or relocated), or the entire collection is modified.

Like any event, CollectionChanged is defined in terms of a delegate, which in this case is
NotifyCollectionChangedEventHandler. This delegate can call any method that takes an object as the
first parameter and takes a NotifyCollectionChangedEventArgs as the second. Consider the following
Main() method, which populates an observable collection containing Person objects and wires up the
CollectionChanged event:

class Program
{
 static void Main(string[] args)

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 9 ■ ColleCtions and GeneriCs

342

 {
 // Make a collection to observe and add a few Person objects.
 ObservableCollection<Person> people = new ObservableCollection<Person>()
 {
 new Person{ FirstName = "Peter", LastName = "Murphy", Age = 52 },
 new Person{ FirstName = "Kevin", LastName = "Key", Age = 48 },
 };

 // Wire up the CollectionChanged event.
 people.CollectionChanged += people_CollectionChanged;
 }

 static void people_CollectionChanged(object sender,
 System.Collections.Specialized.NotifyCollectionChangedEventArgs e)
 {
 throw new NotImplementedException();
 }
}

The incoming NotifyCollectionChangedEventArgs parameter defines two important properties,
OldItems and NewItems, which will give you a list of items that were currently in the collection before the
event fired and the new items that were involved in the change. However, you will want to examine these
lists only under the correct circumstances. Recall that the CollectionChanged event can fire when items are
added, removed, relocated, or reset. To discover which of these actions triggered the event, you can use the
Action property of NotifyCollectionChangedEventArgs. The Action property can be tested against any of
the following members of the NotifyCollectionChangedAction enumeration:

public enum NotifyCollectionChangedAction
{
 Add = 0,
 Remove = 1,
 Replace = 2,
 Move = 3,
 Reset = 4,
}

Here is an implementation of the CollectionChanged event handler that will traverse the old and new
sets when an item has been inserted or removed to the collection at hand:

static void people_CollectionChanged(object sender,
 System.Collections.Specialized.NotifyCollectionChangedEventArgs e)
{
 // What was the action that caused the event?
 Console.WriteLine("Action for this event: {0}", e.Action);

 // They removed something.
 if (e.Action == System.Collections.Specialized.NotifyCollectionChangedAction.Remove)
 {
 Console.WriteLine("Here are the OLD items:");
 foreach (Person p in e.OldItems)

Chapter 9 ■ ColleCtions and GeneriCs

343

 {
 Console.WriteLine(p.ToString());
 }
 Console.WriteLine();
 }

 // They added something.
 if (e.Action == System.Collections.Specialized.NotifyCollectionChangedAction.Add)
 {
 // Now show the NEW items that were inserted.
 Console.WriteLine("Here are the NEW items:");
 foreach (Person p in e.NewItems)
 {
 Console.WriteLine(p.ToString());
 }
 }
}

Now, assuming you have updated your Main() method to add and remove an item, you will see output
similar to the following:

Action for this event: Add
Here are the NEW items:
Name: Fred Smith, Age: 32

Action for this event: Remove
Here are the OLD items:
Name: Peter Murphy, Age: 52

That wraps up the examination of the various collection-centric namespaces in the .NET base class
libraries. To conclude the chapter, you will now examine how you can build your own custom generic
methods and custom generic types.

 ■ Source Code You can find the FunWithobservableCollection project in the Chapter 9 subdirectory.

Creating Custom Generic Methods
While most developers typically use the existing generic types within the base class libraries, it is also
possible to build your own generic members and custom generic types. Let’s look at how to incorporate
custom generics into your own projects. The first step is to build a generic swap method. Begin by creating
a new console application named CustomGenericMethods.

When you build custom generic methods, you achieve a supercharged version of traditional method
overloading. In Chapter 2, you learned that overloading is the act of defining multiple versions of a single
method, which differ by the number of, or type of, parameters.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9
http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 9 ■ ColleCtions and GeneriCs

344

While overloading is a useful feature in an object-oriented language, one problem is that you can easily
end up with a ton of methods that essentially do the same thing. For example, assume you need to build
some methods that can switch two pieces of data using a simple swap routine. You might begin by authoring
a new method that can operate on integers, like this:

// Swap two integers.
static void Swap(ref int a, ref int b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

So far, so good. But now assume you also need to swap two Person objects; this would require authoring
a new version of Swap().

// Swap two Person objects.
static void Swap(ref Person a, ref Person b)
{
 Person temp;
 temp = a;
 a = b;
 b = temp;
}

No doubt, you can see where this is going. If you also needed to swap floating-point numbers,
bitmaps, cars, buttons, and whatnot, you would have to build even more methods, which would become a
maintenance nightmare. You could build a single (nongeneric) method that operated on object parameters,
but then you face all the issues you examined earlier in this chapter, including boxing, unboxing, a lack of
type safety, explicit casting, and so on.

Whenever you have a group of overloaded methods that differ only by incoming arguments, this is your
clue that generics could make your life easier. Consider the following generic Swap<T> method that can swap
any two Ts:

// This method will swap any two items.
// as specified by the type parameter <T>.
static void Swap<T>(ref T a, ref T b)
{
 Console.WriteLine("You sent the Swap() method a {0}",
 typeof(T));
 T temp;
 temp = a;
 a = b;
 b = temp;
}

Chapter 9 ■ ColleCtions and GeneriCs

345

Notice how a generic method is defined by specifying the type parameters after the method name but
before the parameter list. Here, you state that the Swap<T>() method can operate on any two parameters of
type <T>. To spice things up a bit, you also print out the type name of the supplied placeholder to the console
using C#’s typeof() operator. Now consider the following Main() method, which swaps integers and strings:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Custom Generic Methods *****\n");

 // Swap 2 ints.
 int a = 10, b = 90;
 Console.WriteLine("Before swap: {0}, {1}", a, b);
 Swap<int>(ref a, ref b);
 Console.WriteLine("After swap: {0}, {1}", a, b);
 Console.WriteLine();

 // Swap 2 strings.
 string s1 = "Hello", s2 = "There";
 Console.WriteLine("Before swap: {0} {1}!", s1, s2);
 Swap<string>(ref s1, ref s2);
 Console.WriteLine("After swap: {0} {1}!", s1, s2);

 Console.ReadLine();
}

The output looks like this:

***** Fun with Custom Generic Methods *****

Before swap: 10, 90
You sent the Swap() method a System.Int32
After swap: 90, 10

Before swap: Hello There!
You sent the Swap() method a System.String
After swap: There Hello!

The major benefit of this approach is that you have only one version of Swap<T>() to maintain, yet it
can operate on any two items of a given type in a type-safe manner. Better yet, stack-based items stay on the
stack, while heap-based items stay on the heap!

Chapter 9 ■ ColleCtions and GeneriCs

346

Inference of Type Parameters
When you invoke generic methods such as Swap<T>, you can optionally omit the type parameter if (and only
if) the generic method requires arguments because the compiler can infer the type parameter based on the
member parameters. For example, you could swap two System.Boolean values by adding the following code
to Main():

// Compiler will infer System.Boolean.
bool b1 = true, b2 = false;
Console.WriteLine("Before swap: {0}, {1}", b1, b2);
Swap(ref b1, ref b2);
Console.WriteLine("After swap: {0}, {1}", b1, b2);

Even though the compiler is able to discover the correct type parameter based on the data type used to
declare b1 and b2, you should get in the habit of always specifying the type parameter explicitly.

Swap<string>(ref b1, ref b2);

This makes it clear to your fellow programmers that this method is indeed generic. Moreover, inference
of type parameters works only if the generic method has at least one parameter. For example, assume you
have the following generic method in your Program class:

static void DisplayBaseClass<T>()
{
 // BaseType is a method used in reflection,
 // which will be examined in Chapter 15
 Console.WriteLine("Base class of {0} is: {1}.",
 typeof(T), typeof(T).BaseType);
}

In this case, you must supply the type parameter upon invocation.

static void Main(string[] args)
{
...
 // Must supply type parameter if
 // the method does not take params.
 DisplayBaseClass<int>();
 DisplayBaseClass<string>();

 // Compiler error! No params? Must supply placeholder!
 // DisplayBaseClass();
 Console.ReadLine();
}

Currently, the generic Swap<T> and DisplayBaseClass<T> methods are defined within the application’s
Program class. Of course, as with any method, you are free to define these members in a separate class type
(MyGenericMethods) if you would prefer to do it that way.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 9 ■ ColleCtions and GeneriCs

347

public static class MyGenericMethods
{
 public static void Swap<T>(ref T a, ref T b)
 {
 Console.WriteLine("You sent the Swap() method a {0}",
 typeof(T));
 T temp;
 temp = a;
 a = b;
 b = temp;
 }

 public static void DisplayBaseClass<T>()
 {
 Console.WriteLine("Base class of {0} is: {1}.",
 typeof(T), typeof(T).BaseType);
 }
}

The static Swap<T> and DisplayBaseClass<T> methods have been scoped within a new static class type,
so you need to specify the type’s name when invoking either member, as in this example:

MyGenericMethods.Swap<int>(ref a, ref b);

Of course, generic methods do not need to be static. If Swap<T> and DisplayBaseClass<T> were
instance level (and defined in a nonstatic class), you would simply make an instance of MyGenericMethods
and invoke them using the object variable.

MyGenericMethods c = new MyGenericMethods();
c.Swap<int>(ref a, ref b);

 ■ Source Code You can find the CustomGenericMethods project in the Chapter 9 subdirectory.

Creating Custom Generic Structures and Classes
Now that you understand how to define and invoke generic methods, it’s time to turn your attention to the
construction of a generic structure (the process of building a generic class is identical) within a new Console
Application project named GenericPoint. Assume you have built a generic Point structure that supports a
single type parameter that represents the underlying storage for the (x, y) coordinates. The caller can then
create Point<T> types as follows:

// Point using ints.
Point<int> p = new Point<int>(10, 10);

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 9 ■ ColleCtions and GeneriCs

348

Here is the complete definition of Point<T>, with some analysis to follow:

// A generic Point structure.
public struct Point<T>
{
 // Generic state date.
 private T xPos;
 private T yPos;

 // Generic constructor.
 public Point(T xVal, T yVal)
 {
 xPos = xVal;
 yPos = yVal;
 }

 // Generic properties.
 public T X
 {
 get { return xPos; }
 set { xPos = value; }
 }

 public T Y
 {
 get { return yPos; }
 set { yPos = value; }
 }

 public override string ToString()
 {
 return string.Format("[{0}, {1}]", xPos, yPos);
 }

 // Reset fields to the default value of the
 // type parameter.
 public void ResetPoint()
 {
 xPos = default(T);
 yPos = default(T);
 }
}

Chapter 9 ■ ColleCtions and GeneriCs

349

The default Keyword in Generic Code
As you can see, Point<T> leverages its type parameter in the definition of the field data, constructor
arguments, and property definitions. Notice that, in addition to overriding ToString(), Point<T> defines a
method named ResetPoint() that uses some new syntax you have not yet seen.

// The "default" keyword is overloaded in C#.
// When used with generics, it represents the default
// value of a type parameter.
public void ResetPoint()
{
 X = default(T);
 Y = default(T);
}

With the introduction of generics, the C# default keyword has been given a dual identity. In addition
to its use within a switch construct, it can also be used to set a type parameter to its default value. This is
helpful because a generic type does not know the actual placeholders up front, which means it cannot safely
assume what the default value will be. The defaults for a type parameter are as follows:

•	 Numeric values have a default value of 0.

•	 Reference types have a default value of null.

•	 Fields of a structure are set to 0 (for value types) or null (for reference types).

For Point<T>, you can set the X and Y values to 0 directly because it is safe to assume the caller will
supply only numerical data. However, you can also increase the overall flexibility of the generic type by using
the default(T) syntax. In any case, you can now exercise the methods of Point<T>.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Generic Structures *****\n");

 // Point using ints.
 Point<int> p = new Point<int>(10, 10);
 Console.WriteLine("p.ToString()={0}", p.ToString());
 p.ResetPoint();
 Console.WriteLine("p.ToString()={0}", p.ToString());
 Console.WriteLine();

 // Point using double.
 Point<double> p2 = new Point<double>(5.4, 3.3);
 Console.WriteLine("p2.ToString()={0}", p2.ToString());
 p2.ResetPoint();
 Console.WriteLine("p2.ToString()={0}", p2.ToString());
 Console.ReadLine();
}

Chapter 9 ■ ColleCtions and GeneriCs

350

Here is the output:

***** Fun with Generic Structures *****

p.ToString()=[10, 10]
p.ToString()=[0, 0]

p2.ToString()=[5.4, 3.3]
p2.ToString()=[0, 0]

 ■ Source Code You can find the Genericpoint project in the Chapter 9 subdirectory.

Constraining Type Parameters
As this chapter illustrates, any generic item has at least one type parameter that you need to specify at the
time you interact with the generic type or member. This alone allows you to build some type-safe code;
however, the .NET platform allows you to use the where keyword to get extremely specific about what a given
type parameter must look like.

Using this keyword, you can add a set of constraints to a given type parameter, which the C# compiler
will check at compile time. Specifically, you can constrain a type parameter as described in Table 9-8.

Table 9-8. Possible Constraints for Generic Type Parameters

Generic Constraint Meaning in Life

where T : struct The type parameter <T> must have System.ValueType in its chain of
inheritance (i.e., <T> must be a structure).

where T : class The type parameter <T> must not have System.ValueType in its chain of
inheritance (i.e., <T> must be a reference type).

where T : new() The type parameter <T> must have a default constructor. This is helpful if
your generic type must create an instance of the type parameter because
you cannot assume you know the format of custom constructors. Note
that this constraint must be listed last on a multiconstrained type.

where T : NameOfBaseClass The type parameter <T> must be derived from the class specified by
NameOfBaseClass.

where T : NameOfInterface The type parameter <T> must implement the interface specified by
NameOfInterface. You can separate multiple interfaces as a comma-
delimited list.

Unless you need to build some extremely type-safe custom collections, you might never need to use the
where keyword in your C# projects. Regardless, the following handful of (partial) code examples illustrate
how to work with the where keyword.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 9 ■ ColleCtions and GeneriCs

351

Examples Using the where Keyword
Begin by assuming that you have created a custom generic class, and you want to ensure that the type
parameter has a default constructor. This could be useful when the custom generic class needs to create
instances of the T because the default constructor is the only constructor that is potentially common to
all types. Also, constraining T in this way lets you get compile-time checking; if T is a reference type, the
programmer remembered to redefine the default in the class definition (you might recall that the default
constructor is removed in classes when you define your own).

// MyGenericClass derives from object, while
// contained items must have a default ctor.
public class MyGenericClass<T> where T : new()
{
 ...
}

Notice that the where clause specifies which type parameter is being constrained, followed by a colon
operator. After the colon operator, you list each possible constraint (in this case, a default constructor). Here
is another example:

// MyGenericClass derives from object, while
// contained items must be a class implementing IDrawable
// and must support a default ctor.
public class MyGenericClass<T> where T : class, IDrawable, new()
{
 ...
}

In this case, T has three requirements. It must be a reference type (not a structure), as marked with
the class token. Second, T must implement the IDrawable interface. Third, it must also have a default
constructor. Multiple constraints are listed in a comma-delimited list; however, you should be aware that the
new() constraint must always be listed last! Thus, the following code will not compile:

// Error! new() constraint must be listed last!
public class MyGenericClass<T> where T : new(), class, IDrawable
{
 ...
}

If you ever create a custom generic collection class that specifies multiple type parameters, you can
specify a unique set of constraints for each, using separate where clauses.

// <K> must extend SomeBaseClass and have a default ctor,
// while <T> must be a structure and implement the
// generic IComparable interface.
public class MyGenericClass<K, T> where K : SomeBaseClass, new()
 where T : struct, IComparable<T>
{
 ...
}

Chapter 9 ■ ColleCtions and GeneriCs

352

You will rarely encounter cases where you need to build a complete custom generic collection class;
however, you can use the where keyword on generic methods, as well. For example, if you want to specify
that your generic Swap<T>() method can operate only on structures, you would update the method like this:

// This method will swap any structure, but not classes.
static void Swap<T>(ref T a, ref T b) where T : struct
{
 ...
}

Note that if you were to constrain the Swap() method in this manner, you would no longer be able to
swap string objects (as is shown in the sample code) because string is a reference type.

The Lack of Operator Constraints
I want to make one more comment about generic methods and constraints as this chapter draws to a close. It
might come as a surprise to you to find out that when creating generic methods, you will get a compiler error
if you apply any C# operators (+, -, *, ==, etc.) on the type parameters. For example, imagine the usefulness
of a class that can add, subtract, multiply, and divide generic types.

// Compiler error! Cannot apply
// operators to type parameters!
public class BasicMath<T>
{
 public T Add(T arg1, T arg2)
 { return arg1 + arg2; }
 public T Subtract(T arg1, T arg2)
 { return arg1 - arg2; }
 public T Multiply(T arg1, T arg2)
 { return arg1 * arg2; }
 public T Divide(T arg1, T arg2)
 { return arg1 / arg2; }
}

Unfortunately, the preceding BasicMath class will not compile. While this might seem like a major
restriction, you need to remember that generics are generic. Of course, the numerical data can work just fine
with the binary operators of C#. However, for the sake of argument, if <T> were a custom class or structure
type, the compiler could assume the class supports the +, -, *, and / operators. Ideally, C# would allow a
generic type to be constrained by supported operators, as in this example:

// Illustrative code only!
public class BasicMath<T> where T : operator +, operator -,
 operator *, operator /
{
 public T Add(T arg1, T arg2)
 { return arg1 + arg2; }
 public T Subtract(T arg1, T arg2)
 { return arg1 - arg2; }
 public T Multiply(T arg1, T arg2)

Chapter 9 ■ ColleCtions and GeneriCs

353

 { return arg1 * arg2; }
 public T Divide(T arg1, T arg2)
 { return arg1 / arg2; }
}

Alas, operator constraints are not supported under the current version of C#. However, it is possible
(albeit it requires a bit more work) to achieve the desired effect by defining an interface that supports these
operators (C# interfaces can define operators!) and then specifying an interface constraint of the generic
class. In any case, this wraps up this book’s initial look at building custom generic types. In Chapter 10, I will
pick up the topic of generics once again in the course of examining the .NET delegate type.

Summary
This chapter began by examining the nongeneric collection types of System.Collections and System.
Collections.Specialized, including the various issues associated with many nongeneric containers,
including a lack of type safety and the runtime overhead of boxing and unboxing operations. As mentioned,
for these very reasons, modern-day .NET programs will typically make use of the generic collection classes
found in System.Collections.Generic and System.Collections.ObjectModel.

As you have seen, a generic item allows you to specify placeholders (type parameters) that you specify
at the time of object creation (or invocation, in the case of generic methods). While you will most often
simply use the generic types provided in the .NET base class libraries, you will also be able to create your
own generic types (and generic methods). When you do so, you have the option of specifying any number
of constraints (using the where keyword) to increase the level of type safety and ensure that you perform
operations on types of a known quantity that are guaranteed to exhibit certain basic capabilities.

As a final note, remember that generics are found in numerous locations within the .NET base class
libraries. Here, you focused specifically on generic collections. However, as you work through the remainder
of this book (and when you dive into the platform on your own terms), you will certainly find generic classes,
structures, and delegates located in a given namespace. As well, be on the lookout for generic members of a
nongeneric class!

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

355

Chapter 10

Delegates, Events, and Lambda
Expressions

Up to this point in the text, most of the applications you developed added various bits of code to Main(),
which, in some way or another, sent requests to a given object. However, many applications require that an
object be able to communicate back to the entity that created it using a callback mechanism. While callback
mechanisms can be used in any application, they are especially critical for graphical user interfaces in that
controls (such as a button) need to invoke external methods under the correct circumstances (when the
button is clicked, when the mouse enters the button surface, and so forth).

Under the .NET platform, the delegate type is the preferred means of defining and responding to
callbacks within applications. Essentially, the .NET delegate type is a type-safe object that “points to” a
method or a list of methods that can be invoked at a later time. Unlike a traditional C++ function pointer,
however, .NET delegates are classes that have built-in support for multicasting and asynchronous method
invocation.

In this chapter, you will learn how to create and manipulate delegate types, and then you’ll investigate
the C# event keyword, which streamlines the process of working with delegate types. Along the way, you will
also examine several delegate- and event-centric language features of C#, including anonymous methods
and method group conversions.

I wrap up this chapter by examining lambda expressions. Using the C# lambda operator (=>), you can
specify a block of code statements (and the parameters to pass to those code statements) wherever a strongly
typed delegate is required. As you will see, a lambda expression is little more than an anonymous method in
disguise and provides a simplified approach to working with delegates. In addition, this same operation (as
of .NET 4.6) can be used to implement a single-statement method or property using a concise syntax.

Understanding the .NET Delegate Type
Before formally defining .NET delegates, let’s gain a bit of perspective. Historically, the Windows API made
frequent use of C-style function pointers to create entities termed callback functions, or simply callbacks.
Using callbacks, programmers were able to configure one function to report back to (call back) another
function in the application. With this approach, Windows developers were able to handle button clicking,
mouse moving, menu selecting, and general bidirectional communications between two entities in memory.

Chapter 10 ■ Delegates, events, anD lambDa expressions

356

In the .NET Framework, callbacks are accomplished in a type-safe and object-oriented manner using
delegates. In essence, a delegate is a type-safe object that points to another method (or possibly a list of
methods) in the application, which can be invoked at a later time. Specifically, a delegate maintains three
important pieces of information.

•	 The address of the method on which it makes calls

•	 The parameters (if any) of this method

•	 The return type (if any) of this method

 ■ Note .net delegates can point to either static or instance methods.

After a delegate object has been created and given the necessary information, it may dynamically
invoke the method(s) it points to at runtime. Every delegate in the .NET Framework (including your custom
delegates) is automatically endowed with the ability to call its methods synchronously or asynchronously.
This fact greatly simplifies programming tasks, given that you can call a method on a secondary thread of
execution without manually creating and managing a Thread object.

 ■ Note You will examine the asynchronous behavior of delegate types during your investigation of threading
and asynchronous calls in Chapter 19. in this chapter, you are concerned only with the synchronous aspects of
the delegate type.

Defining a Delegate Type in C#
When you want to create a delegate type in C#, you use the delegate keyword. The name of your delegate
type can be whatever you desire. However, you must define the delegate to match the signature of the
method(s) it will point to. For example, the following delegate type (named BinaryOp) can point to any
method that returns an integer and takes two integers as input parameters (you will build and use this
delegate yourself a bit later in this chapter, so hang tight for now):

// This delegate can point to any method,
// taking two integers and returning an integer.
public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed class deriving from
System.MulticastDelegate. This class (in conjunction with its base class, System.Delegate) provides the
necessary infrastructure for the delegate to hold onto a list of methods to be invoked at a later time. For
example, if you were to examine the BinaryOp delegate using ildasm.exe, you would find the class shown in
Figure 10-1 (you will build this full example in just a moment if you want to check for yourself).

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 10 ■ Delegates, events, anD lambDa expressions

357

As you can see, the compiler-generated BinaryOp class defines three public methods. Invoke()
is perhaps the key method, as it is used to invoke each method maintained by the delegate object in a
synchronous manner, meaning the caller must wait for the call to complete before continuing on its way.
Strangely enough, the synchronous Invoke() method may not need to be called explicitly from your C#
code. As you will see in just a bit, Invoke() is called behind the scenes when you use the appropriate C#
syntax.

BeginInvoke() and EndInvoke() provide the ability to call the current method asynchronously on a
separate thread of execution. If you have a background in multithreading, you know that one of the most
common reasons developers create secondary threads of execution is to invoke methods that require time to
complete. Although the .NET base class libraries supply several namespaces devoted to multithreaded and
parallel programming, delegates provide this functionality out of the box.

Now, how exactly does the compiler know how to define the Invoke(), BeginInvoke(), and
EndInvoke() methods? To understand the process, here is the crux of the compiler-generated BinaryOp
class type (bold italic marks the items specified by the defined delegate type):

sealed class BinaryOp : System.MulticastDelegate
{
 public int Invoke(int x, int y);
 public IAsyncResult BeginInvoke(int x, int y,
 AsyncCallback cb, object state);
 public int EndInvoke(IAsyncResult result);
}

First, notice that the parameters and return type defined for the Invoke() method exactly match the
definition of the BinaryOp delegate. The initial parameters to BeginInvoke() members (two integers,
in this case) are also based on the BinaryOp delegate; however, BeginInvoke() will always provide two
final parameters (of type AsyncCallback and object) that are used to facilitate asynchronous method
invocations. Finally, the return type of EndInvoke() is identical to the original delegate declaration and will
always take as a sole parameter an object implementing the IAsyncResult interface.

Figure 10-1. The C# delegate keyword represents a sealed class deriving from System.MulticastDelegate

Chapter 10 ■ Delegates, events, anD lambDa expressions

358

Let’s see another example. Assume you have defined a delegate type that can point to any method
returning a string and receiving three System.Boolean input parameters.

public delegate string MyDelegate(bool a, bool b, bool c);

This time, the compiler-generated class breaks down as follows:

sealed class MyDelegate : System.MulticastDelegate
{
 public string Invoke(bool a, bool b, bool c);
 public IAsyncResult BeginInvoke(bool a, bool b, bool c,
 AsyncCallback cb, object state);
 public string EndInvoke(IAsyncResult result);
}

Delegates can also “point to” methods that contain any number of out or ref parameters (as well as
array parameters marked with the params keyword). For example, assume the following delegate type:

public delegate string MyOtherDelegate(out bool a, ref bool b, int c);

The signatures of the Invoke() and BeginInvoke() methods look as you would expect; however, check
out the following EndInvoke() method, which now includes the set of all out/ref arguments defined by the
delegate type:

public sealed class MyOtherDelegate : System.MulticastDelegate
{
 public string Invoke(out bool a, ref bool b, int c);
 public IAsyncResult BeginInvoke(out bool a, ref bool b, int c,
 AsyncCallback cb, object state);
 public string EndInvoke(out bool a, ref bool b, IAsyncResult result);
}

To summarize, a C# delegate type definition results in a sealed class with three compiler-generated
methods whose parameter and return types are based on the delegate’s declaration. The following
pseudocode approximates the basic pattern:

// This is only pseudo-code!
public sealed class DelegateName : System.MulticastDelegate
{
 public delegateReturnValue Invoke(allDelegateInputRefAndOutParams);

 public IAsyncResult BeginInvoke(allDelegateInputRefAndOutParams,
 AsyncCallback cb, object state);

 public delegateReturnValue EndInvoke(allDelegateRefAndOutParams,
 IAsyncResult result);
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

359

The System.MulticastDelegate and System.Delegate Base Classes
So, when you build a type using the C# delegate keyword, you are indirectly declaring a class type that
derives from System.MulticastDelegate. This class provides descendants with access to a list that contains
the addresses of the methods maintained by the delegate object, as well as several additional methods
(and a few overloaded operators) to interact with the invocation list. Here are some select members of
System.MulticastDelegate:

public abstract class MulticastDelegate : Delegate
{
 // Returns the list of methods "pointed to."
 public sealed override Delegate[] GetInvocationList();

 // Overloaded operators.
 public static bool operator ==(MulticastDelegate d1, MulticastDelegate d2);
 public static bool operator !=(MulticastDelegate d1, MulticastDelegate d2);

 // Used internally to manage the list of methods maintained by the delegate.
 private IntPtr _invocationCount;
 private object _invocationList;
}

System.MulticastDelegate obtains additional functionality from its parent class, System.Delegate.
Here is a partial snapshot of the class definition:

public abstract class Delegate : ICloneable, ISerializable
{
 // Methods to interact with the list of functions.
 public static Delegate Combine(params Delegate[] delegates);
 public static Delegate Combine(Delegate a, Delegate b);
 public static Delegate Remove(Delegate source, Delegate value);
 public static Delegate RemoveAll(Delegate source, Delegate value);

 // Overloaded operators.
 public static bool operator ==(Delegate d1, Delegate d2);
 public static bool operator !=(Delegate d1, Delegate d2);

 // Properties that expose the delegate target.
 public MethodInfo Method { get; }
 public object Target { get; }
}

Now, understand that you can never directly derive from these base classes in your code (it is a
compiler error to do so). Nevertheless, when you use the delegate keyword, you have indirectly created a
class that “is-a” MulticastDelegate. Table 10-1 documents the core members common to all delegate types.

Chapter 10 ■ Delegates, events, anD lambDa expressions

360

The Simplest Possible Delegate Example
To be sure, delegates can cause some confusion when encountered for the first time. Thus, to get the ball
rolling, let’s take a look at a simple Console Application program (named SimpleDelegate) that makes use of
the BinaryOp delegate type you’ve seen previously. Here is the complete code, with analysis to follow:

namespace SimpleDelegate
{
 // This delegate can point to any method,
 // taking two integers and returning an integer.
 public delegate int BinaryOp(int x, int y);

 // This class contains methods BinaryOp will
 // point to.
 public class SimpleMath
 {
 public static int Add(int x, int y)
 { return x + y; }
 public static int Subtract(int x, int y)
 { return x - y; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Simple Delegate Example *****\n");

 // Create a BinaryOp delegate object that
 // "points to" SimpleMath.Add().
 BinaryOp b = new BinaryOp(SimpleMath.Add);

Table 10-1. Select Members of System.MultcastDelegate/System.Delegate

Member Meaning in Life

Method This property returns a System.Reflection.MethodInfo object that
represents details of a static method maintained by the delegate.

Target If the method to be called is defined at the object level (rather than a static
method), Target returns an object that represents the method maintained by
the delegate. If the value returned from Target equals null, the method to be
called is a static member.

Combine() This static method adds a method to the list maintained by the delegate. In
C#, you trigger this method using the overloaded += operator as a shorthand
notation.

GetInvocationList() This method returns an array of System.Delegate objects, each representing
a particular method that may be invoked.

Remove() RemoveAll() These static methods remove a method (or all methods) from the delegate’s
invocation list. In C#, the Remove() method can be called indirectly using the
overloaded -= operator.

Chapter 10 ■ Delegates, events, anD lambDa expressions

361

 // Invoke Add() method indirectly using delegate object.
 Console.WriteLine("10 + 10 is {0}", b(10, 10));
 Console.ReadLine();
 }
 }
}

Again, notice the format of the BinaryOp delegate type declaration; it specifies that BinaryOp delegate
objects can point to any method taking two integers and returning an integer (the actual name of the
method pointed to is irrelevant). Here, you have created a class named SimpleMath, which defines two static
methods that match the pattern defined by the BinaryOp delegate.

When you want to assign the target method to a given delegate object, simply pass in the name of the
method to the delegate’s constructor.

// Create a BinaryOp delegate object that
// "points to" SimpleMath.Add().
BinaryOp b = new BinaryOp(SimpleMath.Add);

At this point, you are able to invoke the member pointed to using a syntax that looks like a direct
function invocation.

// Invoke() is really called here!
Console.WriteLine("10 + 10 is {0}", b(10, 10));

Under the hood, the runtime actually calls the compiler-generated Invoke() method on your
MulticastDelegate derived class. You can verify this for yourself if you open your assembly in ildasm.exe
and examine the CIL code within the Main() method.

.method private hidebysig static void Main(string[] args) cil managed
{
...
 callvirt instance int32 SimpleDelegate.BinaryOp::Invoke(int32, int32)
}

C# does not require you to explicitly call Invoke() within your code base. Because BinaryOp can point
to methods that take two arguments, the following code statement is also permissible:

Console.WriteLine("10 + 10 is {0}", b.Invoke(10, 10));

Recall that .NET delegates are type safe. Therefore, if you attempt to create a delegate object pointing
to a method that does not match the pattern, you receive a compile-time error. To illustrate, assume the
SimpleMath class now defines an additional method named SquareNumber(), which takes a single integer
as input.

public class SimpleMath
{
...
 public static int SquareNumber(int a)
 { return a * a; }
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

362

Given that the BinaryOp delegate can point only to methods that take two integers and return an integer,
the following code is illegal and will not compile:

// Compiler error! Method does not match delegate pattern!
BinaryOp b2 = new BinaryOp(SimpleMath.SquareNumber);

Investigating a Delegate Object
Let’s spice up the current example by creating a static method (named DisplayDelegateInfo()) within the
Program class. This method will print out the names of the methods maintained by a delegate object, as well
as the name of the class defining the method. To do this, you will iterate over the System.Delegate array
returned by GetInvocationList(), invoking each object’s Target and Method properties.

static void DisplayDelegateInfo(Delegate delObj)
{
 // Print the names of each member in the
 // delegate's invocation list.
 foreach (Delegate d in delObj.GetInvocationList())
 {
 Console.WriteLine("Method Name: {0}", d.Method);
 Console.WriteLine("Type Name: {0}", d.Target);
 }
}

Assuming you have updated your Main() method to actually call this new helper method, as
shown here:

BinaryOp b = new BinaryOp(SimpleMath.Add);
DisplayDelegateInfo(b);

you would find the output shown next:

***** Simple Delegate Example *****

Method Name: Int32 Add(Int32, Int32)
Type Name:
10 + 10 is 20

Notice that the name of the target class (SimpleMath) is currently not displayed when calling the Target
property. The reason has to do with the fact that your BinaryOp delegate is pointing to a static method and,
therefore, there is no object to reference! However, if you update the Add() and Subtract() methods to be
nonstatic (simply by deleting the static keywords), you could create an instance of the SimpleMath class
and specify the methods to invoke using the object reference.

Chapter 10 ■ Delegates, events, anD lambDa expressions

363

static void Main(string[] args)
{
 Console.WriteLine("***** Simple Delegate Example *****\n");

 // .NET delegates can also point to instance methods as well.
 SimpleMath m = new SimpleMath();
 BinaryOp b = new BinaryOp(m.Add);

 // Show information about this object.
 DisplayDelegateInfo(b);

 Console.WriteLine("10 + 10 is {0}", b(10, 10));
 Console.ReadLine();
}

In this case, you would find the output shown here:

***** Simple Delegate Example *****

Method Name: Int32 Add(Int32, Int32)
Type Name: SimpleDelegate.SimpleMath
10 + 10 is 20

 ■ Note the simpleDelegate project is located in the Chapter 10 subdirectory.

Sending Object State Notifications Using Delegates
Clearly, the previous SimpleDelegate example was intended to be purely illustrative in nature, given that
there would be no compelling reason to define a delegate simply to add two numbers. To provide a more
realistic use of delegate types, let’s use delegates to define a Car class that has the ability to inform external
entities about its current engine state. To do so, you will take the following steps:

 1. Define a new delegate type that will be used to send notifications to the caller.

 2. Declare a member variable of this delegate in the Car class.

 3. Create a helper function on the Car that allows the caller to specify the method to
call back on.

 4. Implement the Accelerate() method to invoke the delegate’s invocation list
under the correct circumstances.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

364

To begin, create a new Console Application project named CarDelegate. Now, define a new Car class
that looks initially like this:

public class Car
{
 // Internal state data.
 public int CurrentSpeed { get; set; }
 public int MaxSpeed { get; set; } = 100;
 public string PetName { get; set; }

 // Is the car alive or dead?
 private bool carIsDead;

 // Class constructors.
 public Car() {}
 public Car(string name, int maxSp, int currSp)
 {
 CurrentSpeed = currSp;
 MaxSpeed = maxSp;
 PetName = name;
 }
}

Now, consider the following updates, which address the first three points:

public class Car
{
 ...
 // 1) Define a delegate type.
 public delegate void CarEngineHandler(string msgForCaller);

 // 2) Define a member variable of this delegate.
 private CarEngineHandler listOfHandlers;

 // 3) Add registration function for the caller.
 public void RegisterWithCarEngine(CarEngineHandler methodToCall)
 {
 listOfHandlers = methodToCall;
 }
}

Notice in this example that you define the delegate types directly within the scope of the Car class,
which is certainly not necessary but does help enforce the idea that the delegate works naturally with this
particular class. The delegate type, CarEngineHandler, can point to any method taking a single string as
input and void as a return value.

Next, note that you declare a private member variable of your delegate type (named listOfHandlers)
and a helper function (named RegisterWithCarEngine()) that allows the caller to assign a method to the
delegate’s invocation list.

Chapter 10 ■ Delegates, events, anD lambDa expressions

365

 ■ Note strictly speaking, you could have defined your delegate member variable as public, therefore avoiding
the need to create additional registration methods. however, by defining the delegate member variable as
private, you are enforcing encapsulation services and providing a more type-safe solution. You’ll revisit the risk
of public delegate member variables later in this chapter when you look at the C# event keyword.

At this point, you need to create the Accelerate() method. Recall, the point here is to allow a Car object
to send engine-related messages to any subscribed listener. Here is the update:

// 4) Implement the Accelerate() method to invoke the delegate's
// invocation list under the correct circumstances.
public void Accelerate(int delta)
{
 // If this car is "dead," send dead message.
 if (carIsDead)
 {
 if (listOfHandlers != null)
 listOfHandlers("Sorry, this car is dead...");
 }
 else
 {
 CurrentSpeed += delta;

 // Is this car "almost dead"?
 if (10 == (MaxSpeed - CurrentSpeed)
 && listOfHandlers != null)
 {
 listOfHandlers("Careful buddy! Gonna blow!");
 }
 if (CurrentSpeed >= MaxSpeed)
 carIsDead = true;
 else
 Console.WriteLine("CurrentSpeed = {0}", CurrentSpeed);
 }
}

Notice that before you invoke the methods maintained by the listOfHandlers member variable, you
are checking it against a null value. The reason is that it will be the job of the caller to allocate these objects
by calling the RegisterWithCarEngine() helper method. If the caller does not call this method and you
attempt to invoke the delegate’s invocation list, you will trigger a NullReferenceException at runtime. Now
that you have the delegate infrastructure in place, observe the updates to the Program class:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Delegates as event enablers *****\n");

 // First, make a Car object.
 Car c1 = new Car("SlugBug", 100, 10);

Chapter 10 ■ Delegates, events, anD lambDa expressions

366

 // Now, tell the car which method to call
 // when it wants to send us messages.
 c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

 // Speed up (this will trigger the events).
 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);
 Console.ReadLine();
 }

 // This is the target for incoming events.
 public static void OnCarEngineEvent(string msg)
 {
 Console.WriteLine("\n***** Message From Car Object *****");
 Console.WriteLine("=> {0}", msg);
 Console.WriteLine("***********************************\n");
 }
}

The Main() method begins by simply making a new Car object. Since you are interested
in hearing about the engine events, the next step is to call your custom registration function,
RegisterWithCarEngine(). Recall that this method expects to be passed an instance of the nested
CarEngineHandler delegate, and as with any delegate, you specify a “method to point to” as a constructor
parameter. The trick in this example is that the method in question is located back in the Program class!
Again, notice that the OnCarEngineEvent() method is a dead-on match to the related delegate in that it takes
a string as input and returns void. Consider the output of the current example:

***** Delegates as event enablers *****
***** Speeding up *****
CurrentSpeed = 30
CurrentSpeed = 50
CurrentSpeed = 70

***** Message From Car Object *****
=> Careful buddy! Gonna blow!

CurrentSpeed = 90
***** Message From Car Object *****
=> Sorry, this car is dead...

Enabling Multicasting
Recall that .NET delegates have the built-in ability to multicast. In other words, a delegate object can
maintain a list of methods to call, rather than just a single method. When you want to add multiple methods
to a delegate object, you simply use the overloaded += operator, rather than a direct assignment. To enable
multicasting on the Car class, you could update the RegisterWithCarEngine()method, like so:

Chapter 10 ■ Delegates, events, anD lambDa expressions

367

public class Car
{
 // Now with multicasting support!
 // Note we are now using the += operator, not
 // the assignment operator (=).
 public void RegisterWithCarEngine(CarEngineHandler methodToCall)
 {
 listOfHandlers += methodToCall;
 }
...
}

When you use the += operator on a delegate object, the compiler resolves this to a call on the static
Delegate.Combine() method. In fact, you could call Delegate.Combine() directly; however, the += operator
offers a simpler alternative. There is no need to modify your current RegisterWithCarEngine() method, but
here is an example if using Delegate.Combine() rather than the += operator:

public void RegisterWithCarEngine(CarEngineHandler methodToCall)
{
 if (listOfHandlers == null)
 listOfHandlers = methodToCall;
 else
 Delegate.Combine(listOfHandlers, methodToCall);
}

In any case, the caller can now register multiple targets for the same callback notification. Here, the
second handler prints the incoming message in uppercase, just for display purposes:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Delegates as event enablers *****\n");

 // First, make a Car object.
 Car c1 = new Car("SlugBug", 100, 10);

 // Register multiple targets for the notifications.
 c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));
 c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent2));

 // Speed up (this will trigger the events).
 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);
 Console.ReadLine();
 }

Chapter 10 ■ Delegates, events, anD lambDa expressions

368

 // We now have TWO methods that will be called by the Car
 // when sending notifications.
 public static void OnCarEngineEvent(string msg)
 {
 Console.WriteLine("\n***** Message From Car Object *****");
 Console.WriteLine("=> {0}", msg);
 Console.WriteLine("***********************************\n");
 }

 public static void OnCarEngineEvent2(string msg)
 {
 Console.WriteLine("=> {0}", msg.ToUpper());
 }
}

Removing Targets from a Delegate’s Invocation List
The Delegate class also defines a static Remove() method that allows a caller to dynamically remove a
method from a delegate object’s invocation list. This makes it simple to allow the caller to “unsubscribe”
from a given notification at runtime. While you could call Delegate.Remove() directly in code, C#
developers can use the -= operator as a convenient shorthand notation. Let’s add a new method to the Car
class that allows a caller to remove a method from the invocation list.

public class Car
{
...
 public void UnRegisterWithCarEngine(CarEngineHandler methodToCall)
 {
 listOfHandlers -= methodToCall;
 }
}

With the current updates to the Car class, you could stop receiving the engine notification on the second
handler by updating Main() as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Delegates as event enablers *****\n");

 // First, make a Car object.
 Car c1 = new Car("SlugBug", 100, 10);
 c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

 // This time, hold onto the delegate object,
 // so we can unregister later.
 Car.CarEngineHandler handler2 = new Car.CarEngineHandler(OnCarEngineEvent2);
 c1.RegisterWithCarEngine(handler2);

Chapter 10 ■ Delegates, events, anD lambDa expressions

369

 // Speed up (this will trigger the events).
 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 // Unregister from the second handler.
 c1.UnRegisterWithCarEngine(handler2);

 // We won't see the "uppercase" message anymore!
 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.ReadLine();
}

One difference in Main() is that this time you are creating a Car.CarEngineHandler object and storing
it in a local variable so you can use this object to unregister with the notification later. Thus, the second time
you speed up the Car object, you no longer see the uppercase version of the incoming message data, as you
have removed this target from the delegate’s invocation list.

 ■ Source Code the CarDelegate project is located in the Chapter 10 subdirectory.

Method Group Conversion Syntax
In the previous CarDelegate example, you explicitly created instances of the Car.CarEngineHandler delegate
object to register and unregister with the engine notifications.

static void Main(string[] args)
{
 Console.WriteLine("***** Delegates as event enablers *****\n");

 Car c1 = new Car("SlugBug", 100, 10);
 c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

 Car.CarEngineHandler handler2 =
 new Car.CarEngineHandler(OnCarEngineEvent2);
 c1.RegisterWithCarEngine(handler2);
...
}

To be sure, if you need to call any of the inherited members of MulticastDelegate or Delegate,
manually creating a delegate variable is the most straightforward way of doing so. However, in most cases,
you don’t really need to hang onto the delegate object. Rather, you typically need to use the delegate object
only to pass in the method name as a constructor parameter.

As a simplification, C# provides a shortcut termed method group conversion. This feature allows you
to supply a direct method name, rather than a delegate object, when calling methods that take delegates as
arguments.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

370

 ■ Note as you will see later in this chapter, you can also use method group conversion syntax to simplify how
you register with a C# event.

To illustrate, create a new Console Application project named CarDelegateMethodGroupConversion
and insert the file containing the Car class you defined in the CarDelegate project (and update the
namespace name in the Car.cs file to match your new namespace name). Now, consider the following
Program class, which uses method group conversion to register and unregister from the engine notifications:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Method Group Conversion *****\n");
 Car c1 = new Car();

 // Register the simple method name.
 c1.RegisterWithCarEngine(CallMeHere);

 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 // Unregister the simple method name.
 c1.UnRegisterWithCarEngine(CallMeHere);

 // No more notifications!
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.ReadLine();
 }

 static void CallMeHere(string msg)
 {
 Console.WriteLine("=> Message from Car: {0}", msg);
 }
}

Notice that you are not directly allocating the associated delegate object but rather simply specifying a
method that matches the delegate’s expected signature (a method returning void and taking a single string,
in this case). Understand that the C# compiler is still ensuring type safety. Thus, if the CallMeHere() method
did not take a string and return void, you would be issued a compiler error.

 ■ Source Code the CarDelegatemethodgroupConversion project is located in the Chapter 10 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

371

Understanding Generic Delegates
In the previous chapter, I mentioned that C# allows you to define generic delegate types. For example,
assume you want to define a delegate type that can call any method returning void and receiving a single
parameter. If the argument in question may differ, you could model this using a type parameter. To illustrate,
consider the following code within a new Console Application project named GenericDelegate:

namespace GenericDelegate
{
 // This generic delegate can represnet any method
 // returning void and taking a single parameter of type T.
 public delegate void MyGenericDelegate<T>(T arg);

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Generic Delegates *****\n");

 // Register targets.
 MyGenericDelegate<string> strTarget =
 new MyGenericDelegate<string>(StringTarget);
 strTarget("Some string data");

 MyGenericDelegate<int> intTarget =
 new MyGenericDelegate<int>(IntTarget);
 intTarget(9);
 Console.ReadLine();
 }

 static void StringTarget(string arg)
 {
 Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());
 }

 static void IntTarget(int arg)
 {
 Console.WriteLine("++arg is: {0}", ++arg);
 }
 }
}

Notice that MyGenericDelegate<T> defines a single type parameter that represents the argument to pass
to the delegate target. When creating an instance of this type, you are required to specify the value of the type
parameter, as well as the name of the method the delegate will invoke. Thus, if you specified a string type,
you send a string value to the target method.

// Create an instance of MyGenericDelegate<T>
// with string as the type parameter.
MyGenericDelegate<string> strTarget =
 new MyGenericDelegate<string>(StringTarget);
strTarget("Some string data");

Chapter 10 ■ Delegates, events, anD lambDa expressions

372

Given the format of the strTarget object, the StringTarget() method must now take a single string as
a parameter.

static void StringTarget(string arg)
{
 Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());
}

 ■ Source Code the genericDelegate project is located in the Chapter 10 subdirectory.

The Generic Action<> and Func<> Delegates
Over the course of this chapter, you have seen that when you want to use delegates to enable callbacks in
your applications, you typically follow the steps shown here:

•	 Define a custom delegate that matches the format of the method being pointed to.

•	 Create an instance of your custom delegate, passing in a method name as a
constructor argument.

•	 Invoke the method indirectly, via a call to Invoke() on the delegate object.

When you take this approach, you typically end up with a number of custom delegates that might never
be used beyond the current task at hand (e.g., MyGenericDelegate<T>, CarEngineHandler, and so forth).
While it may certainly be the case that you do indeed need to have a custom, uniquely named delegate type
for your project, other times the exact name of the delegate type is irrelevant. In many cases, you simply want
“some delegate” that takes a set of arguments and possibly has a return value other than void. In these cases,
you can use the framework’s built-in Action<> and Func<> delegate types. To illustrate their usefulness,
create a new Console Application project named ActionAndFuncDelegates.

The generic Action<> delegate is defined in the System namespaces of mscorlib.dll and System.Core.dll
assemblies. You can use this generic delegate to “point to” a method that takes up to 16 arguments
(that ought to be enough!) and returns void. Now recall, because Action<> is a generic delegate, you will
need to specify the underlying types of each parameter as well.

Update your Program class to define a new static method that takes three (or so) unique parameters.
Here’s an example:

// This is a target for the Action<> delegate.
static void DisplayMessage(string msg, ConsoleColor txtColor, int printCount)
{
 // Set color of console text.
 ConsoleColor previous = Console.ForegroundColor;
 Console.ForegroundColor = txtColor;

 for (int i = 0; i < printCount; i++)
 {
 Console.WriteLine(msg);
 }

 // Restore color.
 Console.ForegroundColor = previous;
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

373

Now, rather than building a custom delegate manually to pass the program’s flow to the
DisplayMessage() method, you can use the out-of-the-box Action<> delegate, as so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Action and Func *****");

 // Use the Action<> delegate to point to DisplayMessage.
 Action<string, ConsoleColor, int> actionTarget =
 new Action<string, ConsoleColor, int>(DisplayMessage);
 actionTarget("Action Message!", ConsoleColor.Yellow, 5);

 Console.ReadLine();
}

As you can see, using the Action<> delegate saves you the bother of defining a custom delegate type.
However, recall that the Action<> delegate type can point only to methods that take a void return value. If
you want to point to a method that does have a return value (and don’t want to bother writing the custom
delegate yourself), you can use Func<>.

The generic Func<> delegate can point to methods that (like Action<>) take up to 16 parameters and a
custom return value. To illustrate, add the following new method to the Program class:

// Target for the Func<> delegate.
static int Add(int x, int y)
{
 return x + y;
}

Earlier in the chapter, I had you build a custom BinaryOp delegate to “point to” addition and subtraction
methods. However, you can simplify your efforts using a version of Func<> that takes a total of three type
parameters. Be aware that the final type parameter of Func<> is always the return value of the method. Just to
solidify that point, assume the Program class also defines the following method:

static string SumToString(int x, int y)
{
 return (x + y).ToString();
}

Now, the Main() method can call each of these methods, as so:

Func<int, int, int> funcTarget = new Func<int, int, int>(Add);
int result = funcTarget.Invoke(40, 40);
Console.WriteLine("40 + 40 = {0}", result);

Func<int, int, string> funcTarget2 = new Func<int, int, string>(SumToString);
string sum = funcTarget2(90, 300);
Console.WriteLine(sum);

Chapter 10 ■ Delegates, events, anD lambDa expressions

374

Also recall method group conversion syntax would allow you to simplify the previous code to the
following:

Func<int, int, int> funcTarget = Add;
int result = funcTarget.Invoke(40, 40);
Console.WriteLine("40 + 40 = {0}", result);

Func<int, int, string> funcTarget2 = SumToString;
string sum = funcTarget2(90, 300);
Console.WriteLine(sum);

In any case, given that Action<> and Func<> can save you the step of manually defining a custom
delegate, you might be wondering if you should use them all the time. The answer, like so many aspects of
programming, is “it depends.” In many cases, Action<> and Func<> will be the preferred course of action
(no pun intended). However, if you need a delegate that has a custom name that you feel helps better
capture your problem domain, building a custom delegate is as simple as a single code statement. You’ll see
both approaches as you work over the remainder of this text.

 ■ Note many important .net apis make considerable use of Action<> and Func<> delegates, including the
parallel programming framework and linQ (among others).

That wraps up our initial look at the .NET delegate type. You will look at some additional details of
working with delegates at the conclusion of this chapter and again in Chapter 19 during your examination of
multithreading and asynchronous calls. Next, let’s move on to the related topic of the C# event keyword.

 ■ Source Code the actionandFuncDelegates project is located in the Chapter 10 subdirectory.

Understanding C# Events
Delegates are fairly interesting constructs in that they enable objects in memory to engage in a two-way
conversation. However, working with delegates in the raw can entail the creation of some boilerplate
code (defining the delegate, declaring necessary member variables, and creating custom registration and
unregistration methods to preserve encapsulation, etc.).

Moreover, when you use delegates in the raw as your application’s callback mechanism, if you do
not define a class’s delegate member variables as private, the caller will have direct access to the delegate
objects. In this case, the caller could reassign the variable to a new delegate object (effectively deleting the
current list of functions to call), and, worse yet, the caller would be able to directly invoke the delegate’s
invocation list. To illustrate this problem, consider the following reworking (and simplification) of the Car
class from the previous CarDelegate example:

public class Car
{
 public delegate void CarEngineHandler(string msgForCaller);

 // Now a public member!
 public CarEngineHandler listOfHandlers;

http://dx.doi.org/10.1007/978-1-4842-1332-2_19
http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

375

 // Just fire out the Exploded notification.
 public void Accelerate(int delta)
 {
 if (listOfHandlers != null)
 listOfHandlers("Sorry, this car is dead...");
 }
}

Notice that you no longer have private delegate member variables encapsulated with custom
registration methods. Because these members are indeed public, the caller can directly access the
listOfHandlers member variable and reassign this type to new CarEngineHandler objects and invoke the
delegate whenever it so chooses.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Agh! No Encapsulation! *****\n");
 // Make a Car.
 Car myCar = new Car();
 // We have direct access to the delegate!
 myCar.listOfHandlers = new Car.CarEngineHandler(CallWhenExploded);
 myCar.Accelerate(10);

 // We can now assign to a whole new object...
 // confusing at best.
 myCar.listOfHandlers = new Car.CarEngineHandler(CallHereToo);
 myCar.Accelerate(10);

 // The caller can also directly invoke the delegate!
 myCar.listOfHandlers.Invoke("hee, hee, hee...");
 Console.ReadLine();
 }

 static void CallWhenExploded(string msg)
 { Console.WriteLine(msg); }

 static void CallHereToo(string msg)
 { Console.WriteLine(msg); }
}

Exposing public delegate members breaks encapsulation, which not only can lead to code that is hard
to maintain (and debug) but could also open your application to possible security risks! Here is the output of
the current example:

***** Agh! No Encapsulation! *****

Sorry, this car is dead...
Sorry, this car is dead...
hee, hee, hee...

Chapter 10 ■ Delegates, events, anD lambDa expressions

376

Obviously, you would not want to give other applications the power to change what a delegate is
pointing to or to invoke the members without your permission. Given this, it is common practice to declare
private delegate member variables.

 ■ Source Code the publicDelegateproblem project is located in the Chapter 10 subdirectory.

The C# event Keyword
As a shortcut, so you don’t have to build custom methods to add or remove methods to a delegate’s
invocation list, C# provides the event keyword. When the compiler processes the event keyword, you are
automatically provided with registration and unregistration methods, as well as any necessary member
variables for your delegate types. These delegate member variables are always declared private, and,
therefore, they are not directly exposed from the object firing the event. To be sure, the event keyword can
be used to simplify how a custom class sends out notifications to external objects.

Defining an event is a two-step process. First, you need to define a delegate type (or reuse an existing
one) that will hold the list of methods to be called when the event is fired. Next, you declare an event (using
the C# event keyword) in terms of the related delegate type.

To illustrate the event keyword, create a new Console Application named CarEvents. In this iteration of
the Car class, you will define two events named AboutToBlow and Exploded. These events are associated to a
single delegate type named CarEngineHandler. Here are the initial updates to the Car class:

public class Car
{
 // This delegate works in conjunction with the
 // Car's events.
 public delegate void CarEngineHandler(string msg);

 // This car can send these events.
 public event CarEngineHandler Exploded;
 public event CarEngineHandler AboutToBlow;
 ...
}

Sending an event to the caller is as simple as specifying the event by name, along with any required
parameters as defined by the associated delegate. To ensure that the caller has indeed registered with the
event, you will want to check the event against a null value before invoking the delegate’s method set. With
these points in mind, here is the new iteration of the Car’s Accelerate() method:

public void Accelerate(int delta)
{
 // If the car is dead, fire Exploded event.
 if (carIsDead)
 {
 if (Exploded != null)
 Exploded("Sorry, this car is dead...");
 }
 else
 {
 CurrentSpeed += delta;

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

377

 // Almost dead?
 if (10 == MaxSpeed - CurrentSpeed
 && AboutToBlow != null)
 {
 AboutToBlow("Careful buddy! Gonna blow!");
 }

 // Still OK!
 if (CurrentSpeed >= MaxSpeed)
 carIsDead = true;
 else
 Console.WriteLine("CurrentSpeed = {0}", CurrentSpeed);
 }
}

With this, you have configured the car to send two custom events without having to define custom
registration functions or declare delegate member variables. You will see the usage of this new automobile in
just a moment, but first let’s check the event architecture in a bit more detail.

Events Under the Hood
When the compiler processes the C# event keyword, it generates two hidden methods, one having an add_
prefix and the other having a remove_ prefix. Each prefix is followed by the name of the C# event. For example,
the Exploded event results in two hidden methods named add_Exploded() and remove_Exploded().
If you were to check out the CIL instructions behind add_AboutToBlow(), you would find a call to the
Delegate.Combine() method. Consider the partial CIL code:

.method public hidebysig specialname instance void
add_AboutToBlow(class CarEvents.Car/CarEngineHandler 'value') cil managed
{
...
 call class [mscorlib]System.Delegate
 [mscorlib]System.Delegate::Combine(
 class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
...
}

As you would expect, remove_AboutToBlow() will call Delegate.Remove() on your behalf.

.method public hidebysig specialname instance void
 remove_AboutToBlow(class CarEvents.Car/CarEngineHandler 'value')
 cil managed
{
...
 call class [mscorlib]System.Delegate
 [mscorlib]System.Delegate::Remove(
 class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
...
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

378

Finally, the CIL code representing the event itself makes use of the .addon and .removeon directives to
map the names of the correct add_XXX() and remove_XXX() methods to invoke.

.event CarEvents.Car/EngineHandler AboutToBlow
{
 .addon instance void CarEvents.Car::add_AboutToBlow
 (class CarEvents.Car/CarEngineHandler)

 .removeon instance void CarEvents.Car::remove_AboutToBlow
 (class CarEvents.Car/CarEngineHandler)
}

Now that you understand how to build a class that can send C# events (and are aware that events are
little more than a typing time-saver), the next big question is how to listen to the incoming events on the
caller’s side.

Listening to Incoming Events
C# events also simplify the act of registering the caller-side event handlers. Rather than having to specify
custom helper methods, the caller simply uses the += and -= operators directly (which triggers the correct
add_XXX() or remove_XXX() method in the background). When you want to register with an event, follow the
pattern shown here:

// NameOfObject.NameOfEvent += new RelatedDelegate(functionToCall);
//
Car.CarEngineHandler d = new Car.CarEngineHandler(CarExplodedEventHandler);
myCar.Exploded += d;

When you want to detach from a source of events, use the -= operator, using the following pattern:

// NameOfObject.NameOfEvent -= new RelatedDelegate(functionToCall);
//
myCar.Exploded -= d;

Given these very predictable patterns, here is the refactored Main() method, now using the C# event
registration syntax:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Events *****\n");
 Car c1 = new Car("SlugBug", 100, 10);

 // Register event handlers.
 c1.AboutToBlow += new Car.CarEngineHandler(CarIsAlmostDoomed);
 c1.AboutToBlow += new Car.CarEngineHandler(CarAboutToBlow);

 Car.CarEngineHandler d = new Car.CarEngineHandler(CarExploded);
 c1.Exploded += d;

Chapter 10 ■ Delegates, events, anD lambDa expressions

379

 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 // Remove CarExploded method
 // from invocation list.
 c1.Exploded -= d;

 Console.WriteLine("\n***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);
 Console.ReadLine();
 }

 public static void CarAboutToBlow(string msg)
 { Console.WriteLine(msg); }

 public static void CarIsAlmostDoomed(string msg)
 { Console.WriteLine("=> Critical Message from Car: {0}", msg); }

 public static void CarExploded(string msg)
 { Console.WriteLine(msg); }
}

To even further simplify event registration, you can use method group conversion. Consider the
following iteration of Main():

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Events *****\n");
 Car c1 = new Car("SlugBug", 100, 10);
 // Register event handlers.
 c1.AboutToBlow += CarIsAlmostDoomed;
 c1.AboutToBlow += CarAboutToBlow;
 c1.Exploded += CarExploded;

 Console.WriteLine("***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 c1.Exploded -= CarExploded;

 Console.WriteLine("\n***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.ReadLine();
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

380

Simplifying Event Registration Using Visual Studio
Visual Studio offers assistance with the process of registering event handlers. When you apply the += syntax
during event registration, you will find an IntelliSense window displayed, inviting you to hit the Tab key to
autocomplete the associated delegate instance (see Figure 10-2), which is captured using method group
conversion syntax.

After you hit the Tab key, the IDE will generate the new method automatically, as shown in Figure 10-3.

Figure 10-2. Delegate selection IntelliSense

Figure 10-3. Delegate target format IntelliSense

Chapter 10 ■ Delegates, events, anD lambDa expressions

381

Note the stub code is in the correct format of the delegate target (note that this method has been
declared static because the event was registered within a static method).

static void NewCar_AboutToBlow(string msg)
{
 // Delete the following line and add your code!
 throw new NotImplementedException();
}

IntelliSense is available to all .NET events in the base class libraries. This IDE feature is a massive
time-saver, given that it saves you from having to search the .NET help system to figure out both the correct
delegate to use with a particular event and the format of the delegate target method.

Cleaning Up Event Invocation Using the C# 6.0
Null-Conditional Operator
In the current example, you most likely noticed that before you fired an event to any listener, you made sure
to check for null. This is important given that if nobody is listening for your event but you fire it anyway, you
will receive a null reference exception at runtime. While important, you might agree it is a bit clunky to make
numerous conditional checks against null.

Thankfully, with the current release of C#, you can leverage the null conditional operator (?) which
essentially performs this sort of check automatically. Be aware, when using this new simplified syntax, you
must manually call the Invoke() method of the underlying delegate. For example, rather than saying this:

// If the car is dead, fire Exploded event.
if (carIsDead)
{
 if (Exploded != null)
 Exploded("Sorry, this car is dead...");
}

We can now simply say the following:

// If the car is dead, fire Exploded event.
if (carIsDead)
{
 Exploded?.Invoke("Sorry, this car is dead...");
}

you could also update the code that fires the AboutToBlow event in a similar manner (note here I moved the
check for null out of the original if statement):

// Almost dead?
if (10 == MaxSpeed - CurrentSpeed)
{
 AboutToBlow?.Invoke("Careful buddy! Gonna blow!");
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

382

Because of the simplified syntax, you are likely to favor the null conditional operator when firing events.
However, it is still perfectly acceptable to manually check for null when necessary.

 ■ Source Code the Carevents project is located in the Chapter 10 subdirectory.

Creating Custom Event Arguments
Truth be told, there is one final enhancement you could make to the current iteration of the Car class that
mirrors Microsoft’s recommended event pattern. As you begin to explore the events sent by a given type in
the base class libraries, you will find that the first parameter of the underlying delegate is a System.Object,
while the second parameter is a descendant of System.EventArgs.

The System.Object argument represents a reference to the object that sent the event (such as the Car),
while the second parameter represents information regarding the event at hand. The System.EventArgs
base class represents an event that is not sending any custom information.

public class EventArgs
{
 public static readonly EventArgs Empty;
 public EventArgs();
}

For simple events, you can pass an instance of EventArgs directly. However, when you want to pass
along custom data, you should build a suitable class deriving from EventArgs. For this example, assume you
have a class named CarEventArgs, which maintains a string representing the message sent to the receiver.

public class CarEventArgs : EventArgs
{
 public readonly string msg;
 public CarEventArgs(string message)
 {
 msg = message;
 }
}

With this, you would now update the CarEngineHandler delegate type definition as follows (the events
would be unchanged):

public class Car
{
 public delegate void CarEngineHandler(object sender, CarEventArgs e);
...
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

383

Here, when firing the events from within the Accelerate() method, you would now need to supply a
reference to the current Car (via the this keyword) and an instance of the CarEventArgs type. For example,
consider the following partial update:

public void Accelerate(int delta)
{
 // If the car is dead, fire Exploded event.
 if (carIsDead)
 {
 Exploded?.Invoke(this, new CarEventArgs("Sorry, this car is dead..."));
 }
...
}

On the caller’s side, all you would need to do is update your event handlers to receive the incoming
parameters and obtain the message via the read-only field. Here’s an example:

public static void CarAboutToBlow(object sender, CarEventArgs e)
{
 Console.WriteLine("{0} says: {1}", sender, e.msg);
}

If the receiver wants to interact with the object that sent the event, you can explicitly cast the
System.Object. From this reference, you can make use of any public member of the object that sent the
event notification.

public static void CarAboutToBlow(object sender, CarEventArgs e)
{
 // Just to be safe, perform a
 // runtime check before casting.
 if (sender is Car)
 {
 Car c = (Car)sender;
 Console.WriteLine("Critical Message from {0}: {1}", c.PetName, e.msg);
 }
}

 ■ Source Code the Careventargs project is located in the Chapter 10 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

384

The Generic EventHandler<T> Delegate
Given that so many custom delegates take an object as the first parameter and an EventArgs descendant as
the second, you could further streamline the previous example by using the generic EventHandler<T> type,
where T is your custom EventArgs type. Consider the following update to the Car type (notice how you no
longer need to define a custom delegate type at all):

public class Car
{
 public event EventHandler<CarEventArgs> Exploded;
 public event EventHandler<CarEventArgs> AboutToBlow;
...
}

The Main() method could then use EventHandler<CarEventArgs> anywhere you previously specified
CarEventHandler (or, once again, use method group conversion).

static void Main(string[] args)
{
 Console.WriteLine("***** Prim and Proper Events *****\n");

 // Make a car as usual.
 Car c1 = new Car("SlugBug", 100, 10);

 // Register event handlers.
 c1.AboutToBlow += CarIsAlmostDoomed;
 c1.AboutToBlow += CarAboutToBlow;

 EventHandler<CarEventArgs> d = new EventHandler<CarEventArgs>(CarExploded);
 c1.Exploded += d;
...
}

Great! At this point, you have seen the core aspects of working with delegates and events in the C#
language. While you could use this information for just about all your callback needs, you will wrap up this
chapter with a look at some final simplifications, specifically anonymous methods and lambda expressions.

 ■ Source Code the genericCareventargs project is located in the Chapter 10 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

385

Understanding C# Anonymous Methods
As you have seen, when a caller wants to listen to incoming events, it must define a custom method in a class
(or structure) that matches the signature of the associated delegate. Here’s an example:

class Program
{
 static void Main(string[] args)
 {
 SomeType t = new SomeType();

 // Assume "SomeDelegate" can point to methods taking no
 // args and returning void.
 t.SomeEvent += new SomeDelegate(MyEventHandler);
 }

 // Typically only called by the SomeDelegate object.
 public static void MyEventHandler()
 {
 // Do something when event is fired.
 }
}

When you think about it, however, methods such as MyEventHandler() are seldom intended to be
called by any part of the program other than the invoking delegate. As far as productivity is concerned, it is
a bit of a bother (though in no way a showstopper) to manually define a separate method to be called by the
delegate object.

To address this point, it is possible to associate an event directly to a block of code statements at the
time of event registration. Formally, such code is termed an anonymous method. To illustrate the syntax,
check out the following Main() method, which handles the events sent from the Car class using anonymous
methods, rather than specifically named event handlers:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Anonymous Methods *****\n");
 Car c1 = new Car("SlugBug", 100, 10);

 // Register event handlers as anonymous methods.
 c1.AboutToBlow += delegate
 {
 Console.WriteLine("Eek! Going too fast!");
 };

 c1.AboutToBlow += delegate(object sender, CarEventArgs e)
 {
 Console.WriteLine("Message from Car: {0}", e.msg);
 };

Chapter 10 ■ Delegates, events, anD lambDa expressions

386

 c1.Exploded += delegate(object sender, CarEventArgs e)
 {
 Console.WriteLine("Fatal Message from Car: {0}", e.msg);
 };

 // This will eventually trigger the events.
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.ReadLine();
 }
}

 ■ Note the final curly bracket of an anonymous method must be terminated by a semicolon. if you fail to do
so, you are issued a compilation error.

Again, notice that the Program type no longer defines specific static event handlers such as
CarAboutToBlow() or CarExploded(). Rather, the unnamed (aka anonymous) methods are defined inline
at the time the caller is handling the event using the += syntax. The basic syntax of an anonymous method
matches the following pseudocode:

class Program
{
 static void Main(string[] args)
 {
 SomeType t = new SomeType();
 t.SomeEvent += delegate (optionallySpecifiedDelegateArgs)
 { /* statements */ };
 }
}

When handling the first AboutToBlow event within the previous Main() method, notice that you are not
specifying the arguments passed from the delegate.

c1.AboutToBlow += delegate
{
 Console.WriteLine("Eek! Going too fast!");
};

Strictly speaking, you are not required to receive the incoming arguments sent by a specific event.
However, if you want to make use of the possible incoming arguments, you will need to specify the
parameters prototyped by the delegate type (as shown in the second handling of the AboutToBlow and
Exploded events). Here’s an example:

c1.AboutToBlow += delegate(object sender, CarEventArgs e)
{
 Console.WriteLine("Critical Message from Car: {0}", e.msg);
};

Chapter 10 ■ Delegates, events, anD lambDa expressions

387

Accessing Local Variables
Anonymous methods are interesting in that they are able to access the local variables of the method that
defines them. Formally speaking, such variables are termed outer variables of the anonymous method. A few
important points about the interaction between an anonymous method scope and the scope of the defining
method should be mentioned.

•	 An anonymous method cannot access ref or out parameters of the defining method.

•	 An anonymous method cannot have a local variable with the same name as a local
variable in the outer method.

•	 An anonymous method can access instance variables (or static variables, as
appropriate) in the outer class scope.

•	 An anonymous method can declare local variables with the same name as outer
class member variables (the local variables have a distinct scope and hide the outer
class member variables).

Assume your Main() method defined a local integer named aboutToBlowCounter. Within the
anonymous methods that handle the AboutToBlow event, you will increment this counter by one and print
out the tally before Main() completes.

static void Main(string[] args)
{
 Console.WriteLine("***** Anonymous Methods *****\n");
 int aboutToBlowCounter = 0;

 // Make a car as usual.
 Car c1 = new Car("SlugBug", 100, 10);

 // Register event handlers as anonymous methods.
 c1.AboutToBlow += delegate
 {
 aboutToBlowCounter++;
 Console.WriteLine("Eek! Going too fast!");
 };

 c1.AboutToBlow += delegate(object sender, CarEventArgs e)
 {
 aboutToBlowCounter++;
 Console.WriteLine("Critical Message from Car: {0}", e.msg);
 };

 // This will eventually trigger the events.
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.WriteLine("AboutToBlow event was fired {0} times.",
 aboutToBlowCounter);
 Console.ReadLine();
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

388

After you run this updated Main() method, you will find the final Console.WriteLine() reports the
AboutToBlow event was fired twice.

 ■ Source Code the anonymousmethods project is located in the Chapter 10 subdirectory.

Understanding Lambda Expressions
To conclude your look at the .NET event architecture, you will examine C# lambda expressions. As just
explained, C# supports the ability to handle events “inline” by assigning a block of code statements directly
to an event using anonymous methods, rather than building a stand-alone method to be called by the
underlying delegate. Lambda expressions are nothing more than a concise way to author anonymous
methods and ultimately simplify how you work with the .NET delegate type.

To set the stage for your examination of lambda expressions, create a new Console Application project
named SimpleLambdaExpressions. To begin, consider the FindAll() method of the generic List<T> class.
This method can be called when you need to extract a subset of items from the collection and is prototyped
like so:

// Method of the System.Collections.Generic.List<T> class.
public List<T> FindAll(Predicate<T> match)

As you can see, this method returns a new List<T> that represents the subset of data. Also notice that
the sole parameter to FindAll() is a generic delegate of type System.Predicate<T>. This delegate type can
point to any method returning a bool and takes a single type parameter as the only input parameter.

// This delegate is used by FindAll() method
// to extract out the subset.
public delegate bool Predicate<T>(T obj);

When you call FindAll(), each item in the List<T> is passed to the method pointed to by the
Predicate<T> object. The implementation of said method will perform some calculations to see whether the
incoming data matches the necessary criteria and will return true or false. If this method returns true, the
item will be added to the new List<T> that represents the subset (got all that?).

Before you see how lambda expressions can simplify working with FindAll(), let’s work the
problem out in longhand notation, using the delegate objects directly. Add a method (named
TraditionalDelegateSyntax()) within your Program type that interacts with the System.Predicate<T> type
to discover the even numbers in a List<T> of integers.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Lambdas *****\n");
 TraditionalDelegateSyntax();
 Console.ReadLine();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

389

 static void TraditionalDelegateSyntax()
 {
 // Make a list of integers.
 List<int> list = new List<int>();
 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Call FindAll() using traditional delegate syntax.
 Predicate<int> callback = IsEvenNumber;
 List<int> evenNumbers = list.FindAll(callback);

 Console.WriteLine("Here are your even numbers:");
 foreach (int evenNumber in evenNumbers)
 {
 Console.Write("{0}\t", evenNumber);
 }
 Console.WriteLine();
 }

 // Target for the Predicate<> delegate.
 static bool IsEvenNumber(int i)
 {
 // Is it an even number?
 return (i % 2) == 0;
 }
}

Here, you have a method (IsEvenNumber()) that is in charge of testing the incoming integer parameter
to see whether it is even or odd via the C# modulo operator, %. If you execute your application, you will find
the numbers 20, 4, 8, and 44 print to the console.

While this traditional approach to working with delegates behaves as expected, the IsEvenNumber()
method is invoked only in limited circumstances—specifically when you call FindAll(), which leaves you
with the baggage of a full method definition. If you were to instead use an anonymous method, your code
would clean up considerably. Consider the following new method of the Program class:

static void AnonymousMethodSyntax()
{
 // Make a list of integers.
 List<int> list = new List<int>();
 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Now, use an anonymous method.
 List<int> evenNumbers = list.FindAll(delegate(int i)
 { return (i % 2) == 0; });

 Console.WriteLine("Here are your even numbers:");
 foreach (int evenNumber in evenNumbers)
 {
 Console.Write("{0}\t", evenNumber);
 }
 Console.WriteLine();
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

390

In this case, rather than directly creating a Predicate<T> delegate object and then authoring a
stand- alone method, you are able to inline a method anonymously. While this is a step in the right direction,
you are still required to use the delegate keyword (or a strongly typed Predicate<T>), and you must ensure
that the parameter list is a dead-on match.

List<int> evenNumbers = list.FindAll(
 delegate(int i)
 {
 return (i % 2) == 0;
 }
);

Lambda expressions can be used to simplify the call to FindAll() even more. When you use lambda
syntax, there is no trace of the underlying delegate object whatsoever. Consider the following new method to
the Program class:

static void LambdaExpressionSyntax()
{
 // Make a list of integers.
 List<int> list = new List<int>();
 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Now, use a C# lambda expression.
 List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

 Console.WriteLine("Here are your even numbers:");
 foreach (int evenNumber in evenNumbers)
 {
 Console.Write("{0}\t", evenNumber);
 }
 Console.WriteLine();
}

In this case, notice the rather strange statement of code passed into the FindAll() method, which is in
fact a lambda expression. In this iteration of the example, there is no trace whatsoever of the Predicate<T>
delegate (or the delegate keyword, for that matter). All you have specified is the lambda expression.

i => (i % 2) == 0

Before I break this syntax down, first understand that lambda expressions can be used anywhere you
would have used an anonymous method or a strongly typed delegate (typically with far fewer keystrokes).
Under the hood, the C# compiler translates the expression into a standard anonymous method making use
of the Predicate<T> delegate type (which can be verified using ildasm.exe or reflector.exe). Specifically,
the following code statement:

// This lambda expression...
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

Chapter 10 ■ Delegates, events, anD lambDa expressions

391

is compiled into the following approximate C# code:

// ...becomes this anonymous method.
List<int> evenNumbers = list.FindAll(delegate (int i)
{
 return (i % 2) == 0;
});

Dissecting a Lambda Expression
A lambda expression is written by first defining a parameter list, followed by the => token (C#’s token for the
lambda operator found in the lambda calculus), followed by a set of statements (or a single statement) that
will process these arguments. From a high level, a lambda expression can be understood as follows:

ArgumentsToProcess => StatementsToProcessThem

Within the LambdaExpressionSyntax() method, things break down like so:

// "i" is our parameter list.
// "(i % 2) == 0" is our statement set to process "i".
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

The parameters of a lambda expression can be explicitly or implicitly typed. Currently, the underlying
data type representing the i parameter (an integer) is determined implicitly. The compiler is able to figure
out that i is an integer based on the context of the overall lambda expression and the underlying delegate.
However, it is also possible to explicitly define the type of each parameter in the expression, by wrapping the
data type and variable name in a pair of parentheses, as follows:

// Now, explicitly state the parameter type.
List<int> evenNumbers = list.FindAll((int i) => (i % 2) == 0);

As you have seen, if a lambda expression has a single, implicitly typed parameter, the parentheses may
be omitted from the parameter list. If you want to be consistent regarding your use of lambda parameters,
you can always wrap the parameter list within parentheses, leaving you with this expression:

List<int> evenNumbers = list.FindAll((i) => (i % 2) == 0);

Finally, notice that currently the expression has not been wrapped in parentheses (you have of course
wrapped the modulo statement to ensure it is executed first before the test for equality). Lambda expressions
do allow for the statement to be wrapped as follows:

// Now, wrap the expression as well.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Now that you have seen the various ways to build a lambda expression, how can you read this lambda
statement in human-friendly terms? Leaving the raw mathematics behind, the following explanation fits the bill:

// My list of parameters (in this case, a single integer named i)
// will be processed by the expression (i % 2) == 0.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Chapter 10 ■ Delegates, events, anD lambDa expressions

392

Processing Arguments Within Multiple Statements
The first lambda expression was a single statement that ultimately evaluated to a Boolean. However, as
you know, many delegate targets must perform a number of code statements. For this reason, C# allows
you to build lambda expressions using multiple statement blocks. When your expression must process the
parameters using multiple lines of code, you can do so by denoting a scope for these statements using the
expected curly brackets. Consider the following example update to the LambdaExpressionSyntax() method:

static void LambdaExpressionSyntax()
{
 // Make a list of integers.
 List<int> list = new List<int>();
 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Now process each argument within a group of
 // code statements.
 List<int> evenNumbers = list.FindAll((i) =>
 {
 Console.WriteLine("value of i is currently: {0}", i);
 bool isEven = ((i % 2) == 0);
 return isEven;
 });

 Console.WriteLine("Here are your even numbers:");
 foreach (int evenNumber in evenNumbers)
 {
 Console.Write("{0}\t", evenNumber);
 }
 Console.WriteLine();
}

In this case, the parameter list (again, a single integer named i) is being processed by a set of code
statements. Beyond the calls to Console.WriteLine(), the modulo statement has been broken into two
code statements for increased readability. Assuming each of the methods you’ve looked at in this section are
called from within Main():

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Lambdas *****\n");
 TraditionalDelegateSyntax();
 AnonymousMethodSyntax();
 Console.WriteLine();
 LambdaExpressionSyntax();
 Console.ReadLine();
}

Chapter 10 ■ Delegates, events, anD lambDa expressions

393

you will find the following output:

***** Fun with Lambdas *****
Here are your even numbers:
20 4 8 44
Here are your even numbers:
20 4 8 44
value of i is currently: 20
value of i is currently: 1
value of i is currently: 4
value of i is currently: 8
value of i is currently: 9
value of i is currently: 44
Here are your even numbers:
20 4 8 44

 ■ Source Code the simplelambdaexpressions project can be found in the Chapter 10 subdirectory.

Lambda Expressions with Multiple (or Zero) Parameters
The lambda expressions you have seen here processed a single parameter. This is not a requirement,
however, as a lambda expression may process multiple arguments (or none). To illustrate the first scenario,
create a Console Application project named LambdaExpressionsMultipleParams. Next, assume the
following incarnation of the SimpleMath type:

public class SimpleMath
{
 public delegate void MathMessage(string msg, int result);
 private MathMessage mmDelegate;

 public void SetMathHandler(MathMessage target)
 {mmDelegate = target; }

 public void Add(int x, int y)
 {
 mmDelegate?.Invoke("Adding has completed!", x + y);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

394

Notice that the MathMessage delegate type is expecting two parameters. To represent them as a lambda
expression, the Main() method might be written as follows:

static void Main(string[] args)
{
 // Register with delegate as a lambda expression.
 SimpleMath m = new SimpleMath();
 m.SetMathHandler((msg, result) =>
 {Console.WriteLine("Message: {0}, Result: {1}", msg, result);});

 // This will execute the lambda expression.
 m.Add(10, 10);
 Console.ReadLine();
}

Here, you are leveraging type inference, as the two parameters have not been strongly typed for
simplicity. However, you could call SetMathHandler(), as follows:

m.SetMathHandler((string msg, int result) =>
 {Console.WriteLine("Message: {0}, Result: {1}", msg, result);});

Finally, if you are using a lambda expression to interact with a delegate taking no parameters at all, you
may do so by supplying a pair of empty parentheses as the parameter. Thus, assuming you have defined the
following delegate type:

public delegate string VerySimpleDelegate();

you could handle the result of the invocation as follows:

// Prints "Enjoy your string!" to the console.
VerySimpleDelegate d = new VerySimpleDelegate(() => {return "Enjoy your string!";});
Console.WriteLine(d());

 ■ Source Code the lambdaexpressionsmultipleparams project can be found in the Chapter 10 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

395

Retrofitting the CarEvents Example Using Lambda Expressions
Given that the whole reason for lambda expressions is to provide a clean, concise manner to define an
anonymous method (and therefore indirectly a manner to simplify working with delegates), let’s retrofit the
CarEventArgs project created earlier in this chapter. Here is a simplified version of that project’s Program
class, which makes use of lambda expression syntax (rather than the raw delegates) to hook into each event
sent from the Car object:

static void Main(string[] args)
{
 Console.WriteLine("***** More Fun with Lambdas *****\n");

 // Make a car as usual.
 Car c1 = new Car("SlugBug", 100, 10);

 // Hook into events with lambdas!
 c1.AboutToBlow += (sender, e) => { Console.WriteLine(e.msg);};
 c1.Exploded += (sender, e) => { Console.WriteLine(e.msg); };

 // Speed up (this will generate the events).
 Console.WriteLine("\n***** Speeding up *****");
 for (int i = 0; i < 6; i++)
 c1.Accelerate(20);

 Console.ReadLine();
}

Lambdas and Single Statement Member Implementations
The final point to be made about the C# lambda operator is that, as of .NET 4.6, it is now permissible to use
the => operator to simplify some (but not all) member implementations. Specifically, if you have a method
or property (in addition to a custom operator or conversion routine; see Chapter 11) that consists of exactly
a single line of code in the implementation, you are not required to define a scope via curly bracket. You can
instead leverage the lambda operator.

Consider the previous code example where you wired in code to handle the AboutToBlow and Exploded
events. Note how you defined a curly-bracket scope to capture the Console.WriteLine() method calls. If
you like, you could now simply write the following:

c1.AboutToBlow += (sender, e) => Console.WriteLine(e.msg);
c1.Exploded += (sender, e) => Console.WriteLine(e.msg);

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 10 ■ Delegates, events, anD lambDa expressions

396

Be aware, however, this new shortened syntax can be use anywhere at all, even when your code has
nothing to do with delegates or events. So for example, if you were to build a trivial class to add two numbers,
you might write the following:

class SimpleMath
{
 public int Add(int x, int y)
 {
 return x + y;
 }

 public void PrintSum(int x, int y)
 {
 Console.WriteLine(x + y);
 }
}

Alternatively, you could now write code like the following:

class SimpleMath
{
 public int Add(int x, int y) => x + y;
 public void PrintSum(int x, int y) => Console.WriteLine(x + y);
}

Ideally, at this point you can see the overall role of lambda expressions and understand how they
provide a “functional manner” to work with anonymous methods and delegate types. Although the lambda
operator (=>) might take a bit to get used to, always remember a lambda expression can be broken down to
the following simple equation:

ArgumentsToProcess => StatementsToProcessThem

Or, if using the => operator to implement a single line type member, it would be like this:

TypeMember => SingleCodeStatement

It is worth pointing out that the LINQ programming model also makes substantial use of lambda
expressions to help simplify your coding efforts. You will examine LINQ beginning in Chapter 12.

 ■ Source Code the CareventsWithlambdas project can be found in the Chapter 10 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 10 ■ Delegates, events, anD lambDa expressions

397

Summary
In this chapter, you examined a number of ways in which multiple objects can partake in a bidirectional
conversation. First, you looked at the C# delegate keyword, which is used to indirectly construct a class
derived from System.MulticastDelegate. As you saw, a delegate object maintains a list of methods to
call when told to do so. These invocations may be made synchronously (using the Invoke() method) or
asynchronously (via the BeginInvoke() and EndInvoke() methods). Again, the asynchronous nature of
.NET delegate types will be examined in Chapter 19.

You then examined the C# event keyword, which, when used in conjunction with a delegate type, can
simplify the process of sending your event notifications to waiting callers. As shown via the resulting CIL, the
.NET event model maps to hidden calls on the System.Delegate/System.MulticastDelegate types. In this
light, the C# event keyword is purely optional in that it simply saves you some typing time. As well, you have
seen that the C# 6.0 null conditional operator simplifies how you safely fire events to any interested party.

This chapter also explored a C# language feature termed anonymous methods. Using this syntactic
construct, you are able to directly associate a block of code statements to a given event. As you have seen,
anonymous methods are free to ignore the parameters sent by the event and have access to the
“outer variables” of the defining method. You also examined a simplified way to register events using
method group conversion.

Finally, you wrapped things up by looking at the C# lambda operator, =>. As shown, this syntax is a
great shorthand notation for authoring anonymous methods, where a stack of arguments can be passed into
a group of statements for processing. Any method in the .NET platform that takes a delegate object as an
argument can be substituted with a related lambda expression, which will typically simplify your code base
quite a bit.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

399

Chapter 11

Advanced C# Language Features

In this chapter, you’ll deepen your understanding of the C# programming language by examining a number
of more advanced topics. To begin, you’ll learn how to implement and use an indexer method. This C#
mechanism enables you to build custom types that provide access to internal subitems using an array-like
syntax. After you learn how to build an indexer method, you’ll see how to overload various operators (+, -, <, >,
and so forth) and how to create custom explicit and implicit conversion routines for your types (and you’ll
learn why you might want to do this).

Next, you’ll examine topics that are particularly useful when working with LINQ-centric APIs (though
you can use them outside of the context of LINQ)—specifically extension methods and anonymous types.

To wrap things up, you’ll learn how to create an “unsafe” code context to directly manipulate
unmanaged pointers. While it is certainly true that using pointers in C# applications is a fairly infrequent
activity, understanding how to do so can be helpful in some circumstances that involve complex
interoperability scenarios.

Understanding Indexer Methods
As a programmer, you are certainly familiar with the process of accessing individual items contained within
a simple array using the index operator ([]). Here’s an example:

static void Main(string[] args)
{
 // Loop over incoming command-line arguments
 // using index operator.
 for(int i = 0; i < args.Length; i++)
 Console.WriteLine("Args: {0}", args[i]);

 // Declare an array of local integers.
 int[] myInts = { 10, 9, 100, 432, 9874};

 // Use the index operator to access each element.
 for(int j = 0; j < myInts.Length; j++)
 Console.WriteLine("Index {0} = {1} ", j, myInts[j]);
 Console.ReadLine();
}

This code is by no means a major news flash. However, the C# language provides the capability to design
custom classes and structures that may be indexed just like a standard array, by defining an indexer method.
This particular feature is most useful when you are creating custom collection classes (generic or nongeneric).

Chapter 11 ■ advanCed C# Language Features

400

Before examining how to implement a custom indexer, let’s begin by seeing one in action. Assume you
have added support for an indexer method to the custom PersonCollection type developed in Chapter 9
(specifically, the IssuesWithNonGenericCollections project). While you have not yet added the indexer,
observe the following usage within a new Console Application project named SimpleIndexer:

// Indexers allow you to access items in an array-like fashion.
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Indexers *****\n");

 PersonCollection myPeople = new PersonCollection();

 // Add objects with indexer syntax.
 myPeople[0] = new Person("Homer", "Simpson", 40);
 myPeople[1] = new Person("Marge", "Simpson", 38);
 myPeople[2] = new Person("Lisa", "Simpson", 9);
 myPeople[3] = new Person("Bart", "Simpson", 7);
 myPeople[4] = new Person("Maggie", "Simpson", 2);

 // Now obtain and display each item using indexer.
 for (int i = 0; i < myPeople.Count; i++)
 {
 Console.WriteLine("Person number: {0}", i);
 Console.WriteLine("Name: {0} {1}",
 myPeople[i].FirstName, myPeople[i].LastName);
 Console.WriteLine("Age: {0}", myPeople[i].Age);
 Console.WriteLine();
 }
 }
}

As you can see, indexers allow you to manipulate the internal collection of subobjects just like a
standard array. Now for the big question: how do you configure the PersonCollection class (or any custom
class or structure) to support this functionality? An indexer is represented as a slightly modified C# property
definition. In its simplest form, an indexer is created using the this[] syntax. Here is the required update for
the PersonCollection class:

// Add the indexer to the existing class definition.
public class PersonCollection : IEnumerable
{
 private ArrayList arPeople = new ArrayList();

 // Custom indexer for this class.
 public Person this[int index]
 {
 get { return (Person)arPeople[index]; }
 set { arPeople.Insert(index, value); }
 }
...
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 11 ■ advanCed C# Language Features

401

Apart from using the this keyword, the indexer looks just like any other C# property declaration. For
example, the role of the get scope is to return the correct object to the caller. Here, you are doing so by
delegating the request to the indexer of the ArrayList object, as this class also supports an indexer. The
set scope is in charge of adding new Person objects; this is achieved by calling the Insert() method of the
ArrayList.

Indexers are yet another form of syntactic sugar, given that this functionality can also be achieved using
“normal” public methods such as AddPerson() or GetPerson(). Nevertheless, when you support indexer
methods on your custom collection types, they integrate well into the fabric of the .NET base class libraries.

While creating indexer methods is quite commonplace when you are building custom collections,
do remember that generic types give you this functionality out of the box. Consider the following method,
which uses a generic List<T> of Person objects. Note that you can simply use the indexer of List<T>
directly. Here’s an example:

static void UseGenericListOfPeople()
{
 List<Person> myPeople = new List<Person>();
 myPeople.Add(new Person("Lisa", "Simpson", 9));
 myPeople.Add(new Person("Bart", "Simpson", 7));

 // Change first person with indexer.
 myPeople[0] = new Person("Maggie", "Simpson", 2);

 // Now obtain and display each item using indexer.
 for (int i = 0; i < myPeople.Count; i++)
 {
 Console.WriteLine("Person number: {0}", i);
 Console.WriteLine("Name: {0} {1}", myPeople[i].FirstName,
 myPeople[i].LastName);
 Console.WriteLine("Age: {0}", myPeople[i].Age);
 Console.WriteLine();
 }
}

 ■ Source Code the simpleIndexer project is located in the Chapter 11 subdirectory.

Indexing Data Using String Values
The current PersonCollection class defined an indexer that allowed the caller to identify subitems using a
numerical value. Understand, however, that this is not a requirement of an indexer method. Suppose you’d
prefer to contain the Person objects using a System.Collections.Generic.Dictionary<TKey, TValue>
rather than an ArrayList. Given that Dictionary types allow access to the contained types using a key
(such as a person’s first name), you could define an indexer as follows:

public class PersonCollection : IEnumerable
{
 private Dictionary<string, Person> listPeople =
 new Dictionary<string, Person>();

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

402

 // This indexer returns a person based on a string index.
 public Person this[string name]
 {
 get { return (Person)listPeople[name]; }
 set { listPeople[name] = value; }
 }
 public void ClearPeople()
 { listPeople.Clear(); }

 public int Count
 { get { return listPeople.Count; } }

 IEnumerator IEnumerable.GetEnumerator()
 { return listPeople.GetEnumerator(); }
}

The caller would now be able to interact with the contained Person objects as shown here:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Indexers *****\n");

 PersonCollection myPeople = new PersonCollection();

 myPeople["Homer"] = new Person("Homer", "Simpson", 40);
 myPeople["Marge"] = new Person("Marge", "Simpson", 38);

 // Get "Homer" and print data.
 Person homer = myPeople["Homer"];
 Console.WriteLine(homer.ToString());

 Console.ReadLine();
}

Again, if you were to use the generic Dictionary<TKey, TValue> type directly, you’d gain the indexer
method functionality out of the box, without building a custom, nongeneric class supporting a string
indexer. Nevertheless, do understand that the data type of any indexer will be based on how the supporting
collection type allows the caller to retrieve subitems.

 ■ Source Code the stringIndexer project is located under the Chapter 11 subdirectory.

Overloading Indexer Methods
Understand that indexer methods may be overloaded on a single class or structure. Thus, if it makes sense
to allow the caller to access subitems using a numerical index or a string value, you might define multiple
indexers for a single type. By way of example, in ADO.NET (.NET’s native database-access API), the DataSet
class supports a property named Tables, which returns to you a strongly typed DataTableCollection type.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

403

As it turns out, DataTableCollection defines three indexers to get and set DataTable objects—one by ordinal
position and the others by a friendly string moniker and optional containing namespace, as shown here:

public sealed class DataTableCollection : InternalDataCollectionBase
{
...
 // Overloaded indexers!
 public DataTable this[int index] { get; }
 public DataTable this[string name] { get; }
 public DataTable this[string name, string tableNamespace] { get; }
}

It is common for types in the base class libraries to support indexer methods. So be aware, even if your
current project does not require you to build custom indexers for your classes and structures, that many
types already support this syntax.

Indexers with Multiple Dimensions
You can also create an indexer method that takes multiple parameters. Assume you have a custom collection
that stores subitems in a 2D array. If this is the case, you may define an indexer method as follows:

public class SomeContainer
{
 private int[,] my2DintArray = new int[10, 10];

 public int this[int row, int column]
 { /* get or set value from 2D array */ }
}

Again, unless you are building a highly stylized custom collection class, you won’t have much need to
build a multidimensional indexer. Still, once again ADO.NET showcases how useful this construct can be.
The ADO.NET DataTable is essentially a collection of rows and columns, much like a piece of graph paper or
the general structure of a Microsoft Excel spreadsheet.

While DataTable objects are typically populated on your behalf using a related “data adapter,” the
following code illustrates how to manually create an in-memory DataTable containing three columns
(for the first name, last name, and age of each record). Notice how once you have added a single row to the
DataTable, you use a multidimensional indexer to drill into each column of the first (and only) row. (If you
are following along, you’ll need to import the System.Data namespace into your code file.)

static void MultiIndexerWithDataTable()
{
 // Make a simple DataTable with 3 columns.
 DataTable myTable = new DataTable();
 myTable.Columns.Add(new DataColumn("FirstName"));
 myTable.Columns.Add(new DataColumn("LastName"));
 myTable.Columns.Add(new DataColumn("Age"));

 // Now add a row to the table.
 myTable.Rows.Add("Mel", "Appleby", 60);

Chapter 11 ■ advanCed C# Language Features

404

 // Use multidimension indexer to get details of first row.
 Console.WriteLine("First Name: {0}", myTable.Rows[0][0]);
 Console.WriteLine("Last Name: {0}", myTable.Rows[0][1]);
 Console.WriteLine("Age : {0}", myTable.Rows[0][2]);
}

Do be aware that you’ll take a rather deep dive into ADO.NET beginning with Chapter 21, so if some
of the previous code seems unfamiliar, fear not. The main point of this example is that indexer methods
can support multiple dimensions and, if used correctly, can simplify the way you interact with contained
subobjects in custom collections.

Indexer Definitions on Interface Types
Indexers can be defined on a given .NET interface type to allow supporting types to provide a custom
implementation. Here is a simple example of an interface that defines a protocol for obtaining string objects
using a numerical indexer:

public interface IStringContainer
{
 string this[int index] { get; set; }
}

With this interface definition, any class or structure that implements this interface must now support a
read-write indexer that manipulates subitems using a numerical value. Here is a partial implementation of
such as class:

class SomeClass : IStringContainer
{
 private List<string> myStrings = new List<string>();

 public string this[int index]
 {
 get { return myStrings[index]; }
 set { myStrings.Insert(index, value); }
 }
}

That wraps up the first major topic of this chapter. Now let’s examine a language feature that lets you
build custom classes or structures that respond uniquely to the intrinsic operators of C#. Next, allow me to
introduce the concept of operator overloading.

Understanding Operator Overloading
C#, like any programming language, has a canned set of tokens that are used to perform basic operations on
intrinsic types. For example, you know that the + operator can be applied to two integers to yield a larger integer.

// The + operator with ints.
int a = 100;
int b = 240;
int c = a + b; // c is now 340

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

Chapter 11 ■ advanCed C# Language Features

405

Once again, this is no major news flash, but have you ever stopped and noticed how the same + operator
can be applied to most intrinsic C# data types? For example, consider this code:

// + operator with strings.
string s1 = "Hello";
string s2 = " world!";
string s3 = s1 + s2; // s3 is now "Hello world!"

In essence, the + operator functions in specific ways based on the supplied data types (strings or
integers, in this case). When the + operator is applied to numerical types, the result is the summation of the
operands. However, when the + operator is applied to string types, the result is string concatenation.

The C# language gives you the capability to build custom classes and structures that also respond
uniquely to the same set of basic tokens (such as the + operator). While not every possible C# operator can
be overloaded, many can, as shown in Table 11-1.

Overloading Binary Operators
To illustrate the process of overloading binary operators, assume the following simple Point class is defined
in a new Console Application project named OverloadedOps:

// Just a simple, everyday C# class.
public class Point
{
 public int X {get; set;}
 public int Y {get; set;}

 public Point(int xPos, int yPos)
 {
 X = xPos;
 Y = yPos;
 }

Table 11-1. Overloadability of C# Operators

C# Operator Overloadability

+, -,! , ~, ++, --, true,
false

These unary operators can be overloaded.

+, -, *, /, %, &, |, ^, <<, >> These binary operators can be overloaded.

==,!=, <, >, <=, >= These comparison operators can be overloaded. C# demands that “like”
operators (i.e., < and >, <= and >=, == and !=) are overloaded together.

[] The [] operator cannot be overloaded. As you saw earlier in this chapter,
however, the indexer construct provides the same functionality.

() The () operator cannot be overloaded. As you will see later in this chapter,
however, custom conversion methods provide the same functionality.

+=, -=, *=, /=, %=, &=, |=, ^=,
<<=, >>=

Shorthand assignment operators cannot be overloaded; however, you receive
them as a freebie when you overload the related binary operator.

Chapter 11 ■ advanCed C# Language Features

406

 public override string ToString()
 {
 return string.Format("[{0}, {1}]", this.X, this.Y);
 }
}

Now, logically speaking, it makes sense to “add” Points together. For example, if you added together
two Point variables, you should receive a new Point that is the summation of the X and Y values. Of course,
it might also be helpful to subtract one Point from another. Ideally, you would like to be able to author the
following code:

// Adding and subtracting two points?
static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Overloaded Operators *****\n");

 // Make two points.
 Point ptOne = new Point(100, 100);
 Point ptTwo = new Point(40, 40);
 Console.WriteLine("ptOne = {0}", ptOne);
 Console.WriteLine("ptTwo = {0}", ptTwo);

 // Add the points to make a bigger point?
 Console.WriteLine("ptOne + ptTwo: {0} ", ptOne + ptTwo);

 // Subtract the points to make a smaller point?
 Console.WriteLine("ptOne - ptTwo: {0} ", ptOne - ptTwo);
 Console.ReadLine();
}

However, as your Point now stands, you will receive compile-time errors, as the Point type does not know
how to respond to the + or - operators. To equip a custom type to respond uniquely to intrinsic operators, C#
provides the operator keyword, which you can use only in conjunction with the static keyword. When you
overload a binary operator (such as + and -), you will most often pass in two arguments that are the same type
as the defining class (a Point in this example), as illustrated in the following code update:

// A more intelligent Point type.
public class Point
{
...
 // Overloaded operator +.
 public static Point operator + (Point p1, Point p2)
 {
 return new Point(p1.X + p2.X, p1.Y + p2.Y);
 }

 // Overloaded operator -.
 public static Point operator - (Point p1, Point p2)
 {
 return new Point(p1.X - p2.X, p1.Y - p2.Y);
 }
}

Chapter 11 ■ advanCed C# Language Features

407

The logic behind operator + is simply to return a new Point object based on the summation of the fields
of the incoming Point parameters. Thus, when you write pt1 + pt2, under the hood you can envision the
following hidden call to the static operator + method.

// Pseudo-code: Point p3 = Point.operator+ (p1, p2)
Point p3 = p1 + p2;

Likewise, p1 – p2 maps to the following:

// Pseudo-code: Point p4 = Point.operator- (p1, p2)
Point p4 = p1 - p2;

With this update, your program now compiles, and you find you are able to add and subtract Point
objects, as shown in the following output:

ptOne = [100, 100]
ptTwo = [40, 40]
ptOne + ptTwo: [140, 140]
ptOne - ptTwo: [60, 60]

When you are overloading a binary operator, you are not required to pass in two parameters of the
same type. If it makes sense to do so, one of the arguments can differ. For example, here is an overloaded
operator + that allows the caller to obtain a new Point that is based on a numerical adjustment:

public class Point
{
...
 public static Point operator + (Point p1, int change)
 {
 return new Point(p1.X + change, p1.Y + change);
 }

 public static Point operator + (int change, Point p1)
 {
 return new Point(p1.X + change, p1.Y + change);
 }
}

Notice that you need both versions of the method if you want the arguments to be passed in either order
(i.e., you can’t just define one of the methods and expect the compiler to automatically support the other one).
You are now able to use these new versions of operator + as follows:

// Prints [110, 110].
Point biggerPoint = ptOne + 10;
Console.WriteLine("ptOne + 10 = {0}", biggerPoint);

// Prints [120, 120].
Console.WriteLine("10 + biggerPoint = {0}", 10 + biggerPoint);
Console.WriteLine();

Chapter 11 ■ advanCed C# Language Features

408

And What of the += and –+ Operators?
If you are coming to C# from a C++ background, you might lament the loss of overloading the shorthand
assignment operators (+=, -=, and so forth). Don’t despair. In terms of C#, the shorthand assignment
operators are automatically simulated if a type overloads the related binary operator. Thus, given that the
Point structure has already overloaded the + and - operators, you can write the following:

// Overloading binary operators results in a freebie shorthand operator.
static void Main(string[] args)
{
...
 // Freebie +=
 Point ptThree = new Point(90, 5);
 Console.WriteLine("ptThree = {0}", ptThree);
 Console.WriteLine("ptThree += ptTwo: {0}", ptThree += ptTwo);

 // Freebie -=
 Point ptFour = new Point(0, 500);
 Console.WriteLine("ptFour = {0}", ptFour);
 Console.WriteLine("ptFour -= ptThree: {0}", ptFour -= ptThree);
 Console.ReadLine();
}

Overloading Unary Operators
C# also allows you to overload various unary operators, such as ++ and --. When you overload a unary
operator, you also must use the static keyword with the operator keyword; however, in this case you simply
pass in a single parameter that is the same type as the defining class/structure. For example, if you were to
update the Point with the following overloaded operators:

public class Point
{
...
 // Add 1 to the X/Y values for the incoming Point.
 public static Point operator ++(Point p1)
 {
 return new Point(p1.X+1, p1.Y+1);
 }

 // Subtract 1 from the X/Y values for the incoming Point.
 public static Point operator --(Point p1)
 {
 return new Point(p1.X-1, p1.Y-1);
 }
}

Chapter 11 ■ advanCed C# Language Features

409

you could increment and decrement Point’s x and y values like this:

static void Main(string[] args)
{
...
 // Applying the ++ and -- unary operators to a Point.
 Point ptFive = new Point(1, 1);
 Console.WriteLine("++ptFive = {0}", ++ptFive); // [2, 2]
 Console.WriteLine("--ptFive = {0}", --ptFive); // [1, 1]

 // Apply same operators as postincrement/decrement.
 Point ptSix = new Point(20, 20);
 Console.WriteLine("ptSix++ = {0}", ptSix++); // [20, 20]
 Console.WriteLine("ptSix-- = {0}", ptSix--); // [21, 21]
 Console.ReadLine();
}

Notice in the preceding code example you are applying the custom ++ and -- operators in two different
manners. In C++, it is possible to overload pre- and postincrement/decrement operators separately. This
is not possible in C#. However, the return value of the increment/decrement is automatically handled
“correctly” free of charge (i.e., for an overloaded ++ operator, pt++ has the value of the unmodified object as
its value within an expression, while ++pt has the new value applied before use in the expression).

Overloading Equality Operators
As you might recall from Chapter 6, System.Object.Equals() can be overridden to perform value-based
(rather than referenced-based) comparisons between reference types. If you choose to override Equals()
(and the often related System.Object.GetHashCode() method), it is trivial to overload the equality operators
(== and !=). To illustrate, here is the updated Point type:

// This incarnation of Point also overloads the == and != operators.
public class Point
{
...
 public override bool Equals(object o)
 {
 return o.ToString() == this.ToString();
 }

 public override int GetHashCode()
 {
 return this.ToString().GetHashCode();
 }

 // Now let's overload the == and != operators.
 public static bool operator ==(Point p1, Point p2)
 {
 return p1.Equals(p2);
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 11 ■ advanCed C# Language Features

410

 public static bool operator !=(Point p1, Point p2)
 {
 return !p1.Equals(p2);
 }
}

Notice how the implementation of operator == and operator != simply makes a call to the overridden
Equals() method to get the bulk of the work done. Given this, you can now exercise your Point class as follows:

// Make use of the overloaded equality operators.
static void Main(string[] args)
{
...
 Console.WriteLine("ptOne == ptTwo : {0}", ptOne == ptTwo);
 Console.WriteLine("ptOne != ptTwo : {0}", ptOne != ptTwo);
 Console.ReadLine();
}

As you can see, it is quite intuitive to compare two objects using the well-known == and != operators,
rather than making a call to Object. Equals(). If you do overload the equality operators for a given class,
keep in mind that C# demands that if you override the == operator, you must also override the != operator
(if you forget, the compiler will let you know).

Overloading Comparison Operators
In Chapter 8, you learned how to implement the IComparable interface to compare the relationship between
two like objects. You can, in fact, also overload the comparison operators (<, >, <=, and >=) for the same class.
As with the equality operators, C# demands that if you overload <, you must also overload >. The same holds
true for the <= and >= operators. If the Point type overloaded these comparison operators, the object user
could now compare Points, as follows:

// Using the overloaded < and > operators.
static void Main(string[] args)
{
...
 Console.WriteLine("ptOne < ptTwo : {0}", ptOne < ptTwo);
 Console.WriteLine("ptOne > ptTwo : {0}", ptOne > ptTwo);
 Console.ReadLine();
}

Assuming you have implemented the IComparable interface (or better yet, the generic equivalent),
overloading the comparison operators is trivial. Here is the updated class definition:

// Point is also comparable using the comparison operators.
public class Point : IComparable<Point>
{
...
 public int CompareTo(Point other)
 {
 if (this.X > other.X && this.Y > other.Y)
 return 1;

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

Chapter 11 ■ advanCed C# Language Features

411

 if (this.X < other.X && this.Y < other.Y)
 return -1;
 else
 return 0;
 }

 public static bool operator <(Point p1, Point p2)
 { return (p1.CompareTo(p2) < 0); }

 public static bool operator >(Point p1, Point p2)
 { return (p1.CompareTo(p2) > 0); }

 public static bool operator <=(Point p1, Point p2)
 { return (p1.CompareTo(p2) <= 0); }

 public static bool operator >=(Point p1, Point p2)
 { return (p1.CompareTo(p2) >= 0); }
}

Final Thoughts Regarding Operator Overloading
As you have seen, C# provides the capability to build types that can respond uniquely to various intrinsic,
well-known operators. Now, before you go and retrofit all your classes to support such behavior, you must be
sure that the operators you are about to overload make some sort of logical sense in the world at large.

For example, let’s say you overloaded the multiplication operator for the MiniVan class. What exactly
would it mean to multiply two MiniVan objects? Not much. In fact, it would be confusing for teammates to
see the following use of MiniVan objects:

// Huh?! This is far from intuitive...
MiniVan newVan = myVan * yourVan;

Overloading operators is generally useful only when you’re building atomic data types. Text, points,
rectangles, fractions, and hexagons make good candidates for operator overloading. People, managers, cars,
database connections, and web pages do not. As a rule of thumb, if an overloaded operator makes it harder
for the user to understand a type’s functionality, don’t do it. Use this feature wisely.

 ■ Source Code the OverloadedOps project is located in the Chapter 11 subdirectory.

Understanding Custom Type Conversions
Let’s now examine a topic closely related to operator overloading: custom type conversions. To set the stage
for the discussion, let’s quickly review the notion of explicit and implicit conversions between numerical
data and related class types.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

412

Recall: Numerical Conversions
In terms of the intrinsic numerical types (sbyte, int, float, etc.), an explicit conversion is required when
you attempt to store a larger value in a smaller container, as this could result in a loss of data. Basically, this
is your way to tell the compiler, “Leave me alone, I know what I am trying to do.” Conversely, an implicit
conversion happens automatically when you attempt to place a smaller type in a destination type that will
not result in a loss of data.

static void Main()
{
 int a = 123;
 long b = a; // Implicit conversion from int to long.
 int c = (int) b; // Explicit conversion from long to int.
}

Recall: Conversions Among Related Class Types
As shown in Chapter 6, class types may be related by classical inheritance (the “is-a” relationship). In this
case, the C# conversion process allows you to cast up and down the class hierarchy. For example, a derived
class can always be implicitly cast to a base type. However, if you want to store a base class type in a derived
variable, you must perform an explicit cast, like so:

// Two related class types.
class Base{}
class Derived : Base{}

class Program
{
 static void Main(string[] args)
 {
 // Implicit cast between derived to base.
 Base myBaseType;
 myBaseType = new Derived();

 // Must explicitly cast to store base reference
 // in derived type.
 Derived myDerivedType = (Derived)myBaseType;
 }
}

This explicit cast works because the Base and Derived classes are related by classical inheritance.
However, what if you have two class types in different hierarchies with no common parent (other than
System.Object) that require conversions? Given that they are not related by classical inheritance, typical
casting operations offer no help (and you would get a compiler error to boot!).

On a related note, consider value types (structures). Assume you have two .NET structures named
Square and Rectangle. Given that structures cannot leverage classic inheritance (as they are always sealed),
you have no natural way to cast between these seemingly related types.

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 11 ■ advanCed C# Language Features

413

While you could create helper methods in the structures (such as Rectangle.ToSquare()), C# lets you
build custom conversion routines that allow your types to respond to the () casting operator. Therefore, if
you configured the structures correctly, you would be able to use the following syntax to explicitly convert
between them as follows:

// Convert a Rectangle to a Square!
Rectangle rect;
rect.Width = 3;
rect.Height = 10;
Square sq = (Square)rect;

Creating Custom Conversion Routines
Begin by creating a new Console Application project named CustomConversions. C# provides two
keywords, explicit and implicit, that you can use to control how your types respond during an attempted
conversion. Assume you have the following structure definitions:

public struct Rectangle
{
 public int Width {get; set;}
 public int Height {get; set;}

 public Rectangle(int w, int h) : this()
 {
 Width = w; Height = h;
 }

 public void Draw()
 {
 for (int i = 0; i < Height; i++)
 {
 for (int j = 0; j < Width; j++)
 {
 Console.Write("*");
 }
 Console.WriteLine();
 }
 }

 public override string ToString()
 {
 return string.Format("[Width = {0}; Height = {1}]",
 Width, Height);
 }
}

Chapter 11 ■ advanCed C# Language Features

414

public struct Square
{
 public int Length {get; set;}
 public Square(int l) : this()
 {
 Length = l;
 }

 public void Draw()
 {
 for (int i = 0; i < Length; i++)
 {
 for (int j = 0; j < Length; j++)
 {
 Console.Write("*");
 }
 Console.WriteLine();
 }
 }

 public override string ToString()
 { return string.Format("[Length = {0}]", Length); }

 // Rectangles can be explicitly converted
 // into Squares.
 public static explicit operator Square(Rectangle r)
 {
 Square s = new Square();
 s.Length = r.Height;
 return s;
 }
}

 ■ Note You’ll notice in the Square and Rectangle constructors, I am explicitly chaining to the default constructor.
the reason is that if you have a structure, which makes use of automatic property syntax (as you do here), the
default constructor must be explicitly called (from all custom constructors) to initialize the private backing fields (for
example, if the structures had any additional fields/properties, this default constructor would initialize these fields to
default values). Yes, this is a quirky rule of C#, but after all, this is an advanced topics chapter.

Notice that this iteration of the Square type defines an explicit conversion operator. Like the process of
overloading an operator, conversion routines make use of the C# operator keyword, in conjunction with the
explicit or implicit keyword, and must be defined as static. The incoming parameter is the entity you
are converting from, while the operator type is the entity you are converting to.

Chapter 11 ■ advanCed C# Language Features

415

In this case, the assumption is that a square (being a geometric pattern in which all sides are of equal
length) can be obtained from the height of a rectangle. Thus, you are free to convert a Rectangle into a
Square, as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Conversions *****\n");
 // Make a Rectangle.
 Rectangle r = new Rectangle(15, 4);
 Console.WriteLine(r.ToString());
 r.Draw();

 Console.WriteLine();

 // Convert r into a Square,
 // based on the height of the Rectangle.
 Square s = (Square)r;
 Console.WriteLine(s.ToString());
 s.Draw();
 Console.ReadLine();
}

You can see the output here:

***** Fun with Conversions *****

[Width = 15; Height = 4]

[Length = 4]

While it may not be all that helpful to convert a Rectangle into a Square within the same scope, assume
you have a function that has been designed to take Square parameters.

// This method requires a Square type.
static void DrawSquare(Square sq)
{
 Console.WriteLine(sq.ToString());
 sq.Draw();
}

Chapter 11 ■ advanCed C# Language Features

416

Using your explicit conversion operation on the Square type, you can now pass in Rectangle types for
processing using an explicit cast, like so:

static void Main(string[] args)
{
...
 // Convert Rectangle to Square to invoke method.
 Rectangle rect = new Rectangle(10, 5);
 DrawSquare((Square)rect);
 Console.ReadLine();
}

Additional Explicit Conversions for the Square Type
Now that you can explicitly convert Rectangles into Squares, let’s examine a few additional explicit
conversions. Given that a square is symmetrical on all sides, it might be helpful to provide an explicit
conversion routine that allows the caller to cast from an integer type into a Square (which, of course, will
have a side length equal to the incoming integer). Likewise, what if you were to update Square such that the
caller can cast from a Square into an int? Here is the calling logic:

static void Main(string[] args)
{
...
 // Converting an int to a Square.
 Square sq2 = (Square)90;
 Console.WriteLine("sq2 = {0}", sq2);

 // Converting a Square to an int.
 int side = (int)sq2;
 Console.WriteLine("Side length of sq2 = {0}", side);
 Console.ReadLine();
}

and here is the update to the Square class:

public struct Square
{
...
 public static explicit operator Square(int sideLength)
 {
 Square newSq = new Square();
 newSq.Length = sideLength;
 return newSq;
 }

 public static explicit operator int (Square s)
 {return s.Length;}
}

Chapter 11 ■ advanCed C# Language Features

417

To be honest, converting from a Square into an integer may not be the most intuitive (or useful)
operation (after all, chances are you could just pass such values to a constructor). However, it does point out
an important fact regarding custom conversion routines: the compiler does not care what you convert to or
from, as long as you have written syntactically correct code.

Thus, as with overloading operators, just because you can create an explicit cast operation for a given
type does not mean you should. Typically, this technique will be most helpful when you’re creating .NET
structure types, given that they are unable to participate in classical inheritance (where casting comes
for free).

Defining Implicit Conversion Routines
So far, you have created various custom explicit conversion operations. However, what about the following
implicit conversion?

static void Main(string[] args)
{
...
 Square s3 = new Square();
 s3.Length = 83;

 // Attempt to make an implicit cast?
 Rectangle rect2 = s3;

 Console.ReadLine();
}

This code will not compile, given that you have not provided an implicit conversion routine for the
Rectangle type. Now here is the catch: it is illegal to define explicit and implicit conversion functions on
the same type if they do not differ by their return type or parameter set. This might seem like a limitation;
however, the second catch is that when a type defines an implicit conversion routine, it is legal for the caller
to make use of the explicit cast syntax!

Confused? To clear things up, let’s add an implicit conversion routine to the Rectangle structure using
the C# implicit keyword (note that the following code assumes the width of the resulting Rectangle is
computed by multiplying the side of the Square by 2):

public struct Rectangle
{
...
 public static implicit operator Rectangle(Square s)
 {
 Rectangle r = new Rectangle();
 r.Height = s.Length;

 // Assume the length of the new Rectangle with
 // (Length x 2).
 r.Width = s.Length * 2;
 return r;
 }
}

Chapter 11 ■ advanCed C# Language Features

418

With this update, you are now able to convert between types, as follows:

static void Main(string[] args)
{
...
 // Implicit cast OK!
 Square s3 = new Square();
 s3.Length= 7;

 Rectangle rect2 = s3;
 Console.WriteLine("rect2 = {0}", rect2);

 // Explicit cast syntax still OK!
 Square s4 = new Square();
 s4.Length = 3;
 Rectangle rect3 = (Rectangle)s4;

 Console.WriteLine("rect3 = {0}", rect3);
 Console.ReadLine();
}

That wraps up your look at defining custom conversion routines. As with overloaded operators,
remember that this bit of syntax is simply a shorthand notation for “normal” member functions, and in this
light it is always optional. When used correctly, however, custom structures can be used more naturally, as
they can be treated as true class types related by inheritance.

 ■ Source Code the CustomConversions project is located in the Chapter 11 subdirectory.

Understanding Extension Methods
.NET 3.5 introduced the concept of extension methods, which allow you to add new methods or properties
to a class or structure, without modifying the original type in any direct manner. So, where might this be
helpful? Consider the following possibilities.

First, say you have a given class that is in production. It becomes clear over time that this class should
support a handful of new members. If you modify the current class definition directly, you risk the possibility
of breaking backward compatibility with older code bases making use of it, as they might not have been
compiled with the latest and greatest class definition. One way to ensure backward compatibility is to create
a new derived class from the existing parent; however, now you have two classes to maintain. As we all know,
code maintenance is the least glamorous part of a software engineer’s job description.

Now consider this situation. Let’s say you have a structure (or maybe a sealed class) and want to add
new members so that it behaves polymorphically in your system. Since structures and sealed classes cannot
be extended, your only choice is to add the members to the type, once again risking backward compatibility!

Using extension methods, you are able to modify types without subclassing and without modifying the
type directly. To be sure, this technique is essentially a smoke-and-mirror show. The new functionality is
offered to a type only if the extension methods have been referenced for use in your current project.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

419

Defining Extension Methods
When you define extension methods, the first restriction is that they must be defined within a static class
(see Chapter 5) and, therefore, each extension method must be declared with the static keyword. The
second point is that all extension methods are marked as such by using the this keyword as a modifier on
the first (and only the first) parameter of the method in question. The “this qualified” parameter represents
the item being extended.

To illustrate, create a new Console Application project named ExtensionMethods. Now, assume you
are authoring a class named MyExtensions that defines two extension methods. The first method allows
any object to use a new method named DisplayDefiningAssembly() that makes use of types in the
System.Reflection namespace to display the name of the assembly containing the type in question.

 ■ Note You will formally examine the reflection apI in Chapter 15. If you are new to the topic, simply understand
that reflection allows you to discover the structure of assemblies, types, and type members at runtime.

The second extension method, named ReverseDigits(), allows any int to obtain a new version
of itself where the value is reversed digit by digit. For example, if an integer with the value 1234 called
ReverseDigits(), the integer returned is set to the value 4321. Consider the following class implementation
(be sure to import the System.Reflection namespace if you are following along):

static class MyExtensions
{
 // This method allows any object to display the assembly
 // it is defined in.
 public static void DisplayDefiningAssembly(this object obj)
 {
 Console.WriteLine("{0} lives here: => {1}\n", obj.GetType().Name,
 Assembly.GetAssembly(obj.GetType()).GetName().Name);
 }

 // This method allows any integer to reverse its digits.
 // For example, 56 would return 65.
 public static int ReverseDigits(this int i)
 {
 // Translate int into a string, and then
 // get all the characters.
 char[] digits = i.ToString().ToCharArray();

 // Now reverse items in the array.
 Array.Reverse(digits);

 // Put back into string.
 string newDigits = new string(digits);

 // Finally, return the modified string back as an int.
 return int.Parse(newDigits);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 11 ■ advanCed C# Language Features

420

Again, note how the first parameter of each extension method has been qualified with the this
keyword, before defining the parameter type. It is always the case that the first parameter of an extension
method represents the type being extended. Given that DisplayDefiningAssembly() has been prototyped
to extend System.Object, every type now has this new member, as Object is the parent to all types in the
.NET platform. However, ReverseDigits() has been prototyped to extend only integer types; therefore, if
anything other than an integer attempts to invoke this method, you will receive a compile-time error.

 ■ Note understand that a given extension method can have multiple parameters, but only the first parameter
can be qualified with this. the additional parameters would be treated as normal incoming parameters for use
by the method.

Invoking Extension Methods
Now that you have these extension methods in place, consider the following Main() method that applies the
extension method to various types in the base class libraries:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Extension Methods *****\n");

 // The int has assumed a new identity!
 int myInt = 12345678;
 myInt.DisplayDefiningAssembly();

 // So has the DataSet!
 System.Data.DataSet d = new System.Data.DataSet();
 d.DisplayDefiningAssembly();

 // And the SoundPlayer!
 System.Media.SoundPlayer sp = new System.Media.SoundPlayer();
 sp.DisplayDefiningAssembly();

 // Use new integer functionality.
 Console.WriteLine("Value of myInt: {0}", myInt);
 Console.WriteLine("Reversed digits of myInt: {0}", myInt.ReverseDigits());

 Console.ReadLine();
}

Chapter 11 ■ advanCed C# Language Features

421

Here is the output:

***** Fun with Extension Methods *****

Int32 lives here: => mscorlib

DataSet lives here: => System.Data

SoundPlayer lives here: => System

Value of myInt: 12345678
Reversed digits of myInt: 87654321

Importing Extension Methods
When you define a class containing extension methods, it will no doubt be defined within a .NET
namespace. If this namespace is different from the namespace using the extension methods, you will need
to make use of the expected C# using keyword. When you do, your code file has access to all extension
methods for the type being extended. This is important to remember, because if you do not explicitly import
the correct namespace, the extension methods are not available for that C# code file.

In effect, although it can appear on the surface that extension methods are global in nature, they are in
fact limited to the namespaces that define them or the namespaces that import them. Thus, if you wrap the
MyExtensions class into a namespace named MyExtensionMethods, as follows:

namespace MyExtensionMethods
{
 static class MyExtensions
 {
 ...
 }
}

other namespaces in the project would need to explicitly import the MyExtensionMethods namespace to
gain the extension methods defined by your class.

 ■ Note It is common practice to not only isolate extension methods into a dedicated .net namespace but into
a dedicated class library. In this way, new applications can “opt in” to extensions by explicitly referencing the
correct library and importing the namespace. Chapter 14 will examine the details of building and using custom
.net class libraries.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 11 ■ advanCed C# Language Features

422

The IntelliSense of Extension Methods
Given that extension methods are not literally defined on the type being extended, it is certainly possible
to become confused when examining an existing code base. For example, assume you have imported a
namespace that defined some number of extension methods authored by a teammate. As you are authoring
your code, you might create a variable of the extended type, apply the dot operator, and find dozens of new
methods that are not members of the original class definition!

Thankfully, Visual Studio’s IntelliSense mechanism marks all extension methods as shown in Figure 11-1.

Any method marked as such is a friendly reminder that the method is defined outside of the original
class definition via an extension method.

 ■ Source Code the extensionMethods project can be found in the Chapter 11 subdirectory.

Extending Types Implementing Specific Interfaces
At this point, you have seen how to extend classes (and, indirectly, structures that follow the same syntax)
with new functionality via extension methods. It is also possible to define an extension method that can only
extend a class or structure that implements the correct interface. For example, you could say something
to the effect of “If a class or structure implements IEnumerable<T>, then that type gets the following new
members.” Of course, it is possible to demand that a type support any interface at all, including your own
custom interfaces.

Figure 11-1. The IntelliSense of extension methods

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

423

To illustrate, create a new Console Application project named InterfaceExtensions. The goal here is
to add a new method to any type that implements IEnumerable, which would include any array and many
nongeneric collection classes (recall from Chapter 8 that the generic IEnumerable<T> interface extends the
nongeneric IEnumerable interface). Add the following extension class to your new project:

static class AnnoyingExtensions
{
 public static void PrintDataAndBeep(this System.Collections.IEnumerable iterator)
 {
 foreach (var item in iterator)
 {
 Console.WriteLine(item);
 Console.Beep();
 }
 }
}

Given that the PrintDataAndBeep() method can be used by any class or structure that implements
IEnumerable, you could test via the following Main() method:

static void Main(string[] args)
{
 Console.WriteLine("***** Extending Interface Compatible Types *****\n");

 // System.Array implements IEnumerable!
 string[] data = { "Wow", "this", "is", "sort", "of", "annoying",
 "but", "in", "a", "weird", "way", "fun!"};
 data.PrintDataAndBeep();

 Console.WriteLine();

 // List<T> implements IEnumerable!
 List<int> myInts = new List<int>() {10, 15, 20};
 myInts.PrintDataAndBeep();

 Console.ReadLine();
}

That wraps up your examination of C# extension methods. Remember that this particular language
feature can be useful whenever you want to extend the functionality of a type but do not want to subclass
(or cannot subclass if the type is sealed), for the purposes of polymorphism. As you will see later in the text,
extension methods play a key role for LINQ APIs. In fact, you will see that under the LINQ APIs, one of the
most common items being extended is a class or structure implementing (surprise!) the generic version of
IEnumerable.

 ■ Source Code the Interfaceextension project can be found in the Chapter 11 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_8
http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

424

Understanding Anonymous Types
As an object-oriented programmer, you know the benefits of defining classes to represent the state and
functionality of a given item you are attempting to model. To be sure, whenever you need to define a class
that is intended to be reused across projects and that provides numerous bits of functionality through a set of
methods, events, properties, and custom constructors, creating a new C# class is common practice.

However, there are other times when you would like to define a class simply to model a set of
encapsulated (and somehow related) data points without any associated methods, events, or other
specialized functionality. Furthermore, what if this type is to be used only by a handful of methods in your
program? It would be rather a bother to define a full class definition as shown next when you know full
well this class will be used in only a handful of places. To accentuate this point, here is the rough outline of
what you might need to do when you need to create a “simple” data type that follows typical value-based
semantics:

class SomeClass
{
 // Define a set of private member variables...

 // Make a property for each member variable...

 // Override ToString() to account for key member variables...

 // Override GetHashCode() and Equals() to work with value-based equality...
}

As you can see, it is not necessarily so simple. Not only do you need to author a fair amount of code,
but you have another class to maintain in your system. For temporary data such as this, it would be useful
to whip up a custom data type on the fly. For example, let’s say you need to build a custom method that
receives a set of incoming parameters. You would like to take these parameters and use them to create a new
data type for use in this method scope. Further, you would like to quickly print out this data using the typical
ToString() method and perhaps use other members of System.Object. You can do this very thing using
anonymous type syntax.

Defining an Anonymous Type
When you define an anonymous type, you do so by using the var keyword (see Chapter 3) in conjunction
with object initialization syntax (see Chapter 5). You must use the var keyword because the compiler will
automatically generate a new class definition at compile time (and you never see the name of this class in
your C# code). The initialization syntax is used to tell the compiler to create private backing fields and
(read-only) properties for the newly created type.

To illustrate, create a new Console Application project named AnonymousTypes. Now, add the
following method to your Program class, which composes a new type, on the fly, using the incoming
parameter data:

static void BuildAnonType(string make, string color, int currSp)
{
 // Build anon type using incoming args.
 var car = new { Make = make, Color = color, Speed = currSp };

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_5

Chapter 11 ■ advanCed C# Language Features

425

 // Note you can now use this type to get the property data!
 Console.WriteLine("You have a {0} {1} going {2} MPH",
 car.Color, car.Make, car.Speed);

 // Anon types have custom implementations of each virtual
 // method of System.Object. For example:
 Console.WriteLine("ToString() == {0}", car.ToString());
}

You can call this method from Main(), as expected. However, do note that an anonymous type can also
be created using hard-coded values, as shown here:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Anonymous Types *****\n");

 // Make an anonymous type representing a car.
 var myCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

 // Now show the color and make.
 Console.WriteLine("My car is a {0} {1}.", myCar.Color, myCar.Make);

 // Now call our helper method to build anonymous type via args.
 BuildAnonType("BMW", "Black", 90);

 Console.ReadLine();
}

So, at this point, simply understand that anonymous types allow you to quickly model the “shape” of
data with very little overhead. This technique is little more than a way to whip up a new data type on the fly,
which supports bare-bones encapsulation via properties and acts according to value-based semantics. To
understand that last point, let’s see how the C# compiler builds out anonymous types at compile time and,
specifically, how it overrides the members of System.Object.

The Internal Representation of Anonymous Types
All anonymous types are automatically derived from System.Object and, therefore, support each of the
members provided by this base class. Given this, you could invoke ToString(), GetHashCode(), Equals(),
or GetType() on the implicitly typed myCar object. Assume your Program class defines the following static
helper function:

static void ReflectOverAnonymousType(object obj)
{
 Console.WriteLine("obj is an instance of: {0}", obj.GetType().Name);
 Console.WriteLine("Base class of {0} is {1}",
 obj.GetType().Name,
 obj.GetType().BaseType);
 Console.WriteLine("obj.ToString() == {0}", obj.ToString());
 Console.WriteLine("obj.GetHashCode() == {0}", obj.GetHashCode());
 Console.WriteLine();
}

Chapter 11 ■ advanCed C# Language Features

426

Now assume you invoke this method from Main(), passing in the myCar object as the parameter, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Anonymous Types *****\n");

 // Make an anonymous type representing a car.
 var myCar = new {Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55};

 // Reflect over what the compiler generated.
 ReflectOverAnonymousType(myCar);
...

 Console.ReadLine();
}

The output will look similar to the following:

***** Fun with Anonymous Types *****

obj is an instance of: <>f__AnonymousType0`3
Base class of <>f__AnonymousType0`3 is System.Object
obj.ToString() = { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }
obj.GetHashCode() = -439083487

First, notice that, in this example, the myCar object is of type <>f AnonymousType0`3 (your name may
differ). Remember that the assigned type name is completely determined by the compiler and is not directly
accessible in your C# code base.

Perhaps most important, notice that each name-value pair defined using the object initialization syntax
is mapped to an identically named read-only property and a corresponding private read-only backing field.
The following C# code approximates the compiler-generated class used to represent the myCar object (which
again can be verified using ildasm.exe):

internal sealed class <>f__AnonymousType0<<Color>j__TPar,
 <Make>j__TPar, <CurrentSpeed>j__TPar>
{
 // Read-only fields.
 private readonly <Color>j__TPar <Color>i__Field;
 private readonly <CurrentSpeed>j__TPar <CurrentSpeed>i__Field;
 private readonly <Make>j__TPar <Make>i__Field;

 // Default constructor.
 public <>f__AnonymousType0(<Color>j__TPar Color,
 <Make>j__TPar Make, <CurrentSpeed>j__TPar CurrentSpeed);
 // Overridden methods.
 public override bool Equals(object value);
 public override int GetHashCode();
 public override string ToString();

Chapter 11 ■ advanCed C# Language Features

427

 // Read-only properties.
 public <Color>j__TPar Color { get; }
 public <CurrentSpeed>j__TPar CurrentSpeed { get; }
 public <Make>j__TPar Make { get; }
}

The Implementation of ToString() and GetHashCode()
All anonymous types automatically derive from System.Object and are provided with an overridden version
of Equals(), GetHashCode(), and ToString(). The ToString() implementation simply builds a string from
each name-value pair. Here’s an example:

public override string ToString()
{
 StringBuilder builder = new StringBuilder();
 builder.Append("{ Color = ");
 builder.Append(this.<Color>i__Field);
 builder.Append(", Make = ");
 builder.Append(this.<Make>i__Field);
 builder.Append(", CurrentSpeed = ");
 builder.Append(this.<CurrentSpeed>i__Field);
 builder.Append(" }");
 return builder.ToString();
}

The GetHashCode() implementation computes a hash value using each anonymous type’s
member variables as input to the System.Collections.Generic.EqualityComparer<T> type. Using this
implementation of GetHashCode(), two anonymous types will yield the same hash value if (and only if)
they have the same set of properties that have been assigned the same values. Given this implementation,
anonymous types are well-suited to be contained within a Hashtable container.

The Semantics of Equality for Anonymous Types
While the implementation of the overridden ToString() and GetHashCode() methods is fairly straightforward,
you might be wondering how the Equals() method has been implemented. For example, if you were to
define two “anonymous cars” variables that specify the same name-value pairs, would these two variables be
considered equal? To see the results firsthand, update your Program type with the following new method:

static void EqualityTest()
{
 // Make 2 anonymous classes with identical name/value pairs.
 var firstCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };
 var secondCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

 // Are they considered equal when using Equals()?
 if (firstCar.Equals(secondCar))
 Console.WriteLine("Same anonymous object!");
 else
 Console.WriteLine("Not the same anonymous object!");

Chapter 11 ■ advanCed C# Language Features

428

 // Are they considered equal when using ==?
 if (firstCar == secondCar)
 Console.WriteLine("Same anonymous object!");
 else
 Console.WriteLine("Not the same anonymous object!");

 // Are these objects the same underlying type?
 if (firstCar.GetType().Name == secondCar.GetType().Name)
 Console.WriteLine("We are both the same type!");
 else
 Console.WriteLine("We are different types!");

 // Show all the details.
 Console.WriteLine();
 ReflectOverAnonymousType(firstCar);
 ReflectOverAnonymousType(secondCar);
}

Assuming you have called this method from within Main(), here is the (somewhat surprising) output:

My car is a Bright Pink Saab.
You have a Black BMW going 90 MPH
ToString() == { Make = BMW, Color = Black, Speed = 90 }

Same anonymous object!
Not the same anonymous object!
We are both the same type!

obj is an instance of: <>f__AnonymousType0`3
Base class of <>f__AnonymousType0`3 is System.Object
obj.ToString() == { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }
obj.GetHashCode() == -439083487

obj is an instance of: <>f__AnonymousType0`3
Base class of <>f__AnonymousType0`3 is System.Object
obj.ToString() == { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }
obj.GetHashCode() == -439083487

When you run this test code, you will see that the first conditional test where you call Equals() returns
true and, therefore, the message “Same anonymous object!” prints out to the screen. This is because the
compiler-generated Equals() method uses value-based semantics when testing for equality (e.g., checking
the value of each field of the objects being compared).

However, the second conditional test, which makes use of the C# equality operator (==), prints out
“Not the same anonymous object!” This might seem at first glance to be a bit counterintuitive. This result
is because anonymous types do not receive overloaded versions of the C# equality operators (== and !=).
Given this, when you test for equality of anonymous types using the C# equality operators (rather than the
Equals() method), the references, not the values maintained by the objects, are being tested for equality.

Last but not least, in the final conditional test (where you examine the underlying type name), you
find that the anonymous types are instances of the same compiler-generated class type (in this example,
<>f AnonymousType0`3) because firstCar and secondCar have the same properties (Color, Make, and
CurrentSpeed).

Chapter 11 ■ advanCed C# Language Features

429

This illustrates an important but subtle point: the compiler will generate a new class definition only
when an anonymous type contains unique names of the anonymous type. Thus, if you declare identical
anonymous types (again, meaning the same names) within the same assembly, the compiler generates only
a single anonymous type definition.

Anonymous Types Containing Anonymous Types
It is possible to create an anonymous type that is composed of other anonymous types. For example,
assume you want to model a purchase order that consists of a timestamp, a price point, and the automobile
purchased. Here is a new (slightly more sophisticated) anonymous type representing such an entity:

// Make an anonymous type that is composed of another.
var purchaseItem = new {
 TimeBought = DateTime.Now,
 ItemBought = new {Color = "Red", Make = "Saab", CurrentSpeed = 55},
 Price = 34.000};

ReflectOverAnonymousType(purchaseItem);

At this point, you should understand the syntax used to define anonymous types, but you might still
be wondering exactly where (and when) to use this new language feature. To be blunt, anonymous type
declarations should be used sparingly, typically only when making use of the LINQ technology set
(see Chapter 12). You would never want to abandon the use of strongly typed classes/structures simply for
the sake of doing so, given anonymous types’ numerous limitations, which include the following:

•	 You don’t control the name of the anonymous type.

•	 Anonymous types always extend System.Object.

•	 The fields and properties of an anonymous type are always read-only.

•	 Anonymous types cannot support events, custom methods, custom operators, or
custom overrides.

•	 Anonymous types are always implicitly sealed.

•	 Anonymous types are always created using the default constructor.

However, when programming with the LINQ technology set, you will find that in many cases this syntax
can be helpful when you want to quickly model the overall shape of an entity rather than its functionality.

 ■ Source Code the anonymoustypes project can be found in the Chapter 11 subdirectory.

Working with Pointer Types
And now for the final topic of the chapter, which most likely will be the least used of all C# features for the
vast majority of your .NET projects.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 11 ■ advanCed C# Language Features

430

 ■ Note In the examples that follow, I’m assuming you have some background in C++ pointer manipulation.
If this is not true, feel free to skip this topic entirely. using pointers will not be a common task for the vast
majority of C# applications.

In Chapter 4, you learned that the .NET platform defines two major categories of data: value types and
reference types. Truth be told, however, there is a third category: pointer types. To work with pointer types,
you get specific operators and keywords that allow you to bypass the CLR’s memory-management scheme
and take matters into your own hands (see Table 11-2).

Table 11-2. Pointer-Centric C# Operators and Keywords

Operator/Keyword Meaning in Life

* This operator is used to create a pointer variable (i.e., a variable that represents
a direct location in memory). As in C++, this same operator is used for pointer
indirection.

& This operator is used to obtain the address of a variable in memory.

-> This operator is used to access fields of a type that is represented by a pointer (the
unsafe version of the C# dot operator).

[] This operator (in an unsafe context) allows you to index the slot pointed to by a
pointer variable (if you’re a C++ programmer, you will recall the interplay between
a pointer variable and the [] operator).

++, -- In an unsafe context, the increment and decrement operators can be applied to
pointer types.

+, - In an unsafe context, the addition and subtraction operators can be applied to
pointer types.

==,!=, <, >, <=, => In an unsafe context, the comparison and equality operators can be applied to
pointer types.

stackalloc In an unsafe context, the stackalloc keyword can be used to allocate C# arrays
directly on the stack.

fixed In an unsafe context, the fixed keyword can be used to temporarily fix a variable
so that its address can be found.

Now, before digging into the details, let me again point out that you will seldom if ever need to make use
of pointer types. Although C# does allow you to drop down to the level of pointer manipulations, understand
that the .NET runtime has absolutely no clue of your intentions. Thus, if you mismanage a pointer, you are
the one in charge of dealing with the consequences. Given these warnings, when exactly would you need to
work with pointer types? There are two common situations:

•	 You are looking to optimize select parts of your application by directly manipulating
memory outside the management of the CLR.

•	 You are calling methods of a C-based .dll or COM server that demand pointer
types as parameters. Even in this case, you can often bypass pointer types in favor of
the System.IntPtr type and members of the System.Runtime.InteropServices.
Marshal type.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 11 ■ advanCed C# Language Features

431

In the event that you do decide to make use of this C# language feature, you are required to inform the
C# compiler (csc.exe) of your intentions by enabling your project to support “unsafe code.” To do so at the
command line, simply supply the following /unsafe flag as an argument:

csc /unsafe *.cs

From Visual Studio, you will need to access your project’s Properties page and check the Allow Unsafe
Code box on the Build tab (see Figure 11-2). To experiment with pointer types, create a new Console
Application project named UnsafeCode and enable unsafe code, and make sure you enable this setting.

The unsafe Keyword
When you want to work with pointers in C#, you must specifically declare a block of “unsafe code” using the
unsafe keyword (any code that is not marked with the unsafe keyword is considered “safe” automatically).
For example, the following Program class declares a scope of unsafe code within the safe Main() method:

class Program
{
 static void Main(string[] args)
 {
 unsafe
 {
 // Work with pointer types here!
 }

 // Can't work with pointers here!
 }
}

Figure 11-2. Enabling unsafe code using Visual Studio

Chapter 11 ■ advanCed C# Language Features

432

In addition to declaring a scope of unsafe code within a method, you can build structures, classes, type
members, and parameters that are “unsafe.” Here are a few examples to gnaw on (no need to define the Node
or Node2 types in your current project):

// This entire structure is "unsafe" and can
// be used only in an unsafe context.
unsafe struct Node
{
 public int Value;
 public Node* Left;
 public Node* Right;
}

// This struct is safe, but the Node2* members
// are not. Technically, you may access "Value" from
// outside an unsafe context, but not "Left" and "Right".
public struct Node2
{
 public int Value;

 // These can be accessed only in an unsafe context!
 public unsafe Node2* Left;
 public unsafe Node2* Right;
}

Methods (static or instance level) may be marked as unsafe as well. For example, assume you know that
a particular static method will make use of pointer logic. To ensure that this method can be called only from
an unsafe context, you could define the method as follows:

unsafe static void SquareIntPointer(int* myIntPointer)
{
 // Square the value just for a test.
 *myIntPointer *= *myIntPointer;
}

The configuration of your method demands that the caller invoke SquareIntPointer() as follows:

static void Main(string[] args)
{
 unsafe
 {
 int myInt = 10;

 // OK, because we are in an unsafe context.
 SquareIntPointer(&myInt);
 Console.WriteLine("myInt: {0}", myInt);
 }

 int myInt2 = 5;

Chapter 11 ■ advanCed C# Language Features

433

 // Compiler error! Must be in unsafe context!
 SquareIntPointer(&myInt2);
 Console.WriteLine("myInt: {0}", myInt2);
}

If you would rather not force the caller to wrap the invocation within an unsafe context, you could
update Main() with the unsafe keyword. In this case, the following code would compile:

unsafe static void Main(string[] args)
{
 int myInt2 = 5;
 SquareIntPointer(&myInt2);
 Console.WriteLine("myInt: {0}", myInt2);
}

If you run this Main() method, you will see the following output:

myInt: 25

Working with the * and & Operators
After you have established an unsafe context, you are then free to build pointers to data types using the
* operator and obtain the address of what is being pointed to using the & operator. Unlike in C or C++, in
C# the * operator is applied to the underlying type only, not as a prefix to each pointer variable name. For
example, consider the following code, which illustrates both the correct and incorrect ways to declare
pointers to integer variables:

// No! This is incorrect under C#!
int *pi, *pj;

// Yes! This is the way of C#.
int* pi, pj;

Consider the following unsafe method:

unsafe static void PrintValueAndAddress()
{
 int myInt;

 // Define an int pointer, and
 // assign it the address of myInt.
 int* ptrToMyInt = &myInt;

 // Assign value of myInt using pointer indirection.
 *ptrToMyInt = 123;

 // Print some stats.
 Console.WriteLine("Value of myInt {0}", myInt);
 Console.WriteLine("Address of myInt {0:X}", (int)&ptrToMyInt);
}

Chapter 11 ■ advanCed C# Language Features

434

An Unsafe (and Safe) Swap Function
Of course, declaring pointers to local variables simply to assign their value (as in the previous example) is
never required and not altogether useful. To illustrate a more practical example of unsafe code, assume you
want to build a swap function using pointer arithmetic.

unsafe public static void UnsafeSwap(int* i, int* j)
{
 int temp = *i;
 *i = *j;
 *j = temp;
}

Very C-like, don’t you think? However, given your work previously, you should be aware that you could
write the following safe version of your swap algorithm using the C# ref keyword:

public static void SafeSwap(ref int i, ref int j)
{
 int temp = i;
 i = j;
 j = temp;
}

The functionality of each method is identical, thus reinforcing the point that direct pointer manipulation
is not a mandatory task under C#. Here is the calling logic using a safe Main(), with an unsafe context:

static void Main(string[] args)
{
 Console.WriteLine("***** Calling method with unsafe code *****");

 // Values for swap.
 int i = 10, j = 20;

 // Swap values "safely."
 Console.WriteLine("\n***** Safe swap *****");
 Console.WriteLine("Values before safe swap: i = {0}, j = {1}", i, j);
 SafeSwap(ref i, ref j);
 Console.WriteLine("Values after safe swap: i = {0}, j = {1}", i, j);

 // Swap values "unsafely."
 Console.WriteLine("\n***** Unsafe swap *****");
 Console.WriteLine("Values before unsafe swap: i = {0}, j = {1}", i, j);
 unsafe { UnsafeSwap(&i, &j); }

 Console.WriteLine("Values after unsafe swap: i = {0}, j = {1}", i, j);
 Console.ReadLine();
}

Chapter 11 ■ advanCed C# Language Features

435

Field Access via Pointers (the -> Operator)
Now assume you have defined a simple, safe Point structure, as follows:

struct Point
{
 public int x;
 public int y;

 public override string ToString()
 {
 return string.Format("({0}, {1})", x, y);
 }
}

If you declare a pointer to a Point type, you will need to make use of the pointer field-access operator
(represented by ->) to access its public members. As shown in Table 11-2, this is the unsafe version of
the standard (safe) dot operator (.). In fact, using the pointer indirection operator (*), it is possible to
dereference a pointer to (once again) apply the dot operator notation. Check out the unsafe method:

unsafe static void UsePointerToPoint()
{
 // Access members via pointer.
 Point point;
 Point* p = &point;
 p->x = 100;
 p->y = 200;
 Console.WriteLine(p->ToString());

 // Access members via pointer indirection.
 Point point2;
 Point* p2 = &point2;
 (*p2).x = 100;
 (*p2).y = 200;
 Console.WriteLine((*p2).ToString());
}

The stackalloc Keyword
In an unsafe context, you may need to declare a local variable that allocates memory directly from the
call stack (and is, therefore, not subject to .NET garbage collection). To do so, C# provides the stackalloc
keyword, which is the C# equivalent to the _alloca function of the C runtime library. Here is a simple
example:

unsafe static void UnsafeStackAlloc()
{
 char* p = stackalloc char[256];
 for (int k = 0; k < 256; k++)
 p[k] = (char)k;
}

Chapter 11 ■ advanCed C# Language Features

436

Pinning a Type via the fixed Keyword
As you saw in the previous example, allocating a chunk of memory within an unsafe context may be
facilitated via the stackalloc keyword. By the very nature of this operation, the allocated memory is cleaned
up as soon as the allocating method has returned (as the memory is acquired from the stack). However,
assume a more complex example. During our examination of the -> operator, you created a value type
named Point. Like all value types, the allocated memory is popped off the stack once the executing scope
has terminated. For the sake of argument, assume Point was instead defined as a reference type, like so:

class PointRef // <= Renamed and retyped.
{
 public int x;
 public int y;
 public override string ToString()
 {
 return string.Format("({0}, {1})", x, y);
 }
}

As you are aware, if the caller declares a variable of type Point, the memory is allocated on the garbage-
collected heap. The burning question then becomes, “What if an unsafe context wants to interact with this
object (or any object on the heap)?” Given that garbage collection can occur at any moment, imagine the
problems encountered when accessing the members of Point at the very point in time such a sweep of
the heap is underway. Theoretically, it is possible that the unsafe context is attempting to interact with a
member that is no longer accessible or has been repositioned on the heap after surviving a generational
sweep (which is an obvious problem).

To lock a reference type variable in memory from an unsafe context, C# provides the fixed keyword.
The fixed statement sets a pointer to a managed type and “pins” that variable during the execution of
the code. Without fixed, pointers to managed variables would be of little use, since garbage collection
could relocate the variables unpredictably. (In fact, the C# compiler will not allow you to set a pointer to a
managed variable except in a fixed statement.)

Thus, if you create a PointRef object and want to interact with its members, you must write the
following code (or receive a compiler error):

unsafe public static void UseAndPinPoint()
{
 PointRef pt = new PointRef ();
 pt.x = 5;
 pt.y = 6;

 // Pin pt in place so it will not
 // be moved or GC-ed.
 fixed (int* p = &pt.x)
 {
 // Use int* variable here!
 }

 // pt is now unpinned, and ready to be GC-ed once
 // the method completes.
 Console.WriteLine ("Point is: {0}", pt);
}

Chapter 11 ■ advanCed C# Language Features

437

In a nutshell, the fixed keyword allows you to build a statement that locks a reference variable in
memory, such that its address remains constant for the duration of the statement (or scope block). Any time
you interact with a reference type from within the context of unsafe code, pinning the reference is a must.

The sizeof Keyword
The final unsafe-centric C# keyword to consider is sizeof. As in C++, the C# sizeof keyword is used to
obtain the size in bytes of an intrinsic data type, but not a custom type, unless within an unsafe context.
For example, the following method does not need to be declared “unsafe” as all arguments to the sizeof
keyword are intrinsic types:

static void UseSizeOfOperator()
{
 Console.WriteLine("The size of short is {0}.", sizeof(short));
 Console.WriteLine("The size of int is {0}.", sizeof(int));
 Console.WriteLine("The size of long is {0}.", sizeof(long));
}

However, if you want to get the size of your custom Point structure, you need to update this method as
so (note the unsafe keyword has been added):

unsafe static void UseSizeOfOperator()
{
...
 Console.WriteLine("The size of Point is {0}.", sizeof(Point));
}

 ■ Source Code the unsafeCode project can be found in the Chapter 11 subdirectory.

That wraps up the look at some of the more advanced features of the C# programming language. To
make sure we are all on the same page here, I again must say that a majority of your .NET projects might
never need to directly use these features (especially pointers). Nevertheless, as you will see in later chapters,
some topics are quite useful, if not required, when working with the LINQ APIs, most notably extension
methods and anonymous types.

Summary
The purpose of this chapter was to deepen your understanding of the C# programming language. First, you
investigated various advanced type construction techniques (indexer methods, overloaded operators, and
custom conversion routines).

Next, you examined the role of extension methods and anonymous types. As you’ll see in some detail in
the next chapter, these features are useful when working with LINQ-centric APIs (though you can use them
anywhere in your code, should they be useful). Recall that anonymous methods allow you to quickly model
the “shape” of a type, while extension methods allow you to tack on new functionality to types, without the
need to subclass.

You spent the remainder of this chapter examining a small set of lesser-known keywords (sizeof, unsafe,
and so forth) and during the process learned how to work with raw pointer types. As stated throughout the
examination of pointer types, the vast majority of your C# applications will never need to use them.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

439

Chapter 12

LINQ to Objects

Regardless of the type of application you are creating using the .NET platform, your program will certainly
need to access some form of data as it executes. To be sure, data can be found in numerous locations,
including XML files, relational databases, in-memory collections, and primitive arrays. Historically speaking,
based on the location of said data, programmers needed to make use of different and unrelated APIs. The
Language Integrated Query (LINQ) technology set, introduced initially in .NET 3.5, provides a concise,
symmetrical, and strongly typed manner to access a wide variety of data stores. In this chapter, you will
begin your investigation of LINQ by focusing on LINQ to Objects.

Before you dive into LINQ to Objects proper, the first part of this chapter quickly reviews the key C#
programming constructs that enable LINQ. As you work through this chapter, you will find that implicitly
typed local variables, object initialization syntax, lambda expressions, extension methods, and anonymous
types will be quite useful (if not occasionally mandatory).

After this supporting infrastructure is reviewed, the remainder of the chapter will introduce you to the
LINQ programming model and its role in the .NET platform. Here, you will come to learn the role of query
operators and query expressions, which allow you to define statements that will interrogate a data source to
yield the requested result set. Along the way, you will build numerous LINQ examples that interact with data
contained within arrays as well as various collection types (both generic and nongeneric) and understand
the assemblies, namespaces, and types that represent the LINQ to Objects API.

 ■ Note The information in this chapter is the foundation for future chapters of the book that examine
additional LINQ technologies, including LINQ to XML (Chapter 24), Parallel LINQ (Chapter 19), and LINQ to
Entities (Chapter 23).

LINQ-Specific Programming Constructs
From a high level, LINQ can be understood as a strongly typed query language, embedded directly into the
grammar of C#. Using LINQ, you can build any number of expressions that have a look and feel similar to
that of a database SQL query. However, a LINQ query can be applied to any number of data stores, including
stores that have nothing to do with a literal relational database.

 ■ Note Although LINQ queries look similar to SQL queries, the syntax is not identical. In fact, many LINQ
queries seem to be the exact opposite format of a similar database query! If you attempt to map LINQ directly
to SQL, you will surely become frustrated. To keep your sanity, I recommend you try your best to regard LINQ
queries as unique statements, which just “happen to look” similar to SQL.

http://dx.doi.org/10.1007/978-1-4842-1332-2_24
http://dx.doi.org/10.1007/978-1-4842-1332-2_19
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPTEr 12 ■ LINQ To objECTS

440

When LINQ was first introduced to the .NET platform in version 3.5, the C# and VB languages were each
expanded with a large number of new programming constructs used to support the LINQ technology set.
Specifically, the C# language uses the following core LINQ-centric features:

•	 Implicitly typed local variables

•	 Object/collection initialization syntax

•	 Lambda expressions

•	 Extension methods

•	 Anonymous types

These features have already been explored in detail within various chapters of the text. However, to get
the ball rolling, let’s quickly review each feature in turn, just to make sure we are all in the proper mind-set.

 ■ Note because the following sections are reviews of material covered elsewhere in the book, I have not
included a C# code project for this content.

Implicit Typing of Local Variables
In Chapter 3, you learned about the var keyword of C#. This keyword allows you to define a local variable
without explicitly specifying the underlying data type. The variable, however, is strongly typed, as the
compiler will determine the correct data type based on the initial assignment. Recall the following code
example from Chapter 3:

static void DeclareImplicitVars()
{
 // Implicitly typed local variables.
 var myInt = 0;
 var myBool = true;
 var myString = "Time, marches on...";

 // Print out the underlying type.
 Console.WriteLine("myInt is a: {0}", myInt.GetType().Name);
 Console.WriteLine("myBool is a: {0}", myBool.GetType().Name);
 Console.WriteLine("myString is a: {0}", myString.GetType().Name);
}

This language feature is helpful, and often mandatory, when using LINQ. As you will see during this
chapter, many LINQ queries will return a sequence of data types, which are not known until compile time.
Given that the underlying data type is not known until the application is compiled, you obviously can’t
declare a variable explicitly!

Object and Collection Initialization Syntax
Chapter 5 explored the role of object initialization syntax, which allows you to create a class or structure
variable and to set any number of its public properties in one fell swoop. The end result is a compact
(yet still easy on the eyes) syntax that can be used to get your objects ready for use. Also recall from Chapter 9,

http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_3
http://dx.doi.org/10.1007/978-1-4842-1332-2_5
http://dx.doi.org/10.1007/978-1-4842-1332-2_9

ChAPTEr 12 ■ LINQ To objECTS

441

the C# language allows you to use a similar syntax to initialize collections of objects. Consider the following
code snippet, which uses collection initialization syntax to fill a List<T> of Rectangle objects, each of which
maintains two Point objects to represent an (x,y) position:

List<Rectangle> myListOfRects = new List<Rectangle>
{
 new Rectangle {TopLeft = new Point { X = 10, Y = 10 },
 BottomRight = new Point { X = 200, Y = 200}},
 new Rectangle {TopLeft = new Point { X = 2, Y = 2 },
 BottomRight = new Point { X = 100, Y = 100}},
 new Rectangle {TopLeft = new Point { X = 5, Y = 5 },
 BottomRight = new Point { X = 90, Y = 75}}
};

While you are never required to use collection/object initialization syntax, doing so results in a more
compact code base. Furthermore, this syntax, when combined with implicit typing of local variables, allows
you to declare an anonymous type, which is useful when creating a LINQ projection. You’ll learn about LINQ
projections later in this chapter.

Lambda Expressions
The C# lambda operator (=>) was fully explored in Chapter 10. Recall that this operator allows you to build a
lambda expression, which can be used any time you invoke a method that requires a strongly typed delegate
as an argument. Lambdas greatly simplify how you work with .NET delegates, in that they reduce the
amount of code you have to author by hand. Recall that a lambda expression can be broken down into the
following usage:

(ArgumentsToProcess) => { StatementsToProcessThem }

In Chapter 10, I walked you through how to interact with the FindAll() method of the generic
List<T> class using three different approaches. After working with the raw Predicate<T> delegate and a C#
anonymous method, you eventually arrived with the following (extremely concise) iteration that used the
following lambda expression:

static void LambdaExpressionSyntax()
{
 // Make a list of integers.
 List<int> list = new List<int>();
 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // C# lambda expression.
 List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

 Console.WriteLine("Here are your even numbers:");
 foreach (int evenNumber in evenNumbers)
 {
 Console.Write("{0}\t", evenNumber);
 }
 Console.WriteLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_10
http://dx.doi.org/10.1007/978-1-4842-1332-2_10

ChAPTEr 12 ■ LINQ To objECTS

442

Lambdas will be useful when working with the underlying object model of LINQ. As you will soon find
out, the C# LINQ query operators are simply a shorthand notation for calling true-blue methods on a class
named System.Linq.Enumerable. These methods typically always require delegates (the Func<> delegate in
particular) as parameters, which are used to process your data to yield the correct result set. Using lambdas,
you can streamline your code and allow the compiler to infer the underlying delegate.

Extension Methods
C# extension methods allow you to tack on new functionality to existing classes without the need to subclass.
As well, extension methods allow you to add new functionality to sealed classes and structures, which
could never be subclassed in the first place. Recall from Chapter 11, when you author an extension method,
the first parameter is qualified with the this keyword and marks the type being extended. Also recall that
extension methods must always be defined within a static class and must, therefore, also be declared using
the static keyword. Here’s an example:

namespace MyExtensions
{
 static class ObjectExtensions
 {
 // Define an extension method to System.Object.
 public static void DisplayDefiningAssembly(this object obj)
 {
 Console.WriteLine("{0} lives here:\n\t->{1}\n", obj.GetType().Name,
 Assembly.GetAssembly(obj.GetType()));
 }
 }
}

To use this extension, an application must import the namespace defining the extension (and
possibly add a reference to the external assembly). At this point, simply import the defining namespace
and code away.

static void Main(string[] args)
{
 // Since everything extends System.Object, all classes and structures
 // can use this extension.
 int myInt = 12345678;
 myInt.DisplayDefiningAssembly();

 System.Data.DataSet d = new System.Data.DataSet();
 d.DisplayDefiningAssembly();
 Console.ReadLine();
}

When you are working with LINQ, you will seldom, if ever, be required to manually build your own
extension methods. However, as you create LINQ query expressions, you will actually be making use of
numerous extension methods already defined by Microsoft. In fact, each C# LINQ query operator is a
shorthand notation for making a manual call on an underlying extension method, typically defined by the
System.Linq.Enumerable utility class.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

ChAPTEr 12 ■ LINQ To objECTS

443

Anonymous Types
The final C# language feature I’d like to quickly review is that of anonymous types, which was explored
in Chapter 11. This feature can be used to quickly model the “shape” of data by allowing the compiler to
generate a new class definition at compile time, based on a supplied set of name-value pairs. Recall that
this type will be composed using value-based semantics, and each virtual method of System.Object will be
overridden accordingly. To define an anonymous type, declare an implicitly typed variable and specify the
data’s shape using object initialization syntax.

// Make an anonymous type that is composed of another.
var purchaseItem = new {
 TimeBought = DateTime.Now,
 ItemBought = new {Color = "Red", Make = "Saab", CurrentSpeed = 55},
 Price = 34.000};

LINQ makes frequent use of anonymous types when you want to project new forms of data on the fly.
For example, assume you have a collection of Person objects and want to use LINQ to obtain information on
the age and Social Security number of each. Using a LINQ projection, you can allow the compiler to generate
a new anonymous type that contains your information.

Understanding the Role of LINQ
That wraps up the quick review of the C# language features that allow LINQ to work its magic. However,
why have LINQ in the first place? Well, as software developers, it is hard to deny that the vast majority of
our programming time is spent obtaining and manipulating data. When speaking of “data,” it is easy to
immediately envision information contained within relational databases. However, another popular location
for data is within XML documents or simple text files.

Data can be found in numerous places beyond these two common homes for information. For instance,
say you have an array or generic List<T> type containing 300 integers and you want to obtain a subset that
meets a given criterion (e.g., only the odd or even members in the container, only prime numbers, only
nonrepeating numbers greater than 50). Or perhaps you are making use of the reflection APIs and need to
obtain only metadata descriptions for each class deriving from a particular parent class within an array of
Types. Indeed, data is everywhere.

Prior to .NET 3.5, interacting with a particular flavor of data required programmers to use very diverse
APIs. Consider, for example, Table 12-1, which illustrates several common APIs used to access various types
of data (I’m sure you can think of many other examples).

Table 12-1. Ways to Manipulate Various Types of Data

The Data You Want How to Obtain It

Relational data System.Data.dll, System.Data.SqlClient.dll, and so on

XML document data System.Xml.dll

Metadata tables The System.Reflection namespace

Collections of objects System.Array and the System.Collections/System.Collections.Generic
namespaces

http://dx.doi.org/10.1007/978-1-4842-1332-2_11

ChAPTEr 12 ■ LINQ To objECTS

444

Of course, nothing is wrong with these approaches to data manipulation. In fact, you can (and will)
certainly make direct use of ADO.NET, the XML namespaces, reflection services, and the various collection
types. However, the basic problem is that each of these APIs is an island unto itself, which offers little
in the way of integration. True, it is possible (for example) to save an ADO.NET DataSet as XML and
then manipulate it via the System.Xml namespaces, but nonetheless, data manipulation remains rather
asymmetrical.

The LINQ API is an attempt to provide a consistent, symmetrical manner in which programmers can
obtain and manipulate “data” in the broad sense of the term. Using LINQ, you are able to create directly
within the C# programming language constructs called query expressions. These query expressions are based
on numerous query operators that have been intentionally designed to look and feel similar (but not quite
identical) to a SQL expression.

The twist, however, is that a query expression can be used to interact with numerous types of data—
even data that has nothing to do with a relational database. Strictly speaking, “LINQ” is the term used to
describe this overall approach to data access. However, based on where you are applying your LINQ queries,
you will encounter various terms, such as the following:

•	 LINQ to Objects: This term refers to the act of applying LINQ queries to arrays and
collections.

•	 LINQ to XML: This term refers to the act of using LINQ to manipulate and query
XML documents.

•	 LINQ to DataSet: This term refers to the act of applying LINQ queries to ADO.NET
DataSet objects.

•	 LINQ to Entities: This aspect of LINQ allows you to make use of LINQ queries within
the ADO.NET Entity Framework (EF) API.

•	 Parallel LINQ (aka PLINQ): This allows for parallel processing of data returned from
a LINQ query.

Today, LINQ is an integral part of the .NET base class libraries, managed languages, and Visual Studio
itself.

LINQ Expressions Are Strongly Typed
It is also important to point out that a LINQ query expression (unlike a traditional SQL statement) is
strongly typed. Therefore, the C# compiler will keep you honest and make sure that these expressions
are syntactically well-formed. Tools such as Visual Studio can use metadata for useful features such as
IntelliSense, autocompletion, and so forth.

The Core LINQ Assemblies
As mentioned in Chapter 2, the New Project dialog of Visual Studio has the option of selecting which version
of the .NET platform you want to compile against. When you opt to compile against .NET 3.5 or higher,
each of the project templates will automatically reference the key LINQ assemblies, which can be viewed
using the Solution Explorer. Table 12-2 documents the role of the key LINQ assemblies. However, you will
encounter additional LINQ libraries over the remainder of this book.

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

ChAPTEr 12 ■ LINQ To objECTS

445

To work with LINQ to Objects, you must make sure that every C# code file that contains LINQ queries
imports the System.Linq namespace (primarily defined within System.Core.dll). If you do not do so,
you will run into a number of problems. As a good rule of thumb, if you see a compiler error looking
similar to this:

Error 1 Could not find an implementation of the query pattern for source type 'int[]'.
'Where' not found. Are you missing a reference to 'System.Core.dll' or a using directive
for 'System.Linq'?

the chances are extremely good that your C# file does not have the following using directive:

using System.Linq;

Applying LINQ Queries to Primitive Arrays
To begin examining LINQ to Objects, let’s build an application that will apply LINQ queries to various array
objects. Create a Console Application project named LinqOverArray, and define a static helper method
within the Program class named QueryOverStrings(). In this method, create a string array containing six
or so items of your liking (here I listed a batch of video games in my library). Make sure to have at least two
entries that contain numerical values and a few that have embedded spaces.

static void QueryOverStrings()
{
 // Assume we have an array of strings.
 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};
}

Now, update Main() to invoke QueryOverStrings().

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with LINQ to Objects *****\n");
 QueryOverStrings();
 Console.ReadLine();
}

Table 12-2. Core LINQ-Centric Assemblies

Assembly Meaning in Life

System.Core.dll Defines the types that represent the core LINQ API. This is the
one assembly you must have access to if you want to use any
LINQ API, including LINQ to Objects.

System.Data.DataSetExtensions.dll Defines a handful of types to integrate ADO.NET types into the
LINQ programming paradigm (LINQ to DataSet).

System.Xml.Linq.dll Provides functionality for using LINQ with XML document data
(LINQ to XML).

ChAPTEr 12 ■ LINQ To objECTS

446

When you have any array of data, it is common to extract a subset of items based on a given
requirement. Maybe you want to obtain only the subitems that contain a number (e.g., System Shock 2,
Uncharted 2, and Fallout 3), have more or less than some number of characters, or don’t contain embedded
spaces (e.g., Morrowind or Daxter). While you could certainly perform such tasks using members of the
System.Array type and a bit of elbow grease, LINQ query expressions can greatly simplify the process.

Going on the assumption that you want to obtain from the array only items that contain an embedded
blank space and you want these items listed in alphabetical order, you could build the following LINQ query
expression:

static void QueryOverStrings()
{
 // Assume we have an array of strings.
 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Build a query expression to find the items in the array
 // that have an embedded space.
 IEnumerable<string> subset = from g in currentVideoGames
 where g.Contains(" ") orderby g select g;

 // Print out the results.
 foreach (string s in subset)
 Console.WriteLine("Item: {0}", s);
}

Notice that the query expression created here makes use of the from, in, where, orderby, and select
LINQ query operators. You will dig into the formalities of query expression syntax later in this chapter.
However, even now you should be able to read this statement roughly as “Give me the items inside of
currentVideoGames that contain a space, ordered alphabetically.”

Here, each item that matches the search criteria has been given the name g (as in “game”); however, any
valid C# variable name would do:

IEnumerable<string> subset = from game in currentVideoGames
 where game.Contains(" ") orderby
 game select game;

Notice that the returned sequence is held in a variable named subset, typed as a type that implements
the generic version of IEnumerable<T>, where T is of type System.String (after all, you are querying an array
of strings). After you obtain the result set, you then simply print out each item using a standard foreach
construct. If you run your application, you will find the following output:

***** Fun with LINQ to Objects *****
Item: Fallout 3
Item: System Shock 2
Item: Uncharted 2

ChAPTEr 12 ■ LINQ To objECTS

447

Once Again, Without LINQ
To be sure, LINQ is never mandatory. If you so choose, you could have found the same result set by forgoing
LINQ altogether and making use of programming primitives such as if statements and for loops. Here
is a method that yields the same result as the QueryOverStrings() method but in a much more verbose
manner:

static void QueryOverStringsLongHand()
{
 // Assume we have an array of strings.
 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 string[] gamesWithSpaces = new string[5];

 for (int i = 0; i < currentVideoGames.Length; i++)
 {
 if (currentVideoGames[i].Contains(" "))
 gamesWithSpaces[i] = currentVideoGames[i];
 }

 // Now sort them.
 Array.Sort(gamesWithSpaces);

 // Print out the results.
 foreach (string s in gamesWithSpaces)
 {
 if(s != null)
 Console.WriteLine("Item: {0}", s);
 }
 Console.WriteLine();
}

While I am sure you can think of ways to tweak the previous method, the fact remains that LINQ queries
can be used to radically simplify the process of extracting new subsets of data from a source. Rather than
building nested loops, complex if/else logic, temporary data types, and so on, the C# compiler will perform
the dirty work on your behalf, once you create a fitting LINQ query.

Reflecting over a LINQ Result Set
Now, assume the Program class defines an additional helper function named ReflectOverQueryResults()
that will print out various details of the LINQ result set (note the parameter is a System.Object, to account
for multiple types of result sets).

static void ReflectOverQueryResults(object resultSet)
{
 Console.WriteLine("***** Info about your query *****");
 Console.WriteLine("resultSet is of type: {0}", resultSet.GetType().Name);
 Console.WriteLine("resultSet location: {0}",
 resultSet.GetType().Assembly.GetName().Name);
}

ChAPTEr 12 ■ LINQ To objECTS

448

Assuming you have called this method within QueryOverStrings() directly after printing out the
obtained subset, if you run the application, you will see the subset is really an instance of the generic
OrderedEnumerable<TElement, TKey> type (represented in terms of CIL code as OrderedEnumerable`2),
which is an internal abstract type residing in the System.Core.dll assembly.

***** Info about your query *****

resultSet is of type: OrderedEnumerable`2
resultSet location: System.Core

 ■ Note Many of the types that represent a LINQ result are hidden by the Visual Studio object browser.
These are low-level types not intended for direct use in your applications.

LINQ and Implicitly Typed Local Variables
While the current sample program makes it relatively easy to determine that the result set can be captured as
an enumeration of string object (e.g., IEnumerable<string>), I would guess that it is not clear that subset is
really of type OrderedEnumerable<TElement, TKey>.

Given that LINQ result sets can be represented using a good number of types in various LINQ-centric
namespaces, it would be tedious to define the proper type to hold a result set, because in many cases the
underlying type may not be obvious or even directly accessible from your code base (and as you will see, in
some cases the type is generated at compile time).

To further accentuate this point, consider the following additional helper method defined within the
Program class (which I assume you will invoke from within the Main() method):

static void QueryOverInts()
{
 int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

 // Print only items less than 10.
 IEnumerable<int> subset = from i in numbers where i < 10 select i;

 foreach (int i in subset)
 Console.WriteLine("Item: {0}", i);
 ReflectOverQueryResults(subset);
}

In this case, the subset variable is a completely different underlying type. This time, the type
implementing the IEnumerable<int> interface is a low-level class named WhereArrayIterator<T>.

Item: 1
Item: 2
Item: 3
Item: 8

***** Info about your query *****
resultSet is of type: WhereArrayIterator`1
resultSet location: System.Core

ChAPTEr 12 ■ LINQ To objECTS

449

Given that the exact underlying type of a LINQ query is certainly not obvious, these first examples have
represented the query results as an IEnumerable<T> variable, where T is the type of data in the returned
sequence (string, int, etc.). However, this is still rather cumbersome. To add insult to injury, given that
IEnumerable<T> extends the nongeneric IEnumerable interface, it would also be permissible to capture the
result of a LINQ query as follows:

System.Collections.IEnumerable subset =
 from i in numbers where i < 10 select i;

Thankfully, implicit typing cleans things up considerably when working with LINQ queries.

static void QueryOverInts()
{
 int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

 // Use implicit typing here...
 var subset = from i in numbers where i < 10 select i;

 // ...and here.
 foreach (var i in subset)
 Console.WriteLine("Item: {0} ", i);
 ReflectOverQueryResults(subset);
}

As a rule of thumb, you will always want to make use of implicit typing when capturing the results
of a LINQ query. Just remember, however, that (in a vast majority of cases) the real return value is a type
implementing the generic IEnumerable<T> interface.

Exactly what this type is under the covers (OrderedEnumerable<TElement, TKey>,
WhereArrayIterator<T>, etc.) is irrelevant and not necessary to discover. As seen in the previous code
example, you can simply use the var keyword within a foreach construct to iterate over the fetched data.

LINQ and Extension Methods
Although the current example does not have you author any extension methods directly, you are in
fact using them seamlessly in the background. LINQ query expressions can be used to iterate over data
containers that implement the generic IEnumerable<T> interface. However, the .NET System.Array class
type (used to represent the array of strings and array of integers) does not implement this contract.

// The System.Array type does not seem to implement the correct
// infrastructure for query expressions!
public abstract class Array : ICloneable, IList, ICollection,
 IEnumerable, IStructuralComparable, IStructuralEquatable
{
 ...
}

While System.Array does not directly implement the IEnumerable<T> interface, it indirectly gains
the required functionality of this type (as well as many other LINQ-centric members) via the static
System.Linq.Enumerable class type.

ChAPTEr 12 ■ LINQ To objECTS

450

This utility class defines a good number of generic extension methods (such as Aggregate<T>(),
First<T>(), Max<T>(), etc.), which System.Array (and other types) acquire in the background. Thus, if you
apply the dot operator on the currentVideoGames local variable, you will find a good number of members
not found within the formal definition of System.Array (see Figure 12-1).

Figure 12-1. The System.Array type has been extended with members of System.Linq.Enumerable

The Role of Deferred Execution
Another important point regarding LINQ query expressions is that they are not actually evaluated until you
iterate over the sequence. Formally speaking, this is termed deferred execution. The benefit of this approach
is that you are able to apply the same LINQ query multiple times to the same container and rest assured you
are obtaining the latest and greatest results. Consider the following update to the QueryOverInts() method:

static void QueryOverInts()
{
 int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

 // Get numbers less than ten.
 var subset = from i in numbers where i < 10 select i;

 // LINQ statement evaluated here!
 foreach (var i in subset)
 Console.WriteLine("{0} < 10", i);
 Console.WriteLine();
 // Change some data in the array.
 numbers[0] = 4;

ChAPTEr 12 ■ LINQ To objECTS

451

 // Evaluated again!
 foreach (var j in subset)
 Console.WriteLine("{0} < 10", j);

 Console.WriteLine();
 ReflectOverQueryResults(subset);
}

If you were to execute the program yet again, you would find the following output. Notice that the
second time you iterate over the requested sequence, you find an additional member, as you set the first
item in the array to be a value less than ten.

1 < 10
2 < 10
3 < 10
8 < 10

4 < 10
1 < 10
2 < 10
3 < 10
8 < 10

One useful aspect of Visual Studio is that if you set a breakpoint before the evaluation of a LINQ query,
you are able to view the contents during a debugging session. Simply locate your mouse cursor above the
LINQ result set variable (subset in Figure 12-2). When you do, you will be given the option of evaluating the
query at that time by expanding the Results View option.

Figure 12-2. Debugging LINQ expressions

The Role of Immediate Execution
When you need to evaluate a LINQ expression from outside the confines of foreach logic, you are
able to call any number of extension methods defined by the Enumerable type such as ToArray<T>(),
ToDictionary<TSource,TKey>(), and ToList<T>(). These methods will cause a LINQ query to execute at
the exact moment you call them, to obtain a snapshot of the data. After you have done so, the snapshot of
data may be independently manipulated.

ChAPTEr 12 ■ LINQ To objECTS

452

static void ImmediateExecution()
{
 int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

 // Get data RIGHT NOW as int[].
 int[] subsetAsIntArray =
 (from i in numbers where i < 10 select i).ToArray<int>();

 // Get data RIGHT NOW as List<int>.
 List<int> subsetAsListOfInts =
 (from i in numbers where i < 10 select i).ToList<int>();
}

Notice that the entire LINQ expression is wrapped within parentheses to cast it into the correct
underlying type (whatever that might be) in order to call the extension methods of Enumerable.

Also recall from Chapter 9 that when the C# compiler can unambiguously determine the type parameter
of a generic, you are not required to specify the type parameter. Thus, you could also call ToArray<T>() (or
ToList<T>() for that matter) as follows:

int[] subsetAsIntArray =
 (from i in numbers where i < 10 select i).ToArray();

The usefulness of immediate execution is obvious when you need to return the results of a LINQ query
to an external caller. And, as luck would have it, this happens to be the next topic of this chapter.

 ■ Source Code The LinqoverArray project can be found in the Chapter 12 subdirectory.

Returning the Result of a LINQ Query
It is possible to define a field within a class (or structure) whose value is the result of a LINQ query. To do
so, however, you cannot make use of implicit typing (as the var keyword cannot be used for fields), and the
target of the LINQ query cannot be instance-level data; therefore, it must be static. Given these limitations,
you will seldom need to author code like the following:

class LINQBasedFieldsAreClunky
{
 private static string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Can't use implicit typing here! Must know type of subset!
 private IEnumerable<string> subset = from g in currentVideoGames
 where g.Contains(" ") orderby g select g;

 public void PrintGames()
 {
 foreach (var item in subset)
 {
 Console.WriteLine(item);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_9
http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPTEr 12 ■ LINQ To objECTS

453

More often than not, LINQ queries are defined within the scope of a method or property. Moreover, to
simplify your programming, the variable used to hold the result set will be stored in an implicitly typed local
variable using the var keyword. Now, recall from Chapter 3 that implicitly typed variables cannot be used to
define parameters, return values, or fields of a class or structure.

Given this point, you might wonder exactly how you could return a query result to an external caller.
The answer is, it depends. If you have a result set consisting of strongly typed data, such as an array of strings
or a List<T> of Cars, you could abandon the use of the var keyword and use a proper IEnumerable<T> or
IEnumerable type (again, as IEnumerable<T> extends IEnumerable). Consider the following example for a
new Console Application named LinqRetValues:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** LINQ Return Values *****\n");
 IEnumerable<string> subset = GetStringSubset();

 foreach (string item in subset)
 {
 Console.WriteLine(item);
 }

 Console.ReadLine();
 }
 static IEnumerable<string> GetStringSubset()
 {
 string[] colors = {"Light Red", "Green",
 "Yellow", "Dark Red", "Red", "Purple"};

 // Note subset is an IEnumerable<string>-compatible object.
 IEnumerable<string> theRedColors = from c in colors
 where c.Contains("Red") select c;

 return theRedColors;
 }
}

The results are as expected:

Light Red
Dark Red
Red

Returning LINQ Results via Immediate Execution
This example works as expected, only because the return value of the GetStringSubset() and the LINQ
query within this method has been strongly typed. If you used the var keyword to define the subset variable, it
would be permissible to return the value only if the method is still prototyped to return IEnumerable<string>
(and if the implicitly typed local variable is in fact compatible with the specified return type).

http://dx.doi.org/10.1007/978-1-4842-1332-2_3

ChAPTEr 12 ■ LINQ To objECTS

454

Because it is a bit inconvenient to operate on IEnumerable<T>, you could make use of immediate
execution. For example, rather than returning IEnumerable<string>, you could simply return a string[],
provided that you transform the sequence to a strongly typed array. Consider this new method of the
Program class, which does this very thing:

static string[] GetStringSubsetAsArray()
{
 string[] colors = {"Light Red", "Green",
 "Yellow", "Dark Red", "Red", "Purple"};

 var theRedColors = from c in colors
 where c.Contains("Red") select c;

 // Map results into an array.
 return theRedColors.ToArray();
}

With this, the caller can be blissfully unaware that their result came from a LINQ query and simply work
with the array of strings as expected. Here’s an example:

foreach (string item in GetStringSubsetAsArray())
{
 Console.WriteLine(item);
}

Immediate execution is also critical when attempting to return to the caller the results of a LINQ
projection. You’ll examine this topic a bit later in the chapter. Next up, let’s look at how to apply LINQ
queries to generic and nongeneric collection objects.

 ■ Source Code The LinqretValues project can be found in the Chapter 12 subdirectory.

Applying LINQ Queries to Collection Objects
Beyond pulling results from a simple array of data, LINQ query expressions can also manipulate data within
members of the System.Collections.Generic namespace, such as the List<T> type. Create a new Console
Application project named LinqOverCollections, and define a basic Car class that maintains a current speed,
color, make, and pet name, as shown in the following code:

class Car
{
 public string PetName {get; set;} = "";
 public string Color {get; set;} = "";
 public int Speed {get; set;}
 public string Make {get; set;} = "";
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPTEr 12 ■ LINQ To objECTS

455

Now, within your Main() method, define a local List<T> variable of type Car, and make use of object
initialization syntax to fill the list with a handful of new Car objects.

static void Main(string[] args)
{
 Console.WriteLine("***** LINQ over Generic Collections *****\n");

 // Make a List<> of Car objects.
 List<Car> myCars = new List<Car>() {
 new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
 new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
 new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
 new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
 new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}
 };

 Console.ReadLine();
}

Accessing Contained Subobjects
Applying a LINQ query to a generic container is no different from doing so with a simple array, as LINQ to
Objects can be used on any type implementing IEnumerable<T>. This time, your goal is to build a query
expression to select only the Car objects within the myCars list, where the speed is greater than 55.

After you get the subset, you will print out the name of each Car object by calling the PetName property.
Assume you have the following helper method (taking a List<Car> parameter), which is called from within
Main():

static void GetFastCars(List<Car> myCars)
{
 // Find all Car objects in the List<>, where the Speed is
 // greater than 55.
 var fastCars = from c in myCars where c.Speed > 55 select c;

 foreach (var car in fastCars)
 {
 Console.WriteLine("{0} is going too fast!", car.PetName);
 }
}

Notice that your query expression is grabbing only those items from the List<T> where the Speed
property is greater than 55. If you run the application, you will find that Henry and Daisy are the only two
items that match the search criteria.

If you want to build a more complex query, you might want to find only the BMWs that have a Speed
value above 90. To do so, simply build a compound Boolean statement using the C# && operator.

ChAPTEr 12 ■ LINQ To objECTS

456

static void GetFastBMWs(List<Car> myCars)
 {
 // Find the fast BMWs!
 var fastCars = from c in myCars where c.Speed > 90 && c.Make == "BMW" select c;
 foreach (var car in fastCars)
 {
 Console.WriteLine("{0} is going too fast!", car.PetName);
 }
}

In this case, the only pet name printed out is Henry.

Applying LINQ Queries to Nongeneric Collections
Recall that the query operators of LINQ are designed to work with any type implementing IEnumerable<T>
(either directly or via extension methods). Given that System.Array has been provided with such necessary
infrastructure, it might surprise you that the legacy (nongeneric) containers within System.Collections
have not. Thankfully, it is still possible to iterate over data contained within nongeneric collections using the
generic Enumerable.OfType<T>() extension method.

When calling OfType<T>() from a nongeneric collection object (such as the ArrayList), simply specify
the type of item within the container to extract a compatible IEnumerable<T> object. In code, you can store
this data point using an implicitly typed variable.

Consider the following new method, which fills an ArrayList with a set of Car objects (be sure to
import the System.Collections namespace into your Program.cs file):

static void LINQOverArrayList()
{
 Console.WriteLine("***** LINQ over ArrayList *****");

 // Here is a nongeneric collection of cars.
 ArrayList myCars = new ArrayList() {
 new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
 new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
 new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
 new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
 new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}
 };

 // Transform ArrayList into an IEnumerable<T>-compatible type.
 var myCarsEnum = myCars.OfType<Car>();

 // Create a query expression targeting the compatible type.
 var fastCars = from c in myCarsEnum where c.Speed > 55 select c;

 foreach (var car in fastCars)
 {
 Console.WriteLine("{0} is going too fast!", car.PetName);
 }
}

ChAPTEr 12 ■ LINQ To objECTS

457

Similar to the previous examples, this method, when called from Main(), will display only the names
Henry and Daisy, based on the format of the LINQ query.

Filtering Data Using OfType<T>()
As you know, nongeneric types are capable of containing any combination of items, as the members of these
containers (again, such as the ArrayList) are prototyped to receive System.Objects. For example, assume
an ArrayList contains a variety of items, only a subset of which are numerical. If you want to obtain a subset
that contains only numerical data, you can do so using OfType<T>() since it filters out each element whose
type is different from the given type during the iterations.

static void OfTypeAsFilter()
{
 // Extract the ints from the ArrayList.
 ArrayList myStuff = new ArrayList();
 myStuff.AddRange(new object[] { 10, 400, 8, false, new Car(), "string data" });
 var myInts = myStuff.OfType<int>();

 // Prints out 10, 400, and 8.
 foreach (int i in myInts)
 {
 Console.WriteLine("Int value: {0}", i);
 }
}

At this point, you have had a chance to apply LINQ queries to arrays, generic collections, and
nongeneric collections. These containers held both C# primitive types (integers, string data) as well as
custom classes. The next task is to learn about many additional LINQ operators that can be used to build
more complex and useful queries.

 ■ Source Code The LinqoverCollections project can be found in the Chapter 12 subdirectory.

Investigating the C# LINQ Query Operators
C# defines a good number of query operators out of the box. Table 12-3 documents some of the more
commonly used query operators.

 ■ Note The .NET Framework SDK documentation provides full details regarding each of the C# LINQ
operators. Look up the topic “LINQ General Programming Guide” for more information.

In addition to the partial list of operators shown in Table 12-3, the System.Linq.Enumerable class
provides a set of methods that do not have a direct C# query operator shorthand notation but are instead
exposed as extension methods. These generic methods can be called to transform a result set in various
manners (Reverse<>(), ToArray<>(), ToList<>(), etc.). Some are used to extract singletons from a result
set, others perform various set operations (Distinct<>(), Union<>(), Intersect<>(), etc.), and still others
aggregate results (Count<>(), Sum<>(), Min<>(), Max<>(), etc.).

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPTEr 12 ■ LINQ To objECTS

458

To begin digging into more intricate LINQ queries, create a new Console Application project named
FunWithLinqExpressions. Next, you need to define an array or collection of some sample data. For this
project, you will make an array of ProductInfo objects, defined in the following code:

class ProductInfo
{
 public string Name {get; set;} = "";
 public string Description {get; set;} = "";
 public int NumberInStock {get; set;} = 0;

 public override string ToString()
 {
 return string.Format("Name={0}, Description={1}, Number in Stock={2}",
 Name, Description, NumberInStock);
 }
}

Now populate an array with a batch of ProductInfo objects within your Main() method.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Query Expressions *****\n");

 // This array will be the basis of our testing...
 ProductInfo[] itemsInStock = new[] {
 new ProductInfo{ Name = "Mac's Coffee",
 Description = "Coffee with TEETH",
 NumberInStock = 24},
 new ProductInfo{ Name = "Milk Maid Milk",
 Description = "Milk cow's love",
 NumberInStock = 100},
 new ProductInfo{ Name = "Pure Silk Tofu",
 Description = "Bland as Possible",
 NumberInStock = 120},

Table 12-3. Common LINQ Query Operators

Query Operators Meaning in Life

from, in Used to define the backbone for any LINQ expression, which allows you
to extract a subset of data from a fitting container.

where Used to define a restriction for which items to extract from a container.

select Used to select a sequence from the container.

join, on, equals, into Performs joins based on specified key. Remember, these “joins” do not
need to have anything to do with data in a relational database.

orderby, ascending, descending Allows the resulting subset to be ordered in ascending or descending
order.

group, by Yields a subset with data grouped by a specified value.

ChAPTEr 12 ■ LINQ To objECTS

459

 new ProductInfo{ Name = "Cruchy Pops",
 Description = "Cheezy, peppery goodness",
 NumberInStock = 2},
 new ProductInfo{ Name = "RipOff Water",
 Description = "From the tap to your wallet",
 NumberInStock = 100},
 new ProductInfo{ Name = "Classic Valpo Pizza",
 Description = "Everyone loves pizza!",
 NumberInStock = 73}
 };

 // We will call various methods here!
 Console.ReadLine();
}

Basic Selection Syntax
Because the syntactical correctness of a LINQ query expression is validated at compile time, you need to
remember that the ordering of these operators is critical. In the simplest terms, every LINQ query expression
is built using the from, in, and select operators. Here is the general template to follow:

var result = from matchingItem in container select matchingItem;

The item after the from operator represents an item that matches the LINQ query criteria, which can
be named anything you choose. The item after the in operator represents the data container to search (an
array, collection, XML document, etc.).

Here is a simple query, doing nothing more than selecting every item in the container (similar in
behavior to a database Select * SQL statement). Consider the following:

static void SelectEverything(ProductInfo[] products)
{
 // Get everything!
 Console.WriteLine("All product details:");
 var allProducts = from p in products select p;

 foreach (var prod in allProducts)
 {
 Console.WriteLine(prod.ToString());
 }
}

To be honest, this query expression is not entirely useful, given that your subset is identical to that of
the data in the incoming parameter. If you want, you could extract only the Name values of each car using the
following selection syntax:

static void ListProductNames(ProductInfo[] products)
{
 // Now get only the names of the products.
 Console.WriteLine("Only product names:");
 var names = from p in products select p.Name;

ChAPTEr 12 ■ LINQ To objECTS

460

 foreach (var n in names)
 {
 Console.WriteLine("Name: {0}", n);
 }
}

Obtaining Subsets of Data
To obtain a specific subset from a container, you can use the where operator. When doing so, the general
template now becomes the following code:

var result = from item in container where BooleanExpression select item;

Notice that the where operator expects an expression that resolves to a Boolean. For example, to extract
from the ProductInfo[] argument only the items that have more than 25 items on hand, you could author
the following code:

static void GetOverstock(ProductInfo[] products)
{
 Console.WriteLine("The overstock items!");

 // Get only the items where we have more than
 // 25 in stock.
 var overstock = from p in products where p.NumberInStock > 25 select p;

 foreach (ProductInfo c in overstock)
 {
 Console.WriteLine(c.ToString());
 }
}

As shown earlier in this chapter, when you are building a where clause, it is permissible to make use of
any valid C# operators to build complex expressions. For example, recall the query that extracts out only the
BMWs going at least 100 mph:

// Get BMWs going at least 100 mph.
var onlyFastBMWs = from c in myCars
 where c.Make == "BMW" && c.Speed >= 100 select c;
foreach (Car c in onlyFastBMWs)
{
 Console.WriteLine("{0} is going {1} MPH", c.PetName, c.Speed);
}

Projecting New Data Types
It is also possible to project new forms of data from an existing data source. Let’s assume you want to take the
incoming ProductInfo[] parameter and obtain a result set that accounts only for the name and description
of each item. To do so, you can define a select statement that dynamically yields a new anonymous type.

ChAPTEr 12 ■ LINQ To objECTS

461

static void GetNamesAndDescriptions(ProductInfo[] products)
{
 Console.WriteLine("Names and Descriptions:");
 var nameDesc = from p in products select new { p.Name, p.Description };

 foreach (var item in nameDesc)
 {
 // Could also use Name and Description properties directly.
 Console.WriteLine(item.ToString());
 }
}

Always remember that when you have a LINQ query that makes use of a projection, you have no way of
knowing the underlying data type, as this is determined at compile time. In these cases, the var keyword is
mandatory. As well, recall that you cannot create methods with implicitly typed return values. Therefore, the
following method would not compile:

static var GetProjectedSubset(ProductInfo[] products)
{
 var nameDesc = from p in products select new { p.Name, p.Description };
 return nameDesc; // Nope!
}

When you need to return projected data to a caller, one approach is to transform the query result into
a .NET System.Array object using the ToArray() extension method. Thus, if you were to update your query
expression as follows:

// Return value is now an Array.
static Array GetProjectedSubset(ProductInfo[] products)
{
 var nameDesc = from p in products select new { p.Name, p.Description };

 // Map set of anonymous objects to an Array object.
 return nameDesc.ToArray();
}

you could invoke and process the data from Main() as follows:

Array objs = GetProjectedSubset(itemsInStock);
foreach (object o in objs)
{
 Console.WriteLine(o); // Calls ToString() on each anonymous object.
}

ChAPTEr 12 ■ LINQ To objECTS

462

Note that you must use a literal System.Array object and cannot make use of the C# array declaration
syntax, given that you don’t know the underlying type of type because you are operating on a compiler-
generated anonymous class! Also note that you are not specifying the type parameter to the generic
ToArray<T>() method, as you once again don’t know the underlying data type until compile time, which is
too late for your purposes.

The obvious problem is that you lose any strong typing, as each item in the Array object is assumed to
be of type Object. Nevertheless, when you need to return a LINQ result set that is the result of a projection
operation, transforming the data into an Array type (or another suitable container via other members of the
Enumerable type) is mandatory.

Obtaining Counts Using Enumerable
When you are projecting new batches of data, you may need to discover exactly how many items have been
returned into the sequence. Any time you need to determine the number of items returned from a LINQ
query expression, simply use the Count() extension method of the Enumerable class. For example, the
following method will find all string objects in a local array that have a length greater than six characters:

static void GetCountFromQuery()
{
 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Get count from the query.
 int numb =
 (from g in currentVideoGames where g.Length > 6 select g).Count();

 // Print out the number of items.
 Console.WriteLine("{0} items honor the LINQ query.", numb);
}

Reversing Result Sets
You can reverse the items within a result set quite simply using the Reverse<>() extension method of the
Enumerable class. For example, the following method selects all items from the incoming ProductInfo[]
parameter, in reverse:

static void ReverseEverything(ProductInfo[] products)
{
 Console.WriteLine("Product in reverse:");
 var allProducts = from p in products select p;
 foreach (var prod in allProducts.Reverse())
 {
 Console.WriteLine(prod.ToString());
 }
}

ChAPTEr 12 ■ LINQ To objECTS

463

Sorting Expressions
As you have seen over this chapter’s initial examples, a query expression can take an orderby operator to sort
items in the subset by a specific value. By default, the order will be ascending; thus, ordering by a string would
be alphabetical, ordering by numerical data would be lowest to highest, and so forth. If you need to view the
results in a descending order, simply include the descending operator. Ponder the following method:

static void AlphabetizeProductNames(ProductInfo[] products)
{
 // Get names of products, alphabetized.
 var subset = from p in products orderby p.Name select p;

 Console.WriteLine("Ordered by Name:");
 foreach (var p in subset)
 {
 Console.WriteLine(p.ToString());
 }
}

Although ascending order is the default, you are able to make your intentions clear by using the
ascending operator.

var subset = from p in products orderby p.Name ascending select p;

If you want to get the items in descending order, you can do so via the descending operator.

var subset = from p in products orderby p.Name descending select p;

LINQ As a Better Venn Diagramming Tool
The Enumerable class supports a set of extension methods that allows you to use two (or more) LINQ
queries as the basis to find unions, differences, concatenations, and intersections of data. First, consider the
Except() extension method, which will return a LINQ result set that contains the differences between two
containers, which in this case, is the value Yugo:

static void DisplayDiff()
{
 List<string> myCars = new List<String> {"Yugo", "Aztec", "BMW"};
 List<string> yourCars = new List<String>{"BMW", "Saab", "Aztec" };

 var carDiff =(from c in myCars select c)
 .Except(from c2 in yourCars select c2);

 Console.WriteLine("Here is what you don't have, but I do:");
 foreach (string s in carDiff)
 Console.WriteLine(s); // Prints Yugo.
}

ChAPTEr 12 ■ LINQ To objECTS

464

The Intersect() method will return a result set that contains the common data items in a set of
containers. For example, the following method returns the sequence Aztec and BMW:

static void DisplayIntersection()
{
 List<string> myCars = new List<String> { "Yugo", "Aztec", "BMW" };
 List<string> yourCars = new List<String> { "BMW", "Saab", "Aztec" };

 // Get the common members.
 var carIntersect = (from c in myCars select c)
 .Intersect(from c2 in yourCars select c2);

 Console.WriteLine("Here is what we have in common:");
 foreach (string s in carIntersect)
 Console.WriteLine(s); // Prints Aztec and BMW.
}

The Union() method, as you would guess, returns a result set that includes all members of a batch of
LINQ queries. Like any proper union, you will not find repeating values if a common member appears more
than once. Therefore, the following method will print out the values Yugo, Aztec, BMW, and Saab:

static void DisplayUnion()
{
 List<string> myCars = new List<String> { "Yugo", "Aztec", "BMW" };
 List<string> yourCars = new List<String> { "BMW", "Saab", "Aztec" };

 // Get the union of these containers.
 var carUnion = (from c in myCars select c)
 .Union(from c2 in yourCars select c2);

 Console.WriteLine("Here is everything:");
 foreach (string s in carUnion)
 Console.WriteLine(s); // Prints all common members.
}

Finally, the Concat() extension method returns a result set that is a direct concatenation of LINQ result
sets. For example, the following method prints out the results Yugo, Aztec, BMW, BMW, Saab, and Aztec:

static void DisplayConcat()
{
 List<string> myCars = new List<String> { "Yugo", "Aztec", "BMW" };
 List<string> yourCars = new List<String> { "BMW", "Saab", "Aztec" };

 var carConcat = (from c in myCars select c)
 .Concat(from c2 in yourCars select c2);

 // Prints:
 // Yugo Aztec BMW BMW Saab Aztec.
 foreach (string s in carConcat)
 Console.WriteLine(s);
}

ChAPTEr 12 ■ LINQ To objECTS

465

Removing Duplicates
When you call the Concat() extension method, you could very well end up with redundant entries in the
fetched result, which could be exactly what you want in some cases. However, in other cases, you might
want to remove duplicate entries in your data. To do so, simply call the Distinct() extension method, as
shown here:

static void DisplayConcatNoDups()
{
 List<string> myCars = new List<String> { "Yugo", "Aztec", "BMW" };
 List<string> yourCars = new List<String> { "BMW", "Saab", "Aztec" };

 var carConcat = (from c in myCars select c)
 .Concat(from c2 in yourCars select c2);

 // Prints:
 // Yugo Aztec BMW Saab Aztec.
 foreach (string s in carConcat.Distinct())
 Console.WriteLine(s);
}

LINQ Aggregation Operations
LINQ queries can also be designed to perform various aggregation operations on the result set. The Count()
extension method is one such aggregation example. Other possibilities include obtaining an average,
maximum, minimum, or sum of values using the Max(), Min(), Average(), or Sum() members of the
Enumerable class. Here is a simple example:

static void AggregateOps()
{
 double[] winterTemps = { 2.0, -21.3, 8, -4, 0, 8.2 };

 // Various aggregation examples.
 Console.WriteLine("Max temp: {0}",
 (from t in winterTemps select t).Max());

 Console.WriteLine("Min temp: {0}",
 (from t in winterTemps select t).Min());

 Console.WriteLine("Average temp: {0}",
 (from t in winterTemps select t).Average());

 Console.WriteLine("Sum of all temps: {0}",
 (from t in winterTemps select t).Sum());
}

These examples should give you enough knowledge to feel comfortable with the process of building
LINQ query expressions. While there are additional operators you have not yet examined, you will see
further examples later in this text when you learn about related LINQ technologies. To wrap up your first
look at LINQ, the remainder of this chapter will dive into the details between the C# LINQ query operators
and the underlying object model.

ChAPTEr 12 ■ LINQ To objECTS

466

 ■ Source Code The FunWithLinqExpressions project can be found in the Chapter 12 subdirectory.

The Internal Representation of LINQ Query Statements
At this point, you have been introduced to the process of building query expressions using various C# query
operators (such as from, in, where, orderby, and select). Also, you discovered that some functionality of
the LINQ to Objects API can be accessed only when calling extension methods of the Enumerable class.
The truth of the matter, however, is that when compiled, the C# compiler actually translates all C# LINQ
operators into calls on methods of the Enumerable class.

A great many of the methods of Enumerable have been prototyped to take delegates as arguments. In
particular, many methods require a generic delegate named Func<>, which was introduced to you during
your examination of generic delegates in Chapter 9. Consider the Where() method of Enumerable, which is
called on your behalf when you use the C# where LINQ query operator.

// Overloaded versions of the Enumerable.Where<T>() method.
// Note the second parameter is of type System.Func<>.
public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
 System.Func<TSource,int,bool> predicate)

public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
 System.Func<TSource,bool> predicate)

The Func<> delegate (as the name implies) represents a pattern for a given function with a set of up to
16 arguments and a return value. If you were to examine this type using the Visual Studio object browser, you
would notice various forms of the Func<> delegate. Here’s an example:

// The various formats of the Func<> delegate.
public delegate TResult Func<T1,T2,T3,T4,TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)

public delegate TResult Func<T1,T2,T3,TResult>(T1 arg1, T2 arg2, T3 arg3)

public delegate TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2)

public delegate TResult Func<T1,TResult>(T1 arg1)

public delegate TResult Func<TResult>()

Given that many members of System.Linq.Enumerable demand a delegate as input, when invoking
them, you can either manually create a new delegate type and author the necessary target methods, make
use of a C# anonymous method, or define a proper lambda expression. Regardless of which approach you
take, the end result is identical.

While it is true that making use of C# LINQ query operators is far and away the simplest way to build
a LINQ query expression, let’s walk through each of these possible approaches, just so you can see the
connection between the C# query operators and the underlying Enumerable type.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
http://dx.doi.org/10.1007/978-1-4842-1332-2_9

ChAPTEr 12 ■ LINQ To objECTS

467

Building Query Expressions with Query Operators (Revisited)
To begin, create a new Console Application project named LinqUsingEnumerable. The Program class will
define a series of static helper methods (each of which is called within the Main() method) to illustrate the
various manners in which you can build LINQ query expressions.

The first method, QueryStringsWithOperators(), offers the most straightforward way to build a query
expression and is identical to the code shown in the LinqOverArray example earlier in this chapter.

static void QueryStringWithOperators()
{
 Console.WriteLine("***** Using Query Operators *****");

 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 var subset = from game in currentVideoGames
 where game.Contains(" ") orderby game select game;

 foreach (string s in subset)
 Console.WriteLine("Item: {0}", s);
}

The obvious benefit of using C# query operators to build query expressions is that the Func<> delegates
and calls on the Enumerable type are out of sight and out of mind, as it is the job of the C# compiler to
perform this translation. To be sure, building LINQ expressions using various query operators (from, in,
where, or orderby) is the most common and straightforward approach.

Building Query Expressions Using the Enumerable Type and Lambda
Expressions
Keep in mind that the LINQ query operators used here are simply shorthand versions for calling various extension
methods defined by the Enumerable type. Consider the following QueryStringsWithEnumerableAndLambdas()
method, which is processing the local string array now making direct use of the Enumerable extension
methods:

static void QueryStringsWithEnumerableAndLambdas()
{
 Console.WriteLine("***** Using Enumerable / Lambda Expressions *****");

 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Build a query expression using extension methods
 // granted to the Array via the Enumerable type.
 var subset = currentVideoGames.Where(game => game.Contains(" "))
 .OrderBy(game => game).Select(game => game);

ChAPTEr 12 ■ LINQ To objECTS

468

 // Print out the results.
 foreach (var game in subset)
 Console.WriteLine("Item: {0}", game);
 Console.WriteLine();
}

Here, you begin by calling the Where() extension method on the currentVideoGames string array. Recall
that the Array class receives this via an extension method granted by Enumerable. The Enumerable.Where()
method requires a System.Func<T1, TResult> delegate parameter. The first type parameter of this delegate
represents the IEnumerable<T> compatible data to process (an array of strings in this case), while the second
type parameter represents the method result data, which is obtained from a single statement fed into the
lambda expression.

The return value of the Where() method is hidden from view in this code example, but under the
covers you are operating on an OrderedEnumerable type. From this object, you call the generic OrderBy()
method, which also requires a Func<> delegate parameter. This time, you are simply passing each item in
turn via a fitting lambda expression. The end result of calling OrderBy() is a new ordered sequence of the
initial data.

Last but not least, you call the Select() method off the sequence returned from OrderBy(), which
results in the final set of data that is stored in an implicitly typed variable named subset.

To be sure, this “longhand” LINQ query is a bit more complex to tease apart than the previous C# LINQ
query operator example. Part of the complexity is, no doubt, due to the chaining together of calls using the
dot operator. Here is the same query, with each step broken into discrete chunks (as you might guess, you
could break down the overall query in various manners):

static void QueryStringsWithEnumerableAndLambdas2()
{
 Console.WriteLine("***** Using Enumerable / Lambda Expressions *****");

 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Break it down!
 var gamesWithSpaces = currentVideoGames.Where(game => game.Contains(" "));
 var orderedGames = gamesWithSpaces.OrderBy(game => game);
 var subset = orderedGames.Select(game => game);

 foreach (var game in subset)
 Console.WriteLine("Item: {0}", game);
 Console.WriteLine();
}

As you might agree, building a LINQ query expression using the methods of the Enumerable class
directly is much more verbose than making use of the C# query operators. As well, given that the methods of
Enumerable require delegates as parameters, you will typically need to author lambda expressions to allow
the input data to be processed by the underlying delegate target.

ChAPTEr 12 ■ LINQ To objECTS

469

Building Query Expressions Using the Enumerable Type and
Anonymous Methods
Given that C# lambda expressions are simply shorthand notations for working with anonymous methods,
consider the third query expression created within the QueryStringsWithAnonymousMethods() helper
function:

static void QueryStringsWithAnonymousMethods()
{
 Console.WriteLine("***** Using Anonymous Methods *****");

 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Build the necessary Func<> delegates using anonymous methods.
 Func<string, bool> searchFilter =
 delegate(string game) { return game.Contains(" "); };
 Func<string, string> itemToProcess = delegate(string s) { return s; };

 // Pass the delegates into the methods of Enumerable.
 var subset = currentVideoGames.Where(searchFilter)
 .OrderBy(itemToProcess).Select(itemToProcess);

 // Print out the results.
 foreach (var game in subset)
 Console.WriteLine("Item: {0}", game);
 Console.WriteLine();
}

This iteration of the query expression is even more verbose, because you are manually creating
the Func<> delegates used by the Where(), OrderBy(), and Select() methods of the Enumerable class.
On the plus side, the anonymous method syntax does keep all the delegate processing contained
within a single method definition. Nevertheless, this method is functionally equivalent to the
QueryStringsWithEnumerableAndLambdas() and QueryStringsWithOperators() methods created in the
previous sections.

Building Query Expressions Using the Enumerable Type and
Raw Delegates
Finally, if you want to build a query expression using the really verbose approach, you could avoid
the use of lambdas/anonymous method syntax and directly create delegate targets for each Func<>
type. Here is the final iteration of your query expression, modeled within a new class type named
VeryComplexQueryExpression:

class VeryComplexQueryExpression
{
 public static void QueryStringsWithRawDelegates()
 {
 Console.WriteLine("***** Using Raw Delegates *****");

ChAPTEr 12 ■ LINQ To objECTS

470

 string[] currentVideoGames = {"Morrowind", "Uncharted 2",
 "Fallout 3", "Daxter", "System Shock 2"};

 // Build the necessary Func<> delegates.
 Func<string, bool> searchFilter = new Func<string, bool>(Filter);
 Func<string, string> itemToProcess = new Func<string,string>(ProcessItem);

 // Pass the delegates into the methods of Enumerable.
 var subset = currentVideoGames
 .Where(searchFilter).OrderBy(itemToProcess).Select(itemToProcess);

 // Print out the results.
 foreach (var game in subset)
 Console.WriteLine("Item: {0}", game);
 Console.WriteLine();
 }

 // Delegate targets.
 public static bool Filter(string game) {return game.Contains(" ");}
 public static string ProcessItem(string game) { return game; }
}

You can test this iteration of your string processing logic by calling this method within the Main()
method of the Program class, as follows:

VeryComplexQueryExpression.QueryStringsWithRawDelegates();

If you were to now run the application to test each possible approach, it should not be too surprising
that the output is identical, regardless of the path taken. Keep the following points in mind regarding how
LINQ query expressions are represented under the covers:

•	 Query expressions are created using various C# query operators.

•	 Query operators are simply shorthand notations for invoking extension methods
defined by the System.Linq.Enumerable type.

•	 Many methods of Enumerable require delegates (Func<> in particular) as parameters.

•	 Any method requiring a delegate parameter can instead be passed a lambda
expression.

•	 Lambda expressions are simply anonymous methods in disguise (which greatly
improve readability).

•	 Anonymous methods are shorthand notations for allocating a raw delegate and
manually building a delegate target method.

Whew! That might have been a bit deeper under the hood than you wanted to have gone, but I hope this
discussion has helped you understand what the user-friendly C# query operators are actually doing behind
the scenes.

 ■ Note The LinqUsingEnumerable project can be found in the Chapter 12 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPTEr 12 ■ LINQ To objECTS

471

Summary
LINQ is a set of related technologies that attempts to provide a single, symmetrical manner to interact
with diverse forms of data. As explained over the course of this chapter, LINQ can interact with any type
implementing the IEnumerable<T> interface, including simple arrays as well as generic and nongeneric
collections of data.

As you have seen, working with LINQ technologies is accomplished using several C# language features.
For example, given that LINQ query expressions can return any number of result sets, it is common to
make use of the var keyword to represent the underlying data type. As well, lambda expressions, object
initialization syntax, and anonymous types can all be used to build functional and compact LINQ queries.

More importantly, you have seen how the C# LINQ query operators are simply shorthand notations
for making calls on static members of the System.Linq.Enumerable type. As shown, most members of
Enumerable operate on Func<T> delegate types, which can take literal method addresses, anonymous
methods, or lambda expressions as input to evaluate the query.

473

Chapter 13

Understanding Object Lifetime

At this point in the book, you have learned a great deal about how to build custom class types using C#.
Now you will see how the CLR manages allocated class instances (aka objects) via garbage collection. C#
programmers never directly deallocate a managed object from memory (recall there is no delete keyword in
the C# language). Rather, .NET objects are allocated to a region of memory termed the managed heap, where
they will be automatically destroyed by the garbage collector “sometime in the future.”

After you have looked at the core details of the collection process, you’ll learn how to programmatically
interact with the garbage collector using the System.GC class type (which is something you will typically not
be required to do for a majority of your .NET projects). Next, you’ll examine how the virtual System.Object.
Finalize() method and IDisposable interface can be used to build classes that release internal unmanaged
resources in a predictable and timely manner.

You will also delve into some functionality of the garbage collector introduced in .NET 4.0, including
background garbage collections and lazy instantiation using the generic System.Lazy<> class. By the time
you have completed this chapter, you will have a solid understanding of how .NET objects are managed by
the CLR.

Classes, Objects, and References
To frame the topics covered in this chapter, it is important to further clarify the distinction between classes,
objects, and reference variables. Recall that a class is nothing more than a blueprint that describes how an
instance of this type will look and feel in memory. Classes, of course, are defined within a code file (which in
C# takes a *.cs extension by convention). Consider the following simple Car class defined within a new C#
Console Application project named SimpleGC:

// Car.cs
public class Car
{
 public int CurrentSpeed {get; set;}
 public string PetName {get; set;}

 public Car(){}
 public Car(string name, int speed)
 {
 PetName = name;
 CurrentSpeed = speed;
 }

Chapter 13 ■ Understanding ObjeCt Lifetime

474

 public override string ToString()
 {
 return string.Format("{0} is going {1} MPH",
 PetName, CurrentSpeed);
 }
}

After a class has been defined, you may allocate any number of objects using the C# new keyword.
Understand, however, that the new keyword returns a reference to the object on the heap, not the actual
object. If you declare the reference variable as a local variable in a method scope, it is stored on the stack for
further use in your application. When you want to invoke members on the object, apply the C# dot operator
to the stored reference, like so:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** GC Basics *****");

 // Create a new Car object on
 // the managed heap. We are
 // returned a reference to this
 // object ("refToMyCar").
 Car refToMyCar = new Car("Zippy", 50);

 // The C# dot operator (.) is used
 // to invoke members on the object
 // using our reference variable.
 Console.WriteLine(refToMyCar.ToString());
 Console.ReadLine();
 }
}

Figure 13-1 illustrates the class, object, and reference relationship.

Figure 13-1. References to objects on the managed heap

 ■ Note recall from Chapter 4 that structures are value types that are always allocated directly on the stack
and are never placed on the .net managed heap. heap allocation occurs only when you are creating instances
of classes.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 13 ■ Understanding ObjeCt Lifetime

475

The Basics of Object Lifetime
When you are building your C# applications, you are correct to assume that the .NET runtime environment
(aka the CLR) will take care of the managed heap without your direct intervention. In fact, the golden rule of
.NET memory management is simple.

 ■ Rule allocate a class instance onto the managed heap using the new keyword and forget about it.

Once instantiated, the garbage collector will destroy an object when it is no longer needed. The next
obvious question, of course, is, “How does the garbage collector determine when an object is no longer
needed?” The short (i.e., incomplete) answer is that the garbage collector removes an object from the heap
only if it is unreachable by any part of your code base. Assume you have a method in your Program class that
allocates a local Car object as follows:

static void MakeACar()
{
 // If myCar is the only reference to the Car object,
 // it *may* be destroyed when this method returns.
 Car myCar = new Car();
}

Notice that this Car reference (myCar) has been created directly within the MakeACar() method and has
not been passed outside of the defining scope (via a return value or ref/out parameters). Thus, once this
method call completes, the myCar reference is no longer reachable, and the associated Car object is now
a candidate for garbage collection. Understand, however, that you can’t guarantee that this object will be
reclaimed from memory immediately after MakeACar() has completed. All you can assume at this point is
that when the CLR performs the next garbage collection, the myCar object could be safely destroyed.

As you will most certainly discover, programming in a garbage-collected environment greatly simplifies
your application development. In stark contrast, C++ programmers are painfully aware that if they fail
to manually delete heap-allocated objects, memory leaks are never far behind. In fact, tracking down
memory leaks is one of the most time-consuming (and tedious) aspects of programming in unmanaged
environments. By allowing the garbage collector to take charge of destroying objects, the burden of memory
management has been lifted from your shoulders and placed onto those of the CLR.

The CIL of new
When the C# compiler encounters the new keyword, it emits a CIL newobj instruction into the method
implementation. If you compile the current example code and investigate the resulting assembly using
ildasm.exe, you’d find the following CIL statements within the MakeACar() method:

.method private hidebysig static void MakeACar() cil managed
{
 // Code size 8 (0x8)
 .maxstack 1
 .locals init ([0] class SimpleGC.Car myCar)
 IL_0000: nop
 IL_0001: newobj instance void SimpleGC.Car::.ctor()
 IL_0006: stloc.0
 IL_0007: ret
} // end of method Program::MakeACar

Chapter 13 ■ Understanding ObjeCt Lifetime

476

Before you examine the exact rules that determine when an object is removed from the managed heap,
let’s check out the role of the CIL newobj instruction in a bit more detail. First, understand that the managed
heap is more than just a random chunk of memory accessed by the CLR. The .NET garbage collector is quite
a tidy housekeeper of the heap, given that it will compact empty blocks of memory (when necessary) for the
purposes of optimization.

To aid in this endeavor, the managed heap maintains a pointer (commonly referred to as the next object
pointer or new object pointer) that identifies exactly where the next object will be located. That said, the
newobj instruction tells the CLR to perform the following core operations:

 1. Calculate the total amount of memory required for the object to be allocated
(including the memory required by the data members and the base classes).

 2. Examine the managed heap to ensure that there is indeed enough room to host
the object to be allocated. If there is, the specified constructor is called, and the
caller is ultimately returned a reference to the new object in memory, whose
address just happens to be identical to the last position of the next object pointer.

 3. Finally, before returning the reference to the caller, advance the next object
pointer to point to the next available slot on the managed heap.

Figure 13-2 illustrates the basic process.

Figure 13-2. The details of allocating objects onto the managed heap

As your application is busy allocating objects, the space on the managed heap may eventually become
full. When processing the newobj instruction, if the CLR determines that the managed heap does not have
sufficient memory to allocate the requested type, it will perform a garbage collection in an attempt to free up
memory. Thus, the next rule of garbage collection is also quite simple.

 ■ Rule if the managed heap does not have sufficient memory to allocate a requested object, a garbage
collection will occur.

Exactly how this garbage collection occurs, however, depends on which version of the .NET platform
your application is running under. You’ll look at the differences a bit later in this chapter.

Chapter 13 ■ Understanding ObjeCt Lifetime

477

Setting Object References to null
C/C++ programmers often set pointer variables to null to ensure they are no longer referencing unmanaged
memory. Given this, you might wonder what the end result is of assigning object references to null under
C#. For example, assume the MakeACar() subroutine has now been updated as follows:

static void MakeACar()
{
 Car myCar = new Car();
 myCar = null;
}

When you assign object references to null, the compiler generates CIL code that ensures the reference
(myCar, in this example) no longer points to any object. If you once again made use of ildasm.exe to view
the CIL code of the modified MakeACar(), you would find the ldnull opcode (which pushes a null value on
the virtual execution stack) followed by a stloc.0 opcode (which sets the null reference on the variable).

.method private hidebysig static void MakeACar() cil managed
{
 // Code size 10 (0xa)
 .maxstack 1
 .locals init ([0] class SimpleGC.Car myCar)
 IL_0000: nop
 IL_0001: newobj instance void SimpleGC.Car::.ctor()
 IL_0006: stloc.0
 IL_0007: ldnull
 IL_0008: stloc.0
 IL_0009: ret
} // end of method Program::MakeACar

What you must understand, however, is that assigning a reference to null does not in any way force the
garbage collector to fire up at that exact moment and remove the object from the heap. The only thing you
have accomplished is explicitly clipping the connection between the reference and the object it previously
pointed to. Given this point, setting references to null under C# is far less consequential than doing so in
other C-based languages; however, doing so will certainly not cause any harm.

The Role of Application Roots
Now, back to the topic of how the garbage collector determines when an object is no longer needed. To
understand the details, you need to be aware of the notion of application roots. Simply put, a root is a storage
location containing a reference to an object on the managed heap. Strictly speaking, a root can fall into any
of the following categories:

•	 References to global objects (though these are not allowed in C#, CIL code does
permit allocation of global objects)

•	 References to any static objects/static fields

•	 References to local objects within an application’s code base

•	 References to object parameters passed into a method

•	 References to objects waiting to be finalized (described later in this chapter)

•	 Any CPU register that references an object

Chapter 13 ■ Understanding ObjeCt Lifetime

478

During a garbage collection process, the runtime will investigate objects on the managed heap to
determine whether they are still reachable (i.e., rooted) by the application. To do so, the CLR will build an
object graph, which represents each reachable object on the heap. Object graphs are explained in some
detail during the discussion of object serialization in Chapter 20. For now, just understand that object graphs
are used to document all reachable objects. As well, be aware that the garbage collector will never graph the
same object twice, thus avoiding the nasty circular reference count found in COM programming.

Assume the managed heap contains a set of objects named A, B, C, D, E, F, and G. During a garbage
collection, these objects (as well as any internal object references they may contain) are examined for active
roots. After the graph has been constructed, unreachable objects (which you can assume are objects C and F)
are marked as garbage. Figure 13-3 diagrams a possible object graph for the scenario just described (you can
read the directional arrows using the phrase depends on or requires; for example, E depends on G and B, A
depends on nothing, and so on).

Figure 13-3. Object graphs are constructed to determine which objects are reachable by application roots

Figure 13-4. A clean and compacted heap

After objects have been marked for termination (C and F in this case—as they are not accounted for in
the object graph), they are swept from memory. At this point, the remaining space on the heap is compacted,
which in turn causes the CLR to modify the set of active application roots (and the underlying pointers)
to refer to the correct memory location (this is done automatically and transparently). Last but not least,
the next object pointer is readjusted to point to the next available slot. Figure 13-4 illustrates the resulting
readjustment.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

Chapter 13 ■ Understanding ObjeCt Lifetime

479

 ■ Note strictly speaking, the garbage collector uses two distinct heaps, one of which is specifically used
to store large objects. this heap is less frequently consulted during the collection cycle, given possible
performance penalties involved with relocating large objects. regardless, it is safe to consider the managed
heap as a single region of memory.

Understanding Object Generations
When the CLR is attempting to locate unreachable objects, it does not literally examine every object placed
on the managed heap. Doing so, obviously, would involve considerable time, especially in larger (i.e., real-
world) applications.

To help optimize the process, each object on the heap is assigned to a specific “generation.” The idea
behind generations is simple: the longer an object has existed on the heap, the more likely it is to stay there.
For example, the class that defined the main window of a desktop application will be in memory until the
program terminates. Conversely, objects that have only recently been placed on the heap (such as an object
allocated within a method scope) are likely to be unreachable rather quickly. Given these assumptions, each
object on the heap belongs to one of the following generations:

•	 Generation 0: Identifies a newly allocated object that has never been marked for
collection

•	 Generation 1: Identifies an object that has survived a garbage collection (i.e., it was
marked for collection but was not removed because the sufficient heap space was
acquired)

•	 Generation 2: Identifies an object that has survived more than one sweep of the
garbage collector

 ■ Note generations 0 and 1 are termed ephemeral generations. as explained in the next section, you will see
that the garbage collection process does treat ephemeral generations differently.

The garbage collector will investigate all generation 0 objects first. If marking and sweeping (or said
more plainly, getting rid of) these objects results in the required amount of free memory, any surviving
objects are promoted to generation 1. To see how an object’s generation affects the collection process,
ponder Figure 13-5, which diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted
once the required memory has been reclaimed.

Chapter 13 ■ Understanding ObjeCt Lifetime

480

If all generation 0 objects have been evaluated but additional memory is still required, generation
1 objects are then investigated for reachability and collected accordingly. Surviving generation 1 objects
are then promoted to generation 2. If the garbage collector still requires additional memory, generation
2 objects are evaluated. At this point, if a generation 2 object survives a garbage collection, it remains a
generation 2 object, given the predefined upper limit of object generations.

The bottom line is that by assigning a generational value to objects on the heap, newer objects (such
as local variables) will be removed quickly, while older objects (such as a program’s main window) are not
“bothered” as often.

Concurrent Garbage Collection Prior to .NET 4.0
Prior to .NET 4.0, the runtime would clean up unused objects using a technique termed concurrent garbage
collection. Under this model, when a collection takes place for any generation 0 or generation 1 objects (recall
these are ephemeral generations), the garbage collector temporarily suspends all active threads within the
current process to ensure that the application does not access the managed heap during the collection process.

You will examine the topic of threads in Chapter 19; for the time being, simply regard a thread as a path
of execution within a running executable. After the garbage collection cycle has completed, the suspended
threads are permitted to carry on their work. Thankfully, the .NET 3.5 (and earlier) garbage collector was
highly optimized; you seldom (if ever) noticed this brief interruption in your application.

As an optimization, concurrent garbage collection allowed objects that were not located in one of the
ephemeral generations to be cleaned up on a dedicated thread. This decreased (but didn’t eliminate) the
need for the .NET runtime to suspect active threads. Moreover, concurrent garbage collection allowed your
program to continue allocating objects on the heap during the collection of nonephemeral generations.

Background Garbage Collection Under .NET 4.0 and Beyond
Beginning with .NET 4.0, the garbage collector is able to deal with thread suspension when it cleans up
objects on the managed heap, using background garbage collection. Despite its name, this does not mean
that all garbage collection now takes place on additional background threads of execution. Rather, if a
background garbage collection is taking place for objects living in a nonephemeral generation, the .NET
runtime is now able to collect objects on the ephemeral generations using a dedicated background thread.

On a related note, the .NET 4.0 and higher garbage collection has been improved to further reduce the
amount of time a given thread involved with garbage collection details must be suspended. The end result
of these changes is that the process of cleaning up unused objects living in generation 0 or generation 1 has
been optimized and can result in better runtime performance of your programs (which is really important
for real-time systems that require small, and predictable, GC stop time).

Figure 13-5. Generation 0 objects that survive a garbage collection are promoted to generation 1

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 13 ■ Understanding ObjeCt Lifetime

481

Do understand, however, that the introduction of this new garbage collection model has no effect on
how you build your .NET applications. For all practical purposes, you can simply allow the .NET garbage
collector to perform its work without your direct intervention (and be happy that the folks at Microsoft are
improving the collection process in a transparent manner).

The System.GC Type
The mscorlib.dll assembly provides a class type named System.GC that allows you to programmatically
interact with the garbage collector using a set of static members. Now, do be aware that you will seldom
(if ever) need to make use of this class directly in your code. Typically, the only time you will use the
members of System.GC is when you are creating classes that make internal use of unmanaged resources.
This could be the case if you are building a class that makes calls into the Windows C-based API using
the .NET platform invocation protocol or perhaps because of some very low-level and complicated COM
interop logic. Table 13-1 provides a rundown of some of the more interesting members (consult the .NET
Framework SDK documentation for complete details).

Table 13-1. Select Members of the System.GC Type

System.GC Member Description

AddMemoryPressure()
RemoveMemoryPressure()

Allows you to specify a numerical value that represents the calling
object’s “urgency level” regarding the garbage collection process. Be
aware that these methods should alter pressure in tandem and, thus,
never remove more pressure than the total amount you have added.

Collect() Forces the GC to perform a garbage collection. This method has been
overloaded to specify a generation to collect, as well as the mode of
collection (via the GCCollectionMode enumeration).

CollectionCount() Returns a numerical value representing how many times a given
generation has been swept.

GetGeneration() Returns the generation to which an object currently belongs.

GetTotalMemory() Returns the estimated amount of memory (in bytes) currently allocated
on the managed heap. A Boolean parameter specifies whether the call
should wait for garbage collection to occur before returning.

MaxGeneration Returns the maximum number of generations supported on the
target system. Under Microsoft’s .NET 4.0, there are three possible
generations: 0, 1, and 2.

SuppressFinalize() Sets a flag indicating that the specified object should not have its
Finalize() method called.

WaitForPendingFinalizers() Suspends the current thread until all finalizable objects have been
finalized. This method is typically called directly after invoking
GC.Collect().

Chapter 13 ■ Understanding ObjeCt Lifetime

482

To illustrate how the System.GC type can be used to obtain various garbage collection–centric details,
consider the following Main() method, which makes use of several members of GC:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with System.GC *****");

 // Print out estimated number of bytes on heap.
 Console.WriteLine("Estimated bytes on heap: {0}",
 GC.GetTotalMemory(false));

 // MaxGeneration is zero based, so add 1 for display purposes.
 Console.WriteLine("This OS has {0} object generations.\n",
 (GC.MaxGeneration + 1));

 Car refToMyCar = new Car("Zippy", 100);
 Console.WriteLine(refToMyCar.ToString());

 // Print out generation of refToMyCar object.
 Console.WriteLine("Generation of refToMyCar is: {0}",
 GC.GetGeneration(refToMyCar));
 Console.ReadLine();
}

Forcing a Garbage Collection
Again, the whole purpose of the .NET garbage collector is to manage memory on your behalf. However, in some
rare circumstances, it may be beneficial to programmatically force a garbage collection using GC.Collect().
Here are two common situations where you might consider interacting with the collection process:

•	 Your application is about to enter into a block of code that you don’t want
interrupted by a possible garbage collection.

•	 Your application has just finished allocating an extremely large number of objects
and you want to remove as much of the acquired memory as soon as possible.

If you determine it could be beneficial to have the garbage collector check for unreachable objects, you
could explicitly trigger a garbage collection, as follows:

static void Main(string[] args)
{
...
 // Force a garbage collection and wait for
 // each object to be finalized.
 GC.Collect();
 GC.WaitForPendingFinalizers();
...
}

Chapter 13 ■ Understanding ObjeCt Lifetime

483

When you manually force a garbage collection, you should always make a call to GC.
WaitForPendingFinalizers(). With this approach, you can rest assured that all finalizable objects
(described in the next section) have had a chance to perform any necessary cleanup before your program
continues. Under the hood, GC.WaitForPendingFinalizers() will suspend the calling thread during
the collection process. This is a good thing, as it ensures your code does not invoke methods on an object
currently being destroyed!

The GC.Collect() method can also be supplied a numerical value that identifies the oldest generation
on which a garbage collection will be performed. For example, to instruct the CLR to investigate only
generation 0 objects, you would write the following:

static void Main(string[] args)
{
...
 // Only investigate generation 0 objects.
 GC.Collect(0);
 GC.WaitForPendingFinalizers();
...
}

As well, the Collect() method can also be passed in a value of the GCCollectionMode enumeration
as a second parameter, to fine-tune exactly how the runtime should force the garbage collection. This enum
defines the following values:

public enum GCCollectionMode
{
 Default, // Forced is the current default.
 Forced, // Tells the runtime to collect immediately!
 Optimized // Allows the runtime to determine
 // whether the current time is optimal to reclaim objects.
}

As with any garbage collection, calling GC.Collect() promotes surviving generations. To illustrate,
assume that your Main() method has been updated as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with System.GC *****");

 // Print out estimated number of bytes on heap.
 Console.WriteLine("Estimated bytes on heap: {0}",
 GC.GetTotalMemory(false));

 // MaxGeneration is zero based.
 Console.WriteLine("This OS has {0} object generations.\n",
 (GC.MaxGeneration + 1));
 Car refToMyCar = new Car("Zippy", 100);
 Console.WriteLine(refToMyCar.ToString());

 // Print out generation of refToMyCar.
 Console.WriteLine("\nGeneration of refToMyCar is: {0}",
 GC.GetGeneration(refToMyCar));

Chapter 13 ■ Understanding ObjeCt Lifetime

484

 // Make a ton of objects for testing purposes.
 object[] tonsOfObjects = new object[50000];
 for (int i = 0; i < 50000; i++)
 tonsOfObjects[i] = new object();

 // Collect only gen 0 objects.
 GC.Collect(0, GCCollectionMode.Forced);
 GC.WaitForPendingFinalizers();

 // Print out generation of refToMyCar.
 Console.WriteLine("Generation of refToMyCar is: {0}",
 GC.GetGeneration(refToMyCar));

 // See if tonsOfObjects[9000] is still alive.
 if (tonsOfObjects[9000] != null)
 {
 Console.WriteLine("Generation of tonsOfObjects[9000] is: {0}",
 GC.GetGeneration(tonsOfObjects[9000]));
 }
 else
 Console.WriteLine("tonsOfObjects[9000] is no longer alive.");

 // Print out how many times a generation has been swept.
 Console.WriteLine("\nGen 0 has been swept {0} times",
 GC.CollectionCount(0));
 Console.WriteLine("Gen 1 has been swept {0} times",
 GC.CollectionCount(1));
 Console.WriteLine("Gen 2 has been swept {0} times",
 GC.CollectionCount(2));
 Console.ReadLine();
}

Here, I have purposely created a large array of object types (50,000 to be exact) for testing purposes. As
you can see from the output that follows, even though this Main() method made only one explicit request
for a garbage collection (via the GC.Collect() method), the CLR performed a number of them in the
background.

***** Fun with System.GC *****
Estimated bytes on heap: 70240
This OS has 3 object generations.

Zippy is going 100 MPH

Generation of refToMyCar is: 0
Generation of refToMyCar is: 1
Generation of tonsOfObjects[9000] is: 1

Gen 0 has been swept 1 times
Gen 1 has been swept 0 times
Gen 2 has been swept 0 times

Chapter 13 ■ Understanding ObjeCt Lifetime

485

At this point, I hope you feel more comfortable regarding the details of object lifetime. In the next
section, you’ll examine the garbage collection process a bit further by addressing how you can build
finalizable objects, as well as disposable objects. Be aware that the following techniques are typically
necessary only if you are building C# classes that maintain internal unmanaged resources.

 ■ Source Code the simplegC project is included in the Chapter 13 subdirectory.

Building Finalizable Objects
In Chapter 6, you learned that the supreme base class of .NET, System.Object, defines a virtual method
named Finalize(). The default implementation of this method does nothing whatsoever.

// System.Object
public class Object
{
 ...
 protected virtual void Finalize() {}
}

When you override Finalize() for your custom classes, you establish a specific location to perform any
necessary cleanup logic for your type. Given that this member is defined as protected, it is not possible to
directly call an object’s Finalize() method from a class instance via the dot operator. Rather, the garbage
collector will call an object’s Finalize() method (if supported) before removing the object from memory.

 ■ Note it is illegal to override Finalize() on structure types. this makes perfect sense given that structures
are value types, which are never allocated on the heap to begin with and, therefore, are not garbage collected!
however, if you create a structure that contains unmanaged resources that need to be cleaned up, you can
implement the IDisposable interface (described shortly).

Of course, a call to Finalize() will (eventually) occur during a “natural” garbage collection or possibly
when you programmatically force a collection via GC.Collect(). In addition, a type’s finalizer method will
automatically be called when the application domain hosting your application is unloaded from memory.
Depending on your background in .NET, you may know that application domains (or simply AppDomains)
are used to host an executable assembly and any necessary external code libraries. If you are not familiar
with this .NET concept, you will be by the time you’ve finished Chapter 17. For now, note that when your
AppDomain is unloaded from memory, the CLR automatically invokes finalizers for every finalizable object
created during its lifetime.

Now, despite what your developer instincts may tell you, the vast majority of your C# classes will not
require any explicit cleanup logic or a custom finalizer. The reason is simple: if your classes are just making
use of other managed objects, everything will eventually be garbage-collected. The only time you would
need to design a class that can clean up after itself is when you are using unmanaged resources (such
as raw OS file handles, raw unmanaged database connections, chunks of unmanaged memory, or other
unmanaged resources). Under the .NET platform, unmanaged resources are obtained by directly calling into
the API of the operating system using Platform Invocation Services (PInvoke) or as a result of some elaborate
COM interoperability scenarios. Given this, consider the next rule of garbage collection.

http://dx.doi.org/10.1007/978-1-4842-1332-2_13
http://dx.doi.org/10.1007/978-1-4842-1332-2_6
http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 13 ■ Understanding ObjeCt Lifetime

486

 ■ Rule the only compelling reason to override Finalize() is if your C# class is using unmanaged resources
via pinvoke or complex COm interoperability tasks (typically via various members defined by the System.
Runtime.InteropServices.Marshal type). the reason is that under these scenarios you are manipulating
memory that the CLr cannot manage.

Overriding System.Object.Finalize()
In the rare case that you do build a C# class that uses unmanaged resources, you will obviously want to
ensure that the underlying memory is released in a predictable manner. Suppose you have created a new
C# Console Application project named SimpleFinalize and inserted a class named MyResourceWrapper that
uses an unmanaged resource (whatever that might be) and you want to override Finalize(). The odd thing
about doing so in C# is that you can’t do it using the expected override keyword.

class MyResourceWrapper
{
 // Compile-time error!
 protected override void Finalize(){ }
}

Rather, when you want to configure your custom C# class types to override the Finalize() method, you
make use of a (C++-like) destructor syntax to achieve the same effect. The reason for this alternative form of
overriding a virtual method is that when the C# compiler processes the finalizer syntax, it automatically adds
a good deal of required infrastructure within the implicitly overridden Finalize() method (shown in just a
moment).

C# finalizers look similar to constructors in that they are named identically to the class they are
defined within. In addition, finalizers are prefixed with a tilde symbol (~). Unlike a constructor, however, a
finalizer never takes an access modifier (they are implicitly protected), never takes parameters, and can’t be
overloaded (only one finalizer per class).

The following is a custom finalizer for MyResourceWrapper that will issue a system beep when invoked.
Obviously, this example is only for instructional purposes. A real-world finalizer would do nothing more
than free any unmanaged resources and would not interact with other managed objects, even those
referenced by the current object, as you can’t assume they are still alive at the point the garbage collector
invokes your Finalize() method.

// Override System.Object.Finalize() via finalizer syntax.
class MyResourceWrapper
{
 ~MyResourceWrapper()
 {
 // Clean up unmanaged resources here.

 // Beep when destroyed (testing purposes only!)
 Console.Beep();
 }
}

Chapter 13 ■ Understanding ObjeCt Lifetime

487

If you were to examine this C# destructor using ildasm.exe, you would see that the compiler inserts
some necessary error-checking code. First, the code statements within the scope of your Finalize() method
are placed within a try block (see Chapter 7). The related finally block ensures that your base classes’
Finalize() method will always execute, regardless of any exceptions encountered within the try scope.

.method family hidebysig virtual instance void
 Finalize() cil managed
{
 // Code size 13 (0xd)
 .maxstack 1
 .try
 {
 IL_0000: ldc.i4 0x4e20
 IL_0005: ldc.i4 0x3e8
 IL_000a: call
 void [mscorlib]System.Console::Beep(int32, int32)
 IL_000f: nop
 IL_0010: nop
 IL_0011: leave.s IL_001b
 } // end .try
 finally
 {
 IL_0013: ldarg.0
 IL_0014:
 call instance void [mscorlib]System.Object::Finalize()
 IL_0019: nop
 IL_001a: endfinally
 } // end handler
 IL_001b: nop
 IL_001c: ret
} // end of method MyResourceWrapper::Finalize

If you then tested the MyResourceWrapper type, you would find that a system beep occurs when the
application terminates, given that the CLR will automatically invoke finalizers upon AppDomain shutdown.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Finalizers *****\n");
 Console.WriteLine("Hit the return key to shut down this app");
 Console.WriteLine("and force the GC to invoke Finalize()");
 Console.WriteLine("for finalizable objects created in this AppDomain.");
 Console.ReadLine();
 MyResourceWrapper rw = new MyResourceWrapper();
}

 ■ Source Code the simplefinalize project is included in the Chapter 13 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_7
http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Chapter 13 ■ Understanding ObjeCt Lifetime

488

Detailing the Finalization Process
Not to beat a dead horse, but always remember that the role of the Finalize() method is to ensure that a
.NET object can clean up unmanaged resources when it is garbage-collected. Thus, if you are building a
class that does not make use of unmanaged memory (by far the most common case), finalization is of little
use. In fact, if at all possible, you should design your types to avoid supporting a Finalize() method for the
simple reason that finalization takes time.

When you allocate an object onto the managed heap, the runtime automatically determines whether
your object supports a custom Finalize() method. If so, the object is marked as finalizable, and a pointer
to this object is stored on an internal queue named the finalization queue. The finalization queue is a table
maintained by the garbage collector that points to every object that must be finalized before it is removed
from the heap.

When the garbage collector determines it is time to free an object from memory, it examines each entry
on the finalization queue and copies the object off the heap to yet another managed structure termed the
finalization reachable table (often abbreviated as freachable and pronounced “eff- reachable”). At this point,
a separate thread is spawned to invoke the Finalize() method for each object on the freachable table at the
next garbage collection. Given this, it will take, at the least, two garbage collections to truly finalize an object.

The bottom line is that while finalization of an object does ensure an object can clean up unmanaged
resources, it is still nondeterministic in nature and, because of the extra behind-the-curtains processing,
considerably slower.

Building Disposable Objects
As you have seen, finalizers can be used to release unmanaged resources when the garbage collector
kicks in. However, given that many unmanaged objects are “precious items” (such as raw database or file
handles), it could be valuable to release them as soon as possible instead of relying on a garbage collection
to occur. As an alternative to overriding Finalize(), your class could implement the IDisposable interface,
which defines a single method named Dispose() as follows:

public interface IDisposable
{
 void Dispose();
}

When you do implement the IDisposable interface, the assumption is that when the object user is
finished using the object, the object user manually calls Dispose() before allowing the object reference
to drop out of scope. In this way, an object can perform any necessary cleanup of unmanaged resources
without incurring the hit of being placed on the finalization queue and without waiting for the garbage
collector to trigger the class’s finalization logic.

 ■ Note structures and class types can both implement IDisposable (unlike overriding Finalize(), which is
reserved for class types), as the object user (not the garbage collector) invokes the Dispose() method.

Chapter 13 ■ Understanding ObjeCt Lifetime

489

To illustrate the use of this interface, create a new C# Console Application project named
SimpleDispose. Here is an updated MyResourceWrapper class that now implements IDisposable, rather
than overriding System.Object.Finalize():

// Implementing IDisposable.
class MyResourceWrapper : IDisposable
{
 // The object user should call this method
 // when they finish with the object.
 public void Dispose()
 {
 // Clean up unmanaged resources...

 // Dispose other contained disposable objects...

 // Just for a test.
 Console.WriteLine("***** In Dispose! *****");
 }
}

Notice that a Dispose() method not only is responsible for releasing the type’s unmanaged resources
but can also call Dispose() on any other contained disposable methods. Unlike with Finalize(), it is
perfectly safe to communicate with other managed objects within a Dispose() method. The reason is
simple: the garbage collector has no clue about the IDisposable interface and will never call Dispose().
Therefore, when the object user calls this method, the object is still living a productive life on the managed
heap and has access to all other heap-allocated objects. The calling logic, shown here, is straightforward:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Dispose *****\n");
 // Create a disposable object and call Dispose()
 // to free any internal resources.
 MyResourceWrapper rw = new MyResourceWrapper();
 rw.Dispose();
 Console.ReadLine();
 }
}

Of course, before you attempt to call Dispose() on an object, you will want to ensure the type supports
the IDisposable interface. While you will typically know which base class library types implement
IDisposable by consulting the .NET Framework 4.5 SDK documentation, a programmatic check can be
accomplished using the is or as keywords discussed in Chapter 6.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Dispose *****\n");
 MyResourceWrapper rw = new MyResourceWrapper();

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 13 ■ Understanding ObjeCt Lifetime

490

 if (rw is IDisposable)
 rw.Dispose();
 Console.ReadLine();
 }
}

This example exposes yet another rule regarding memory management.

 ■ Rule it is a good idea to call Dispose() on any object you directly create if the object supports
IDisposable. the assumption you should make is that if the class designer chose to support the Dispose()
method, the type has some cleanup to perform. if you forget, memory will eventually be cleaned up (so don’t
panic), but it could take longer than necessary.

There is one caveat to the previous rule. A number of types in the base class libraries that do implement
the IDisposable interface provide a (somewhat confusing) alias to the Dispose() method, in an attempt to
make the disposal-centric method sound more natural for the defining type. By way of an example, while the
System.IO.FileStream class implements IDisposable (and therefore supports a Dispose() method), it also
defines the following Close() method that is used for the same purpose:

// Assume you have imported
// the System.IO namespace...
static void DisposeFileStream()
{
 FileStream fs = new FileStream("myFile.txt", FileMode.OpenOrCreate);

 // Confusing, to say the least!
 // These method calls do the same thing!
 fs.Close();
 fs.Dispose();
}

While it does feel more natural to “close” a file rather than “dispose” of one, this doubling up of
cleanup methods can be confusing. For the few types that do provide an alias, just remember that if a type
implements IDisposable, calling Dispose() is always a safe course of action.

Reusing the C# using Keyword
When you are handling a managed object that implements IDisposable, it is quite common to make use
of structured exception handling to ensure the type’s Dispose() method is called in the event of a runtime
exception, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Dispose *****\n");
 MyResourceWrapper rw = new MyResourceWrapper ();
 try
 {
 // Use the members of rw.
 }

Chapter 13 ■ Understanding ObjeCt Lifetime

491

 finally
 {
 // Always call Dispose(), error or not.
 rw.Dispose();
 }
}

While this is a fine example of defensive programming, the truth of the matter is that few developers
are thrilled by the prospects of wrapping every disposable type within a try/finally block just to ensure
the Dispose() method is called. To achieve the same result in a much less obtrusive manner, C# supports a
special bit of syntax that looks like this:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Dispose *****\n");
 // Dispose() is called automatically when the
 // using scope exits.
 using(MyResourceWrapper rw = new MyResourceWrapper())
 {
 // Use rw object.
 }
}

If you looked at the following CIL code of the Main() method using ildasm.exe, you would find the
using syntax does indeed expand to try/finally logic, with the expected call to Dispose():

.method private hidebysig static void Main(string[] args) cil managed
{
...
 .try
 {
 ...
 } // end .try
 finally
 {
...
 IL_0012: callvirt instance void
 SimpleFinalize.MyResourceWrapper::Dispose()
 } // end handler
...
} // end of method Program::Main

 ■ Note if you attempt to “use” an object that does not implement IDisposable, you will receive a
compiler error.

While this syntax does remove the need to manually wrap disposable objects within try/finally logic,
the C# using keyword unfortunately now has a double meaning (importing namespaces and invoking a
Dispose() method). Nevertheless, when you are working with .NET types that support the IDisposable
interface, this syntactical construct will ensure that the object “being used” will automatically have its
Dispose() method called once the using block has exited.

Chapter 13 ■ Understanding ObjeCt Lifetime

492

Also, be aware that it is possible to declare multiple objects of the same type within a using scope.
As you would expect, the compiler will inject code to call Dispose() on each declared object.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Dispose *****\n");

 // Use a comma-delimited list to declare multiple objects to dispose.
 using(MyResourceWrapper rw = new MyResourceWrapper(),
 rw2 = new MyResourceWrapper())
 {
 // Use rw and rw2 objects.
 }
}

 ■ Source Code the simpledispose project is included in the Chapter 13 subdirectory.

Building Finalizable and Disposable Types
At this point, you have seen two different approaches to constructing a class that cleans up internal
unmanaged resources. On the one hand, you can use a finalizer. Using this technique, you have the peace
of mind that comes with knowing the object cleans itself up when garbage-collected (whenever that may
be) without the need for user interaction. On the other hand, you can implement IDisposable to provide
a way for the object user to clean up the object as soon as it is finished. However, if the caller forgets to call
Dispose(), the unmanaged resources may be held in memory indefinitely.

As you might suspect, it is possible to blend both techniques into a single class definition. By doing so,
you gain the best of both models. If the object user does remember to call Dispose(), you can inform the
garbage collector to bypass the finalization process by calling GC.SuppressFinalize(). If the object user
forgets to call Dispose(), the object will eventually be finalized and have a chance to free up the internal
resources. The good news is that the object’s internal unmanaged resources will be freed one way or another.

Here is the next iteration of MyResourceWrapper, which is now finalizable and disposable, defined in a
C# Console Application project named FinalizableDisposableClass:

// A sophisticated resource wrapper.
public class MyResourceWrapper : IDisposable
{
 // The garbage collector will call this method if the
 // object user forgets to call Dispose().
 ~MyResourceWrapper()
 {
 // Clean up any internal unmanaged resources.
 // Do **not** call Dispose() on any managed objects.
 }
 // The object user will call this method to clean up
 // resources ASAP.

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Chapter 13 ■ Understanding ObjeCt Lifetime

493

 public void Dispose()
 {
 // Clean up unmanaged resources here.
 // Call Dispose() on other contained disposable objects.
 // No need to finalize if user called Dispose(),
 // so suppress finalization.
 GC.SuppressFinalize(this);
 }
}

Notice that this Dispose() method has been updated to call GC.SuppressFinalize(), which informs
the CLR that it is no longer necessary to call the destructor when this object is garbage-collected, given that
the unmanaged resources have already been freed via the Dispose() logic.

A Formalized Disposal Pattern
The current implementation of MyResourceWrapper does work fairly well; however, you are left with a
few minor drawbacks. First, the Finalize() and Dispose() methods each have to clean up the same
unmanaged resources. This could result in duplicate code, which can easily become a nightmare to
maintain. Ideally, you would define a private helper function that is called by either method.

Next, you’d like to make sure that the Finalize() method does not attempt to dispose of any managed
objects, while the Dispose() method should do so. Finally, you’d also like to be certain the object user can
safely call Dispose() multiple times without error. Currently, the Dispose() method has no such safeguards.

To address these design issues, Microsoft defined a formal, prim-and-proper disposal pattern that
strikes a balance between robustness, maintainability, and performance. Here is the final (and annotated)
version of MyResourceWrapper, which makes use of this official pattern:

class MyResourceWrapper : IDisposable
{
 // Used to determine if Dispose()
 // has already been called.
 private bool disposed = false;

 public void Dispose()
 {
 // Call our helper method.
 // Specifying "true" signifies that
 // the object user triggered the cleanup.
 CleanUp(true);

 // Now suppress finalization.
 GC.SuppressFinalize(this);
 }

 private void CleanUp(bool disposing)
 {
 // Be sure we have not already been disposed!
 if (!this.disposed)
 {

Chapter 13 ■ Understanding ObjeCt Lifetime

494

 // If disposing equals true, dispose all
 // managed resources.
 if (disposing)
 {
 // Dispose managed resources.
 }
 // Clean up unmanaged resources here.
 }
 disposed = true;
 }
 ~MyResourceWrapper()
 {
 // Call our helper method.
 // Specifying "false" signifies that
 // the GC triggered the cleanup.
 CleanUp(false);
 }
}

Notice that MyResourceWrapper now defines a private helper method named CleanUp(). By specifying
true as an argument, you indicate that the object user has initiated the cleanup, so you should clean up all
managed and unmanaged resources. However, when the garbage collector initiates the cleanup, you specify
false when calling CleanUp() to ensure that internal disposable objects are not disposed (as you can’t
assume they are still in memory!). Last but not least, the bool member variable (disposed) is set to true
before exiting CleanUp() to ensure that Dispose() can be called numerous times without error.

 ■ Note after an object has been “disposed,” it’s still possible for the client to invoke members on it, as it is still
in memory. therefore, a robust resource wrapper class would also need to update each member of the class with
additional coding logic that says, in effect, “if i am disposed, do nothing and return from the member.”

To test the final iteration of MyResourceWrapper, add a call to Console.Beep() within the scope of your
finalizer, like so:

~MyResourceWrapper()
{
 Console.Beep();
 // Call our helper method.
 // Specifying "false" signifies that
 // the GC triggered the cleanup.
 CleanUp(false);
}

Next, update Main() as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Dispose() / Destructor Combo Platter *****");

Chapter 13 ■ Understanding ObjeCt Lifetime

495

 // Call Dispose() manually. This will not call the finalizer.
 MyResourceWrapper rw = new MyResourceWrapper();
 rw.Dispose();

 // Don't call Dispose(). This will trigger the finalizer
 // and cause a beep.
 MyResourceWrapper rw2 = new MyResourceWrapper();
}

Notice that you are explicitly calling Dispose() on the rw object, so the destructor call is suppressed.
However, you have “forgotten” to call Dispose() on the rw2 object, and therefore, when the application
terminates, you hear a single beep. If you were to comment out the call to Dispose() on the rw object, you
would hear two beeps.

 ■ Source Code the finalizabledisposableClass project is included in the Chapter 13 subdirectory.

That concludes your investigation of how the CLR manages your objects via garbage collection. While
there are additional (somewhat esoteric) details regarding the collection process I haven’t covered here
(such as weak references and object resurrection), you are now in a perfect position for further exploration on
your own. To wrap this chapter up, you will examine a programming feature called lazy instantiation of objects.

Understanding Lazy Object Instantiation
When you are creating classes, you might occasionally need to account for a particular member variable in
code, which might never actually be needed, in that the object user might not call the method (or property)
that makes use of it. Fair enough. However, this can be problematic if the member variable in question
requires a large amount of memory to be instantiated.

For example, assume you are writing a class that encapsulates the operations of a digital music player.
In addition to the expected methods, such as Play(), Pause(), and Stop(), you also want to provide the
ability to return a collection of Song objects (via a class named AllTracks), which represents every single
digital music file on the device.

If you’d like to follow along, create a new Console Application project named LazyObjectInstantiation,
and define the following class types:

// Represents a single song.
class Song
{
 public string Artist { get; set; }
 public string TrackName { get; set; }
 public double TrackLength { get; set; }
}

// Represents all songs on a player.
class AllTracks
{
 // Our media player can have a maximum
 // of 10,000 songs.
 private Song[] allSongs = new Song[10000];

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Chapter 13 ■ Understanding ObjeCt Lifetime

496

 public AllTracks()
 {
 // Assume we fill up the array
 // of Song objects here.
 Console.WriteLine("Filling up the songs!");
 }
}

// The MediaPlayer has-an AllTracks object.
class MediaPlayer
{
 // Assume these methods do something useful.
 public void Play() { /* Play a song */ }
 public void Pause() { /* Pause the song */ }
 public void Stop() { /* Stop playback */ }
 private AllTracks allSongs = new AllTracks();

 public AllTracks GetAllTracks()
 {
 // Return all of the songs.
 return allSongs;
 }
}

The current implementation of MediaPlayer assumes that the object user will want to obtain a list of
songs via the GetAllTracks() method. Well, what if the object user does not need to obtain this list? In the
current implementation, the AllTracks member variable will still be allocated, thereby creating 10,000 Song
objects in memory, as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Lazy Instantiation *****\n");

 // This caller does not care about getting all songs,
 // but indirectly created 10,000 objects!
 MediaPlayer myPlayer = new MediaPlayer();
 myPlayer.Play();

 Console.ReadLine();
}

Clearly, you would rather not create 10,000 objects that nobody will use, as that will add a good deal of
stress to the .NET garbage collector. While you could manually add some code to ensure the allSongs object
is created only if used (perhaps using the factory method design pattern), there is an easier way.

Chapter 13 ■ Understanding ObjeCt Lifetime

497

The base class libraries provide a useful generic class named Lazy<>, defined in the System namespace
of mscorlib.dll. This class allows you to define data that will not be created unless your code base actually
uses it. As this is a generic class, you must specify the type of item to be created on first use, which can be
any type with the .NET base class libraries or a custom type you have authored yourself. To enable lazy
instantiation of the AllTracks member variable, you can simply replace this:

// The MediaPlayer has-an AllTracks object.
class MediaPlayer
{
...
 private AllTracks allSongs = new AllTracks();

 public AllTracks GetAllTracks()
 {
 // Return all of the songs.
 return allSongs;
 }
}

with this:

// The MediaPlayer has-an Lazy<AllTracks> object.
class MediaPlayer
{
...
 private Lazy<AllTracks> allSongs = new Lazy<AllTracks>();
 public AllTracks GetAllTracks()
 {
 // Return all of the songs.
 return allSongs.Value;
 }
}

Beyond the fact that you are now representing the AllTracks member variable as a Lazy<> type, notice
that the implementation of the previous GetAllTracks() method has also been updated. Specifically, you
must use the read-only Value property of the Lazy<> class to obtain the actual stored data (in this case, the
AllTracks object that is maintaining the 10,000 Song objects).

With this simple update, notice how the following updated Main() method will indirectly allocate the
Song objects only if GetAllTracks() is indeed called:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Lazy Instantiation *****\n");

 // No allocation of AllTracks object here!
 MediaPlayer myPlayer = new MediaPlayer();
 myPlayer.Play();

 // Allocation of AllTracks happens when you call GetAllTracks().
 MediaPlayer yourPlayer = new MediaPlayer();
 AllTracks yourMusic = yourPlayer.GetAllTracks();

 Console.ReadLine();
}

Chapter 13 ■ Understanding ObjeCt Lifetime

498

 ■ Note Lazy object instantiation is useful not only to decrease allocation of unnecessary objects. You can
also use this technique if a given member has expensive creation code, such as invoking a remote method,
communication with a relational database, or what not.

Customizing the Creation of the Lazy Data
When you declare a Lazy<> variable, the actual internal data type is created using the default constructor,
like so:

// Default constructor of AllTracks is called when the Lazy<>
// variable is used.
private Lazy<AllTracks> allSongs = new Lazy<AllTracks>();

While this might be fine in some cases, what if the AllTracks class had some additional constructors
and you want to ensure the correct one is called? Furthermore, what if you have some extra work to do
(beyond simply creating the AllTracks object) when the Lazy<> variable is made? As luck would have it, the
Lazy<> class allows you to specify a generic delegate as an optional parameter, which will specify a method
to call during the creation of the wrapped type.

The generic delegate in question is of type System.Func<>, which can point to a method that returns
the same data type being created by the related Lazy<> variable and can take up to 16 arguments (which are
typed using generic type parameters). In most cases, you will not need to specify any parameters to pass
to the method pointed to by Func<>. Furthermore, to greatly simplify the use of the required Func<>,
I recommend using a lambda expression (see Chapter 10 to review the delegate/lambda relationship).

With this in mind, the following is a final version of MediaPlayer that adds a bit of custom code when
the wrapped AllTracks object is created. Remember, this method must return a new instance of the type
wrapped by Lazy<> before exiting, and you can use any constructor you choose (here, you are still invoking
the default constructor of AllTracks).

class MediaPlayer
{
...
 // Use a lambda expression to add additional code
 // when the AllTracks object is made.
 private Lazy<AllTracks> allSongs = new Lazy<AllTracks>(() =>
 {
 Console.WriteLine("Creating AllTracks object!");
 return new AllTracks();
 }
);

 public AllTracks GetAllTracks()
 {
 // Return all of the songs.
 return allSongs.Value;
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 13 ■ Understanding ObjeCt Lifetime

499

Sweet! I hope you can see the usefulness of the Lazy<> class. Essentially, this generic class allows you to
ensure expensive objects are allocated only when the object user requires them. If you find this topic useful
for your projects, you might also want to look up the System.Lazy<> class in the .NET Framework 4.5 SDK
documentation for further examples of how to program for lazy instantiation.

 ■ Source Code the LazyObjectinstantiation project is included in the Chapter 13 subdirectory.

Summary
The point of this chapter was to demystify the garbage collection process. As you saw, the garbage collector
will run only when it is unable to acquire the necessary memory from the managed heap (or when a given
AppDomain unloads from memory). When a collection does occur, you can rest assured that Microsoft’s
collection algorithm has been optimized by the use of object generations, secondary threads for the purpose
of object finalization, and a managed heap dedicated to hosting large objects.

This chapter also illustrated how to programmatically interact with the garbage collector using the
System.GC class type. As mentioned, the only time you will really need to do so is when you are building
finalizable or disposable class types that operate on unmanaged resources.

Recall that finalizable types are classes that have provided a destructor (effectively overriding the
Finalize() method) to clean up unmanaged resources at the time of garbage collection. Disposable objects,
on the other hand, are classes (or structures) that implement the IDisposable interface, which should
be called by the object user when it is finished using said objects. Finally, you learned about an official
“disposal” pattern that blends both approaches.

This chapter wrapped up with a look at a generic class named Lazy<>. As you saw, you can use this
class to delay the creation of an expensive (in terms of memory consumption) object until the caller actually
requires it. By doing so, you can help reduce the number of objects stored on the managed heap and also
ensure expensive objects are created only when actually required by the caller.

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

Part V

Programming with .NET
Assemblies

503

Chapter 14

Building and Configuring
Class Libraries

During the first four parts of this book, you have created a number of “stand-alone” executable applications,
in which all the programming logic was packaged within a single executable file (*.exe). These executable
assemblies were using little more than the primary .NET class library, mscorlib.dll. While some simple
.NET programs may be constructed using nothing more than the .NET base class libraries, chances are it
will be commonplace for you (or your teammates) to isolate reusable programming logic into custom class
libraries (*.dll files) that can be shared among applications.

In this chapter, you will learn about various ways to package your types into custom libraries of code.
To begin, you’ll learn the details of partitioning types into .NET namespaces. After this, you will examine the
class library project templates of Visual Studio and learn the distinction between private and shared assemblies.

Next, you’ll explore exactly how the .NET runtime resolves the location of an assembly, and you’ll come
to understand the global assembly cache, XML application configuration files (*.config files), publisher
policy assemblies, and the System.Configuration namespace.

Defining Custom Namespaces
Before diving into the aspects of library deployment and configuration, the first task is to learn the details
of packaging your custom types into .NET namespaces. Up to this point in the text, you’ve been building
small test programs that leverage existing namespaces in the .NET universe (System, in particular). However,
when you build larger applications with many types, it can be helpful to group your related types into
custom namespaces. In C#, this is accomplished using the namespace keyword. Explicitly defining custom
namespaces is even more important when creating .NET *.dll assemblies, as other developers will need to
reference the library and import your custom namespaces to use your types.

To investigate the issues firsthand, begin by creating a new Console Application project named
CustomNamespaces. Now, assume you are developing a collection of geometric classes named Square,
Circle, and Hexagon. Given their similarities, you would like to group them together into a unique
namespace called MyShapes within the CustomNamespaces.exe assembly. You have two basic approaches.
First, you can choose to define all classes in a single C# file (ShapesLib.cs) as follows:

// ShapesLib.cs
using System;

namespace MyShapes
{
 // Circle class
 public class Circle { /* Interesting members... */ }

Chapter 14 ■ Building and Configuring Class liBraries

504

 // Hexagon class
 public class Hexagon { /* More interesting members... */ }

 // Square class
 public class Square { /* Even more interesting members... */ }
}

While the C# compiler has no problems with a single C# code file containing multiple types, this could
be cumbersome when you want to reuse class definitions in new projects. For example, say you are building
a new project and only need to use the Circle class. If all types are defined in a single code file, you are more
or less stuck with the entire set. Therefore, as an alternative, you can split a single namespace across multiple
C# files. To ensure each type is packaged into the same logical group, simply wrap the given class definitions
in the same namespace scope, like so:

// Circle.cs
using System;

namespace MyShapes
{
 // Circle class
 public class Circle { /* Interesting methods... */ }
}

// Hexagon.cs
using System;

namespace MyShapes
{
 // Hexagon class
 public class Hexagon { /* More interesting methods... */ }
}

// Square.cs
using System;

namespace MyShapes
{
 // Square class
 public class Square { /* Even more interesting methods... */ }
}

In both cases, notice how the MyShapes namespace acts as the conceptual “container” of these classes.
When another namespace (such as CustomNamespaces) wants to use types in a separate namespace, you use
the using keyword, just as you would when using namespaces of the .NET base class libraries, as follows:

// Bring in a namespace from the base class libraries.
using System;

// Make use of types defined the MyShapes namespace.
using MyShapes;

Chapter 14 ■ Building and Configuring Class liBraries

505

namespace CustomNamespaces
{
 public class Program
 {
 static void Main(string[] args)
 {
 Hexagon h = new Hexagon();
 Circle c = new Circle();
 Square s = new Square();
 }
 }
}

For this particular example, the assumption is that the C# file (or files) that defines the MyShapes
namespace is part of the same Console Application project that contains the file defining the
CustomNamespaces namespace; in other words, all the files are used to compile a single .NET executable
assembly. If you defined the MyShapes namespace within an external assembly, you would also need to
add a reference to that library before you could compile successfully. You’ll learn all the details of building
applications that use external libraries during the course of this chapter.

Resolving Name Clashes with Fully Qualified Names
Technically speaking, you are not required to use the C# using keyword when referring to types defined
in external namespaces. You could use the fully qualified name of the type, which, as you may recall from
Chapter 1, is the type’s name prefixed with the defining namespace. Here’s an example:

// Note we are not importing MyShapes anymore!
using System;

namespace CustomNamespaces
{
 public class Program
 {
 static void Main(string[] args)
 {
 MyShapes.Hexagon h = new MyShapes.Hexagon();
 MyShapes.Circle c = new MyShapes.Circle();
 MyShapes.Square s = new MyShapes.Square();
 }
 }
}

Typically, there is no need to use a fully qualified name. Not only does it require a greater number of
keystrokes, it also makes no difference whatsoever in terms of code size or execution speed. In fact, in CIL
code, types are always defined with the fully qualified name. In this light, the C# using keyword is simply a
typing time-saver.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 14 ■ Building and Configuring Class liBraries

506

However, fully qualified names can be helpful (and sometimes necessary) to avoid potential name
clashes when using multiple namespaces that contain identically named types. Assume you have a new
namespace termed My3DShapes, which defines the following three classes, capable of rendering a shape in
stunning 3D:

// Another shape-centric namespace.
using System;
namespace My3DShapes
{
 // 3D Circle class.
 public class Circle { }

 // 3D Hexagon class.
 public class Hexagon { }

 // 3D Square class.
 public class Square { }
}

If you update the Program class as shown next, you are issued a number of compile-time errors, because
both namespaces define identically named classes:

// Ambiguities abound!
using System;
using MyShapes;
using My3DShapes;

namespace CustomNamespaces
{
 public class Program
 {
 static void Main(string[] args)
 {
 // Which namespace do I reference?
 Hexagon h = new Hexagon(); // Compiler error!
 Circle c = new Circle(); // Compiler error!
 Square s = new Square(); // Compiler error!
 }
 }
}

The ambiguity can be resolved using the type’s fully qualified name, like so:

// We have now resolved the ambiguity.
static void Main(string[] args)
{
 My3DShapes.Hexagon h = new My3DShapes.Hexagon();
 My3DShapes.Circle c = new My3DShapes.Circle();
 MyShapes.Square s = new MyShapes.Square();
}

Chapter 14 ■ Building and Configuring Class liBraries

507

Resolving Name Clashes with Aliases
The C# using keyword also lets you create an alias for a type’s fully qualified name. When you do so, you
define a token that is substituted for the type’s full name at compile time. Defining aliases provides a second
way to resolve name clashes. Here’s an example:

using System;
using MyShapes;
using My3DShapes;

// Resolve the ambiguity using a custom alias.
using The3DHexagon = My3DShapes.Hexagon;

namespace CustomNamespaces
{
 class Program
 {
 static void Main(string[] args)
 {
 // This is really creating a My3DShapes.Hexagon class.
 The3DHexagon h2 = new The3DHexagon();
...
 }
 }
}

This alternative using syntax also lets you create an alias for a lengthy namespace. One of the
longer namespaces in the base class library is System.Runtime.Serialization.Formatters.Binary,
which contains a member named BinaryFormatter. If you want, you can create an instance of the
BinaryFormatter as follows:

using bfHome = System.Runtime.Serialization.Formatters.Binary;

namespace MyApp
{
 class ShapeTester
 {
 static void Main(string[] args)
 {
 bfHome.BinaryFormatter b = new bfHome.BinaryFormatter();
 ...
 }
 }
}

Chapter 14 ■ Building and Configuring Class liBraries

508

as well as with a traditional using directive:

using System.Runtime.Serialization.Formatters.Binary;

namespace MyApp
{
 class ShapeTester
 {
 static void Main(string[] args)
 {
 BinaryFormatter b = new BinaryFormatter();
 ...
 }
 }
}

At this point in the game, there is no need to concern yourself with what the BinaryFormatter class is
used for (you’ll examine this class in Chapter 20). For now, simply remember that the C# using keyword can
be used to define aliases for lengthy fully qualified names or, more commonly, to resolve name clashes that
can arise when importing multiple namespaces that define identically named types.

 ■ Note Be aware that overuse of C# aliases can result in a confusing code base. if other programmers on
your team are unaware of your custom aliases, they could assume the aliases refer to types in the .net base
class libraries and become quite confused when they can’t find these tokens in the .net framework sdK
documentation!

Creating Nested Namespaces
When organizing your types, you are free to define namespaces within other namespaces. The .NET base
class libraries do so in numerous places to provide deeper levels of type organization. For example, the IO
namespace is nested within System to yield System.IO. If you want to create a root namespace containing
the existing My3DShapes namespace, you can update your code as follows:

// Nesting a namespace.
namespace Chapter14
{
 namespace My3DShapes
 {
 // 3D Circle class.
 public class Circle{ }

 // 3D Hexagon class.
 public class Hexagon{ }

 // 3D Square class.
 public class Square{ }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

Chapter 14 ■ Building and Configuring Class liBraries

509

In many cases, the role of a root namespace is simply to provide a further level of scope; therefore, it
may not define any types directly within its scope (as in the case of the Chapter14 namespace). If this is the
case, a nested namespace can be defined using the following compact form:

// Nesting a namespace (take two).
namespace Chapter14.My3DShapes
{
 // 3D Circle class.
 public class Circle{ }

 // 3D Hexagon class.
 public class Hexagon{ }

 // 3D Square class.
 public class Square{ }
}

Given that you have now nested the My3DShapes namespace within the Chapter14 root namespace,
you need to update any existing using directives and type aliases, like so:

using Chapter14.My3DShapes;
using The3DHexagon = Chapter14.My3DShapes.Hexagon;

The Default Namespace of Visual Studio
On a final namespace-related note, it is worth pointing out that, by default, when you create a new C# project
using Visual Studio, the name of your application’s default namespace will be identical to the project name.
From this point on, when you insert new code files using the Project ➤ Add New Item menu selection,
types will automatically be wrapped within the default namespace. If you want to change the name of the
default namespace, simply access the Default namespace option using the Application tab of the project’s
Properties window (see Figure 14-1).

Figure 14-1. Configuring the default namespace

Chapter 14 ■ Building and Configuring Class liBraries

510

With this update, any new item inserted into the project will be wrapped within the Chapter14.CoreLogic
namespace (and, obviously, if another namespace wants to use these types, the correct using directive must
be applied).

So far, so good. Now that you have seen some details regarding how to package your custom types into
well-organized namespaces, let’s quickly review the benefits and format of the .NET assembly. After this, you
will delve into the details of creating, deploying, and configuring your custom class libraries.

 ■ Source Code the Customnamespaces project is located in the Chapter 14 subdirectory.

The Role of .NET Assemblies
.NET applications are constructed by piecing together any number of assemblies. Simply put, an assembly
is a versioned, self-describing binary file hosted by the CLR. Now, despite that .NET assemblies have the
same file extensions (*.exe or *.dll) as previous Windows binaries, they have little in common with those
files under the hood. Thus, to set the stage for the information to come, let’s consider some of the benefits
provided by the assembly format.

Assemblies Promote Code Reuse
As you have built your Console Application projects over the previous chapters, it might have seemed that
all the applications’ functionality was contained within the executable assembly you were constructing. In
reality, your applications were leveraging numerous types contained within the always-accessible .NET code
library, mscorlib.dll (recall that the C# compiler references mscorlib.dll automatically), and in the case
of some examples, System.Core.dll.

As you might know, a code library (also termed a class library) is a *.dll that contains types intended
to be used by external applications. When you are creating executable assemblies, you will no doubt be
leveraging numerous system-supplied and custom code libraries as you create your application. Do be
aware, however, that a code library need not take a *.dll file extension. It is perfectly possible (although
certainly not common) for an executable assembly to use types defined within an external executable file. In
this light, a referenced *.exe can also be considered a code library.

Regardless of how a code library is packaged, the .NET platform allows you to reuse types in a
language-independent manner. For example, you could create a code library in C# and reuse that library
in any other .NET programming language. It is possible not only to allocate types across languages but
also to derive from them. A base class defined in C# could be extended by a class authored in Visual Basic.
Interfaces defined in F# can be implemented by structures defined in C#, and so forth. The point is that
when you begin to break apart a single monolithic executable into numerous .NET assemblies, you achieve a
language-neutral form of code reuse.

Assemblies Establish a Type Boundary
Recall that a type’s fully qualified name is composed by prefixing the type’s namespace (e.g., System) to its
name (e.g., Console). Strictly speaking, however, the assembly in which a type resides further establishes a
type’s identity. For example, if you have two uniquely named assemblies (say, MyCars.dll and YourCars.dll)
that both define a namespace (CarLibrary) containing a class named SportsCar, they are considered unique
types in the .NET universe.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

511

Assemblies are Versionable Units
.NET assemblies are assigned a four-part numerical version number of the form <major>.<minor>.<buil
d>.<revision>. (If you do not explicitly provide a version number, the assembly is automatically assigned
a version of 1.0.0.0, given the default Visual Studio project settings.) This number, in conjunction with an
optional public key value, allows multiple versions of the same assembly to coexist in harmony on a single
machine. Formally speaking, assemblies that provide public key information are termed strongly named.
As you will see in this chapter, by using a strong name, the CLR is able to ensure that the correct version of an
assembly is loaded on behalf of the calling client.

Assemblies are Self-Describing
Assemblies are regarded as self-describing, in part because they record every external assembly they must
have access to in order to function correctly. Thus, if your assembly requires System.Windows.Forms.dll and
System.Core.dll, this will be documented in the assembly’s manifest. Recall from Chapter 1 that a manifest
is a blob of metadata that describes the assembly itself (name, version, required external assemblies, etc.).

In addition to manifest data, an assembly contains metadata that describes the composition (member
names, implemented interfaces, base classes, constructors, and so forth) of every contained type. Because an
assembly is documented in such detail, the CLR does not consult the Windows system registry to resolve its
location (quite the radical departure from Microsoft’s legacy COM programming model). As you will discover
during this chapter, the CLR makes use of an entirely new scheme to resolve the location of external code libraries.

Assemblies are Configurable
Assemblies can be deployed as “private” or “shared.” Private assemblies reside in the same directory
(or possibly a subdirectory) as the client application that uses them. Shared assemblies, on the other hand,
are libraries intended to be consumed by numerous applications on a single machine and are deployed to a
specific directory termed the global assembly cache, or GAC.

Regardless of how you deploy your assemblies, you are free to author XML-based configuration files.
Using these configuration files, you can instruct the CLR to “probe” for assemblies at a specific location,
load a specific version of a referenced assembly for a particular client, or consult an arbitrary directory on
your local machine, your network location, or a web-based URL. You’ll learn a good deal more about XML
configuration files throughout this chapter.

Understanding the Format of a .NET Assembly
Now that you’ve learned about several benefits provided by the .NET assembly, let’s shift gears and get a
better idea of how an assembly is composed under the hood. Structurally speaking, a .NET assembly
(*.dll or *.exe) consists of the following elements:

•	 A Windows file header

•	 A CLR file header

•	 CIL code

•	 Type metadata

•	 An assembly manifest

•	 Optional embedded resources

While the first two elements (the Windows and CLR headers) are blocks of data you can typically always
ignore, they do deserve some brief consideration. Here’s an overview of each element.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 14 ■ Building and Configuring Class liBraries

512

The Windows File Header
The Windows file header establishes the fact that the assembly can be loaded and manipulated by the
Windows family of operating systems. This header data also identifies the kind of application (console-
based, GUI-based, or *.dll code library) to be hosted by Windows. If you open a .NET assembly using the
dumpbin.exe utility (via a Windows Command Prompt) and specify the /headers flag as so:

dumpbin /headers CarLibrary.dll

you can view an assembly’s Windows header information. Here is the (partial) Windows header
information for the CarLibrary.dll assembly you will build a bit later in this chapter (if you would like to
run dumpbin.exe yourself right now, you can specify the name of any *.dll or *.exe you wrote during this
book in place of CarLibrary.dll):

Dump of file CarLibrary.dll

PE signature found
File Type: DLL

FILE HEADER VALUES
 14C machine (x86)
 3 number of sections
 4B37DCD8 time date stamp Sun Dec 27 16:16:56 2011
 0 file pointer to symbol table
 0 number of symbols
 E0 size of optional header
 2102 characteristics
 Executable
 32 bit word machine
 DLL

OPTIONAL HEADER VALUES
 10B magic # (PE32)
 8.00 linker version
 E00 size of code
 600 size of initialized data
 0 size of uninitialized data
 2CDE entry point (00402CDE)
 2000 base of code
 4000 base of data
 400000 image base (00400000 to 00407FFF)
 2000 section alignment
 200 file alignment
 4.00 operating system version
 0.00 image version
 4.00 subsystem version
 0 Win32 version
 8000 size of image
 200 size of headers
 0 checksum
 3 subsystem (Windows CUI)
...

Chapter 14 ■ Building and Configuring Class liBraries

513

Now, remember that the vast majority of .NET programmers will never need to concern themselves
with the format of the header data embedded in a .NET assembly. Unless you happen to be building a new
.NET language compiler (where you would care about such information), you are free to remain blissfully
unaware of the grimy details of the header data. Do be aware, however, that this information is used under
the covers when Windows loads the binary image into memory.

The CLR File Header
The CLR header is a block of data that all .NET assemblies must support (and do support, courtesy of the
C# compiler) to be hosted by the CLR. In a nutshell, this header defines numerous flags that enable the
runtime to understand the layout of the managed file. For example, flags exist that identify the location of the
metadata and resources within the file, the version of the runtime the assembly was built against, the value
of the (optional) public key, and so forth. If you supply the /clrheader flag to dumpbin.exe like so:

dumpbin /clrheader CarLibrary.dll

you are presented with the internal CLR header information for a given .NET assembly, as shown here:

Dump of file CarLibrary.dll

File Type: DLL

 clr Header:

 48 cb
 2.05 runtime version
 2164 [A74] RVA [size] of MetaData Directory
 1 flags
 IL Only
 0 entry point token
 0 [0] RVA [size] of Resources Directory
 0 [0] RVA [size] of StrongNameSignature Directory
 0 [0] RVA [size] of CodeManagerTable Directory
 0 [0] RVA [size] of VTableFixups Directory
 0 [0] RVA [size] of ExportAddressTableJumps Directory
 0 [0] RVA [size] of ManagedNativeHeader Directory
 Summary
 2000 .reloc
 2000 .rsrc
 2000 .text

Chapter 14 ■ Building and Configuring Class liBraries

514

Again, as a .NET developer, you will not need to concern yourself with the gory details of an assembly’s
CLR header information. Just understand that every .NET assembly contains this data, which is used behind
the scenes by the .NET runtime as the image data loads into memory. Now turn your attention to some
information that is much more useful in your day-to-day programming tasks.

CIL Code, Type Metadata, and the Assembly Manifest
At its core, an assembly contains CIL code, which, as you recall, is a platform- and CPU-agnostic
intermediate language. At runtime, the internal CIL is compiled on the fly using a just-in-time (JIT) compiler,
according to platform- and CPU-specific instructions. Given this design, .NET assemblies can indeed
execute on a variety of architectures, devices, and operating systems. (Although you can live a happy and
productive life without understanding the details of the CIL programming language, Chapter 18 offers an
introduction to the syntax and semantics of CIL.)

An assembly also contains metadata that completely describes the format of the contained types, as
well as the format of external types referenced by this assembly. The .NET runtime uses this metadata to
resolve the location of types (and their members) within the binary, lay out types in memory, and facilitate
remote method invocations. You’ll check out the details of the .NET metadata format in Chapter 15 during
your examination of reflection services.

An assembly must also contain an associated manifest (also referred to as assembly metadata). The
manifest documents each module within the assembly, establishes the version of the assembly, and also
documents any external assemblies referenced by the current assembly. As you will see over the course of
this chapter, the CLR makes extensive use of an assembly’s manifest during the process of locating external
assembly references.

Optional Assembly Resources
Finally, a .NET assembly may contain any number of embedded resources, such as application icons, image
files, sound clips, or string tables. In fact, the .NET platform supports satellite assemblies that contain nothing
but localized resources. This can be useful if you want to partition your resources based on a specific culture
(English, German, etc.) for the purposes of building international software. The topic of building satellite
assemblies is outside the scope of this text; consult the .NET 4.6 Framework documentation for information
on satellite assemblies if you are interested.

Building and Consuming Custom Class Library
To begin exploring the world of .NET class libraries, you’ll first create a *.dll assembly (named CarLibrary)
that contains a small set of public types. To build a code library using Visual Studio, select the Class Library
project workspace via the File ➤ New Project menu option (see Figure 14-2).

http://dx.doi.org/10.1007/978-1-4842-1332-2_18
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 14 ■ Building and Configuring Class liBraries

515

The design of your automobile library begins with an abstract base class named Car that defines various state
data via automatic property syntax. This class also has a single abstract method named TurboBoost(), which uses
a custom enumeration (EngineState) representing the current condition of the car’s engine, as shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CarLibrary
{
 // Represents the state of the engine.
 public enum EngineState
 { engineAlive, engineDead }

 // The abstract base class in the hierarchy.
 public abstract class Car
 {
 public string PetName {get; set;}
 public int CurrentSpeed {get; set;}
 public int MaxSpeed {get; set;}

 protected EngineState egnState = EngineState.engineAlive;
 public EngineState EngineState
 {
 get { return egnState; }
 }
 public abstract void TurboBoost();

Figure 14-2. Creating a C# class library

Chapter 14 ■ Building and Configuring Class liBraries

516

 public Car(){}
 public Car(string name, int maxSp, int currSp)
 {
 PetName = name; MaxSpeed = maxSp; CurrentSpeed = currSp;
 }
 }
}

Now assume you have two direct descendants of the Car type named MiniVan and SportsCar. Each
overrides the abstract TurboBoost() method by displaying an appropriate message via a Windows Forms
message box. Insert a new C# class file into your project, named DerivedCars.cs, which contains the
following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

// Keep reading! This won't compile until you reference a .NET library.
using System.Windows.Forms;

namespace CarLibrary
{
 public class SportsCar : Car
 {
 public SportsCar(){ }
 public SportsCar(string name, int maxSp, int currSp)
 : base (name, maxSp, currSp){ }

 public override void TurboBoost()
 {
 MessageBox.Show("Ramming speed!", "Faster is better...");
 }
 }

 public class MiniVan : Car
 {
 public MiniVan(){ }
 public MiniVan(string name, int maxSp, int currSp)
 : base (name, maxSp, currSp){ }

 public override void TurboBoost()
 {
 // Minivans have poor turbo capabilities!
 egnState = EngineState.engineDead;
 MessageBox.Show("Eek!", "Your engine block exploded!");
 }
 }
}

Chapter 14 ■ Building and Configuring Class liBraries

517

Notice how each subclass implements TurboBoost() using the Windows Form’s MessageBox class,
which is defined in the System.Windows.Forms.dll assembly. For your assembly to use the types defined
within this external assembly, the CarLibrary project must add a reference to this assembly via the Add
Reference dialog box (see Figure 14-3), which you can access through the Visual Studio Project ➤ Add
Reference menu selection.

Figure 14-3. Referencing external .NET assemblies using the Add Reference dialog box

It is really important to understand that the assemblies displayed in the Framework area of the Add
Reference dialog box do not represent every assembly on your machine. The Add Reference dialog box
will not display your custom libraries, and it does not display all libraries located in the GAC (more details
later in the chapter). Rather, this dialog box simply presents a list of common assemblies that Visual Studio
is preprogrammed to display. When you are building applications that require the use of an assembly not
listed within the Add Reference dialog box, you need to click the Browse node to manually navigate to the
*.dll or *.exe in question.

 ■ Note Be aware that the recent section of the add reference dialog box keeps a running list of previously
referenced assemblies. this can be handy, as many .net projects tend to use the same core set of external libraries.

Exploring the Manifest
Before using CarLibrary.dll from a client application, let’s check out how the code library is composed
under the hood. Assuming you have compiled this project, load CarLibrary.dll into ildasm.exe via the
File ➤ Open menu, and navigate to the \bin\Debug subdirectory of your CarLibrary project. When you are
done, you should see your library displayed in the IL disassembler tool (see Figure 14-4).

Chapter 14 ■ Building and Configuring Class liBraries

518

Now, open the manifest of CarLibrary.dll by double-clicking the MANIFEST icon. The first code block
in a manifest specifies all external assemblies required by the current assembly to function correctly. As you
recall, CarLibrary.dll made use of types within mscorlib.dll and System.Windows.Forms.dll, both of
which are listed in the manifest using the .assembly extern token, as shown here:

.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}
.assembly extern System.Windows.Forms
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

Here, each .assembly extern block is qualified by the .publickeytoken and .ver directives.
The .publickeytoken instruction is present only if the assembly has been configured with a strong name
(more details on strong names in the section “Understanding Strong Names,” later in this chapter). The .ver
token defines (of course) the numerical version identifier of the referenced assembly.

After the external references, you will find a number of .custom tokens that identify assembly-level
attributes (copyright information, company name, assembly version, etc.). Here is a (very) partial listing of
this particular chunk of manifest data:

.assembly CarLibrary
{
 .custom instance void ...AssemblyDescriptionAttribute...
 .custom instance void ...AssemblyConfigurationAttribute...
 .custom instance void ...RuntimeCompatibilityAttribute...
 .custom instance void ...TargetFrameworkAttribute...
 .custom instance void ...AssemblyTitleAttribute...

Figure 14-4. CarLibrary.dll loaded into ildasm.exe

Chapter 14 ■ Building and Configuring Class liBraries

519

 .custom instance void ...AssemblyTrademarkAttribute...
 .custom instance void ...AssemblyCompanyAttribute...
 .custom instance void ...AssemblyProductAttribute...
 .custom instance void ...AssemblyCopyrightAttribute...
...
 .ver 1:0:0:0
}
.module CarLibrary.dll

Typically, these settings are established visually using the Properties editor of your current project. Now,
switching back to Visual Studio, if you click the Properties icon within the Solution Explorer, you can click
the Assembly Information button located on the (automatically selected) Application tab. This will bring up
the GUI editor shown in Figure 14-5.

Figure 14-5. Editing assembly information using Visual Studio’s Properties editor

When you save your changes, the GUI editor updates your project’s AssemblyInfo.cs file, which is
maintained by Visual Studio and can be viewed by expanding the Properties node of the Solution Explorer
(see Figure 14-6).

Chapter 14 ■ Building and Configuring Class liBraries

520

If you view the contents of this C# file, you’ll see a number of .NET attributes sandwiched between
square brackets. Here’s an example:

[assembly: AssemblyTitle("CarLibrary")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("CarLibrary")]
[assembly: AssemblyCopyright("Copyright © 2015")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

Chapter 15 examines the role of attributes in depth, so don’t sweat the details at this point. For now,
just be aware that a majority of the attributes in AssemblyInfo.cs will be used to update the .custom token
values within an assembly manifest.

Exploring the CIL
Recall that an assembly does not contain platform-specific instructions; rather, it contains platform- agnostic
common intermediate language (CIL) instructions. When the .NET runtime loads an assembly into
memory, the underlying CIL is compiled (using the JIT compiler) into instructions that can be understood
by the target platform. For example, back in ildasm.exe, if you double-click the TurboBoost() method of the
SportsCar class, ildasm.exe will open a new window showing the CIL tokens that implement this method.

.method public hidebysig virtual instance void
 TurboBoost() cil managed
{
 // Code size 18 (0x12)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Ramming speed!"
 IL_0006: ldstr "Faster is better..."
 IL_000b: call valuetype [System.Windows.Forms]System.Windows.Forms.DialogResult
 [System.Windows.Forms]System.Windows.Forms.MessageBox::Show(string, string)

Figure 14-6. The AssemblyInfo.cs file is updated as you use the GUI Properties editor

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 14 ■ Building and Configuring Class liBraries

521

 IL_0010: pop
 IL_0011: ret
} // end of method SportsCar::TurboBoost

Again, while most .NET developers don’t need to be deeply concerned with the details of CIL on a daily
basis, Chapter 18 provides more details on its syntax and semantics. Believe it or not, understanding the
grammar of CIL can be helpful when you are building more complex applications that require advanced
services, such as runtime construction of assemblies (again, see Chapter 18).

Exploring the Type Metadata
Before you build some applications that use your custom .NET library, if you press the Ctrl+M keystroke
combination in ildasm.exe, you can see the metadata for each type within the CarLibrary.dll assembly
(see Figure 14-7).

Figure 14-7. Type metadata for the types within CarLibrary.dll

As explained in the next chapter, an assembly’s metadata is an important element of the .NET platform
and serves as the backbone for numerous technologies (object serialization, late binding, extendable
applications, etc.). In any case, now that you have looked inside the CarLibrary.dll assembly, you can
build some client applications that use your types.

 ■ Source Code the Carlibrary project is located in the Chapter 14 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_18
http://dx.doi.org/10.1007/978-1-4842-1332-2_18
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

522

Building a C# Client Application
Because each of the CarLibrary types has been declared using the public keyword, other .NET applications
are able to use them as well. Recall that you may also define types using the C# internal keyword (in fact,
this is the default C# access mode). Internal types can be used only by the assembly in which they are
defined. External clients can neither see nor create types marked with the internal keyword.

To use your library’s functionality, create a new C# Console Application project named
CSharpCarClient. After you have done so, set a reference to CarLibrary.dll using the Browse node of the
Add Reference dialog box (if you compiled CarLibrary.dll using Visual Studio, your assembly is located
in the \bin\Debug subdirectory of the CarLibrary project folder). At this point, you can build your client
application to use the external types. Update your initial C# file as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

// Don't forget to import the CarLibrary namespace!
using CarLibrary;

namespace CSharpCarClient
{
 public class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** C# CarLibrary Client App *****");
 // Make a sports car.
 SportsCar viper = new SportsCar("Viper", 240, 40);
 viper.TurboBoost();

 // Make a minivan.
 MiniVan mv = new MiniVan();
 mv.TurboBoost();

 Console.WriteLine("Done. Press any key to terminate");
 Console.ReadLine();
 }
 }
}

This code looks just like the code of the other applications developed thus far in the book. The only
point of interest is that the C# client application is now using types defined within a separate custom library.
Go ahead and run your program and verify that you see the display of various message boxes.

You might be wondering exactly what happened when you referenced CarLibrary.dll using
the Add Reference dialog box. If you click the Show All Files button of the Solution Explorer, you will
notice that Visual Studio added a copy of the original CarLibrary.dll into the \bin\Debug folder of the
CSharpCarClient project folder (see Figure 14-8).

Chapter 14 ■ Building and Configuring Class liBraries

523

As explained shortly, CarLibrary.dll has been configured as a “private” assembly (which is the
automatic behavior for all Visual Studio Class Library projects). When you reference private assemblies in
new applications (such as CSharpCarClient.exe), the IDE responds by placing a copy of the library in the
client application’s output directory.

 ■ Source Code the CsharpCarClient project is located in the Chapter 14 subdirectory.

Building a Visual Basic Client Application
Recall that the .NET platform allows developers to share compiled code across programming languages.
To illustrate the language-agnostic attitude of the .NET platform, let’s create another Console Application
(VisualBasicCarClient), this time using Visual Basic (see Figure 14-9). Once you have created the project,
set a reference to CarLibrary.dll using the Add Reference dialog box, which can be activated by the
Project ➤ Add Reference menu option.

Figure 14-8. Visual Studio copies private assemblies to the client’s directory

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

524

Like C#, Visual Basic allows you to list each namespace used within the current file. However, Visual
Basic offers the Imports keyword rather than the C# using keyword, so add the following Imports statement
within the Module1.vb code file:

Imports CarLibrary

Module Module1
 Sub Main()
 End Sub
End Module

Notice that the Main() method is defined within a Visual Basic module type. In a nutshell, modules
are a Visual Basic notation for defining a class that can contain only static methods (much like a C# static
class). In any case, to exercise the MiniVan and SportsCar types using the syntax of Visual Basic, update your
Main() method as follows:

Sub Main()
 Console.WriteLine("***** VB CarLibrary Client App *****")
 ' Local variables are declared using the Dim keyword.
 Dim myMiniVan As New MiniVan()
 myMiniVan.TurboBoost()

 Dim mySportsCar As New SportsCar()
 mySportsCar.TurboBoost()
 Console.ReadLine()
End Sub

Figure 14-9. Creating a Visual Basic Console Application project

Chapter 14 ■ Building and Configuring Class liBraries

525

When you compile and run your application, you will once again find a series of message boxes
displayed. Furthermore, this new client application has its own local copy of CarLibrary.dll located under
the bin\Debug folder.

Cross-Language Inheritance in Action
An enticing aspect of .NET development is the notion of cross-language inheritance. To illustrate, let’s create
a new Visual Basic class that derives from SportsCar (which was authored using C#). First, add a new class
file to your current Visual Basic application (by selecting the Project ➤ Add Class menu option) named
PerformanceCar.vb. Update the initial class definition by deriving from the SportsCar type using the
Inherits keyword. Then, override the abstract TurboBoost() method using the Overrides keyword, like so:

Imports CarLibrary

' This VB class is deriving from the C# SportsCar.
Public Class PerformanceCar
 Inherits SportsCar

 Public Overrides Sub TurboBoost()
 Console.WriteLine("Zero to 60 in a cool 4.8 seconds...")
 End Sub
End Class

To test this new class type, update the module’s Main() method as follows:

Sub Main()
...
 Dim dreamCar As New PerformanceCar()

 ' Use Inherited property.
 dreamCar.PetName = "Hank"
 dreamCar.TurboBoost()
 Console.ReadLine()
End Sub

Notice that the dreamCar object is able to invoke any public member (such as the PetName property)
found up the chain of inheritance, regardless of the fact that the base class was defined in a completely
different language and in a completely different assembly! The ability to extend classes across assembly
boundaries in a language-independent manner is a natural aspect of the .NET development cycle. This makes
it easy to use compiled code written by individuals who would rather not build their shared code with C#.

 ■ Source Code the VisualBasicCarClient project is located in the Chapter 14 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

526

Understanding Private Assemblies
Technically speaking, the class libraries you’ve created thus far in this chapter have been deployed as private
assemblies. Private assemblies must be located within the same directory as the client application that’s using them
(the application directory) or a subdirectory thereof. Recall that when you add a reference to CarLibrary.dll while
building the CSharpCarClient.exe and VisualBasicCarClient.exe applications, Visual Studio responded by
placing a copy of CarLibrary.dll within the client’s application directory (at least, after the first compilation).

When a client program uses the types defined within this external assembly, the CLR simply loads the
local copy of CarLibrary.dll. Because the .NET runtime does not consult the system registry when searching
for referenced assemblies, you can relocate the CSharpCarClient.exe (or VisualBasicCarClient.exe) and
CarLibrary.dll assemblies to a new location on your machine and run the application (this is often termed
Xcopy deployment).

Uninstalling (or replicating) an application that makes exclusive use of private assemblies is a no- brainer:
simply delete (or copy) the application folder. More important, you do not need to worry that the removal of
private assemblies will break any other applications on the machine.

The Identity of a Private Assembly
The full identity of a private assembly consists of the friendly name and numerical version, both of
which are recorded in the assembly manifest. The friendly name is simply the name of the module that
contains the assembly’s manifest minus the file extension. For example, if you examine the manifest of the
CarLibrary.dll assembly, you find the following:

.assembly CarLibrary
{
...
 .ver 1:0:0:0
}

Given the isolated nature of a private assembly, it should make sense that the CLR does not bother
to use the version number when resolving its location. The assumption is that private assemblies do not
need to have any elaborate version checking, as the client application is the only entity that “knows” of its
existence. Because of this, it is possible for a single machine to have multiple copies of the same private
assembly in various application directories.

Understanding the Probing Process
The .NET runtime resolves the location of a private assembly using a technique called probing, which is
much less invasive than it sounds. Probing is the process of mapping an external assembly request to the
location of the requested binary file. Strictly speaking, a request to load an assembly may be either implicit
or explicit. An implicit load request occurs when the CLR consults the manifest to resolve the location of an
assembly defined using the .assembly extern tokens. Here’s an example:

// An implicit load request.
.assembly extern CarLibrary
{ ... }

Chapter 14 ■ Building and Configuring Class liBraries

527

An explicit load request occurs programmatically using the Load() or LoadFrom() method of the
System.Reflection.Assembly class type, typically for the purposes of late binding and dynamic invocation
of type members. You’ll examine these topics further in Chapter 15, but for now you can see an example of
an explicit load request in the following code:

// An explicit load request based on a friendly name.
Assembly asm = Assembly.Load("CarLibrary");

In either case, the CLR extracts the friendly name of the assembly and begins probing the client’s
application directory for a file named CarLibrary.dll. If this file cannot be located, an attempt is made to
locate an executable assembly based on the same friendly name (for example, CarLibrary.exe). If neither
file can be located in the application directory, the runtime gives up and throws a FileNotFoundException
exception at runtime.

 ■ Note technically speaking, if a copy of the requested assembly cannot be found within the client’s
application directory, the Clr will also attempt to locate a client subdirectory with the same name as the
assembly’s friendly name (e.g., C:\MyClient\CarLibrary). if the requested assembly resides within this
subdirectory, the Clr will load the assembly into memory.

Configuring Private Assemblies
While it is possible to deploy a .NET application by simply copying all required assemblies to a single
folder on the user’s hard drive, you will most likely want to define a number of subdirectories to group
related content. For example, assume you have an application directory named C:\MyApp that contains
CSharpCarClient.exe. Under this folder might be a subfolder named MyLibraries that contains
CarLibrary.dll.

Regardless of the intended relationship between these two directories, the CLR will not probe the
MyLibraries subdirectory unless you supply a configuration file. Configuration files contain various XML
elements that allow you to influence the probing process. Configuration files must have the same name
as the launching application and take a *.config file extension, and they must be deployed in the client’s
application directory. Thus, if you want to create a configuration file for CSharpCarClient.exe, it must be
named CSharpCarClient.exe.config and be located (for this example) in the C:\MyApp directory.

To illustrate the process, create a new directory on your C: drive named MyApp using Windows Explorer.
Next, copy CSharpCarClient.exe and CarLibrary.dll to this new folder, and run the program by double-
clicking the executable. Your program should run successfully at this point.

Now, create a new subdirectory in C:\MyApp named MyLibraries (see Figure 14-10) and move
CarLibrary.dll to this location.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 14 ■ Building and Configuring Class liBraries

528

Try to run your client program again by double-clicking the executable. Because the CLR could not
locate an assembly named CarLibrary directly within the application directory, you are presented with a
rather nasty unhandled FileNotFoundException exception.

To instruct the CLR to probe under the MyLibraries subdirectory, create a new configuration file
named CSharpCarClient.exe.config using any text editor, and save the file in the folder containing the
CSharpCarClient.exe application, which in this example is C:\MyApp. Open this file and enter the following
content exactly as shown (be aware that XML is case sensitive!):

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <probing privatePath="MyLibraries"/>
 </assemblyBinding>
 </runtime>
</configuration>

.NET *.config files always open with a root element named <configuration>. The nested <runtime>
element may specify an <assemblyBinding> element, which nests a further element named <probing>. The
privatePath attribute is the key point in this example, as it is used to specify the subdirectories relative to
the application directory where the CLR should probe.

Once you’ve finished creating CSharpCarClient.exe.config, run the client by double-clicking the
executable in Windows Explorer. You should find that CSharpCarClient.exe executes without a hitch (if this
is not the case, double-check your *.config file for typos).

Do note that the <probing> element does not specify which assembly is located under a given
subdirectory. In other words, you cannot say, “CarLibrary is located under the MyLibraries subdirectory,
but MathLibrary is located under the OtherStuff subdirectory.” The <probing> element simply instructs
the CLR to investigate all specified subdirectories for the requested assembly until the first match is
encountered.

Figure 14-10. CarLibrary.dll now resides under the MyLibraries subdirectory

Chapter 14 ■ Building and Configuring Class liBraries

529

 ■ Note Be very aware that the privatePath attribute cannot be used to specify an absolute
(C:\SomeFolder\SomeSubFolder) or relative (..\SomeFolder\AnotherFolder) path! if you need to specify
a directory outside the client’s application directory, you will need to use a completely different XMl element
named <codeBase> (more details on this element later in the chapter).

Multiple subdirectories can be assigned to the privatePath attribute using a semicolon-delimited
list. You have no need to do so at this time, but here is an example that informs the CLR to consult the
MyLibraries and MyLibraries\Tests client subdirectories:

<probing privatePath="MyLibraries;MyLibraries\Tests"/>

Next, for testing purposes, change the name of your configuration file (in one way or another) and
attempt to run the program once again. The client application should now fail. Remember that *.config
files must be prefixed with the same name as the related client application. By way of a final test, open your
configuration file for editing and capitalize any of the XML elements. Once the file is saved, your client
should fail to run once again (as XML is case sensitive).

 ■ Note understand that the Clr will load the first assembly it finds during the probing process. for example,
if the C:\MyApp folder did contain a copy of CarLibrary.dll, it will be loaded into memory, while the copy in
MyLibraries is effectively ignored.

The Role of the App.Config File
While you are always able to create XML configuration files by hand using your text editor of choice, Visual
Studio allows you to create a configuration file during the development of the client program. By default a
new Visual Studio project will contain a configuration file for editing. If you ever need to add one manually,
you may do so via the Project ➤ Add New Item menu option. Notice in Figure 14-11, you have left the name
of this file as the suggested App.config.

Chapter 14 ■ Building and Configuring Class liBraries

530

If you open this file for viewing, you’ll see a minimal set of instructions, to which you will add
additional elements.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
</configuration>

Now, here is the cool thing. Each time you compile your project, Visual Studio will automatically copy
the data in App.config to a new file in the \bin\Debug directory using the proper naming convention (such
as CSharpCarClient.exe.config). However, this behavior will happen only if your configuration file is
indeed named App.config; see Figure 14-12.

Figure 14-11. Inserting a new XML configuration file

Chapter 14 ■ Building and Configuring Class liBraries

531

Using this approach, all you need to do is maintain App.config, and Visual Studio will ensure your
application directory contains the latest and greatest configuration data (even if you happen to rename
your project).

Understanding Shared Assemblies
Now that you understand how to deploy and configure a private assembly, you can begin to examine the role
of a shared assembly. Like a private assembly, a shared assembly is a collection of types intended for reuse
among projects. The most obvious difference between shared and private assemblies is that a single copy of
a shared assembly can be used by several applications on the same machine.

Consider the fact that all the applications created in this text that required access to mscorlib.dll.
If you were to look in the application directory of each of these clients, you would not find a private copy of
this .NET assembly. The reason is that mscorlib.dll has been deployed as a shared assembly. Clearly, if you
need to create a machine-wide class library, this is the way to go.

 ■ Note deciding whether a code library should be deployed as a private or shared library is yet another
design issue to contend with, and this will be based on many project-specific details. as a rule of thumb, when
you are building libraries that need to be used by a wide variety of applications, shared assemblies can be quite
helpful in that they can be updated to new versions easily (as you will see).

Figure 14-12. The contents of App.config will be copied to a correctly named *.config in your output directory

Chapter 14 ■ Building and Configuring Class liBraries

532

The Global Assembly Cache
As suggested in the previous paragraph, a shared assembly is not deployed within the same directory as the
application that uses it. Rather, shared assemblies are installed into the GAC. However, the exact location of
the GAC will depend on which versions of the .NET platform you installed on the target computer.

Machines that have not installed .NET 4.0 or higher will find the GAC is located in a subdirectory of your
Windows directory named Assembly (e.g., C:\Windows\assembly). These days, you might consider this the
“historical GAC,” as it can only contain .NET libraries compiled on versions 1.0, 2.0, 3.0, or 3.5. See Figure 14-13.

Figure 14-13. The “historical” global assembly cache

 ■ Note You cannot install executable assemblies (*.exe) into the gaC. only assemblies that take the *.dll
file extension can be deployed as a shared assembly.

With the release of .NET 4.0, Microsoft decided to isolate .NET 4.0 and higher libraries to a separate
location, specifically C:\Windows\Microsoft.NET\assembly\GAC_MSIL (Figure 14-14).

Chapter 14 ■ Building and Configuring Class liBraries

533

Under this new folder, you will find a set of subdirectories, each of which is named identically to the
friendly name of a particular code library (for example, \System.Windows.Forms, \System.Core, and so on).
Beneath a given friendly name folder, you’ll find yet another subdirectory that always takes the following
naming convention:

v4.0_major.minor.build.revision_publicKeyTokenValue

The “v4.0” prefix denotes that the library compiled under .NET version 4.0 or higher. That prefix is
followed by a single underscore and then the version of the library in question (for example, 1.0.0.0). After a
pair of underscores, you’ll see another number termed the publickeytoken value. As you will see in the next
section, the public key value is part of the assembly’s “strong name.” Finally, under this folder, you will find a
copy of the *.dll in question.

In this book, I am assuming you are building applications using .NET 4.6; therefore, if you install a
library to the GAC, it will be installed under C:\Windows\Microsoft.NET\assembly\GAC_MSIL. However, be
aware that if you were to configure a Class Library project to be compiled using version 3.5 or earlier, you
would find shared libraries installed under C:\Windows\assembly.

Understanding Strong Names
Before you can deploy an assembly to the GAC, you must assign it a strong name, which is used to
uniquely identify the publisher of a given .NET binary. Understand that a “publisher” can be an individual
programmer (such as yourself), a department within a given company, or an entire company itself.

Figure 14-14. The .NET 4.0 and higher global assembly cache

Chapter 14 ■ Building and Configuring Class liBraries

534

In some ways, a strong name is the modern-day .NET equivalent of the COM globally unique identifier
(GUID) identification scheme. If you have a COM background, you might recall that AppIDs are GUIDs
that identify a particular COM application. Unlike COM GUID values (which are nothing more than 128-bit
numbers), strong names are based (in part) on two cryptographically related keys (public keys and private keys),
which are much more unique and resistant to tampering than a simple GUID.

Formally, a strong name is composed of a set of related data, much of which is specified using the
following assembly-level attributes:

•	 The friendly name of the assembly (which, you recall, is the name of the assembly
minus the file extension)

•	 The version number of the assembly (assigned using the [AssemblyVersion]
attribute)

•	 The public key value (assigned using the [AssemblyKeyFile] attribute)

•	 An optional culture identity value for localization purposes (assigned using the
[AssemblyCulture] attribute)

•	 An embedded digital signature, created using a hash of the assembly’s contents and
the private key value

To provide a strong name for an assembly, your first step is to generate public/private key data using
the .NET Framework sn.exe utility (which you’ll do in a moment). The sn.exe utility generates a file
(typically ending with the *.snk [Strong Name Key] file extension) that contains data for two distinct but
mathematically related keys, the public key and the private key. Once the C# compiler is made aware of
the location of your *.snk file, it will record the full public key value in the assembly manifest using the
.publickey token at the time of compilation.

The C# compiler will also generate a hash code based on the contents of the entire assembly (CIL code,
metadata, and so forth). As you recall from Chapter 6, a hash code is a numerical value that is statistically
unique for a fixed input. Thus, if you modify any aspect of a .NET assembly (even a single character in a
string literal), the compiler yields a different hash code. This hash code is combined with the private key
data within the *.snk file to yield a digital signature embedded within the assembly’s CLR header data.
Figure 14-15 illustrates the process of strongly naming an assembly.

Figure 14-15. At compile time, a digital signature is generated and embedded into the assembly based,
in part, on public and private key data

http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 14 ■ Building and Configuring Class liBraries

535

Understand that the actual private key data is not listed anywhere within the manifest but is used
only to digitally sign the contents of the assembly (in conjunction with the generated hash code). Again, the
whole idea of using public/private key data is to ensure that no two companies, departments, or individuals
have the same identity in the .NET universe. In any case, once the process of assigning a strong name is
complete, the assembly may be installed into the GAC.

 ■ Note strong names also provide a level of protection against potential evildoers tampering with your
assembly’s contents. given this point, it is considered a .net best practice to strongly name every assembly
(including *.exe assemblies), regardless of whether it is deployed to the gaC.

Generating Strong Names at the Command Line
Let’s walk through the process of assigning a strong name to the CarLibrary assembly created earlier in this
chapter. These days, you will most likely generate the required *.snk file using Visual Studio. However, in the
bad old days (circa 2003), the only option for strongly signing an assembly was to do so at the command line.
Let’s see how to do this.

The first order of business is to generate the required key data using the sn.exe utility. Although this
tool has numerous command-line options, all you need to concern yourself with for the moment is the -k
flag, which instructs the tool to generate a new file containing the public/private key information.

Create a new folder on your C drive named MyTestKeyPair and change to that directory using the
developer command prompt. Next, issue the following command to generate a file named MyTestKeyPair.snk:

sn –k MyTestKeyPair.snk

Now that you have your key data, you need to inform the C# compiler exactly where MyTestKeyPair.snk
is located. Recall from earlier in this chapter, when you create any new C# project workspace using
Visual Studio, one of the initial project files (located under the Properties node of the Solution Explorer)
is named AssemblyInfo.cs. This file contains a number of attributes that describe the assembly itself.
The [AssemblyKeyFile] assembly-level attribute can be added to your AssemblyInfo.cs file to inform the
compiler of the location of a valid *.snk file. Simply specify the path as a string parameter. Here’s an example:

[assembly: AssemblyKeyFile(@"C:\MyTestKeyPair\MyTestKeyPair.snk")]

 ■ Note When you manually specify the [AssemblyKeyFile] attribute, Visual studio will generate a warning
informing you to use the /keyfile option of csc.exe or to establish the key file via the Visual studio properties
window. You’ll use the ide to do so in just a moment (so feel free to ignore the generated warning).

Because the version of a shared assembly is one aspect of a strong name, selecting a version number
for CarLibrary.dll is a necessary detail. In the AssemblyInfo.cs file, you will find another attribute named
[AssemblyVersion]. Initially, the value is set to 1.0.0.0.

[assembly: AssemblyVersion("1.0.0.0")]

Chapter 14 ■ Building and Configuring Class liBraries

536

A .NET version number is composed of the four parts (<major>.<minor>.<build>.<revision>). While
specifying a version number is entirely up to you, you can instruct Visual Studio to automatically increment
the build and revision numbers as part of each compilation using the wildcard token, rather than with a
specific build and revision value. You have no need to do so for this example; however, consider the following:

// Format: <Major number>.<Minor number>.<Build number>.<Revision number>
// Valid values for each part of the version number are between 0 and 65535.
[assembly: AssemblyVersion("1.0.*")]

At this point, the C# compiler has all the information needed to generate strong name data (as you are
not specifying a unique culture value via the [AssemblyCulture] attribute, you “inherit” the culture of your
current machine, which in my case would be U.S. English).

Compile your CarLibrary code library, open your assembly into ildasm.exe, and check the manifest.
You will now see that a new .publickey tag is used to document the full public key information, while the
.ver token records the version specified via the [AssemblyVersion] attribute (see Figure 14-16).

Figure 14-16. A strongly named assembly records the public key in the manifest

Great! At this point, you could deploy your shared CarLibrary.dll assembly to the GAC. However,
remember that these days, .NET developers can use Visual Studio to create strongly named assemblies using
a friendly user interface rather than the cryptic sn.exe command-line tool. Before seeing how to do so, be
sure you delete (or comment out) the following line of code from your AssemblyInfo.cs file (assuming you
manually added this line during this section of the text):

// [assembly: AssemblyKeyFile(@"C:\MyTestKeyPair\MyTestKeyPair.snk")]

Chapter 14 ■ Building and Configuring Class liBraries

537

After you have done so, you will be asked to provide a name for your new *.snk file (such as
myKeyPair.snk), and you’ll have the option to password-protect your file (which is not required for this
example); see Figure 14-18.

Figure 14-17. Creating a new *.snk file using Visual Studio

Generating Strong Names Using Visual Studio
Visual Studio allows you to specify the location of an existing *.snk file using the project’s Properties page,
as well as generate a new *.snk file. To make a new *.snk file for the CarLibrary project, first double-click
the Properties icon of the Solution Explorer and select the Signing tab. Next, select the “Sign the assembly”
check box, and choose the <New...> option from the drop-down list (see Figure 14-17).

Chapter 14 ■ Building and Configuring Class liBraries

538

Figure 14-19. Visual Studio will now strongly sign your assembly with each compilation

Figure 14-18. Naming the new *.snk file using Visual Studio

At this point, you will see your *.snk file within the Solution Explorer (Figure 14-19). Every time you
build your application, this data will be used to assign a proper strong name to the assembly.

Chapter 14 ■ Building and Configuring Class liBraries

539

 ■ Note recall that the application tab of the properties editor provides a button named assembly
information. When clicked, the button displays a dialog box that allows you to establish numerous assembly-
level attributes, including the version number, copyright information, and so forth.

Installing Strongly Named Assemblies to the GAC
The final step is to install the (now strongly named) CarLibrary.dll into the GAC. While the preferred way
to deploy assemblies to the GAC in a production setting is to create an installer package (using a commercial
installer program such as InstallShield), the .NET Framework SDK ships with a command-line tool named
gacutil.exe, which can be useful for quick tests.

 ■ Note You must have administrator rights to interact with the gaC on your machine. Be sure to run your
command window as administrator.

Table 14-1 documents some relevant options of gacutil.exe (specify the /? flag when you run the
program to see each option).

Table 14-1. Various Options of gacutil.exe

Option Meaning in Life

-i Installs a strongly named assembly into the GAC

-u Uninstalls an assembly from the GAC

-l Displays the assemblies (or a specific assembly) in the GAC

To install a strongly named assembly using gacutil.exe, first open a command prompt, and then
change to the directory containing CarLibrary.dll. Here’s an example (your path may differ):

cd C:\MyCode\CarLibrary\bin\Debug

Next, install the library using the -i command, like so:

gacutil /i CarLibrary.dll

After you have done so, you can verify that the library has been deployed by specifying the -l command
as follows (note that you omit the file extension when using the -l command):

gacutil /l CarLibrary

Chapter 14 ■ Building and Configuring Class liBraries

540

If all is well, you should see the following output to the Console window (you will find a unique
PublicKeyToken value, as expected):

The Global Assembly Cache contains the following assemblies:

CarLibrary, Version=1.0.0.0, Culture=neutral, PublicKeyToken=33a2bc294331e8b9,
processorArchitecture=MSIL

Number of items = 1

Furthermore, if you were to navigate to C:\Windows\Microsoft.NET\assembly\GAC_MSIL, you would
find a new CarLibrary folder with the correct subdirectory structure (see Figure 14-20).

Figure 14-20. The shared CarLibrary assembly in the GAC

Consuming a Shared Assembly
When you are building applications that use a shared assembly, the only difference from consuming a
private assembly is in how you reference the library using Visual Studio. In reality, there is no difference as
far as the tool is concerned—you still use the Add Reference dialog box.

When you need to reference a private assembly, you could use the Browse button to navigate to the
correct subdirectory of the GAC. However, you can also simply navigate to the location of the strongly named
assembly (such as the /bin/debug folder of a class library project) and reference the copy. When Visual
Studio finds a strongly named library, it will not copy the library to the output folder of the client application.
In any case, Figure 14-21 shows the referenced library.

Chapter 14 ■ Building and Configuring Class liBraries

541

To illustrate, create a new C# Console Application project named SharedCarLibClient and reference
your CarLibrary.dll assembly as just described. As you would hope, you can now see an icon in your
Solution Explorer’s Reference folder. If you select this icon and then view the Properties window (accessible
from the Visual Studio View menu), you’ll notice that the Copy Local property of the selected CarLibrary is
now set to False. In any case, author the following test code in your new client application:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using CarLibrary;

namespace SharedCarLibClient
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Shared Assembly Client *****");
 SportsCar c = new SportsCar();
 c.TurboBoost();
 Console.ReadLine();
 }
 }
}

Figure 14-21. Referencing the strongly named, shared CarLibrary (version 1.0.0.0) using Visual Studio

Chapter 14 ■ Building and Configuring Class liBraries

542

After you have compiled your client application, navigate to the directory that contains
SharedCarLibClient.exe using Windows Explorer and notice that Visual Studio has not copied CarLibrary.
dll to the client’s application directory. When you reference an assembly whose manifest contains a
.publickey value, Visual Studio assumes the strongly named assembly will be deployed to the GAC and,
therefore, does not bother to copy the binary.

Exploring the Manifest of SharedCarLibClient
Recall that when you generate a strong name for an assembly, the entire public key is recorded in the
assembly manifest. On a related note, when a client references a strongly named assembly, its manifest
records a condensed hash value of the full public key, denoted by the .publickeytoken tag. If you open the
manifest of SharedCarLibClient.exe using ildasm.exe, you would find the following (your public key token
value will of course differ, as it is computed based on the public key value):

.assembly extern CarLibrary
{
 .publickeytoken = (33 A2 BC 29 43 31 E8 B9)
 .ver 1:0:0:0
}

If you compare the value of the public key token recorded in the client manifest with the public key
token value shown in the GAC, you will find a dead-on match. Recall that a public key represents one aspect
of the strongly named assembly’s identity. Given this, the CLR will load only version 1.0.0.0 of an assembly
named CarLibrary that has a public key that can be hashed down to the value 33A2BC294331E8B9. If the CLR
does not find an assembly meeting this description in the GAC (and did not find a private assembly named
CarLibrary in the client’s directory), a FileNotFoundException exception is thrown.

 ■ Source Code You can find the sharedCarlibClient application in the Chapter 14 subdirectory.

Configuring Shared Assemblies
Like private assemblies, shared assemblies can be configured using a client *.config file. Of course, because
shared assemblies are deployed to a well-known location (the GAC), you don’t use the <privatePath>
element as you did for private assemblies (although if the client is using both shared and private assemblies,
the <privatePath> element may still exist in the *.config file).

You can use application configuration files in conjunction with shared assemblies whenever you
want to instruct the CLR to bind to a different version of a specific assembly, effectively bypassing the value
recorded in the client’s manifest. This can be useful for a number of reasons. For example, imagine that you
have shipped version 1.0.0.0 of an assembly and later discover a major bug. One corrective action would be
to rebuild the client application to reference the correct version of the bug-free assembly (say, 1.1.0.0) and
redistribute the updated client and new library to every target machine.

Another option is to ship the new code library and a *.config file that automatically instructs the
runtime to bind to the new (bug-free) version. As long as the new version has been installed into the GAC,
the original client runs without recompilation, redistribution, or fear of having to update your resume.

Here’s another example: you have shipped the first version of a bug-free assembly (1.0.0.0), and after a
month or two, you add new functionality to the assembly to yield version 2.0.0.0. Obviously, existing client
applications that were compiled against version 1.0.0.0 have no clue about these new types, given that their
code base makes no reference to them.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

543

New client applications, however, want to make reference to the new functionality in version 2.0.0.0.
Under .NET, you are free to ship version 2.0.0.0 to the target machines and have version 2.0.0.0 run alongside
the older version 1.0.0.0. If necessary, existing clients can be dynamically redirected to load version 2.0.0.0
(to gain access to the implementation refinements), using an application configuration file without needing
to recompile and redeploy the client application.

Freezing the Current Shared Assembly
To illustrate how to dynamically bind to a specific version of a shared assembly, open Windows Explorer and
copy the current version of the compiled CarLibrary.dll assembly (1.0.0.0) into a distinct subdirectory
(I called mine CarLibrary Version 1.0.0.0) to symbolize the freezing of this version (see Figure 14-22).

Figure 14-22. Freezing the current version of CarLibrary.dll

Building a Shared Assembly Version 2.0.0.0
Now, open your existing CarLibrary project and update your code base with a new enum type named
MusicMedia that defines the following four possible musical devices.

// Which type of music player does this car have?
public enum MusicMedia
{
 musicCd,
 musicTape,
 musicRadio,
 musicMp3
}

Chapter 14 ■ Building and Configuring Class liBraries

544

As well, add a new public method to the Car type that allows the caller to turn on one of the given media
players (be sure to import the System.Windows.Forms namespace if necessary), like so:

public abstract class Car
{
...
 public void TurnOnRadio(bool musicOn, MusicMedia mm)
 {
 if(musicOn)
 MessageBox.Show(string.Format("Jamming {0}", mm));
 else
 MessageBox.Show("Quiet time...");
 }
}

Update the constructors of the Car class to display a MessageBox that verifies you are indeed using
CarLibrary 2.0.0.0 as follows:

public abstract class Car
{
...
 public Car()
 {
 MessageBox.Show("CarLibrary Version 2.0!");
 }
 public Car(string name, int maxSp, int currSp)
 {
 MessageBox.Show("CarLibrary Version 2.0!");
 PetName = name; MaxSpeed = maxSp; CurrentSpeed = currSp;
 }
...
}

Last but not least, before you recompile your new library, update the version to be 2.0.0.0. Recall you
can do so in a visual manner by double-clicking the Properties icon of the Solution Explorer and clicking
the Assembly Information button on the Application tab. After you do, simply update the Assembly Version
number (see Figure 14-23).

Chapter 14 ■ Building and Configuring Class liBraries

545

If you look in your project’s \bin\Debug folder, you’ll see that you have a new version of this assembly
(2.0.0.0), while version 1.0.0.0 is safe in storage in the CarLibrary Version 1.0.0.0 directory. Install this
new assembly into the 4.0 GAC using gacutil.exe, as described earlier in this chapter. Notice that you now
have two versions of the same assembly (see Figure 14-24).

Figure 14-23. Setting the version number of CarLibrary.dll to 2.0.0.0

Figure 14-24. Side-by-side execution of a shared assembly

Chapter 14 ■ Building and Configuring Class liBraries

546

If you run the current SharedCarLibClient.exe program by double-clicking the icon in Windows
Explorer, you should not see the “CarLibrary Version 2.0!” message box appear, as the manifest is specifically
requesting version 1.0.0.0. How then can you instruct the CLR to bind to version 2.0.0.0? Glad you asked!

 ■ Note Visual studio will automatically reset references when you compile your applications! therefore, if you
run your SharedCarLibClient.exe application within Visual studio, it will grab CarLibrary.dll version 2.0.0.0!
if you accidentally ran your application in this way, simply delete the current CarLibrary.dll reference and
select version 1.0.0.0 (which i suggested you place in a folder named CarLibrary Version 1.0.0.0).

Dynamically Redirecting to Specific Versions of a Shared Assembly
When you want to tell the CLR to load a version of a shared assembly other than the version listed in the
manifest, you can build a *.config file that contains a <dependentAssembly> element. When doing so, you
will need to create an <assemblyIdentity> subelement that specifies the friendly name of the assembly
listed in the client manifest (CarLibrary, for this example) and an optional culture attribute (which can
be assigned an empty string or omitted altogether if you want to use the default culture for the machine).
Moreover, the <dependentAssembly> element will define a <bindingRedirect> subelement to define the
version currently in the manifest (via the oldVersion attribute) and the version in the GAC to load instead
(via the newVersion attribute).

Update the current configuration file in the application directory of SharedCarLibClient named
SharedCarLibClient.exe.config that contains the following XML data.

 ■ Note the value of your public key token will be different from what you see in the following markup.
to find your public key token value, recall you can open the client into ildasm.exe, double-click the Manifest
icon, and copy the value to your clipboard (just be sure to remove the blank spaces!).

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <!--Runtime binding info -->
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="CarLibrary"
 publicKeyToken="64ee9364749d8328"
 culture="neutral"/>
 <bindingRedirect oldVersion= "1.0.0.0"
 newVersion= "2.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Now run the SharedCarLibClient.exe program by double-clicking the executable from Windows
Explorer. You should see the message that version 2.0.0.0 has loaded.

Chapter 14 ■ Building and Configuring Class liBraries

547

Multiple <dependentAssembly> elements can appear within a client’s configuration file. Although
there’s no need for this example, assume that the manifest of SharedCarLibClient.exe also references
version 2.5.0.0 of an assembly named MathLibrary. If you wanted to redirect to version 3.0.0.0 of
MathLibrary (in addition to version 2.0.0.0 of CarLibrary), the SharedCarLibClient.exe.config file would
look like the following:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <!-- Controls Binding to CarLibrary -->
 <dependentAssembly>
 <assemblyIdentity name="CarLibrary"
 publicKeyToken="64ee9364749d8328"
 culture=""/>
 <bindingRedirect oldVersion= "1.0.0.0" newVersion= "2.0.0.0"/>
 </dependentAssembly>

 <!-- Controls Binding to MathLibrary -->
 <dependentAssembly>
 <assemblyIdentity name="MathLibrary"
 publicKeyToken="64ee9364749d8328"
 culture=""/>
 <bindingRedirect oldVersion= "2.5.0.0" newVersion= "3.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

 ■ Note it is possible to specify a range of old version numbers via the oldVersion attribute; for example,
<bindingRedirect oldVersion="1.0.0.0-1.2.0.0" newVersion="2.0.0.0"/> informs the Clr to use
version 2.0.0.0 for any older version within the range of 1.0.0.0 to 1.2.0.0.

Understanding Publisher Policy Assemblies
The next configuration issue you’ll examine is the role of publisher policy assemblies. As you’ve just seen,
*.config files can be constructed to bind to a specific version of a shared assembly, thereby bypassing the
version recorded in the client manifest. While this is all well and good, imagine you’re an administrator
who now needs to reconfigure all client applications on a given machine to rebind to version 2.0.0.0 of the
CarLibrary.dll assembly. Given the strict naming convention of a configuration file, you would need to
duplicate the same XML content in numerous locations (assuming you are, in fact, aware of the locations of
the executables using CarLibrary!). Clearly this would be a maintenance nightmare.

Publisher policy allows the publisher of a given assembly (you, your department, your company, or
what have you) to ship a binary version of a *.config file that is installed into the GAC along with the newest
version of the associated assembly. The benefit of this approach is that client application directories do not
need to contain specific *.config files. Rather, the CLR will read the current manifest and attempt to find
the requested version in the GAC. However, if the CLR finds a publisher policy assembly, it will read the
embedded XML data and perform the requested redirection at the level of the GAC.

Chapter 14 ■ Building and Configuring Class liBraries

548

Publisher policy assemblies are created at the command line using a .NET utility named al.exe (the
assembly linker). Though this tool provides many options, building a publisher policy assembly requires
passing in only the following input parameters:

•	 The location of the *.config or *.xml file containing the redirecting instructions

•	 The name of the resulting publisher policy assembly

•	 The location of the *.snk file used to sign the publisher policy assembly

•	 The version numbers to assign the publisher policy assembly being constructed

If you wanted to build a publisher policy assembly that controls CarLibrary.dll, the command set
would be as follows (which must be entered on a single line within the command window):

al /link:CarLibraryPolicy.xml /out:policy.1.0.CarLibrary.dll
/keyf:C:\MyKey\myKey.snk /v:1.0.0.0

Here, the XML content is contained within a file named CarLibraryPolicy.xml. The name of the
output file (which must be in the format policy.<major>.<minor>.assemblyToConfigure) is specified using
the obvious /out flag. In addition, note that the name of the file containing the public/private key pair will
also need to be supplied via the /keyf option. Remember, publisher policy files are shared and, therefore,
must have strong names!

Once the al.exe tool has executed, the result is a new assembly that can be placed into the GAC to
force all clients to bind to version 2.0.0.0 of CarLibrary.dll, without the use of a specific client application
configuration file. Using this technique, you can design a machine-wide redirection for all applications using
a specific version (or range of versions) of an existing assembly.

Disabling Publisher Policy
Now, assume you (as a system administrator) have deployed a publisher policy assembly (and the latest
version of the related assembly) to the GAC of a client machine. As luck would have it, nine of the ten
affected applications rebind to version 2.0.0.0 without error. However, the remaining client application (for
whatever reason) blows up when accessing CarLibrary.dll 2.0.0.0. (As we all know, it is next to impossible
to build backward-compatible software that works 100 percent of the time.)

In such a case, it is possible to build a configuration file for a specific troubled client that instructs
the CLR to ignore the presence of any publisher policy files installed in the GAC. The remaining client
applications that are happy to consume the newest .NET assembly will simply be redirected via the installed
publisher policy assembly. To disable publisher policy on a client-by-client basis, author a (properly named)
*.config file that uses the <publisherPolicy> element and set the apply attribute to no. When you do so,
the CLR will load the version of the assembly originally listed in the client’s manifest.

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <publisherPolicy apply="no" />
 </assemblyBinding>
 </runtime>
</configuration>

Chapter 14 ■ Building and Configuring Class liBraries

549

Understanding the <codeBase> Element
Application configuration files can also specify code bases. The <codeBase> element can be used to instruct
the CLR to probe for dependent assemblies located at arbitrary locations (such as network end points or an
arbitrary machine path outside a client’s application directory).

If the value assigned to a <codeBase> element is located on a remote machine, the assembly will be
downloaded on demand to a specific directory in the GAC termed the download cache. Given what you
have learned about deploying assemblies to the GAC, it should make sense that assemblies loaded from a
<codeBase> element will need to be assigned a strong name (after all, how else could the CLR install remote
assemblies to the GAC?). If you are interested, you can view the content of your machine’s download cache
by supplying the /ldl option to gacutil.exe, like so:

gacutil /ldl

 ■ Note technically speaking, the <codeBase> element can be used to probe for assemblies that do not have
strong names. however, the assembly’s location must be relative to the client’s application directory (and, thus,
is little more than an alternative to the <privatePath> element).

To see the <codeBase> element in action, create a Console Application project named CodeBaseClient,
set a reference to CarLibrary.dll version 2.0.0.0, and update the initial file as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using CarLibrary;

namespace CodeBaseClient
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with CodeBases *****");
 SportsCar c = new SportsCar();
 Console.WriteLine("Sports car has been allocated.");
 Console.ReadLine();
 }
 }
}

Given that CarLibrary.dll has been deployed to the GAC, you are able to run the program as is.
However, to illustrate the use of the <codeBase> element, create a new folder under your C: drive (perhaps
C:\MyAsms) and place a copy of CarLibrary.dll version 2.0.0.0 into this directory.

Chapter 14 ■ Building and Configuring Class liBraries

550

Now, add an App.config file (or edit an existing App.config) to the CodeBaseClient project
(as explained earlier in this chapter) and author the following XML content (remember that your
.publickeytoken value will differ; consult your GAC as required):

<configuration>
...
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="CarLibrary" publicKeyToken="33A2BC294331E8B9"
 culture="neutral"/>
 <codeBase version="2.0.0.0" href="file:///C:/MyAsms/CarLibrary.dll" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

As you can see, the <codeBase> element is nested within the <assemblyIdentity> element, which
makes use of the name and publicKeyToken attributes to specify the friendly name and associated
publicKeyToken values. The <codeBase> element itself specifies the version and location (via the href
property) of the assembly to load. If you were to delete version 2.0.0.0 of CarLibrary.dll from the GAC,
this client would still run successfully, as the CLR is able to locate the external assembly under C:\MyAsms.

 ■ Note if you place assemblies at random locations on your development machine, you are in effect
re-creating the system registry (and the related dll hell), given that if you move or rename the folder containing
your binaries, the current bind will fail. With that in mind, use <codeBase> with caution.

The <codeBase> element can also be helpful when referencing assemblies located on a remote
networked machine. Assume you have permission to access a folder located at http://www.MySite.com.
To download the remote *.dll to the GAC’s download cache on your local machine, you could update the
<codeBase> element as follows:

<codeBase version="2.0.0.0"
 href="http://www.MySite.com/Assemblies/CarLibrary.dll" />

 ■ Source Code You can find the CodeBaseClient application in the Chapter 14 subdirectory.

The System.Configuration Namespace
Currently, all of the *.config files shown in this chapter have made use of well-known XML elements that
are read by the CLR to resolve the location of external assemblies. In addition to these recognized elements,
it is perfectly permissible for a client configuration file to contain application-specific data that has nothing
to do with binding heuristics. Given this, it should come as no surprise that the .NET Framework provides a
namespace that allows you to programmatically read the data within a client configuration file.

http://www.mysite.com/
http://www.mysite.com/Assemblies/CarLibrary.dll
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 14 ■ Building and Configuring Class liBraries

551

The System.Configuration namespace provides a small set of types you can use to read custom data
from a client’s *.config file. These custom settings must be contained within the scope of an <appSettings>
element. The <appSettings> element contains any number of <add> elements that define key-value pairs to
be obtained programmatically.

For example, assume you have an App.config file for a Console Application project named
AppConfigReaderApp that defines two application specific values, listed like so:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>

 <!-- Custom App settings -->
 <appSettings>
 <add key="TextColor" value="Green" />
 <add key="RepeatCount" value="8" />
 </appSettings>
</configuration>

Reading these values for use by the client application is as simple as calling the instance-level
GetValue() method of the System.Configuration.AppSettingsReader type. As shown in the following
code, the first parameter to GetValue() is the name of the key in the *.config file, whereas the second
parameter is the underlying type of the key (obtained via the C# typeof operator):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using System.Configuration;

namespace AppConfigReaderApp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Reading <appSettings> Data *****\n");

 // Get our custom data from the *.config file.
 AppSettingsReader ar = new AppSettingsReader();
 int numbOfTimes = (int)ar.GetValue("RepeatCount", typeof(int));
 string textColor = (string)ar.GetValue("TextColor", typeof(string));

 Console.ForegroundColor =
 (ConsoleColor)Enum.Parse(typeof(ConsoleColor), textColor);

Chapter 14 ■ Building and Configuring Class liBraries

552

 // Now print a message correctly.
 for (int i = 0; i < numbOfTimes; i++)
 Console.WriteLine("Howdy!");
 Console.ReadLine();
 }
 }
}

 ■ Source Code You can find the appConfigreaderapp application in the Chapter 14 subdirectory.

The Configuration File Schema Documentation
In this chapter, you were introduced to the role of XML configuration files. Here, you focused on a few
settings you can add to the <runtime> element that control how the CLR will attempt to locate externally
required libraries. As you work on upcoming chapters of this book (and as you move beyond this book
and begin to build larger-scale software), you will quickly notice that use of XML configuration files is
commonplace.

To be sure, the .NET platform uses *.config files in numerous APIs. For example, in Chapter 25, you
will see that Windows Communication Foundation (WCF) uses configuration files to establish complex
network settings. Later in this text when you examine web development via ASP.NET, you’ll quickly note that
the web.config file contains the same type of instructions as a desktop App.config file.

Because a given .NET configuration file can contain a large number of instructions, you should be
aware that the entire schema of this XML file is documented in the .NET help system. Specifically, if you do a
search for the topic Configuration File Schema for the .NET Framework in the help system, you will be given
a detailed explanation of each element (see Figure 14-25).

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_25

Chapter 14 ■ Building and Configuring Class liBraries

553

Figure 14-25. XML configuration files are fully documented in the .NET help system

Summary
This chapter examined the role of .NET class libraries (aka .NET *.dlls). As you have seen, class libraries are
.NET binaries that contain logic intended to be reused across a variety of projects. Recall that libraries can be
deployed in two primary ways, specifically privately or shared. Private assemblies are deployed to the client
folder or a subdirectory thereof, provided you have a proper XML configuration file. Shared assemblies are
libraries that can be used by any application on the machine and can also be influenced by the settings in a
client-side configuration file.

You learned how shared assemblies are marked with a “strong name,” which essentially establishes a
unique identify for a library in the eyes of the CLR. As well, you learned about various command-line tools
(sn.exe and gacutil.exe) that are used during the development and deployment of shared libraries.

The chapter wrapped up by examining the role of publisher policies and the process of storing and
retrieving custom settings using the System.Configuration namespace.

555

Chapter 15

Type Reflection, Late Binding, and
Attribute-Based Programming

As shown in Chapter 14, assemblies are the basic unit of deployment in the .NET universe. Using the
integrated object browsers of Visual Studio (and numerous other IDEs), you are able to examine the types
within a project’s referenced set of assemblies. Furthermore, external tools such as ildasm.exe allow you
to peek into the underlying CIL code, type metadata, and assembly manifest for a given .NET binary. In
addition to this design-time investigation of .NET assemblies, you are also able to programmatically obtain
this same information using the System.Reflection namespace. To this end, the first task of this chapter is
to define the role of reflection and the necessity of .NET metadata.

The remainder of the chapter examines a number of closely related topics, all of which hinge upon
reflection services. For example, you’ll learn how a .NET client may employ dynamic loading and late
binding to activate types it has no compile-time knowledge of. You’ll also learn how to insert custom
metadata into your .NET assemblies through the use of system-supplied and custom attributes. To put all of
these (seemingly esoteric) topics into perspective, the chapter closes by demonstrating how to build several
“snap-in objects” that you can plug into an extendable desktop GUI application.

The Necessity of Type Metadata
The ability to fully describe types (classes, interfaces, structures, enumerations, and delegates) using
metadata is a key element of the .NET platform. Numerous .NET technologies, such as Windows
Communication Foundation (WCF), and object serialization require the ability to discover the format of
types at runtime. Furthermore, cross-language interoperability, numerous compiler services, and an IDE’s
IntelliSense capabilities all rely on a concrete description of type.

Recall that the ildasm.exe utility allows you to view an assembly’s type metadata using the Ctrl+M
keyboard option (see Chapter 1). Thus, if you were to open any of the *.dll or *.exe assemblies created over
the course of this book (such as the CarLibrary.dll created in the Chapter 14) using ildasm.exe and press
Ctrl+M, you would find the relevant type metadata (see Figure 15-1).

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_1
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

556

As you can see, ildasm.exe’s display of .NET type metadata is verbose (the actual binary format is much
more compact). In fact, if I were to list the entire metadata description representing the CarLibrary.dll
assembly, it would span several pages. Given that this act would be a woeful waste of paper, let’s just glimpse
into some key metadata descriptions of the CarLibrary.dll assembly.

 ■ Note don’t be too concerned with the exact syntax of every piece of .net metadata in the next few
sections. the bigger point to absorb is that .net metadata is very descriptive and lists each internally defined
(and externally referenced) type found within a given code base.

Viewing (Partial) Metadata for the EngineState Enumeration
Each type defined within the current assembly is documented using a TypeDef #n token (where TypeDef is
short for type definition). If the type being described uses a type defined within a separate .NET assembly,
the referenced type is documented using a TypeRef #n token (where TypeRef is short for type reference).
A TypeRef token is a pointer (if you will) to the referenced type’s full metadata definition in an external
assembly. In a nutshell, .NET metadata is a set of tables that clearly mark all type definitions (TypeDefs) and
referenced types (TypeRefs), all of which can be viewed using ildasm.exe’s metadata window.

As far as CarLibrary.dll goes, one TypeDef is the metadata description of the CarLibrary.
EngineState enumeration (your number may differ; TypeDef numbering is based on the order in which the
C# compiler processes the file).

Figure 15-1. Viewing an assembly’s metadata using ildasm.exe

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

557

TypeDef #2 (02000003)

 TypDefName: CarLibrary.EngineState (02000003)
 Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)
 Extends : 01000001 [TypeRef] System.Enum
 Field #1 (04000006)

 Field Name: value__ (04000006)
 Flags : [Public] [SpecialName] [RTSpecialName] (00000606)
 CallCnvntn: [FIELD]
 Field type: I4

 Field #2 (04000007)

 Field Name: engineAlive (04000007)
 Flags : [Public] [Static] [Literal] [HasDefault] (00008056)
 DefltValue: (I4) 0
 CallCnvntn: [FIELD]
 Field type: ValueClass CarLibrary.EngineState
...

Here, the TypDefName token is used to establish the name of the given type, which in this case is the
custom CarLibrary.EngineState enum. The Extends metadata token is used to document the base type of a
given .NET type (in this case, the referenced type, System.Enum). Each field of an enumeration is marked using
the Field #n token. For brevity, I have simply listed the metadata for CarLibrary.EngineState.engineAlive.

Viewing (Partial) Metadata for the Car Type
Here is a partial dump of the Car class that illustrates the following:

•	 How fields are defined in terms of .NET metadata

•	 How methods are documented via .NET metadata

•	 How an automatic property is represented in .NET metadata

TypeDef #3 (02000004)

 TypDefName: CarLibrary.Car (02000004)
 Flags : [Public] [AutoLayout] [Class] [Abstract]
 [AnsiClass] [BeforeFieldInit] (00100081)
 Extends : 01000002 [TypeRef] System.Object
...

 Field #2 (0400000a)

 Field Name: <PetName>k__BackingField (0400000A)
 Flags : [Private] (00000001)
 CallCnvntn: [FIELD]
 Field type: String

...

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

558

 Method #1 (06000001)

 MethodName: get_PetName (06000001)
 Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)
 RVA : 0x000020d0
 ImplFlags : [IL] [Managed] (00000000)
 CallCnvntn: [DEFAULT]
 hasThis
 ReturnType: String
 No arguments.

...

 Method #2 (06000002)

 MethodName: set_PetName (06000002)
 Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)
 RVA : 0x000020e7
 ImplFlags : [IL] [Managed] (00000000)
 CallCnvntn: [DEFAULT]
 hasThis
 ReturnType: Void
 1 Arguments
 Argument #1: String
 1 Parameters
 (1) ParamToken : (08000001) Name : value flags: [none] (00000000)
...

 Property #1 (17000001)

 Prop.Name : PetName (17000001)
 Flags : [none] (00000000)
 CallCnvntn: [PROPERTY]
 hasThis
 ReturnType: String
 No arguments.
 DefltValue:
 Setter : (06000002) set_PetName
 Getter : (06000001) get_PetName
 0 Others
...

First, note that the Car class metadata marks the type’s base class (System.Object) and includes various
flags that describe how this type was constructed (e.g., [Public], [Abstract], and whatnot). Methods (such
as the Car’s constructor) are described in regard to their parameters, return value, and name.

Note how an automatic property results in a compiler-generated private backing field (which was
named <PetName>k BackingField) and two compiler-generated methods (in the case of a read-write
property) named, in this example, get_PetName() and set_PetName(). Finally, the actual property is
mapped to the internal get/set methods using the .NET metadata Getter/Setter tokens.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

559

Examining a TypeRef
Recall that an assembly’s metadata will describe not only the set of internal types (Car, EngineState, etc.)
but also any external types the internal types reference. For example, given that CarLibrary.dll has defined
two enumerations, you find a TypeRef block for the System.Enum type, as follows:

TypeRef #1 (01000001)

Token: 0x01000001
ResolutionScope: 0x23000001
TypeRefName: System.Enum

Documenting the Defining Assembly
The ildasm.exe metadata window also allows you to view the .NET metadata that describes the assembly
itself using the Assembly token. As you can see from the following (partial) listing, information documented
within the Assembly table is (surprise, surprise!) the same information that can be viewable via the
MANIFEST icon. The following is a partial dump of the manifest of CarLibrary.dll (version 2.0.0.0):

Assembly

 Token: 0x20000001
 Name : CarLibrary
 Public Key : 00 24 00 00 04 80 00 00 // Etc...

 Hash Algorithm : 0x00008004
 Major Version: 0x00000002
 Minor Version: 0x00000000
 Build Number: 0x00000000
 Revision Number: 0x00000000
 Locale: <null>
 Flags : [PublicKey] ...

Documenting Referenced Assemblies
In addition to the Assembly token and the set of TypeDef and TypeRef blocks, .NET metadata also makes use
of AssemblyRef #n tokens to document each external assembly. Given that the CarLibrary.dll makes use
of the System.Windows.Forms.MessageBox class, you find an AssemblyRef for the System.Windows.Forms
assembly, as shown in the following code:

AssemblyRef #2 (23000002)

 Token: 0x23000002
 Public Key or Token: b7 7a 5c 56 19 34 e0 89
 Name: System.Windows.Forms
 Version: 4.0.0.0
 Major Version: 0x00000004

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

560

 Minor Version: 0x00000000
 Build Number: 0x00000000
 Revision Number: 0x00000000
 Locale: <null>
 HashValue Blob:
 Flags: [none] (00000000)

Documenting String Literals
The final point of interest regarding .NET metadata is the fact that every string literal in your code base is
documented under the User Strings token.

User Strings

70000001 : (11) L"Jamming {0}"
70000019 : (13) L"Quiet time..."
70000035 : (23) L"CarLibrary Version 2.0!"
70000065 : (14) L"Ramming speed!"
70000083 : (19) L"Faster is better..."
700000ab : (4) L"Eek!"
700000cd : (27) L"Your engine block exploded!"

 ■ Note as illustrated in this last metadata listing, always be aware that all strings are clearly documented in
the assembly metadata. this could have huge security consequences if you were to use string literals to capture
passwords, credit card numbers, or other sensitive information.

The next question on your mind may be (in the best-case scenario) “How can I leverage this
information in my applications?” or (in the worst-case scenario) “Why should I care about metadata?” To
address both points of view, allow me to introduce .NET reflection services. Be aware that the usefulness of
the topics presented over the pages that follow may be a bit of a head-scratcher until this chapter’s endgame.
So hang tight.

 ■ Note you will also find a number of CustomAttribute tokens displayed by the metainfo window, which
documents the attributes applied within the code base. you’ll learn about the role of .net attributes later in this
chapter.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

561

Understanding Reflection
In the .NET universe, reflection is the process of runtime type discovery. Using reflection services, you are
able to programmatically obtain the same metadata information displayed by ildasm.exe using a friendly
object model. For example, through reflection, you can obtain a list of all types contained within a given
*.dll or *.exe assembly, including the methods, fields, properties, and events defined by a given type. You
can also dynamically discover the set of interfaces supported by a given type, the parameters of a method,
and other related details (base classes, namespace information, manifest data, and so forth).

Like any namespace, System.Reflection (which is defined in mscorlib.dll) contains a number of
related types. Table 15-1 lists some of the core items you should be familiar with.

Table 15-1. A Sampling of Members of the System.Reflection Namespace

Type Meaning in Life

Assembly This abstract class contains a number of members that allow you to load, investigate,
and manipulate an assembly.

AssemblyName This class allows you to discover numerous details behind an assembly’s identity
(version information, culture information, and so forth).

EventInfo This abstract class holds information for a given event.

FieldInfo This abstract class holds information for a given field.

MemberInfo This is the abstract base class that defines common behaviors for the EventInfo,
FieldInfo, MethodInfo, and PropertyInfo types.

MethodInfo This abstract class contains information for a given method.

Module This abstract class allows you to access a given module within a multifile assembly.

ParameterInfo This class holds information for a given parameter.

PropertyInfo This abstract class holds information for a given property.

To understand how to leverage the System.Reflection namespace to programmatically read .NET
metadata, you need to first come to terms with the System.Type class.

The System.Type Class
The System.Type class defines a number of members that can be used to examine a type’s metadata, a great
number of which return types from the System.Reflection namespace. For example, Type.GetMethods()
returns an array of MethodInfo objects, Type.GetFields() returns an array of FieldInfo objects, and
so on. The complete set of members exposed by System.Type is quite expansive; however, Table 15-2
offers a partial snapshot of the members supported by System.Type (see the .NET Framework 4.6 SDK
documentation for full details).

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

562

Obtaining a Type Reference Using System.Object.GetType()
You can obtain an instance of the Type class in a variety of ways. However, the one thing you cannot do is
directly create a Type object using the new keyword, as Type is an abstract class. Regarding your first choice,
recall that System.Object defines a method named GetType(), which returns an instance of the Type class
that represents the metadata for the current object.

// Obtain type information using a SportsCar instance.
SportsCar sc = new SportsCar();
Type t = sc.GetType();

Obviously, this approach will work only if you have compile-time knowledge of the type you want
to reflect over (SportsCar in this case) and currently have an instance of the type in memory. Given this
restriction, it should make sense that tools such as ildasm.exe do not obtain type information by directly
calling System.Object.GetType() for each type, given the ildasm.exe was not compiled against your
custom assemblies.

Table 15-2. Select Members of System.Type

Member Meaning in Life

IsAbstract
IsArray
IsClass
IsCOMObject
IsEnum
IsGenericTypeDefinition
IsGenericParameter
IsInterface
IsPrimitive
IsNestedPrivate
IsNestedPublic
IsSealed
IsValueType

These properties (among others) allow you to discover a number of basic
traits about the Type you are referring to (e.g., if it is an abstract entity, an
array, a nested class, and so forth).

GetConstructors()
GetEvents()
GetFields()
GetInterfaces()
GetMembers()
GetMethods()
GetNestedTypes()
GetProperties()

These methods (among others) allow you to obtain an array representing
the items (interface, method, property, etc.) you are interested in. Each
method returns a related array (e.g., GetFields() returns a FieldInfo array,
GetMethods() returns a MethodInfo array, etc.). Be aware that each of these
methods has a singular form (e.g., GetMethod(), GetProperty(), etc.) that
allows you to retrieve a specific item by name, rather than an array of all
related items.

FindMembers() This method returns a MemberInfo array based on search criteria.

GetType() This static method returns a Type instance given a string name.

InvokeMember() This method allows “late binding” for a given item. You’ll learn about late
binding later in this chapter.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

563

Obtaining a Type Reference Using typeof()
The next way to obtain type information is using the C# typeof operator, like so:

// Get the type using typeof.
Type t = typeof(SportsCar);

Unlike System.Object.GetType(), the typeof operator is helpful in that you do not need to first create
an object instance to extract type information. However, your code base must still have compile-time
knowledge of the type you are interested in examining, as typeof expects the strongly typed name of the type.

Obtaining a Type Reference Using System.Type.GetType()
To obtain type information in a more flexible manner, you may call the static GetType() member of the
System.Type class and specify the fully qualified string name of the type you are interested in examining.
Using this approach, you do not need to have compile-time knowledge of the type you are extracting
metadata from, given that Type.GetType() takes an instance of the omnipresent System.String.

 ■ Note When i say you do not need compile-time knowledge when calling Type.GetType(), i am referring to
the fact that this method can take any string value whatsoever (rather than a strongly typed variable). of course,
you would still need to know the name of the type in a “stringified” format!

The Type.GetType() method has been overloaded to allow you to specify two Boolean parameters,
one of which controls whether an exception should be thrown if the type cannot be found, and the other of
which establishes the case sensitivity of the string. To illustrate, ponder the following:

// Obtain type information using the static Type.GetType() method
// (don't throw an exception if SportsCar cannot be found and ignore case).
Type t = Type.GetType("CarLibrary.SportsCar", false, true);

In the previous example, notice that the string you are passing into GetType() makes no mention of the
assembly containing the type. In this case, the assumption is that the type is defined within the currently
executing assembly. However, when you want to obtain metadata for a type within an external private
assembly, the string parameter is formatted using the type’s fully qualified name, followed by a comma,
followed by the friendly name of the assembly containing the type, like so:

// Obtain type information for a type within an external assembly.
Type t = Type.GetType("CarLibrary.SportsCar, CarLibrary");

As well, do know that the string passed into Type.GetType() may specify a plus token (+) to denote a
nested type. Assume you want to obtain type information for an enumeration (SpyOptions) nested within a
class named JamesBondCar. To do so, you would write the following:

// Obtain type information for a nested enumeration
// within the current assembly.
Type t = Type.GetType("CarLibrary.JamesBondCar+SpyOptions");

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

564

Building a Custom Metadata Viewer
To illustrate the basic process of reflection (and the usefulness of System.Type), let’s create a Console
Application project named MyTypeViewer. This program will display details of the methods, properties, fields,
and supported interfaces (in addition to some other points of interest) for any type within mscorlib.dll (recall
all .NET applications have automatic access to this core framework class library) or a type within MyTypeViewer
itself. Once the application has been created, be sure to import the System.Reflection namespace.

// Need to import this namespace to do any reflection!
using System.Reflection;

Reflecting on Methods
The Program class will be updated to define a number of static methods, each of which takes a single
System.Type parameter and returns void. First you have ListMethods(), which (as you might guess)
prints the name of each method defined by the incoming type. Notice how Type.GetMethods() returns
an array of System.Reflection.MethodInfo objects, which can be enumerated over using a standard
foreach loop, as follows:

// Display method names of type.
static void ListMethods(Type t)
{
 Console.WriteLine("***** Methods *****");
 MethodInfo[] mi = t.GetMethods();
 foreach(MethodInfo m in mi)
 Console.WriteLine("->{0}", m.Name);
 Console.WriteLine();
}

Here, you are simply printing the name of the method using the MethodInfo.Name property. As you
might guess, MethodInfo has many additional members that allow you to determine whether the method
is static, virtual, generic, or abstract. As well, the MethodInfo type allows you to obtain the method’s return
value and parameter set. You’ll spruce up the implementation of ListMethods() in just a bit.

If you wanted, you could also build a fitting LINQ query to enumerate the names of each method.
Recall from Chapter 12, LINQ to Objects allows you to build strongly typed queries that can be applied to
in-memory object collections. As a good rule of thumb, whenever you find blocks of looping or decision
programming logic, you could make use of a related LINQ query. For example, you could rewrite the
previous method as so:

static void ListMethods(Type t)
{
 Console.WriteLine("***** Methods *****");
 var methodNames = from n in t.GetMethods() select n.Name;
 foreach (var name in methodNames)
 Console.WriteLine("->{0}", name);
 Console.WriteLine();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

565

Reflecting on Fields and Properties
The implementation of ListFields() is similar. The only notable difference is the call to Type.GetFields()
and the resulting FieldInfo array. Again, to keep things simple, you are printing out only the name of each
field using a LINQ query.

// Display field names of type.
static void ListFields(Type t)
{
 Console.WriteLine("***** Fields *****");
 var fieldNames = from f in t.GetFields() select f.Name;
 foreach (var name in fieldNames)
 Console.WriteLine("->{0}", name);
 Console.WriteLine();
}

The logic to display a type’s properties is similar.

// Display property names of type.
static void ListProps(Type t)
{
 Console.WriteLine("***** Properties *****");
 var propNames = from p in t.GetProperties() select p.Name;
 foreach (var name in propNames)
 Console.WriteLine("->{0}", name);
 Console.WriteLine();
}

Reflecting on Implemented Interfaces
Next, you will author a method named ListInterfaces() that will print the names of any interfaces
supported on the incoming type. The only point of interest here is that the call to GetInterfaces() returns
an array of System.Types! This should make sense given that interfaces are, indeed, types.

// Display implemented interfaces.
static void ListInterfaces(Type t)
{
 Console.WriteLine("***** Interfaces *****");
 var ifaces = from i in t.GetInterfaces() select i;
 foreach(Type i in ifaces)
 Console.WriteLine("->{0}", i.Name);
}

 ■ Note Be aware that a majority of the “get” methods of System.Type (GetMethods(), GetInterfaces(),
etc.) have been overloaded to allow you to specify values from the BindingFlags enumeration. this provides a
greater level of control on exactly what should be searched for (e.g., only static members, only public members,
include private members, etc.). Consult the .net framework 4.6 sdK documentation for details.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

566

Displaying Various Odds and Ends
Last but not least, you have one final helper method that will simply display various statistics (indicating
whether the type is generic, what the base class is, whether the type is sealed, and so forth) regarding the
incoming type.

// Just for good measure.
static void ListVariousStats(Type t)
{
 Console.WriteLine("***** Various Statistics *****");
 Console.WriteLine("Base class is: {0}", t.BaseType);
 Console.WriteLine("Is type abstract? {0}", t.IsAbstract);
 Console.WriteLine("Is type sealed? {0}", t.IsSealed);
 Console.WriteLine("Is type generic? {0}", t.IsGenericTypeDefinition);
 Console.WriteLine("Is type a class type? {0}", t.IsClass);
 Console.WriteLine();
}

Implementing Main()
The Main() method of the Program class prompts the user for the fully qualified name of a type. Once you
obtain this string data, you pass it into the Type.GetType() method and send the extracted System.Type into
each of your helper methods. This process repeats until the user enters Q to terminate the application.

static void Main(string[] args)
{
 Console.WriteLine("***** Welcome to MyTypeViewer *****");
 string typeName = "";

 do
 {
 Console.WriteLine("\nEnter a type name to evaluate");
 Console.Write("or enter Q to quit: ");

 // Get name of type.
 typeName = Console.ReadLine();

 // Does user want to quit?
 if (typeName.ToUpper() == "Q")
 {
 break;
 }

 // Try to display type.
 try
 {
 Type t = Type.GetType(typeName);
 Console.WriteLine("");
 ListVariousStats(t);
 ListFields(t);
 ListProps(t);

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

567

 ListMethods(t);
 ListInterfaces(t);
 }
 catch
 {
 Console.WriteLine("Sorry, can't find type");
 }
 } while (true);
}

At this point, MyTypeViewer.exe is ready to take for a test-drive. For example, run your application and
enter the following fully qualified names (be aware that the manner in which you invoked Type.GetType()
requires case-sensitive string names):

•	 System.Int32

•	 System.Collections.ArrayList

•	 System.Threading.Thread

•	 System.Void

•	 System.IO.BinaryWriter

•	 System.Math

•	 System.Console

•	 MyTypeViewer.Program

For example, here is some partial output when specifying System.Math:

***** Welcome to MyTypeViewer *****

Enter a type name to evaluate
or enter Q to quit: System.Math

***** Various Statistics *****
Base class is: System.Object
Is type abstract? True
Is type sealed? True
Is type generic? False
Is type a class type? True

***** Fields *****
->PI
->E

***** Properties *****

***** Methods *****
->Acos
->Asin
->Atan

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

568

->Atan2
->Ceiling
->Ceiling
->Cos
...

Reflecting on Generic Types
When you call Type.GetType() to obtain metadata descriptions of generic types, you must make use of a
special syntax involving a “back tick” character (`) followed by a numerical value that represents the number
of type parameters the type supports. For example, if you want to print out the metadata description of
System.Collections.Generic.List<T>, you would need to pass the following string into your application:

System.Collections.Generic.List`1

Here, you are using the numerical value of 1, given that List<T> has only one type parameter. However,
if you want to reflect over Dictionary<TKey, TValue>, you would supply the value 2, like so:

System.Collections.Generic.Dictionary`2

Reflecting on Method Parameters and Return Values
So far, so good! Let’s make a minor enhancement to the current application. Specifically, you will update
the ListMethods() helper function to list not only the name of a given method but also the return type and
incoming parameter types. The MethodInfo type provides the ReturnType property and GetParameters()
method for these tasks. In the following modified code, notice that you are building a string that contains the
type and name of each parameter using a nested foreach loop (without the use of LINQ):

static void ListMethods(Type t)
{
 Console.WriteLine("***** Methods *****");
 MethodInfo[] mi = t.GetMethods();
 foreach (MethodInfo m in mi)
 {
 // Get return type.
 string retVal = m.ReturnType.FullName;
 string paramInfo = "(";
 // Get params.
 foreach (ParameterInfo pi in m.GetParameters())
 {
 paramInfo += string.Format("{0} {1} ", pi.ParameterType, pi.Name);
 }
 paramInfo += ")";

 // Now display the basic method sig.
 Console.WriteLine("->{0} {1} {2}", retVal, m.Name, paramInfo);
 }
 Console.WriteLine();
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

569

If you now run this updated application, you will find that the methods of a given type are much more
detailed. If you enter your good friend System.Object as input to the program, the following methods will
display:

***** Methods *****
->System.String ToString ()
->System.Boolean Equals (System.Object obj)
->System.Boolean Equals (System.Object objA System.Object objB)
->System.Boolean ReferenceEquals (System.Object objA System.Object objB)
->System.Int32 GetHashCode ()
->System.Type GetType ()

The current implementation of ListMethods() is helpful, in that you can directly investigate each
parameter and method return type using the System.Reflection object model. As an extreme shortcut, be
aware that all of the XXXInfo types (MethodInfo, PropertyInfo, EventInfo, etc.) have overridden ToString()
to display the signature of the item requested. Thus, you could also implement ListMethods() as follows
(once again using LINQ, where you simply select all MethodInfo objects, rather than only the Name values):

static void ListMethods(Type t)
{
 Console.WriteLine("***** Methods *****");
 var methodNames = from n in t.GetMethods() select n;
 foreach (var name in methodNames)
 Console.WriteLine("->{0}", name);
 Console.WriteLine();
}

Interesting stuff, huh? Clearly the System.Reflection namespace and System.Type class allow you to
reflect over many other aspects of a type beyond what MyTypeViewer is currently displaying. As you would
hope, you can obtain a type’s events, get the list of any generic parameters for a given member, and glean
dozens of other details.

Nevertheless, at this point you have created a (somewhat capable) object browser. The major limitation, of
course, is that you have no way to reflect beyond the current assembly (MyTypeViewer) or the always-accessible
mscorlib.dll. This begs the question, “How can I build applications that can load (and reflect over)
assemblies not referenced at compile time?” Glad you asked.

 ■ Source Code you can find the mytypeViewer project in the Chapter 15 subdirectory.

Dynamically Loading Assemblies
In Chapter 14, you learned all about how the CLR consults the assembly manifest when probing for an
externally referenced assembly. However, there will be many times when you need to load assemblies on the
fly programmatically, even if there is no record of said assembly in the manifest. Formally speaking, the act
of loading external assemblies on demand is known as a dynamic load.

System.Reflection defines a class named Assembly. Using this class, you are able to dynamically
load an assembly, as well as discover properties about the assembly itself. Using the Assembly type, you are
able to dynamically load private or shared assemblies, as well as load an assembly located at an arbitrary
location. In essence, the Assembly class provides methods (Load() and LoadFrom(), in particular) that allow
you to programmatically supply the same sort of information found in a client-side*.config file.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

570

To illustrate dynamic loading, create a new Console Application project named
ExternalAssemblyReflector. Your task is to construct a Main() method that prompts for the friendly name
of an assembly to load dynamically. You will pass the Assembly reference into a helper method named
DisplayTypes(), which will simply print the names of each class, interface, structure, enumeration, and
delegate it contains. The code is refreshingly simple.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Reflection;
using System.IO; // For FileNotFoundException definition.

namespace ExternalAssemblyReflector
{
 class Program
 {
 static void DisplayTypesInAsm(Assembly asm)
 {
 Console.WriteLine("\n***** Types in Assembly *****");
 Console.WriteLine("->{0}", asm.FullName);
 Type[] types = asm.GetTypes();
 foreach (Type t in types)
 Console.WriteLine("Type: {0}", t);
 Console.WriteLine("");
 }

 static void Main(string[] args)
 {
 Console.WriteLine("***** External Assembly Viewer *****");

 string asmName = "";
 Assembly asm = null;

 do
 {
 Console.WriteLine("\nEnter an assembly to evaluate");
 Console.Write("or enter Q to quit: ");

 // Get name of assembly.
 asmName = Console.ReadLine();

 // Does user want to quit?
 if (asmName.ToUpper() == "Q")
 {
 break;
 }

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

571

 // Try to load assembly.
 try
 {
 asm = Assembly.Load(asmName);
 DisplayTypesInAsm(asm);
 }
 catch
 {
 Console.WriteLine("Sorry, can't find assembly.");
 }
 } while (true);
 }
 }
}

Notice that the static Assembly.Load() method has been passed only the friendly name of the assembly
you are interested in loading into memory. Thus, if you want to reflect over CarLibrary.dll, you will need to
copy the CarLibrary.dll binary to the \bin\Debug directory of the ExternalAssemblyReflector application
to run this program. Once you do, you will find output similar to the following:

***** External Assembly Viewer *****

Enter an assembly to evaluate
or enter Q to quit: CarLibrary

***** Types in Assembly *****
->CarLibrary, Version=2.0.0.0, Culture=neutral, PublicKeyToken=33a2bc294331e8b9
Type: CarLibrary.MusicMedia
Type: CarLibrary.EngineState
Type: CarLibrary.Car
Type: CarLibrary.SportsCar
Type: CarLibrary.MiniVan

If you want to make ExternalAssemblyReflector more flexible, you can update your code to load the
external assembly using Assembly.LoadFrom() rather than Assembly.Load(), like so:

try
{
 asm = Assembly.LoadFrom(asmName);
 DisplayTypesInAsm(asm);
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

572

By doing so, you can enter an absolute path to the assembly you want to view (e.g., C:\MyApp\MyAsm.dll).
Essentially, Assembly.LoadFrom() allows you to programmatically supply a <codeBase> value. With this
adjustment, you can now pass in a full path to your Console Application project. Thus, if CarLibrary.dll
was located under C:\MyCode, you could enter the following:

***** External Assembly Viewer *****

Enter an assembly to evaluate
or enter Q to quit: C:\MyCode\CarLibrary.dll

***** Types in Assembly *****
->CarLibrary, Version=2.0.0.0, Culture=neutral, PublicKeyToken=33a2bc294331e8b9
Type: CarLibrary.EngineState
Type: CarLibrary.Car
Type: CarLibrary.SportsCar
Type: CarLibrary.MiniVan

 ■ Source Code the externalassemblyreflector project is in the Chapter 15 subdirectory.

Reflecting on Shared Assemblies
The Assembly.Load() method has been overloaded a number of times. One variation allows you to specify a
culture value (for localized assemblies), as well as a version number and public key token value (for shared
assemblies). Collectively speaking, the set of items identifying an assembly is termed the display name.
The format of a display name is a comma-delimited string of name-value pairs that begins with the friendly
name of the assembly, followed by optional qualifiers (that may appear in any order). Here is the template to
follow (optional items appear in parentheses):

Name (,Version = major.minor.build.revision) (,Culture = culture token)
(,PublicKeyToken= public key token)

When you’re crafting a display name, the convention PublicKeyToken=null indicates that binding and
matching against a nonstrongly named assembly is required. Additionally, Culture="" indicates matching
against the default culture of the target machine, for example:

// Load version 1.0.0.0 of CarLibrary using the default culture.
Assembly a =
 Assembly.Load(@"CarLibrary, Version=1.0.0.0, PublicKeyToken=null, Culture=""");

Also be aware that the System.Reflection namespace supplies the AssemblyName type, which allows
you to represent the preceding string information in a handy object variable. Typically, this class is used in
conjunction with System.Version, which is an OO wrapper around an assembly’s version number. Once you
have established the display name, it can then be passed into the overloaded Assembly.Load() method, like so:

// Make use of AssemblyName to define the display name.
AssemblyName asmName;
asmName = new AssemblyName();
asmName.Name = "CarLibrary";

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

573

Version v = new Version("1.0.0.0");
asmName.Version = v;
Assembly a = Assembly.Load(asmName);

To load a shared assembly from the GAC, the Assembly.Load() parameter must specify a
PublicKeyToken value. For example, assume you have a new Console Application project named
SharedAsmReflector and want to load version 4.0.0.0 of the System.Windows.Forms.dll assembly provided
by the .NET base class libraries. Given that the number of types in this assembly is quite large, the following
application prints out only the names of public enums, using a simple LINQ query:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Reflection;
using System.IO;

namespace SharedAsmReflector
{
 public class SharedAsmReflector
 {
 private static void DisplayInfo(Assembly a)
 {
 Console.WriteLine("***** Info about Assembly *****");
 Console.WriteLine("Loaded from GAC? {0}", a.GlobalAssemblyCache);
 Console.WriteLine("Asm Name: {0}", a.GetName().Name);
 Console.WriteLine("Asm Version: {0}", a.GetName().Version);
 Console.WriteLine("Asm Culture: {0}",
 a.GetName().CultureInfo.DisplayName);
 Console.WriteLine("\nHere are the public enums:");

 // Use a LINQ query to find the public enums.
 Type[] types = a.GetTypes();
 var publicEnums = from pe in types where pe.IsEnum &&
 pe.IsPublic select pe;

 foreach (var pe in publicEnums)
 {
 Console.WriteLine(pe);
 }
 }

 static void Main(string[] args)
 {
 Console.WriteLine("***** The Shared Asm Reflector App *****\n");

 // Load System.Windows.Forms.dll from GAC.
 string displayName = null;
 displayName = "System.Windows.Forms," +
 "Version=4.0.0.0," +

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

574

 "PublicKeyToken=b77a5c561934e089," +
 @"Culture=""";
 Assembly asm = Assembly.Load(displayName);
 DisplayInfo(asm);
 Console.WriteLine("Done!");
 Console.ReadLine();
 }
 }
}

 ■ Source Code the sharedasmreflector project is in the Chapter 15 subdirectory.

At this point, you should understand how to use some of the core members of the System.Reflection
namespace to discover metadata at runtime. Of course, I realize despite the “cool factor,” you likely will
not need to build custom object browsers at your place of employment too often. Do recall, however, that
reflection services are the foundation for a number of common programming activities, including late
binding.

Understanding Late Binding
Simply put, late binding is a technique in which you are able to create an instance of a given type and invoke
its members at runtime without having hard-coded compile-time knowledge of its existence. When you
are building an application that binds late to a type in an external assembly, you have no reason to set a
reference to the assembly; therefore, the caller’s manifest has no direct listing of the assembly.

At first glance, it is not easy to see the value of late binding. It is true that if you can “bind early” to an
object (e.g., add an assembly reference and allocate the type using the C# new keyword), you should opt to
do so. For one reason, early binding allows you to determine errors at compile time, rather than at runtime.
Nevertheless, late binding does have a critical role in any extendable application you may be building. You
will have a chance to build such an “extendable” program at the end of this chapter, in the section “Building
an Extendable Application.” Until then, let’s examine the role of the Activator class.

The System.Activator Class
The System.Activator class (defined in mscorlib.dll) is the key to the .NET late-binding process. For the
current example, you are interested only in the Activator.CreateInstance() method, which is used to
create an instance of a type à la late binding. This method has been overloaded numerous times to provide
a good deal of flexibility. The simplest variation of the CreateInstance() member takes a valid Type object
that describes the entity you want to allocate into memory on the fly.

Create a new Console Application project named LateBindingApp and import the System.IO and
System.Reflection namespaces via the C# using keyword. Now, update the Program class as follows:

// This program will load an external library,
// and create an object using late binding.
public class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Late Binding *****");

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

575

 // Try to load a local copy of CarLibrary.
 Assembly a = null;
 try
 {
 a = Assembly.Load("CarLibrary");
 }
 catch(FileNotFoundException ex)
 {
 Console.WriteLine(ex.Message);
 return;
 }
 if(a != null)
 CreateUsingLateBinding(a);

 Console.ReadLine();
 }

 static void CreateUsingLateBinding(Assembly asm)
 {
 try
 {
 // Get metadata for the Minivan type.
 Type miniVan = asm.GetType("CarLibrary.MiniVan");

 // Create a Minivan instance on the fly.
 object obj = Activator.CreateInstance(miniVan);
 Console.WriteLine("Created a {0} using late binding!", obj);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
}

Now, before you run this application, you will need to manually place a copy of CarLibrary.dll into
the bin\Debug folder of this new application using Windows Explorer. The reason is that you are calling
Assembly.Load() and, therefore, the CLR will probe only in the client folder (if you want, you could enter a
path to the assembly using Assembly.LoadFrom(); however, there is no need to do so).

 ■ Note don’t add a reference to CarLibrary.dll using Visual studio for this example! that will record this
library in the client’s manifest. the whole point of late binding is that you are trying to create an object that is
not known at compile time.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

576

Notice that the Activator.CreateInstance() method returns a System.Object rather than a strongly
typed MiniVan. Therefore, if you apply the dot operator on the obj variable, you will fail to see any members
of the MiniVan class. At first glance, you might assume you can remedy this problem with an explicit cast,
like so:

// Cast to get access to the members of MiniVan?
// Nope! Compiler error!
object obj = (MiniVan)Activator.CreateInstance(minivan);

However, because your program has not added a reference to CarLibrary.dll, you cannot use the C#
using keyword to import the CarLibrary namespace and, therefore, you can’t use a MiniVan during the
casting operation! Remember that the whole point of late binding is to create instances of objects for which
there is no compile-time knowledge. Given this, how can you invoke the underlying methods of the MiniVan
object stored in the System.Object reference? The answer, of course, is by using reflection.

Invoking Methods with No Parameters
Assume you want to invoke the TurboBoost() method of the MiniVan. As you recall, this method will set
the state of the engine to “dead” and display an informational message box. The first step is to obtain a
MethodInfo object for the TurboBoost() method using Type.GetMethod(). From the resulting MethodInfo,
you are then able to call MiniVan.TurboBoost using Invoke(). MethodInfo.Invoke() requires you to
send in all parameters that are to be given to the method represented by MethodInfo. These parameters are
represented by an array of System.Object types (as the parameters for a given method could be any number
of various entities).

Given that TurboBoost() does not require any parameters, you can simply pass null (meaning “this
method has no parameters”). Update your CreateUsingLateBinding() method as follows:

static void CreateUsingLateBinding(Assembly asm)
{
 try
 {
 // Get metadata for the Minivan type.
 Type miniVan = asm.GetType("CarLibrary.MiniVan");

 // Create the Minivan on the fly.
 object obj = Activator.CreateInstance(miniVan);
 Console.WriteLine("Created a {0} using late binding!", obj);

 // Get info for TurboBoost.
 MethodInfo mi = miniVan.GetMethod("TurboBoost");

 // Invoke method ('null' for no parameters).
 mi.Invoke(obj, null);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

At this point, you will see the message box shown in Figure 15-2, once the TurboBoost() method is invoked.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

577

Invoking Methods with Parameters
When you want to use late binding to invoke a method requiring parameters, you should package up the
arguments as a loosely typed array of objects. Recall that version 2.0.0.0 of CarLibrary.dll defined the
following method in the Car class:

public void TurnOnRadio(bool musicOn, MusicMedia mm)
{
 if (musicOn)
 MessageBox.Show(string.Format("Jamming {0}", mm));
 else
 MessageBox.Show("Quiet time...");
}

This method takes two parameters: a Boolean representing if the automobile’s music system should be
turned on or off and an enum that represents the type of music player. Recall this enum was structured as so:

public enum MusicMedia
{
 musicCd, // 0
 musicTape, // 1
 musicRadio, // 2
 musicMp3 // 3
}

Here is a new method of the Program class, which invokes TurnOnRadio(). Notice that you are using the
underlying numerical values of the MusicMedia enumeration to specify a “radio” media player.

static void InvokeMethodWithArgsUsingLateBinding(Assembly asm)
{
 try
 {
 // First, get a metadata description of the sports car.
 Type sport = asm.GetType("CarLibrary.SportsCar");

 // Now, create the sports car.
 object obj = Activator.CreateInstance(sport);

 // Invoke TurnOnRadio() with arguments.
 MethodInfo mi = sport.GetMethod("TurnOnRadio");
 mi.Invoke(obj, new object[] { true, 2 });
 }

Figure 15-2. Late-bound method invocation

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

578

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Ideally, at this point, you can see the relationships among reflection, dynamic loading, and late binding.
To be sure, the reflection API provides many additional features beyond what has been covered here, but you
should be in good shape to dig into more details if you are interested.

Again, you still might wonder exactly when you should use these techniques in your own applications.
The conclusion of this chapter should shed light on this issue; however, the next topic under investigation is
the role of .NET attributes.

 ■ Source Code the lateBindingapp project is in the Chapter 15 subdirectory.

Understanding the Role of .NET Attributes
As illustrated at beginning of this chapter, one role of a .NET compiler is to generate metadata descriptions
for all defined and referenced types. In addition to this standard metadata contained within any assembly,
the .NET platform provides a way for programmers to embed additional metadata into an assembly using
attributes. In a nutshell, attributes are nothing more than code annotations that can be applied to a given
type (class, interface, structure, etc.), member (property, method, etc.), assembly, or module.

.NET attributes are class types that extend the abstract System.Attribute base class. As you explore
the .NET namespaces, you will find many predefined attributes that you are able to use in your applications.
Furthermore, you are free to build custom attributes to further qualify the behavior of your types by creating
a new type deriving from Attribute.

The .NET base class library provides a number of attributes in various namespaces. Table 15-3 gives a
snapshot of some—but by absolutely no means all—predefined attributes.

Table 15-3. A Tiny Sampling of Predefined Attributes

Attribute Meaning in Life

[CLSCompliant] Enforces the annotated item to conform to the rules of the Common Language
Specification (CLS). Recall that CLS-compliant types are guaranteed to be used
seamlessly across all .NET programming languages.

[DllImport] Allows .NET code to make calls to any unmanaged C- or C++-based code library,
including the API of the underlying operating system. Do note that [DllImport] is
not used when communicating with COM-based software.

[Obsolete] Marks a deprecated type or member. If other programmers attempt to use such an
item, they will receive a compiler warning describing the error of their ways.

[Serializable] Marks a class or structure as being “serializable,” meaning it is able to persist its
current state into a stream.

[NonSerialized] Specifies that a given field in a class or structure should not be persisted during the
serialization process.

[ServiceContract] Marks a method as a contract implemented by a WCF service.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

579

Understand that when you apply attributes in your code, the embedded metadata is essentially useless
until another piece of software explicitly reflects over the information. If this is not the case, the blurb of
metadata embedded within the assembly is ignored and completely harmless.

Attribute Consumers
As you would guess, the .NET 4.6 Framework SDK ships with numerous utilities that are indeed on the
lookout for various attributes. The C# compiler (csc.exe) itself has been preprogrammed to discover the
presence of various attributes during the compilation cycle. For example, if the C# compiler encounters the
[CLSCompliant] attribute, it will automatically check the attributed item to ensure it is exposing only CLS-
compliant constructs. By way of another example, if the C# compiler discovers an item attributed with the
[Obsolete] attribute, it will display a compiler warning in the Visual Studio Error List window.

In addition to development tools, numerous methods in the .NET base class libraries are
preprogrammed to reflect over specific attributes. For example, if you want to persist the state of an object
to file, all you are required to do is annotate your class or structure with the [Serializable] attribute. If the
Serialize() method of the BinaryFormatter class encounters this attribute, the object is automatically
persisted to file in a compact binary format.

Finally, you are free to build applications that are programmed to reflect over your own custom
attributes, as well as any attribute in the .NET base class libraries. By doing so, you are essentially able to
create a set of “keywords” that are understood by a specific set of assemblies.

Applying Attributes in C#
To illustrate the process of applying attributes in C#, create a new Console Application project named
ApplyingAttributes. Assume you want to build a class named Motorcycle that can be persisted in a binary
format. To do so, simply apply the [Serializable] attribute to the class definition. If you have a field that
should not be persisted, you may apply the [NonSerialized] attribute.

// This class can be saved to disk.
[Serializable]
public class Motorcycle
{
 // However, this field will not be persisted.
 [NonSerialized]
 float weightOfCurrentPassengers;
 // These fields are still serializable.
 bool hasRadioSystem;
 bool hasHeadSet;
 bool hasSissyBar;
}

 ■ Note an attribute applies to the “very next” item. for example, the only nonserialized field of the
Motorcycle class is weightOfCurrentPassengers. the remaining fields are serializable given that the entire
class has been annotated with [Serializable].

At this point, don’t concern yourself with the actual process of object serialization (Chapter 20 examines
the details). Just notice that when you want to apply an attribute, the name of the attribute is sandwiched
between square brackets.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

580

Once this class has been compiled, you can view the extra metadata using ildasm.exe. Notice that
these attributes are recorded using the serializable token (see the red triangle immediately inside the
Motorcycle class) and the notserialized token (on the weightOfCurrentPassengers field; see Figure 15-3).

Figure 15-3. Attributes shown in ildasm.exe

As you might guess, a single item can be attributed with multiple attributes. Assume you have a legacy
C# class type (HorseAndBuggy) that was marked as serializable but is now considered obsolete for current
development. Rather than deleting the class definition from your code base (and risk breaking existing
software), you can mark the class with the [Obsolete] attribute. To apply multiple attributes to a single item,
simply use a comma-delimited list, like so:

[Serializable, Obsolete("Use another vehicle!")]
public class HorseAndBuggy
{
 // ...
}

As an alternative, you can also apply multiple attributes on a single item by stacking each attribute as
follows (the end result is identical):

[Serializable]
[Obsolete("Use another vehicle!")]
public class HorseAndBuggy
{
 // ...
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

581

C# Attribute Shorthand Notation
If you were consulting the .NET Framework 4.6 SDK documentation, you might have noticed that the actual
class name of the [Obsolete] attribute is ObsoleteAttribute, not Obsolete. As a naming convention, all
.NET attributes (including custom attributes you may create yourself) are suffixed with the Attribute token.
However, to simplify the process of applying attributes, the C# language does not require you to type in the
Attribute suffix. Given this, the following iteration of the HorseAndBuggy type is identical to the previous
(it just involves a few more keystrokes):

[SerializableAttribute]
[ObsoleteAttribute("Use another vehicle!")]
public class HorseAndBuggy
{
 // ...
}

Be aware that this is a courtesy provided by C#. Not all .NET-enabled languages support this shorthand
attribute syntax.

Specifying Constructor Parameters for Attributes
Notice that the [Obsolete] attribute is able to accept what appears to be a constructor parameter. If you view
the formal definition of the [Obsolete] attribute by right-clicking the item in the code editor and selecting
the Go To Definition menu option, you will find that this class indeed provides a constructor receiving a
System.String.

public sealed class ObsoleteAttribute : Attribute
{
 public ObsoleteAttribute(string message, bool error);
 public ObsoleteAttribute(string message);
 public ObsoleteAttribute();
 public bool IsError { get; }
 public string Message { get; }
}

Understand that when you supply constructor parameters to an attribute, the attribute is not allocated
into memory until the parameters are reflected upon by another type or an external tool. The string data
defined at the attribute level is simply stored within the assembly as a blurb of metadata.

The Obsolete Attribute in Action
Now that HorseAndBuggy has been marked as obsolete, if you were to allocate an instance of this type:

static void Main(string[] args)
{
 HorseAndBuggy mule = new HorseAndBuggy();
}

you would find that the supplied string data is extracted and displayed within the Error List window of
Visual Studio, as well as on the offending line of code when you hover your mouse cursor above the obsolete
type (see Figure 15-4).

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

582

In this case, the “other piece of software” that is reflecting on the [Obsolete] attribute is the C#
compiler. Ideally, at this point, you should understand the following key points regarding .NET attributes:

•	 Attributes are classes that derive from System.Attribute.

•	 Attributes result in embedded metadata.

•	 Attributes are basically useless until another agent reflects upon them.

•	 Attributes are applied in C# using square brackets.

Next up, let’s examine how you can build your own custom attributes and a piece of custom software
that reflects over the embedded metadata.

 ■ Source Code the applyingattributes project is in the Chapter 15 subdirectory.

Building Custom Attributes
The first step in building a custom attribute is to create a new class deriving from System.Attribute.
Keeping in step with the automobile theme used throughout this book, assume you have created a new C#
Class Library project named AttributedCarLibrary. This assembly will define a handful of vehicles, each of
which is described using a custom attribute named VehicleDescriptionAttribute, as follows:

// A custom attribute.
public sealed class VehicleDescriptionAttribute : System.Attribute
{
 public string Description { get; set; }

Figure 15-4. Attributes in action

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

583

 public VehicleDescriptionAttribute(string vehicalDescription)
 {
 Description = vehicalDescription;
 }
 public VehicleDescriptionAttribute(){ }
}

As you can see, VehicleDescriptionAttribute maintains a piece of string data manipulated using an
automatic property (Description). Beyond the fact that this class derived from System.Attribute, there is
nothing unique to this class definition.

 ■ Note for security reasons, it is considered a .net best practice to design all custom attributes as
sealed. in fact, Visual studio provides a code snippet named Attribute that will dump out a new System.
Attribute-derived class into your code window. see Chapter 2 for full explication of using code snippets;
however, recall you can expand any snippet by typing its name and pressing the tab key twice.

Applying Custom Attributes
Given that VehicleDescriptionAttribute is derived from System.Attribute, you are now able to annotate
your vehicles as you see fit. For testing purposes, add the following class definitions to your new class library:

// Assign description using a "named property."
[Serializable]
[VehicleDescription(Description = "My rocking Harley")]
public class Motorcycle
{
}

[Serializable]
[Obsolete ("Use another vehicle!")]
[VehicleDescription("The old gray mare, she ain't what she used to be...")]
public class HorseAndBuggy
{
}

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{
}

Named Property Syntax
Notice that the description of the Motorcycle is assigned a description using a new bit of attribute-centric
syntax termed a named property. In the constructor of the first [VehicleDescription] attribute, you set the
underlying string data by using the Description property. If this attribute is reflected upon by an external
agent, the value is fed into the Description property (named property syntax is legal only if the attribute
supplies a writable .NET property).

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

584

In contrast, the HorseAndBuggy and Winnebago types are not using named property syntax and
are simply passing the string data via the custom constructor. In any case, once you compile the
AttributedCarLibrary assembly, you can use ildasm.exe to view the injected metadata descriptions for
your type. For example, Figure 15-5 shows an embedded description of the Winnebago class, specifically the
data within the beforefieldinit item in ildasm.exe.

Figure 15-5. Embedded vehicle description data

Restricting Attribute Usage
By default, custom attributes can be applied to just about any aspect of your code (methods, classes,
properties, and so on). Thus, if it made sense to do so, you could use VehicleDescription to qualify
methods, properties, or fields (among other things).

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{
 [VehicleDescription("My rocking CD player")]
 public void PlayMusic(bool On)
 {
 ...
 }
}

In some cases, this is exactly the behavior you require. Other times, however, you may want to build a
custom attribute that can be applied only to select code elements. If you want to constrain the scope of a
custom attribute, you will need to apply the [AttributeUsage] attribute on the definition of your custom
attribute. The [AttributeUsage] attribute allows you to supply any combination of values (via an OR
operation) from the AttributeTargets enumeration, like so:

// This enumeration defines the possible targets of an attribute.
public enum AttributeTargets
{
 All, Assembly, Class, Constructor,
 Delegate, Enum, Event, Field, GenericParameter,
 Interface, Method, Module, Parameter,
 Property, ReturnValue, Struct
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

585

Furthermore, [AttributeUsage] also allows you to optionally set a named property (AllowMultiple)
that specifies whether the attribute can be applied more than once on the same item (the default is false).
As well, [AttributeUsage] allows you to establish whether the attribute should be inherited by derived
classes using the Inherited named property (the default is true).

To establish that the [VehicleDescription] attribute can be applied only once on a class or structure,
you can update the VehicleDescriptionAttribute definition as follows:

// This time, we are using the AttributeUsage attribute
// to annotate our custom attribute.
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct,
 Inherited = false)]
public sealed class VehicleDescriptionAttribute : System.Attribute
{
...
}

With this, if a developer attempted to apply the [VehicleDescription] attribute on anything other than
a class or structure, he or she is issued a compile-time error.

Assembly-Level Attributes
It is also possible to apply attributes on all types within a given assembly using the [assembly:] tag. For
example, assume you want to ensure that every public member of every public type defined within your
assembly is CLS compliant.

 ■ Note Chapter 1 mentioned the role of Cls-compliant assemblies. recall that a Cls-compliant assembly
can be used by all .net programming languages out of the box. if you create public members of public types,
which expose non-Cls-compliant programming constructs (such as unsigned data or pointer parameters), other
.net languages may not be able to use your functionality. therefore, if you are building C# code libraries that
need to be used by a wide variety of .net languages, checking for Cls compliance is a must.

To do so, simply add the following assembly-level attribute at the top of any C# source code file. Be
aware that all assembly- or module-level attributes must be listed outside the scope of any namespace
scope! If you add assembly- or module-level attributes to your project, here is a recommended file layout to
follow:

// List "using" statements first.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

// Now list any assembly- or module-level attributes.
// Enforce CLS compliance for all public types in this assembly.
[assembly: CLSCompliant(true)]

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

586

// Now, your namespace(s) and types.
namespace AttributedCarLibrary
{
 // Types...
}

If you now add a bit of code that falls outside the CLS specification (such as an exposed point of
unsigned data):

// Ulong types don't jibe with the CLS.
public class Winnebago
{
 public ulong notCompliant;
}

you are issued a compiler warning.

The Visual Studio AssemblyInfo.cs File
By default, Visual Studio projects receive a file named AssemblyInfo.cs, which can be viewed by expanding
the Properties icon of the Solution Explorer (see Figure 15-6).

Figure 15-6. The AssemblyInfo.cs file

This file is a handy place to put attributes that are to be applied at the assembly level. You might recall
from Chapter 14, during the examination of .NET assemblies, that the manifest contains assembly- level
metadata, much of which comes from the assembly-level attributes shown in Table 15-4.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

587

 ■ Source Code the attributedCarlibrary project is included in the Chapter 15 subdirectory.

Reflecting on Attributes Using Early Binding
Remember that an attribute is quite useless until another piece of software reflects over its values. Once a
given attribute has been discovered, that piece of software can take whatever course of action necessary.
Now, like any application, this “other piece of software” could discover the presence of a custom attribute
using either early binding or late binding. If you want to make use of early binding, you’ll require the client
application to have a compile-time definition of the attribute in question (VehicleDescriptionAttribute,
in this case). Given that the AttributedCarLibrary assembly has defined this custom attribute as a public
class, early binding is the best option.

To illustrate the process of reflecting on custom attributes, create a new C# Console Application project
named VehicleDescriptionAttributeReader. Next, add a reference to the AttributedCarLibrary assembly.
Finally, update your initial *.cs file with the following code:

// Reflecting on attributes using early binding.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using AttributedCarLibrary;

namespace VehicleDescriptionAttributeReader
{
 class Program
 {

Table 15-4. Select Assembly-Level Attributes

Attribute Meaning in Life

[AssemblyCompany] Holds basic company information

[AssemblyCopyright] Holds any copyright information for the product or assembly

[AssemblyCulture] Provides information on what cultures or languages the assembly supports

[AssemblyDescription] Holds a friendly description of the product or modules that make up the
assembly

[AssemblyKeyFile] Specifies the name of the file containing the key pair used to sign the
assembly (i.e., establish a strong name)

[AssemblyProduct] Provides product information

[AssemblyTrademark] Provides trademark information

[AssemblyVersion] Specifies the assembly’s version information, in the format <major.minor.
build.revision>

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

588

 static void Main(string[] args)
 {
 Console.WriteLine("***** Value of VehicleDescriptionAttribute *****\n");
 ReflectOnAttributesUsingEarlyBinding();
 Console.ReadLine();
 }

 private static void ReflectOnAttributesUsingEarlyBinding()
 {
 // Get a Type representing the Winnebago.
 Type t = typeof(Winnebago);

 // Get all attributes on the Winnebago.
 object[] customAtts = t.GetCustomAttributes(false);

 // Print the description.
 foreach (VehicleDescriptionAttribute v in customAtts)
 Console.WriteLine("-> {0}\n", v.Description);
 }
 }
}

The Type.GetCustomAttributes() method returns an object array that represents all the attributes
applied to the member represented by the Type (the Boolean parameter controls whether the search
should extend up the inheritance chain). Once you have obtained the list of attributes, iterate over each
VehicleDescriptionAttribute class and print out the value obtained by the Description property.

 ■ Source Code the Vehicledescriptionattributereader project is included in the Chapter 15 subdirectory.

Reflecting on Attributes Using Late Binding
The previous example used early binding to print out the vehicle description data for the Winnebago type.
This was possible because the VehicleDescriptionAttribute class type was defined as a public member in
the AttributedCarLibrary assembly. It is also possible to make use of dynamic loading and late binding to
reflect over attributes.

Create a new project called VehicleDescriptionAttributeReaderLateBinding and copy
AttributedCarLibrary.dll to the project’s \bin\Debug directory. Now, update your Program class as
follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Reflection;

namespace VehicleDescriptionAttributeReaderLateBinding
{

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

589

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Value of VehicleDescriptionAttribute *****\n");
 ReflectAttributesUsingLateBinding();
 Console.ReadLine();
 }

 private static void ReflectAttributesUsingLateBinding()
 {
 try
 {
 // Load the local copy of AttributedCarLibrary.
 Assembly asm = Assembly.Load("AttributedCarLibrary");

 // Get type info of VehicleDescriptionAttribute.
 Type vehicleDesc =
 asm.GetType("AttributedCarLibrary.VehicleDescriptionAttribute");

 // Get type info of the Description property.
 PropertyInfo propDesc = vehicleDesc.GetProperty("Description");

 // Get all types in the assembly.
 Type[] types = asm.GetTypes();

 // Iterate over each type and obtain any VehicleDescriptionAttributes.
 foreach (Type t in types)
 {
 object[] objs = t.GetCustomAttributes(vehicleDesc, false);

 // Iterate over each VehicleDescriptionAttribute and print
 // the description using late binding.
 foreach (object o in objs)
 {
 Console.WriteLine("-> {0}: {1}\n",
 t.Name, propDesc.GetValue(o, null));
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

590

If you were able to follow along with the examples in this chapter, this code should be (more or less)
self-explanatory. The only point of interest is the use of the PropertyInfo.GetValue() method, which is
used to trigger the property’s accessor. Here is the output of the current example:

***** Value of VehicleDescriptionAttribute *****

-> Motorcycle: My rocking Harley

-> HorseAndBuggy: The old gray mare, she ain't what she used to be...

-> Winnebago: A very long, slow, but feature-rich auto

 ■ Source Code the VehicledescriptionattributereaderlateBinding project is included in the Chapter 15
subdirectory.

Putting Reflection, Late Binding, and Custom Attributes
in Perspective
Even though you have seen numerous examples of these techniques in action, you may still be wondering
when to make use of reflection, dynamic loading, late binding, and custom attributes in your programs. To
be sure, these topics can seem a bit on the academic side of programming (which may or may not be a bad
thing, depending on your point of view). To help map these topics to a real-world situation, you need a solid
example. Assume for the moment that you are on a programming team that is building an application with
the following requirement:

•	 The product must be extendable by the use of additional third-party tools.

What exactly is meant by extendable? Well, consider the Visual Studio IDE. When this application was
developed, various “hooks” were inserted into the code base to allow other software vendors to “snap” (or
plug in) custom modules into the IDE. Obviously, the Visual Studio development team had no way to set
references to external .NET assemblies it had not developed yet (thus, no early binding), so how exactly
would an application provide the required hooks? Here is one possible way to solve this problem:

 1. First, an extendable application must provide some input mechanism to allow
the user to specify the module to plug in (such as a dialog box or command-line
flag). This requires dynamic loading.

 2. Second, an extendable application must be able to determine whether the
module supports the correct functionality (such as a set of required interfaces) to
be plugged into the environment. This requires reflection.

 3. Finally, an extendable application must obtain a reference to the required
infrastructure (such as a set of interface types) and invoke the members to trigger
the underlying functionality. This may require late binding.

Simply put, if the extendable application has been preprogrammed to query for specific interfaces,
it is able to determine at runtime whether the type can be activated. Once this verification test has been
passed, the type in question may support additional interfaces that provide a polymorphic fabric to their
functionality. This is the exact approach taken by the Visual Studio team and, despite what you might be
thinking, is not at all difficult!

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

591

Building an Extendable Application
In the sections that follow, I will take you through a complete example that illustrates the process of
building an extendable Windows Forms application that can be augmented by the functionality of external
assemblies. If you do not have some experience building GUIs with the Windows Forms API, you might want
to load up the provided solution code and follow along.

 ■ Note Windows forms was the initial desktop api of the .net platform. however, since the release
of .net 3.0, the Windows presentation foundation (Wpf) api has become an often preferred gui framework.
While this is true, i will use Windows forms for a number of client gui examples in this text, as the related
code is a bit more intuitive than the corresponding Wpf code.

If you are not familiar with the process of building Windows Forms applications, feel free to simply open
up the supplied sample code and follow along. To serve as a road map, the extendable application entails the
following assemblies:

•	 CommonSnappableTypes.dll: This assembly contains type definitions that will be
used by each snap-in object and will be directly referenced by the Windows Forms
application.

•	 CSharpSnapIn.dll: A snap-in written in C#, which leverages the types of
CommonSnappableTypes.dll.

•	 VbSnapIn.dll: A snap-in written in Visual Basic, which leverages the types of
CommonSnappableTypes.dll.

•	 MyExtendableApp.exe: This Windows Forms application will be the executable
application that may be extended by the functionality of each snap-in.

Again, this application will use dynamic loading, reflection, and late binding to dynamically gain the
functionality of assemblies it has no prior knowledge of.

Building CommonSnappableTypes.dll
The first order of business is to create an assembly that contains the types that a given snap-in must leverage
to be plugged into the expandable Windows Forms application. The CommonSnappableTypes Class Library
project defines two types:

namespace CommonSnappableTypes
{
 public interface IAppFunctionality
 {
 void DoIt();
 }
 [AttributeUsage(AttributeTargets.Class)]
 public sealed class CompanyInfoAttribute : System.Attribute
 {
 public string CompanyName { get; set; }
 public string CompanyUrl { get; set; }
 }
}

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

592

The IAppFunctionality interface provides a polymorphic interface for all snap-ins that can be
consumed by the extendable Windows Forms application. Given that this example is purely illustrative,
you supply a single method named DoIt(). A more realistic interface (or a set of interfaces) might allow the
object to generate scripting code, render an image onto the application’s toolbox, or integrate into the main
menu of the hosting application.

The CompanyInfoAttribute type is a custom attribute that can be applied on any class type that wants
to be snapped into the container. As you can tell by the definition of this class, [CompanyInfo] allows the
developer of the snap-in to provide some basic details about the component’s point of origin.

Building the C# Snap-In
Next up, you need to create a type that implements the IAppFunctionality interface. Again, to focus on the
overall design of an extendable application, a trivial type is in order. Assume a new C# Class Library project
named CSharpSnapIn defines a class type named CSharpModule. Given that this class must make use of
the types defined in CommonSnappableTypes, be sure to add a reference to the CommonSnappableTypes
assembly (as well as System.Windows.Forms.dll to display a noteworthy message). This being said, here is
the code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using CommonSnappableTypes;
using System.Windows.Forms;

namespace CSharpSnapIn
{
 [CompanyInfo(CompanyName = "FooBar",
 CompanyUrl = "www.FooBar.com")]
 public class CSharpModule : IAppFunctionality
 {
 void IAppFunctionality.DoIt()
 {
 MessageBox.Show("You have just used the C# snap-in!");
 }
 }
}

Notice that I chose to make use of explicit interface implementation (see Chapter 9) when supporting
the IAppFunctionality interface. This is not required; however, the idea is that the only part of the system
that needs to directly interact with this interface type is the hosting Windows application. By explicitly
implementing this interface, the DoIt() method is not directly exposed from the CSharpModule type.

http://www.foobar.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

593

Building the Visual Basic Snap-In
Now, to simulate the role of a third-party vendor who prefers Visual Basic over C#, create a new Visual
Basic Class Library (VbSnapIn) that references the same external assemblies as the previous CSharpSnapIn
project.

 ■ Note By default, a Visual Basic project will not display the references folder within the solution explorer.
to add references in a VB project, use the project ➤ add reference menu option of Visual studio.

The code is (again) intentionally simple.

Imports System.Windows.Forms
Imports CommonSnappableTypes

<CompanyInfo(CompanyName:="Chucky's Software", CompanyUrl:="www.ChuckySoft.com")>
Public Class VbSnapIn
 Implements IAppFunctionality

 Public Sub DoIt() Implements CommonSnappableTypes.IAppFunctionality.DoIt
 MessageBox.Show("You have just used the VB snap in!")
 End Sub
End Class

Notice that applying attributes in the syntax of Visual Basic requires angle brackets (< >) rather than
square brackets ([]). Also notice that the Implements keyword is used to implement interface types on a
given class or structure.

Building an Extendable Windows Forms Application
The final step is to create a new C# Windows Forms application (MyExtendableApp) that allows the user
to select a snap-in using a standard Windows Open dialog box. If you have not created a Windows Forms
application before, you might want to simply open the completed code sample supplied with the book’s
source code. However, if you do want to build the GUI yourself, begin this final project of the chapter by
selecting a Windows Forms Application project from the New Project dialog box of Visual Studio
(see Figure 15-7).

 ■ Note appendix a provides an overview of the Windows forms api.

http://www.chuckysoft.com/

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

594

Now, add a reference to the CommonSnappableTypes.dll assembly but not the CSharpSnapIn.dll
or VbSnapIn.dll code libraries. As well, import the System.Reflection and CommonSnappableTypes
namespaces into your form’s primary code file (which you can open by right-clicking the form designer and
selecting View Code). Remember that the whole goal of this application is to use late binding and reflection
to determine the “snapability” of independent binaries created by third-party vendors.

Again, I won’t bother to examine all the details of Windows Forms development at this time. However,
the GUI consists of a MenuStrip component placed onto the form designer; the component defines a single
topmost menu item named File that provides a single submenu named Snap In Module. As well, the main
window will contain a ListBox type (which I renamed as lstLoadedSnapIns) that will be used to display the
names of each snap-in loaded by the user. Figure 15-8 shows the final GUI.

Figure 15-7. Creating a new Windows Forms project with Visual Studio

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

595

The code that handles the Click event for the File Snap In Module menu item (which may be created
simply by double-clicking the menu item from the design-time editor) displays a File Open dialog box
and extracts the path to the selected file. Assuming the user did not select the CommonSnappableTypes.
dll assembly (as this is purely infrastructure), the path is then sent into a helper function named
LoadExternalModule() for processing (implemented next). This method will return false if it is unable to
find a class implementing IAppFunctionality.

private void snapInModuleToolStripMenuItem_Click(object sender,
 EventArgs e)
{
 // Allow user to select an assembly to load.
 OpenFileDialog dlg = new OpenFileDialog();
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 if(dlg.FileName.Contains("CommonSnappableTypes"))
 MessageBox.Show("CommonSnappableTypes has no snap-ins!");
 else if(!LoadExternalModule(dlg.FileName))
 MessageBox.Show("Nothing implements IAppFunctionality!");
 }
}

Figure 15-8. GUI for MyExtendableApp

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

596

The LoadExternalModule() method performs the following tasks:

•	 Dynamically loads the selected assembly into memory

•	 Determines whether the assembly contains any types implementing
IAppFunctionality

•	 Creates the type using late binding

If a type implementing IAppFunctionality is found, the DoIt() method is called, and the fully qualified
name of the type is added to the ListBox (note that the foreach loop will iterate over all types in the
assembly to account for the possibility that a single assembly has multiple snap-ins).

private bool LoadExternalModule(string path)
{
 bool foundSnapIn = false;
 Assembly theSnapInAsm = null;
 try
 {
 // Dynamically load the selected assembly.
 theSnapInAsm = Assembly.LoadFrom(path);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 return foundSnapIn;
 }
 // Get all IAppFunctionality-compatible classes in assembly.
 var theClassTypes = from t in theSnapInAsm.GetTypes()
 where t.IsClass &&
 (t.GetInterface("IAppFunctionality") != null)
 select t;
 // Now, create the object and call DoIt() method.
 foreach (Type t in theClassTypes)
 {
 foundSnapIn = true;
 // Use late binding to create the type.
 IAppFunctionality itfApp =
 (IAppFunctionality)theSnapInAsm.CreateInstance(t.FullName, true);
 itfApp.DoIt();
 lstLoadedSnapIns.Items.Add(t.FullName);
 }
 return foundSnapIn;
}

At this point, you can run your application. When you select the CSharpSnapIn.dll or VbSnapIn.dll
assemblies, you should see the correct message displayed. The final task is to display the metadata provided
by the [CompanyInfo] attribute. To do so, update LoadExternalModule() to call a new helper function
named DisplayCompanyData() before exiting the foreach scope. Notice this method takes a single
System.Type parameter.

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

597

private bool LoadExternalModule(string path)
{
...
 foreach (Type t in theClassTypes)
 {
...
 // Show company info.
 DisplayCompanyData(t);
 }
 return foundSnapIn;
}

Using the incoming type, simply reflect over the [CompanyInfo] attribute, like so:

private void DisplayCompanyData(Type t)
{
 // Get [CompanyInfo] data.
 var compInfo = from ci in t.GetCustomAttributes(false) where
 (ci.GetType() == typeof(CompanyInfoAttribute))
 select ci;
 // Show data.
 foreach (CompanyInfoAttribute c in compInfo)
 {
 MessageBox.Show(c.CompanyUrl,
 string.Format("More info about {0} can be found at", c.CompanyName));
 }
}

Figure 15-9 shows one possible run.

Figure 15-9. Snapping in external assemblies

Chapter 15 ■ type refleCtion, late Binding, and attriBute-Based programming

598

Excellent! That wraps up the example application. I hope you can see that the topics presented in this
chapter can be quite helpful in the real world and are not limited to the tool builders of the world.

 ■ Source Code the extendableapp folder in the Chapter 15 subdirectory contains the
Commonsnappabletypes, Csharpsnapin, Vbsnapin, and myextendableapp projects.

Summary
Reflection is an interesting aspect of a robust OO environment. In the world of .NET, the keys to reflection
services revolve around the System.Type class and the System.Reflection namespace. As you have seen,
reflection is the process of placing a type under the magnifying glass at runtime to understand the who,
what, where, when, why, and how of a given item.

Late binding is the process of creating an instance of a type and invoking its members without prior
knowledge of the specific names of said members. Late binding is often a direct result of dynamic loading,
which allows you to load a .NET assembly into memory programmatically. As shown during this chapter’s
extendable application example, this is a powerful technique used by tool builders as well as tool consumers.

This chapter also examined the role of attribute-based programming. When you adorn your types with
attributes, the result is the augmentation of the underlying assembly metadata.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

599

Chapter 16

Dynamic Types and the Dynamic
Language Runtime

NET 4.0 introduced a new keyword to the C# language, specifically, dynamic. This keyword allows you to
incorporate scripting-like behaviors into the strongly typed world of type safety, semicolons, and curly
brackets. Using this loose typing, you can greatly simplify some complex coding tasks and also gain the ability
to interoperate with a number of dynamic languages (such as IronRuby or IronPython), which are .NET savvy.

In this chapter, you will be introduced to the C# dynamic keyword and understand how loosely typed
calls are mapped to the correct in-memory object using the Dynamic Language Runtime (DLR). After you
understand the services provided by the DLR, you will see examples of using dynamic types to streamline
how you can perform late-bound method calls (via reflection services) and to easily communicate with
legacy COM libraries.

 ■ Note Don’t confuse the C# dynamic keyword with the concept of a dynamic assembly (see Chapter 18).
While you could use the dynamic keyword when building a dynamic assembly, these are ultimately two
independent concepts.

The Role of the C# dynamic Keyword
Back in Chapter 3, you learned about the var keyword, which allows you to define local variables in such
a way that the underlying date type is determined at compile time, based on the initial assignment (recall
that this is termed implicit typing). Once this initial assignment has been made, you have a strongly typed
variable, and any attempt to assign an incompatible value will result in a compiler error.

To begin your investigation into the C# dynamic keyword, create a new Console Application project
named DynamicKeyword. Now, author the following method in your Program class, and verify that the final
code statement will indeed trigger a compile time error if uncommented:

static void ImplicitlyTypedVariable()
{
 // a is of type List<int>.
 var a = new List<int>();
 a.Add(90);
 // This would be a compile-time error!
 // a = "Hello";
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_18
http://dx.doi.org/10.1007/978-1-4842-1332-2_3

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

600

Using implicit typing simply for the sake of doing so is considered by some to be bad style (if you know
you need a List<int>, just declare a List<int>). However, as you have seen in Chapter 12, implicit typing
is useful with LINQ, as many LINQ queries return enumerations of anonymous classes (via projections) that
you cannot directly declare in your C# code. However, even in such cases, the implicitly typed variable is, in
fact, strongly typed.

On a related note, as you learned in Chapter 6, System.Object is the topmost parent class in the .NET
Framework and can represent anything at all. Again, if you declare a variable of type object, you have a
strongly typed piece of data; however, what it points to in memory can differ based on your assignment of
the reference. To gain access to the members the object reference is pointing to in memory, you need to
perform an explicit cast.

Assume you have a simple class named Person that defines two automatic properties (FirstName and
LastName) both encapsulating a string. Now, observe the following code:

static void UseObjectVarible()
{
 // Assume we have a class named Person.
 object o = new Person() { FirstName = "Mike", LastName = "Larson" };

 // Must cast object as Person to gain access
 // to the Person properties.
 Console.WriteLine("Person's first name is {0}", ((Person)o).FirstName);
}

Since the release of .NET 4.0, the C# language introduced a keyword named dynamic. From a high
level, you can consider the dynamic keyword a specialized form of System.Object, in that any value can
be assigned to a dynamic data type. At first glance, this can appear horribly confusing, as it appears you
now have three ways to define data whose underlying type is not directly indicated in your code base. For
example, this method:

static void PrintThreeStrings()
{
 var s1 = "Greetings";
 object s2 = "From";
 dynamic s3 = "Minneapolis";

 Console.WriteLine("s1 is of type: {0}", s1.GetType());
 Console.WriteLine("s2 is of type: {0}", s2.GetType());
 Console.WriteLine("s3 is of type: {0}", s3.GetType());
}

would print out the following if invoked from Main():

s1 is of type: System.String
s2 is of type: System.String
s3 is of type: System.String

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
http://dx.doi.org/10.1007/978-1-4842-1332-2_6

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

601

What makes a dynamic variable much (much) different from a variable declared implicitly or via a
System.Object reference is that it is not strongly typed. Said another way, dynamic data is not statically
typed. As far as the C# compiler is concerned, a data point declared with the dynamic keyword can be
assigned any initial value at all and can be reassigned to any new (and possibly unrelated) value during its
lifetime. Consider the following method and the resulting output:

static void ChangeDynamicDataType()
{
 // Declare a single dynamic data point
 // named "t".
 dynamic t = "Hello!";
 Console.WriteLine("t is of type: {0}", t.GetType());

 t = false;
 Console.WriteLine("t is of type: {0}", t.GetType());

 t = new List<int>();
 Console.WriteLine("t is of type: {0}", t.GetType());
}

t is of type: System.String
t is of type: System.Boolean
t is of type: System.Collections.Generic.List`1[System.Int32]

At this point in your investigation, do be aware that the previous code would compile and execute
identically if you were to declare the t variable as a System.Object. However, as you will soon see, the
dynamic keyword offers many additional features.

Calling Members on Dynamically Declared Data
Given that a dynamic variable can take on the identity of any type on the fly (just like a variable of type
System.Object), the next question on your mind might be about calling members on the dynamic variable
(properties, methods, indexers, register with events, etc.). Well, syntactically speaking, it will again look no
different. Just apply the dot operator to the dynamic data variable, specify a public member, and supply any
arguments (if required).

However (and this is a very big “however”), the validity of the members you specify will not be checked
by the compiler! Remember, unlike a variable defined as a System.Object, dynamic data is not statically
typed. It is not until runtime that you will know whether the dynamic data you invoked supports a specified
member, whether you passed in the correct parameters, spelled the member correctly, and so on. Thus, as
strange as it might seem, the following method compiles perfectly:

static void InvokeMembersOnDynamicData()
{
 dynamic textData1 = "Hello";
 Console.WriteLine(textData1.ToUpper());

 // You would expect compiler errors here!
 // But they compile just fine.
 Console.WriteLine(textData1.toupper());
 Console.WriteLine(textData1.Foo(10, "ee", DateTime.Now));
}

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

602

Notice the second call to WriteLine() attempts to call a method named toupper() on the dynamic data
point (note the incorrect casing—it should be ToUpper()). As you can see, textData1 is of type string, and
therefore, you know it does not have a method of this name in all lowercase letters. Furthermore, string
certainly does not have a method named Foo() that takes an int, string, and DataTime object!

Nevertheless, the C# compiler is satisfied. However, if you invoke this method from within Main(), you
will get runtime errors similar to the following output:

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:
'string' does not contain a definition for 'toupper'

Another obvious distinction between calling members on dynamic data and strongly typed data is that
when you apply the dot operator to a piece of dynamic data, you will not see the expected Visual Studio
IntelliSense. The IDE will allow you to enter any member name you could dream up.

It should make sense that IntelliSense is not possible with dynamic data. However, remember that
this means you need to be extremely careful when you are typing C# code on such data points. Any
misspelling or incorrect capitalization of a member will throw a runtime error, specifically an instance of the
RuntimeBinderException class.

The Role of the Microsoft.CSharp.dll Assembly
When you create a new Visual Studio C# project, you will automatically have a reference set to an assembly
named Microsoft.CSharp.dll (you can see this for yourself by looking in the References folder of
the Solution Explorer). This library is small and defines only a single namespace (Microsoft.CSharp.
RuntimeBinder) with two classes (see Figure 16-1).

Figure 16-1. The Microsoft.CSharp.dll assembly

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

603

As you can tell by their names, both of these classes are strongly typed exceptions. The most common
class, RuntimeBinderException, represents an error that will be thrown if you attempt to invoke a member
on a dynamic data type, which does not actually exist (as in the case of the toupper() and Foo() methods).
This same error will be raised if you specify the wrong parameter data to a member that does exist.

Because dynamic data is so volatile, whenever you are invoking members on a variable declared with
the C#dynamic keyword, you could wrap the calls within a proper try/catch block and handle the error in a
graceful manner, like so:

static void InvokeMembersOnDynamicData()
{
 dynamic textData1 = "Hello";

 try
 {
 Console.WriteLine(textData1.ToUpper());
 Console.WriteLine(textData1.toupper());
 Console.WriteLine(textData1.Foo(10, "ee", DateTime.Now));
 }
 catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

If you call this method again, you will find the call to ToUpper() (note the capital T and U) works
correctly; however, you then find the error data displayed to the console.

HELLO
'string' does not contain a definition for 'toupper'

Of course, the process of wrapping all dynamic method invocations in a try/catch block is rather
tedious. As long as you watch your spelling and parameter passing, this is not required. However, catching
exceptions is handy when you might not know in advance if a member will be present on the target type.

The Scope of the dynamic Keyword
Recall that implicitly typed data (declared with the var keyword) is possible only for local variables in a
member scope. The var keyword can never be used as a return value, a parameter, or a member of a
class/structure. This is not the case with the dynamic keyword, however. Consider the following class definition:

class VeryDynamicClass
{
 // A dynamic field.
 private static dynamic myDynamicField;

 // A dynamic property.
 public dynamic DynamicProperty { get; set; }

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

604

 // A dynamic return type and a dynamic parameter type.
 public dynamic DynamicMethod(dynamic dynamicParam)
 {
 // A dynamic local variable.
 dynamic dynamicLocalVar = "Local variable";

 int myInt = 10;

 if (dynamicParam is int)
 {
 return dynamicLocalVar;
 }
 else
 {
 return myInt;
 }
 }
}

You could now invoke the public members as expected; however, as you are operating on dynamic
methods and properties, you cannot be completely sure what the data type will be! To be sure, the
VeryDynamicClass definition might not be useful in a real-world application, but it does illustrate the scope
of where you can apply this C# keyword.

Limitations of the dynamic Keyword
While a great many things can be defined using the dynamic keyword, there are some limitations regarding
its usage. While they are not showstoppers, do know that a dynamic data item cannot make use of lambda
expressions or C# anonymous methods when calling a method. For example, the following code will always
result in errors, even if the target method does indeed take a delegate parameter that takes a string value
and returns void:

dynamic a = GetDynamicObject();

// Error! Methods on dynamic data can't use lambdas!
a.Method(arg => Console.WriteLine(arg));

To circumvent this restriction, you will need to work with the underlying delegate directly, using the
techniques described in Chapter 10. Another limitation is that a dynamic point of data cannot understand
any extension methods (see Chapter 11). Unfortunately, this would also include any of the extension
methods that come from the LINQ APIs. Therefore, a variable declared with the dynamic keyword has
limited use within LINQ to Objects and other LINQ technologies.

dynamic a = GetDynamicObject();

// Error! Dynamic data can't find the Select() extension method!
var data = from d in a select d;

http://dx.doi.org/10.1007/978-1-4842-1332-2_10
http://dx.doi.org/10.1007/978-1-4842-1332-2_11

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

605

Practical Uses of the dynamic Keyword
Given that dynamic data is not strongly typed, not checked at compile time, has no ability to trigger
IntelliSense, and cannot be the target of a LINQ query, you are absolutely correct to assume that using the
dynamic keyword just for the sake of doing so is a poor programming practice.

However, in a few circumstances, the dynamic keyword can radically reduce the amount of code you
need to author by hand. Specifically, if you are building a .NET application that makes heavy use of late
binding (via reflection), the dynamic keyword can save you typing time. As well, if you are building a .NET
application that needs to communicate with legacy COM libraries (such as Microsoft Office products), you
can greatly simplify your code base via the dynamic keyword. By way of a final example, web sites built using
the MVC design pattern frequently use the ViewBag type, which can also be accessed in a simplified manner
using the dynamic keyword.

Like any “shortcut,” you need to weigh the pros and cons. The use of the dynamic keyword is a trade-
off between brevity of code and type safety. While C# is a strongly typed language at its core, you can opt in
(or opt out) of dynamic behaviors on a call-by-call basis. Always remember that you never need to use the
dynamic keyword. You could always get to the same end result by authoring alternative code by hand (and
typically much more of it).

 ■ Source Code the DynamicKeyword project is located in the Chapter 16 subdirectory.

The Role of the Dynamic Language Runtime
Now that you better understand what “dynamic data” is all about, let’s learn how it is processed. Since the
release of .NET 4.0, the Common Language Runtime (CLR) was supplemented with a complementary
runtime environment named the Dynamic Language Runtime. The concept of a “dynamic runtime” is
certainly not new. In fact, many programming languages such as JavaScript, LISP, Ruby, and Python have
used it for years. In a nutshell, a dynamic runtime allows a dynamic language the ability to discover types
completely at runtime with no compile-time checks.

If you have a background in strongly typed languages (including C#, without dynamic types), the notion
of such a runtime might seem undesirable. After all, you typically want to receive compile-time errors, not
runtime errors, wherever possible. Nevertheless, dynamic languages/runtimes do provide some interesting
features, including the following:

•	 An extremely flexible code base. You can refactor code without making numerous
changes to data types.

•	 A simple way to interoperate with diverse object types built in different platforms
and programming languages.

•	 A way to add or remove members to a type, in memory, at runtime.

One role of the DLR is to enable various dynamic languages to run with the .NET runtime and give
them a way to interoperate with other .NET code. Two popular dynamic languages that make use of the
DLR are IronPython and IronRuby. These languages live in a dynamic universe, where type is discovered
solely at runtime. And yet, these languages have access to the richness of the .NET base class libraries.
Even better, their code bases can interoperate with C# (or vice versa), thanks to the inclusion of the
dynamic keyword.

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

606

 ■ Note this chapter will not address how the DLr can be used to integrate with dynamic languages.
however, you can find details at the ironpython (http://ironpython.codeplex.com) and ironruby
(http://rubyforge.org/projects/ironruby) web sites.

The Role of Expression Trees
The DLR makes use of expression trees to capture the meaning of a dynamic call in neutral terms. For
example, when the DLR encounters some C# code, such as the following:

dynamic d = GetSomeData();
d.SuperMethod(12);

it will automatically build an expression tree that says, in effect, “Call the method named SuperMethod
on object d, passing in the number 12 as an argument.” This information (formally termed the payload) is
then passed to the correct runtime binder, which again could be the C# dynamic binder, the IronPython
dynamic binder, or even (as explained shortly) legacy COM objects.

From here, the request is mapped into the required call structure for the target object. The nice thing
about these expression trees (beyond that you don’t need to manually create them) is that this allows you
to write a fixed C# code statement and not worry about what the underlying target actually is (COM object,
IronPython, IronRuby code base, etc.). Figure 16-2 illustrates the concept of expression trees from a high level.

Figure 16-2. Expression trees capture dynamic calls in neutral terms and are processed by binders

The Role of the System.Dynamic Namespace
The System.Core.dll assembly includes a namespace named System.Dynamic. Truth be told, the chances
are quite high that you will never need to use the types located here. However, if you were a language vendor,
who wanted to enable their dynamic languages to interact with the DLR, you could make use of the System.
Dynamic namespace to build a custom runtime binder.

Again, you won’t need to directly dig into the types of System.Dynamic in this book; however, feel free to
check it out using the .NET Framework 4.6 SDK documentation if you are interested. For practical purposes,
simply know that this namespace provides the necessary infrastructure to make a dynamic language “.NET
aware.”

http://ironpython.codeplex.com/
http://rubyforge.org/projects/ironruby

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

607

Dynamic Runtime Lookup of Expression Trees
As explained, the DLR will pass the expression trees to a target object; however, this dispatching will be
influenced by a few factors. If the dynamic data type is pointing in memory to a COM object, the expression
tree is sent to a low-level COM interface named IDispatch. As you might know, this interface was COM’s
way of incorporating its own set of dynamic services. COM objects, however, can be used in a .NET
application without the use of the DLR or C# dynamic keyword. Doing so, however (as you will see), tends to
result in much more complex C# coding.

If the dynamic data is not pointing to a COM object, the expression tree may be passed to an object
implementing the IDynamicObject interface. This interface is used behind the scenes to allow a language,
such as IronRuby, to take a DLR expression tree and map it to Ruby specifics.

Finally, if the dynamic data is pointing to an object that is not a COM object and does not implement
IDynamicObject, the object is a normal, everyday .NET object. In this case, the expression tree is dispatched
to the C# runtime binder for processing. The process of mapping the expression tree to .NET specifics
involves reflection services.

After the expression tree has been processed by a given binder, the dynamic data will be resolved to the
real in-memory data type, after which the correct method is called with any necessary parameters. Now, let’s
see a few practical uses of the DLR, beginning with the simplification of late-bound .NET calls.

Simplifying Late-Bound Calls Using Dynamic Types
One instance where you might decide to use the dynamic keyword is when you are working with reflection
services, specifically when making late-bound method calls. In Chapter 15, you saw a few examples of when
this type of method call can be useful, most commonly when you are building some type of extensible
application. At that time, you learned how to use the Activator.CreateInstance() method to create an
object, for which you have no compile-time knowledge of (beyond its display name). You can then make
use of the types of the System.Reflection namespace to invoke members via late binding. Recall the
following example from Chapter 15:

static void CreateUsingLateBinding(Assembly asm)
{
 try
 {
 // Get metadata for the Minivan type.
 Type miniVan = asm.GetType("CarLibrary.MiniVan");

 // Create the Minivan on the fly.
 object obj = Activator.CreateInstance(miniVan);

 // Get info for TurboBoost.
 MethodInfo mi = miniVan.GetMethod("TurboBoost");

 // Invoke method ("null" for no parameters).
 mi.Invoke(obj, null);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_15
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

608

While this is code works as expected, you might agree it is a bit clunky. Here, you have to manually
make use of the MethodInfo class, manually query the metadata, and so forth. The following is a version of
this same method, now using the C# dynamic keyword and the DLR:

static void InvokeMethodWithDynamicKeyword(Assembly asm)
{
 try
 {
 // Get metadata for the Minivan type.
 Type miniVan = asm.GetType("CarLibrary.MiniVan");

 // Create the Minivan on the fly and call method!
 dynamic obj = Activator.CreateInstance(miniVan);
 obj.TurboBoost();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

By declaring the obj variable using the dynamic keyword, the heavy lifting of reflection is done on your
behalf, courtesy of the DRL.

Leveraging the dynamic Keyword to Pass Arguments
The usefulness of the DLR becomes even more obvious when you need to make late-bound calls on
methods that take parameters. When you use “longhand” reflection calls, arguments need to be packaged up
as an array of objects, which are passed to the Invoke() method of MethodInfo.

To illustrate using a fresh example, begin by creating a new C# Console Application project named
LateBindingWithDynamic. Next, add a Class Library project to the current solution (using the File ➤

Add ➤ New Project menu option) named MathLibrary. Rename the initial Class1.cs file of the MathLibrary
project to SimpleMath.cs, and implement the class like so:

public class SimpleMath
{
 public int Add(int x, int y)
 {
 return x + y;
 }
}

After you have compiled your MathLibrary.dll assembly, place a copy of this library in the \bin\Debug
folder of the LateBindingWithDynamic project. (If you click the Show All Files button for each project of
the Solution Explorer, you can simply drag and drop the file between projects.) At this point, your Solution
Explorer should look something like Figure 16-3.

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

609

 ■ Note remember, the whole point of late binding is to allow an application to create an object for which it
has no record of in the manifest. this is why you manually copied MathLibrary.dll into the output folder of
the Console project, rather than reference the assembly using Visual studio.

Figure 16-3. The LateBindingWithDynamic project has a private copy of MathLibrary.dll

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

610

Now, import the System.Reflection namespace into the Program.cs file of your Console Application
project. Next, add the following method to the Program class, which invokes the Add() method using typical
reflection API calls:

private static void AddWithReflection()
{
 Assembly asm = Assembly.Load("MathLibrary");
 try
 {
 // Get metadata for the SimpleMath type.
 Type math = asm.GetType("MathLibrary.SimpleMath");

 // Create a SimpleMath on the fly.
 object obj = Activator.CreateInstance(math);

 // Get info for Add.
 MethodInfo mi = math.GetMethod("Add");

 // Invoke method (with parameters).
 object[] args = { 10, 70 };
 Console.WriteLine("Result is: {0}", mi.Invoke(obj, args));
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Now, consider the simplification of the previous logic with the dynamic keyword, via the following new
method:

private static void AddWithDynamic()
{
 Assembly asm = Assembly.Load("MathLibrary");

 try
 {
 // Get metadata for the SimpleMath type.
 Type math = asm.GetType("MathLibrary.SimpleMath");

 // Create a SimpleMath on the fly.
 dynamic obj = Activator.CreateInstance(math);

 // Note how easily we can now call Add().
 Console.WriteLine("Result is: {0}", obj.Add(10, 70));
 }
 catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

611

Not too shabby! If you call both methods from the Main() method, you’ll see identical output. However,
when using the dynamic keyword, you saved yourself quite a bit of work. With dynamically defined data, you
no longer need to manually package up arguments as an array of objects, query the assembly metadata, or
other such details. If you are building an application that makes heavy use of dynamic loading/late binding,
I am sure you can see how these code savings would add up over time.

 ■ Source Code the LateBindingWithDynamic project is included in the Chapter 16 subdirectory.

Simplifying COM Interoperability Using Dynamic Data
Let’s see another useful case for the dynamic keyword within the context of a COM interoperability project.
Now, if you don’t have much background in COM development, do be aware for this next example that
a compiled COM library contains metadata, just like a .NET library; however, the format is completely
different. Because of this, if a .NET program needs to communicate with a COM object, the first order of
business is to generate what is known as an interop assembly (described in the following paragraphs). Doing
so is quite straightforward. Just activate the Add Reference dialog box, select the COM tab, and find the COM
library you want to use (see Figure 16-4).

Figure 16-4. The COM tab of the Add Reference dialog box will show you all registered COM libraries on your
machine

 ■ Note Be aware that several important microsoft object models (including Office products) are currently
accessible only through COm interoperability. thus, even if you do not have direct experience building COm
applications, you might need to consume them from a .net program.

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

612

Once you select a COM library, the IDE will respond by generating a new assembly that contains .NET
descriptions of COM metadata. Formally speaking, these are termed interoperability assemblies (or simply,
interop assemblies). Interop assemblies do not contain any implementation code, except for a small amount
that helps translate COM events to .NET events. However, these interop assemblies are useful in that they
shield your .NET code base from the complex underbelly of COM internals.

In your C# code, you can directly program against the interop assembly, allowing the CLR (and if you
use the dynamic keyword, the DLR) to automatically map .NET data types into COM types, and vice versa.
Behind the scenes, data is marshaled between the .NET and COM applications using a Runtime Callable
Wrapper (RCW), which is basically a dynamically generated proxy. This RCW proxy will marshal and
transform .NET data types into COM types and map any COM return values into .NET equivalents.

Figure 16-5 shows the big picture of .NET to COM interoperability.

Figure 16-5. .NET programs communicate with COM objects using a proxy termed the RCW

The Role of Primary Interop Assemblies
Many COM libraries created by COM library vendors (such as the Microsoft COM libraries that allow access
to the object model of Microsoft Office products) provide an “official” interoperability assembly termed
a primary interop assembly (PIA). PIAs are optimized interop assemblies, which clean up (and possibly
extend) the code typically generated when referencing a COM library using the Add Reference dialog box.

PIAs are typically listed in the Assemblies section of the Add Reference dialog box (under the Extensions
subarea). In fact, if you reference a COM library from the COM tab of the Add Reference dialog box, Visual
Studio will not generate a new interoperability library as it would normally do but would use the provided
PIA instead. Figure 16-6 shows the PIA of the Microsoft Office Excel object model, which you will be using in
the next example.

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

613

Embedding Interop Metadata
Before the release of .NET 4.0, when a C# application made use of a COM library (PIA or not), you needed to
ensure the client machine had a copy of the interop assembly on their computer. Not only did this increase
the size of your application installer package, but the install script had to check that the PIA assemblies were
indeed present and, if not, install a copy to the GAC.

However, under .NET 4.0 and higher, you can now elect to embed the interoperability data directly
within your compiled .NET application. When you do so, you are no longer required to ship a copy of the
interoperability assembly along with your .NET application, as the necessary interoperability metadata is
hard-coded in the .NET program.

By default, when you select a COM library (PIA or not) using the Add References dialog, the IDE will
automatically set the Embed Interop Types property of the library to True. You can see this setting first
hand by selecting a referenced interop library in the References folder of the Solution Explorer and then
investigating the Properties window (see Figure 16-7).

Figure 16-6. PIAs are listed on the .NET tab of the Add Reference dialog box

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

614

The C# compiler will include only the parts of the interop library you are actually using. Thus, if the real
interop library has .NET descriptions of hundreds of COM objects, you will bring in only the definitions of
the subset you are really using in your C# code. Beyond reducing the size of the application you need to ship
to the client, you also have an easier installation path, as you don’t need to install any missing PIAs on the
target machine.

Common COM Interop Pain Points
Let’s cover one more preliminary topic before the next example. Before the release of the DLR, when you
authored C# code that used a COM library (via the interop assembly), you were sure to face a number of
challenges. For example, many COM libraries defined methods that took optional arguments, which were
not supported in C# until .NET 3.5. This required you to specify the value Type.Missing for every occurrence
of the optional argument. For example, if a COM method took five arguments, all of which were optional,
you would need to write the following C# code in order to accept the default values:

myComObj.SomeMethod(Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing);

Figure 16-7. Interop assembly logic can be embedded directly into your .NET application

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

615

Thankfully, you are now able to author the following simplified code, given that the Type.Missing
values will be inserted at compile time if you don’t specify a specific value:

myComObj.SomeMethod();

On a related note, many COM methods provided support for named arguments, which as you recall
from Chapter 4, allows you to pass values to members in any order you require. Given that C# supports this
same feature, it is simply to “skip” over a set of optional arguments you don’t care about and set only the few
you do.

Another common COM interop pain point has to do with the fact that many COM methods were
designed to take and return a particular data type, termed the Variant. Much like the C# dynamic keyword,
a Variant data type could be assigned to any type of COM data on the fly (strings, interface references,
numerical values, etc.). Before you had the dynamic keyword, passing or receiving Variant data points
required some hoop jumping, typically by way of numerous casting operations.

When you set the Embed Interop Types property to True, all COM Variant types are automatically
mapped to dynamic data. This will not only reduce the need to extraneous casting operations when working
with underlying COM Variant data types but will also further hide some COM complexities, such as working
with COM indexers.

To showcase how C# optional arguments, named arguments, and the dynamic keyword all work
together to simplify COM interop, you will now build an application that uses the Microsoft Office object
model. As you work through the example, you will get a chance to use the new features, as well as forgo
them, and then compare and contrast the workload.

 ■ Note if you do not have a background in Windows Forms, you might want to simply load the completed
solution into Visual studio and experiment with the code, rather than build this application by hand.

COM Interop Using C# Dynamic Data
Assume you have a Windows Forms GUI application (named ExportDataToOfficeApp), whose main window
hosts a DataGridView control named dataGridCars. This same window has two Button controls, the first of
which will bring up a custom dialog box to insert a new row of data to the grid, and the other of which will
export the grid’s data to an Excel spreadsheet. Figure 16-8 shows the completed GUI.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

616

The DataGridView control is filled with some initial data by handling the form’s Load event as so (the
Car class used as the type parameter for the generic List<T> is a simple class in the project with Color, Make,
and PetName properties):

public partial class MainForm : Form
{
 List<Car> carsInStock = null;

 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 carsInStock = new List<Car>
 {
 new Car {Color="Green", Make="VW", PetName="Mary"},
 new Car {Color="Red", Make="Saab", PetName="Mel"},
 new Car {Color="Black", Make="Ford", PetName="Hank"},
 new Car {Color="Yellow", Make="BMW", PetName="Davie"}
 };

Figure 16-8. The GUI of the COM interop example

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

617

 UpdateGrid();
 }

 private void UpdateGrid()
 {
 // Reset the source of data.
 dataGridCars.DataSource = null;
 dataGridCars.DataSource = carsInStock;
 }
}

The Click event for the Add New Entry to Inventory button will launch a custom dialog box to allow
the user to enter new data for a Car object, and if the user clicks the OK button, the data is added to the
grid (I won’t bother to show the code behind the dialog box here, so please see the provided solution for
details). If you are following along, however, include the NewCarDialog.cs, NewCarDialog.designer.cs, and
NewCarDialog.resx files into your project (all of which are part of the code download for this text). After you
have done so, implement the Add button click hander on the main window, as so:

private void btnAddNewCar_Click(object sender, EventArgs e)
{
 NewCarDialog d = new NewCarDialog();
 if (d.ShowDialog() == DialogResult.OK)
 {
 // Add new car to list.
 carsInStock.Add(d.theCar);
 UpdateGrid();
 }
}

The Click event handler for the Export Current Inventory to Excel button is the heart of this example.
Using the Add Reference dialog box, add a reference to the Microsoft.Office.Interop.Excel.dll primary
interop assembly (as shown previously in Figure 16-7). Add the following namespace alias to the form’s
primary code file. Be aware that this is not mandatory to define an alias when interacting with COM libraries.
However, by doing so, you have a handy qualifier for all the imported COM objects, which is handy if some of
these COM objects have names that would clash with your .NET types.

// Create an alias to the Excel object model.
using Excel = Microsoft.Office.Interop.Excel;

Implement this button Click event hander to call a private helper function named ExportToExcel(),
like so:

private void btnExportToExcel_Click(object sender, EventArgs e)
{
 ExportToExcel(carsInStock);
}

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

618

Because you imported the COM library using Visual Studio, the PIA has been automatically configured
so that the used metadata will be embedded into the .NET application (recall the role of the Embed Interop
Types property). Therefore, all COM Variants are realized as dynamic data types. Furthermore, you can use
C# optional arguments and named arguments. This being said, consider the following implementation of
ExportToExcel():

static void ExportToExcel(List<Car> carsInStock)
{
 // Load up Excel, then make a new empty workbook.
 Excel.Application excelApp = new Excel.Application();
 excelApp.Workbooks.Add();

 // This example uses a single workSheet.
 Excel._Worksheet workSheet = excelApp.ActiveSheet;

 // Establish column headings in cells.
 workSheet.Cells[1, "A"] = "Make";
 workSheet.Cells[1, "B"] = "Color";
 workSheet.Cells[1, "C"] = "Pet Name";

 // Now, map all data in List<Car> to the cells of the spreadsheet.
 int row = 1;
 foreach (Car c in carsInStock)
 {
 row++;
 workSheet.Cells[row, "A"] = c.Make;
 workSheet.Cells[row, "B"] = c.Color;
 workSheet.Cells[row, "C"] = c.PetName;
 }

 // Give our table data a nice look and feel.
 workSheet.Range["A1"].AutoFormat(
 Excel.XlRangeAutoFormat.xlRangeAutoFormatClassic2);

 // Save the file, quit Excel, and display message to user.
 workSheet.SaveAs(string.Format(@"{0}\Inventory.xlsx", Environment.CurrentDirectory));
 excelApp.Quit();
 MessageBox.Show("The Inventory.xslx file has been saved to your app folder",
 "Export complete!");
}

This method begins by loading Excel into memory; however, you won’t see it visible on your computer
desktop. For this application, you are interested only in using the internal Excel object model. However, if
you do want to actually display the UI of Excel, update your method with this additional line of code:

static void ExportToExcel(List<Car> carsInStock)
{
 // Load up Excel, then make a new empty workbook.
 Excel.Application excelApp = new Excel.Application();

 // Go ahead and make Excel visible on the computer.
 excelApp.Visible = true;
...
}

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

619

After you create an empty worksheet, you add three columns that are named similar to the properties of
the Car class. Then, you fill the cells with the data of the List<Car> and save your file under the (hard-coded)
name Inventory.xlsx.

At this point, if you run your application, add a few new records, and export your data to Excel, you will
then be able to open the Inventory.xlsx file, which will be saved to the \bin\Debug folder of your Windows
Forms application. Figure 16-9 shows a possible export.

Figure 16-9. Exporting your data to an Excel file

COM interop Without C# Dynamic Data
Now, if you were to select the Microsoft.Office.Interop.Excel.dll assembly (in Solution Explorer) and
set its Embed Interop Type property to False, you would have new compiler errors, as the COM Variant
data is no longer realized as dynamic data but as System.Object variables. This will require you to update
ExportToExcel() with a number of explicit casting operations.

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

620

As well, if this project were compiled under .NET 3.5 or earlier, you would no longer have the benefit
of optional/named parameters and would have to explicitly mark all missing arguments. Here is a version
of the ExportToExcel() method that would be required in earlier versions of C# (do note the increased
complexity in code):

static void ExportToExcel2008(List<Car> carsInStock)
{
 Excel.Application excelApp = new Excel.Application();

 // Must mark missing params!
 excelApp.Workbooks.Add(Type.Missing);

 // Must cast Object as _Worksheet!
 Excel._Worksheet workSheet = (Excel._Worksheet)excelApp.ActiveSheet;

 // Must cast each Object as Range object then
 // call low-level Value2 property!
 ((Excel.Range)excelApp.Cells[1, "A"]).Value2 = "Make";
 ((Excel.Range)excelApp.Cells[1, "B"]).Value2 = "Color";
 ((Excel.Range)excelApp.Cells[1, "C"]).Value2 = "Pet Name";

 int row = 1;
 foreach (Car c in carsInStock)
 {
 row++;
 // Must cast each Object as Range and call low-level Value2 prop!
 ((Excel.Range)workSheet.Cells[row, "A"]).Value2 = c.Make;
 ((Excel.Range)workSheet.Cells[row, "B"]).Value2 = c.Color;
 ((Excel.Range)workSheet.Cells[row, "C"]).Value2 = c.PetName;
 }

 // Must call get_Range method and then specify all missing args!
 excelApp.get_Range("A1", Type.Missing).AutoFormat(
 Excel.XlRangeAutoFormat.xlRangeAutoFormatClassic2,
 Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing);

 // Must specify all missing optional args!
 workSheet.SaveAs(string.Format(@"{0}\Inventory.xlsx", Environment.CurrentDirectory),
 Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing);

 excelApp.Quit();
 MessageBox.Show("The Inventory.xslx file has been saved to your app folder",
 "Export complete!");
}

Chapter 16 ■ DynamiC types anD the DynamiC Language runtime

621

Although the end result of running this program is identical, this version of the method is much more
verbose, as I am sure you agree. That wraps up your look at the C# dynamic keyword and the DLR. I hope
you can see how these features can simplify complex programming tasks and (perhaps more importantly)
understand the trade-offs. When you opt into dynamic data, you do lose a good amount of type safety, and
your code base is prone to many more runtime errors.

While there is certainly more to say about the DLR, this chapter has tried to focus on topics that are
practical and useful in your day-to-day programming. If you want to learn more about advanced features
of the Dynamic Language Runtime, such as integrating with scripting languages, be sure to consult the
.NET Framework 4.6 SDK documentation (look up the topic “Dynamic Language Runtime Overview” to get
started).

 ■ Source Code the exportDatatoOfficeapp project is included in the Chapter 16 subdirectory.

Summary
The dynamic keyword introduced in C# 4.0 allows you to define data whose true identity is not known until
runtime. When processed by the new Dynamic Language Runtime, the automatically created “expression
tree” will be passed to the correct dynamic language binder, where the payload will be unpackaged and sent
to the correct object member.

Using dynamic data and the DLR, a number of complex C# programming tasks can be radically
simplified, especially the act of incorporating COM libraries into your .NET applications. As you have also
seen in this chapter, .NET 4.0 and higher provides a number of further simplifications to COM interop
(which have nothing to do with dynamic data), such as embedding COM interop data into your applications,
optional arguments, and named arguments.

While these features can certainly simplify your code, always remember that dynamic data makes
your C# code much less type safe and open to runtime errors. Be sure you weigh the pros and cons of using
dynamic data in your C# projects, and test accordingly!

http://dx.doi.org/10.1007/978-1-4842-1332-2_16

623

Chapter 17

Processes, AppDomains, and
Object Contexts

In Chapters 14 and 15, you examined the steps taken by the CLR to resolve the location of a referenced
external assembly, as well as the role of .NET metadata. In this chapter, you’ll drill deeper into the details
of how an assembly is hosted by the CLR and come to understand the relationship between processes,
application domains, and object contexts.

In a nutshell, application domains (or simply AppDomains) are logical subdivisions within a given
process that host a set of related .NET assemblies. As you will see, an AppDomain is further subdivided into
contextual boundaries, which are used to group like-minded .NET objects. Using the notion of context, the
CLR is able to ensure that objects with special runtime requirements are handled appropriately.

While it is true that many of your day-to-day programming tasks might not involve directly working with
processes, AppDomains, or object contexts, understanding these topics is important when working with
numerous .NET APIs, including Windows Communication Foundation (WCF), multithreading and parallel
processing, and object serialization.

The Role of a Windows Process
The concept of a “process” existed within Windows-based operating systems well before the release of the
.NET platform. In simple terms, a process is a running program. However, formally speaking, a process is
an operating system–level concept used to describe a set of resources (such as external code libraries and
the primary thread) and the necessary memory allocations used by a running application. For each *.exe
loaded into memory, the OS creates a separate and isolated process for use during its lifetime.

Using this approach to application isolation, the result is a much more robust and stable runtime
environment, given that the failure of one process does not affect the functioning of another. Furthermore,
data in one process cannot be directly accessed by another process, unless you make use of a distributed
computing programming API such as Windows Communication Foundation. Given these points, you can
regard the process as a fixed, safe boundary for a running application.

Now, every Windows process is assigned a unique process identifier (PID) and may be independently
loaded and unloaded by the OS as necessary (as well as programmatically). As you might be aware, the
Processes tab of the Windows Task Manager utility (activated via the Ctrl+Shift+Esc keystroke combination)
allows you to view various statistics regarding the processes running on a given machine. The Details tab
allows you to view the assigned PID and image name (see Figure 17-1).

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

624

 ■ Note in Windows 10, you can view the piD of a process on the services tab.

The Role of Threads
Every Windows process contains an initial “thread” that functions as the entry point for the application.
Chapter 19 examines the details of building multithreaded applications under the .NET platform; however,
to facilitate the topics presented here, you need a few working definitions. First, a thread is a path of
execution within a process. Formally speaking, the first thread created by a process’s entry point is termed
the primary thread. Any .NET executable program (Console Application, Windows service, WPF application,
etc.) marks its entry point with the Main() method. When this method is invoked, the primary thread is
created automatically.

Figure 17-1. The Windows Task Manager

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

625

Processes that contain a single primary thread of execution are intrinsically thread safe, given the
fact that there is only one thread that can access the data in the application at a given time. However, a
single-threaded process (especially one that is GUI-based) will often appear a bit unresponsive to the user
if this single thread is performing a complex operation (such as printing out a lengthy text file, performing
a mathematically intensive calculation, or attempting to connect to a remote server located thousands of
miles away).

Given this potential drawback of single-threaded applications, the Windows API (as well as the .NET
platform) makes it possible for the primary thread to spawn additional secondary threads (also termed
worker threads) using a handful of Windows API functions such as CreateThread(). Each thread (primary
or secondary) becomes a unique path of execution in the process and has concurrent access to all shared
points of data within the process.

As you might have guessed, developers typically create additional threads to help improve the
program’s overall responsiveness. Multithreaded processes provide the illusion that numerous activities
are happening at more or less the same time. For example, an application may spawn a worker thread to
perform a labor-intensive unit of work (again, such as printing a large text file). As this secondary thread is
churning away, the main thread is still responsive to user input, which gives the entire process the potential
of delivering greater performance. However, this may not actually be the case: using too many threads in a
single process can actually degrade performance, as the CPU must switch between the active threads in the
process (which takes time).

On some machines, multithreading is most commonly an illusion provided by the OS. Machines that
host a single (non-hyperthreaded) CPU do not have the ability to literally handle multiple threads at the
same time. Rather, a single CPU will execute one thread for a unit of time (called a time slice) based in part
on the thread’s priority level. When a thread’s time slice is up, the existing thread is suspended to allow
another thread to perform its business. For a thread to remember what was happening before it was kicked
out of the way, each thread is given the ability to write to Thread Local Storage (TLS) and is provided with a
separate call stack, as illustrated in Figure 17-2.

If the subject of threads is new to you, don’t sweat the details. At this point, just remember that a thread
is a unique path of execution within a Windows process. Every process has a primary thread (created via the
executable’s entry point) and may contain additional threads that have been programmatically created.

Figure 17-2. The Windows process/thread relationship

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

626

Interacting with Processes Under the .NET Platform
Although processes and threads are nothing new, the manner in which you interact with these primitives
under the .NET platform has changed quite a bit (for the better). To pave the way to understanding the world
of building multithreaded assemblies (see Chapter 19), let’s begin by checking out how to interact with
processes using the .NET base class libraries.

The System.Diagnostics namespace defines a number of types that allow you to programmatically
interact with processes and various diagnostic-related types such as the system event log and performance
counters. In this chapter, you are concerned with only the process-centric types defined in Table 17-1.

The System.Diagnostics.Process class allows you to analyze the processes running on a given
machine (local or remote). The Process class also provides members that allow you to programmatically
start and terminate processes, view (or modify) a process’s priority level, and obtain a list of active
threads and/or loaded modules within a given process. Table 17-2 lists some of the key properties of
System.Diagnostics.Process.

Table 17-1. Select Members of the System.Diagnostics Namespace

Process-Centric Types of the
System.Diagnostics Namespace

Meaning in Life

Process The Process class provides access to local and remote processes and
also allows you to programmatically start and stop processes.

ProcessModule This type represents a module (*.dll or *.exe) that is loaded into
a particular process. Understand that the ProcessModule type can
represent any module—COM-based, .NET-based, or traditional
C-based binaries.

ProcessModuleCollection This provides a strongly typed collection of ProcessModule objects.

ProcessStartInfo This specifies a set of values used when starting a process via the
Process.Start() method.

ProcessThread This type represents a thread within a given process. Be aware that
ProcessThread is a type used to diagnose a process’s thread set and is
not used to spawn new threads of execution within a process.

ProcessThreadCollection This provides a strongly typed collection of ProcessThread objects.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

627

In addition to the properties just examined, System.Diagnostics.Process also defines a few useful
methods (see Table 17-3).

Table 17-2. Select Properties of the Process Type

Property Meaning in Life

ExitTime This property gets the timestamp associated with the process that has terminated
(represented with a DateTime type).

Handle This property returns the handle (represented by an IntPtr) associated to the
process by the OS. This can be useful when building .NET applications that need to
communicate with unmanaged code.

Id This property gets the PID for the associated process.

MachineName This property gets the name of the computer the associated process is running on.

MainWindowTitle MainWindowTitle gets the caption of the main window of the process (if the process
does not have a main window, you receive an empty string).

Modules This property provides access to the strongly typed ProcessModuleCollection
type, which represents the set of modules (*.dll or *.exe) loaded within the
current process.

ProcessName This property gets the name of the process (which, as you would assume, is the
name of the application itself).

Responding This property gets a value indicating whether the user interface of the process is
responding to user input (or is currently “hung”).

StartTime This property gets the time that the associated process was started (via a DateTime
type).

Threads This property gets the set of threads that are running in the associated process
(represented via a collection of ProcessThread objects).

Table 17-3. Select Methods of the Process Type

Method Meaning in Life

CloseMainWindow() This method closes a process that has a user interface by sending a close
message to its main window.

GetCurrentProcess() This static method returns a new Process object that represents the
currently active process.

GetProcesses() This static method returns an array of new Process objects running on a
given machine.

Kill() This method immediately stops the associated process.

Start() This method starts a process.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

628

Enumerating Running Processes
To illustrate the process of manipulating Process objects (pardon the redundancy), create a C# Console
Application project named ProcessManipulator that defines the following static helper method within the
Program class (be sure you import the System.Diagnostics namespace in your code file):

static void ListAllRunningProcesses()
{
 // Get all the processes on the local machine, ordered by
 // PID.
 var runningProcs =
 from proc in Process.GetProcesses(".") orderby proc.Id select proc;

 // Print out PID and name of each process.
 foreach(var p in runningProcs)
 {
 string info = string.Format("-> PID: {0}\tName: {1}",
 p.Id, p.ProcessName);
 Console.WriteLine(info);
 }
 Console.WriteLine("************************************\n");
}

The static Process.GetProcesses() method returns an array of Process objects that represent the
running processes on the target machine (the dot notation shown here represents the local computer).
After you have obtained the array of Process objects, you are able to invoke any of the members listed in
Tables 17-2 and 17-3. Here, you are simply displaying the PID and the name of each process, ordered by PID.
Assuming the Main() method has been updated to call ListAllRunningProcesses() as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Processes *****\n");
 ListAllRunningProcesses();
 Console.ReadLine();
}

you will see the names and PIDs for all processes on your local computer. Here is some partial output from
my current machine (your output will most likely be different):

***** Fun with Processes *****

-> PID: 0 Name: Idle
-> PID: 4 Name: System
-> PID: 108 Name: iexplore
-> PID: 268 Name: smss
-> PID: 432 Name: csrss
-> PID: 448 Name: svchost
-> PID: 472 Name: wininit
-> PID: 504 Name: csrss
-> PID: 536 Name: winlogon
-> PID: 560 Name: services

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

629

-> PID: 584 Name: lsass
-> PID: 592 Name: lsm
-> PID: 660 Name: devenv
-> PID: 684 Name: svchost
-> PID: 760 Name: svchost
-> PID: 832 Name: svchost
-> PID: 844 Name: svchost
-> PID: 856 Name: svchost
-> PID: 900 Name: svchost
-> PID: 924 Name: svchost
-> PID: 956 Name: VMwareService
-> PID: 1116 Name: spoolsv
-> PID: 1136 Name: ProcessManipulator.vshost

Investigating a Specific Process
In addition to obtaining a complete list of all running processes on a given machine, the static
Process.GetProcessById() method allows you to obtain a single Process object via the associated PID. If
you request access to a nonexistent PID, an ArgumentException exception is thrown. For example, if you
were interested in obtaining a Process object representing a process with the PID of 987, you could write the
following code:

// If there is no process with the PID of 987, a
// runtime exception will be thrown.
static void GetSpecificProcess()
{
 Process theProc = null;
 try
 {
 theProc = Process.GetProcessById(987);
 }
 catch(ArgumentException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

At this point, you have learned how to get a list of all processes, as well as a specific process on a
machine via a PID lookup. While it is somewhat useful to discover PIDs and process names, the Process
class also allows you to discover the set of current threads and libraries used within a given process. Let’s see
how to do so.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

630

Investigating a Process’s Thread Set
The set of threads is represented by the strongly typed ProcessThreadCollection collection, which contains
some number of individual ProcessThread objects. To illustrate, assume the following additional static
helper function has been added to your current application:

static void EnumThreadsForPid(int pID)
{
 Process theProc = null;
 try
 {
 theProc = Process.GetProcessById(pID);
 }
 catch(ArgumentException ex)
 {
 Console.WriteLine(ex.Message);
 return;
 }

 // List out stats for each thread in the specified process.
 Console.WriteLine("Here are the threads used by: {0}",
 theProc.ProcessName);
 ProcessThreadCollection theThreads = theProc.Threads;

 foreach(ProcessThread pt in theThreads)
 {
 string info =
 string.Format("-> Thread ID: {0}\tStart Time: {1}\tPriority: {2}",
 pt.Id , pt.StartTime.ToShortTimeString(), pt.PriorityLevel);
 Console.WriteLine(info);
 }
 Console.WriteLine("************************************\n");
}

As you can see, the Threads property of the System.Diagnostics.Process type provides access to the
ProcessThreadCollection class. Here, you are printing the assigned thread ID, start time, and priority level
of each thread in the process specified by the client. Now, update your program’s Main() method to prompt
the user for a PID to investigate, as follows:

static void Main(string[] args)
{
...
 // Prompt user for a PID and print out the set of active threads.
 Console.WriteLine("***** Enter PID of process to investigate *****");
 Console.Write("PID: ");
 string pID = Console.ReadLine();
 int theProcID = int.Parse(pID);

 EnumThreadsForPid(theProcID);
 Console.ReadLine();
}

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

631

When you run your program, you can now enter the PID of any process on your machine and see the
threads used in the process. The following output shows the threads used by PID 108 on my machine, which
happens to be hosting Microsoft Internet Explorer:

***** Enter PID of process to investigate *****
PID: 108
Here are the threads used by: iexplore
-> Thread ID: 680 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 2040 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 880 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 3380 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 3376 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 3448 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 3476 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 2264 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 2380 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 2384 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 2308 Start Time: 9:05 AM Priority: Normal
-> Thread ID: 3096 Start Time: 9:07 AM Priority: Highest
-> Thread ID: 3600 Start Time: 9:45 AM Priority: Normal
-> Thread ID: 1412 Start Time: 10:02 AM Priority: Normal

The ProcessThread type has additional members of interest beyond Id, StartTime, and PriorityLevel.
Table 17-4 documents some members of interest.

Before you read any further, be aware that the ProcessThread type is not the entity used to create,
suspend, or kill threads under the .NET platform. Rather, ProcessThread is a vehicle used to obtain
diagnostic information for the active Windows threads within a running process. Again, you will investigate
how to build multithreaded applications using the System.Threading namespace in Chapter 19.

Table 17-4. Select Members of the ProcessThread Type

Member Meaning in Life

CurrentPriority Gets the current priority of the thread

Id Gets the unique identifier of the thread

IdealProcessor Sets the preferred processor for this thread to run on

PriorityLevel Gets or sets the priority level of the thread

ProcessorAffinity Sets the processors on which the associated thread can run

StartAddress Gets the memory address of the function that the operating system called that
started this thread

StartTime Gets the time that the operating system started the thread

ThreadState Gets the current state of this thread

TotalProcessorTime Gets the total amount of time that this thread has spent using the processor

WaitReason Gets the reason that the thread is waiting

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

632

Investigating a Process’s Module Set
Next up, let’s check out how to iterate over the number of loaded modules that are hosted within a given
process. When talking about processes, a module is a general term used to describe a given *.dll (or the
*.exe itself) that is hosted by a specific process. When you access the ProcessModuleCollection via the
Process.Modules property, you are able to enumerate over all modules hosted within a process: .NET-
based, COM-based, or traditional C-based libraries. Ponder the following additional helper function that will
enumerate the modules in a specific process based on the PID:

static void EnumModsForPid(int pID)
{
 Process theProc = null;
 try
 {
 theProc = Process.GetProcessById(pID);
 }
 catch(ArgumentException ex)
 {
 Console.WriteLine(ex.Message);
 return;
 }

 Console.WriteLine("Here are the loaded modules for: {0}",
 theProc.ProcessName);
 ProcessModuleCollection theMods = theProc.Modules;
 foreach(ProcessModule pm in theMods)
 {
 string info = string.Format("-> Mod Name: {0}", pm.ModuleName);
 Console.WriteLine(info);
 }
 Console.WriteLine("************************************\n");
}

To see some possible output, let’s check out the loaded modules for the process hosting the current
example program (ProcessManipulator). To do so, run the application, identify the PID assigned to
ProcessManipulator.exe (via the Task Manager), and pass this value to the EnumModsForPid() method
(be sure to update your Main() method accordingly). Once you do, you might be surprised to see the list of
*.dlls used for a simple Console Application project (GDI32.dll, USER32.dll, ole32.dll, and so forth).
Consider the following output:

Here are the loaded modules for: ProcessManipulator
-> Mod Name: ProcessManipulator.exe
-> Mod Name: ntdll.dll
-> Mod Name: MSCOREE.DLL
-> Mod Name: KERNEL32.dll
-> Mod Name: KERNELBASE.dll
-> Mod Name: ADVAPI32.dll
-> Mod Name: msvcrt.dll
-> Mod Name: sechost.dll
-> Mod Name: RPCRT4.dll
-> Mod Name: SspiCli.dll

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

633

-> Mod Name: CRYPTBASE.dll
-> Mod Name: mscoreei.dll
-> Mod Name: SHLWAPI.dll
-> Mod Name: GDI32.dll
-> Mod Name: USER32.dll
-> Mod Name: LPK.dll
-> Mod Name: USP10.dll
-> Mod Name: IMM32.DLL
-> Mod Name: MSCTF.dll
-> Mod Name: clr.dll
-> Mod Name: MSVCR100_CLR0400.dll
-> Mod Name: mscorlib.ni.dll
-> Mod Name: nlssorting.dll
-> Mod Name: ole32.dll
-> Mod Name: clrjit.dll
-> Mod Name: System.ni.dll
-> Mod Name: System.Core.ni.dll
-> Mod Name: psapi.dll
-> Mod Name: shfolder.dll
-> Mod Name: SHELL32.dll

Starting and Stopping Processes Programmatically
The final aspects of the System.Diagnostics.Process class examined here are the Start() and Kill()
methods. As you can gather by their names, these members provide a way to programmatically launch and
terminate a process, respectively. For example, consider the following static StartAndKillProcess()
helper method:

 ■ Note You must be running Visual studio with administrator rights to start new processes. if this is not the
case, you will receive a runtime error.

static void StartAndKillProcess()
{
 Process ieProc = null;

 // Launch Internet Explorer, and go to facebook!
 try
 {
 ieProc = Process.Start("IExplore.exe", "www.facebook.com");
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine(ex.Message);
 }

http://www.facebook.com/

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

634

 Console.Write("--> Hit enter to kill {0}...", ieProc.ProcessName);
 Console.ReadLine();

 // Kill the iexplore.exe process.
 try
 {
 ieProc.Kill();
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

The static Process.Start() method has been overloaded a few times. At a minimum, you will need
to specify the friendly name of the process you want to launch (such as Microsoft Internet Explorer,
iexplore.exe). This example uses a variation of the Start() method that allows you to specify any
additional arguments to pass into the program’s entry point (i.e., the Main() method).

After you call the Start() method, you are returned a reference to the newly activated process. When
you want to terminate the process, simply call the instance-level Kill() method. Here, you are wrapping the
calls to Start() and Kill() within a try/catch block and handling any InvalidOperationException errors.
This is especially important when calling the Kill() method, as this error will be raised if the process has
already been terminated prior to calling Kill().

Controlling Process Startup Using the ProcessStartInfo Class
The Start() method also allows you to pass in a System.Diagnostics.ProcessStartInfo type to specify
additional bits of information regarding how a given process should come to life. Here is a partial definition
of ProcessStartInfo (see the .NET Framework 4.5 SDK documentation for full details):

public sealed class ProcessStartInfo : object
{
 public ProcessStartInfo();
 public ProcessStartInfo(string fileName);
 public ProcessStartInfo(string fileName, string arguments);
 public string Arguments { get; set; }
 public bool CreateNoWindow { get; set; }
 public StringDictionary EnvironmentVariables { get; }
 public bool ErrorDialog { get; set; }
 public IntPtr ErrorDialogParentHandle { get; set; }
 public string FileName { get; set; }
 public bool LoadUserProfile { get; set; }
 public SecureString Password { get; set; }
 public bool RedirectStandardError { get; set; }
 public bool RedirectStandardInput { get; set; }
 public bool RedirectStandardOutput { get; set; }
 public Encoding StandardErrorEncoding { get; set; }
 public Encoding StandardOutputEncoding { get; set; }
 public bool UseShellExecute { get; set; }
 public string Verb { get; set; }

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

635

 public string[] Verbs { get; }
 public ProcessWindowStyle WindowStyle { get; set; }
 public string WorkingDirectory { get; set; }
}

To illustrate how to fine-tune your process startup, here is a modified version of
StartAndKillProcess(), which will load Microsoft Internet Explorer, navigate to www.facebook.com, and
show the window in a maximized state:

static void StartAndKillProcess()
{
 Process ieProc = null;

 // Launch Internet Explorer, and go to facebook,
 // with maximized window.
 try
 {
 ProcessStartInfo startInfo = new
 ProcessStartInfo("IExplore.exe", "www.facebook.com");
 startInfo.WindowStyle = ProcessWindowStyle.Maximized;

 ieProc = Process.Start(startInfo);
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine(ex.Message);
 }
...
}

Great! Now that you understand the role of Windows processes and how to interact with them from C#
code, you are ready to investigate the concept of a .NET application domain.

 ■ Source Code the processmanipulator project is included in the Chapter 17 subdirectory.

Understanding .NET Application Domains
Under the .NET platform, executables are not hosted directly within a Windows process, as is the case in
traditional unmanaged applications. Rather, a .NET executable is hosted by a logical partition within a
process termed an application domain. As you will see, a single process may contain multiple application
domains, each of which is hosting a .NET executable. This additional subdivision of a traditional Windows
process offers several benefits, some of which are as follows:

•	 AppDomains are a key aspect of the OS-neutral nature of the .NET platform, given
that this logical division abstracts away the differences in how an underlying OS
represents a loaded executable.

http://www.facebook.com/
http://www.facebook.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

636

•	 AppDomains are far less expensive in terms of processing power and memory than
a full-blown process. Thus, the CLR is able to load and unload application domains
much quicker than a formal process and can drastically improve scalability of server
applications.

•	 AppDomains provide a deeper level of isolation for hosting a loaded application.
If one AppDomain within a process fails, the remaining AppDomains remain
functional.

As mentioned, a single process can host any number of AppDomains, each of which is fully and
completely isolated from other AppDomains within this process (or any other process). Given this fact, be
aware that an application running in one AppDomain is unable to obtain data of any kind (global variables
or static fields) within another AppDomain, unless they use a distributed programming protocol (such as
Windows Communication Foundation).

While a single process may host multiple AppDomains, this is not typically the case. At the least, an
OS process will host what is termed the default application domain. This specific application domain
is automatically created by the CLR at the time the process launches. After this point, the CLR creates
additional application domains on an as-needed basis.

The System.AppDomain Class
The .NET platform allows you to programmatically monitor AppDomains, create new AppDomains (or
unload them) at runtime, load assemblies into AppDomains, and perform a whole slew of additional tasks,
using the AppDomain class in the System namespace of mscorlib.dll. Table 17-5 documents some useful
methods of the AppDomain class (consult the .NET Framework 4.6 SDK documentation for full details).

Table 17-5. Select Methods of AppDomain

Method Meaning in Life

CreateDomain() This static method allows you to create a new AppDomain in the current process.

CreateInstance() This creates an instance of a type in an external assembly, after loading said
assembly into the calling application domain.

ExecuteAssembly() This method executes an *.exe assembly within an application domain, given
its file name.

GetAssemblies() This method gets the set of .NET assemblies that have been loaded into this
application domain (COM-based or C-based binaries are ignored).

GetCurrentThreadId() This static method returns the ID of the active thread in the current application
domain.

Load() This method is used to dynamically load an assembly into the current
application domain.

Unload() This is another static method that allows you to unload a specified AppDomain
within a given process.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

637

 ■ Note the .net platform does not allow you to unload a specific assembly from memory. the only way to
programmatically unload libraries is to tear down the hosting application domain via the Unload() method.

In addition, the AppDomain class defines a set of properties that can be useful when you want to monitor
activity of a given application domain. Table 17-6 documents some core properties of interest.

Table 17-6. Select Properties of AppDomain

Property Meaning in Life

BaseDirectory This gets the directory path that the assembly resolver uses to probe for
assemblies.

CurrentDomain This static property gets the application domain for the currently executing
thread.

FriendlyName This gets the friendly name of the current application domain.

MonitoringIsEnabled This gets or sets a value that indicates whether CPU and memory monitoring
of application domains is enabled for the current process. Once monitoring is
enabled for a process, it cannot be disabled.

SetupInformation This gets the configuration details for a given application domain, represented
by an AppDomainSetup object.

Table 17-7. Select Events of the AppDomain Type

Event Meaning in Life

AssemblyLoad This occurs when an assembly is loaded into memory.

AssemblyResolve This event will fire when the assembly resolver cannot find the location of a
required assembly.

DomainUnload This occurs when an AppDomain is about to be unloaded from the hosting
process.

FirstChanceException This event allows you to be notified that an exception has been thrown
from the application domain, before the CLR will begin looking for a fitting
catch statement.

ProcessExit This occurs on the default application domain when the default application
domain’s parent process exits.

UnhandledException This occurs when an exception is not caught by an exception handler.

Last but not least, the AppDomain class supports a set of events that correspond to various aspects of an
application domain’s life cycle. Table 17-7 shows some of the more useful events you can hook into.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

638

Interacting with the Default Application Domain
Recall that when a .NET executable starts, the CLR will automatically place it into the default AppDomain of
the hosting process. This is done automatically and transparently, and you never have to author any specific
code to do so. However, it is possible for your application to gain access to this default application domain
using the static AppDomain.CurrentDomain property. After you have this access point, you are able to hook
into any events of interest or use the methods and properties of AppDomain to perform some runtime
diagnostics.

To learn how to interact with the default application domain, begin by creating a new Console
Application project named DefaultAppDomainApp. Now, update your program with the following logic,
which will simply display some details about the default application domain, using a number of members of
the AppDomain class:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with the default AppDomain *****\n");
 DisplayDADStats();
 Console.ReadLine();
 }

 private static void DisplayDADStats()
 {
 // Get access to the AppDomain for the current thread.
 AppDomain defaultAD = AppDomain.CurrentDomain;

 // Print out various stats about this domain.
 Console.WriteLine("Name of this domain: {0}", defaultAD.FriendlyName);
 Console.WriteLine("ID of domain in this process: {0}", defaultAD.Id);
 Console.WriteLine("Is this the default domain?: {0}",
 defaultAD.IsDefaultAppDomain());
 Console.WriteLine("Base directory of this domain: {0}", defaultAD.BaseDirectory);
 }
}

The output of this example is shown here:

***** Fun with the default AppDomain *****

Name of this domain: DefaultAppDomainApp.exe
ID of domain in this process: 1
Is this the default domain?: True
Base directory of this domain: E:\MyCode\DefaultAppDomainApp\bin\Debug\

Notice that the name of the default application domain will be identical to the name of the executable
that is contained within it (DefaultAppDomainApp.exe, in this example). Also notice that the base directory
value, which will be used to probe for externally required private assemblies, maps to the current location of
the deployed executable.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

639

Enumerating Loaded Assemblies
It is also possible to discover all the loaded .NET assemblies within a given application domain using the
instance-level GetAssemblies() method. This method will return to you an array of Assembly objects,
which, as you recall from the Chapter 15, is a member of the System.Reflection namespace (so don’t forget
to import this namespace into your C# code file).

To illustrate, define a new method named ListAllAssembliesInAppDomain() within the Program class.
This helper method will obtain all loaded assemblies and print the friendly name and version of each.

static void ListAllAssembliesInAppDomain()
{
 // Get access to the AppDomain for the current thread.
 AppDomain defaultAD = AppDomain.CurrentDomain;

 // Now get all loaded assemblies in the default AppDomain.
 Assembly[] loadedAssemblies = defaultAD.GetAssemblies();
 Console.WriteLine("***** Here are the assemblies loaded in {0} *****\n",
 defaultAD.FriendlyName);
 foreach(Assembly a in loadedAssemblies)
 {
 Console.WriteLine("-> Name: {0}", a.GetName().Name);
 Console.WriteLine("-> Version: {0}\n", a.GetName().Version);
 }
}

Assuming you have updated your Main() method to call this new member, you will see that the
application domain hosting your executable is currently making use of the following .NET libraries:

***** Here are the assemblies loaded in DefaultAppDomainApp.exe *****

-> Name: mscorlib
-> Version: 4.0.0.0

-> Name: DefaultAppDomainApp
-> Version: 1.0.0.0

Now understand that the list of loaded assemblies can change at any time as you author new C# code.
For example, assume you have updated your ListAllAssembliesInAppDomain() method to make use of a
LINQ query, which will order the loaded assemblies by name, as follows:

static void ListAllAssembliesInAppDomain()
{
 // Get access to the AppDomain for the current thread.
 AppDomain defaultAD = AppDomain.CurrentDomain;

 // Now get all loaded assemblies in the default AppDomain.
 var loadedAssemblies = from a in defaultAD.GetAssemblies()
 orderby a.GetName().Name select a;

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

640

 Console.WriteLine("***** Here are the assemblies loaded in {0} *****\n",
 defaultAD.FriendlyName);
 foreach (var a in loadedAssemblies)
 {
 Console.WriteLine("-> Name: {0}", a.GetName().Name);
 Console.WriteLine("-> Version: {0}\n", a.GetName().Version);
 }
}

If you were to run the program once again, you would see that System.Core.dll and System.dll have
also been loaded into memory, as they are required for the LINQ to Objects API.

***** Here are the assemblies loaded in DefaultAppDomainApp.exe *****

-> Name: DefaultAppDomainApp
-> Version: 1.0.0.0

-> Name: mscorlib
-> Version: 4.0.0.0

-> Name: System
-> Version: 4.0.0.0

-> Name: System.Core
-> Version: 4.0.0.0

Receiving Assembly Load Notifications
If you want to be informed by the CLR when a new assembly has been loaded into a given
application domain, you may handle the AssemblyLoad event. This event is typed against the
AssemblyLoadEventHandler delegate, which can point to any method taking a System.Object as the first
parameter and an AssemblyLoadEventArgs as the second.

Let’s add one final method to the current Program class called InitDAD(). As the name suggests, this
method will initialize the default application domain, specifically by handling the AssemblyLoad event via a
fitting lambda expression.

private static void InitDAD()
{
 // This logic will print out the name of any assembly
 // loaded into the applicaion domain, after it has been
 // created.
 AppDomain defaultAD = AppDomain.CurrentDomain;
 defaultAD.AssemblyLoad += (o, s) =>
 {
 Console.WriteLine("{0} has been loaded!", s.LoadedAssembly.GetName().Name);
 };
}

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

641

As you would expect, when you run the modified application, you will be notified when a new
assembly has been loaded. Here, you are simply printing the friendly name of the assembly, using the
LoadedAssembly property of the incoming AssemblyLoadedEventArgs parameter.

 ■ Source Code the DefaultappDomainapp project is included in the Chapter 17 subdirectory.

Creating New Application Domains
Recall that a single process is capable of hosting multiple application domains via the static
AppDomain.CreateDomain() method. While creating new AppDomains on the fly is a rather infrequent task
for most .NET applications, it is important to understand the basics of doing so. For example, as you will see
later in this text, when you build dynamic assemblies (see Chapter 18), you will need to install them into a
custom AppDomain. As well, several .NET security APIs require you to understand how to construct new
AppDomains to isolate assemblies based on supplied security credentials.

To investigate how to create new application domains on the fly (and how to load new assemblies
into these custom homes), create a new Console Application project named CustomAppDomains. The
AppDomain.CreateDomain() method has been overloaded a number of times. At minimum, you will specify
the friendly name of the new application domain to be constructed. Update your Program class with the
following code. Here, you are leveraging the ListAllAssembliesInAppDomain() method from the previous
example; however, this time you are passing in the AppDomain object to analyze as an incoming argument.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Custom AppDomains *****\n");

 // Show all loaded assemblies in default AppDomain.
 AppDomain defaultAD = AppDomain.CurrentDomain;
 ListAllAssembliesInAppDomain(defaultAD);
 // Make a new AppDomain.
 MakeNewAppDomain();
 Console.ReadLine();
 }

 private static void MakeNewAppDomain()
 {
 // Make a new AppDomain in the current process and
 // list loaded assemblies.
 AppDomain newAD = AppDomain.CreateDomain("SecondAppDomain");
 ListAllAssembliesInAppDomain(newAD);
 }

 static void ListAllAssembliesInAppDomain(AppDomain ad)
 {
 // Now get all loaded assemblies in the default AppDomain.
 var loadedAssemblies = from a in ad.GetAssemblies()
 orderby a.GetName().Name select a;

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

642

 Console.WriteLine("***** Here are the assemblies loaded in {0} *****\n",
 ad.FriendlyName);
 foreach (var a in loadedAssemblies)
 {
 Console.WriteLine("-> Name: {0}", a.GetName().Name);
 Console.WriteLine("-> Version: {0}\n", a.GetName().Version);
 }
 }
}

If you run the current example, you will see that the default application domain (CustomAppDomains.
exe) has loaded mscorlib.dll, System.dll, System.Core.dll, and CustomAppDomains.exe, given the C#
code base of the current project. However, the new application domain contains only mscorlib.dll, which,
as you recall, is the one .NET assembly that is always loaded by the CLR for every application domain.

***** Fun with Custom AppDomains *****

***** Here are the assemblies loaded in CustomAppDomains.exe *****

-> Name: CustomAppDomains
-> Version: 1.0.0.0

-> Name: mscorlib
-> Version: 4.0.0.0

-> Name: System
-> Version: 4.0.0.0

-> Name: System.Core
-> Version: 4.0.0.0

***** Here are the assemblies loaded in SecondAppDomain *****

-> Name: mscorlib
-> Version: 4.0.0.0

 ■ Note if you debug this project (via F5), you will find many additional assemblies are loaded into each
appDomain, which are used by the Visual studio debugging process. running this project (via Ctrl+F5) will
display only the assemblies directly within each appDomain.

This might seem counterintuitive if you have a background in traditional Windows. (As you might
suspect, both application domains have access to the same assembly set.) Recall, however, that an assembly
loads into an application domain, not directly into the process itself.

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

643

Loading Assemblies into Custom Application Domains
The CLR will always load assemblies into the default application domain when required. However, if
you do ever manually create new AppDomains, you can load assemblies into said AppDomain using the
AppDomain.Load() method. Also, be aware that the AppDomain.ExecuteAssembly() method can be called to
load an *.exe assembly and execute the Main() method.

Assume that you want to load CarLibrary.dll into your new secondary AppDomain. Provided
you have copied this library to the \bin\Debug folder of the current application, you could update the
MakeNewAppDomain() method as so (be sure to import the System.IO namespace, to gain access to the
FileNotFoundException class):

private static void MakeNewAppDomain()
{
 // Make a new AppDomain in the current process.
 AppDomain newAD = AppDomain.CreateDomain("SecondAppDomain");

 try
 {
 // Now load CarLibrary.dll into this new domain.
 newAD.Load("CarLibrary");
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine(ex.Message);
 }

 // List all assemblies.
 ListAllAssembliesInAppDomain(newAD);
}

This time, the output of the program would appear as so (note the presence of CarLibrary.dll):

***** Fun with Custom AppDomains *****

***** Here are the assemblies loaded in CustomAppDomains.exe *****

-> Name: CustomAppDomains
-> Version: 1.0.0.0

-> Name: mscorlib
-> Version: 4.0.0.0

-> Name: System
-> Version: 4.0.0.0

-> Name: System.Core
-> Version: 4.0.0.0

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

644

***** Here are the assemblies loaded in SecondAppDomain *****

-> Name: CarLibrary
-> Version: 2.0.0.0

-> Name: mscorlib
-> Version: 4.0.0.0

 ■ Note remember, if you debug this application, you will see many additional libraries loaded into each
application domain.

Programmatically Unloading AppDomains
It is important to point out that the CLR does not permit unloading individual .NET assemblies. However,
using the AppDomain.Unload() method, you are able to selectively unload a given application domain from
its hosting process. When you do so, the application domain will unload each assembly in turn.

Recall that the AppDomain type defines the DomainUnload event, which is fired when a custom
application domain is unloaded from the containing process. Another event of interest is the ProcessExit
event, which is fired when the default application domain is unloaded from the process (which obviously
entails the termination of the process itself).

If you want to programmatically unload newAD from the hosting process and be notified when the
associated application domain is torn down, you could update MakeNewAppDomain() with the following
additional logic:

private static void MakeNewAppDomain()
{
 // Make a new AppDomain in the current process.
 AppDomain newAD = AppDomain.CreateDomain("SecondAppDomain");
 newAD.DomainUnload += (o, s) =>
 {
 Console.WriteLine("The second AppDomain has been unloaded!");
 };

 try
 {
 // Now load CarLibrary.dll into this new domain.
 newAD.Load("CarLibrary");
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine(ex.Message);
 }

 // List all assemblies.
 ListAllAssembliesInAppDomain(newAD);

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

645

 // Now tear down this AppDomain.
 AppDomain.Unload(newAD);
}

If you want to be notified when the default application domain is unloaded, modify your Main()
method to handle the ProcessEvent event of the default application domain, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Custom AppDomains *****\n");

 // Show all loaded assemblies in default AppDomain.
 AppDomain defaultAD = AppDomain.CurrentDomain;
 defaultAD.ProcessExit += (o, s) =>
 {
 Console.WriteLine("Default AD unloaded!");
 };

 ListAllAssembliesInAppDomain(defaultAD);

 MakeNewAppDomain();
 Console.ReadLine();
}

That wraps up your look at the .NET application domain. To conclude this chapter, let’s look at one
further level of partitioning, which is used to group objects into contextual boundaries.

 ■ Source Code the CustomappDomains project is included in the Chapter 17 subdirectory.

Understanding Object Context Boundaries
As you have just seen, AppDomains are logical partitions within a process used to host .NET assemblies.
On a related note, a given application domain may be further subdivided into numerous context boundaries.
In a nutshell, a .NET context provides a way for a single AppDomain to establish a “specific home” for a
given object.

 ■ Note Friendly FYi: While understanding processes and application domains is quite important, most .net
applications will never demand that you work with object contexts. i've included this overview material just to
paint a more complete picture.

Using context, the CLR is able to ensure that objects that have special runtime requirements are handled
in an appropriate and consistent manner by intercepting method invocations into and out of a given context.
This layer of interception allows the CLR to adjust the current method invocation to conform to the contextual
settings of a given object. For example, if you define a C# class type that requires automatic thread safety
(using the [Synchronization] attribute), the CLR will create a “synchronized context” during allocation.

http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

646

Just as a process defines a default AppDomain, every application domain has a default context. This
default context (sometimes referred to as context 0, given that it is always the first context created within an
application domain) is used to group together .NET objects that have no specific or unique contextual needs.
As you might expect, a vast majority of .NET objects are loaded into context 0. If the CLR determines a newly
created object has special needs, a new context boundary is created within the hosting application domain.
Figure 17-3 illustrates the process/AppDomain/context relationship.

Context-Agile and Context-Bound Types
.NET objects that do not demand any special contextual treatment are termed context-agile objects.
These objects can be accessed from anywhere within the hosting AppDomain without interfering with
the object’s runtime requirements. Building context-agile objects is easy, given that you simply do nothing
(specifically, you do not adorn the type with any contextual attributes and do not derive from the
System.ContextBoundObject base class). Here’s an example:

// A context-agile object is loaded into context zero.
class SportsCar{}

On the other hand, objects that do demand contextual allocation are termed context-bound objects, and
they must derive from the System.ContextBoundObject base class. This base class solidifies the fact that
the object in question can function appropriately only within the context in which it was created. Given the
role of .NET context, it should stand to reason that if a context-bound object were to somehow end up in an
incompatible context, bad things would be guaranteed to occur at the most inopportune times.

In addition to deriving from System.ContextBoundObject, a context-sensitive type will also be adorned
by a special category of .NET attributes termed (not surprisingly) context attributes. All context attributes
derive from the ContextAttribute base class. Let’s see an example.

Figure 17-3. Processes, application domains, and context boundaries

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

647

Defining a Context-Bound Object
Assume that you want to define a class (SportsCarTS) that is automatically thread safe in nature, even
though you have not hard-coded thread synchronization logic within the member implementations. To do
so, derive from ContextBoundObject and apply the [Synchronization] attribute as follows:

using System.Runtime.Remoting.Contexts;

// This context-bound type will only be loaded into a
// synchronized (hence thread-safe) context.
[Synchronization]
class SportsCarTS : ContextBoundObject
{}

Types that are attributed with the [Synchronization] attribute are loaded into a thread-safe context.
Given the special contextual needs of the SportsCarTS class type, imagine the problems that would occur if
an allocated object were moved from a synchronized context into a nonsynchronized context. The object is
suddenly no longer thread safe and, thus, becomes a candidate for massive data corruption, as numerous
threads are attempting to interact with the (now thread-volatile) reference object. To ensure the CLR does
not move SportsCarTS objects outside a synchronized context, simply derive from ContextBoundObject.

Inspecting an Object’s Context
Although few of the applications you will write will need to programmatically interact with context, here
is an illustrative example. Create a new Console Application project named ObjectContextApp. This
application defines one context-agile class (SportsCar) and a single context-bound type (SportsCarTS)
as follows:

using System;
using System.Runtime.Remoting.Contexts; // For Context type.
using System.Threading; // For Thread type.

// SportsCar has no special contextual
// needs and will be loaded into the
// default context of the AppDomain.
class SportsCar
{
 public SportsCar()
 {
 // Get context information and print out context ID.
 Context ctx = Thread.CurrentContext;
 Console.WriteLine("{0} object in context {1}",
 this.ToString(), ctx.ContextID);
 foreach(IContextProperty itfCtxProp in ctx.ContextProperties)
 Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);
 }
}

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

648

// SportsCarTS demands to be loaded in
// a synchronization context.
[Synchronization]
class SportsCarTS : ContextBoundObject
{
 public SportsCarTS()
 {
 // Get context information and print out context ID.
 Context ctx = Thread.CurrentContext;
 Console.WriteLine("{0} object in context {1}",
 this.ToString(), ctx.ContextID);
 foreach(IContextProperty itfCtxProp in ctx.ContextProperties)
 Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);
 }
}

Notice that each constructor obtains a Context object from the current thread of execution, via the
static Thread.CurrentContext property. Using the Context object, you are able to print statistics about
the contextual boundary, such as its assigned ID, as well as a set of descriptors obtained via Context.
ContextProperties. This property returns an array of objects implementing the IContextProperty
interface, which exposes each descriptor through the Name property. Now, update Main() to allocate an
instance of each class type, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Context *****\n");

 // Objects will display contextual info upon creation.
 SportsCar sport = new SportsCar();
 Console.WriteLine();

 SportsCar sport2 = new SportsCar();
 Console.WriteLine();

 SportsCarTS synchroSport = new SportsCarTS();
 Console.ReadLine();
}

As the objects come to life, the class constructors will dump out various bits of context-centric information
(the “lease life time service property” printout is a low-level aspect of the .NET remoting layer and can be ignored).

***** Fun with Object Context *****

ObjectContextApp.SportsCar object in context 0
-> Ctx Prop: LeaseLifeTimeServiceProperty

ObjectContextApp.SportsCar object in context 0
-> Ctx Prop: LeaseLifeTimeServiceProperty

ObjectContextApp.SportsCarTS object in context 1
-> Ctx Prop: LeaseLifeTimeServiceProperty
-> Ctx Prop: Synchronization

Chapter 17 ■ proCesses, appDomains, anD objeCt Contexts

649

Given that the SportsCar class has not been qualified with a context attribute, the CLR has allocated
sport and sport2 into context 0 (i.e., the default context). However, the SportsCarTS object is loaded into a
unique contextual boundary (which has been assigned a context ID of 1), given that this context-bound type
was adorned with the [Synchronization] attribute.

 ■ Source Code the objectContextapp project is included in the Chapter 17 subdirectory.

Summarizing Processes, AppDomains, and Context
At this point, you should have a much better idea about how a .NET assembly is hosted by the CLR. These
are the key points:

•	 A .NET process hosts one to many application domains. Each AppDomain is able
to host any number of related .NET assemblies. AppDomains may be independently
loaded and unloaded by the CLR (or programmatically via the System.AppDomain type).

•	 A given AppDomain consists of one to many contexts. Using a context, the CLR
is able to place a “special needs” object into a logical container to ensure that its
runtime requirements are honored.

If the previous pages have seemed to be a bit too low level for your liking, fear not. For the most part, the
CLR automatically deals with the details of processes, application domains, and contexts on your behalf. The
good news, however, is that this information provides a solid foundation for understanding multithreaded
programming under the .NET platform.

Summary
The point of this chapter was to examine exactly how a .NET-executable image is hosted by the .NET
platform. As you have seen, the long-standing notion of a Windows process has been altered under the
hood to accommodate the needs of the CLR. A single process (which can be programmatically manipulated
via the System.Diagnostics.Process type) is now composed of one or more application domains, which
represent isolated and independent boundaries within a process.

As you have seen, a single process can host multiple application domains, each of which is capable of
hosting and executing any number of related assemblies. Furthermore, a single application domain can
contain any number of contextual boundaries. Using this additional level of type isolation, the CLR can
ensure that special-need objects are handled correctly.

http://dx.doi.org/10.1007/978-1-4842-1332-2_17

651

Chapter 18

Understanding CIL and the Role
of Dynamic Assemblies

When you are building a full-scale .NET application, you will most certainly use C# (or a similar managed
language such as Visual Basic), given its inherent productivity and ease of use. However, as you learned in
the first chapter, the role of a managed compiler is to translate *.cs code files into terms of CIL code, type
metadata, and an assembly manifest. As it turns out, CIL is a full-fledged .NET programming language, with
its own syntax, semantics, and compiler (ilasm.exe).

In this chapter, you will be given a tour of .NET’s mother tongue. Here you will understand the distinction
between a CIL directive, CIL attribute, and CIL opcode. You will then learn about the role of round-trip
engineering of a .NET assembly and various CIL programming tools. The remainder of the chapter will
then walk you through the basics of defining namespaces, types, and members using the grammar of CIL.
The chapter will wrap up with an examination of the role of the System.Reflection.Emit namespace and
examine how it is possible to construct an assembly (with CIL instructions) dynamically at runtime.

Of course, few programmers will ever need to work with raw CIL code on a day-to-day basis. Therefore,
I will start up this chapter by examining a few reasons why getting to know the syntax and semantics of this
low-level .NET language might be worth your while.

Motivations for Learning the Grammar of CIL
CIL is the true mother tongue of the .NET platform. When you build a .NET assembly using your managed
language of choice (C#, VB, F#, etc.), the associated compiler translates your source code into terms of CIL.
Like any programming language, CIL provides numerous structural and implementation-centric tokens.
Given that CIL is just another .NET programming language, it should come as no surprise that it is possible
to build your .NET assemblies directly using CIL and the CIL compiler (ilasm.exe) that ships with the .NET
Framework SDK.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

652

Now while it is true that few (if any!) programmers would choose to build an entire .NET application
directly with CIL, CIL is still an extremely interesting intellectual pursuit. Simply put, the more you
understand the grammar of CIL, the better able you are to move into the realm of advanced .NET
development. By way of some concrete examples, individuals who possess an understanding of CIL are
capable of the following:

•	 Disassembling an existing .NET assembly, editing the CIL code, and recompiling
the updated code base into a modified .NET binary. For example, there are some
scenarios where you might need to modify CIL to interoperate with some advanced
COM features.

•	 Building dynamic assemblies using the System.Reflection.Emit namespace. This
API allows you to generate an in-memory .NET assembly, which can optionally be
persisted to disk. This is a useful technique for the tool builders of the world who
need to generate assemblies on the fly.

•	 Understanding aspects of the CTS that are not supported by higher-level managed
languages but do exist at the level of CIL. To be sure, CIL is the only .NET language
that allows you to access every aspect of the CTS. For example, using raw CIL, you
are able to define global-level members and fields (which are not permissible in C#).

Again, to be perfectly clear, if you choose not to concern yourself with the details of CIL code, you are
still absolutely able to gain mastery of C# and the .NET base class libraries. In many ways, knowledge of
CIL is analogous to a C(++) programmer’s understanding of assembly language. Those who know the ins
and outs of the low-level “goo” are able to create rather advanced solutions for the task at hand and gain a
deeper understanding of the underlying programming (and runtime) environment. So, if you are up for the
challenge, let’s begin to examine the details of CIL.

 ■ Note Understand that this chapter is not intended to be a comprehensive treatment of the syntax and
semantics of CiL. if you require a full examination of the topic, i recommend downloading the official eCma
specification (ecma-335.pdf) from the eCma international web site (www.ecma-international.org).

Examining CIL Directives, Attributes, and Opcodes
When you begin to investigate low-level languages such as CIL, you are guaranteed to find new (and often
intimidating-sounding) names for familiar concepts. For example, at this point in the text, if you were shown
the following set of items

{new, public, this, base, get, set, explicit, unsafe, enum, operator, partial}

you would most certainly understand them to be keywords of the C# language (which is correct). However, if
you look more closely at the members of this set, you might be able to see that while each item is indeed a C#
keyword, it has radically different semantics. For example, the enum keyword defines a System.Enum-derived
type, while the this and base keywords allow you to reference the current object or the object’s parent class,
respectively. The unsafe keyword is used to establish a block of code that cannot be directly monitored by
the CLR, while the operator keyword allows you to build a hidden (specially named) method that will be
called when you apply a specific C# operator (such as the plus sign).

http://www.ecma-international.org/

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

653

In stark contrast to a higher-level language such as C#, CIL does not just simply define a general set of
keywords per se. Rather, the token set understood by the CIL compiler is subdivided into the following three
broad categories based on semantics:

•	 CIL directives

•	 CIL attributes

•	 CIL operation codes (opcodes)

Each category of CIL token is expressed using a particular syntax, and the tokens are combined to build
a valid .NET assembly.

The Role of CIL Directives
First up, there is a set of well-known CIL tokens that are used to describe the overall structure of a .NET
assembly. These tokens are called directives. CIL directives are used to inform the CIL compiler how to
define the namespaces(s), type(s), and member(s) that will populate an assembly.

Directives are represented syntactically using a single dot (.) prefix (e.g., .namespace, .class,
.publickeytoken, .method, .assembly, etc.). Thus, if your *.il file (the conventional extension for a file
containing CIL code) has a single .namespace directive and three .class directives, the CIL compiler will
generate an assembly that defines a single .NET namespace containing three .NET class types.

The Role of CIL Attributes
In many cases, CIL directives in and of themselves are not descriptive enough to fully express the definition of
a given .NET type or type member. Given this fact, many CIL directives can be further specified with various
CIL attributes to qualify how a directive should be processed. For example, the .class directive can be
adorned with the public attribute (to establish the type visibility), the extends attribute (to explicitly specify
the type’s base class), and the implements attribute (to list the set of interfaces supported by the type).

 ■ Note don’t confuse a .net attribute (see Chapter 15) with that of a CiL attribute, which are two very
different concepts.

The Role of CIL Opcodes
Once a .NET assembly, namespace, and type set have been defined in terms of CIL using various directives
and related attributes, the final remaining task is to provide the type’s implementation logic. This is a job for
operation codes, or simply opcodes. In the tradition of other low-level languages, many CIL opcodes tend to
be cryptic and completely unpronounceable by us mere humans. For example, if you need to load a string
variable into memory, you don’t use a friendly opcode named LoadString but rather ldstr.

Now, to be fair, some CIL opcodes do map quite naturally to their C# counterparts (e.g., box, unbox,
throw, and sizeof). As you will see, the opcodes of CIL are always used within the scope of a member’s
implementation, and unlike CIL directives, they are never written with a dot prefix.

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

654

The CIL Opcode/CIL Mnemonic Distinction
As just explained, opcodes such as ldstr are used to implement the members of a given type. In reality,
however, tokens such as ldstr are CIL mnemonics for the actual binary CIL opcodes. To clarify the
distinction, assume you have authored the following method in C#:

static int Add(int x, int y)
{
 return x + y;
}

The act of adding two numbers is expressed in terms of the CIL opcode 0X58. In a similar vein,
subtracting two numbers is expressed using the opcode 0X59, and the act of allocating a new object on
the managed heap is achieved using the 0X73 opcode. Given this reality, understand that the “CIL code”
processed by a JIT compiler is actually nothing more than blobs of binary data.

Thankfully, for each binary opcode of CIL, there is a corresponding mnemonic. For example, the add
mnemonic can be used rather than 0X58, sub rather than 0X59, and newobj rather than 0X73. Given this
opcode/mnemonic distinction, realize that CIL decompilers such as ildasm.exe translate an assembly’s
binary opcodes into their corresponding CIL mnemonics. For example, here would be the CIL presented by
ildasm.exe for the previous C# Add() method (your exact output may differ based on your version of .NET):

.method private hidebysig static int32 Add(int32 x,
 int32 y) cil managed
{
 // Code size 9 (0x9)
 .maxstack 2
 .locals init ([0] int32 CS$1$0000)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.1
 IL_0003: add
 IL_0004: stloc.0
 IL_0005: br.s IL_0007
 IL_0007: ldloc.0
 IL_0008: ret
}

Unless you’re building some extremely low-level .NET software (such as a custom managed compiler),
you’ll never need to concern yourself with the literal numeric binary opcodes of CIL. For all practical
purposes, when .NET programmers speak about “CIL opcodes,” they’re referring to the set of friendly string
token mnemonics (as I’ve done within this text and will do for the remainder of this chapter) rather than the
underlying numerical values.

Pushing and Popping: The Stack-Based Nature of CIL
Higher-level .NET languages (such as C#) attempt to hide low-level CIL grunge from view as much as
possible. One aspect of .NET development that is particularly well hidden is that CIL is a stack- based
programming language. Recall from the examination of the collection namespaces (see Chapter 9) that the
Stack<T> class can be used to push a value onto a stack as well as pop the topmost value off of the stack for
use. Of course, CIL developers do not use an object of type Stack<T> to load and unload the values to be
evaluated; however, the same pushing and popping mind-set still applies.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

655

Formally speaking, the entity used to hold a set of values to be evaluated is termed the virtual execution
stack. As you will see, CIL provides a number of opcodes that are used to push a value onto the stack; this
process is termed loading. As well, CIL defines a number of additional opcodes that transfer the topmost
value on the stack into memory (such as a local variable) using a process termed storing.

In the world of CIL, it is impossible to access a point of data directly, including locally defined variables,
incoming method arguments, or field data of a type. Rather, you are required to explicitly load the item onto
the stack, only to then pop it off for later use (keep this point in mind, as it will help explain why a given
block of CIL code can look a bit redundant).

 ■ Note recall that CiL is not directly executed but compiled on demand. during the compilation of CiL
code, many of these implementation redundancies are optimized away. furthermore, if you enable the code
optimization option for your current project (using the build tab of the Visual studio project properties window),
the compiler will also remove various CiL redundancies.

To understand how CIL leverages a stack-based processing model, consider a simple C# method,
PrintMessage(), which takes no arguments and returns void. Within the implementation of this method,
you will simply print the value of a local string variable to the standard output stream, like so:

public void PrintMessage()
{
 string myMessage = "Hello.";
 Console.WriteLine(myMessage);
}

If you were to examine how the C# compiler translates this method in terms of CIL, you would first find
that the PrintMessage() method defines a storage slot for a local variable using the .locals directive. The
local string is then loaded and stored in this local variable using the ldstr (load string) and stloc.0 opcodes
(which can be read as “store the current value in a local variable at storage slot zero”).

The value (again, at index 0) is then loaded into memory using the ldloc.0 (“load the local argument
at index 0”) opcode for use by the System.Console.WriteLine() method invocation (specified using the
call opcode). Finally, the function returns via the ret opcode. Here is the (annotated) CIL code for the
PrintMessage() method (note that I’ve removed the nop opcodes from this listing, for brevity):

.method public hidebysig instance void PrintMessage() cil managed
{
 .maxstack 1
 // Define a local string variable (at index 0).
 .locals init ([0] string myMessage)

 // Load a string onto the stack with the value "Hello."
 ldstr " Hello."

 // Store string value on the stack in the local variable.
 stloc.0

 // Load the value at index 0.
 ldloc.0

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

656

 // Call method with current value.
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}

 ■ Note as you can see, CiL supports code comments using the double-slash syntax (as well as the /*...*/
syntax, for that matter). as in C#, code comments are completely ignored by the CiL compiler.

Now that you have the basics of CIL directives, attributes, and opcodes, let’s see a practical use of CIL
programming, beginning with the topic of round-trip engineering.

Understanding Round-Trip Engineering
You are aware of how to use ildasm.exe to view the CIL code generated by the C# compiler (see Chapter 1).
What you might not know, however, is that ildasm.exe allows you to dump the CIL contained within an
assembly loaded into ildasm.exe to an external file. Once you have the CIL code at your disposal, you are
free to edit and recompile the code base using the CIL compiler, ilasm.exe.

Formally speaking, this technique is termed round-trip engineering, and it can be useful under select
circumstances, such as the following:

•	 You need to modify an assembly for which you no longer have the source code.

•	 You are working with a less-than-perfect .NET language compiler that has emitted
ineffective (or flat-out incorrect) CIL code, and you want to modify the code base.

•	 You are constructing a COM interoperability library and want to account for some
COM IDL attributes that have been lost during the conversion process (such as the
COM [helpstring] attribute).

To illustrate the process of round-tripping, begin by creating a new C# code file (HelloProgram.cs)
using a simple text editor such as Notepad, and define the following class type (you are free to create a new
Console Application project using Visual Studio if you want. However, be sure to delete the AssemblyInfo.cs
file to decrease the amount of generated CIL code).

// A simple C# console app.
using System;

// Note that we are not wrapping our class in a namespace,
// to help simplify the generated CIL code.
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello CIL code!");
 Console.ReadLine();
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

657

Save your file to a convenient location (for example, C:\RoundTrip) and compile your program using
csc.exe, like so:

csc HelloProgram.cs

Now, open HelloProgram.exe with ildasm.exe and, using the File ➤ Dump menu option, save the
raw CIL code to a new *.il file (HelloProgram.il) in the same folder containing your compiled assembly
(all the default values of the resulting dialog box are fine as is).

 ■ Note ildasm.exe will also generate a *.res file when dumping the contents of an assembly to file. these
resource files can be ignored (and deleted) throughout this chapter, as you will not be using them. this file
contains some low-level CLr security information (among other things).

Now you are able to view HelloProgram.il using your text editor of choice. Here is the (slightly reformatted
and annotated) result:

// Referenced assemblies.
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

// Our assembly.
.assembly HelloProgram
{
 /**** TargetFrameworkAttribute data removed for clarity! ****/

 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
.module HelloProgram.exe
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003
.corflags 0x00000003

// Definition of Program class.
.class private auto ansi beforefieldinit Program
 extends [mscorlib]System.Object
{
 .method private hidebysig static void Main(string[] args) cil managed
 {
 // Marks this method as the entry point of the
 // executable.
 .entrypoint
 .maxstack 8
 IL_0000: nop

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

658

 IL_0001: ldstr "Hello CIL code!"
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: ret
 }

 // The default constructor.
 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ret
 }
}

First, notice that the *.il file opens by declaring each externally referenced assembly the current
assembly is compiled against. Here, you can see a single .assembly extern token set for the always present
mscorlib.dll. Of course, if your class library used types within other referenced assemblies, you would find
additional .assembly extern directives.

Next, you find the formal definition of your HelloProgram.exe assembly, which has been assigned a
default version of 0.0.0.0 (given that you did not specify a value using the [AssemblyVersion] attribute).
The assembly is further described using various CIL directives (such as .module, .imagebase, and so forth).

After documenting the externally referenced assemblies and defining the current assembly, you find
a definition of the Program type. Note that the .class directive has various attributes (many of which are
actually optional) such as extends, shown here, which marks the base class of the type:

.class private auto ansi beforefieldinit Program
 extends [mscorlib]System.Object
{ ... }

The bulk of the CIL code represents the implementation of the class’s default constructor and the
Main() method, both of which are defined (in part) with the .method directive. Once the members have
been defined using the correct directives and attributes, they are implemented using various opcodes.

It is critical to understand that when interacting with .NET types (such as System.Console) in CIL,
you will always need to use the type’s fully qualified name. Furthermore, the type’s fully qualified name
must always be prefixed with the friendly name of the defining assembly (in square brackets). Consider the
following CIL implementation of Main():

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello CIL code!"
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

659

 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: ret
}

The implementation of the default constructor in terms of CIL code makes use of yet another “load-
centric” instruction (ldarg.0). In this case, the value loaded onto the stack is not a custom variable specified
by you but the current object reference (more details on this later). Also note that the default constructor
explicitly makes a call to the base class constructor, as follows (which, in this case, is your good friend
System.Object):

.method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
{
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ret
}

The Role of CIL Code Labels
One thing you certainly have noticed is that each line of implementation code is prefixed with a token of the
form IL_XXX: (e.g., IL_0000:, IL_0001:, and so on). These tokens are called code labels and may be named
in any manner you choose (provided they are not duplicated within the same member scope). When you
dump an assembly to file using ildasm.exe, it will automatically generate code labels that follow an IL_XXX:
naming convention. However, you may change them to reflect a more descriptive marker. Here’s an example:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 .maxstack 8
 Nothing_1: nop
 Load_String: ldstr "Hello CIL code!"
 PrintToConsole: call void [mscorlib]System.Console::WriteLine(string)
 Nothing_2: nop
 WaitFor_KeyPress: call string [mscorlib]System.Console::ReadLine()
 RemoveValueFromStack: pop
 Leave_Function: ret
}

The truth of the matter is that most code labels are completely optional. The only time code labels
are truly mandatory is when you are authoring CIL code that makes use of various branching or looping
constructs, as you can specify where to direct the flow of logic via these code labels. For the current example,
you can remove these autogenerated labels altogether with no ill effect, like so:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 .maxstack 8

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

660

 nop
 ldstr "Hello CIL code!"
 call void [mscorlib]System.Console::WriteLine(string)
 nop
 call string [mscorlib]System.Console::ReadLine()
 pop
 ret
}

Interacting with CIL: Modifying an *.il File
Now that you have a better understanding of how a basic CIL file is composed, let’s complete the
round- tripping experiment. The goal here is to update the CIL within the existing *.il file as follows:

 1. Add a reference to the System.Windows.Forms.dll assembly.

 2. Load a local string within Main().

 3. Call the System.Windows.Forms.MessageBox.Show() method using the local
string variable as an argument.

The first step is to add a new .assembly directive (qualified with the extern attribute) that specifies
your assembly requires the System.Windows.Forms.dll assembly. To do so, update the *.il file with the
following logic after the external reference to mscorlib:

.assembly extern System.Windows.Forms
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

Be aware that the value assigned to the .ver directive may differ depending on which version of the .NET
platform you have installed on your development machine. Here, you see that System.Windows.Forms.dll
version 4.0.0.0 is used and has the public key token of B77A5C561934E089. If you open the GAC
(see Chapter 14) and locate your version of the System.Windows.Forms.dll assembly, you can simply copy
the correct version and public key token value.

Next, you need to alter the current implementation of the Main() method. Locate this method within
the *.il file and remove the current implementation code (the .maxstack and .entrypoint directives
should remain intact), like so:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 .maxstack 8
 // ToDo: Write new CIL code!
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

661

Again, the goal here is to push a new string onto the stack and call the MessageBox.Show() method
(rather than the Console.WriteLine() method). Recall that when you specify the name of an external type,
you must use the type’s fully qualified name (in conjunction with the friendly name of the assembly). Also
notice that in terms of CIL, every method call documents the fully qualified return type. Keeping these things
in mind, update the Main() method as follows:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 .maxstack 8

 ldstr "CIL is way cool"
 call valuetype [System.Windows.Forms]
 System.Windows.Forms.DialogResult
 [System.Windows.Forms]
 System.Windows.Forms.MessageBox::Show(string)
 pop
 ret
}

In effect, you have just updated the CIL code to correspond to the following C# class definition:

class Program
{
 static void Main(string[] args)
 {
 System.Windows.Forms.MessageBox.Show("CIL is way cool");
 }
}

Compiling CIL Code Using ilasm.exe
Assuming you have saved this modified *.il file, you can compile a new .NET assembly using the ilasm.exe
(CIL compiler) utility. While the CIL compiler has numerous command-line options (all of which can be
seen by specifying the -? option), Table 18-1 shows the core flags of interest.

Table 18-1. Common ilasm.exe Command-Line Flags

Flag Meaning in Life

/debug Includes debug information (such as local variable and argument names, as well as line numbers).

/dll Produces a *.dll file as output.

/exe Produces an *.exe file as output. This is the default setting and may be omitted.

/key Compiles the assembly with a strong name using a given *.snk file.

/output Specifies the output file name and extension. If you do not use the /output flag, the resulting
file name (minus the file extension) is the same as the name of the first source file.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

662

To compile your updated HelloProgram.il file into a new .NET *.exe, you can issue the following
command within a Developer Command prompt:

ilasm /exe HelloProgram.il /output=NewAssembly.exe

Assuming things have worked successfully, you will see the report shown here:

Microsoft (R) .NET Framework IL Assembler. Version 4.0.30319.33440
Copyright (c) Microsoft Corporation. All rights reserved.
Assembling 'HelloProgram.il' to EXE --> 'NewAssembly.exe'
Source file is UTF-8

Assembled method Program::Main
Assembled method Program::.ctor
Creating PE file

Emitting classes:
Class 1: Program

Emitting fields and methods:
Global
Class 1 Methods: 2;

Emitting events and properties:
Global
Class 1
Writing PE file
Operation completed successfully

At this point, you can run your new application. Sure enough, rather than showing a message within the
console window, you will now see a message box displaying your message. While the output of this simple
example is not all that spectacular, it does illustrate one practical use of programming in CIL round-tripping.

The Role of peverify.exe
When you are building or modifying assemblies using CIL code, it is always advisable to verify that the
compiled binary image is a well-formed .NET image using the peverify.exe command-line tool, like so:

peverify NewAssembly.exe

This tool will examine all opcodes within the specified assembly for valid CIL code. For example, in
terms of CIL code, the evaluation stack must always be empty before exiting a function. If you forget to
pop off any remaining values, the ilasm.exe compiler will still generate a compiled assembly (given that
compilers are concerned only with syntax). peverify.exe, on the other hand, is concerned with semantics.
If you did forget to clear the stack before exiting a given function, peverify.exe will let you know before you
try running your code base.

 ■ Source Code the roundtrip example is included in the Chapter 18 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

663

Understanding CIL Directives and Attributes
Now that you have seen how ildasm.exe and ilasm.exe can be used to perform a round-trip, you can get
down to the business of checking out the syntax and semantics of CIL itself. The next sections will walk you
through the process of authoring a custom namespace containing a set of types. However, to keep things
simple, these types will not contain any implementation logic for their members (yet). After you understand
how to create empty types, you can then turn your attention to the process of defining “real” members using
CIL opcodes.

Specifying Externally Referenced Assemblies in CIL
Create a new file named CILTypes.il using your editor of choice. The first task a CIL project will require is
to list the set of external assemblies used by the current assembly. For this example, you will only use types
found within mscorlib.dll. To do so, the .assembly directive will be qualified using the external attribute.
When you are referencing a strongly named assembly, such as mscorlib.dll, you’ll want to specify the
.publickeytoken and .ver directives as well, like so:

.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

 ■ Note strictly speaking, you are not required to explicitly reference mscorlib.dll as an external reference,
as ilasm.exe will do so automatically. however, for each external .net library your CiL project requires, you will
need to author a similar .assembly extern directive.

Defining the Current Assembly in CIL
The next order of business is to define the assembly you are interested in building using the .assembly
directive. At the simplest level, an assembly can be defined by specifying the friendly name of the binary,
like so:

// Our assembly.
.assembly CILTypes { }

While this indeed defines a new .NET assembly, you will typically place additional directives within the
scope of the assembly declaration. For this example, update your assembly definition to include a version
number of 1.0.0.0 using the .ver directive (note that each numerical identifier is separated by colons, not the
C#-centric dot notation), as follows:

// Our assembly.
.assembly CILTypes
{
 .ver 1:0:0:0
}

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

664

Given that the CILTypes assembly is a single-file assembly (see Chapter 14), you will finish up the
assembly definition using the following single .module directive, which marks the official name of your .NET
binary, CILTypes.dll:

.assembly CILTypes
{
 .ver 1:0:0:0
}
// The module of our single-file assembly.
.module CILTypes.dll

In addition to .assembly and .module are CIL directives that further qualify the overall structure of the
.NET binary you are composing. Table 18-2 lists a few of the more common assembly-level directives.

Table 18-2. Additional Assembly-Centric Directives

Directive Meaning in Life

.mresources If your assembly uses internal resources (such as bitmaps or string tables), this directive
is used to identify the name of the file that contains the resources to be embedded.

.subsystem This CIL directive is used to establish the preferred UI that the assembly want to execute
within. For example, a value of 2 signifies that the assembly should run within a GUI
application, whereas a value of 3 denotes a console executable.

Defining Namespaces in CIL
Now that you have defined the look and feel of your assembly (and the required external references), you
can create a .NET namespace (MyNamespace) using the .namespace directive, like so:

// Our assembly has a single namespace.
.namespace MyNamespace {}

Like C#, CIL namespace definitions can be nested within further namespaces. There is no need to
define a root namespace here; however, for the sake of argument, assume you want to create the following
root namespace named MyCompany:

.namespace MyCompany
{
 .namespace MyNamespace {}
}

Like C#, CIL allows you to define a nested namespace as follows:

// Defining a nested namespace.
.namespace MyCompany.MyNamespace {}

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

665

Defining Class Types in CIL
Empty namespaces are not very interesting, so let’s now check out the process of defining a class type using
CIL. Not surprisingly, the .class directive is used to define a new class. However, this simple directive can
be adorned with numerous additional attributes, to further qualify the nature of the type. To illustrate, add
a public class to your namespace named MyBaseClass. As in C#, if you do not specify an explicit base class,
your type will automatically be derived from System.Object.

.namespace MyNamespace
{
 // System.Object base class assumed.
 .class public MyBaseClass {}
}

When you are building a class type that derives from any class other than System.Object, you use the
extends attribute. Whenever you need to reference a type defined within the same assembly, CIL demands
that you also use the fully qualified name (however, if the base type is within the same assembly, you can
omit the assembly’s friendly name prefix). Therefore, the following attempt to extend MyBaseClass results in
a compiler error:

// This will not compile!
.namespace MyNamespace
{
 .class public MyBaseClass {}

 .class public MyDerivedClass
 extends MyBaseClass {}
}

To correctly define the parent class of MyDerivedClass, you must specify the full name of MyBaseClass
as follows:

// Better!
.namespace MyNamespace
{
 .class public MyBaseClass {}

 .class public MyDerivedClass
 extends MyNamespace.MyBaseClass {}
}

In addition to the public and extends attributes, a CIL class definition may take numerous additional
qualifiers that control the type’s visibility, field layout, and so on. Table 18-3 illustrates some (but not all) of
the attributes that may be used in conjunction with the .class directive.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

666

Defining and Implementing Interfaces in CIL
As odd as it might seem, interface types are defined in CIL using the .class directive. However, when
the .class directive is adorned with the interface attribute, the type is realized as a CTS interface type.
Once an interface has been defined, it may be bound to a class or structure type using the CIL implements
attribute, like so:

.namespace MyNamespace
{
 // An interface definition.
 .class public interface IMyInterface {}

 // A simple base class.
 .class public MyBaseClass {}

 // MyDerivedClass now implements IMyInterface,
 // and extends MyBaseClass.
 .class public MyDerivedClass
 extends MyNamespace.MyBaseClass
 implements MyNamespace.IMyInterface {}
}

 ■ Note the extends clause must precede the implements clause. as well, the implements clause can
incorporate a comma-separated list of interfaces.

Table 18-3. Various Attributes Used in Conjunction with the .class Directive

Attributes Meaning in Life

public, private, nested assembly,
nested famandassem, nested family,
nested famorassem, nested public,
nested private

CIL defines various attributes that are used to specify the
visibility of a given type. As you can see, raw CIL offers numerous
possibilities other than those offered by C#. Refer to ECMA 335
for details if you are interested.

abstract, sealed These two attributes may be tacked onto a .class directive to
define an abstract class or sealed class, respectively.

auto, sequential, explicit These attributes are used to instruct the CLR how to lay out field
data in memory. For class types, the default layout flag (auto) is
appropriate. Changing this default can be helpful if you need to
use P/Invoke to call into unmanaged C code.

extends, implements These attributes allow you to define the base class of a type (via
extends) or implement an interface on a type (via implements).

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

667

As you recall from Chapter 9, interfaces can function as the base interface to other interface types in order
to build interface hierarchies. However, contrary to what you might be thinking, the extends attribute cannot
be used to derive interface A from interface B. The extends attribute is used only to qualify a type’s base class.
When you want to extend an interface, you will use the implements attribute yet again. Here’s an example:

// Extending interfaces in terms of CIL.
.class public interface IMyInterface {}

.class public interface IMyOtherInterface
 implements MyNamespace.IMyInterface {}

Defining Structures in CIL
The .class directive can be used to define a CTS structure if the type extends System.ValueType. As well,
the .class directive must be qualified with the sealed attribute (given that structures can never be a base
structure to other value types). If you attempt to do otherwise, ilasm.exe will issue a compiler error.

// A structure definition is always sealed.
.class public sealed MyStruct
 extends [mscorlib]System.ValueType{}

Do be aware that CIL provides a shorthand notation to define a structure type. If you use the value
attribute, the new type will derive the type from [mscorlib]System.ValueType automatically. Therefore, you
could define MyStruct as follows:

// Shorthand notation for declaring a structure.
.class public sealed value MyStruct{}

Defining Enums in CIL
.NET enumerations (as you recall) derive from System.Enum, which is a System.ValueType (and
therefore must also be sealed). When you want to define an enum in terms of CIL, simply extend [mscorlib]
System.Enum, like so:

// An enum.
.class public sealed MyEnum
 extends [mscorlib]System.Enum{}

Like a structure definition, enumerations can be defined with a shorthand notation using the enum
attribute. Here’s an example:

// Enum shorthand.
.class public sealed enum MyEnum{}

You’ll see how to specify the name-value pairs of an enumeration in just a moment.

 ■ Note the other fundamental .net type, the delegate, also has a specific CiL representation. see Chapter 10
for details.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9
http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

668

Defining Generics in CIL
Generic types also have a specific representation in the syntax of CIL. Recall from Chapter 9 that a given
generic type or generic member may have one or more type parameters. For example, the List<T> type has
a single type parameter, while Dictionary<TKey, TValue> has two. In terms of CIL, the number of type
parameters is specified using a backward-leaning single tick (`), followed by a numerical value representing
the number of type parameters. Like C#, the actual value of the type parameters is encased within angled
brackets.

 ■ Note on most keyboards, you can find the ` character on the key above the tab key (and to the left of the 1 key).

For example, assume you want to create a List<T> variable, where T is of type System.Int32. In C#, you
would type the following:

void SomeMethod()
{
 List<int> myInts = new List<int>();
}

In CIL, you would author the following (which could appear in any CIL method scope):

// In C#: List<int> myInts = new List<int>();
newobj instance void class [mscorlib]
 System.Collections.Generic.List`1<int32>::.ctor()

Notice that this generic class is defined as List`1<int32>, as List<T> has a single type parameter.
However, if you needed to define a Dictionary<string, int>type, you would do so as follows:

// In C#: Dictionary<string, int> d = new Dictionary<string, int>();
newobj instance void class [mscorlib]
 System.Collections.Generic.Dictionary`2<string,int32>::.ctor()

As another example, if you have a generic type that uses another generic type as a type parameter, you
would author CIL code such as the following:

// In C#: List<List<int>> myInts = new List<List<int>>();
newobj instance void class [mscorlib]
 System.Collections.Generic.List`1<class
 [mscorlib]System.Collections.Generic.List`1<int32>>::.ctor()

Compiling the CILTypes.il file
Even though you have not yet added any members or implementation code to the types you have defined,
you are able to compile this *.il file into a .NET DLL assembly (which you must do, as you have not
specified a Main() method). Open a command prompt and enter the following command to ilasm.exe:

ilasm /dll CilTypes.il

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

669

After you have done so, can now open your compiled assembly into ildasm.exe to verify the creation of
each type. After you have confirmed the contents of your assembly, run peverify.exe against it, like so:

peverify CilTypes.dll

Notice that you are issued errors, given that all your types are completely empty. Here is some partial
output:

Microsoft (R) .NET Framework PE Verifier. Version 4.0.30319.33440
Copyright (c) Microsoft Corporation. All rights reserved.

[MD]: Error: Value class has neither fields nor size parameter. [token:0x02000005]
[MD]: Error: Enum has no instance field. [token:0x02000006]
...

To understand how to populate a type with content, you first need to examine the fundamental data
types of CIL.

.NET Base Class Library, C#, and CIL Data Type Mappings
Table 18-4 illustrates how a .NET base class type maps to the corresponding C# keyword and how each C#
keyword maps into raw CIL. As well, Table 18-4 documents the shorthand constant notations used for each
CIL type. As you will see in just a moment, these constants are often referenced by numerous CIL opcodes.

Table 18-4. Mapping .NET Base Class Types to C# Keywords, and C# Keywords to CIL

.NET Base Class Type C# Keyword CIL Representation CIL Constant Notation

System.SByte sbyte int8 I1

System.Byte byte unsigned int8 U1

System.Int16 short int16 I2

System.UInt16 ushort unsigned int16 U2

System.Int32 int int32 I4

System.UInt32 uint unsigned int32 U4

System.Int64 long int64 I8

System.UInt64 ulong unsigned int64 U8

System.Char char char CHAR

System.Single float float32 R4

System.Double double float64 R8

System.Boolean bool bool BOOLEAN

System.String string string N/A

System.Object object object N/A

System.Void void void VOID

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

670

 ■ Note the System.IntPtr and System.UIntPtr types map to native int and native unsigned int (this is
good to know, as many of Com interoperability and p/invoke scenarios use these extensively).

Defining Type Members in CIL
As you are already aware, .NET types may support various members. Enumerations have some set of
name-value pairs. Structures and classes may have constructors, fields, methods, properties, static members,
and so on. Over the course of this book’s first 17 chapters, you have already seen partial CIL definitions
for the items previously mentioned, but nevertheless, here is a quick recap of how various members map to
CIL primitives.

Defining Field Data in CIL
Enumerations, structures, and classes can all support field data. In each case, the .field directive will be used.
For example, let’s breathe some life into the skeleton MyEnum enumeration and define the following three
name-value pairs (note the values are specified within parentheses):

.class public sealed enum MyEnum
{
 .field public static literal valuetype
 MyNamespace.MyEnum A = int32(0)
 .field public static literal valuetype
 MyNamespace.MyEnum B = int32(1)
 .field public static literal valuetype
 MyNamespace.MyEnum C = int32(2)
}

Fields that reside within the scope of a .NET System.Enum-derived type are qualified using the static
and literal attributes. As you would guess, these attributes set up the field data to be a fixed value
accessible from the type itself (e.g., MyEnum.A).

 ■ Note the values assigned to an enum value may also be in hexadecimal with a 0x prefix.

Of course, when you want to define a point of field data within a class or structure, you are not limited
to a point of public static literal data. For example, you could update MyBaseClass to support two points of
private, instance-level field data, set to default values:

.class public MyBaseClass
{
 .field private string stringField = "hello!"
 .field private int32 intField = int32(42)
}

As in C#, class field data will automatically be initialized to an appropriate default value. If you want to
allow the object user to supply custom values at the time of creation for each of these points of private field
data, you (of course) need to create custom constructors.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

671

Defining Type Constructors in CIL
The CTS supports both instance-level and class-level (static) constructors. In terms of CIL, instance-level
constructors are represented using the .ctor token, while a static-level constructor is expressed via .cctor
(class constructor). Both of these CIL tokens must be qualified using the rtspecialname (return type special
name) and specialname attributes. Simply put, these attributes are used to identify a specific CIL token that
can be treated in unique ways by a given .NET language. For example, in C#, constructors do not define a
return type; however, in terms of CIL, the return value of a constructor is indeed void.

.class public MyBaseClass
{
 .field private string stringField
 .field private int32 intField

 .method public hidebysig specialname rtspecialname
 instance void .ctor(string s, int32 i) cil managed
 {
 // TODO: Add implementation code...
 }
}

Note that the .ctor directive has been qualified with the instance attribute (as it is not a static
constructor). The cil managed attributes denote that the scope of this method contains CIL code, rather
than unmanaged code, which may be used during platform invocation requests.

Defining Properties in CIL
Properties and methods also have specific CIL representations. By way of an example, if MyBaseClass were
updated to support a public property named TheString, you would author the following CIL (note again the
use of the specialname attribute):

.class public MyBaseClass
{
...
 .method public hidebysig specialname
 instance string get_TheString() cil managed
 {
 // TODO: Add implementation code...
 }

 .method public hidebysig specialname
 instance void set_TheString(string 'value') cil managed
 {
 // TODO: Add implementation code...
 }

 .property instance string TheString()
 {
 .get instance string
 MyNamespace.MyBaseClass::get_TheString()

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

672

 .set instance void
 MyNamespace.MyBaseClass::set_TheString(string)
 }
}

In terms of CIL, a property maps to a pair of methods that take get_ and set_ prefixes. The .property
directive makes use of the related .get and .set directives to map property syntax to the correct “specially
named” methods.

 ■ Note notice that the incoming parameter to the set method of a property is placed in single quotation
marks, which represents the name of the token to use on the right side of the assignment operator within the
method scope.

Defining Member Parameters
In a nutshell, specifying arguments in CIL is (more or less) identical to doing so in C#. For example, each
argument is defined by specifying its data type, followed by the parameter name. Furthermore, like C#, CIL
provides a way to define input, output, and pass-by-reference parameters. As well, CIL allows you to define a
parameter array argument (aka the C# params keyword), as well as optional parameters.

To illustrate the process of defining parameters in raw CIL, assume you want to build a method that
takes an int32 (by value), an int32 (by reference), a [mscorlib]System.Collection.ArrayList, and a single
output parameter (of type int32). In terms of C#, this method would look something like the following:

public static void MyMethod(int inputInt,
 ref int refInt, ArrayList ar, out int outputInt)
{
 outputInt = 0; // Just to satisfy the C# compiler...
}

If you were to map this method into CIL terms, you would find that C# reference parameters are marked
with an ampersand (&) suffixed to the parameter’s underlying data type (int32&).

Output parameters also use the & suffix, but they are further qualified using the CIL [out] token. Also
notice that if the parameter is a reference type (in this case, the [mscorlib]System.Collections.ArrayList
type), the class token is prefixed to the data type (not to be confused with the .class directive!).

.method public hidebysig static void MyMethod(int32 inputInt,
 int32& refInt,
 class [mscorlib]System.Collections.ArrayList ar,
 [out] int32& outputInt) cil managed
{
 ...
}

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

673

Examining CIL Opcodes
The final aspect of CIL code you’ll examine in this chapter has to do with the role of various operational
codes (opcodes). Recall that an opcode is simply a CIL token used to build the implementation logic for a
given member. The complete set of CIL opcodes (which is fairly large) can be grouped into the following
broad categories:

•	 Opcodes that control program flow

•	 Opcodes that evaluate expressions

•	 Opcodes that access values in memory (via parameters, local variables, etc.)

To provide some insight to the world of member implementation via CIL, Table 18-5 defines some
of the more useful opcodes that are directly related to member implementation logic, grouped by related
functionality.

Table 18-5. Various Implementation-Specific CIL Opcodes

Opcodes Meaning in Life

add, sub, mul,
div, rem

These CIL opcodes allow you to add, subtract, multiply, and divide two values
(rem returns the remainder of a division operation).

and, or, not, xor These CIL opcodes allow you to perform bit-wise operations on two values.

ceq, cgt, clt These CIL opcodes allow you to compare two values on the stack in various manners.
Here’s an example:

ceq: Compare for equality

cgt: Compare for greater than

clt: Compare for less than

box, unbox These CIL opcodes are used to convert between reference types and value types.

ret This CIL opcode is used to exit a method and return a value to the caller (if necessary).

beq, bgt, ble,
blt, switch

These CIL opcodes (in addition to many other related opcodes) are used to control
branching logic within a method. Here’s an example:

beq: Break to code label if equal

bgt: Break to code label if greater than

ble: Break to code label if less than or equal to

blt: Break to code label if less than

All the branch-centric opcodes require that you specify a CIL code label to jump to if
the result of the test is true.

call This CIL opcode is used to call a member on a given type.

newarr, newobj These CIL opcodes allow you to allocate a new array or new object type into memory
(respectively).

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

674

The next broad category of CIL opcodes (a subset of which is shown in Table 18-6) is used to load (push)
arguments onto the virtual execution stack. Note how these load-specific opcodes take an ld (load) prefix.

Table 18-6. The Primary Stack-Centric Opcodes of CIL

Opcode Meaning in Life

ldarg (with
numerous variations)

Loads a method’s argument onto the stack. In addition to the general ldarg
(which works in conjunction with a given index that identifies the argument),
there are numerous other variations.

For example, ldarg opcodes that have a numerical suffix (ldarg_0) hard-code
which argument to load. As well, variations of the ldarg opcode allow you to
hard-code the data type using the CIL constant notation shown in Table 18-4
(ldarg_I4, for an int32), as well as the data type and value (ldarg_I4_5, to
load an int32 with the value of 5).

ldc (with numerous
variations)

Loads a constant value onto the stack.

ldfld (with numerous
variations)

Loads the value of an instance-level field onto the stack.

ldloc (with numerous
variations)

Loads the value of a local variable onto the stack.

ldobj Obtains all the values gathered by a heap-based object and places them on the
stack.

ldstr Loads a string value onto the stack.

In addition to the set of load-specific opcodes, CIL provides numerous opcodes that explicitly pop the
topmost value off the stack. As shown over the first few examples in this chapter, popping a value off the
stack typically involves storing the value into temporary local storage for further use (such as a parameter
for an upcoming method invocation). Given this, note how many opcodes that pop the current value off the
virtual execution stack take an st (store) prefix. Table 18-7 hits the highlights.

Table 18-7. Various Pop-Centric Opcodes

Opcode Meaning in Life

pop Removes the value currently on top of the evaluation stack but does not bother to store
the value

starg Stores the value on top of the stack into the method argument at a specified index

stloc
(with numerous
variations)

Pops the current value from the top of the evaluation stack and stores it in a local
variable list at a specified index

stobj Copies a value of a specified type from the evaluation stack into a supplied memory
address

stsfld Replaces the value of a static field with a value from the evaluation stack

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

675

Do be aware that various CIL opcodes will implicitly pop values off the stack to perform the task at
hand. For example, if you are attempting to subtract two numbers using the sub opcode, it should be clear
that sub will have to pop off the next two available values before it can perform the calculation. Once the
calculation is complete, the result of the value (surprise, surprise) is pushed onto the stack once again.

The .maxstack Directive
When you write method implementations using raw CIL, you need to be mindful of a special directive
named .maxstack. As its name suggests, .maxstack establishes the maximum number of variables that may
be pushed onto the stack at any given time during the execution of the method. The good news is that the
.maxstack directive has a default value (8), which should be safe for a vast majority of methods you might
be authoring. However, if you want to be explicit, you are able to manually calculate the number of local
variables on the stack and define this value explicitly, like so:

.method public hidebysig instance void
 Speak() cil managed
{
 // During the scope of this method, exactly
 // 1 value (the string literal) is on the stack.
 .maxstack 1
 ldstr "Hello there..."
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}

Declaring Local Variables in CIL
Let’s first check out how to declare a local variable. Assume you want to build a method in CIL named
MyLocalVariables() that takes no arguments and returns void. Within the method, you want to define three
local variables of type System.String, System.Int32, and System.Object. In C#, this member would appear
as follows (recall that locally scoped variables do not receive a default value and should be set to an initial
state before further use):

public static void MyLocalVariables()
{
 string myStr = "CIL code is fun!";
 int myInt = 33;
 object myObj = new object();
}

If you were to construct MyLocalVariables() directly in CIL, you could author the following:

.method public hidebysig static void
 MyLocalVariables() cil managed
{
 .maxstack 8
 // Define three local variables.
 .locals init ([0] string myStr, [1] int32 myInt, [2] object myObj)

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

676

 // Load a string onto the virtual execution stack.
 ldstr "CIL code is fun!"
 // Pop off current value and store in local variable [0].
 stloc.0

 // Load a constant of type "i4"
 // (shorthand for int32) set to the value 33.
 ldc.i4 33
 // Pop off current value and store in local variable [1].
 stloc.1

 // Create a new object and place on stack.
 newobj instance void [mscorlib]System.Object::.ctor()
 // Pop off current value and store in local variable [2].
 stloc.2
 ret
}

As you can see, the first step taken to allocate local variables in raw CIL is to use the .locals directive,
which is paired with the init attribute. Within the scope of the related parentheses, your goal is to associate
a given numerical index to each variable (seen here as [0], [1], and [2]). As you can see, each index is
identified by its data type and an optional variable name. After the local variables have been defined, you
load a value onto the stack (using the various load-centric opcodes) and store the value within the local
variable (using the various storage-centric opcodes).

Mapping Parameters to Local Variables in CIL
You have already seen how to declare local variables in raw CIL using the .locals init directive; however,
you have yet to see exactly how to map incoming parameters to local methods. Consider the following static
C# method:

public static int Add(int a, int b)
{
 return a + b;
}

This innocent-looking method has a lot to say in terms of CIL. First, the incoming arguments (a and b)
must be pushed onto the virtual execution stack using the ldarg (load argument) opcode. Next, the add
opcode will be used to pop the next two values off the stack and find the summation and store the value on
the stack yet again. Finally, this sum is popped off the stack and returned to the caller via the ret opcode.
If you were to disassemble this C# method using ildasm.exe, you would find numerous additional tokens
injected by csc.exe, but the crux of the CIL code is quite simple.

.method public hidebysig static int32 Add(int32 a,
 int32 b) cil managed
{
 .maxstack 2
 ldarg.0 // Load "a" onto the stack.
 ldarg.1 // Load "b" onto the stack.
 add // Add both values.
 ret
}

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

677

The Hidden this Reference
Notice that the two incoming arguments (a and b) are referenced within the CIL code using their indexed
position (index 0 and index 1), given that the virtual execution stack begins indexing at position 0.

One thing to be mindful of when you are examining or authoring CIL code is that every nonstatic
method that takes incoming arguments automatically receives an implicit additional parameter, which is a
reference to the current object (think the C# this keyword). Given this, if the Add() method were defined as
nonstatic, like so:

// No longer static!
public int Add(int a, int b)
{
 return a + b;
}

the incoming a and b arguments are loaded using ldarg.1 and ldarg.2 (rather than the expected ldarg.0
and ldarg.1 opcodes). Again, the reason is that slot 0 actually contains the implicit this reference. Consider
the following pseudocode:

// This is JUST pseudo-code!
.method public hidebysig static int32 AddTwoIntParams(
 MyClass_HiddenThisPointer this, int32 a, int32 b) cil managed
{
 ldarg.0 // Load MyClass_HiddenThisPointer onto the stack.
 ldarg.1 // Load "a" onto the stack.
 ldarg.2 // Load "b" onto the stack.
...
}

Representing Iteration Constructs in CIL
Iteration constructs in the C# programming language are represented using the for, foreach, while, and do
keywords, each of which has a specific representation in CIL. Consider the following classic for loop:

public static void CountToTen()
{
 for(int i = 0; i < 10; i++)
 ;
}

Now, as you may recall, the br opcodes (br, blt, and so on) are used to control a break in flow when
some condition has been met. In this example, you have set up a condition in which the for loop should
break out of its cycle when the local variable i is equal to or greater than the value of 10. With each pass, the
value of 1 is added to i, at which point the test condition is yet again evaluated.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

678

Also recall that when you use any of the CIL branching opcodes, you will need to define a specific code
label (or two) that marks the location to jump to when the condition is indeed true. Given these points, ponder
the following (augmented) CIL code generated via ildasm.exe (including the autogenerated code labels):

.method public hidebysig static void CountToTen() cil managed
{
 .maxstack 2
 .locals init ([0] int32 i) // Init the local integer "i".
 IL_0000: ldc.i4.0 // Load this value onto the stack.
 IL_0001: stloc.0 // Store this value at index "0".
 IL_0002: br.s IL_0008 // Jump to IL_0008.
 IL_0004: ldloc.0 // Load value of variable at index 0.
 IL_0005: ldc.i4.1 // Load the value "1" on the stack.
 IL_0006: add // Add current value on the stack at index 0.
 IL_0007: stloc.0
 IL_0008: ldloc.0 // Load value at index "0".
 IL_0009: ldc.i4.s 10 // Load value of "10" onto the stack.
 IL_000b: blt.s IL_0004 // Less than? If so, jump back to IL_0004
 IL_000d: ret
}

In a nutshell, this CIL code begins by defining the local int32 and loading it onto the stack. At this point,
you jump back and forth between code label IL_0008 and IL_0004, each time bumping the value of i by 1
and testing to see whether i is still less than the value 10. If so, you exit the method.

 ■ Source Code the Ciltypes example is included in the Chapter 18 subdirectory.

Building a .NET Assembly with CIL
Now that you’ve taken a tour of the syntax and semantics of raw CIL, it’s time to solidify your current
understanding by building a .NET application using nothing but ilasm.exe and your text editor of choice.
Specifically, your application will consist of a privately deployed, single-file *.dll that contains two class
type definitions, and a console-based *.exe that interacts with these types.

Building CILCars.dll
The first order of business is to build the *.dll to be consumed by the client. Open a text editor and create a
new *.il file named CILCars.il. This single-file assembly will use two external .NET assemblies. Begin by
updating your code file as follows:

// Reference mscorlib.dll and
// System.Windows.Forms.dll.
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

679

.assembly extern System.Windows.Forms
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}

// Define the single-file assembly.
.assembly CILCars
{
 .hash algorithm 0x00008004
 .ver 1:0:0:0
}
.module CILCars.dll

This assembly will contain two class types. The first type, CILCar, defines two points of field data (public
for simplicity in this example) and a custom constructor. The second type, CILCarInfo, defines a single
static method named Display(), which takes CILCar as a parameter and returns void. Both types are in the
CILCars namespace. In terms of CIL, CILCar can be implemented as follows:

// Implementation of CILCars.CILCar type.
.namespace CILCars
{
 .class public auto ansi beforefieldinit CILCar
 extends [mscorlib]System.Object
 {
 // The field data of the CILCar.
 .field public string petName
 .field public int32 currSpeed

 // The custom constructor simply allows the caller
 // to assign the field data.
 .method public hidebysig specialname rtspecialname
 instance void .ctor(int32 c, string p) cil managed
 {
 .maxstack 8

 // Load first arg onto the stack and call base class ctor.
 ldarg.0 // "this" object, not the int32!
 call instance void [mscorlib]System.Object::.ctor()

 // Now load first and second args onto the stack.
 ldarg.0 // "this" object
 ldarg.1 // int32 arg

 // Store topmost stack (int 32) member in currSpeed field.
 stfld int32 CILCars.CILCar::currSpeed

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

680

 // Load string arg and store in petName field.
 ldarg.0 // "this" object
 ldarg.2 // string arg
 stfld string CILCars.CILCar::petName
 ret
 }
 }
}

Keeping in mind that the real first argument for any nonstatic member is the current object reference,
the first block of CIL simply loads the object reference and calls the base class constructor. Next, you push
the incoming constructor arguments onto the stack and store them into the type’s field data using the stfld
(store in field) opcode.

Now let’s implement the second type in this namespace: CILCarInfo. The meat of the type is found
within the static Display() method. In a nutshell, the role of this method is to take the incoming CILCar
parameter, extract the values of its field data, and display it in a Windows Forms message box. Here is the
complete implementation of CILCarInfo (which should be defined within the CILCars namespace) with
analysis to follow:

.class public auto ansi beforefieldinit CILCarInfo
 extends [mscorlib]System.Object
{
 .method public hidebysig static void
 Display(class CILCars.CILCar c) cil managed
 {
 .maxstack 8

 // We need a local string variable.
 .locals init ([0] string caption)

 // Load string and the incoming CILCar onto the stack.
 ldstr "{0}'s speed is:"
 ldarg.0

 // Now place the value of the CILCar's petName on the
 // stack and call the static String.Format() method.
 ldfld string CILCars.CILCar::petName
 call string [mscorlib]System.String::Format(string, object)
 stloc.0

 // Now load the value of the currSpeed field and get its string
 // representation (note call to ToString()).
 ldarg.0
 ldflda int32 CILCars.CILCar::currSpeed
 call instance string [mscorlib]System.Int32::ToString()
 ldloc.0

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

681

 // Now call the MessageBox.Show() method with loaded values.
 call valuetype [System.Windows.Forms]
 System.Windows.Forms.DialogResult
 [System.Windows.Forms]
 System.Windows.Forms.MessageBox::Show(string, string)
 pop
 ret
 }
}

Although the amount of CIL code is a bit more than you see in the implementation of CILCar, things are
still rather straightforward. First, given that you are defining a static method, you don’t have to be concerned
with the hidden object reference (thus, the ldarg.0 opcode really does load the incoming CILCar argument).

The method begins by loading a string ("{0}'s speed is") onto the stack, followed by the CILCar
argument. After these two values are in place, you load the value of the petName field and call the static
System.String.Format() method to substitute the curly bracket placeholder with the CILCar’s pet name.

The same general procedure takes place when processing the currSpeed field, but note that you use
the ldflda opcode, which loads the argument address onto the stack. At this point, you call System.Int32.
ToString() to transform the value at said address into a string type. Finally, after both strings have been
formatted as necessary, you call the MessageBox.Show() method.

At this point, you are able to compile your new *.dll using ilasm.exe with the following command:

ilasm /dll CILCars.il

and verify the contained CIL using peverify.exe, as follows:

peverify CILCars.dll

Building CILCarClient.exe
Now you can build a simple *.exe assembly with a Main() method that will do the following:

•	 Make a CILCar object

•	 Pass the object into the static CILCarInfo.Display() method

Create a new file named CarClient.il and define external references to mscorlib.dll and CILCars.
dll (don’t forget to place a copy of this .NET assembly in the client’s application directory!). Next, define a
single type (Program) that manipulates the CILCars.dll assembly. Here’s the complete code:

// External assembly refs.
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}
.assembly extern CILCars
{
 .ver 1:0:0:0
}

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

682

// Our executable assembly.
.assembly CarClient
{
 .hash algorithm 0x00008004
 .ver 1:0:0:0
}
.module CarClient.exe

// Implementation of Program type.
.namespace CarClient
{
 .class private auto ansi beforefieldinit Program
 extends [mscorlib]System.Object
 {
 .method private hidebysig static void
 Main(string[] args) cil managed
 {
 // Marks the entry point of the *.exe.
 .entrypoint
 .maxstack 8

 // Declare a local CILCar variable and push
 // values onto the stack for ctor call.
 .locals init ([0] class
 [CILCars]CILCars.CILCar myCilCar)
 ldc.i4 55
 ldstr "Junior"

 // Make new CilCar; store and load reference.
 newobj instance void
 [CILCars]CILCars.CILCar::.ctor(int32, string)
 stloc.0
 ldloc.0

 // Call Display() and pass in topmost value on stack.
 call void [CILCars]
 CILCars.CILCarInfo::Display(
 class [CILCars]CILCars.CILCar)
 ret
 }
 }
}

The one opcode that is important to point out is .entrypoint. Recall from the discussion earlier in
this chapter that this opcode is used to mark which method of an *.exe functions as the entry point of the
module. In fact, given that .entrypoint is how the CLR identifies the initial method to execute, this method
can be called anything, although here you are using the standard method name of Main(). The remainder of
the CIL code found in the Main() method is your basic pushing and popping of stack-based values.

Do note, however, that the creation of a CILCar object involves the use of the newobj opcode. On a related
note, recall that when you want to invoke a member of a type using raw CIL, you use the double-colon
syntax and, as always, use the fully qualified name of the type. With this, you can compile your new file

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

683

with ilasm.exe, verify your assembly with peverify.exe, and execute your program. Issue the following
commands within your command prompt:

ilasm CarClient.il
peverify CarClient.exe
CarClient.exe

 ■ Source Code the CilCars example is included in the Chapter 18 subdirectory.

Understanding Dynamic Assemblies
To be sure, the process of building a complex .NET application in CIL would be quite the labor of love. On
the one hand, CIL is an extremely expressive programming language that allows you to interact with all
the programming constructs allowed by the CTS. On the other hand, authoring raw CIL is tedious, error-
prone, and painful. While it is true that knowledge is power, you might indeed wonder just how important
it is to commit the laws of CIL syntax to memory. The answer is, “It depends.” To be sure, most of your
.NET programming endeavors will not require you to view, edit, or author CIL code. However, with the CIL
primer behind you, you are now ready to investigate the world of dynamic assemblies (as opposed to static
assemblies) and the role of the System.Reflection.Emit namespace.

The first question you may have is, “What exactly is the difference between static and dynamic
assemblies?” By definition, static assemblies are .NET binaries loaded directly from disk storage, meaning
they are located somewhere on your hard drive in a physical file (or possibly a set of files in the case of a
multifile assembly) at the time the CLR requests them. As you might guess, every time you compile your C#
source code, you end up with a static assembly.

A dynamic assembly, on the other hand, is created in memory, on the fly, using the types provided by
the System.Reflection.Emit namespace. The System.Reflection.Emit namespace makes it possible
to create an assembly and its modules, type definitions, and CIL implementation logic at runtime. After
you have done so, you are then free to save your in-memory binary to disk. This, of course, results in a new
static assembly. To be sure, the process of building a dynamic assembly using the System.Reflection.Emit
namespace does require some level of understanding regarding the nature of CIL opcodes.

Although creating dynamic assemblies is a fairly advanced (and uncommon) programming task, they
can be useful under various circumstances. Here’s an example:

•	 You are building a .NET programming tool that needs to generate assemblies on
demand based on user input.

•	 You are building a program that needs to generate proxies to remote types on the fly,
based on the obtained metadata.

•	 You want to load a static assembly and dynamically insert new types into the
binary image.

This being said, let’s check out the types within System.Reflection.Emit.

Exploring the System.Reflection.Emit Namespace
Creating a dynamic assembly requires you to have some familiarity with CIL opcodes, but the types of the
System.Reflection.Emit namespace hide the complexity of CIL as much as possible. For example, rather
than directly specifying the necessary CIL directives and attributes to define a class type, you can simply use
the TypeBuilder class. Likewise, if you want to define a new instance-level constructor, you have no need

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

684

to emit the specialname, rtspecialname, or .ctor token; rather, you can use the ConstructorBuilder.
Table 18-8 documents the key members of the System.Reflection.Emit namespace.

Table 18-8. Select Members of the System.Reflection.Emit Namespace

Members Meaning in Life

AssemblyBuilder Used to create an assembly (*.dll or *.exe) at runtime. *.exes must
call the ModuleBuilder.SetEntryPoint() method to set the method
that is the entry point to the module. If no entry point is specified, a
*.dll will be generated.

ModuleBuilder Used to define the set of modules within the current assembly.

EnumBuilder Used to create a .NET enumeration type.

TypeBuilder May be used to create classes, interfaces, structures, and delegates
within a module at runtime.

MethodBuilder LocalBuilder
PropertyBuilder FieldBuilder
ConstructorBuilder
CustomAttributeBuilder
ParameterBuilder EventBuilder

Used to create type members (such as methods, local variables,
properties, constructors, and attributes) at runtime.

ILGenerator Emits CIL opcodes into a given type member.

OpCodes Provides numerous fields that map to CIL opcodes. This type is used
in conjunction with the various members of System.Reflection.
Emit.ILGenerator.

In general, the types of the System.Reflection.Emit namespace allow you to represent raw CIL tokens
programmatically during the construction of your dynamic assembly. You will see many of these members
in the example that follows; however, the ILGenerator type is worth checking out straightaway.

The Role of the System.Reflection.Emit.ILGenerator
As its name implies, the ILGenerator type’s role is to inject CIL opcodes into a given type member. However,
you cannot directly create ILGenerator objects, as this type has no public constructors; rather, you receive
an ILGenerator type by calling specific methods of the builder-centric types (such as the MethodBuilder
and ConstructorBuilder types). Here’s an example:

// Obtain an ILGenerator from a ConstructorBuilder
// object named "myCtorBuilder".
ConstructorBuilder myCtorBuilder =
 new ConstructorBuilder(/* ...various args... */);

ILGenerator myCILGen = myCtorBuilder.GetILGenerator();

Once you have an ILGenerator in your hands, you are then able to emit the raw CIL opcodes using any
number of methods. Table 18-9 documents some (but not all) methods of ILGenerator.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

685

The key method of ILGenerator is Emit(), which works in conjunction with the System.Reflection.
Emit.OpCodes class type. As mentioned earlier in this chapter, this type exposes a good number of read-only
fields that map to raw CIL opcodes. The full set of these members are all documented within online help,
and you will see various examples in the pages that follow.

Emitting a Dynamic Assembly
To illustrate the process of defining a .NET assembly at runtime, let’s walk through the process of creating
a single-file dynamic assembly named MyAssembly.dll. Within this module is a class named HelloWorld.
The HelloWorld class supports a default constructor and a custom constructor that is used to assign the
value of a private member variable (theMessage) of type string. In addition, HelloWorld supports a public
instance method named SayHello(), which prints a greeting to the standard I/O stream, and another
instance method named GetMsg(), which returns the internal private string. In effect, you are going to
programmatically generate the following class type:

// This class will be created at runtime
// using System.Reflection.Emit.
public class HelloWorld
{
 private string theMessage;
 HelloWorld() {}
 HelloWorld(string s) {theMessage = s;}

 public string GetMsg() {return theMessage;}
 public void SayHello()
 {
 System.Console.WriteLine("Hello from the HelloWorld class!");
 }
}

Table 18-9. Various Methods of ILGenerator

Method Meaning in Life

BeginCatchBlock() Begins a catch block

BeginExceptionBlock() Begins an exception scope for an exception

BeginFinallyBlock() Begins a finally block

BeginScope() Begins a lexical scope

DeclareLocal() Declares a local variable

DefineLabel() Declares a new label

Emit() Is overloaded numerous times to allow you to emit CIL opcodes

EmitCall() Pushes a call or callvirt opcode into the CIL stream

EmitWriteLine() Emits a call to Console.WriteLine() with different types of values

EndExceptionBlock() Ends an exception block

EndScope() Ends a lexical scope

ThrowException() Emits an instruction to throw an exception

UsingNamespace() Specifies the namespace to be used in evaluating locals and watches for the
current active lexical scope

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

686

Assume you have created a new Visual Studio Console Application project named DynamicAsmBuilder
and you import the System.Reflection, System.Reflection.Emit, and System.Threading namespaces.
Define a static method named CreateMyAsm() in the Program class. This single method is in charge of
the following:

•	 Defining the characteristics of the dynamic assembly (name, version, etc.)

•	 Implementing the HelloClass type

•	 Saving the in-memory assembly to a physical file

Also note that the CreateMyAsm() method takes as a single parameter a System.AppDomain type,
which will be used to obtain access to the AssemblyBuilder type associated with the current application
domain (see Chapter 17 for a discussion of .NET application domains). Here is the complete code, with
analysis to follow:

// The caller sends in an AppDomain type.
public static void CreateMyAsm(AppDomain curAppDomain)
{
 // Establish general assembly characteristics.
 AssemblyName assemblyName = new AssemblyName();
 assemblyName.Name = "MyAssembly";
 assemblyName.Version = new Version("1.0.0.0");

 // Create new assembly within the current AppDomain.
 AssemblyBuilder assembly =
 curAppDomain.DefineDynamicAssembly(assemblyName,
 AssemblyBuilderAccess.Save);

 // Given that we are building a single-file
 // assembly, the name of the module is the same as the assembly.
 ModuleBuilder module =
 assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

 // Define a public class named "HelloWorld".
 TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",
 TypeAttributes.Public);

 // Define a private String member variable named "theMessage".
 FieldBuilder msgField =
 helloWorldClass.DefineField("theMessage", Type.GetType("System.String"),
 FieldAttributes.Private);

 // Create the custom ctor.
 Type[] constructorArgs = new Type[1];
 constructorArgs[0] = typeof(string);
 ConstructorBuilder constructor =
 helloWorldClass.DefineConstructor(MethodAttributes.Public,
 CallingConventions.Standard,
 constructorArgs);
 ILGenerator constructorIL = constructor.GetILGenerator();
 constructorIL.Emit(OpCodes.Ldarg_0);
 Type objectClass = typeof(object);

http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

687

 ConstructorInfo superConstructor =
 objectClass.GetConstructor(new Type[0]);
 constructorIL.Emit(OpCodes.Call, superConstructor);
 constructorIL.Emit(OpCodes.Ldarg_0);
 constructorIL.Emit(OpCodes.Ldarg_1);
 constructorIL.Emit(OpCodes.Stfld, msgField);
 constructorIL.Emit(OpCodes.Ret);

 // Create the default ctor.
 helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);
 // Now create the GetMsg() method.
 MethodBuilder getMsgMethod =
 helloWorldClass.DefineMethod("GetMsg", MethodAttributes.Public,
 typeof(string), null);
 ILGenerator methodIL = getMsgMethod.GetILGenerator();
 methodIL.Emit(OpCodes.Ldarg_0);
 methodIL.Emit(OpCodes.Ldfld, msgField);
 methodIL.Emit(OpCodes.Ret);

 // Create the SayHello method.
 MethodBuilder sayHiMethod =
 helloWorldClass.DefineMethod("SayHello",
 MethodAttributes.Public, null, null);
 methodIL = sayHiMethod.GetILGenerator();
 methodIL.EmitWriteLine("Hello from the HelloWorld class!");
 methodIL.Emit(OpCodes.Ret);

 // "Bake" the class HelloWorld.
 // (Baking is the formal term for emitting the type.)
 helloWorldClass.CreateType();

 // (Optionally) save the assembly to file.
 assembly.Save("MyAssembly.dll");
}

Emitting the Assembly and Module Set
The method body begins by establishing the minimal set of characteristics about your assembly, using the
AssemblyName and Version types (defined in the System.Reflection namespace). Next, you obtain an
AssemblyBuilder type via the instance-level AppDomain.DefineDynamicAssembly() method (recall the
caller will pass an AppDomain reference into the CreateMyAsm() method), like so:

// Establish general assembly characteristics
// and gain access to the AssemblyBuilder type.
public static void CreateMyAsm(AppDomain curAppDomain)
{
 AssemblyName assemblyName = new AssemblyName();
 assemblyName.Name = "MyAssembly";
 assemblyName.Version = new Version("1.0.0.0");

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

688

 // Create new assembly within the current AppDomain.
 AssemblyBuilder assembly =
 curAppDomain.DefineDynamicAssembly(assemblyName,
 AssemblyBuilderAccess.Save);
...
}

As you can see, when calling AppDomain.DefineDynamicAssembly(), you must specify the access mode
of the assembly you want to define, the most common values of which are shown in Table 18-10.

Table 18-10. Common Values of the AssemblyBuilderAccess Enumeration

Value Meaning in Life

ReflectionOnly Represents that a dynamic assembly can only be reflected over

Run Represents that a dynamic assembly can be executed in memory but not saved to disk

RunAndSave Represents that a dynamic assembly can be executed in memory and saved to disk

Save Represents that a dynamic assembly can be saved to disk but not executed in memory

Table 18-11. Select Members of the ModuleBuilder Type

Method Meaning in Life

DefineEnum() Used to emit a .NET enum definition

DefineResource() Defines a managed embedded resource to be stored in this module

DefineType() Constructs a TypeBuilder, which allows you to define value types, interfaces, and
class types (including delegates)

The next task is to define the module set for your new assembly. Given that the assembly is a single- file
unit, you need to define only a single module. If you were to build a multifile assembly using the
DefineDynamicModule() method, you would specify an optional second parameter that represents the name
of a given module (e.g., myMod.dotnetmodule). However, when creating a single-file assembly, the name of
the module will be identical to the name of the assembly itself. In any case, once the DefineDynamicModule()
method has returned, you are provided with a reference to a valid ModuleBuilder type.

// The single-file assembly.
ModuleBuilder module =
 assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

The Role of the ModuleBuilder Type
ModuleBuilder is the key type used during the development of dynamic assemblies. As you would expect,
ModuleBuilder supports a number of members that allow you to define the set of types contained within a
given module (classes, interfaces, structures, etc.) as well as the set of embedded resources (string tables,
images, etc.) contained within. Table 18-11 describes a few of the creation-centric methods. (Do note that
each method will return to you a related type that represents the type you want to construct.)

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

689

The key member of the ModuleBuilder class to be aware of is DefineType(). In addition to specifying
the name of the type (via a simple string), you will also use the System.Reflection.TypeAttributes
enum to describe the format of the type itself. Table 18-12 lists some (but not all) of the key members of the
TypeAttributes enumeration.

Table 18-12. Select Members of the TypeAttributes Enumeration

Member Meaning in Life

Abstract Specifies that the type is abstract

Class Specifies that the type is a class

Interface Specifies that the type is an interface

NestedAssembly Specifies that the class is nested with assembly visibility and is thus accessible
only by methods within its assembly

NestedFamANDAssem Specifies that the class is nested with assembly and family visibility and is thus
accessible only by methods lying in the intersection of its family and assembly

NestedFamily Specifies that the class is nested with family visibility and is thus accessible only
by methods within its own type and any subtypes

NestedFamORAssem Specifies that the class is nested with family or assembly visibility and is thus
accessible only by methods lying in the union of its family and assembly

NestedPrivate Specifies that the class is nested with private visibility

NestedPublic Specifies that the class is nested with public visibility

NotPublic Specifies that the class is not public

Public Specifies that the class is public

Sealed Specifies that the class is concrete and cannot be extended

Serializable Specifies that the class can be serialized

Emitting the HelloClass Type and the String Member Variable
Now that you have a better understanding of the role of the ModuleBuilder.CreateType() method, let’s
examine how you can emit the public HelloWorld class type and the private string variable.

// Define a public class named "MyAssembly.HelloWorld".
TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",
 TypeAttributes.Public);

// Define a private String member variable named "theMessage".
FieldBuilder msgField =
 helloWorldClass.DefineField("theMessage",
 Type.GetType("System.String"),
 FieldAttributes.Private);

Notice how the TypeBuilder.DefineField() method provides access to a FieldBuilder type. The
TypeBuilder class also defines other methods that provide access to other “builder” types. For example,
DefineConstructor() returns a ConstructorBuilder, DefineProperty() returns a PropertyBuilder, and
so forth.

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

690

Emitting the Constructors
As mentioned earlier, the TypeBuilder.DefineConstructor() method can be used to define a constructor
for the current type. However, when it comes to implementing the constructor of HelloClass, you need to
inject raw CIL code into the constructor body, which is responsible for assigning the incoming parameter to
the internal private string. To obtain an ILGenerator type, you call the GetILGenerator() method from the
respective “builder” type you have reference to (in this case, the ConstructorBuilder type).

The Emit() method of the ILGenerator class is the entity in charge of placing CIL into a member
implementation. Emit() itself makes frequent use of the OpCodes class type, which exposes the opcode set
of CIL using read-only fields. For example, OpCodes.Ret signals the return of a method call, OpCodes.Stfld
makes an assignment to a member variable, and OpCodes.Call is used to call a given method (in this case,
the base class constructor). That said, ponder the following constructor logic:

// Create the custom constructor taking
// a single System.String argument.
Type[] constructorArgs = new Type[1];
constructorArgs[0] = typeof(string);
ConstructorBuilder constructor =
 helloWorldClass.DefineConstructor(MethodAttributes.Public,
 CallingConventions.Standard, constructorArgs);

// Now emit the necessary CIL into the ctor.
ILGenerator constructorIL = constructor.GetILGenerator();
constructorIL.Emit(OpCodes.Ldarg_0);
Type objectClass = typeof(object);
ConstructorInfo superConstructor = objectClass.GetConstructor(new Type[0]);
constructorIL.Emit(OpCodes.Call, superConstructor); // Call base class ctor.

// Load the object's "this" pointer on the stack.
constructorIL.Emit(OpCodes.Ldarg_0);

// Load incoming argument on virtual stack and store in msgField.
constructorIL.Emit(OpCodes.Ldarg_1);
constructorIL.Emit(OpCodes.Stfld, msgField); // Assign msgField.
constructorIL.Emit(OpCodes.Ret); // Return.

Now, as you are well aware, as soon as you define a custom constructor for a type, the
default constructor is silently removed. To redefine the no-argument constructor, simply call the
DefineDefaultConstructor() method of the TypeBuilder type as follows:

// Reinsert the default ctor.
helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);

This single call emits the standard CIL code used to define a default constructor.

.method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
{
 .maxstack 1
 ldarg.0
 call instance void [mscorlib]System.Object::.ctor()
 ret
}

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

691

Emitting the SayHello() Method
Last but not least, let’s examine the process of emitting the SayHello() method. The first task is to obtain
a MethodBuilder type from the helloWorldClass variable. After you do this, you define the method and
obtain the underlying ILGenerator to inject the CIL instructions, like so:

// Create the SayHello method.
MethodBuilder sayHiMethod =
 helloWorldClass.DefineMethod("SayHello",
 MethodAttributes.Public, null, null);
methodIL = sayHiMethod.GetILGenerator();

// Write a line to the Console.
methodIL.EmitWriteLine("Hello from the HelloWorld class!");
methodIL.Emit(OpCodes.Ret);

Here you have established a public method (MethodAttributes.Public) that takes no parameters
and returns nothing (marked by the null entries contained in the DefineMethod() call). Also note the
EmitWriteLine() call. This helper member of the ILGenerator class automatically writes a line to the
standard output with minimal fuss and bother.

Using the Dynamically Generated Assembly
Now that you have the logic in place to create and save your assembly, all that’s needed is a class to trigger
the logic. To come full circle, assume your current project defines a second class named AsmReader. The
logic in Main() obtains the current AppDomain via the Thread.GetDomain() method that will be used
to host the assembly you will dynamically create. Once you have a reference, you are able to call the
CreateMyAsm() method.

To make things a bit more interesting, after the call to CreateMyAsm() returns, you will exercise some
late binding (see Chapter 15) to load your newly created assembly into memory and interact with the
members of the HelloWorld class. Update your Main() method as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** The Amazing Dynamic Assembly Builder App *****");
 // Get the application domain for the current thread.
 AppDomain curAppDomain = Thread.GetDomain();

 // Create the dynamic assembly using our helper f(x).
 CreateMyAsm(curAppDomain);
 Console.WriteLine("-> Finished creating MyAssembly.dll.");

 // Now load the new assembly from file.
 Console.WriteLine("-> Loading MyAssembly.dll from file.");
 Assembly a = Assembly.Load("MyAssembly");

 // Get the HelloWorld type.
 Type hello = a.GetType("MyAssembly.HelloWorld");

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

Chapter 18 ■ Understanding CiL and the roLe of dynamiC assembLies

692

 // Create HelloWorld object and call the correct ctor.
 Console.Write("-> Enter message to pass HelloWorld class: ");
 string msg = Console.ReadLine();
 object[] ctorArgs = new object[1];
 ctorArgs[0] = msg;
 object obj = Activator.CreateInstance(hello, ctorArgs);

 // Call SayHello and show returned string.
 Console.WriteLine("-> Calling SayHello() via late binding.");
 MethodInfo mi = hello.GetMethod("SayHello");
 mi.Invoke(obj, null);

 // Invoke method.
 mi = hello.GetMethod("GetMsg");
 Console.WriteLine(mi.Invoke(obj, null));
}

In effect, you have just created a .NET assembly that is able to create and execute .NET assemblies at
runtime! That wraps up the examination of CIL and the role of dynamic assemblies. I hope this chapter has
deepened your understanding of the .NET type system, the syntax and semantics of CIL, and how the C#
compiler processes your code at compile time.

 ■ Source Code the dynamicasmbuilder project is included in the Chapter 18 subdirectory.

Summary
This chapter provided an overview of the syntax and semantics of CIL. Unlike higher-level managed
languages such as C#, CIL does not simply define a set of keywords but provides directives (used to define
the structure of an assembly and its types), attributes (which further qualify a given directive), and opcodes
(which are used to implement type members).

You were introduced to a few CIL-centric programming tools and learned how to alter the contents of a
.NET assembly with new CIL instructions using round-trip engineering. After this point, you spent time
learning how to establish the current (and referenced) assembly, namespaces, types, and members.
I wrapped up with a simple example of building a .NET code library and executable using little more than
CIL, command-line tools, and a bit of elbow grease.

Finally, you took an introductory look at the process of creating a dynamic assembly. Using the
System.Reflection.Emit namespace, it is possible to define a .NET assembly in memory at runtime. As you
have seen firsthand, using this particular API requires you to know the semantics of CIL code in some detail.
While the need to build dynamic assemblies is certainly not a common task for most .NET applications, it
can be useful for those of you who need to build support tools and other programming utilities.

http://dx.doi.org/10.1007/978-1-4842-1332-2_18

Part VI

Introducing the .NET Base
Class Libraries

695

Chapter 19

Multithreaded, Parallel, and
Async Programming

Nobody enjoys working with an application that is sluggish during its execution. Moreover, nobody enjoys
starting a task in an application (perhaps initiated by clicking a toolbar item) that prevents other parts of
the program from being as responsive as possible. Before the release of .NET, building applications that had
the ability to perform multiple tasks typically required authoring complex C++ code that used the Windows
threading APIs. Thankfully, the .NET platform provides a number of ways for you to build software that can
perform complex operations on unique paths of execution, with far fewer pain points.

This chapter begins by defining the overall nature of a “multithreaded application.” Next, you will revisit
the .NET delegate type to investigate its intrinsic support for asynchronous method invocations. As you’ll
see, this technique allows you to invoke a method on a secondary thread of execution without needing to
manually create or configure the thread itself.

Next, you’ll be introduced to the original threading namespace that has shipped since .NET 1.0,
specifically System.Threading. Here you’ll examine numerous types (Thread, ThreadStart, etc.) that allow
you to explicitly create additional threads of execution and synchronize your shared resources, which helps
ensure that multiple threads can share data in a nonvolatile manner.

The remaining parts of this chapter will examine three more recent techniques .NET developers can
use to build multithreaded software, specifically the Task Parallel Library (TPL), Parallel LINQ (PLINQ),
and the new intrinsic asynchronous keywords of C# (async and await). As you will see, these features can
dramatically simplify how you can build responsive multithreaded software applications.

The Process/AppDomain/Context/Thread Relationship
In Chapter 17, a thread was defined as a path of execution within an executable application. While many
.NET applications can live happy and productive single-threaded lives, an assembly’s primary thread
(spawned by the CLR when Main() executes) may create secondary threads of execution at any time to
perform additional units of work. By creating additional threads, you can build more responsive (but not
necessarily faster executing on single-core machines) applications.

http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

696

The System.Threading namespace was released with .NET 1.0 and offers one approach to build
multithreaded applications. The Thread class is perhaps the core type, as it represents a given thread. If you
want to programmatically obtain a reference to the thread currently executing a given member, simply call
the static Thread.CurrentThread property, like so:

static void ExtractExecutingThread()
{
 // Get the thread currently
 // executing this method.
 Thread currThread = Thread.CurrentThread;
}

Under the .NET platform, there is not a direct one-to-one correspondence between application
domains and threads. In fact, a given AppDomain can have numerous threads executing within it at any
given time. Furthermore, a particular thread is not confined to a single application domain during its
lifetime. Threads are free to cross application domain boundaries as the Windows OS thread scheduler and
the .NET CLR see fit.

Although active threads can be moved between AppDomain boundaries, a given thread can execute
within only a single application domain at any point in time (in other words, it is impossible for a single
thread to be doing work in more than one AppDomain at once). When you want to programmatically gain
access to the AppDomain that is hosting the current thread, call the static Thread.GetDomain() method,
like so:

static void ExtractAppDomainHostingThread()
{
 // Obtain the AppDomain hosting the current thread.
 AppDomain ad = Thread.GetDomain();
}

A single thread may also be moved into a particular context at any given time, and it may be relocated
within a new context at the whim of the CLR. When you want to obtain the current context a thread happens
to be executing in, use the static Thread.CurrentContext property (which returns a System.Runtime.
Remoting.Contexts.Context object), like so:

static void ExtractCurrentThreadContext()
{
 // Obtain the context under which the
 // current thread is operating.
 Context ctx = Thread.CurrentContext;
}

Again, the CLR is the entity that is in charge of moving threads into (and out of) application domains
and contexts. As a .NET developer, you can usually remain blissfully unaware where a given thread ends up
(or exactly when it is placed into its new boundary). Nevertheless, you should be aware of the various ways
of obtaining the underlying primitives.

The Problem of Concurrency
One of the many “joys” (read: painful aspects) of multithreaded programming is that you have little control
over how the underlying operating system or the CLR uses its threads. For example, if you craft a block of
code that creates a new thread of execution, you cannot guarantee that the thread executes immediately.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

697

Rather, such code only instructs the OS/CLR to execute the thread as soon as possible (which is typically
when the thread scheduler gets around to it).

Furthermore, given that threads can be moved between application and contextual boundaries as
required by the CLR, you must be mindful of which aspects of your application are thread-volatile
(e.g., subject to multithreaded access) and which operations are atomic (thread-volatile operations are the
dangerous ones!).

To illustrate the problem, assume a thread is invoking a method of a specific object. Now assume that
this thread is instructed by the thread scheduler to suspend its activity to allow another thread to access the
same method of the same object.

If the original thread was not completely finished with its operation, the second incoming thread may
be viewing an object in a partially modified state. At this point, the second thread is basically reading bogus
data, which is sure to give way to extremely odd (and hard to find) bugs, which are even harder to replicate
and debug.

Atomic operations, on the other hand, are always safe in a multithreaded environment. Sadly, there are
few operations in the .NET base class libraries that are guaranteed to be atomic. Even the act of assigning a
value to a member variable is not atomic! Unless the .NET Framework 4.6 SDK documentation specifically
says an operation is atomic, you must assume it is thread-volatile and take precautions.

The Role of Thread Synchronization
At this point, it should be clear that multithreaded programs are in themselves quite volatile, as numerous
threads can operate on the shared resources at (more or less) the same time. To protect an application’s
resources from possible corruption, .NET developers must use any number of threading primitives
(such as locks, monitors, and the [Synchronization] attribute or language keyword support) to control
access among the executing threads.

Although the .NET platform cannot make the difficulties of building robust multithreaded applications
completely disappear, the process has been simplified considerably. Using types defined within the
System.Threading namespace, the Task Parallel Library (TPL), and the C# async and await language
keywords, you are able to work with multiple threads with minimal fuss and bother.

Before diving into the System.Threading namespace, the TPL, and the C# async and await keywords,
you will begin by examining how the .NET delegate type can be used to invoke a method in an asynchronous
manner. While it is most certainly true that since .NET 4.6, the new C# async and await keywords offer a
simpler alternative to asynchronous delegates, it is still important that you know how to interact with code
using this approach (trust me; there is a ton of code in production that uses asynchronous delegates).

A Brief Review of the .NET Delegate
Recall that a .NET delegate is essentially a type-safe, object-oriented, function pointer. When you
define a .NET delegate type, the C# compiler responds by building a sealed class that derives from
System.MulticastDelegate (which in turn derives from System.Delegate). These base classes provide
every delegate with the ability to maintain a list of method addresses, all of which may be invoked at a later
time. Consider the following BinaryOp delegate, first defined in Chapter 10:

// A C# delegate type.
public delegate int BinaryOp(int x, int y);

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

698

Based on its definition, BinaryOp can point to any method taking two integers (by value) as arguments
and returning an integer. Once compiled, the defining assembly now contains a full-blown class definition
that is dynamically generated when you build your project, based on the delegate declaration. In the case of
BinaryOp, this class looks more or less like the following (shown in pseudocode):

public sealed class BinaryOp : System.MulticastDelegate
{
 public BinaryOp(object target, uint functionAddress);
 public int Invoke(int x, int y);
 public IAsyncResult BeginInvoke(int x, int y,
 AsyncCallback cb, object state);
 public int EndInvoke(IAsyncResult result);
}

Recall that the generated Invoke() method is used to invoke the methods maintained by a delegate
object in a synchronous manner. Therefore, the calling thread (such as the primary thread of the application)
is forced to wait until the delegate invocation completes. Also recall that in C# the Invoke() method does not
need to be directly called in code but can be triggered indirectly, under the hood, when applying “normal”
method invocation syntax.

Consider the following Console Application program (SyncDelegateReview), which invokes the
static Add() method in a synchronous (aka blocking) manner (be sure to import the System.Threading
namespace into your C# code file, as you will be calling the Thread.Sleep() method):

namespace SyncDelegateReview
{
 public delegate int BinaryOp(int x, int y);

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Synch Delegate Review *****");

 // Print out the ID of the executing thread.
 Console.WriteLine("Main() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);

 // Invoke Add() in a synchronous manner.
 BinaryOp b = new BinaryOp(Add);

 // Could also write b.Invoke(10, 10);
 int answer = b(10, 10);

 // These lines will not execute until
 // the Add() method has completed.
 Console.WriteLine("Doing more work in Main()!");
 Console.WriteLine("10 + 10 is {0}.", answer);
 Console.ReadLine();
 }

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

699

 static int Add(int x, int y)
 {
 // Print out the ID of the executing thread.
 Console.WriteLine("Add() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);

 // Pause to simulate a lengthy operation.
 Thread.Sleep(5000);
 return x + y;
 }
 }
}

Within the Add() method, you are invoking the static Thread.Sleep() method to suspend the calling
thread for approximately five seconds to simulate a lengthy task. Given that you are invoking the Add()
method in a synchronous manner, the Main() method will not print out the result of the operation until the
Add() method has completed.

Next, note that the Main() method is obtaining access to the current thread (via Thread.
CurrentThread) and printing the ID of the thread via the ManagedThreadId property. This same logic is
repeated in the static Add() method. As you might suspect, given that all the work in this application is
performed exclusively by the primary thread, you find the same ID value displayed to the console.

***** Synch Delegate Review *****
Main() invoked on thread 1.
Add() invoked on thread 1.
Doing more work in Main()!
10 + 10 is 20.

Press any key to continue . . .

When you run this program, you should notice that a five-second delay takes place before you see the
final Console.WriteLine() logic in Main() execute. Although many (if not most) methods may be called
synchronously without ill effect, .NET delegates can be instructed to call their methods asynchronously if
necessary.

 ■ Source Code the syncdelegatereview project is located in the Chapter 19 subdirectory.

The Asynchronous Nature of Delegates
If you are new to the topic of multithreading, you might wonder what exactly an asynchronous method
invocation is all about. As you are no doubt fully aware, some programming operations take time. Although
the previous Add() was purely illustrative in nature, imagine that you built a single-threaded application
that is invoking a method on a remote web service operation, calling a method performing a long-running
database query, downloading a large document, or writing 500 lines of text to an external file. While
performing these operations, the application could appear to hang for some amount of time. Until the task
at hand has been processed, all other aspects of this program (such as menu activation, toolbar clicking, or
console output) are suspended (which can aggravate users).

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

700

Therefore, the question is, how can you tell a delegate to invoke a method on a separate thread of
execution to simulate numerous tasks performing “at the same time”? The good news is that every .NET
delegate type is automatically equipped with this capability. The even better news is that you are not
required to directly dive into the details of the System.Threading namespace to do so (although these
entities can quite naturally work hand in hand).

The BeginInvoke() and EndInvoke() Methods
When the C# compiler processes the delegate keyword, the dynamically generated class defines two
methods named BeginInvoke() and EndInvoke(). Given the definition of the BinaryOp delegate, these
methods are prototyped as follows:

public sealed class BinaryOp : System.MulticastDelegate
{
...
 // Used to invoke a method asynchronously.
 public IAsyncResult BeginInvoke(int x, int y,
 AsyncCallback cb, object state);

 // Used to fetch the return value
 // of the invoked method.
 public int EndInvoke(IAsyncResult result);
}

The first set of parameters passed into BeginInvoke() will be based on the format of the C# delegate
(two integers, in the case of BinaryOp). The final two arguments will always be System.AsyncCallback and
System.Object. You’ll examine the role of these parameters shortly; for the time being, though, I’ll supply
null for each. Also note that the return value of EndInvoke() is an integer, based on the return type of
BinaryOp, while the single parameter of this method is always of type IAsyncResult.

The System.IAsyncResult Interface
The BeginInvoke() method always returns an object implementing the IAsyncResult interface, while
EndInvoke() requires an IAsyncResult-compatible type as its sole parameter. The IAsyncResult-
compatible object returned from BeginInvoke() is basically a coupling mechanism that allows the calling
thread to obtain the result of the asynchronous method invocation at a later time via EndInvoke(). The
IAsyncResult interface (defined in the System namespace) is defined as follows:

public interface IAsyncResult
{
 object AsyncState { get; }
 WaitHandle AsyncWaitHandle { get; }
 bool CompletedSynchronously { get; }
 bool IsCompleted { get; }
}

In the simplest case, you are able to avoid directly invoking these members. All you have to do is cache
the IAsyncResult-compatible object returned by BeginInvoke() and pass it to EndInvoke() when you are
ready to obtain the result of the method invocation. As you will see, you are able to invoke the members of
an IAsyncResult-compatible object when you want to become “more involved” with the process of fetching
the method’s return value.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

701

 ■ Note if you asynchronously invoke a method that provides a void return value, you can simply “fire and
forget.” in such cases, you will never need to cache the IAsyncResult-compatible object or call EndInvoke()
in the first place (as there is no return value to retrieve).

Invoking a Method Asynchronously
To instruct the BinaryOp delegate to invoke Add() asynchronously, you will modify the logic in the previous
project (feel free to add code to the existing project; however, in your lab downloads, you will find a new
Console Application project named AsyncDelegate). Update the previous Main() method as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Async Delegate Invocation *****");

 // Print out the ID of the executing thread.
 Console.WriteLine("Main() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);

 // Invoke Add() on a secondary thread.
 BinaryOp b = new BinaryOp(Add);
 IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

 // Do other work on primary thread...
 Console.WriteLine("Doing more work in Main()!");

 // Obtain the result of the Add()
 // method when ready.
 int answer = b.EndInvoke(iftAR);
 Console.WriteLine("10 + 10 is {0}.", answer);
 Console.ReadLine();
}

If you run this application, you will find that two unique thread IDs are displayed, given that there are in
fact multiple threads working within the current AppDomain:

***** Async Delegate Invocation *****
Main() invoked on thread 1.
Doing more work in Main()!
Add() invoked on thread 3.
10 + 10 is 20.

In addition to the unique ID values, you will also notice upon running the application that the Doing
more work in Main()! message displays immediately, while the secondary thread is occupied attending to
its business.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

702

Synchronizing the Calling Thread
If you think carefully about the current implementation of Main(), you might realize that the timespan
between calling BeginInvoke() and EndInvoke() is clearly less than five seconds. Therefore, once
Doing more work in Main()! prints to the console, the calling thread is now blocked and waiting for the
secondary thread to complete before being able to obtain the result of the Add() method. Therefore, you are
effectively making yet another synchronous call.

static void Main(string[] args)
{
...
 BinaryOp b = new BinaryOp(Add);

 // Once the next statement is processed,
 // the calling thread is now blocked until
 // BeginInvoke() completes.
 IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

 // This call takes far less than five seconds!
 Console.WriteLine("Doing more work in Main()!");

 // Now we are waiting again for other thread to complete!
 int answer = b.EndInvoke(iftAR);
...
}

Obviously, asynchronous delegates would lose their appeal if the calling thread had the potential
of being blocked under various circumstances. To allow the calling thread to discover whether the
asynchronously invoked method has completed its work, the IAsyncResult interface provides the
IsCompleted property. Using this member, the calling thread is able to determine whether the asynchronous
call has indeed completed before calling EndInvoke().

If the method has not completed, IsCompleted returns false, and the calling thread is free to carry on
its work. If IsCompleted returns true, the calling thread is able to obtain the result in the “least blocking
manner” possible. Ponder the following update to the Main() method:

static void Main(string[] args)
{
...
 BinaryOp b = new BinaryOp(Add);
 IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

 // This message will keep printing until
 // the Add() method is finished.
 while(!iftAR.IsCompleted)
 {
 Console.WriteLine("Doing more work in Main()!");
 Thread.Sleep(1000);
 }
 // Now we know the Add() method is complete.
 int answer = b.EndInvoke(iftAR);
...
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

703

Here, you enter a loop that will continue processing the Console.WriteLine() statement until the
secondary thread has completed. After this has occurred, you can obtain the result of the Add() method,
knowing full well the method has indeed completed. The call to Thread.Sleep(1000) is not necessary
for this particular application to function correctly; however, by forcing the primary thread to wait for
approximately one second during each iteration, it prevents the same message from printing hundreds of
times. Here is the output (your output might differ slightly, based on the speed of your machine and when
threads come to life):

***** Async Delegate Invocation *****
Main() invoked on thread 1.
Doing more work in Main()!
Add() invoked on thread 3.
Doing more work in Main()!
Doing more work in Main()!
Doing more work in Main()!
Doing more work in Main()!
Doing more work in Main()!
10 + 10 is 20.

In addition to the IsCompleted property, the IAsyncResult interface provides the AsyncWaitHandle
property for more flexible waiting logic. This property returns an instance of the WaitHandle type, which
exposes a method named WaitOne(). The benefit of WaitHandle.WaitOne() is that you can specify the
maximum wait time. If the specified amount of time is exceeded, WaitOne() returns false. Ponder the
following updated while loop, which no longer uses a call to Thread.Sleep():

while (!iftAR.AsyncWaitHandle.WaitOne(1000, true))
{
 Console.WriteLine("Doing more work in Main()!");
}

While these properties of IAsyncResult do provide a way to synchronize the calling thread, they are
not the most efficient approach. In many ways, the IsCompleted property is much like a really annoying
manager (or classmate) who is constantly asking, “Are you done yet?” Thankfully, delegates provide a
number of additional (and more elegant) techniques to obtain the result of a method that has been called
asynchronously.

 ■ Source Code the asyncdelegate project is located in the Chapter 19 subdirectory.

The Role of the AsyncCallback Delegate
Rather than polling a delegate to determine whether an asynchronously invoked method has completed,
it would be more efficient to have the secondary thread inform the calling thread when the task is finished.
When you want to enable this behavior, you will need to supply an instance of the System.AsyncCallback
delegate as a parameter to BeginInvoke(), which up until this point has been null. However, when you
do supply an AsyncCallback object, the delegate will call the specified method automatically when the
asynchronous call has completed.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

704

 ■ Note the callback method will be called on the secondary thread, not the primary thread. this has
important implications when using threads within a graphical user interface (WpF or Windows Forms) as
controls have thread-affinity, meaning they can be manipulated only by the thread that created them. you’ll
see some examples of working the threads from a gui later in this chapter, during the examination of the task
parallel library (tpl) and the C# async and await keywords.

Like any delegate, AsyncCallback can invoke methods that match only a specific pattern, which in this
case is a method taking IAsyncResult as the sole parameter and returning nothing.

// Targets of AsyncCallback must match the following pattern.
void MyAsyncCallbackMethod(IAsyncResult itfAR)

Assume you have another Console Application project (AsyncCallbackDelegate) making use of the
BinaryOp delegate. This time, however, you will not poll the delegate to determine whether the Add() method
has completed. Rather, you will define a static method named AddComplete() to receive the notification that
the asynchronous invocation is finished. Also, this example uses a class-level static bool field, which will be
used to keep the primary thread in Main() running a task until the secondary thread is finished.

 ■ Note the use of this Boolean variable in this example is, strictly speaking, not thread safe, as there are two
different threads that have access to its value. this will be permissible for the current example; however, as
a very good rule of thumb, you must ensure data that can be shared among multiple threads is locked down.
you’ll see how to do so later in this chapter.

namespace AsyncCallbackDelegate
{
 public delegate int BinaryOp(int x, int y);

 class Program
 {
 private static bool isDone = false;

 static void Main(string[] args)
 {
 Console.WriteLine("***** AsyncCallbackDelegate Example *****");
 Console.WriteLine("Main() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);

 BinaryOp b = new BinaryOp(Add);
 IAsyncResult iftAR = b.BeginInvoke(10, 10,
 new AsyncCallback(AddComplete), null);

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

705

 // Assume other work is performed here...
 while (!isDone)
 {
 Thread.Sleep(1000);
 Console.WriteLine("Working....");
 }
 Console.ReadLine();
 }

 static int Add(int x, int y)
 {
 Console.WriteLine("Add() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(5000);
 return x + y;
 }

 static void AddComplete(IAsyncResult itfAR)
 {
 Console.WriteLine("AddComplete() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("Your addition is complete");
 isDone = true;
 }
 }
}

Again, the static AddComplete() method will be invoked by the AsyncCallback delegate when the Add()
method has completed. If you run this program, you can confirm that the secondary thread is the thread
invoking the AddComplete() callback.

***** AsyncCallbackDelegate Example *****
Main() invoked on thread 1.
Add() invoked on thread 3.
Working....
Working....
Working....
Working....
Working....
AddComplete() invoked on thread 3.
Your addition is complete

Like other examples in this chapter, your output might be slightly different. In fact, you might see one
final “Working...” printout occur after the addition is complete. This is just a by-product of the forced
one-second delay in Main().

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

706

The Role of the AsyncResult Class
Currently, the AddComplete() method is not printing the actual result of the operation (adding two
numbers). The reason is that the target of the AsyncCallback delegate (AddComplete(), in this example)
does not have access to the original BinaryOp delegate created in the scope of Main() and, therefore, you
can’t call EndInvoke() from within AddComplete()!

While you could simply declare the BinaryOp variable as a static member variable in the class to allow
both methods to access the same object, a more elegant solution is to use the incoming IAsyncResult
parameter.

The incoming IAsyncResult parameter passed into the target of the AsyncCallback delegate is actually
an instance of the AsyncResult class (note the lack of an I prefix) defined in the System.Runtime.Remoting
.Messaging namespace. The AsyncDelegate property returns a reference to the original asynchronous
delegate that was created elsewhere.

Therefore, if you want to obtain a reference to the BinaryOp delegate object allocated within Main(),
simply cast the System.Object returned by the AsyncDelegate property into type BinaryOp. At this point,
you can trigger EndInvoke() as expected.

// Don't forget to import
// System.Runtime.Remoting.Messaging!
static void AddComplete(IAsyncResult itfAR)
{
 Console.WriteLine("AddComplete() invoked on thread {0}.",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("Your addition is complete");

 // Now get the result.
 AsyncResult ar = (AsyncResult)itfAR;
 BinaryOp b = (BinaryOp)ar.AsyncDelegate;
 Console.WriteLine("10 + 10 is {0}.", b.EndInvoke(itfAR));
 isDone = true;
}

Passing and Receiving Custom State Data
The final aspect of asynchronous delegates you need to address is the final argument to the BeginInvoke()
method (which has been null up to this point). This parameter allows you to pass additional state
information to the callback method from the primary thread. Because this argument is prototyped as a
System.Object, you can pass in any type of data whatsoever, as long as the callback method knows what to
expect. Assume for the sake of demonstration that the primary thread wants to pass in a custom text message
to the AddComplete() method, like so:

static void Main(string[] args)
{
...
 IAsyncResult iftAR = b.BeginInvoke(10, 10,
 new AsyncCallback(AddComplete),
 "Main() thanks you for adding these numbers.");
...
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

707

To obtain this data within the scope of AddComplete(), use the AsyncState property of the incoming
IAsyncResult parameter. Notice that an explicit cast will be required; therefore, the primary and secondary
threads must agree on the underlying type returned from AsyncState.

static void AddComplete(IAsyncResult itfAR)
{
...
 // Retrieve the informational object and cast it to string.
 string msg = (string)itfAR.AsyncState;
 Console.WriteLine(msg);
 isDone = true;
}

Here is the output of the final iteration:

***** AsyncCallbackDelegate Example *****
Main() invoked on thread 1.
Add() invoked on thread 3.
Working....
Working....
Working....
Working....
Working....
AddComplete() invoked on thread 3.
Your addition is complete
10 + 10 is 20.
Main() thanks you for adding these numbers.

Now that you understand how a .NET delegate can be used to automatically spin off a secondary
thread of execution to handle an asynchronous method invocation, you can turn your attention to directly
interacting with threads using the System.Threading namespace. Recall that this namespace was the
original .NET threading API that shipped since version 1.0.

 ■ Source Code the asyncCallbackdelegate project is located in the Chapter 19 subdirectory.

The System.Threading Namespace
Under the .NET platform, the System.Threading namespace provides a number of types that enable the
direct construction of multithreaded applications. In addition to providing types that allow you to interact
with a particular CLR thread, this namespace defines types that allow access to the CLR- maintained thread
pool, a simple (non-GUI-based) Timer class, and numerous types used to provide synchronized access to
shared resources. Table 19-1 lists some of the important members of this namespace. (Be sure to consult the
.NET Framework 4.6 SDK documentation for full details.)

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

708

The System.Threading.Thread Class
The most primitive of all types in the System.Threading namespace is Thread. This class represents an
object-oriented wrapper around a given path of execution within a particular AppDomain. This type also
defines a number of methods (both static and instance level) that allow you to create new threads within the
current AppDomain, as well as to suspend, stop, and destroy a particular thread. Consider the list of core
static members in Table 19-2.

Table 19-2. Key Static Members of the Thread Type

Static Member Meaning in Life

CurrentContext This read-only property returns the context in which the thread is currently running.

CurrentThread This read-only property returns a reference to the currently running thread.

GetDomain()
GetDomainID()

These methods return a reference to the current AppDomain or the ID of the domain
in which the current thread is running.

Sleep() This method suspends the current thread for a specified time.

Table 19-1. Core Types of the System.Threading Namespace

Type Meaning in Life

Interlocked This type provides atomic operations for variables that are shared by
multiple threads.

Monitor This type provides the synchronization of threading objects using locks and
wait/signals. The C# lock keyword uses a Monitor object under the hood.

Mutex This synchronization primitive can be used for synchronization between
application domain boundaries.

ParameterizedThreadStart This delegate allows a thread to call methods that take any number of
arguments.

Semaphore This type allows you to limit the number of threads that can access a
resource, or a particular type of resource, concurrently.

Thread This type represents a thread that executes within the CLR. Using this type,
you are able to spawn additional threads in the originating AppDomain.

ThreadPool This type allows you to interact with the CLR-maintained thread pool
within a given process.

ThreadPriority This enum represents a thread’s priority level (Highest, Normal, etc.).

ThreadStart This delegate is used to specify the method to call for a given thread. Unlike
the ParameterizedThreadStart delegate, targets of ThreadStart must
always have the same prototype.

ThreadState This enum specifies the valid states a thread may take (Running, Aborted, etc.).

Timer This type provides a mechanism for executing a method at specified
intervals.

TimerCallback This delegate type is used in conjunction with Timer types.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

709

The Thread class also supports several instance-level members, some of which are shown in Table 19-3.

Table 19-3. Select Instance-Level Members of the Thread Type

Instance-Level Member Meaning in Life

IsAlive Returns a Boolean that indicates whether this thread has been started (and has
not yet terminated or aborted).

IsBackground Gets or sets a value indicating whether this thread is a “background thread”
(more details in just a moment).

Name Allows you to establish a friendly text name of the thread.

Priority Gets or sets the priority of a thread, which may be assigned a value from the
ThreadPriority enumeration.

ThreadState Gets the state of this thread, which may be assigned a value from the
ThreadState enumeration.

Abort() Instructs the CLR to terminate the thread as soon as possible.

Interrupt() Interrupts (e.g., wakes) the current thread from a suitable wait period.

Join() Blocks the calling thread until the specified thread (the one on which Join() is
called) exits.

Resume() Resumes a thread that has been previously suspended.

Start() Instructs the CLR to execute the thread ASAP.

Suspend() Suspends the thread. If the thread is already suspended, a call to Suspend()
has no effect.

 ■ Note aborting or suspending an active thread is generally considered a bad idea. When you do so, there is
a chance (however small) that a thread could “leak” its workload when disturbed or terminated.

Obtaining Statistics About the Current Thread of Execution
Recall that the entry point of an executable assembly (i.e., the Main() method) runs on the primary thread of
execution. To illustrate the basic use of the Thread type, assume you have a new Console Application project
named ThreadStats. As you know, the static Thread.CurrentThread property retrieves a Thread object that
represents the currently executing thread. Once you have obtained the current thread, you are able to print
out various statistics, like so:

// Be sure to import the System.Threading namespace.
static void Main(string[] args)
{
 Console.WriteLine("***** Primary Thread stats *****\n");

 // Obtain and name the current thread.
 Thread primaryThread = Thread.CurrentThread;
 primaryThread.Name = "ThePrimaryThread";

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

710

 // Show details of hosting AppDomain/Context.
 Console.WriteLine("Name of current AppDomain: {0}",
 Thread.GetDomain().FriendlyName);
 Console.WriteLine("ID of current Context: {0}",
 Thread.CurrentContext.ContextID);

 // Print out some stats about this thread.
 Console.WriteLine("Thread Name: {0}",
 primaryThread.Name);
 Console.WriteLine("Has thread started?: {0}",
 primaryThread.IsAlive);
 Console.WriteLine("Priority Level: {0}",
 primaryThread.Priority);
 Console.WriteLine("Thread State: {0}",
 primaryThread.ThreadState);
 Console.ReadLine();
}

Here is the current output:

***** Primary Thread stats *****
Name of current AppDomain: ThreadStats.exe
ID of current Context: 0
Thread Name: ThePrimaryThread
Has thread started?: True
Priority Level: Normal
Thread State: Running

The Name Property
While this code is more or less self-explanatory, do notice that the Thread class supports a property called Name.
If you do not set this value, Name will return an empty string. However, once you assign a friendly string moniker
to a given Thread object, you can greatly simplify your debugging endeavors. If you are using Visual Studio, you
may access the Threads window during a debugging session (select Debug ➤ Windows ➤ Threads). As you can
see from Figure 19-1, you can quickly identify the thread you want to diagnose.

Figure 19-1. Debugging a thread with Visual Studio

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

711

The Priority Property
Next, notice that the Thread type defines a property named Priority. By default, all threads have a priority
level of Normal. However, you can change this at any point in the thread’s lifetime using the ThreadPriority
property and the related System.Threading.ThreadPriority enumeration, like so:

public enum ThreadPriority
{
 Lowest,
 BelowNormal,
 Normal, // Default value.
 AboveNormal,
 Highest
}

If you were to assign a thread’s priority level to a value other than the default (ThreadPriority.Normal),
understand that you would have no direct control over when the thread scheduler switches between threads.
In reality, a thread’s priority level offers a hint to the CLR regarding the importance of the thread’s activity.
Thus, a thread with the value ThreadPriority.Highest is not necessarily guaranteed to be given the highest
precedence.

Again, if the thread scheduler is preoccupied with a given task (e.g., synchronizing an object, switching
threads, or moving threads), the priority level will most likely be altered accordingly. However, all things
being equal, the CLR will read these values and instruct the thread scheduler how to best allocate time
slices. Threads with an identical thread priority should each receive the same amount of time to perform
their work.

In most cases, you will seldom (if ever) need to directly alter a thread’s priority level. In theory, it is
possible to jack up the priority level on a set of threads, thereby preventing lower-priority threads from
executing at their required levels (so use caution).

 ■ Source Code the threadstats project is in the Chapter 19 subdirectory.

Manually Creating Secondary Threads
When you want to programmatically create additional threads to carry on some unit of work, follow this
predictable process when using the types of the System.Threading namespace:

 1. Create a method to be the entry point for the new thread.

 2. Create a new ParameterizedThreadStart (or ThreadStart) delegate, passing the
address of the method defined in step 1 to the constructor.

 3. Create a Thread object, passing the ParameterizedThreadStart/ThreadStart
delegate as a constructor argument.

 4. Establish any initial thread characteristics (name, priority, etc.).

 5. Call the Thread.Start() method. This starts the thread at the method referenced
by the delegate created in step 2 as soon as possible.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

712

As stated in step 2, you may use two distinct delegate types to “point to” the method that the secondary
thread will execute. The ThreadStart delegate can point to any method that takes no arguments and returns
nothing. This delegate can be helpful when the method is designed to simply run in the background without
further interaction.

The obvious limitation of ThreadStart is that you are unable to pass in parameters for processing.
However, the ParameterizedThreadStart delegate type allows a single parameter of type System.Object.
Given that anything can be represented as a System.Object, you can pass in any number of parameters via a
custom class or structure. Do note, however, that the ParameterizedThreadStart delegate can only point to
methods that return void.

Working with the ThreadStart Delegate
To illustrate the process of building a multithreaded application (as well as to demonstrate the usefulness of
doing so), assume you have a Console Application project (SimpleMultiThreadApp) that allows the end user
to choose whether the application will perform its duties using the single primary thread or split its workload
using two separate threads of execution.

Assuming you have imported the System.Threading namespace, your first step is to define a method
to perform the work of the (possible) secondary thread. To keep focused on the mechanics of building
multithreaded programs, this method will simply print out a sequence of numbers to the console window,
pausing for approximately two seconds with each pass. Here is the full definition of the Printer class:

public class Printer
{
 public void PrintNumbers()
 {
 // Display Thread info.
 Console.WriteLine("-> {0} is executing PrintNumbers()",
 Thread.CurrentThread.Name);

 // Print out numbers.
 Console.Write("Your numbers: ");
 for(int i = 0; i < 10; i++)
 {
 Console.Write("{0}, ", i);
 Thread.Sleep(2000);
 }
 Console.WriteLine();
 }
}

Now, within Main(), you will first prompt the user to determine whether one or two threads will be
used to perform the application’s work. If the user requests a single thread, you will simply invoke the
PrintNumbers() method within the primary thread. However, if the user specifies two threads, you will
create a ThreadStart delegate that points to PrintNumbers(), pass this delegate object into the constructor
of a new Thread object, and call Start() to inform the CLR this thread is ready for processing.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

713

To begin, set a reference to the System.Windows.Forms.dll assembly (and import the System.Windows
.Forms namespace) and display a message within Main() using MessageBox.Show() (you’ll see the point of
doing so after you run the program). Here is the complete implementation of Main():

static void Main(string[] args)
{
 Console.WriteLine("***** The Amazing Thread App *****\n");
 Console.Write("Do you want [1] or [2] threads? ");
 string threadCount = Console.ReadLine();

 // Name the current thread.
 Thread primaryThread = Thread.CurrentThread;
 primaryThread.Name = "Primary";

 // Display Thread info.
 Console.WriteLine("-> {0} is executing Main()",
 Thread.CurrentThread.Name);

 // Make worker class.
 Printer p = new Printer();

 switch(threadCount)
 {
 case "2":
 // Now make the thread.
 Thread backgroundThread =
 new Thread(new ThreadStart(p.PrintNumbers));
 backgroundThread.Name = "Secondary";
 backgroundThread.Start();
 break;
 case "1":
 p.PrintNumbers();
 break;
 default:
 Console.WriteLine("I don't know what you want...you get 1 thread.");
 goto case "1";
 }
 // Do some additional work.
 MessageBox.Show("I'm busy!", "Work on main thread...");
 Console.ReadLine();
}

Now, if you run this program with a single thread, you will find that the final message box will not
display the message until the entire sequence of numbers has printed to the console. As you are explicitly
pausing for approximately two seconds after each number is printed, this will result in a less-than-stellar
end-user experience. However, if you select two threads, the message box displays instantly, given that a
unique Thread object is responsible for printing the numbers to the console.

 ■ Source Code the simpleMultithreadapp project is included in the Chapter 19 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

714

Working with the ParameterizedThreadStart Delegate
Recall that the ThreadStart delegate can point only to methods that return void and take no arguments. While
this might fit the bill in some cases, if you want to pass data to the method executing on the secondary thread,
you will need to use the ParameterizedThreadStart delegate type. To illustrate, let’s re-create the logic of the
AsyncCallbackDelegate project created earlier in this chapter, this time using the ParameterizedThreadStart
delegate type.

To begin, create a new Console Application project named AddWithThreads and import the
System.Threading namespace. Now, given that ParameterizedThreadStart can point to any method taking
a System.Object parameter, you will create a custom type containing the numbers to be added, like so:

class AddParams
{
 public int a, b;

 public AddParams(int numb1, int numb2)
 {
 a = numb1;
 b = numb2;
 }
}

Next, create a static method in the Program class that will take an AddParams parameter and print the
sum of the two numbers involved, as follows:

static void Add(object data)
{
 if (data is AddParams)
 {
 Console.WriteLine("ID of thread in Add(): {0}",
 Thread.CurrentThread.ManagedThreadId);

 AddParams ap = (AddParams)data;
 Console.WriteLine("{0} + {1} is {2}",
 ap.a, ap.b, ap.a + ap.b);
 }
}

The code within Main() is straightforward. Simply use ParameterizedThreadStart rather than
ThreadStart, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Adding with Thread objects *****");
 Console.WriteLine("ID of thread in Main(): {0}",
 Thread.CurrentThread.ManagedThreadId);

 // Make an AddParams object to pass to the secondary thread.
 AddParams ap = new AddParams(10, 10);
 Thread t = new Thread(new ParameterizedThreadStart(Add));
 t.Start(ap);

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

715

 // Force a wait to let other thread finish.
 Thread.Sleep(5);

 Console.ReadLine();
}

The AutoResetEvent Class
In these first few examples, you have used a few crude ways to inform the primary thread to wait until the
secondary thread has completed. During your examination of asynchronous delegates, you used a simple bool
variable as a toggle; however, this is not a recommended solution, as both threads can access the same point of
data, and this can lead to data corruption. A safer but still undesirable alternative is to call Thread.Sleep() for
a fixed amount of time. The problem here is that you don’t want to wait longer than necessary.

One simple, and thread-safe, way to force a thread to wait until another is completed is to use the
AutoResetEvent class. In the thread that needs to wait (such as a Main() method), create an instance of
this class and pass in false to the constructor to signify you have not yet been notified. Then, at the point at
which you are willing to wait, call the WaitOne() method. Here is the update to the Program class, which will
do this very thing using a static-level AutoResetEvent member variable:

class Program
{
 private static AutoResetEvent waitHandle = new AutoResetEvent(false);

 static void Main(string[] args)
 {
 Console.WriteLine("***** Adding with Thread objects *****");
 Console.WriteLine("ID of thread in Main(): {0}",
 Thread.CurrentThread.ManagedThreadId);
 AddParams ap = new AddParams(10, 10);
 Thread t = new Thread(new ParameterizedThreadStart(Add));
 t.Start(ap);

 // Wait here until you are notified!
 waitHandle.WaitOne();
 Console.WriteLine("Other thread is done!");

 Console.ReadLine();
 }
...
}

When the other thread is completed with its workload, it will call the Set() method on the same
instance of the AutoResetEvent type.

static void Add(object data)
{
 if (data is AddParams)
 {
 Console.WriteLine("ID of thread in Add(): {0}",
 Thread.CurrentThread.ManagedThreadId);

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

716

 AddParams ap = (AddParams)data;
 Console.WriteLine("{0} + {1} is {2}",
 ap.a, ap.b, ap.a + ap.b);

 // Tell other thread we are done.
 waitHandle.Set();
 }
}

 ■ Source Code the addWiththreads project is included in the Chapter 19 subdirectory.

Foreground Threads and Background Threads
Now that you have seen how to programmatically create new threads of execution using the System.Threading
namespace, let’s formalize the distinction between foreground threads and background threads.

•	 Foreground threads have the ability to prevent the current application from
terminating. The CLR will not shut down an application (which is to say, unload the
hosting AppDomain) until all foreground threads have ended.

•	 Background threads (sometimes called daemon threads) are viewed by the CLR
as expendable paths of execution that can be ignored at any point in time (even if
they are currently laboring over some unit of work). Thus, if all foreground threads
have terminated, any and all background threads are automatically killed when the
application domain unloads.

It is important to note that foreground and background threads are not synonymous with primary
and worker threads. By default, every thread you create via the Thread.Start() method is automatically a
foreground thread. Again, this means that the AppDomain will not unload until all threads of execution have
completed their units of work. In most cases, this is exactly the behavior you require.

For the sake of argument, however, assume that you want to invoke Printer.PrintNumbers() on a
secondary thread that should behave as a background thread. Again, this means that the method pointed
to by the Thread type (via the ThreadStart or ParameterizedThreadStart delegate) should be able to halt
safely as soon as all foreground threads are done with their work. Configuring such a thread is as simple as
setting the IsBackground property to true, like so:

static void Main(string[] args)
{
 Console.WriteLine("***** Background Threads *****\n");
 Printer p = new Printer();
 Thread bgroundThread =
 new Thread(new ThreadStart(p.PrintNumbers));

 // This is now a background thread.
 bgroundThread.IsBackground = true;
 bgroundThread.Start();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

717

Notice that this Main() method is not making a call to Console.ReadLine() to force the console
to remain visible until you press the Enter key. Thus, when you run the application, it will shut down
immediately because the Thread object has been configured as a background thread. Given that the Main()
method triggers the creation of the primary foreground thread, as soon as the logic in Main() completes, the
AppDomain unloads before the secondary thread is able to complete its work.

However, if you comment out the line that sets the IsBackground property, you will find that each
number prints to the console, as all foreground threads must finish their work before the AppDomain is
unloaded from the hosting process.

For the most part, configuring a thread to run as a background type can be helpful when the worker
thread in question is performing a noncritical task that is no longer needed when the main task of the
program is finished. For example, you could build an application that pings an e-mail server every few
minutes for new e-mails, updates current weather conditions, or performs some other noncritical task.

The Issue of Concurrency
When you build multithreaded applications, your program needs to ensure that any piece of shared data
is protected against the possibility of numerous threads changing its value. Given that all threads in an
AppDomain have concurrent access to the shared data of the application, imagine what might happen
if multiple threads were accessing the same point of data. As the thread scheduler will force threads to
suspend their work at random, what if thread A is kicked out of the way before it has fully completed its
work? Thread B is now reading unstable data.

To illustrate the problem of concurrency, let’s build another Console Application project named
MultiThreadedPrinting. This application will once again use the Printer class created previously, but this time
the PrintNumbers() method will force the current thread to pause for a randomly generated amount of time.

public class Printer
{
 public void PrintNumbers()
 {
...
 for (int i = 0; i < 10; i++)
 {
 // Put thread to sleep for a random amount of time.
 Random r = new Random();
 Thread.Sleep(1000 * r.Next(5));
 Console.Write("{0}, ", i);
 }
 Console.WriteLine();
 }
}

The Main() method is responsible for creating an array of ten (uniquely named) Thread objects, each of
which is making calls on the same instance of the Printer object as follows:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("*****Synchronizing Threads *****\n");

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

718

 Printer p = new Printer();

 // Make 10 threads that are all pointing to the same
 // method on the same object.
 Thread[] threads = new Thread[10];
 for (int i = 0; i < 10; i++)
 {
 threads[i] =
 new Thread(new ThreadStart(p.PrintNumbers));
 threads[i].Name = string.Format("Worker thread #{0}", i);
 }
 // Now start each one.
 foreach (Thread t in threads)
 t.Start();
 Console.ReadLine();
 }
}

Before looking at some test runs, let’s recap the problem. The primary thread within this AppDomain
begins life by spawning ten secondary worker threads. Each worker thread is told to make calls on the
PrintNumbers() method on the same Printer instance. Given that you have taken no precautions to lock
down this object’s shared resources (the console), there is a good chance that the current thread will be
kicked out of the way before the PrintNumbers() method is able to print the complete results. Because you
don’t know exactly when (or if) this might happen, you are bound to get unpredictable results. For example,
you might find the output shown here:

*****Synchronizing Threads *****

-> Worker thread #1 is executing PrintNumbers()
Your numbers: -> Worker thread #0 is executing PrintNumbers()
-> Worker thread #2 is executing PrintNumbers()
Your numbers: -> Worker thread #3 is executing PrintNumbers()
Your numbers: -> Worker thread #4 is executing PrintNumbers()
Your numbers: -> Worker thread #6 is executing PrintNumbers()
Your numbers: -> Worker thread #7 is executing PrintNumbers()
Your numbers: -> Worker thread #8 is executing PrintNumbers()
Your numbers: -> Worker thread #9 is executing PrintNumbers()
Your numbers: Your numbers: -> Worker thread #5 is executing PrintNumbers()
Your numbers: 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 1, 0, 0, 4, 3,
4, 1, 2, 4, 5, 5, 5, 6, 6, 6, 2, 7, 7, 7, 3, 4, 0, 8, 4, 5, 1, 5, 8, 8, 9,
2, 6, 1, 0, 9, 1,
6, 2, 7, 9,
2, 1, 7, 8, 3, 2, 3, 3, 9,
8, 4, 4, 5, 9,
4, 3, 5, 5, 6, 3, 6, 7, 4, 7, 6, 8, 7, 4, 8, 5, 5, 6, 6, 8, 7, 7, 9,
8, 9,
8, 9,
9,
9,

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

719

Now run the application a few more times. Here is another possibility (your results will certainly differ):

*****Synchronizing Threads *****
-> Worker thread #0 is executing PrintNumbers()
-> Worker thread #1 is executing PrintNumbers()
-> Worker thread #2 is executing PrintNumbers()
Your numbers: -> Worker thread #4 is executing PrintNumbers()
Your numbers: -> Worker thread #5 is executing PrintNumbers()
Your numbers: Your numbers: -> Worker thread #6 is executing PrintNumbers()
Your numbers: -> Worker thread #7 is executing PrintNumbers()
Your numbers: Your numbers: -> Worker thread #8 is executing PrintNumbers()
Your numbers: -> Worker thread #9 is executing PrintNumbers()
Your numbers: -> Worker thread #3 is executing PrintNumbers()
Your numbers: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7
, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9,
9,
9,
9,
9,
9,
9,
9,
9,
9,

 ■ Note if you are unable to generate unpredictable outputs, increase the number of threads from 10 to 100
(for example) or introduce another call to Thread.Sleep() within your program. eventually, you will encounter
the concurrency issue.

There are clearly some problems here. As each thread is telling the Printer to print the numerical
data, the thread scheduler is happily swapping threads in the background. The result is inconsistent output.
What you need is a way to programmatically enforce synchronized access to the shared resources. As you
would guess, the System.Threading namespace provides a number of synchronization-centric types. The C#
programming language also provides a particular keyword for the very task of synchronizing shared data in
multithreaded applications.

Synchronization Using the C# lock Keyword
The first technique you can use to synchronize access to shared resources is the C# lock keyword. This
keyword allows you to define a scope of statements that must be synchronized between threads. By doing
so, incoming threads cannot interrupt the current thread, thus preventing it from finishing its work. The
lock keyword requires you to specify a token (an object reference) that must be acquired by a thread to

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

720

enter within the lock scope. When you are attempting to lock down a private instance-level method, you can
simply pass in a reference to the current type, as follows:

private void SomePrivateMethod()
{
 // Use the current object as the thread token.
 lock(this)
 {
 // All code within this scope is thread safe.
 }
}

However, if you are locking down a region of code within a public member, it is safer (and a best
practice) to declare a private object member variable to serve as the lock token, like so:

public class Printer
{
 // Lock token.
 private object threadLock = new object();

 public void PrintNumbers()
 {
 // Use the lock token.
 lock (threadLock)
 {
 ...
 }
 }
}

In any case, if you examine the PrintNumbers() method, you can see that the shared resource the
threads are competing to gain access to is the console window. Therefore, if you scope all interactions with
the Console type within a lock scope, as follows:

public void PrintNumbers()
{
 // Use the private object lock token.
 lock (threadLock)
 {
 // Display Thread info.
 Console.WriteLine("-> {0} is executing PrintNumbers()",
 Thread.CurrentThread.Name);
 // Print out numbers.
 Console.Write("Your numbers: ");
 for (int i = 0; i < 10; i++)
 {
 Random r = new Random();
 Thread.Sleep(1000 * r.Next(5));
 Console.Write("{0}, ", i);
 }
 Console.WriteLine();
 }
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

721

you have effectively designed a method that will allow the current thread to complete its task. Once a thread
enters into a lock scope, the lock token (in this case, a reference to the current object) is inaccessible by
other threads until the lock is released after the lock scope has exited. Thus, if thread A has obtained the lock
token, other threads are unable to enter any scope that uses the same lock token until thread A relinquishes
the lock token.

 ■ Note if you are attempting to lock down code in a static method, simply declare a private static object
member variable to serve as the lock token.

If you now run the application, you can see that each thread has ample opportunity to finish its
business.

*****Synchronizing Threads *****
-> Worker thread #0 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #1 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #3 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #2 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #4 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #5 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #7 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #6 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #8 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
-> Worker thread #9 is executing PrintNumbers()
Your numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

 ■ Source Code the Multithreadedprinting project is included in the Chapter 19 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

722

Synchronization Using the System.Threading.Monitor Type
The C# lock statement is really just a shorthand notation for working with the System.Threading.Monitor
class. Once processed by the C# compiler, a lock scope actually resolves to the following (which you can
verify using ildasm.exe):

public void PrintNumbers()
{
 Monitor.Enter(threadLock);
 try
 {
 // Display Thread info.
 Console.WriteLine("-> {0} is executing PrintNumbers()",
 Thread.CurrentThread.Name);

 // Print out numbers.
 Console.Write("Your numbers: ");
 for (int i = 0; i < 10; i++)
 {
 Random r = new Random();
 Thread.Sleep(1000 * r.Next(5));
 Console.Write("{0}, ", i);
 }
 Console.WriteLine();
 }
 finally
 {
 Monitor.Exit(threadLock);
 }
}

First, notice that the Monitor.Enter() method is the ultimate recipient of the thread token you
specified as the argument to the lock keyword. Next, all code within a lock scope is wrapped within a try
block. The corresponding finally clause ensures that the thread token is released (via the Monitor.Exit()
method), regardless of any possible runtime exception. If you were to modify the MultiThreadPrinting
program to make direct use of the Monitor type (as just shown), you would find the output is identical.

Now, given that the lock keyword seems to require less code than making explicit use of the
System.Threading.Monitor type, you might wonder about the benefits of using the Monitor type directly.
The short answer is control. If you use the Monitor type, you are able to instruct the active thread to wait for
some duration of time (via the static Monitor.Wait() method), inform waiting threads when the current
thread is completed (via the static Monitor.Pulse() and Monitor.PulseAll() methods), and so on.

As you would expect, in a great number of cases, the C# lock keyword will fit the bill. However, if you are
interested in checking out additional members of the Monitor class, consult the .NET Framework 4.6 SDK
documentation.

Synchronization Using the System.Threading.Interlocked Type
Although it always is hard to believe until you look at the underlying CIL code, assignments and simple
arithmetic operations are not atomic. For this reason, the System.Threading namespace provides a type that
allows you to operate on a single point of data atomically with less overhead than with the Monitor type. The
Interlocked class defines the following key static members shown in Table 19-4.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

723

Although it might not seem like it from the onset, the process of atomically altering a single value
is quite common in a multithreaded environment. Assume you have a method named AddOne() that
increments an integer member variable named intVal. Rather than writing synchronization code such as
the following:

public void AddOne()
{
 lock(myLockToken)
 {
 intVal++;
 }
}

you can simplify your code via the static Interlocked.Increment() method. Simply pass in the variable to
increment by reference. Do note that the Increment() method not only adjusts the value of the incoming
parameter but also returns the new value.

public void AddOne()
{
 int newVal = Interlocked.Increment(ref intVal);
}

In addition to Increment() and Decrement(), the Interlocked type allows you to atomically assign
numerical and object data. For example, if you want to assign the value of a member variable to the
value 83, you can avoid the need to use an explicit lock statement (or explicit Monitor logic) and use the
Interlocked.Exchange() method, like so:

public void SafeAssignment()
{
 Interlocked.Exchange(ref myInt, 83);
}

Finally, if you want to test two values for equality and change the point of comparison in a thread- safe
manner, you are able to leverage the Interlocked.CompareExchange() method as follows:

public void CompareAndExchange()
{
 // If the value of i is currently 83, change i to 99.
 Interlocked.CompareExchange(ref i, 99, 83);
}

Table 19-4. Select Static Members of the System.Threading.Interlocked Type

Member Meaning in Life

CompareExchange() Safely tests two values for equality and, if equal,
exchanges one of the values with a third

Decrement() Safely decrements a value by 1

Exchange() Safely swaps two values

Increment() Safely increments a value by 1

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

724

Synchronization Using the [Synchronization] Attribute
The final synchronization primitive examined here is the [Synchronization] attribute, which is a member
of the System.Runtime.Remoting.Contexts namespace. In essence, this class-level attribute effectively
locks down all instance member code of the object for thread safety. When the CLR allocates objects
attributed with [Synchronization], it will place the object within a synchronized context. As you might
recall from Chapter 17, objects that should not be removed from a contextual boundary should derive from
ContextBoundObject. Therefore, if you want to make the Printer class type thread safe (without explicitly
writing thread-safe code within the class members), you could update the definition as follows:

using System.Runtime.Remoting.Contexts;
...

// All methods of Printer are now thread safe!
[Synchronization]
public class Printer : ContextBoundObject
{
 public void PrintNumbers()
 {
 ...
 }
}

In some ways, this approach can be seen as the lazy way to write thread-safe code, given that you are
not required to dive into the details about which aspects of the type are truly manipulating thread- sensitive
data. The major downfall of this approach, however, is that even if a given method is not making use of
thread-sensitive data, the CLR will still lock invocations to the method. Obviously, this could degrade the
overall functionality of the type, so use this technique with care.

Programming with Timer Callbacks
Many applications have the need to call a specific method during regular intervals of time. For example, you
might have an application that needs to display the current time on a status bar via a given helper function.
As another example, you might want to have your application call a helper function every so often to perform
noncritical background tasks such as checking for new e-mail messages. For situations such as these, you can
use the System.Threading.Timer type in conjunction with a related delegate named TimerCallback.

To illustrate, assume you have a Console Application project (TimerApp) that will print the current time
every second until the user presses a key to terminate the application. The first obvious step is to write the
method that will be called by the Timer type (be sure to import System.Threading into your code file).

class Program
{
 static void PrintTime(object state)
 {
 Console.WriteLine("Time is: {0}",
 DateTime.Now.ToLongTimeString());
 }

 static void Main(string[] args)
 {
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_17

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

725

Notice the PrintTime() method has a single parameter of type System.Object and returns void. This
is not optional, given that the TimerCallback delegate can only call methods that match this signature. The
value passed into the target of your TimerCallback delegate can be any type of object (in the case of the
e-mail example, this parameter might represent the name of the Microsoft Exchange server to interact with
during the process). Also note that given that this parameter is indeed a System.Object, you are able to pass
in multiple arguments using a System.Array or custom class/structure.

The next step is to configure an instance of the TimerCallback delegate and pass it into the Timer
object. In addition to configuring a TimerCallback delegate, the Timer constructor allows you to specify the
optional parameter information to pass into the delegate target (defined as a System.Object), the interval
to poll the method, and the amount of time to wait (in milliseconds) before making the first call. Here’s an
example:

static void Main(string[] args)
{
 Console.WriteLine("***** Working with Timer type *****\n");

 // Create the delegate for the Timer type.
 TimerCallback timeCB = new TimerCallback(PrintTime);

 // Establish timer settings.
 Timer t = new Timer(
 timeCB, // The TimerCallback delegate object.
 null, // Any info to pass into the called method (null for no info).
 0, // Amount of time to wait before starting (in milliseconds).
 1000); // Interval of time between calls (in milliseconds).

 Console.WriteLine("Hit key to terminate...");
 Console.ReadLine();
}

In this case, the PrintTime() method will be called roughly every second and will pass in no additional
information to said method. Here is the output:

***** Working with Timer type *****

Hit key to terminate...
Time is: 6:51:48 PM
Time is: 6:51:49 PM
Time is: 6:51:50 PM
Time is: 6:51:51 PM
Time is: 6:51:52 PM
Press any key to continue . . .

If you did want to send in some information for use by the delegate target, simply substitute the null
value of the second constructor parameter with the appropriate information, like so:

// Establish timer settings.
Timer t = new Timer(timeCB, "Hello From Main", 0, 1000);

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

726

You can then obtain the incoming data as follows:

static void PrintTime(object state)
{
 Console.WriteLine("Time is: {0}, Param is: {1}",
 DateTime.Now.ToLongTimeString(), state.ToString());
}

 ■ Source Code the timerapp project is included in the Chapter 19 subdirectory.

Understanding the CLR ThreadPool
The next thread-centric topic you will examine in this chapter is the role of the CLR thread pool. When you
invoke a method asynchronously using delegate types (via the BeginInvoke() method), the CLR does not
literally create a new thread. For purposes of efficiency, a delegate’s BeginInvoke() method leverages a
pool of worker threads that is maintained by the runtime. To allow you to interact with this pool of waiting
threads, the System.Threading namespace provides the ThreadPool class type.

If you want to queue a method call for processing by a worker thread in the pool, you can use the
ThreadPool.QueueUserWorkItem() method. This method has been overloaded to allow you to specify an
optional System.Object for custom state data in addition to an instance of the WaitCallback delegate.

public static class ThreadPool
{
 ...
 public static bool QueueUserWorkItem(WaitCallback callBack);
 public static bool QueueUserWorkItem(WaitCallback callBack,
 object state);
}

The WaitCallback delegate can point to any method that takes a System.Object as its sole parameter
(which represents the optional state data) and returns nothing. Do note that if you do not provide a
System.Object when calling QueueUserWorkItem(), the CLR automatically passes a null value. To illustrate
queuing methods for use by the CLR thread pool, ponder the following program, which uses the Printer
type once again. In this case, however, you are not manually creating an array of Thread objects; rather, you
are assigning members of the pool to the PrintNumbers() method.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with the CLR Thread Pool *****\n");

 Console.WriteLine("Main thread started. ThreadID = {0}",
 Thread.CurrentThread.ManagedThreadId);

 Printer p = new Printer();

 WaitCallback workItem = new WaitCallback(PrintTheNumbers);

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

727

 // Queue the method ten times.
 for (int i = 0; i < 10; i++)
 {
 ThreadPool.QueueUserWorkItem(workItem, p);
 }
 Console.WriteLine("All tasks queued");
 Console.ReadLine();
 }
 static void PrintTheNumbers(object state)
 {
 Printer task = (Printer)state;
 task.PrintNumbers();
 }
}

At this point, you might be wondering if it would be advantageous to use the CLR- maintained thread
pool rather than explicitly creating Thread objects. Consider these benefits of leveraging the thread pool:

•	 The thread pool manages threads efficiently by minimizing the number of threads
that must be created, started, and stopped.

•	 By using the thread pool, you can focus on your business problem rather than the
application’s threading infrastructure.

However, using manual thread management is preferred in some cases. Here’s an example:

•	 If you require foreground threads or must set the thread priority. Pooled threads are
always background threads with default priority (ThreadPriority.Normal).

•	 If you require a thread with a fixed identity in order to abort it, suspend it, or discover
it by name.

 ■ Source Code the threadpoolapp project is included in the Chapter 19 subdirectory.

That wraps up your investigation of the System.Threading namespace. To be sure, understanding the
topics presented thus far in the chapter (especially during your examination of concurrency issues) will be
extremely valuable when creating a multithreaded application. Given this foundation, you will now turn
your attention to a number of new thread-centric topics that are available only with .NET 4.0 and higher.
To begin, you will examine the role of an alternative threading model, termed the TPL.

Parallel Programming Using the Task Parallel Library
At this point in the chapter, you have examined two programming techniques (using asynchronous
delegates and via the members of System.Threading) that allow you to build multithreaded software. Recall
that both of these approaches will work under any version of the .NET platform.

Beginning with the release of .NET 4.0, Microsoft introduced a new approach to multithreaded
application development using a parallel programming library termed the Task Parallel Library (TPL). Using
the types of System.Threading.Tasks, you can build fine-grained, scalable parallel code without having to
work directly with threads or the thread pool.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

728

This is not to say, however, that you will not use the types of System.Threading when you use the TPL.
In reality, these two threading toolkits can work together quite naturally. This is especially true in that the
System.Threading namespace still provides a majority of the synchronization primitives you examined
previously (Monitor, Interlocked, and so forth). This being said, you will quite likely find that you will favor
working with the TPL rather than the original System.Threading namespace, given that the same set of tasks
can be performed in a more straightforward manner.

 ■ Note on a related note, be aware that the C# async and await keywords use various members of the
System.Threading.Tasks namespace.

The System.Threading.Tasks Namespace
Collectively speaking, the types of System.Threading.Tasks are referred to as the Task Parallel Library. The
TPL will automatically distribute your application’s workload across available CPUs dynamically, using the
CLR thread pool. The TPL handles the partitioning of the work, thread scheduling, state management, and
other low-level details. The end result is that you can maximize the performance of your .NET applications,
while being shielded from many of complexities of directly working with threads (see Figure 19-2).

Figure 19-2. Members of the System.Threading.Tasks namespace

The Role of the Parallel Class
A key class of the TPL is System.Threading.Tasks.Parallel. This class supports a number of methods that
allow you to iterate over a collection of data (specifically, an object implementing IEnumerable<T>) in a
parallel fashion. If you were to look up the Parallel class in the .NET Framework 4.6 SDK documentation,
you would see that this class supports two primary static methods, Parallel.For() and Parallel.ForEach(),
each of which defines numerous overloaded versions.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

729

These methods allow you to author a body of code statements that will be processed in a parallel
manner. In concept, these statements are the same sort of logic you would write in a normal looping
construct (via the for or foreach C# keywords). The benefit is that the Parallel class will pluck threads
from the thread pool (and manage concurrency) on your behalf.

Both of these methods require you to specify an IEnumerable- or IEnumerable<T>-compatible
container that holds the data you need to process in a parallel manner. The container could be a simple
array, a nongeneric collection (such as ArrayList), a generic collection (such as List<T>), or the results of a
LINQ query.

In addition, you will need to use the System.Func<T> and System.Action<T> delegates to specify the
target method that will be called to process the data. You’ve already encountered the Func<T> delegate in
Chapter 12, during your investigation of LINQ to Objects. Recall that Func<T> represents a method that can
have a given return value and a varied number of arguments. The Action<T> delegate is similar to Func<T>,
in that it allows you to point to a method taking some number of parameters. However, Action<T> specifies a
method that can only return void.

While you could call the Parallel.For() and Parallel.ForEach() methods and pass a strongly typed
Func<T> or Action<T> delegate object, you can simplify your programming by using a fitting C# anonymous
method or lambda expression.

Data Parallelism with the Parallel Class
The first way to use the TPL is to perform data parallelism. Simply put, this term refers to the task of iterating
over an array or collection in a parallel manner using the Parallel.For() or Parallel.ForEach() method.
Assume you need to perform some labor-intensive file I/O operations. Specifically, you need to load a large
number of *.jpg files into memory, flip them upside down, and save the modified image data to a new
location.

The .NET Framework 4.6 SDK documentation provides a console-based example of this very situation;
however, you will see how to perform the same overall task using a graphical user interface so you can
examine the use of “anonymous delegates” to allow secondary threads to update the primary user interface
thread (aka the UI thread).

 ■ Note When you are building a multithreaded graphical user interface (gui) application, secondary threads
can never directly access user interface controls. the reason is that controls (buttons, text boxes, labels,
progress bars, etc.) have thread affinity with the thread that created them. in the following example, i’ll illustrate
one way to allow secondary threads to access ui items in a thread-safe manner. you’ll see a more simplified
approach when you examine the C# async and await keywords.

To illustrate, create a Windows Forms application named DataParallelismWithForEach, and use the
Solution Explorer to rename Form1.cs to MainForm.cs. After you do so, import the following namespaces in
your primary code file:

// Be sure you have these namespaces!
using System.Threading.Tasks;
using System.Threading;
using System.IO;

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

730

The GUI of the application consists of a multiline TextBox and a single Button (named btnProcessImages).
The purpose of the text area is to allow you to enter data while the work is being performed in the background,
thus illustrating the nonblocking nature of the parallel task. The Click event of this Button will eventually use
the TPL, but for now, author the following blocking code.

 ■ Note you should update the string passed into the following Directory.GetFiles() method call to point to a
path on your computer that has some image files (such as a personal folder of family pictures). i’ve included some
sample images (that ship with the Windows operating system) in the Solution directory for your convenience.

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }

 private void btnProcessImages_Click(object sender, EventArgs e)
 {
 ProcessFiles();
 }

 private void ProcessFiles()
 {
 // Load up all *.jpg files, and make a new folder for the modified data.
 string[] files = Directory.GetFiles
 (@"C:\TestPictures", "*.jpg",
 SearchOption.AllDirectories);
 string newDir = @"C:\ModifiedPictures";
 Directory.CreateDirectory(newDir);

 // Process the image data in a blocking manner.
 foreach (string currentFile in files)
 {
 string filename = Path.GetFileName(currentFile);

 using (Bitmap bitmap = new Bitmap(currentFile))
 {
 bitmap.RotateFlip(RotateFlipType.Rotate180FlipNone);
 bitmap.Save(Path.Combine(newDir, filename));

 // Print out the ID of the thread processing the current image.
 this.Text = string.Format("Processing {0} on thread {1}", filename,
 Thread.CurrentThread.ManagedThreadId);
 }
 }
 }
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

731

Notice that the ProcessFiles() method will rotate each *.jpg file under the specified directory, which
currently contains 37 files (again, be sure to update the path sent into Directory.GetFiles() as necessary).
Currently, all the work is happening on the primary thread of the executable. Therefore, if the button is
clicked, the program will appear to hang. Furthermore, the caption of the window will also report that the
same primary thread is processing the file, as we have only a single thread of execution.

To process the files on as many CPUs as possible, you can rewrite the current foreach loop to use
Parallel.ForEach(). Recall that this method has been overloaded numerous times; however, in the
simplest form, you must specify the IEnumerable<T>-compatible object that contains the items to process
(that would be the files string array) and an Action<T> delegate that points to the method that will perform
the work.

Here is the relevant update, using the C# lambda operator in place of a literal Action<T> delegate
object. Notice that you are currently commenting out the line of code that displayed the ID of the thread
executing the current image file. See the next section to find out the reason why.

// Process the image data in a parallel manner!
Parallel.ForEach(files, currentFile =>
 {
 string filename = Path.GetFileName(currentFile);

 using (Bitmap bitmap = new Bitmap(currentFile))
 {
 bitmap.RotateFlip(RotateFlipType.Rotate180FlipNone);
 bitmap.Save(Path.Combine(newDir, filename));

 // This code statement is now a problem! See next section.
 // this.Text = string.Format("Processing {0} on thread {1}", filename,
 // Thread.CurrentThread.ManagedThreadId);
 }
 }
);

Accessing UI Elements on Secondary Threads
You’ll notice that I’ve commented out the previous line of code that updated the caption of the main window
with the ID of the currently executing thread. As noted previously, GUI controls have “thread affinity” with
the thread that created it. If secondary threads attempt to access a control they did not directly create, you
are bound to run into runtime errors when debugging your software. On the flip side, if you were to run the
application (via Ctrl+F5), you might not ever find any problems whatsoever with the original code.

 ■ Note let me reiterate the previous point: when you debug (F5) a multithreaded application, Visual studio
is often able to catch errors that arise when a secondary thread is “touching” a control created on the primary
thread. however, oftentimes when you run (Ctrl+F5) the application, the application could appear to run
correctly (or it might error straightaway). until you take precautions (examined next), your application has the
potential of raising a runtime error under such circumstances.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

732

One approach that you can use to allow these secondary threads to access the controls in a thread-safe
manner is yet another delegate centric technique, specifically an anonymous delegate. The Control parent
class of the Windows Forms API defines a method named Invoke(), which takes a System.Delegate as
input. You can call this method when you are in a coding context involving secondary threads to provide
a thread-safe manner to update the UI of the given control. Now, while you could write all of the required
delegate code directly, most developers use anonymous delegates as a simple alternative. Here is the
relevant update to content with the previously commented-out code statement:

using (Bitmap bitmap = new Bitmap(currentFile))
{
 bitmap.RotateFlip(RotateFlipType.Rotate180FlipNone);
 bitmap.Save(Path.Combine(newDir, filename));

 // Eek! This will not work anymore!
 //this.Text = string.Format("Processing {0} on thread {1}", filename,
 // Thread.CurrentThread.ManagedThreadId);

 // Invoke on the Form object, to allow secondary threads to access controls
 // in a thread-safe manner.
 this.Invoke((Action)delegate
 {
 this.Text = string.Format("Processing {0} on thread {1}", filename,
 Thread.CurrentThread.ManagedThreadId);
 }
);
}

 ■ Note the this.Invoke() method is unique to the Windows Forms api. When you are building a WpF
application, you would write this.Dispatcher.Invoke() for the same purpose.

Now, if you run program, the TPL will indeed distribute the workload to multiple threads from the
thread pool, using as many CPUs as possible. However, you will not see the window’s caption display the
name of each unique thread, and you won’t see anything if you type in the text box until all the images have
been processed! The reason is that the primary UI thread is still blocked, waiting for all the other threads to
finish up their business.

The Task Class
The Task class allows you to easily invoke a method on a secondary thread and can be used as a simple
alternative to working with asynchronous delegates. Update the Click handler of your Button control as so:

private void btnProcessImages_Click(object sender, EventArgs e)
{
 // Start a new "task" to process the files.
 Task.Factory.StartNew(() =>
 {
 ProcessFiles();
 });
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

733

The Factory property of Task returns a TaskFactory object. When you call its StartNew() method,
you pass in an Action<T> delegate (here, hidden away with a fitting lambda expression) that points to the
method to invoke in an asynchronous manner. With this small update, you will now find that the window’s
title will show which thread from the thread pool is processing a given file, and better yet, the text area is able
to receive input, as the UI thread is no longer blocked.

Handling Cancellation Request
One improvement you can make to the current example is to provide a way for the user to stop the
processing of the image data, via a second (aptly named) Cancel button. Thankfully, the Parallel.For()
and Parallel.ForEach() methods both support cancellation through the use of cancellation tokens. When
you invoke methods on Parallel, you can pass in a ParallelOptions object, which in turn contains a
CancellationTokenSource object.

First, define the following new private member variable in your Form-derived class of type
CancellationTokenSource named cancelToken:

public partial class MainForm : Form
{
 // New Form-level variable.
 private CancellationTokenSource cancelToken =
 new CancellationTokenSource();
...
}

Now, assuming you have added a new Button (named btnCancel) on your designer, handle the Click
event and implement the handler as so:

private void btnCancel_Click(object sender, EventArgs e)
{
 // This will be used to tell all the worker threads to stop!
 cancelToken.Cancel();
}

Now, the real modifications need to occur within the ProcessFiles() method. Consider the final
implementation:

private void ProcessFiles()
{
 // Use ParallelOptions instance to store the CancellationToken.
 ParallelOptions parOpts = new ParallelOptions();
 parOpts.CancellationToken = cancelToken.Token;
 parOpts.MaxDegreeOfParallelism = System.Environment.ProcessorCount;

 // Load up all *.jpg files, and make a new folder for the modified data.
 string[] files = Directory.GetFiles
 (@"C:\Users\Public\Pictures\Sample Pictures", "*.jpg",
 SearchOption.AllDirectories);
 string newDir = @"C:\ModifiedPictures";
 Directory.CreateDirectory(newDir);

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

734

 try
 {
 // Process the image data in a parallel manner!
 Parallel.ForEach(files, parOpts, currentFile =>
 {
 parOpts.CancellationToken.ThrowIfCancellationRequested();

 string filename = Path.GetFileName(currentFile);
 using (Bitmap bitmap = new Bitmap(currentFile))
 {
 bitmap.RotateFlip(RotateFlipType.Rotate180FlipNone);
 bitmap.Save(Path.Combine(newDir, filename));
 this.Invoke((Action)delegate
 {
 this.Text = string.Format("Processing {0} on thread {1}", filename,
 Thread.CurrentThread.ManagedThreadId);
 }
);
 }
 }
);
 this.Invoke((Action)delegate
 {
 this.Text = "Done!";
 });
 }
 catch (OperationCanceledException ex)
 {
 this.Invoke((Action)delegate
 {
 this.Text = ex.Message;
 });
 }
}

Notice that you begin the method by configuring a ParallelOptions object, setting the
CancellationToken property to use the CancellationTokenSource token. Also note that when you call the
Parallel.ForEach() method, you pass in the ParallelOptions object as the second parameter.

Within the scope of the looping logic, you make a call to ThrowIfCancellationRequested() on the
token, which will ensure if the user clicks the Cancel button, all threads will stop, and you will be notified
via a runtime exception. When you catch the OperationCanceledException error, you will set the text of the
main window to the error message.

 ■ Source Code the dataparallelismWithForeach project is included in the Chapter 19 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

735

Task Parallelism Using the Parallel Class
In addition to data parallelism, the TPL can also be used to easily fire off any number of asynchronous tasks
using the Parallel.Invoke() method. This approach is a bit more straightforward than using delegates or
members from System.Threading; however, if you require more control over the way tasks are executed, you
could forgo use of Parallel.Invoke() and use the Task class directly, as you did in the previous example.

To illustrate task parallelism, create a new Windows Forms application called MyEBookReader
and be sure the System.Threading.Tasks and System.Net namespaces are imported. This example is a
modification of a useful example in the .NET Framework 4.6 SDK documentation. Here, you will fetch a
publically available e-book from Project Gutenberg (www.gutenberg.org) and then perform a set of lengthy
tasks in parallel.

The GUI consists of a multiline TextBox control (named txtBook) and two Button controls
(btnDownload and btnGetStats). Once you have designed the UI, handle the Click event for each Button,
and in the form’s code file, declare a class-level string variable named theEBook. Implement the Click
hander for the btnDownload as so:

private void btnDownload_Click(object sender, EventArgs e)
{
 WebClient wc = new WebClient();
 wc.DownloadStringCompleted += (s, eArgs) =>
 {
 theEBook = eArgs.Result;
 txtBook.Text = theEBook;
 };

 // The Project Gutenberg EBook of A Tale of Two Cities, by Charles Dickens
 wc.DownloadStringAsync(new Uri("http://www.gutenberg.org/files/98/98-8.txt"));
}

The WebClient class is a member of System.Net. This class provides a number of methods for sending
data to and receiving data from a resource identified by a URI. As it turns out, many of these methods
have an asynchronous version, such as DownloadStringAsync(). This method will spin up a new thread
from the CLR thread pool automatically. When the WebClient is done obtaining the data, it will fire the
DownloadStringCompleted event, which you are handling here using a C# lambda expression. If you were to
call the synchronous version of this method (DownloadString()), the form would appear unresponsive for
quite some time.

The Click event hander for the btnGetStats Button control is implemented to extract the individual
words contained in theEBook variable and then pass the string array to a few helper functions for processing
as follows:

private void btnGetStats_Click(object sender, EventArgs e)
{
 // Get the words from the e-book.
 string[] words = theEBook.Split(new char[]
 { ' ', '\u000A', ',', '.', ';', ':', '-', '?', '/' },
 StringSplitOptions.RemoveEmptyEntries);

 // Now, find the ten most common words.
 string[] tenMostCommon = FindTenMostCommon(words);

http://www.gutenberg.org/
http://www.gutenberg.org/files/98/98-8.txt

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

736

 // Get the longest word.
 string longestWord = FindLongestWord(words);

 // Now that all tasks are complete, build a string to show all
 // stats in a message box.
 StringBuilder bookStats = new StringBuilder("Ten Most Common Words are:\n");
 foreach (string s in tenMostCommon)
 {
 bookStats.AppendLine(s);
 }

 bookStats.AppendFormat("Longest word is: {0}", longestWord);
 bookStats.AppendLine();
 MessageBox.Show(bookStats.ToString(), "Book info");
}

The FindTenMostCommon() method uses a LINQ query to obtain a list of string objects that occur most
often in the string array, while FindLongestWord() locates, well, the longest word.

private string[] FindTenMostCommon(string[] words)
{
 var frequencyOrder = from word in words
 where word.Length > 6
 group word by word into g
 orderby g.Count() descending
 select g.Key;
 string[] commonWords = (frequencyOrder.Take(10)).ToArray();
 return commonWords;
}
private string FindLongestWord(string[] words)
{
 return (from w in words orderby w.Length descending select w).FirstOrDefault();
}

If you were to run this project, the amount of time to perform all tasks could take a goodly amount of
time, based on the CPU count of your machine and overall processor speed. Eventually, you should see the
output shown in Figure 19-3.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

737

You can help ensure that your application uses all available CPUs on the host machine by invoking the
FindTenMostCommon() and FindLongestWord() methods in parallel. To do so, modify your btnGetStats_
Click() method as so:

private void btnGetStats_Click(object sender, EventArgs e)
{
 // Get the words from the e-book.
 string[] words = theEBook.Split(
 new char[] { ' ', '\u000A', ',', '.', ';', ':', '-', '?', '/' },
 StringSplitOptions.RemoveEmptyEntries);
 string[] tenMostCommon = null;
 string longestWord = string.Empty;

 Parallel.Invoke(
 () =>
 {
 // Now, find the ten most common words.
 tenMostCommon = FindTenMostCommon(words);
 },
 () =>
 {
 // Get the longest word.
 longestWord = FindLongestWord(words);
 });

Figure 19-3. Stats about the downloaded e-book

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

738

 // Now that all tasks are complete, build a string to show all
 // stats in a message box.
 ...
}

The Parallel.Invoke() method expects a parameter array of Action<> delegates, which you have
supplied indirectly using lambda expressions. Again, while the output is identical, the benefit is that the TPL
will now use all possible processors on the machine to invoke each method in parallel if possible.

 ■ Source Code the MyeBookreader project is included in the Chapter 19 subdirectory.

Parallel LINQ Queries (PLINQ)
To wrap up your look at the TPL, be aware that there is another way you can incorporate parallel tasks into
your .NET applications. If you choose, you can use a set of extension methods, which allow you to construct
a LINQ query that will perform its workload in parallel (if possible). Fittingly, LINQ queries that are designed
to run in parallel are termed PLINQ queries.

Like parallel code authored using the Parallel class, PLINQ has the option of ignoring your request to
process the collection in parallel if need be. The PLINQ framework has been optimized in numerous ways,
which includes determining whether a query would, in fact, perform faster in a synchronous manner.

At runtime, PLINQ analyzes the overall structure of the query, and if the query is likely to benefit from
parallelization, it will run concurrently. However, if parallelizing a query would hurt performance, PLINQ
just runs the query sequentially. If PLINQ has a choice between a potentially expensive parallel algorithm or
an inexpensive sequential algorithm, it chooses the sequential algorithm by default.

The necessary extension methods are found within the ParallelEnumerable class of the System.Linq
namespace. Table 19-5 documents some useful PLINQ extensions.

Table 19-5. Select Members of the ParallelEnumerable Class

Member Meaning in Life

AsParallel() Specifies that the rest of the query should be parallelized, if possible.

WithCancellation() Specifies that PLINQ should periodically monitor the state of the provided
cancellation token and cancel execution if it is requested.

WithDegreeOfParallelism() Specifies the maximum number of processors that PLINQ should use to
parallelize the query.

ForAll() Enables results to be processed in parallel without first merging back to
the consumer thread, as would be the case when enumerating a LINQ
result using the foreach keyword.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

739

To see PLINQ in action, create a final Windows Forms application named PLINQDataProcessingWith
Cancellation and import the System.Threading namespace. This simple form will need only two Button
controls named btnExecute and btnCancel. Then the Execute button is clicked, and you will fire off a new
Task, which executes a LINQ query that investigates a large array of integers, looking for only the items
where x % 3 == 0 is true. Here is a nonparallel version of the query:

public partial class MainForm : Form
{
...
 private void btnExecute_Click(object sender, EventArgs e)
 {
 // Start a new "task" to process the ints.
 Task.Factory.StartNew(() =>
 {
 ProcessIntData();
 });
 }

 private void ProcessIntData()
 {
 // Get a very large array of integers.
 int[] source = Enumerable.Range(1, 10000000).ToArray();

 // Find the numbers where num % 3 == 0 is true, returned
 // in descending order.
 int[] modThreeIsZero = (from num in source where num % 3 == 0
 orderby num descending select num).ToArray();

 MessageBox.Show(string.Format("Found {0} numbers that match query!",
 modThreeIsZero.Count()));
 }
}

Opting in to a PLINQ Query
If you want to inform the TPL to execute this query in parallel (if possible), you will want to use the
AsParallel() extension method as so:

int[] modThreeIsZero = (from num in source.AsParallel() where num % 3 == 0
 orderby num descending select num).ToArray();

Notice how the overall format of the LINQ query is identical to what you saw in previous chapters.
However, by including a call to AsParallel(), the TPL will attempt to pass the workload off to an
available CPU.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

740

Cancelling a PLINQ Query
It is also possible to use a CancellationTokenSource object to inform a PLINQ query to stop
processing under the correct conditions (typically because of user intervention). Declare a form-level
CancellationTokenSource object named cancelToken and implement the Click handler of the btnCancel
to call the Cancel() method on this object. Here is the relevant code update:

public partial class MainForm : Form
{
 private CancellationTokenSource cancelToken = new CancellationTokenSource();

 private void btnCancel_Click(object sender, EventArgs e)
 {
 cancelToken.Cancel();
 }
...
}

Now, inform the PLINQ query that it should be on the lookout for an incoming cancellation request by
chaining on the WithCancellation() extension method and passing in the token. In addition, you will want
to wrap this PLINQ query in a proper try/catch scope and deal with the possible exception. Here is the final
version of the ProcessIntData() method:

private void ProcessIntData()
{
 // Get a very large array of integers.
 int[] source = Enumerable.Range(1, 10000000).ToArray();

 // Find the numbers where num % 3 == 0 is true, returned
 // in descending order.
 int[] modThreeIsZero = null;
 try
 {
 modThreeIsZero = (from num in
 source.AsParallel().WithCancellation(cancelToken.Token)
 where num % 3 == 0 orderby num descending
 select num).ToArray();
 MessageBox.Show(string.Format("Found {0} numbers that match query!",
 modThreeIsZero.Count()));
 }
 catch (OperationCanceledException ex)
 {
 this.Invoke((Action)delegate
 {
 this.Text = ex.Message;
 });
 }
}

 ■ Source Code the plinQdataprocessingWithCancellation project is in the Chapter 19 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

741

Asynchronous Calls with the async Keyword
I have covered a lot of terse material in this (rather lengthy) chapter. To be sure, building, debugging, and
understanding complex multithreaded applications is a challenge in any framework. While the TPL, PLINQ,
and the delegate type can simplify matters to some extent (especially when compared to other platforms and
languages), developers are still required to be fairly savvy with the ins and outs of various advanced techniques.

Since the release of .NET 4.5, the C# programming language (and for that matter, the VB programming
language) has been updated with two new keywords that further simplify the process of authoring
asynchronous code. In contrast to all the examples in this chapter, when you use the new async and
await keywords, the compiler will generate a good deal of threading code on your behalf, using numerous
members of the System.Threading and System.Threading.Tasks namespaces.

A First Look at the C# async and await Keywords
The async keyword of C# is used to qualify that a method, lambda expression, or anonymous method should
be called in an asynchronous manner automatically. Yes, it’s true. Simply by marking a method with the
async modifier, the CLR will create a new thread of execution to handle the task at hand. Furthermore, when
you are calling an async method, the await keyword will automatically pause the current thread from any
further activity until the task is complete, leaving the calling thread free to continue on its merry way.

To illustrate, create a new Windows Forms application named FunWithCSharpAsync and import
the System.Threading namespace into the initial form’s primary code file (I renamed my initial form to
be MainForm). After you have done so, place a single Button control (named btnCallMethod) and a single
TextBox control (named txtInput) on the designer surface, and configure any basic UI properties (colors,
fonts, text) you want. Now, handle the Click event of the Button control, and within the event handler, call a
private helper method named DoWork(), which forces the calling thread to wait for ten seconds. Here is the
story thus far:

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }

 private void btnCallMethod_Click(object sender, EventArgs e)
 {
 this.Text = DoWork();
 }

 private string DoWork()
 {
 Thread.Sleep(10000);
 return "Done with work!";
 }
}

Now, given your work in this chapter, you know that if you were to run the program and click this
button, you would need to wait 10 seconds before the text box control could receive keyword input.
Furthermore, you will not see the title of the main window update with the message "Done with work!" for
ten seconds as well.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

742

If you were to use any of the previous techniques shown in this chapter to make your program more
responsive, you would have a good deal of work ahead of you. However, since .NET 4.5, you can author the
following C# code base:

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }

 private async void btnCallMethod_Click(object sender, EventArgs e)
 {
 this.Text = await DoWork();
 }

 // See below for code walkthrough...
 private Task<string> DoWork()
 {
 return Task.Run(() =>
 {
 Thread.Sleep(10000);
 return "Done with work!";
 });
 }
}

First, notice that the button’s Click event hander has been marked with the async keyword. This marks the
method as a member to be called in a nonblocking manner. Also notice that the implementation of the event
handler uses the await keyword before naming the method that will be called. This is important: if you decorate
a method with the async keyword but do not have at least one internal await-centric method call, you have
essentially built a blocking, synchronous method call (in fact, you will be given a compiler warning to this effect).

Now, notice that you are required to use the Task class from the System.Threading.Tasks namespace
to refactor our DoWork() method to work as expected. Basically, rather than returning a specific return value
straightaway (a string object in the current example), you return a Task<T> object, where the generic type
parameter T is the underlying, actual return value (with me so far?).

The implementation of DoWork() now directly returns a Task<T> object, which is the return value of
Task.Run(). The Run() method takes a Func<> or Action<> delegate, and as you know by this point in the
text, you can simplify your life by using a lambda expression. Basically, your new version of DoWork() is
essentially saying the following:

When you call me, I will run a new task. This task will cause the calling thread to sleep
for 10 seconds, and when it is done, it gives me a string return value. I'll put this
string in a new Task<string> object and return it to the caller.

Having translated this new implementation of DoWork() into more natural (poetic) language, you gain
some insight into the real role of the await token. This keyword will always modify a method that returns a
Task object. When the flow of logic reaches the await token, the calling thread is suspended until the call
completes. If you were to run this version of the application, you would find that you could click the button
and happily type within the text area immediately. Ten seconds later, your window’s title would update with
the completed message notification.

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

743

Naming Conventions for Async Methods
Now, let’s say that the new version of DoWork() is exactly as currently shown; however, the button’s Click
event hander has been implemented as so:

private async void btnCallMethod_Click(object sender, EventArgs e)
{
 // Oops! No await keyword here!
 this.Text = DoWork();
}

Notice you did indeed mark the method with the async keyword, but you neglected to use the await
keyword as a decorator before the DoWork() method call. At this point, you will have compiler errors, as the
return value of DoWork() is a Task object, which you are attempting to assign directly to the Text property
(which takes a string data type). Remember, the await token is in charge of extracting out the internal
return value contained in the Task object. Since you have not used this token, you have a type mismatch.

 ■ Note an “awaitable” method is simply a method that returns a Task<T>.

Given that methods that return Task objects can now be called in a nonblocking manner via the async
and await tokens, Microsoft recommends (as a best practice) that any method returning a Task be marked
with an Async suffix. In this way, developers who know the naming convention receive a visual reminder that
the await keyword is required, if they intend to invoke the method within an asynchronous context.

 ■ Note event handlers for gui controls (such as your button Click handler) that use the async /await
keywords do not follow this naming convention (by convention—pardon the redundancy!).

Furthermore, the DoWork() method could also be decorated with the async and await tokens (although
this is not strictly required for the current example). Given these points, here is the final update to the
current example, which conforms to the recommending naming conventions:

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }
 private async void btnCallMethod_Click(object sender, EventArgs e)
 {
 this.Text = await DoWorkAsync();
 }

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

744

 private async Task<string> DoWorkAsync()
 {
 return await Task.Run(() =>
 {
 Thread.Sleep(10000);
 return "Done with work!";
 });
 }
}

Async Methods Returning Void
Currently, your DoWork() method is returning a Task, which contains “real data” for the caller that will be
obtained transparently via the await keyword. However, what if you want to build an asynchronous method
that returns void? In this case, you use the nongeneric Task class and omit any return statement, like so:

private async Task MethodReturningVoidAsync()
{
 await Task.Run(() => { /* Do some work here... */
 Thread.Sleep(4000);
 });
}

The caller of this method, such as a second button Click event handler, would then use the await and
async keywords as so:

private async void btnVoidMethodCall_Click(object sender, EventArgs e)
{
 await MethodReturningVoidAsync();
 MessageBox.Show("Done!");
}

Async Methods with Multiple Awaits
It is completely permissible for a single async method to have multiple await contexts within its
implementation. Assume your application now has a third button Click event handler that has been marked
with the async keyword. In the previous parts of this example, the Click handlers purposely called some
external method that runs the underlying Task; however, you could inline this logic via a set of lambda
expressions as so:

private async void btnMutliAwaits_Click(object sender, EventArgs e)
{
 await Task.Run(() => { Thread.Sleep(2000); });
 MessageBox.Show("Done with first task!");

 await Task.Run(() => { Thread.Sleep(2000); });
 MessageBox.Show("Done with second task!");

 await Task.Run(() => { Thread.Sleep(2000); });
 MessageBox.Show("Done with third task!");
}

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

745

Again, here each task is not doing much more than suspending the current thread for a spell; however,
any unit of work could be represented by these tasks (calling a web service, reading a database, or what
have you). In any case, let’s summarize the key points of this example, as follows:

•	 Methods (as well as lambda expressions or anonymous methods) can be marked
with the async keyword to enable the method to do work in a nonblocking manner.

•	 Methods (as well as lambda expressions or anonymous methods) marked with the
async keyword will run in a blocking manner until the await keyword is encountered.

•	 A single async method can have multiple await contexts.

•	 When the await expression is encountered, the calling thread is suspended until the
awaited task is complete. In the meantime, control is returned to the caller of the
method.

•	 The await keyword will hide the returned Task object from view, appearing to
directly return the underlying return value. Methods with no return value simply
return void.

•	 As a naming convention, methods that are to be called asynchronously should be
marked with the Async suffix.

 ■ Source Code the FunWithCsharpasync project is in the Chapter 19 subdirectory.

Retrofitting the AddWithThreads Example Using Asycn/Await
Much earlier in this chapter, you built an example named AddWithThreads using the original threading
API of the .NET platform, System.Threading. Now, let’s retrofit this example to use the C# async and await
keywords to showcase just how much cleaner the application logic can become. First, let me remind you of
the basics of how the AddWithThreads project worked initially.

•	 You created a custom class named AddParams, which represented the data to be
summed.

•	 You used the Thread class and ParameterizedThreadStart delegate to point to an
Add() method receiving an AddParams object.

•	 You used the AutoResetEvent class to ensure the calling thread waited for the
secondary thread to complete.

All in all, it was a good deal of effort to simply compute the addition of two numbers on a secondary
thread of execution! Here is the same project, now refactored using the techniques under examination
(I did not reprint the AddParams class here, but recall it simply had two fields, a and b, to represent the data
to sum):

class Program
{
 static void Main(string[] args)
 {
 AddAsync();
 Console.ReadLine();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

746

 private static async Task AddAsync()
 {
 Console.WriteLine("***** Adding with Thread objects *****");
 Console.WriteLine("ID of thread in Main(): {0}",
 Thread.CurrentThread.ManagedThreadId);

 AddParams ap = new AddParams(10, 10);
 await Sum(ap);

 Console.WriteLine("Other thread is done!");
 }

 static async Task Sum(object data)
 {
 await Task.Run(() =>
 {
 if (data is AddParams)
 {
 Console.WriteLine("ID of thread in Add(): {0}",
 Thread.CurrentThread.ManagedThreadId);

 AddParams ap = (AddParams)data;
 Console.WriteLine("{0} + {1} is {2}",
 ap.a, ap.b, ap.a + ap.b);
 }
 });
 }
}

The first thing I’d like to point out is that the code that was initially in Main() has been moved into a new
method named AddAsync(). The reason was not only to conform to the expected naming convention, but
this brings up an important point.

 ■ Note the Main() method of an executable cannot be marked with the async keyword.

Note that AddAsync() is marked with the async token and has defined an await context. As well, the
Sum() method is spinning off a new Task to perform the unit of work. In any case, lo and behold, when you
run the program, you find that 10 plus 10 is still indeed 20. Note, however, that you do have two unique
thread IDs.

 ***** Adding with Thread objects *****
ID of thread in Main(): 1
ID of thread in Add(): 3
10 + 10 is 20
Other thread is done!

Chapter 19 ■ Multithreaded, parallel, and asynC prograMMing

747

 ■ Source Code the addWiththreadsasync project is in the Chapter 19 subdirectory.

So, as you can see, the async and await keywords can simplify the process of invoking methods on a
secondary thread of execution. While you have worked through only a few examples of what can be done
with this aspect of the C# language, you are in a good position for further exploration.

Summary
This chapter began by examining how .NET delegate types can be configured to execute a method in an
asynchronous manner. As you have seen, the BeginInvoke() and EndInvoke() methods allow you to
indirectly manipulate a secondary thread with minimum fuss and bother. During this discussion, you were
also introduced to the IAsyncResult interface and AsyncResult class type. As you learned, these types
provide various ways to synchronize the calling thread and obtain possible method return values.

The next part of this chapter examined the role of the System.Threading namespace. As you learned,
when an application creates additional threads of execution, the result is that the program in question is
able to carry out numerous tasks at (what appears to be) the same time. You also examined several manners
in which you can protect thread-sensitive blocks of code to ensure that shared resources do not become
unusable units of bogus data.

This chapter then examined some new models for working with multithreaded development
introduced with .NET 4.0, specifically the Task Parallel Library and PLINQ. I wrapped things up by covering
the role of the async and await keywords. As you have seen, these keywords are using many types of the
TPL framework in the background; however, the compiler does a majority of the work to create the complex
threading and synchronization code on your behalf.

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

749

Chapter 20

File I/O and Object Serialization

When you create desktop applications, the ability to save information between user sessions is
commonplace. This chapter examines a number of I/O-related topics as seen through the eyes of the .NET
Framework. The first order of business is to explore the core types defined in the System.IO namespace and
learn how to modify a machine’s directory and file structure programmatically. The next task is to explore
various ways to read from and write to character-based, binary-based, string-based, and memory-based
data stores.

After you learn how to manipulate files and directories using the core I/O types, you will examine
the related topic of object serialization. You can use object serialization to persist and retrieve the state of
an object to (or from) any System.IO.Stream-derived type. The ability to serialize objects is critical when
you want to copy an object to a remote machine using various remoting technologies such as Windows
Communication Foundation. However, serialization is quite useful in its own right and will likely play a role
in many of your .NET applications (distributed or not).

 ■ Note To ensure you can run each of the examples in this chapter, start Visual Studio with administrative
rights (just right-click the VS icon and select Run as Administrator). If you do not do so, you may encounter
runtime security exceptions when accessing the computer file system.

Exploring the System.IO Namespace
In the framework of .NET, the System.IO namespace is the region of the base class libraries devoted to
file-based (and memory-based) input and output (I/O) services. Like any namespace, System.IO defines a
set of classes, interfaces, enumerations, structures, and delegates, most of which you can find in mscorlib.
dll. In addition to the types contained within mscorlib.dll, the System.dll assembly defines additional
members of the System.IO namespace. Note that all Visual Studio projects automatically set a reference to
both assemblies.

Many of the types within the System.IO namespace focus on the programmatic manipulation of
physical directories and files. However, additional types provide support to read data from and write data to
string buffers, as well as raw memory locations. Table 20-1 outlines the core (nonabstract) classes, providing
a road map of the functionality in System.IO.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

750

In addition to these concrete class types, System.IO defines a number of enumerations, as well as a set
of abstract classes (e.g., Stream, TextReader, and TextWriter), that define a shared polymorphic interface to
all descendants. You will read about many of these types in this chapter.

The Directory(Info) and File(Info) Types
System.IO provides four classes that allow you to manipulate individual files, as well as interact with a
machine’s directory structure. The first two types, Directory and File, expose creation, deletion, copying,
and moving operations using various static members. The closely related FileInfo and DirectoryInfo
types expose similar functionality as instance-level methods (therefore, you must allocate them with
the new keyword). In Figure 20-1, the Directory and File classes directly extend System.Object, while
DirectoryInfo and FileInfo derive from the abstract FileSystemInfo type.

Table 20-1. Key Members of the System.IO Namespace

Nonabstract I/O Class Type Meaning in Life

BinaryReader
BinaryWriter

These classes allow you to store and retrieve primitive data types
(integers, Booleans, strings, and whatnot) as a binary value.

BufferedStream This class provides temporary storage for a stream of bytes that you can
commit to storage at a later time.

Directory
DirectoryInfo

You use these classes to manipulate a machine’s directory structure.
The Directory type exposes functionality using static members, while
the DirectoryInfo type exposes similar functionality from a valid object
reference.

DriveInfo This class provides detailed information regarding the drives that a given
machine uses.

File
FileInfo

You use these classes to manipulate a machine’s set of files. The File
type exposes functionality using static members, while the FileInfo type
exposes similar functionality from a valid object reference.

FileStream This class gives you random file access (e.g., seeking capabilities) with
data represented as a stream of bytes.

FileSystemWatcher This class allows you to monitor the modification of external files in a
specified directory.

MemoryStream This class provides random access to streamed data stored in memory
rather than in a physical file.

Path This class performs operations on System.String types that contain file
or directory path information in a platform-neutral manner.

StreamWriter
StreamReader

You use these classes to store (and retrieve) textual information to
(or from) a file. These types do not support random file access.

StringWriter
StringReader

Like the StreamReader/StreamWriter classes, these classes also work with
textual information. However, the underlying storage is a string buffer
rather than a physical file.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

751

FileInfo and DirectoryInfo typically serve as better choices for obtaining full details of a file or
directory (e.g., time created or read/write capabilities) because their members tend to return strongly typed
objects. In contrast, the Directory and File class members tend to return simple string values rather than
strongly typed objects. This is only a guideline, however; in many cases, you can get the same work done
using File/FileInfo or Directory/DirectoryInfo.

The Abstract FileSystemInfo Base Class
The DirectoryInfo and FileInfo types receive many behaviors from the abstract FileSystemInfo
base class. For the most part, you use the members of the FileSystemInfo class to discover general
characteristics (such as time of creation, various attributes, and so forth) about a given file or directory.
Table 20-2 lists some core properties of interest.

Figure 20-1. The File- and Directory-centric types

Table 20-2. FileSystemInfo Properties

Property Meaning in Life

Attributes Gets or sets the attributes associated with the current file that are represented by
the FileAttributes enumeration (e.g., is the file or directory read-only, encrypted,
hidden, or compressed?).

CreationTime Gets or sets the time of creation for the current file or directory.

Exists Determines whether a given file or directory exists.

Extension Retrieves a file’s extension.

FullName Gets the full path of the directory or file.

LastAccessTime Gets or sets the time the current file or directory was last accessed.

LastWriteTime Gets or sets the time when the current file or directory was last written to.

Name Obtains the name of the current file or directory.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

752

FileSystemInfo also defines the Delete() method. This is implemented by derived types to delete
a given file or directory from the hard drive. Also, you can call Refresh() prior to obtaining attribute
information to ensure that the statistics regarding the current file (or directory) are not outdated.

Working with the DirectoryInfo Type
The first creatable I/O-centric type you will examine is the DirectoryInfo class. This class contains a set
of members used for creating, moving, deleting, and enumerating over directories and subdirectories. In
addition to the functionality provided by its base class (FileSystemInfo), DirectoryInfo offers the key
members detailed in Table 20-3.

Table 20-3. Key Members of the DirectoryInfo Type

Member Meaning in Life

Create()
CreateSubdirectory()

Create a directory (or set of subdirectories) when given a path name

Delete() Deletes a directory and all its contents

GetDirectories() Returns an array of DirectoryInfo objects that represent all subdirectories
in the current directory

GetFiles() Retrieves an array of FileInfo objects that represent a set of files in the
given directory

MoveTo() Moves a directory and its contents to a new path

Parent Retrieves the parent directory of this directory

Root Gets the root portion of a path

You begin working with the DirectoryInfo type by specifying a particular directory path as a
constructor parameter. Use the dot (.) notation if you want to obtain access to the current working directory
(the directory of the executing application). Here are some examples:

// Bind to the current working directory.
DirectoryInfo dir1 = new DirectoryInfo(".");
// Bind to C:\Windows,
// using a verbatim string.
DirectoryInfo dir2 = new DirectoryInfo(@"C:\Windows");

In the second example, you assume that the path passed into the constructor (C:\Windows) already
exists on the physical machine. However, if you attempt to interact with a nonexistent directory, a
System.IO.DirectoryNotFoundException is thrown. Thus, if you specify a directory that is not yet created,
you need to call the Create() method before proceeding, like so:

// Bind to a nonexistent directory, then create it.
DirectoryInfo dir3 = new DirectoryInfo(@"C:\MyCode\Testing");
dir3.Create();

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

753

After you create a DirectoryInfo object, you can investigate the underlying directory contents using
any of the properties inherited from FileSystemInfo. To see this in action, create a new Console Application
project named DirectoryApp and update your C# file to import System.IO. Update your Program class with
the following new static method that creates a new DirectoryInfo object mapped to C:\Windows (adjust
your path if need be), which displays a number of interesting statistics:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Directory(Info) *****\n");
 ShowWindowsDirectoryInfo();
 Console.ReadLine();
 }

 static void ShowWindowsDirectoryInfo()
 {
 // Dump directory information.
 DirectoryInfo dir = new DirectoryInfo(@"C:\Windows");
 Console.WriteLine("***** Directory Info *****");
 Console.WriteLine("FullName: {0}", dir.FullName);
 Console.WriteLine("Name: {0}", dir.Name);
 Console.WriteLine("Parent: {0}", dir.Parent);
 Console.WriteLine("Creation: {0}", dir.CreationTime);
 Console.WriteLine("Attributes: {0}", dir.Attributes);
 Console.WriteLine("Root: {0}", dir.Root);
 Console.WriteLine("**************************\n");
 }
}

While your output might differ, you should see something similar to the following:

***** Fun with Directory(Info) *****

***** Directory Info *****
FullName: C:\Windows
Name: Windows
Parent:
Creation: 10/10/2015 10:22:32 PM
Attributes: Directory
Root: C:\

Enumerating Files with the DirectoryInfo Type
In addition to obtaining basic details of an existing directory, you can extend the current example to
use some methods of the DirectoryInfo type. First, you can leverage the GetFiles() method to obtain
information about all *.jpg files located in the C:\Windows\Web\Wallpaper directory.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

754

 ■ Note If your machine does not have a C:\Windows\Web\Wallpaper directory, retrofit this code to read
files of a directory on your machine (e.g., to read all *.bmp files from the C:\Windows directory).

The GetFiles() method returns an array of FileInfo objects, each of which exposes details of a
particular file (you will learn the full details of the FileInfo type later in this chapter). Assume that you have
the following static method of the Program class, which you call from Main():

static void DisplayImageFiles()
{
 DirectoryInfo dir = new DirectoryInfo(@"C:\Windows\Web\Wallpaper");
 // Get all files with a *.jpg extension.
 FileInfo[] imageFiles = dir.GetFiles("*.jpg", SearchOption.AllDirectories);

 // How many were found?
 Console.WriteLine("Found {0} *.jpg files\n", imageFiles.Length);

 // Now print out info for each file.
 foreach (FileInfo f in imageFiles)
 {
 Console.WriteLine("***************************");
 Console.WriteLine("File name: {0}", f.Name);
 Console.WriteLine("File size: {0}", f.Length);
 Console.WriteLine("Creation: {0}", f.CreationTime);
 Console.WriteLine("Attributes: {0}", f.Attributes);
 Console.WriteLine("***************************\n");
 }
}

Notice that you specify a search option when you call GetFiles(); you do this to look within all
subdirectories of the root. After you run the application, you will see a listing of all files that match the search
pattern.

Creating Subdirectories with the DirectoryInfo Type
You can programmatically extend a directory structure using the DirectoryInfo.CreateSubdirectory()
method. This method can create a single subdirectory, as well as multiple nested subdirectories, in a single
function call. This method illustrates how to do so, extending the directory structure of the C: drive with
some custom subdirectories:

static void ModifyAppDirectory()
{
 DirectoryInfo dir = new DirectoryInfo(@"C:\");

 // Create \MyFolder off application directory.
 dir.CreateSubdirectory("MyFolder");

 // Create \MyFolder2\Data off application directory.
 dir.CreateSubdirectory(@"MyFolder2\Data");
}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

755

You are not required to capture the return value of the CreateSubdirectory() method, but you should
be aware that a DirectoryInfo object representing the newly created item is passed back on successful
execution. Consider the following update to the previous method. Note the dot notation in the constructor
of DirectoryInfo, which gives you access to the application’s installation point.

static void ModifyAppDirectory()
{
 DirectoryInfo dir = new DirectoryInfo(".");

 // Create \MyFolder off initial directory.
 dir.CreateSubdirectory("MyFolder");

 // Capture returned DirectoryInfo object.
 DirectoryInfo myDataFolder = dir.CreateSubdirectory(@"MyFolder2\Data");

 // Prints path to ..\MyFolder2\Data.
 Console.WriteLine("New Folder is: {0}", myDataFolder);
}

If you call this method from within Main() and examine your Windows directory using Windows
Explorer, you will see that the new subdirectories are present and accounted for (see Figure 20-2).

Figure 20-2. Creating subdirectories

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

756

Working with the Directory Type
You have seen the DirectoryInfo type in action; now you’re ready to learn about the Directory type. For
the most part, the static members of Directory mimic the functionality provided by the instance-level
members defined by DirectoryInfo. Recall, however, that the members of Directory typically return string
data rather than strongly typed FileInfo/DirectoryInfo objects.

Now let’s look at some functionality of the Directory type; this final helper function displays the names
of all drives mapped to the current computer (using the Directory.GetLogicalDrives() method) and
uses the static Directory.Delete() method to remove the \MyFolder and \MyFolder2\Data subdirectories
created previously.

static void FunWithDirectoryType()
{
 // List all drives on current computer.
 string[] drives = Directory.GetLogicalDrives();
 Console.WriteLine("Here are your drives:");
 foreach (string s in drives)
 Console.WriteLine("--> {0} ", s);

 // Delete what was created.
 Console.WriteLine("Press Enter to delete directories");
 Console.ReadLine();
 try
 {
 Directory.Delete(@"C:\MyFolder");

 // The second parameter specifies whether you
 // wish to destroy any subdirectories.
 Directory.Delete(@"C:\MyFolder2", true);
 }
 catch (IOException e)
 {
 Console.WriteLine(e.Message);
 }
}

 ■ Source Code You can find the directoryApp project in the Chapter 20 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

757

Working with the DriveInfo Class Type
The System.IO namespace provides a class named DriveInfo. Like Directory.GetLogicalDrives(), the
static DriveInfo.GetDrives() method allows you to discover the names of a machine’s drives. Unlike
Directory.GetLogicalDrives(), however, DriveInfo provides numerous other details (e.g., the drive type,
available free space, and volume label). Consider the following Program class defined within a new Console
Application project named DriveInfoApp (don’t forget to import System.IO):

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with DriveInfo *****\n");

 // Get info regarding all drives.
 DriveInfo[] myDrives = DriveInfo.GetDrives();
 // Now print drive stats.
 foreach(DriveInfo d in myDrives)
 {
 Console.WriteLine("Name: {0}", d.Name);
 Console.WriteLine("Type: {0}", d.DriveType);

 // Check to see whether the drive is mounted.
 if(d.IsReady)
 {
 Console.WriteLine("Free space: {0}", d.TotalFreeSpace);
 Console.WriteLine("Format: {0}", d.DriveFormat);
 Console.WriteLine("Label: {0}", d.VolumeLabel);
 }
 Console.WriteLine();
 }
 Console.ReadLine();
 }
}

Here is some possible output:

***** Fun with DriveInfo *****

Name: C:\
Type: Fixed
Free space: 791699763200
Format: NTFS
Label: Windows10_OS

Name: D:\
Type: Fixed
Free space: 23804067840
Format: NTFS
Label: LENOVO

Press any key to continue . . .

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

758

At this point, you have investigated some core behaviors of the Directory, DirectoryInfo, and
DriveInfo classes. Next, you’ll learn how to create, open, close, and destroy the files that populate a given
directory.

 ■ Source Code You can find the driveInfoApp project in the Chapter 20 subdirectory.

Working with the FileInfo Class
As shown in the previous DirectoryApp example, the FileInfo class allows you to obtain details regarding
existing files on your hard drive (e.g., time created, size, and file attributes) and aids in the creation, copying,
moving, and destruction of files. In addition to the set of functionality inherited by FileSystemInfo, you can
find some core members unique to the FileInfo class, which you can see described in Table 20-4.

Table 20-4. FileInfo Core Members

Member Meaning in Life

AppendText() Creates a StreamWriter object (described later) that appends text to a file

CopyTo() Copies an existing file to a new file

Create() Creates a new file and returns a FileStream object (described later) to interact with
the newly created file

CreateText() Creates a StreamWriter object that writes a new text file

Delete() Deletes the file to which a FileInfo instance is bound

Directory Gets an instance of the parent directory

DirectoryName Gets the full path to the parent directory

Length Gets the size of the current file

MoveTo() Moves a specified file to a new location, providing the option to specify a new file name

Name Gets the name of the file

Open() Opens a file with various read/write and sharing privileges

OpenRead() Creates a read-only FileStream object

OpenText() Creates a StreamReader object (described later) that reads from an existing text file

OpenWrite() Creates a write-only FileStream object

Note that a majority of the methods of the FileInfo class return a specific I/O-centric object
(e.g., FileStream and StreamWriter) that allows you to begin reading and writing data to (or reading from)
the associated file in a variety of formats. You will check out these types in just a moment; however, before
you see a working example, you’ll find it helpful to examine various ways to obtain a file handle using the
FileInfo class type.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

759

The FileInfo.Create() Method
One way you can create a file handle is to use the FileInfo.Create() method, like so:

static void Main(string[] args)
{
 // Make a new file on the C drive.
 FileInfo f = new FileInfo(@"C:\Test.dat");
 FileStream fs = f.Create();

 // Use the FileStream object...

 // Close down file stream.
 fs.Close();
}

Notice that the FileInfo.Create() method returns a FileStream object, which exposes synchronous
and asynchronous write/read operations to/from the underlying file (more details in a moment). Be aware
that the FileStream object returned by FileInfo.Create() grants full read/write access to all users.

Also notice that after you finish with the current FileStream object, you must ensure you close down
the handle to release the underlying unmanaged stream resources. Given that FileStream implements
IDisposable, you can use the C# using scope to allow the compiler to generate the teardown logic (see
Chapter 8 for details), like so:

static void Main(string[] args)
{
 // Defining a using scope for file I/O
 // types is ideal.
 FileInfo f = new FileInfo(@"C:\Test.dat");
 using (FileStream fs = f.Create())
 {
 // Use the FileStream object...
 }
}

The FileInfo.Open() Method
You can use the FileInfo.Open() method to open existing files, as well as to create new files with far
more precision than you can with FileInfo.Create(). This works because Open() typically takes several
parameters to qualify exactly how to iterate the file you want to manipulate. Once the call to Open()
completes, you are returned a FileStream object. Consider the following logic:

static void Main(string[] args)
{
 // Make a new file via FileInfo.Open().
 FileInfo f2 = new FileInfo(@"C:\Test2.dat");
 using(FileStream fs2 = f2.Open(FileMode.OpenOrCreate,
 FileAccess.ReadWrite, FileShare.None))
 {
 // Use the FileStream object...
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

760

This version of the overloaded Open() method requires three parameters. The first parameter of the
Open() method specifies the general flavor of the I/O request (e.g., make a new file, open an existing file, and
append to a file), which you specify using the FileMode enumeration (see Table 20-5 for details), like so:

public enum FileMode
{
 CreateNew,
 Create,
 Open,
 OpenOrCreate,
 Truncate,
 Append
}

Table 20-5. Members of the FileMode Enumeration

Member Meaning in Life

CreateNew Informs the OS to make a new file. If it already exists, an IOException is thrown.

Create Informs the OS to make a new file. If it already exists, it will be overwritten.

Open Opens an existing file. If the file does not exist, a FileNotFoundException is thrown.

OpenOrCreate Opens the file if it exists; otherwise, a new file is created.

Truncate Opens an existing file and truncates the file to 0 bytes in size.

Append Opens a file, moves to the end of the file, and begins write operations (you can use this
flag only with a write-only stream). If the file does not exist, a new file is created.

You use the second parameter of the Open() method, a value from the FileAccess enumeration, to
determine the read/write behavior of the underlying stream, as follows:

public enum FileAccess
{
 Read,
 Write,
 ReadWrite
}

Finally, the third parameter of the Open() method, FileShare, specifies how to share the file among
other file handlers. Here are the core names:

public enum FileShare
{
 Delete,
 Inheritable,
 None,
 Read,
 ReadWrite,
 Write
}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

761

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
The FileInfo.Open() method allows you to obtain a file handle in a flexible manner, but the FileInfo
class also provides members named OpenRead() and OpenWrite(). As you might imagine, these methods
return a properly configured read-only or write-only FileStream object, without the need to supply various
enumeration values. Like FileInfo.Create() and FileInfo.Open(), OpenRead() and OpenWrite() return a
FileStream object (note that the following code assumes you have files named Test3.dat and Test4.dat on
your C: drive):

static void Main(string[] args)
{
 // Get a FileStream object with read-only permissions.
 FileInfo f3 = new FileInfo(@"C:\Test3.dat");
 using(FileStream readOnlyStream = f3.OpenRead())
 {
 // Use the FileStream object...
 }

 // Now get a FileStream object with write-only permissions.
 FileInfo f4 = new FileInfo(@"C:\Test4.dat");
 using(FileStream writeOnlyStream = f4.OpenWrite())
 {
 // Use the FileStream object...
 }
}

The FileInfo.OpenText() Method
Another open-centric member of the FileInfo type is OpenText(). Unlike Create(), Open(), OpenRead(),
or OpenWrite(), the OpenText() method returns an instance of the StreamReader type, rather than a
FileStream type. Assuming you have a file named boot.ini on your C: drive, the following snippet gives you
access to its contents:

static void Main(string[] args)
{
 // Get a StreamReader object.
 FileInfo f5 = new FileInfo(@"C:\boot.ini");
 using(StreamReader sreader = f5.OpenText())
 {
 // Use the StreamReader object...
 }
}

As you will see shortly, the StreamReader type provides a way to read character data from the
underlying file.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

762

The FileInfo.CreateText() and FileInfo.AppendText() Methods
The final two FileInfo methods of interest at this point are CreateText() and AppendText(). Both return a
StreamWriter object, as shown here:

static void Main(string[] args)
{
 FileInfo f6 = new FileInfo(@"C:\Test6.txt");
 using(StreamWriter swriter = f6.CreateText())
 {
 // Use the StreamWriter object...
 }

 FileInfo f7 = new FileInfo(@"C:\FinalTest.txt");
 using(StreamWriter swriterAppend = f7.AppendText())
 {
 // Use the StreamWriter object...
 }
}

As you might guess, the StreamWriter type provides a way to write character data to the underlying file.

Working with the File Type
The File type uses several static members to provide functionality almost identical to that of the FileInfo
type. Like FileInfo, File supplies AppendText(), Create(), CreateText(), Open(), OpenRead(),
OpenWrite(), and OpenText() methods. In many cases, you can use the File and FileInfo types
interchangeably. To see this in action, you can simplify each of the previous FileStream examples by using
the File type instead, like so:

static void Main(string[] args)
{
 // Obtain FileStream object via File.Create().
 using(FileStream fs = File.Create(@"C:\Test.dat"))
 {}

 // Obtain FileStream object via File.Open().
 using(FileStream fs2 = File.Open(@"C:\Test2.dat",
 FileMode.OpenOrCreate,
 FileAccess.ReadWrite, FileShare.None))
 {}

 // Get a FileStream object with read-only permissions.
 using(FileStream readOnlyStream = File.OpenRead(@"Test3.dat"))
 {}

 // Get a FileStream object with write-only permissions.
 using(FileStream writeOnlyStream = File.OpenWrite(@"Test4.dat"))
 {}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

763

 // Get a StreamReader object.
 using(StreamReader sreader = File.OpenText(@"C:\boot.ini"))
 {}

 // Get some StreamWriters.
 using(StreamWriter swriter = File.CreateText(@"C:\Test6.txt"))
 {}

 using(StreamWriter swriterAppend = File.AppendText(@"C:\FinalTest.txt"))
 {}
}

Additional File-Centric Members
The File type also supports a few members, shown in Table 20-6, which can greatly simplify the processes of
reading and writing textual data.

Table 20-6. Methods of the File Type

Method Meaning in Life

ReadAllBytes() Opens the specified file, returns the binary data as an array of bytes, and then closes
the file

ReadAllLines() Opens a specified file, returns the character data as an array of strings, and then
closes the file

ReadAllText() Opens a specified file, returns the character data as a System.String, and then
closes the file

WriteAllBytes() Opens the specified file, writes out the byte array, and then closes the file

WriteAllLines() Opens a specified file, writes out an array of strings, and then closes the file

WriteAllText() Opens a specified file, writes the character data from a specified string, and then
closes the file

You can use these methods of the File type to read and write batches of data in only a few lines of code.
Even better, each of these members automatically closes down the underlying file handle. For example, the
following console program (named SimpleFileIO) persists the string data into a new file on the C: drive (and
reads it into memory) with minimal fuss (this example assumes you have imported System.IO):

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Simple I/O with the File Type *****\n");
 string[] myTasks = {
 "Fix bathroom sink", "Call Dave",
 "Call Mom and Dad", "Play Xbox One"};

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

764

 // Write out all data to file on C drive.
 File.WriteAllLines(@"C:\tasks.txt", myTasks);

 // Read it all back and print out.
 foreach (string task in File.ReadAllLines(@"C:\tasks.txt"))
 {
 Console.WriteLine("TODO: {0}", task);
 }
 Console.ReadLine();
 }
}

The lesson here is that when you want to obtain a file handle quickly, the File type will save you some
keystrokes. However, one benefit of creating a FileInfo object first is that you can investigate the file using
the members of the abstract FileSystemInfo base class.

 ■ Source Code You can find the SimpleFileIO project in the Chapter 20 subdirectory.

The Abstract Stream Class
At this point, you have seen many ways to obtain FileStream, StreamReader, and StreamWriter objects,
but you have yet to read data from or write data to a file using these types. To understand how to do this,
you’ll need to familiarize yourself with the concept of a stream. In the world of I/O manipulation, a stream
represents a chunk of data flowing between a source and a destination. Streams provide a common way to
interact with a sequence of bytes, regardless of what kind of device (e.g., file, network connection, or printer)
stores or displays the bytes in question.

The abstract System.IO.Stream class defines several members that provide support for synchronous
and asynchronous interactions with the storage medium (e.g., an underlying file or memory location).

 ■ Note The concept of a stream is not limited to file I/O. To be sure, the .neT libraries provide stream access
to networks, memory locations, and other stream-centric abstractions.

Again, Stream descendants represent data as a raw stream of bytes; therefore, working directly with
raw streams can be quite cryptic. Some Stream-derived types support seeking, which refers to the process
of obtaining and adjusting the current position in the stream. Table 20-7 helps you understand the
functionality provided by the Stream class by describing its core members.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

765

Working with FileStreams
The FileStream class provides an implementation for the abstract Stream members in a manner
appropriate for file-based streaming. It is a fairly primitive stream; it can read or write only a single byte or
an array of bytes. However, you will not often need to interact directly with the members of the FileStream
type. Instead, you will probably use various stream wrappers, which make it easier to work with textual
data or .NET types. Nevertheless, you will find it helpful to experiment with the synchronous read/write
capabilities of the FileStream type.

Assume you have a new Console Application project named FileStreamApp (and verify that System.IO
and System.Text are imported into your initial C# code file). Your goal is to write a simple text message to a
new file named myMessage.dat. However, given that FileStream can operate only on raw bytes, you will be
required to encode the System.String type into a corresponding byte array. Fortunately, the System.Text
namespace defines a type named Encoding that provides members that encode and decode strings to
(or from) an array of bytes (check out the .NET Framework SDK documentation for more details about the
Encoding type).

Table 20-7. Abstract Stream Members

Member Meaning in Life

CanRead
CanWrite
CanSeek

Determines whether the current stream supports reading, seeking, and/or writing.

Close() Closes the current stream and releases any resources (such as sockets and file
handles) associated with the current stream. Internally, this method is aliased to
the Dispose() method; therefore, closing a stream is functionally equivalent to
disposing a stream.

Flush() Updates the underlying data source or repository with the current state of the
buffer and then clears the buffer. If a stream does not implement a buffer, this
method does nothing.

Length Returns the length of the stream in bytes.

Position Determines the position in the current stream.

Read()
ReadByte()
ReadAsync()

Reads a sequence of bytes (or a single byte) from the current stream and advances
the current position in the stream by the number of bytes read.

Seek() Sets the position in the current stream.

SetLength() Sets the length of the current stream.

Write()
WriteByte()
WrriteAsync()

Writes a sequence of bytes (or a single byte) to the current stream and advances
the current position in this stream by the number of bytes written.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

766

Once encoded, the byte array is persisted to file with the FileStream.Write() method. To read the
bytes back into memory, you must reset the internal position of the stream (using the Position property)
and call the ReadByte() method. Finally, you display the raw byte array and the decoded string to the
console. Here is the complete Main() method:

// Don't forget to import the System.Text and System.IO namespaces.
static void Main(string[] args)
{
 Console.WriteLine("***** Fun with FileStreams *****\n");

 // Obtain a FileStream object.
 using(FileStream fStream = File.Open(@"C:\myMessage.dat",
 FileMode.Create))
 {
 // Encode a string as an array of bytes.
 string msg = "Hello!";
 byte[] msgAsByteArray = Encoding.Default.GetBytes(msg);

 // Write byte[] to file.
 fStream.Write(msgAsByteArray, 0, msgAsByteArray.Length);

 // Reset internal position of stream.
 fStream.Position = 0;

 // Read the types from file and display to console.
 Console.Write("Your message as an array of bytes: ");
 byte[] bytesFromFile = new byte[msgAsByteArray.Length];
 for (int i = 0; i < msgAsByteArray.Length; i++)
 {
 bytesFromFile[i] = (byte)fStream.ReadByte();
 Console.Write(bytesFromFile[i]);
 }

 // Display decoded messages.
 Console.Write("\nDecoded Message: ");
 Console.WriteLine(Encoding.Default.GetString(bytesFromFile));
 }
 Console.ReadLine();
}

This example populates the file with data, but it also punctuates the major downfall of working directly
with the FileStream type: it demands to operate on raw bytes. Other Stream-derived types operate in
a similar manner. For example, if you want to write a sequence of bytes to a region of memory, you can
allocate a MemoryStream. Likewise, if you want to push an array of bytes through a network connection, you
can use the NetworkStream class (in the System.Net.Sockets namespace).

As mentioned previously, the System.IO namespace provides several reader and writer types that
encapsulate the details of working with Stream-derived types.

 ■ Source Code You can find the FileStreamApp project is in the Chapter 20 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

767

Working with StreamWriters and StreamReaders
The StreamWriter and StreamReader classes are useful whenever you need to read or write character-based
data (e.g., strings). Both of these types work by default with Unicode characters; however, you can change
this by supplying a properly configured System.Text.Encoding object reference. To keep things simple,
assume that the default Unicode encoding fits the bill.

StreamReader derives from an abstract type named TextReader, as does the related StringReader type
(discussed later in this chapter). The TextReader base class provides a limited set of functionality to each of
these descendants; specifically, it provides the ability to read and peek into a character stream.

The StreamWriter type (as well as StringWriter, which you will examine later in this chapter) derives
from an abstract base class named TextWriter. This class defines members that allow derived types to write
textual data to a given character stream.

To aid in your understanding of the core writing capabilities of the StreamWriter and StringWriter
classes, Table 20-8 describes the core members of the abstract TextWriter base class.

Table 20-8. Core Members of TextWriter

Member Meaning in Life

Close() This method closes the writer and frees any associated resources. In the process,
the buffer is automatically flushed (again, this member is functionally equivalent
to calling the Dispose() method).

Flush() This method clears all buffers for the current writer and causes any buffered data
to be written to the underlying device; however, it does not close the writer.

NewLine This property indicates the newline constant for the derived writer class.
The default line terminator for the Windows OS is a carriage return, followed
by a line feed (\r\n).

Write()
WriteAsync()

This overloaded method writes data to the text stream without a newline constant.

WriteLine()
WriteLineAsync()

This overloaded method writes data to the text stream with a newline constant.

 ■ Note The last two members of the TextWriter class probably look familiar to you. If you recall, the
System.Console type has Write() and WriteLine() members that push textual data to the standard
output device. In fact, the Console.In property wraps a TextReader, and the Console.Out property wraps a
TextWriter.

The derived StreamWriter class provides an appropriate implementation for the Write(), Close(), and
Flush() methods, and it defines the additional AutoFlush property. When set to true, this property forces
StreamWriter to flush all data every time you perform a write operation. Be aware that you can gain better
performance by setting AutoFlush to false, provided you always call Close() when you finish writing
with a StreamWriter.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

768

Writing to a Text File
To see the StreamWriter type in action, create a new Console Application project named
StreamWriterReaderApp and import System.IO. The following Main() method creates a new file named
reminders.txt in the current execution folder, using the File.CreateText() method. Using the obtained
StreamWriter object, you can add some textual data to the new file.

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

 // Get a StreamWriter and write string data.
 using(StreamWriter writer = File.CreateText("reminders.txt"))
 {
 writer.WriteLine("Don't forget Mother's Day this year...");
 writer.WriteLine("Don't forget Father's Day this year...");
 writer.WriteLine("Don't forget these numbers:");
 for(int i = 0; i < 10; i++)
 writer.Write(i + " ");

 // Insert a new line.
 writer.Write(writer.NewLine);
 }

 Console.WriteLine("Created file and wrote some thoughts...");
 Console.ReadLine();
}

After you run this program, you can examine the contents of this new file (see Figure 20-3). You will find
this file under the bin\Debug folder of your current application because you did not specify an absolute path
at the time you called CreateText().

Figure 20-3. The contents of your *.txt file

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

769

Reading from a Text File
Next, you will learn to read data from a file programmatically by using the corresponding StreamReader
type. Recall that this class derives from the abstract TextReader, which offers the functionality described in
Table 20-9.

Table 20-9. TextReader Core Members

Member Meaning in Life

Peek() Returns the next available character (expressed as an integer) without actually
changing the position of the reader. A value of -1 indicates you are at the end of
the stream.

Read()
ReadAsync()

Reads data from an input stream.

ReadBlock()
ReadBlockAsync()

Reads a specified maximum number of characters from the current stream and
writes the data to a buffer, beginning at a specified index.

ReadLine()
ReadLineAsync()

Reads a line of characters from the current stream and returns the data as a
string (a null string indicates EOF).

ReadToEnd()
ReadToEndAsync()

Reads all characters from the current position to the end of the stream and
returns them as a single string.

If you now extend the current sample application to use a StreamReader, you can read in the textual
data from the reminders.txt file, as shown here:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");
...
 // Now read data from file.
 Console.WriteLine("Here are your thoughts:\n");
 using(StreamReader sr = File.OpenText("reminders.txt"))
 {
 string input = null;
 while ((input = sr.ReadLine()) != null)
 {
 Console.WriteLine (input);
 }
 }
 Console.ReadLine();
}

After you run the program, you will see the character data in reminders.txt displayed to the console.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

770

Directly Creating StreamWriter/StreamReader Types
One of the confusing aspects of working with the types within System.IO is that you can often achieve
an identical result using different approaches. For example, you have already seen that you can use the
CreateText() method to obtain a StreamWriter with the File or FileInfo type. It so happens that you can
work with StreamWriters and StreamReaders another way: by creating them directly. For example,
you could retrofit the current application as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

 // Get a StreamWriter and write string data.
 using(StreamWriter writer = new StreamWriter("reminders.txt"))
 {
 ...
 }

 // Now read data from file.
 using(StreamReader sr = new StreamReader("reminders.txt"))
 {
 ...
 }
}

Although it can be a bit confusing to see so many seemingly identical approaches to file I/O, keep
in mind that the end result is greater flexibility. In any case, you are now ready to examine the role of the
StringWriter and StringReader classes, given that you have seen how to move character data to and from a
given file using the StreamWriter and StreamReader types.

 ■ Source Code You can find the StreamWriterReaderApp project in the Chapter 20 subdirectory.

Working with StringWriters and StringReaders
You can use the StringWriter and StringReader types to treat textual information as a stream of in- memory
characters. This can prove helpful when you would like to append character-based information to an
underlying buffer. The following Console Application project (named StringReaderWriterApp) illustrates
this by writing a block of string data to a StringWriter object, rather than to a file on the local hard drive
(don’t forget to import System.IO):

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with StringWriter / StringReader *****\n");

 // Create a StringWriter and emit character data to memory.
 using(StringWriter strWriter = new StringWriter())
 {
 strWriter.WriteLine("Don't forget Mother's Day this year...");

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

771

 // Get a copy of the contents (stored in a string) and dump
 // to console.
 Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);
 }
 Console.ReadLine();
}

StringWriter and StreamWriter both derive from the same base class (TextWriter), so the writing
logic is more or less identical. However, given the nature of StringWriter, you should also be aware that this
class allows you to use the following GetStringBuilder() method to extract a System.Text.StringBuilder
object:

using (StringWriter strWriter = new StringWriter())
{
 strWriter.WriteLine("Don't forget Mother's Day this year...");
 Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

 // Get the internal StringBuilder.
 StringBuilder sb = strWriter.GetStringBuilder();
 sb.Insert(0, "Hey!! ");
 Console.WriteLine("-> {0}", sb.ToString());
 sb.Remove(0, "Hey!! ".Length);
 Console.WriteLine("-> {0}", sb.ToString());
}

When you want to read from a stream of character data, you can use the corresponding StringReader
type, which (as you would expect) functions identically to the related StreamReader class. In fact, the
StringReader class does nothing more than override the inherited members to read from a block of
character data, rather than from a file, as shown here:

using (StringWriter strWriter = new StringWriter())
{
 strWriter.WriteLine("Don't forget Mother's Day this year...");
 Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

 // Read data from the StringWriter.
 using (StringReader strReader = new StringReader(strWriter.ToString()))
 {
 string input = null;
 while ((input = strReader.ReadLine()) != null)
 {
 Console.WriteLine(input);
 }
 }
}

 ■ Source Code You can find the StringReaderWriterApp in the Chapter 20 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

772

Working with BinaryWriters and BinaryReaders
The final writer/reader sets you will examine in this section are BinaryReader and BinaryWriter. Both
derive directly from System.Object. These types allow you to read and write discrete data types to an
underlying stream in a compact binary format. The BinaryWriter class defines a highly overloaded Write()
method to place a data type in the underlying stream. In addition to the Write() member, BinaryWriter
provides additional members that allow you to get or set the Stream-derived type; it also offers support for
random access to the data (see Table 20-10).

Table 20-10. BinaryWriter Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryWriter object.

Close() This method closes the binary stream.

Flush() This method flushes the binary stream.

Seek() This method sets the position in the current stream.

Write() This method writes a value to the current stream.

Table 20-11. BinaryReader Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryReader object.

Close() This method closes the binary reader.

PeekChar() This method returns the next available character without advancing the position in the stream.

Read() This method reads a given set of bytes or characters and stores them in the incoming array.

ReadXXXX() The BinaryReader class defines numerous read methods that grab the next type from the
stream (e.g., ReadBoolean(), ReadByte(), and ReadInt32()).

The BinaryReader class complements the functionality offered by BinaryWriter with the members
described in Table 20-11.

The following example (a Console Application project named BinaryWriterReader) writes a number of
data types to a new *.dat file:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Binary Writers / Readers *****\n");

 // Open a binary writer for a file.
 FileInfo f = new FileInfo("BinFile.dat");
 using(BinaryWriter bw = new BinaryWriter(f.OpenWrite()))

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

773

 {
 // Print out the type of BaseStream.
 // (System.IO.FileStream in this case).
 Console.WriteLine("Base stream is: {0}", bw.BaseStream);

 // Create some data to save in the file.
 double aDouble = 1234.67;
 int anInt = 34567;
 string aString = "A, B, C";

 // Write the data.
 bw.Write(aDouble);
 bw.Write(anInt);
 bw.Write(aString);
 }
 Console.WriteLine("Done!");
 Console.ReadLine();
}

Notice how the FileStream object returned from FileInfo.OpenWrite() is passed to the constructor
of the BinaryWriter type. Using this technique makes it easy to layer in a stream before writing out the data.
Note that the constructor of BinaryWriter takes any Stream-derived type (e.g., FileStream, MemoryStream,
or BufferedStream). Thus, writing binary data to memory instead is as simple as supplying a valid
MemoryStream object.

To read the data out of the BinFile.dat file, the BinaryReader type provides a number of options. Here,
you call various read-centric members to pluck each chunk of data from the file stream:

static void Main(string[] args)
{
...
 FileInfo f = new FileInfo("BinFile.dat");
...
 // Read the binary data from the stream.
 using(BinaryReader br = new BinaryReader(f.OpenRead()))
 {
 Console.WriteLine(br.ReadDouble());
 Console.WriteLine(br.ReadInt32());
 Console.WriteLine(br.ReadString());
 }
 Console.ReadLine();
}

 ■ Source Code You can find the binaryWriterReader application in the Chapter 20 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

774

Watching Files Programmatically
Now that you have a better handle on the use of various readers and writers, you’ll look at the role of the
FileSystemWatcher class. This type can be quite helpful when you want to monitor (or “watch”) files on your
system programmatically. Specifically, you can instruct the FileSystemWatcher type to monitor files for any
of the actions specified by the System.IO.NotifyFilters enumeration (many of these members are self-
explanatory, but you should still check the .NET Framework 4.6 SDK documentation for more details).

public enum NotifyFilters
{
 Attributes, CreationTime,
 DirectoryName, FileName,
 LastAccess, LastWrite,
 Security, Size
}

To begin working with the FileSystemWatcher type, you need to set the Path property to specify the
name (and location) of the directory that contains the files you want to monitor, as well as the Filter
property that defines the file extensions of the files you want to monitor.

At this point, you may choose to handle the Changed, Created, and Deleted events, all of which work in
conjunction with the FileSystemEventHandler delegate. This delegate can call any method matching the
following pattern:

// The FileSystemEventHandler delegate must point
// to methods matching the following signature.
void MyNotificationHandler(object source, FileSystemEventArgs e)

You can also handle the Renamed event using the RenamedEventHandler delegate type, which can call
methods that match the following signature:

// The RenamedEventHandler delegate must point
// to methods matching the following signature.
void MyRenamedHandler(object source, RenamedEventArgs e)

While you could use the traditional delegate/event syntax to handle each event, you can certainly make
use of lambda expression syntax as well (the downloadable code for this project uses lambda syntax, if you
are interested).

Next, let’s look at the process of watching a file. Assume you have created a new directory on your C:
drive named MyFolder that contains various *.txt files (named whatever you like). The following Console
Application project (named MyDirectoryWatcher) monitors the *.txt files in the MyFolder directory and
prints messages when files are created, deleted, modified, or renamed:

static void Main(string[] args)
{
 Console.WriteLine("***** The Amazing File Watcher App *****\n");
 // Establish the path to the directory to watch.
 FileSystemWatcher watcher = new FileSystemWatcher();
 try

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

775

 {
 watcher.Path = @"C:\MyFolder";
 }
 catch(ArgumentException ex)
 {
 Console.WriteLine(ex.Message);
 return;
 }
 // Set up the things to be on the lookout for.
 watcher.NotifyFilter = NotifyFilters.LastAccess
 | NotifyFilters.LastWrite
 | NotifyFilters.FileName
 | NotifyFilters.DirectoryName;

 // Only watch text files.
 watcher.Filter = "*.txt";

 // Add event handlers.
 watcher.Changed += new FileSystemEventHandler(OnChanged);
 watcher.Created += new FileSystemEventHandler(OnChanged);
 watcher.Deleted += new FileSystemEventHandler(OnChanged);
 watcher.Renamed += new RenamedEventHandler(OnRenamed);

 // Begin watching the directory.
 watcher.EnableRaisingEvents = true;

 // Wait for the user to quit the program.
 Console.WriteLine(@"Press 'q' to quit app.");
 while(Console.Read()!='q')
 ;
}

The following two event handlers simply print the current file modification:

static void OnChanged(object source, FileSystemEventArgs e)
{
 // Specify what is done when a file is changed, created, or deleted.
 Console.WriteLine("File: {0} {1}!", e.FullPath, e.ChangeType);
}

static void OnRenamed(object source, RenamedEventArgs e)
{
 // Specify what is done when a file is renamed.
 Console.WriteLine("File: {0} renamed to {1}", e.OldFullPath, e.FullPath);
}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

776

To test this program, run the application and open Windows Explorer. Try renaming your files, creating
a *.txt file, deleting a *.txt file, and so forth. You will see various bits of information generated about the
state of the text files within your MyFolder, as in this example:

***** The Amazing File Watcher App *****

Press 'q' to quit app.
File: C:\MyFolder\New Text Document.txt Created!
File: C:\MyFolder\New Text Document.txt renamed to C:\MyFolder\Hello.txt
File: C:\MyFolder\Hello.txt Changed!
File: C:\MyFolder\Hello.txt Changed!
File: C:\MyFolder\Hello.txt Deleted!

 ■ Source Code You can find the MydirectoryWatcher application in the Chapter 20 subdirectory.

That wraps up this chapter’s look at fundamental I/O operations within the .NET platform. While you
will certainly use these techniques in many of your applications, you might also find that object serialization
services can greatly simplify how you persist large amounts of data.

Understanding Object Serialization
The term serialization describes the process of persisting (and possibly transferring) the state of an object
into a stream (e.g., file stream and memory stream). The persisted data sequence contains all the necessary
information you need to reconstruct (or deserialize) the state of the object for use later. Using this technology
makes it trivial to save vast amounts of data (in various formats). In many cases, saving application data
using serialization services results in less code than using the readers/writers you find in the System.IO
namespace.

For example, assume you want to create a GUI-based desktop application that provides a way for end
users to save their preferences (e.g., window color and font size). To do this, you might define a class named
UserPrefs that encapsulates 20 or so pieces of field data. Now, if you were to use a System.IO.BinaryWriter
type, you would need to save each field of the UserPrefs object manually. Likewise, if you were to load the
data from a file back into memory, you would need to use a System.IO.BinaryReader and (once again)
manually read in each value to reconfigure a new UserPrefs object.

This is all doable, but you can save yourself a good amount of time by marking the UserPrefs class with
the [Serializable] attribute, like so:

[Serializable]
public class UserPrefs
{
 public string WindowColor;
 public int FontSize;
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

777

Doing this means that you can persist entire state of the object with only a few lines of code. Without
getting hung up on the details for the time being, consider the following Main() method:

static void Main(string[] args)
{
 UserPrefs userData= new UserPrefs();
 userData.WindowColor = "Yellow";
 userData.FontSize = 50;

 // The BinaryFormatter persists state data in a binary format.
 // You would need to import System.Runtime.Serialization.Formatters.Binary
 // to gain access to BinaryFormatter.
 BinaryFormatter binFormat = new BinaryFormatter();

 // Store object in a local file.
 using(Stream fStream = new FileStream("user.dat",
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 binFormat.Serialize(fStream, userData);
 }
 Console.ReadLine();
}

.NET object serialization makes it easy to persist objects; however, the processes used behind the
scenes are quite sophisticated. For example, when an object is persisted to a stream, all associated data
(e.g., base class data and contained objects) are automatically serialized, as well. Therefore, if you attempt to
persist a derived class, all data up the chain of inheritance comes along for the ride. As you will see, you use
an object graph to represent a set of interrelated objects.

.NET serialization services also allow you to persist an object graph in a variety of formats. The previous
code example uses the BinaryFormatter type; therefore, the state of the UserPrefs object is persisted as a
compact binary format. You can also persist an object graph into SOAP or XML format using other types.
These formats can be quite helpful when you need to ensure that your persisted objects travel well across
operating systems, languages, and architectures.

 ■ Note WCF prefers a slightly different mechanism for serializing objects to/from WCF service operations; it
uses the [DataContract] and [DataMember] attributes. You’ll learn more about this in Chapter 25.

Finally, understand that you can persist an object graph into any System.IO.Stream-derived type.
In the previous example, you used the FileStream type to persist a UserPrefs object into a local file.
However, if you would rather store an object to a specific region of memory, you could use a MemoryStream
type instead. All that matters is that the sequence of data correctly represents the state of objects within
the graph.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

778

The Role of Object Graphs
As mentioned previously, the CLR will account for all related objects to ensure that data is persisted correctly
when an object is serialized. This set of related objects is referred to as an object graph. Object graphs
provide a simple way to document how a set of items refer to each other. Be aware that object graphs are not
denoting OOP is-a or has-a relationships. Rather, you can read the arrows in an object diagram as “requires”
or “depends on.”

Each object in an object graph is assigned a unique numerical value. Keep in mind that the numbers
assigned to the members in an object graph are arbitrary and have no real meaning to the outside world.

Once you assign all objects a numerical value, the object graph can record each object’s set of
dependencies.

For example, assume you have created a set of classes that model some automobiles (of course). You
have a base class named Car, which has-a Radio. Another class named JamesBondCar extends the Car base
type. Figure 20-4 shows a possible object graph that models these relationships.

Figure 20-4. A simple object graph

When reading object graphs, you can use the phrase depends on or refers to when connecting the
arrows. Thus, in Figure 20-4, you can see that the Car refers to the Radio class (given the has-a relationship).
JamesBondCar refers to Car (given the is-a relationship), as well as to Radio (it inherits this protected
member variable).

Of course, the CLR does not paint pictures in memory to represent a graph of related objects. Rather,
the relationship documented in Figure 20-4 is represented by a mathematical formula that looks something
like this:

[Car 3, ref 2], [Radio 2], [JamesBondCar 1, ref 3, ref 2]

If you parse this formula, you can see that object 3 (the Car) has a dependency on object 2 (the
Radio). Object 2, the Radio, is a lone wolf and requires nobody. Finally, object 1 (the JamesBondCar) has a
dependency on object 3, as well as object 2. In any case, when you serialize or deserialize an instance of
JamesBondCar, the object graph ensures that the Radio and Car types also participate in the process.

The beautiful thing about the serialization process is that the graph representing the relationships
among your objects is established automatically behind the scenes. As you will see later in this chapter,
however, you can become more involved in the construction of a given object graph by customizing the
serialization process using attributes and interfaces.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

779

 ■ Note Strictly speaking, the XmlSerializer type (described later in this chapter) does not persist state
using object graphs; however, this type still serializes and deserializes related objects in a predictable manner.

Configuring Objects for Serialization
To make an object available to .NET serialization services, all you need to do is decorate each related class
(or structure) with the [Serializable] attribute. If you determine that a given type has some member data
that should not (or perhaps cannot) participate in the serialization scheme, you can mark such fields with
the [NonSerialized] attribute. This can be helpful if you would like to reduce the size of the persisted data
and you have member variables in a serializable class that do not need to be remembered (e.g., fixed values,
random values, and transient data).

Defining Serializable Types
To get the ball rolling, create a new Console Application project named SimpleSerialize. Insert a new class
named Radio, which has been marked [Serializable], excluding a single member variable (radioID) that
has been marked [NonSerialized] and will, therefore, not be persisted into the specified data stream.

[Serializable]
public class Radio
{
 public bool hasTweeters;
 public bool hasSubWoofers;
 public double[] stationPresets;

 [NonSerialized]
 public string radioID = "XF-552RR6";
}

Next, insert two additional class types to represent the JamesBondCar and Car classes, both of which are
also marked [Serializable] and define the following pieces of field data:

[Serializable]
public class Car
{
 public Radio theRadio = new Radio();
 public bool isHatchBack;
}

[Serializable]
public class JamesBondCar : Car
{
 public bool canFly;
 public bool canSubmerge;
}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

780

Be aware that you cannot inherit the [Serializable] attribute from a parent class. Therefore, if you
derive a class from a type marked [Serializable], the child class must be marked [Serializable] as well,
or it cannot be persisted. In fact, all objects in an object graph must be marked with the [Serializable]
attribute. If you attempt to serialize a nonserializable object using the BinaryFormatter or SoapFormatter,
you will receive a SerializationException at runtime.

Public Fields, Private Fields, and Public Properties
Notice that in each of these classes you define the field data as public; this helps keep the example simple.
Of course, private data exposed using public properties would be preferable from an OO point of view. Also,
for the sake of simplicity, this example does not define any custom constructors on these types; therefore, all
unassigned field data will receive the expected default values.

OO design principles aside, you might wonder how the various formatters expect a type’s field data to
be defined in order to be serialized into a stream. The answer is that it depends. If you persist an object’s
state using the BinaryFormatter or SoapFormatter, it makes absolutely no difference. These types are
programmed to serialize all serializable fields of a type, regardless of whether they are public fields, private
fields, or private fields exposed through public properties. Recall, however, that if you have points of data
that you do not want to be persisted into the object graph, you can selectively mark public or private fields as
[NonSerialized], as you do with the string field of the Radio type.

The situation is quite different if you use the XmlSerializer type, however. This type will only serialize
public data fields or private data exposed by public properties. Private data not exposed from properties will
be ignored. For example, consider the following serializable Person type:

[Serializable]
public class Person
{
 // A public field.
 public bool isAlive = true;

 // A private field.
 private int personAge = 21;

 // Public property/private data.
 private string fName = string.Empty;
 public string FirstName
 {
 get { return fName; }
 set { fName = value; }
 }
}

If you processed the preceding with BinaryFormatter or SoapFormatter, you would find that the
isAlive, personAge, and fName fields are saved into the selected stream. However, the XmlSerializer
would not save the value of personAge because this piece of private data is not encapsulated by a public type
property. If you wanted to persist the age of the person with the XmlSerializer, you would need to define
the field publicly or encapsulate the private member using a public property.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

781

Choosing a Serialization Formatter
After you configure your types to participate in the .NET serialization scheme by applying the necessary
attributes, your next step is to choose which format (binary, SOAP, or XML) you should use when persisting
your object’s state. Each possibility is represented by the following classes:

•	 BinaryFormatter

•	 SoapFormatter

•	 XmlSerializer

The BinaryFormatter type serializes your object’s state to a stream using a compact binary format. This
type is defined within the System.Runtime.Serialization.Formatters.Binary namespace that is part of
mscorlib.dll. If you want to gain access to this type, you can specify the following C# using directive:

// Gain access to the BinaryFormatter in mscorlib.dll.
using System.Runtime.Serialization.Formatters.Binary;

The SoapFormatter type persists an object’s state as a SOAP message (the standard XML format for
passing messages to/from a SOAP-based web service). This type is defined within the System.Runtime.
Serialization.Formatters.Soap namespace, which is defined in a separate assembly. Thus, to format
your object graph into a SOAP message, you must first set a reference to System.Runtime.Serialization.
Formatters.Soap.dll using the Visual Studio Add Reference dialog box and then specify the following C#
using directive:

// Must reference System.Runtime.Serialization.Formatters.Soap.dll.
using System.Runtime.Serialization.Formatters.Soap;

Finally, if you want to persist a tree of objects as an XML document, you can use the XmlSerializer
type. To use this type, you need to specify that you are using the System.Xml.Serialization namespace and
set a reference to the assembly System.Xml.dll. As luck would have it, all Visual Studio project templates
automatically reference System.Xml.dll; therefore, all you need to do is use the following namespace:

// Defined within System.Xml.dll.
using System.Xml.Serialization;

The IFormatter and IRemotingFormatter Interfaces
Regardless of which formatter you choose to use, be aware that all of them derive directly from System.Object,
so they do not share a common set of members from a serialization-centric base class. However, the
BinaryFormatter and SoapFormatter types do support common members through the implementation
of the IFormatter and IRemotingFormatter interfaces (strange as it might seem, the XmlSerializer
implements neither).

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

782

System.Runtime.Serialization.IFormatter defines the core Serialize() and Deserialize()
methods, which do the grunt work to move your object graphs into and out of a specific stream. Beyond
these members, IFormatter defines the following few properties that the implementing type uses behind
the scenes:

public interface IFormatter
{
 SerializationBinder Binder { get; set; }
 StreamingContext Context { get; set; }
 ISurrogateSelector SurrogateSelector { get; set; }
 object Deserialize(Stream serializationStream);
 void Serialize(Stream serializationStream, object graph);
}

The System.Runtime.Remoting.Messaging.IRemotingFormatter interface (which is leveraged
internally by the .NET remoting layer) overloads the Serialize() and Deserialize() members into a
manner more appropriate for distributed persistence. Note that IRemotingFormatter derives from the more
general IFormatter interface.

public interface IRemotingFormatter : IFormatter
{
 object Deserialize(Stream serializationStream, HeaderHandler handler);
 void Serialize(Stream serializationStream, object graph, Header[] headers);
}

Although you might not need to interact directly with these interfaces for most of your serialization
endeavors, recall that interface-based polymorphism allows you to hold an instance of BinaryFormatter or
SoapFormatter using an IFormatter reference. Therefore, if you want to build a method that can serialize an
object graph using either of these classes, you could write the following:

static void SerializeObjectGraph(IFormatter itfFormat,
 Stream destStream, object graph)
{
 itfFormat.Serialize(destStream, graph);
}

Type Fidelity Among the Formatters
The most obvious difference among the three formatters is how the object graph is persisted to the stream
(binary, SOAP, or XML). You should also be aware of a few more subtle points of distinction, specifically,
how the formatters contend with type fidelity. When you use the BinaryFormatter type, it will persist not
only the field data of the objects in the object graph but also each type’s fully qualified name and the full
name of the defining assembly (name, version, public key token, and culture). These extra points of data
make the BinaryFormatter an ideal choice when you want to transport objects by value (e.g., as a full copy)
across machine boundaries for .NET-centric applications.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

783

The SoapFormatter persists traces of the assembly of origin through the use of an XML namespace.
For example, recall the Person type earlier in this chapter. If this type were persisted as a SOAP message,
you would find that the opening element of Person is qualified by the generated xmlns. Consider this partial
definition, paying special attention to the a1 XML namespace:

<a1:Person id="ref-1" xmlns:a1=
 "http://schemas.microsoft.com/clr/nsassem/SimpleSerialize/MyApp%2C%20
 Version%3D1.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <isAlive>true</isAlive>
 <personAge>21</personAge>
 <fName id="ref-3">Mel</fName>
</a1:Person>

However, the XmlSerializer does not attempt to preserve full type fidelity; therefore, it does not record
the type’s fully qualified name or assembly of origin. This might seem like a limitation at first glance, but
XML serialization is used by classic .NET web services, which can be called from clients on any platform
(not just .NET). This means that there is no point serializing full .NET type metadata. Here is a possible XML
representation of the Person type:

<?xml version="1.0"?>
<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <isAlive>true</isAlive>
 <PersonAge>21</PersonAge>
 <FirstName>Frank</FirstName>
</Person>

If you want to persist an object’s state in a manner that can be used by any operating system (e.g.,
Windows, Mac OS X, and various Linux distributions), application framework (e.g., .NET, Java Enterprise
Edition, and COM), or programming language, you do not want to maintain full type fidelity because you
cannot assume all possible recipients can understand .NET-specific data types. Given this, SoapFormatter
and XmlSerializer are ideal choices when you need to ensure as broad a reach as possible for the persisted
tree of objects.

Serializing Objects Using the BinaryFormatter
You can use the BinaryFormatter type to illustrate how easy it is to persist an instance of the JamesBondCar
to a physical file. Again, the two key methods of the BinaryFormatter type to be aware of are Serialize()
and Deserialize().

•	 Serialize(): Persists an object graph to a specified stream as a sequence of bytes

•	 Deserialize(): Converts a persisted sequence of bytes to an object graph

http://schemas.microsoft.com/clr/nsassem/SimpleSerialize/MyApp%2C%20
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

784

Assume you have created an instance of JamesBondCar, modified some state data, and want to
persist your spy mobile into a *.dat file. Begin by creating the *.dat file itself. You can achieve this by
creating an instance of the System.IO.FileStream type. At this point, you can create an instance of the
BinaryFormatter and pass in the FileStream and object graph to persist. Consider the following
Main() method:

// Be sure to import the System.Runtime.Serialization.Formatters.Binary
// and System.IO namespaces.
static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Object Serialization *****\n");

 // Make a JamesBondCar and set state.
 JamesBondCar jbc = new JamesBondCar();
 jbc.canFly = true;
 jbc.canSubmerge = false;
 jbc.theRadio.stationPresets = new double[]{89.3, 105.1, 97.1};
 jbc.theRadio.hasTweeters = true;

 // Now save the car to a specific file in a binary format.
 SaveAsBinaryFormat(jbc, "CarData.dat");
 Console.ReadLine();
}

You implement the SaveAsBinaryFormat() method like this:

static void SaveAsBinaryFormat(object objGraph, string fileName)
{
 // Save object to a file named CarData.dat in binary.
 BinaryFormatter binFormat = new BinaryFormatter();

 using(Stream fStream = new FileStream(fileName,
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 binFormat.Serialize(fStream, objGraph);
 }
 Console.WriteLine("=> Saved car in binary format!");
}

The BinaryFormatter.Serialize() method is the member responsible for composing the object
graph and moving the byte sequence to some Stream-derived type. In this case, the stream happens to be
a physical file. You could also serialize your object types to any Stream-derived type, such as a memory
location or network stream.

After you run your program, you can view the contents of the CarData.dat file that represents this
instance of the JamesBondCar by navigating to the \bin\Debug folder of the current project. Figure 20-5
shows this file opened within Visual Studio.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

785

Deserializing Objects Using the BinaryFormatter
Now suppose you want to read the persisted JamesBondCar from the binary file back into an object
variable. After you open CarData.dat programmatically (with the File.OpenRead() method), you can
call the Deserialize() method of the BinaryFormatter. Be aware that Deserialize() returns a general
System.Object type, so you need to impose an explicit cast, as shown here:

static void LoadFromBinaryFile(string fileName)
{
 BinaryFormatter binFormat = new BinaryFormatter();

 // Read the JamesBondCar from the binary file.
 using(Stream fStream = File.OpenRead(fileName))
 {
 JamesBondCar carFromDisk =
 (JamesBondCar)binFormat.Deserialize(fStream);
 Console.WriteLine("Can this car fly? : {0}", carFromDisk.canFly);
 }
}

Figure 20-5. JamesBondCar serialized using a BinaryFormatter

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

786

Notice that when you call Deserialize(), you pass the Stream-derived type that represents the location
of the persisted object graph. Once you cast the object back into the correct type, you will find the state data
has been retained from the point at which you saved the object.

Serializing Objects Using the SoapFormatter
Your next choice of formatter is the SoapFormatter type, which serializes data in a proper SOAP envelope.
In a nutshell, the Simple Object Access Protocol (SOAP) defines a standard process in which you can invoke
methods in a platform- and OS-neutral manner.

Assuming you have added a reference to the System.Runtime.Serialization.Formatters.Soap.dll
assembly (and imported the System.Runtime.Serialization.Formatters.Soap namespace), you
can persist and retrieve a JamesBondCar as a SOAP message simply by replacing each occurrence of
BinaryFormatter with SoapFormatter. Consider the following new method of the Program class, which
serializes an object to a local file in a SOAP format:

// Be sure to import System.Runtime.Serialization.Formatters.Soap
// and reference System.Runtime.Serialization.Formatters.Soap.dll.
static void SaveAsSoapFormat (object objGraph, string fileName)
{
 // Save object to a file named CarData.soap in SOAP format.
 SoapFormatter soapFormat = new SoapFormatter();

 using(Stream fStream = new FileStream(fileName,
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 soapFormat.Serialize(fStream, objGraph);
 }
 Console.WriteLine("=> Saved car in SOAP format!");
}

As before, you use Serialize() and Deserialize() to move the object graph into and out of the
stream. If you call this method from Main() and run the application, you can open the resulting *.soap file.
Here you can locate the XML elements that mark the stateful values of the current JamesBondCar, as well as
the relationship between the objects in the graph by using the #ref tokens (see Figure 20-6).

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

787

Serializing Objects Using the XmlSerializer
In addition to the SOAP and binary formatters, the System.Xml.dll assembly provides a third formatter,
System.Xml.Serialization.XmlSerializer. You can use this formatter to persist the public state of a given
object as pure XML, as opposed to XML data wrapped within a SOAP message. Working with this type is a
bit different from working with the SoapFormatter or BinaryFormatter type. Consider the following code,
which assumes you have imported the System.Xml.Serialization namespace:

static void SaveAsXmlFormat(object objGraph, string fileName)
{
 // Save object to a file named CarData.xml in XML format.
 XmlSerializer xmlFormat = new XmlSerializer(typeof(JamesBondCar));

 using(Stream fStream = new FileStream(fileName,
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 xmlFormat.Serialize(fStream, objGraph);
 }
 Console.WriteLine("=> Saved car in XML format!");
}

Figure 20-6. JamesBondCar serialized using a SoapFormatter

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

788

The key difference is that the XmlSerializer type requires you to specify type information that
represents the class you want to serialize. If you were to look within the newly generated XML file (assuming
you call this new method from within Main()), you would find the XML data shown here:

<?xml version="1.0"?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <theRadio>
 <hasTweeters>true</hasTweeters>
 <hasSubWoofers>false</hasSubWoofers>
 <stationPresets>
 <double>89.3</double>
 <double>105.1</double>
 <double>97.1</double>
 </stationPresets>
 <radioID>XF-552RR6</radioID>
 </theRadio>
 <isHatchBack>false</isHatchBack>
 <canFly>true</canFly>
 <canSubmerge>false</canSubmerge>
</JamesBondCar>

 ■ Note The XmlSerializer demands that all serialized types in the object graph support a default
constructor (so be sure to add it back if you define custom constructors). If this is not the case, you will receive
an InvalidOperationException at runtime.

Controlling the Generated XML Data
If you have a background in XML technologies, you know that it is often critical to ensure the data within an
XML document conforms to a set of rules that establish the validity of the data. Understand that a valid XML
document does not have anything to do with the syntactic well-being of the XML elements (e.g., all opening
elements must have a closing element). Rather, valid documents conform to agreed- upon formatting rules
(e.g., field X must be expressed as an attribute and not a subelement), which are typically defined by an XML
schema or document-type definition (DTD) file.

By default, XmlSerializer serializes all public fields/properties as XML elements, rather than as XML
attributes. If you want to control how the XmlSerializer generates the resulting XML document, you
can decorate types with any number of additional .NET attributes from the System.Xml.Serialization
namespace. Table 20-12 documents some (but not all) of the .NET attributes that influence how XML data is
encoded to a stream.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

789

This simple example illustrates how the field data of JamesBondCar is currently persisted as XML:

<?xml version="1.0" encoding="utf-8"?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
 <canFly>true</canFly>
 <canSubmerge>false</canSubmerge>
</JamesBondCar>

If you want to specify a custom XML namespace that qualifies the JamesBondCar and encodes the
canFly and canSubmerge values as XML attributes, you can do so by modifying the C# definition of
JamesBondCar, like so:

[Serializable, XmlRoot(Namespace = "http://www.MyCompany.com")]
public class JamesBondCar : Car
{
 [XmlAttribute]
 public bool canFly;
 [XmlAttribute]
 public bool canSubmerge;
}

This yields the following XML document (note the opening <JamesBondCar> element):

<?xml version="1.0"""?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 canFly="true" canSubmerge="false"
 xmlns="http://www.MyCompany.com">
...
</JamesBondCar>

Of course, you can use many other .NET attributes to control how the XmlSerializer generates the
resulting XML document. For full details, look up the System.Xml.Serialization namespace in the .NET
Framework 4.6 SDK documentation.

Table 20-12. Select Attributes of the System.Xml.Serialization Namespace

.NET Attribute Meaning in Life

[XmlAttribute] You can use this .NET attribute on a public field or property in a class to tell
XmlSerializer to serialize the data as an XML attribute (rather than as a subelement).

[XmlElement] The field or property will be serialized as an XML element named as you so choose.

[XmlEnum] This attribute provides the element name of an enumeration member.

[XmlRoot] This attribute controls how the root element will be constructed (namespace and
element name).

[XmlText] The property or field will be serialized as XML text (i.e., the content between the start
tag and the end tag of the root element).

[XmlType] This attribute provides the name and namespace of the XML type.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.mycompany.com/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.mycompany.com/

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

790

Serializing Collections of Objects
Now that you have seen how to persist a single object to a stream, you’re ready to examine how to save a set
of objects. As you might have noticed, the Serialize() method of the IFormatter interface does not provide
a way to specify an arbitrary number of objects as input (only a single System.Object). On a related note,
the return value of Deserialize() is, again, a single System.Object (the same basic limitation holds true for
XmlSerializer).

public interface IFormatter
{
...
 object Deserialize(Stream serializationStream);
 void Serialize(Stream serializationStream, object graph);
}

Recall that the System.Object represents a complete tree of objects. Given this, if you pass in an object
that has been marked as [Serializable] and contains other [Serializable] objects, the entire set of
objects is persisted in a single method call. As luck would have it, most of the types you find in the System.
Collections and System.Collections.Generic namespaces have already been marked as [Serializable].
Therefore, if you would like to persist a set of objects, simply add the desired set to the container (such as a
normal array, an ArrayList or a List<T>) and serialize the object to your stream of choice.

Now assume that you want to update the JamesBondCar class with a two-argument constructor so
you can set a few pieces of state data (note that you add back the default constructor as required by the
XmlSerializer).

[Serializable,
 XmlRoot(Namespace = "http://www.MyCompany.com")]
public class JamesBondCar : Car
{
 public JamesBondCar(bool skyWorthy, bool seaWorthy)
 {
 canFly = skyWorthy;
 canSubmerge = seaWorthy;
 }
 // The XmlSerializer demands a default constructor!
 public JamesBondCar(){}
...
}

With this, you can now persist any number of JamesBondCars.

static void SaveListOfCars()
{
 // Now persist a List<T> of JamesBondCars.
 List<JamesBondCar> myCars = new List<JamesBondCar>();
 myCars.Add(new JamesBondCar(true, true));
 myCars.Add(new JamesBondCar(true, false));
 myCars.Add(new JamesBondCar(false, true));
 myCars.Add(new JamesBondCar(false, false));

http://www.mycompany.com/

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

791

 using(Stream fStream = new FileStream("CarCollection.xml",
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 XmlSerializer xmlFormat = new XmlSerializer(typeof(List<JamesBondCar>));
 xmlFormat.Serialize(fStream, myCars);
 }
 Console.WriteLine("=> Saved list of cars!");
}

You use XmlSerializer here, so you are required to specify type information for each of the subobjects
within the root object (List<JamesBondCar>, in this case). However, the logic would be even more
straightforward if you were to use the BinaryFormatter or SoapFormatter type instead, as shown here:

static void SaveListOfCarsAsBinary()
{
 // Save ArrayList object (myCars) as binary.
 List<JamesBondCar> myCars = new List<JamesBondCar>();

 BinaryFormatter binFormat = new BinaryFormatter();
 using(Stream fStream = new FileStream("AllMyCars.dat",
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 binFormat.Serialize(fStream, myCars);
 }
 Console.WriteLine("=> Saved list of cars in binary!");
}

 ■ Source Code The SimpleSerialize application is included in the Chapter 20 subdirectory.

Customizing the Soap/Binary Serialization Process
In a majority of cases, the default serialization scheme provided by the .NET platform will be exactly what
you require. Simply apply the [Serializable] attribute to your related types and pass the tree of objects to
your formatter of choice for processing. In some cases, however, you might want to become more involved
with how a tree is constructed and handled during the serialization process. For example, perhaps you have
a business rule that says all field data must be persisted using a particular format, or perhaps you need to
add additional bits of data to the stream that do not map directly to fields in the object being persisted
(e.g., timestamps and unique identifiers).

When you want to become more involved with the process of object serialization, the System.Runtime.
Serialization namespace provides several types that allow you to do so. Table 20-13 describes some of the
core types you should be aware of.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

792

A Deeper Look at Object Serialization
Before you examine various ways that you can customize the serialization process, you will find it helpful to
take a deeper look at what takes place behind the scenes. When the BinaryFormatter serializes an object
graph, it is in charge of transmitting the following information into the specified stream:

•	 The fully qualified name of the objects in the graph (e.g., MyApp.JamesBondCar)

•	 The name of the assembly defining the object graph (e.g., MyApp.exe)

•	 An instance of the SerializationInfo class that contains all stateful data
maintained by the members in the object graph

During the deserialization process, the BinaryFormatter uses this same information to build an
identical copy of the object, using the information extracted from the underlying stream. SoapFormatter
uses a quite similar process.

 ■ Note Recall that the XmlSerializer does not persist a type’s fully qualified name or the name of the
defining assembly; this behavior helps keep the state of the object as mobile as possible. This type is concerned
only with persisting exposed public data.

Table 20-13. System.Runtime.Serialization Namespace Core Types

Type Meaning in Life

ISerializable You can implement this interface on a [Serializable] type to control its
serialization and deserialization.

ObjectIDGenerator This type generates IDs for members in an object graph.

[OnDeserialized] This attribute allows you to specify a method that will be called immediately
after the object has been deserialized.

[OnDeserializing] This attribute allows you to specify a method that will be called before the
deserialization process.

[OnSerialized] This attribute allows you to specify a method that will be called immediately
after the object has been serialized.

[OnSerializing] This attribute allows you to specify a method that will be called before the
serialization process.

[OptionalField] This attribute allows you to define a field on a type that can be missing from the
specified stream.

[SerializationInfo] In essence, this class is a property bag that maintains name-value pairs
representing the state of an object during the serialization process.

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

793

Beyond moving the required data into and out of a stream, formatters also analyze the members in the
object graph for the following pieces of infrastructure:

•	 A check is made to determine whether the object is marked with the [Serializable]
attribute. If the object is not, a SerializationException is thrown.

•	 If the object is marked [Serializable], a check is made to determine whether the
object implements the ISerializable interface. If this is the case, GetObjectData()
is called on the object.

•	 If the object does not implement ISerializable, the default serialization process is
used, serializing all fields not marked as [NonSerialized].

In addition to determining whether the type supports ISerializable, formatters are also responsible
for discovering whether the types in question support members that have been adorned with the
[OnSerializing], [OnSerialized], [OnDeserializing], or [OnDeserialized] attributes. You’ll examine
the role of these attributes in momentarily, but first you need to look at the role of ISerializable.

Customizing Serialization Using ISerializable
Objects that are marked [Serializable] have the option of implementing the ISerializable interface.
Doing so lets you get “involved” with the serialization process and perform any pre- or post-data formatting.

The ISerializable interface is quite simple, given that it defines only a single method,
GetObjectData().

// When you wish to tweak the serialization process,
// implement ISerializable.
public interface ISerializable
{
 void GetObjectData(SerializationInfo info,
 StreamingContext context);
}

The GetObjectData() method is called automatically by a given formatter during the serialization
process. The implementation of this method populates the incoming SerializationInfo parameter
with a series of name-value pairs that (typically) map to the field data of the object being persisted.
SerializationInfo defines numerous variations on the overloaded AddValue() method, as well as a small
set of properties that allow the type to get and set the type’s name, defining assembly, and member count.
Here is a partial snapshot:

public sealed class SerializationInfo
{
 public SerializationInfo(Type type, IFormatterConverter converter);
 public string AssemblyName { get; set; }
 public string FullTypeName { get; set; }
 public int MemberCount { get; }
 public void AddValue(string name, short value);
 public void AddValue(string name, ushort value);
 public void AddValue(string name, int value);
...

}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

794

Types that implement the ISerializable interface must also define a special constructor that takes the
following signature:

// You must supply a custom constructor with this signature
// to allow the runtime engine to set the state of your object.
[Serializable]
class SomeClass : ISerializable
{
 protected SomeClass (SerializationInfo si, StreamingContext ctx) {...}
 ...
}

Notice that the visibility of this constructor is set as protected. This is permissible because the formatter
will have access to this member, regardless of its visibility. These special constructors tend to be marked as
protected (or private for that matter) to ensure that the casual object user can never create an object in this
manner. The first parameter of this constructor is an instance of the SerializationInfo type (which you’ve
seen previously).

The second parameter of this special constructor is a StreamingContext type, which contains
information regarding the source of the bits. The most informative member of StreamingContext is the
State property, which represents a value from the StreamingContextStates enumeration. The values of this
enumeration represent the basic composition of the current stream.

Unless you intend to implement some low-level custom remoting services, you will seldom need to deal
with this enumeration directly. Nevertheless, here are the possible names of the StreamingContextStates
enum (consult the .NET Framework 4.6 SDK documentation for full details):

public enum StreamingContextStates
{
 CrossProcess,
 CrossMachine,
 File,
 Persistence,
 Remoting,
 Other,
 Clone,
 CrossAppDomain,
 All
}

Now let’s look at how to customize the serialization process using ISerializable. Assume you have
a new Console Application project (named CustomSerialization) that defines a class type containing
two points of string data. Also assume that you must ensure that the string objects are serialized to
the stream in all uppercase and deserialized from the stream in lowercase. To account for such rules,
you could implement ISerializable like this (be sure to import the System.Runtime.Serialization
namespace):

[Serializable]
class StringData : ISerializable
{
 private string dataItemOne = "First data block";
 private string dataItemTwo= "More data";

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

795

 public StringData(){}
 protected StringData(SerializationInfo si, StreamingContext ctx)
 {
 // Rehydrate member variables from stream.
 dataItemOne = si.GetString("First_Item").ToLower();
 dataItemTwo = si.GetString("dataItemTwo").ToLower();
 }

 void ISerializable.GetObjectData(SerializationInfo info, StreamingContext ctx)
 {
 // Fill up the SerializationInfo object with the formatted data.
 info.AddValue("First_Item", dataItemOne.ToUpper());
 info.AddValue("dataItemTwo", dataItemTwo.ToUpper());
 }
}

Notice that when you fill the SerializationInfo type with the GetObjectData() method, you are not
required to name the data points identically to the type’s internal member variables. This can obviously be
helpful if you need to further decouple the type’s data from the persisted format. Be aware, however, that you
will need to obtain the values from the special, protected constructor using the same names assigned within
GetObjectData().

To test your customization, assume that you want to persist an instance of MyStringData using a
SoapFormatter (so update your assembly references and imports accordingly), as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Fun with Custom Serialization *****");

 // Recall that this type implements ISerializable.
 StringData myData = new StringData();

 // Save to a local file in SOAP format.
 SoapFormatter soapFormat = new SoapFormatter();
 using(Stream fStream = new FileStream("MyData.soap",
 FileMode.Create, FileAccess.Write, FileShare.None))
 {
 soapFormat.Serialize(fStream, myData);
 }
 Console.ReadLine();
}

When you view the resulting *.soap file, you will see that the string fields have been persisted in
uppercase, as so:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.microsoft.com/soap/encoding/clr/1.0
http://schemas.xmlsoap.org/soap/encoding/

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

796

 <a1:StringData id="ref-1" ...>
 <First_Item id="ref-3">FIRST DATA BLOCK</First_Item>
 <dataItemTwo id="ref-4">MORE DATA</dataItemTwo>
 </a1:StringData>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Customizing Serialization Using Attributes
Although implementing the ISerializable interface is one way to customize the serialization process,
the preferred way to customize the serialization process is to define methods that are attributed with any
of the new serialization-centric attributes: [OnSerializing], [OnSerialized], [OnDeserializing], or
[OnDeserialized]. Using these attributes is less cumbersome than implementing ISerializable because
you do not need to interact manually with an incoming SerializationInfo parameter. Instead, you can
modify your state data directly, while the formatter operates on the type.

 ■ Note You can find these serialization attributes defined in the System.Runtime.Serialization namespace.

When you define method decorated with these attributes, you must define the methods so they receive
a StreamingContext parameter and return nothing (otherwise, you will receive a runtime exception). Note
that you are not required to account for each of the serialization-centric attributes, and you can simply
contend with the stages of serialization you want to intercept. The following snippet illustrates this. Here, a
new [Serializable] type has the same requirements as StringData, but this time you account for using the
[OnSerializing] and [OnDeserialized] attributes:

[Serializable]
class MoreData
{
 private string dataItemOne = "First data block";
 private string dataItemTwo= "More data";

 [OnSerializing]
 private void OnSerializing(StreamingContext context)
 {
 // Called during the serialization process.
 dataItemOne = dataItemOne.ToUpper();
 dataItemTwo = dataItemTwo.ToUpper();
 }

 [OnDeserialized]
 private void OnDeserialized(StreamingContext context)
 {
 // Called when the deserialization process is complete.
 dataItemOne = dataItemOne.ToLower();
 dataItemTwo = dataItemTwo.ToLower();
 }
}

ChApTeR 20 ■ FIle I/O And ObjeCT SeRIAlIzATIOn

797

If you were to serialize this new type, you would again find that the data has been persisted as
uppercase and deserialized as lowercase.

 ■ Source Code You can find the CustomSerialization project in the Chapter 20 subdirectory.

With this example behind you, your exploration of the core details of object serialization services,
including various ways to customize the process, is complete. As you have seen, the serialization and
deserialization process makes it easy to persist large amounts of data, and it can be less labor-intensive than
working with the various reader/writer classes of the System.IO namespace.

Summary
You began this chapter by examining the use of the Directory(Info) and File(Info) types. As you learned,
these classes allow you to manipulate a physical file or directory on your hard drive. Next, you examined
a number of classes derived from the abstract Stream class. Given that Stream-derived types operate on a
raw stream of bytes, the System.IO namespace provides numerous reader/writer types (e.g., StreamWriter,
StringWriter, and BinaryWriter) that simplify the process. Along the way, you also checked out the
functionality provided by DriveType, learned how to monitor files using the FileSystemWatcher type, and
saw how to interact with streams in an asynchronous manner.

This chapter also introduced you to the topic of object serialization services. As you have seen, the
.NET platform uses an object graph to account for the full set of related objects that you want to persist to a
stream. As long as each member in the object graph has been marked with the [Serializable] attribute, the
data is persisted using your format of choice (binary or SOAP).

You also learned that it is possible to customize the out-of-the-box serialization process using two
possible approaches. First, you learned how to implement the ISerializable interface (and support a
special private constructor), which enables you to become more involved with how formatters persist
the supplied data. Second, you learned about a set of .NET attributes that simplify the process of custom
serialization. All you need to do is apply the [OnSerializing], [OnSerialized], [OnDeserializing], or
[OnDeserialized] attribute on members that take a StreamingContext parameter, and the formatters will
invoke them accordingly.

http://dx.doi.org/10.1007/978-1-4842-1332-2_20

799

Chapter 21

ADO.NET Part I: The Connected
Layer

The .NET platform defines a number of namespaces that allow you to interact with relational database
systems. Collectively speaking, these namespaces are known as ADO.NET. In this chapter, you’ll learn about
the overall role of ADO.NET and the core types and namespaces, and then you’ll move on to the topic of
ADO.NET data providers. The .NET platform supports numerous data providers (both provided as part of
the .NET Framework and available from third-party sources), each of which is optimized to communicate
with a specific database management system (e.g., Microsoft SQL Server, Oracle, and MySQL).

After you understand the common functionality provided by various data providers, you will then look
at the data provider factory pattern. As you will see, using types within the System.Data.Common namespace
(and a related App.config file), you can build a single code base that can dynamically pick and choose the
underlying data provider without the need to recompile or redeploy the application’s code base.

Perhaps most importantly, this chapter will give you the chance to build a custom data access library
assembly (AutoLotDAL.dll) that encapsulates various database operations performed on a custom database
named AutoLot. Finally, you will wrap things up by examining the topic of database transactions.

 ■ Note You will expand the capabilities of this library in Chapter 22 and then create it from scratch using
Entity Framework (EF) in Chapter 23. Why create it twice? Even though object-relational mapping frameworks
(ORMs) like Entity Framework make it much simpler (and faster) to create data access code, ORMs still use
ADO.NET as the core data access technology. A solid understanding of how ADO.NET works is vital when
troubleshooting an issue with your data access, especially when it was created by a framework and not written
by you. Also, you will encounter scenarios that aren’t solved by EF (such as executing a SQL BulkCopy), and you
will need to know ADO.NET to solve those issues.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

800

A High-Level Definition of ADO.NET
If you have a background in Microsoft’s previous COM-based data access model (Active Data Objects [ADO])
and are just starting to work with the .NET platform, you need to understand that ADO.NET has little to do
with ADO beyond the letters A, D, and O. While it is true that there is some relationship between the two
systems (e.g., each has the concept of connection and command objects), some familiar ADO types (e.g.,
the Recordset) no longer exist. Furthermore, you can find many new ADO.NET types that have no direct
equivalent under classic ADO (e.g., the data adapter).

ADO.NET was built with the disconnected world in mind. Prior to the wider adoption of ORMs, this was
typically accomplished using DataSets. DataSets represent a local copy of any number of related data tables,
each of which contains a collection of rows and column. Using a DataSet, the calling assembly (such as a
web page or desktop executable) is able to manipulate and update a DataSet’s contents while disconnected
from the data source and send any modified data back for processing using a related data adapter.

 ■ Note ORMs don’t use DataSets but rather lists of plain old C# objects (also called pOCOs). This chapter
and the next detail how ADO.NET works. This foundation is important, even if you plan on moving straight to an
ORM such as Entity Framework. EF, Nhibernate, and the other ORMS in the .NET world are built in top of ADO.
NET, so if you need to work through an issue where your code doesn’t seem to be working the way you expect
it to, knowing how ADO.NET works is a significant plus. The subsequent chapters use a data access library
developed using EF.

From a programmatic point of view, the bulk of ADO.NET is represented by a core assembly named
System.Data.dll. Within this binary, you find a good number of namespaces (see Figure 21-1), many of
which represent the types of a particular ADO.NET data provider (defined momentarily).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

801

It turns out most Visual Studio project templates automatically reference this key data access assembly.
You should also understand that there are other ADO.NET-centric assemblies beyond System.Data.dll,
which you might need to reference manually in your current project using the Add Reference dialog box.

The Three Faces of ADO.NET
You can use the ADO.NET libraries in three conceptually unique manners: connected, disconnected, or
through an ORM, such as Entity Framework. When you use the connected layer (the subject of this chapter),
your code base explicitly connects to and disconnects from the underlying data store. When you use ADO.
NET in this manner, you typically interact with the data store using connection objects, command objects,
and data reader objects.

Figure 21-1. System.Data.dll is the core ADO.NET assembly

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

802

The disconnected layer (you will learn more about this in Chapter 22) allows you to manipulate a set
of DataTable objects (contained within a DataSet) that functions as a client-side copy of the external data.
When you obtain a DataSet using a related data adapter object, the connection is automatically opened and
closed on your behalf. As you would guess, this approach helps free up connections for other callers quickly
and goes a long way toward increasing the scalability of your systems.

After a caller receives a DataSet, it is able to traverse and manipulate the contents without incurring the
cost of network traffic. Also, if the caller wants to submit the changes back to the data store, the data adapter
(in conjunction with a set of SQL statements) is used to update the data source; at this point the connection
is reopened for the database updates to occur and then closed again immediately.

Finally, in Chapter 23, you will be introduced to a data access API termed the Entity Framework (EF).
Using EF, you are able to interact with a relational database using client-side objects that encapsulate a
number of low-level database specifics from view. As well, the EF programming model allows you to interact
with relational databases using strongly typed LINQ queries, using the grammar of LINQ to Entities.

Understanding ADO.NET Data Providers
ADO.NET does not provide a single set of objects that communicate with multiple database management
systems (DBMSs). Rather, ADO.NET supports multiple data providers, each of which is optimized to interact
with a specific DBMS. The first benefit of this approach is that you can program a specific data provider to
access any unique features of a particular DBMS. The second benefit is that a specific data provider can
connect directly to the underlying engine of the DBMS in question without an intermediate mapping layer
standing between the tiers.

Simply put, a data provider is a set of types defined in a given namespace that understand how to
communicate with a specific type of data source. Regardless of which data provider you use, each defines
a set of class types that provide core functionality. Table 21-1 documents some of the core common types,
their base class (all defined in the System.Data.Common namespace), and the key interfaces (each is defined
in the System.Data namespace) they implement.

Table 21-1. The Core Objects of an ADO.NET Data Provider

Type of Object Base Class Relevant Interfaces Meaning in Life

Connection DbConnection IDbConnection Provides the ability to connect to and
disconnect from the data store. Connection
objects also provide access to a related
transaction object.

Command DbCommand IDbCommand Represents a SQL query or a stored procedure.
Command objects also provide access to the
provider’s data reader object.

DataReader DbDataReader IDataReader,
IDataRecord

Provides forward-only, read-only access to
data using a server-side cursor.

DataAdapter DbDataAdapter IDataAdapter,
IDbDataAdapter

Transfers DataSets between the caller and the
data store. Data adapters contain a connection
and a set of four internal command objects
used to select, insert, update, and delete
information from the data store.

Parameter DbParameter IDataParameter,
IDbDataParameter

Represents a named parameter within a
parameterized query.

Transaction DbTransaction IDbTransaction Encapsulates a database transaction.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

803

Although the specific names of these core classes will differ among data providers (e.g., SqlConnection
versus OdbcConnection), each class derives from the same base class (DbConnection, in the case of
connection objects) that implements identical interfaces (e.g., IDbConnection). Given this, you would be
correct to assume that after you learn how to work with one data provider, the remaining providers prove
quite straightforward.

 ■ Note When you refer to a connection object under ADO.NET, you’re actually referring to a specific
DbConnection-derived type; there is no class literally named Connection. The same idea holds true for
a command object, data adapter object, and so forth. As a naming convention, the objects in a specific
data provider are prefixed with the name of the related DBMS (e.g., SqlConnection, SqlConnection, and
SqlDataReader).

Figure 21-2 shows the big picture behind ADO.NET data providers. Note how the diagram illustrates
that the Client Assembly can literally be any type of .NET application: console program, Windows Forms
application, WPF application, ASP.NET web page, WCF service, Web API service, .NET code library, and so on.

Figure 21-2. ADO.NET data providers provide access to a given DBMS

A data provider will supply you with other types beyond the objects shown in Figure 21-2; however,
these core objects define a common baseline across all data providers.

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

804

The Microsoft-Supplied ADO.NET Data Providers
Microsoft’s .NET distribution ships with numerous data providers, including a provider for Oracle, SQL
Server, and OLE DB/ODBC-style connectivity. Table 21-2 documents the namespace and containing
assembly for each Microsoft ADO.NET data provider.

 ■ Note While an Oracle provider is still being shipped with the .NET Framework, the recommendation is to
use the Oracle-supplied Oracle Developer Tools for Visual Studio. In fact, if you open Server Explorer and select
New Connection and then Oracle Database, Visual Studio will tell you to use the Oracle Data Tools and provide a
link where they can be downloaded.

There is no specific data provider that maps directly to the Jet engine (and, therefore, Microsoft Access). If you
want to interact with an Access data file, you can do so using the OLE DB or ODBC data provider.

The OLE DB data provider, which is composed of the types defined in the System.Data.OleDb
namespace, allows you to access data located in any data store that supports the classic COM-based OLE
DB protocol. You can use this provider to communicate with any OLE DB–compliant database simply by
tweaking the Provider segment of your connection string.

However, the OLE DB provider interacts with various COM objects behind the scenes, which can affect
the performance of your application. By and large, the OLE DB data provider is useful only if you interact with
a DBMS that does not define a specific .NET data provider. However, given that these days any DBMS worth
its salt should have a custom ADO.NET data provider for download, you should consider System.Data.OleDb
a legacy namespace that has little use in the .NET 4.6 world. (This is even more the case with the advent of the
data provider factory model introduced under .NET 2.0, which you will learn about shortly.)

 ■ Note There is one case in which using the types of System.Data.OleDb is necessary: when you need to
communicate with Microsoft SQL Server version 6.5 or earlier. The System.Data.SqlClient namespace can
communicate only with Microsoft SQL Server version 7.0 or higher.

The Microsoft SQL Server data provider offers direct access to Microsoft SQL Server data stores— and
only SQL Server data stores (version 7.0 and greater). The System.Data.SqlClient namespace contains the
types used by the SQL Server provider and offers the same basic functionality as the OLE DB provider. The
key difference is that the SQL Server provider bypasses the OLE DB layer and gives numerous performance
benefits. The Microsoft SQL Server data provider also allows you to gain access to the unique features of this
particular DBMS.

Table 21-2. Microsoft ADO.NET Data Providers

Data Provider Namespace Assembly

OLE DB System.Data.OleDb System.Data.dll

Microsoft SQL Server LocalDb System.Data.SqlClient System.Data.dll

ODBC System.Data.Odbc System.Data.dll

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

805

The remaining Microsoft-supplied provider (System.Data.Odbc) provides access to ODBC connections.
The ODBC types defined within the System.Data.Odbc namespace are typically useful only if you need to
communicate with a given DBMS for which there is no custom .NET data provider. This is true because
ODBC is a widespread model that provides access to a number of data stores.

A Word Regarding System.Data.OracleClient.dll
Earlier versions of the .NET platform shipped with an assembly named System.Data.OracleClient.dll,
which, as the name suggests, offered a data provider to communicate with Oracle databases. As of .NET 4.0,
however, this assembly has been marked as obsolete and will eventually be deprecated. The Oracle client is
still included in .NET 4.6, but it would be wise to not expect it to be included forever.

At first glance, this might cause you to fear that ADO.NET is slowly becoming focused squarely on
Microsoft-centric data stores; however, this is not the case. Oracle provides its own custom .NET assembly,
which follows the same overall design guidelines as the data providers provided by Microsoft. If you need to
obtain this .NET assembly, you can visit following web site:

http://www.oracle.com/technetwork/topics/dotnet/index-085163.html

Obtaining Third-Party ADO.NET Data Providers
In addition to the data providers that ship from Microsoft (as well as Oracle’s custom .NET library),
numerous third-party data providers exist for various open source and commercial databases. While you will
most likely be able to obtain an ADO.NET data provider directly from the database vendor, you should be
aware of the following site:

https://msdn.microsoft.com/en-us/library/dd363565.aspx

This web site is one of many sites that document each known ADO.NET data provider and provide links
for more information and downloads. Here, you will find numerous ADO.NET providers, including SQLite,
IBM DB2, MySQL, Postgres, Sybase, and many others.

Given the large number of ADO.NET data providers, the examples in this book will use the Microsoft
SQL Server data provider (System.Data.SqlClient.dll). Recall that this provider allows you to
communicate with Microsoft SQL Server version 7.0 and higher, including SQL Server Express Edition and
LocalDb. If you intend to use ADO.NET to interact with another DBMS, you should have no problem doing
so once you understand the material presented in the pages that follow.

http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://msdn.microsoft.com/en-us/library/dd363565.aspx

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

806

Note that this chapter does not examine every type within every ADO.NET namespace (that task would
require a large book all by itself); however, it is quite important that you understand the types within the
System.Data namespace.

The Types of the System.Data Namespace
Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You cannot build
ADO.NET applications without specifying this namespace in your data access applications. This
namespace contains types that are shared among all ADO.NET data providers, regardless of the underlying
data store. In addition to a number of database-centric exceptions (e.g., NoNullAllowedException,
RowNotInTableException, and MissingPrimaryKeyException), System.Data contains types that represent
various database primitives (e.g., tables, rows, columns, and constraints), as well as the common interfaces
implemented by data provider objects. Table 21-4 lists some of the core types you should be aware of.

Table 21-3. Select Additional ADO.NET-Centric Namespaces

Namespace Meaning in Life

Microsoft.SqlServer.Server This namespace provides types that facilitate CLR and SQL Server 2005
and later integration services.

System.Data This namespace defines the core ADO.NET types used by all data
providers, including common interfaces and numerous types that
represent the disconnected layer (e.g., DataSet and DataTable).

System.Data.Common This namespace contains types shared between all ADO.NET data
providers, including the common abstract base classes.

System.Data.Sql This namespace contains types that allow you to discover Microsoft SQL
Server instances installed on the current local network.

System.Data.SqlTypes This namespace contains native data types used by Microsoft SQL
Server. You can always use the corresponding CLR data types, but the
SqlTypes are optimized to work with SQL Server (e.g., if your SQL Server
database contains an integer value, you can represent it using either int
or SqlTypes.SqlInt32).

Additional ADO.NET Namespaces
In addition to the .NET namespaces that define the types of a specific data provider, the .NET base class
libraries provide a number of additional ADO.NET-centric namespaces, some of which you can see in
Table 21-3 (again, Chapter 23 will address the assemblies and namespaces specific to Entity Framework).

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

807

You use the vast majority of the classes within System.Data when programming against the
disconnected layer of ADO.NET. In the next chapter, you will get to know the details of the DataSet and
its related cohorts (e.g., DataTable, DataRelation, and DataRow) and how to use them (and a related data
adapter) to represent and manipulate client-side copies of remote data.

However, your next task is to examine the core interfaces of System.Data at a high level; this can help
you understand the common functionality offered by any data provider. You will also learn specific details
throughout this chapter; however, for now it’s best to focus on the overall behavior of each interface type.

The Role of the IDbConnection Interface
The IDbConnection type is implemented by a data provider’s connection object. This interface defines a
set of members used to configure a connection to a specific data store. It also allows you to obtain the data
provider’s transaction object. Here is the formal definition of IDbConnection:

public interface IDbConnection : IDisposable
{
 string ConnectionString { get; set; }
 int ConnectionTimeout { get; }
 string Database { get; }
 ConnectionState State { get; }

 IDbTransaction BeginTransaction();
 IDbTransaction BeginTransaction(IsolationLevel il);

Table 21-4. Core Members of the System.Data Namespace

Type Meaning in Life

Constraint Represents a constraint for a given DataColumn object

DataColumn Represents a single column within a DataTable object

DataRelation Represents a parent-child relationship between two DataTable objects

DataRow Represents a single row within a DataTable object

DataSet Represents an in-memory cache of data consisting of any number of interrelated
DataTable objects

DataTable Represents a tabular block of in-memory data

DataTableReader Allows you to treat a DataTable as a fire-hose cursor (forward only, read- only data
access)

DataView Represents a customized view of a DataTable for sorting, filtering, searching, editing,
and navigation

IDataAdapter Defines the core behavior of a data adapter object

IDataParameter Defines the core behavior of a parameter object

IDataReader Defines the core behavior of a data reader object

IDbCommand Defines the core behavior of a command object

IDbDataAdapter Extends IDataAdapter to provide additional functionality of a data adapter object

IDbTransaction Defines the core behavior of a transaction object

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

808

 void ChangeDatabase(string databaseName);
 void Close();
 IDbCommand CreateCommand();
 void Open();
}

 ■ Note Like many other types in the .NET base class libraries, the Close() method is functionally equivalent
to calling the Dispose() method directly or indirectly within C# by using scope (see Chapter 13).

The Role of the IDbTransaction Interface
The overloaded BeginTransaction() method defined by IDbConnection provides access to the provider’s
transaction object. You can use the members defined by IDbTransaction to interact programmatically with a
transactional session and the underlying data store.

public interface IDbTransaction : IDisposable
{
 IDbConnection Connection { get; }
 IsolationLevel IsolationLevel { get; }

 void Commit();
 void Rollback();
}

The Role of the IDbCommand Interface
Next up is the IDbCommand interface, which will be implemented by a data provider’s command object. Like
other data access object models, command objects allow programmatic manipulation of SQL statements,
stored procedures, and parameterized queries. Command objects also provide access to the data provider’s
data reader type through the overloaded ExecuteReader() method.

public interface IDbCommand : IDisposable
{
 IDbConnection Connection { get; set; }
 IDbTransaction Transaction { get; set; }
 string CommandText { get; set; }
 int CommandTimeout { get; set; }
 CommandType CommandType { get; set; }
 IDataParameterCollection Parameters { get; }
 UpdateRowSource UpdatedRowSource { get; set; }

 void Prepare();
 void Cancel();
 IDbDataParameter CreateParameter();

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

809

 int ExecuteNonQuery();
 IDataReader ExecuteReader();
 IDataReader ExecuteReader(CommandBehavior behavior);
 object ExecuteScalar();
}

The Role of the IDbDataParameter and IDataParameter Interfaces
Notice that the Parameters property of IDbCommand returns a strongly typed collection that implements
IDataParameterCollection. This interface provides access to a set of IDbDataParameter-compliant class
types (e.g., parameter objects).

public interface IDbDataParameter : IDataParameter
{
 byte Precision { get; set; }
 byte Scale { get; set; }
 int Size { get; set; }
}

IDbDataParameter extends the IDataParameter interface to obtain the following additional behaviors:

public interface IDataParameter
{
 DbType DbType { get; set; }
 ParameterDirection Direction { get; set; }
 bool IsNullable { get; }
 string ParameterName { get; set; }
 string SourceColumn { get; set; }
 DataRowVersion SourceVersion { get; set; }
 object Value { get; set; }
}

As you will see, the functionality of the IDbDataParameter and IDataParameter interfaces allows you
to represent parameters within a SQL command (including stored procedures) through specific ADO.NET
parameter objects, rather than through hard-coded string literals.

The Role of the IDbDataAdapter and IDataAdapter Interfaces
You use data adapters to push and pull DataSets to and from a given data store. The IDbDataAdapter
interface defines the following set of properties that you can use to maintain the SQL statements for the
related select, insert, update, and delete operations:

public interface IDbDataAdapter : IDataAdapter
{
 IDbCommand SelectCommand { get; set; }
 IDbCommand InsertCommand { get; set; }
 IDbCommand UpdateCommand { get; set; }
 IDbCommand DeleteCommand { get; set; }
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

810

In addition to these four properties, an ADO.NET data adapter also picks up the behavior defined in
the base interface, IDataAdapter. This interface defines the key function of a data adapter type: the ability to
transfer DataSets between the caller and underlying data store using the Fill() and Update() methods. The
IDataAdapter interface also allows you to map database column names to more user-friendly display names
with the TableMappings property.

public interface IDataAdapter
{
 MissingMappingAction MissingMappingAction { get; set; }
 MissingSchemaAction MissingSchemaAction { get; set; }
 ITableMappingCollection TableMappings { get; }

 DataTable[] FillSchema(DataSet dataSet, SchemaType schemaType);
 int Fill(DataSet dataSet);
 IDataParameter[] GetFillParameters();
 int Update(DataSet dataSet);
}

The Role of the IDataReader and IDataRecord Interfaces
The next key interface to be aware of is IDataReader, which represents the common behaviors supported
by a given data reader object. When you obtain an IDataReader-compatible type from an ADO.NET data
provider, you can iterate over the result set in a forward-only, read-only manner.

public interface IDataReader : IDisposable, IDataRecord
{
 int Depth { get; }
 bool IsClosed { get; }
 int RecordsAffected { get; }

 void Close();
 DataTable GetSchemaTable();
 bool NextResult();
 bool Read();
}

Finally, IDataReader extends IDataRecord, which defines many members that allow you to extract a
strongly typed value from the stream, rather than casting the generic System.Object retrieved from the data
reader’s overloaded indexer method. Here is the IDataRecord interface definition:

public interface IDataRecord
{
 int FieldCount { get; }
 object this[int i] { get; }
 object this[string name] { get; }
 string GetName(int i);
 string GetDataTypeName(int i);
 Type GetFieldType(int i);
 object GetValue(int i);
 int GetValues(object[] values);

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

811

 int GetOrdinal(string name);
 bool GetBoolean(int i);
 byte GetByte(int i);
 long GetBytes(int i, long fieldOffset, byte[] buffer, int bufferoffset, int length);
 char GetChar(int i);
 long GetChars(int i, long fieldoffset, char[] buffer, int bufferoffset, int length);
 Guid GetGuid(int i);
 short GetInt16(int i);
 int GetInt32(int i);
 long GetInt64(int i);
 float GetFloat(int i);
 double GetDouble(int i);
 string GetString(int i);
 Decimal GetDecimal(int i);
 DateTime GetDateTime(int i);
 IDataReader GetData(int i);
 bool IsDBNull(int i);
}

 ■ Note You can use the IDataReader.IsDBNull() method to discover programmatically whether a
specified field is set to null before obtaining a value from the data reader (to avoid triggering a runtime
exception). Also recall that C# supports nullable data types (see Chapter 4), which are ideal for interacting with
data columns that could be null in the database table.

Abstracting Data Providers Using Interfaces
At this point, you should have a better idea of the common functionality found among all .NET data
providers. Recall that even though the exact names of the implementing types will differ among data
providers, you can program against these types in a similar manner—that’s the beauty of interface- based
polymorphism. For example, if you define a method that takes an IDbConnection parameter, you can pass in
any ADO.NET connection object, like so:

public static void OpenConnection(IDbConnection cn)
{
 // Open the incoming connection for the caller.
 connection.Open();
}

 ■ Note Interfaces are not strictly required; you can achieve the same level of abstraction using abstract base
classes (such as DbConnection) as parameters or return values.

http://dx.doi.org/10.1007/978-1-4842-1332-2_4

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

812

The same holds true for member return values. For example, consider the following simple C# Console
Application project (named MyConnectionFactory), which allows you to obtain a specific connection object
based on the value of a custom enumeration. For diagnostic purposes, you simply print the underlying
connection object using reflection services and then enter the following code:

using System;
using static System.Console;
// Need these to get definitions of common interfaces,
// and various connection objects for our test.
using System.Data;
using System.Data.SqlClient;
using System.Data.Odbc;
using System.Data.OleDb;

namespace MyConnectionFactory
{
 // A list of possible providers.
 enum DataProvider
 { SqlServer, OleDb, Odbc, None }

 class Program
 {

 static void Main(string[] args)
 {
 WriteLine("**** Very Simple Connection Factory *****\n");
 // Get a specific connection.
 IDbConnection myConnection = GetConnection(DataProvider.SqlServer);
 WriteLine($"Your connection is a {myConnection.GetType().Name}");
 // Open, use and close connection...
 ReadLine();
 }

 // This method returns a specific connection object
 // based on the value of a DataProvider enum.
 static IDbConnection GetConnection(DataProvider dataProvider)
 {
 IDbConnection connection = null;
 switch (dataProvider)
 {
 case DataProvider.SqlServer:
 connection = new SqlConnection();
 break;
 case DataProvider.OleDb:
 connection = new OleDbConnection();
 break;
 case DataProvider.Odbc:
 connection = new OdbcConnection();
 break;
 }

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

813

 return connection;
 }
 }
}

 ■ Note Visual Studio 2015 introduces use static. By adding use static System.Console; to your other
using statements, you can simply write WriteLine("some text") instead of Console.WriteLine("some text").
For all the console projects in this and subsequent chapters, I will be using the shorter version by adding using
static System.Console; to the top of my files.

The benefit of working with the general interfaces of System.Data (or, for that matter, the abstract base
classes of System.Data.Common) is that you have a much better chance of building a flexible code base that
can evolve over time. For example, today you might be building an application that targets Microsoft SQL
Server; however, it’s possible your company could switch to a different database months down the road.
If you build a solution that hard-codes the Microsoft SQL Server–specific types of System.Data.SqlClient,
you would obviously need to edit, recompile, and redeploy the assembly should the back-end database
management system change.

Increasing Flexibility Using Application Configuration Files
To increase the flexibility of your ADO.NET applications, you could incorporate a client-side *.config
file that uses custom key-value pairs within the <appSettings> element. Recall from Chapter 14 that you
can obtain the custom data stored within a *.config file programmatically by using types within the
System.Configuration namespace. For example, assume you have specified a data provider value
within a configuration file, as in this example:

<configuration>
 <appSettings>
 <!-- This key value maps to one of our enum values. -->
 <add key="provider" value="SqlServer"/>
 </appSettings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
 </startup>
</configuration>

With this, you could update Main() to obtain the underlying data provider programmatically. Doing
this essentially builds a connection object factory that allows you to change the provider but without
requiring you to recompile your code base (you simply change the *.config file). Here are the relevant
updates to Main():

static void Main(string[] args)
{
 WriteLine("**** Very Simple Connection Factory *****\n");
 // Read the provider key.
 string dataProviderString = ConfigurationManager.AppSettings["provider"];
 // Transform string to enum.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

814

 DataProvider dataProvider = DataProvider.None;
 if (Enum.IsDefined(typeof (DataProvider), dataProviderString))
 {
 dataProvider = (DataProvider) Enum.Parse(typeof (DataProvider), dataProviderString);
 }
 else
 {
 WriteLine("Sorry, no provider exists!");
 ReadLine();
 return;
 }
 // Get a specific connection.
 IDbConnection myConnection = GetConnection(dataProvider);
 WriteLine($"Your connection is a {myConnection?.GetType().Name ?? "unrecognized type"}");
 // Open, use and close connection...
 ReadLine();
}

 ■ Note To use the ConfigurationManager type, be sure to set a reference to the System.Configuration.dll
assembly and import the System.Configuration namespace.

At this point, you have authored some ADO.NET code that allows you to specify the underlying
connection dynamically. One obvious problem, however, is that this abstraction is used only within the
MyConnectionFactory.exe application. If you were to rework this example within a .NET code library (e.g.,
MyConnectionFactory.dll), you would be able to build any number of clients that could obtain various
connection objects using layers of abstraction.

However, obtaining a connection object is only one aspect of working with ADO.NET. To make a
worthwhile data provider factory library, you would also have to account for command objects, data readers,
data adapters, transaction objects, and other data-centric types. Building such a code library would not
necessarily be difficult, but it would require a considerable amount of code and time.

Since the release of .NET 2.0, the kind folks in Redmond have built this exact functionality directly into
the .NET base class libraries. You will examine this formal API in just a moment; however, first you need to
create a custom database to use throughout this chapter (and for many chapters to come).

 ■ Source Code You can find the MyConnectionFactory project in the Chapter 21 subdirectory.

Creating the AutoLot Database
As you work through this chapter, you will execute queries against a simple SQL Server test database named
AutoLot. In keeping with the automotive theme used throughout this book, this database will contain three
interrelated tables (Inventory, Orders, and Customers) that contain various bits of data representing order
information for a fictional automobile sales company.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

815

The assumption in this book is that you have a copy of Microsoft SQL Server (7.0 or higher) or a copy of
Microsoft SQL Server Express Edition. The examples in this book will be using SQL Server 2014 Express. If
you do not have either of these, please go here to download a copy:

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/overview.aspx

This lightweight database server is perfect for your needs in this book: it is free, it provides a GUI front
end (the SQL Server Management Tool) to create and administer your databases, and it integrates with
Visual Studio/Visual Community Edition. To illustrate the last point, the remainder of this section will walk
you through the construction of the AutoLot database using Visual Studio.

 ■ Note You will use the AutoLot database throughout the rest of this book.

Creating the Inventory Table
To begin building your testing database, launch Visual Studio and open the Server Explorer using the
View menu of the IDE. Next, right-click the Data Connections node and select the Create New SQL Server
Database menu option (see Figure 21-3).

Figure 21-3. Creating a new SQL Server database within Visual Studio

In the resulting dialog box, you will need to enter a value into the “Server name” text area, which
represents the machine where the database will be created. The server name consists of the machine
identifier and the instance name. If you have installed Microsoft SQL Server (either the full version or
Express) on your machine, enter (local)—including the parentheses—or a period followed by a backslash
and the instance name (or blank if using the default instance). For example, on my machine, I need to enter
.\SQLEXPRESS2014.

Name your new database AutoLot (Windows Authentication should be fine; see Figure 21-4).

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/overview.aspx

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

816

At this point, the AutoLot database is empty of any database objects (e.g., tables, stored procedures, and
so on). To insert a new database table, right-click the Tables node and select Add New Table (see Figure 21-5).

Figure 21-5. Adding the Inventory table

Figure 21-4. Creating a new SQL Server Express database with Visual Studio

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

817

Use the table editor to add four columns (CarId, Make, Color, and PetName). Set CarId as type int
and the other properties as type nvarchar(50). Ensure that the CarId column has been set to the primary
key (do this by right-clicking the CarId row and selecting Set Primary Key) and as an identity specification
(changed in the Properties tab by adding IDENTITY to the SQL or by adding the Identity column into the
table designer, as shown in Figure 21-6). Also, notice that all columns but CarId can be assigned null values.
Figure 21-6 shows the final table settings.

Figure 21-6. Designing the Inventory table

After you have created the table schema, name the table Inventory in the T-SQL window then save your
work by clicking the Update button (as shown in Figure 21-6). On the next screen (Figure 21-7), click Update
Database to commit the action.

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

818

Adding Test Records to the Inventory Table
To add records to your first table, right-click the Inventory table icon and select Show Table Data. Note: If
you don’t see the Inventory table, right-click the Tables folder and click Refresh. Enter a handful of new
automobiles of your choosing (to make it interesting, be sure to include some cars that have identical colors
and makes). Remember that the CarId field is an identity column, so the database takes care of creating a
unique value for you. Figure 21-8 shows one possible list of inventory.

Figure 21-8. Populating the Inventory table

Figure 21-7. Committing the Inventory table to the database

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

819

Authoring the GetPetName() Stored Procedure
Later in this chapter, you will learn how to use ADO.NET to invoke stored procedures. As you might already
know, stored procedures are routines stored within a particular database that operate often on table data to
yield a return value. You will add a single stored procedure that will return an automobile’s pet name, based
on the supplied CarId value. To do so, right-click the Stored Procedures node of the AutoLot database within
the Server Explorer and select Add New Stored Procedure. Enter the following in the editor that pops up:

CREATE PROCEDURE GetPetName
@carID int,
@petName char(10) output
AS
SELECT @petName = PetName from Inventory where CarId = @carID

 ■ Note Stored procedures do not have to return data using output parameters, as shown here; however,
doing things this way sets the stage for talking about the Direction property of the SqlParameter, which I will
cover later in this chapter.

When you click Update to save your procedure, it will automatically be named GetPetName, based on
your CREATE PROCEDURE statement. After you do this, you should see your new stored procedure within the
Server Explorer (see Figure 21-9).

Figure 21-9. The GetPetName stored procedure

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

820

Creating the Customers and Orders Tables
The AutoLot database will have two additional tables: Customers and Orders. The Customers table (as the
name suggests) will contain a list of customers and will be represented by three columns: CustId (which
should be set as the primary key), FirstName, and LastName. You can create the Customers table by following
the same steps you used to create the Inventory table; be sure to create the Customers table using the
schema shown in Figure 21-10.

Figure 21-11. Populating the Customers table

Figure 21-10. Designing the Customers table

After you save and name your table, add a handful of customer records (see Figure 21-11).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

821

You will use your final table, Orders, to represent the automobile a given customer is interested in
purchasing. Do this by mapping OrderId values to CarId/CustId values. Figure 21-12 shows the structure of
your final table (again, note that OrderId is the primary key).

Figure 21-12. Designing the Orders table

Figure 21-13. Populating the Orders table

Now add data to your Orders table. You haven’t created any table relationships yet, so you will have
to manually make sure that you enter values that exist in each table. Select a unique CarId for each CustId
value (see Figure 21-13 for entries based on the previously shown sample data).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

822

For example, the entries used in this text indicate that Dave Brenner (CustId = 1) is interested in the
black BMW (CarId = 5), while Pat Walton (CustId = 4) has her eye on the pink BMW (CarId = 7).

Creating Table Relationships in Visual Studio
The final task is to establish parent-child table relationships between the Customers, Orders, and Inventory
tables. Right-click the Orders table and select Open Table Definition. To the right of the columns grid,
right-click Foreign Keys and select Add New Foreign Key, as in Figure 21-14.

Figure 21-14. Creating a new foreign key

The default name for the foreign key is FK_<CurrentTable>_ToTable. In this case, it enters
FK_Orders_ToTable. Replace ToTable with Inventory. At the time of this writing, there is an issue with
the Properties grid for foreign keys, so you have to update the SQL manually. In the T-SQL Editor Window,
update the following line:

CONSTRAINT [FK_Orders_Inventory] FOREIGN KEY ([Column]) REFERENCES [ToTable]
([ToTableColumn])

to the following:

CONSTRAINT [FK_Orders_Inventory] FOREIGN KEY ([CarId]) REFERENCES [Inventory]([CarId]),

Copy the Constraint to a new line in the T-SQL Editor window, and update it to match the following
(make sure the inventory constraint is followed by a comma):

CONSTRAINT [FK_Orders_Customers] FOREIGN KEY ([CustId]) REFERENCES [dbo].[Customers]
([CustId]),

The complete SQL for the table looks like should look like this (there might be some minor differences
based on the version of SQL Server that you are using):

CREATE TABLE [dbo].[Orders] (
 [OrderId] INT IDENTITY (1, 1) NOT NULL,
 [CustId] INT NOT NULL,
 [CarId] INT NOT NULL,
 PRIMARY KEY CLUSTERED ([OrderId] ASC),

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

823

 CONSTRAINT [FK_Orders_Inventory] FOREIGN KEY ([CarId])
 REFERENCES [Inventory]([CarId]),
 CONSTRAINT [FK_Orders_Customers] FOREIGN KEY ([CustId])
 REFERENCES [Customers]([CustId]),
);

Click Update in the designer and then Update in the following dialog, and the relationships are added
to the AutoLot database. If you encounter an error while updating the database, it means that the data you
entered into the orders table isn’t correct. For example, you entered a CustId into Orders that doesn’t exist in
the Customers table. Correct the data and update the database again.

With this, the AutoLot database is complete! Of course, this is a far cry from a real-world corporate
database, but it will serve your needs over the remainder of this book. Now that you have a database to test
with, you can dive into the details of the ADO.NET data provider factory model.

The ADO.NET Data Provider Factory Model
The .NET data provider factory pattern allows you to build a single code base using generalized data access
types. Furthermore, using application configuration files (and the <connectionStrings> subelement), you
can obtain providers and connection strings declaratively, without the need to recompile or redeploy the
assembly that uses the ADO.NET APIs.

To understand the data provider factory implementation, recall from Table 21-1 that the classes within a
data provider each derive from the same base classes defined within the System.Data.Common namespace.

•	 DbCommand: The abstract base class for all command classes

•	 DbConnection: The abstract base class for all connection classes

•	 DbDataAdapter: The abstract base class for all data adapter classes

•	 DbDataReader: The abstract base class for all data reader classes

•	 DbParameter: The abstract base class for all parameter classes

•	 DbTransaction: The abstract base class for all transaction classes

Each of the Microsoft-supplied data providers contains a class type that derives from System.Data.
Common.DbProviderFactory. This base class defines several methods that retrieve provider- specific data
objects. Here are the members of DbProviderFactory:

public abstract class DbProviderFactory
{
..public virtual bool CanCreateDataSourceEnumerator { get;};
 public virtual DbCommand CreateCommand();
 public virtual DbCommandBuilder CreateCommandBuilder();
 public virtual DbConnection CreateConnection();
 public virtual DbConnectionStringBuilder CreateConnectionStringBuilder();
 public virtual DbDataAdapter CreateDataAdapter();
 public virtual DbParameter CreateParameter();
 public virtual CodeAccessPermission CreatePermission(PermissionState state);
 public virtual DbDataSourceEnumerator CreateDataSourceEnumerator();
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

824

To obtain the DbProviderFactory-derived type for your data provider, the System.Data.Common
namespace provides a class type named DbProviderFactories (note the plural in this type’s name). You can
use the static GetFactory() method to obtain the specific DbProviderFactory object of the specified data
provider; do this by specifying a string name that represents the .NET namespace containing the provider’s
functionality, like so:

static void Main(string[] args)
{
 // Get the factory for the SQL data provider.
 DbProviderFactory sqlFactory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
...
}

Of course, rather than obtaining a factory using a hard-coded string literal, you could instead read in
this information from a client-side *.config file (much like the earlier MyConnectionFactory example).
You will learn how to do this shortly; for the moment, you can obtain the associated provider-specific
data objects (e.g., connections, commands, and data readers) once you have obtained the factory for
your data provider.

 ■ Note For all practical purposes, you can regard the argument sent to DbProviderFactories.GetFactory()
as the name of the data provider’s .NET namespace. In reality, the machine.config value uses this string value to
load the correct library dynamically from the Global Assembly Cache.

A Complete Data Provider Factory Example
For a complete example, you can create a new C# Console Application (named DataProviderFactory) that
prints out the automobile inventory of the AutoLot database. For this initial example, you will hard- code
the data access logic directly within the DataProviderFactory.exe assembly (to keep things simple for the
time being). However, when you begin to dig into the details of the ADO.NET programming model, you will
isolate your data logic to a specific .NET code library that you will use for the remainder of this book.

Begin by adding a reference to the System.Configuration.dll assembly and importing the System.
Configuration namespace. Next, update the App.config file to include an empty <appSettings> element.
Add a new key-named provider that maps to the namespace name of the data provider you want to obtain
(System.Data.SqlClient). Also, define a connection string that represents a connection to the AutoLot
database (on the local instance of SQL Server Express).

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <!-- Which provider? -->
 <add key="provider" value="System.Data.SqlClient" />

 <!-- Which connection string? -->
 <add key="connectionString" value= "Data Source=(local)\SQLEXPRESS2014;
 Initial Catalog=AutoLot;Integrated Security=True"/>
 </appSettings>

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

825

 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
 </startup>
</configuration>

 ■ Note You will learn about connection strings in more detail momentarily; however, if you select your
AutoLot database icon within the Server Explorer, you can copy and paste the correct connection string from
the Connection String property of the Visual Studio properties window.

Now that you have a proper *.config file, you can read in the provider and connectionString
values using the ConfigurationManager.AppSettings indexer. The provider value will be passed to
DbProviderFactories.GetFactory() to obtain the data provider–specific factory type. You will use the
connectionString value to set the ConnectionString property of the DbConnection-derived type.

Assuming you have imported the System.Data, System.Data.Common, and static System .Console
namespaces, you can update your Main() method like this:

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Provider Factories *****\n");
 // Get Connection string/provider from *.config.
 string dataProvider =
 ConfigurationManager.AppSettings["provider"];
 string connectionString =
 ConfigurationManager.AppSettings["connectionString"];

 // Get the factory provider.
 DbProviderFactory factory = DbProviderFactories.GetFactory(dataProvider);

 // Now get the connection object.
 using (DbConnection connection = factory.CreateConnection())
 {
 if (connection == null)
 {
 ShowError("Connection");
 return;
 }
 WriteLine($"Your connection object is a: {connection.GetType().Name}");
 connection.ConnectionString = connectionString;
 connection.Open();

 // Make command object.
 DbCommand command = factory.CreateCommand();
 if (command == null)
 {
 ShowError("Command");
 return;
 }

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

826

 WriteLine($"Your command object is a: {command.GetType().Name}");
 command.Connection = connection;
 command.CommandText = "Select * From Inventory";

 // Print out data with data reader.
 using (DbDataReader dataReader = command.ExecuteReader())
 {
 WriteLine($"Your data reader object is a: {dataReader.GetType().Name}");

 WriteLine("\n***** Current Inventory *****");
 while (dataReader.Read())
 WriteLine($"-> Car #{dataReader["CarId"]} is a {dataReader["Make"]}.");
 }
 }
 ReadLine();
}

private static void ShowError(string objectName)
{
 WriteLine($"There was an issue creating the {objectName}");
 ReadLine();
}

Notice that, for diagnostic purposes, you use reflection services to print the name of the underlying
connection, command, and data reader. If you run this application, you will find the following current data
in the Inventory table of the AutoLot database printed to the console:

***** Fun with Data Provider Factories *****

Your connection object is a: SqlConnection
Your command object is a: SqlCommand
Your data reader object is a: SqlDataReader

***** Current Inventory *****
-> Car #1 is a VW.
-> Car #2 is a Ford.
-> Car #3 is a Saab.
-> Car #4 is a Yugo.
-> Car #5 is a BMW.
-> Car #6 is a BMW.
-> Car #7 is a BMW.

Now change the *.config file to specify System.Data.OleDb as the data provider (and update your
connection string with a Provider segment and change the Integrated Security value from true to SSPI), like so:

<configuration>
 <appSettings>
 <!-- Which provider? -->
 <add key="provider" value="System.Data.OleDb" />
 <!-- Which connection string? -->
 <add key="cnStr" value=

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

827

 "Provider=SQLOLEDB;Data Source=(local)\SQLEXPRESS2014;
 Integrated Security=SSPI;Initial Catalog=AutoLot"/>
 </appSettings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
 </startup>
</configuration>

Doing this indicates that the System.Data.OleDb types are used behind the scenes and gives the
following output:

***** Fun with Data Provider Factories *****

Your connection object is a: OleDbConnection
Your command object is a: OleDbCommand
Your data reader object is a: OleDbDataReader

***** Current Inventory *****
-> Car #1 is a VW.
-> Car #2 is a Ford.
-> Car #3 is a Saab.
-> Car #4 is a Yugo.
-> Car #5 is a BMW.
-> Car #6 is a BMW.
-> Car #7 is a BMW.

Of course, based on your experience with ADO.NET, you might be a bit unsure exactly what the
connection, command, and data reader objects actually do. Don’t sweat the details for the time being (quite
a few pages remain in this chapter, after all!). At this point, it’s enough to know that you can use the ADO.
NET data provider factory model to build a single code base that can consume various data providers in a
declarative manner.

A Potential Drawback with the Data Provider Factory Model
Although this is a powerful model, you must make sure that the code base uses only types and methods
common to all providers through the members of the abstract base classes. Therefore, when authoring your
code base, you are limited to the members exposed by DbConnection, DbCommand, and the other types of the
System.Data.Common namespace.

Given this, you might find that this generalized approach prevents you from directly accessing some of
the bells and whistles of a particular DBMS. If you must be able to invoke specific members of the underlying
provider (e.g., SqlConnection), you can do so using an explicit cast, as in this example:

using (DbConnection connection = factory.CreateConnection())
{
 if (connection == null)
 {
 ShowError("Connection");
 return;
 }

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

828

 WriteLine($"Your connection object is a: {connection.GetType().Name}");
 connection.ConnectionString = connectionString;
 connection.Open();

 var sqlConnection = connection as SqlConnection;
 if (sqlConnection != null)
 {
 // Print out which version of SQL Server is used.
 WriteLine(sqlConnection.ServerVersion);
 }
 //Remainder removed for brevity
}

When doing this, however, your code base becomes a bit harder to maintain (and less flexible) because
you must add a number of runtime checks. Nevertheless, if you need to build data access libraries in the
most flexible way possible, the data provider factory model provides a great mechanism for doing so.

The <connectionStrings> Element
Currently, your connection string data is in the <appSettings> element of your *.config file. Application
configuration files can define an element named <connectionStrings>. Within this element, you can
define any number of name-value pairs that can be programmatically read into memory using the
ConfigurationManager.ConnectionStrings indexer. One advantage of this approach (as opposed to using
the <appSettings> element and the ConfigurationManager.AppSettings indexer) is that you can define
multiple connection strings for a single application in a consistent manner.

To see this in action, update your current App.config file as follows (note that each connection string is
documented using the name and connectionString attributes rather than the key and value attributes you
find in <appSettings>):

<configuration>
 <appSettings>
 <!-- Which provider? -->
 <add key="provider" value="System.Data.SqlClient" />
 </appSettings>

 <!-- Here are the connection strings. -->
 <connectionStrings>
 <add name ="AutoLotSqlProvider" connectionString =
 "Data Source=(local)\SQLEXPRESS2014;
 Integrated Security=SSPI;Initial Catalog=AutoLot"/>

 <add name ="AutoLotOleDbProvider" connectionString =
 "Provider=SQLOLEDB;Data Source=(local)\SQLEXPRESS2014;
 Integrated Security=SSPI;Initial Catalog=AutoLot"/>
 </connectionStrings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
 </startup>
</configuration>

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

829

You can now update your Main() method as follows:

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Provider Factories *****\n");
 string dataProvider =
 ConfigurationManager.AppSettings["provider"];
 string connectionString =
 ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;
...
}

At this point, you have an application that can display the results of the Inventory table of the AutoLot
database using a neutral code base. Offloading the provider name and connection string to an external
*.config file means that the data provider factory model can dynamically load the correct provider in
the background. With this first example behind you, you can now dive into the details of working with the
connected layer of ADO.NET.

 ■ Note Now that you understand the role of ADO.NET data provider factories, the remaining examples in
this book will focus on the task at hand by explicitly using the types within the System.Data.SqlClient
namespace. If you use a different database management system (such as Oracle), you would need to update
your code base accordingly.

 ■ Source Code You can find the DataproviderFactory project in the Chapter 21 subdirectory.

Understanding the Connected Layer of ADO.NET
Recall that the connected layer of ADO.NET allows you to interact with a database using the connection,
command, and data reader objects of your data provider. You have already used these objects in the
previous DataProviderFactory application, and now you’ll walk through the process again, this time using
an expanded example. You need to perform the following steps when you want to connect to a database and
read the records using a data reader object:

 1. Allocate, configure, and open your connection object.

 2. Allocate and configure a command object, specifying the connection object as a
constructor argument or with the Connection property.

 3. Call ExecuteReader() on the configured command class.

 4. Process each record using the Read() method of the data reader.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

830

To get the ball rolling, create a new Console Application project named AutoLotDataReader and import
the System.Data and System.Data.SqlClient namespaces. Here is the complete code within Main()
(analysis will follow):

class Program
{
 static void Main(string[] args)
 {
 WriteLine("***** Fun with Data Readers *****\n");

 // Create and open a connection.
 using (SqlConnection connection = new SqlConnection())
 {
 connection.ConnectionString =
 @"Data Source=(local)\SQLEXPRESS2014;Integrated Security=SSPI;" +
 "Initial Catalog=AutoLot";
 connection.Open();

 // Create a SQL command object.
 string sql = "Select * From Inventory";
 SqlCommand myCommand = new SqlCommand(sql, connection);

 // Obtain a data reader a la ExecuteReader().
 using (SqlDataReader myDataReader = myCommand.ExecuteReader())
 {
 // Loop over the results.
 while (myDataReader.Read())
 {
 WriteLine($"-> Make: {myDataReader["Make"]}, PetName: {myDataReader["PetName"]},

Color: {myDataReader["Color"]}.");
 }
 }
 }
 ReadLine();
 }
}

Working with Connection Objects
The first step to take when working with a data provider is to establish a session with the data source using
the connection object (which, as you recall, derives from DbConnection). .NET connection objects are
provided with a formatted connection string; this string contains a number of name-value pairs, separated by
semicolons. You use this information to identify the name of the machine you want to connect to, required
security settings, the name of the database on that machine, and other data provider–specific information.

As you can infer from the preceding code, the Initial Catalog name refers to the database you want
to establish a session with. The Data Source name identifies the name of the machine that maintains the
database. Here, (local) allows you to define a single token to specify the current local machine (regardless
of the literal name of said machine), while the \SQLEXPRESS2014 token informs the SQL Server provider that
you are connecting to a SQL Server Express edition with the named instance of SQLEXPRESS2014. If you
created AutoLot on a Microsoft SQL Server set up as the default instance on your local computer, specify
Data Source=(local)).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

831

 ■ Note There is another mechanism that uses (LocalDb) for the server name. This stores the database
with the project/solution. You can still access the database through Server Explorer by using (LocalDb)\
MSSQLLocalDB as the server name (or (LocalDb)\v11.0, depending on your version of the starter templates
with Visual Studio).

Beyond this, you can supply any number of tokens that represent security credentials. Here, you set the
Integrated Security to SSPI (equivalent to true for SQL Server connection strings), which uses the current
Windows account credentials for user authentication.

 ■ Note Look up the ConnectionString property of your data provider’s connection object in the .NET
Framework 4.6 SDK documentation to learn more about each name-value pair for your specific DBMS.

After you establish your connection string, you can use a call to Open() to establish a connection with
the DBMS. In addition to the ConnectionString, Open(), and Close() members, a connection object
provides a number of members that let you configure additional settings regarding your connection,
such as timeout settings and transactional information. Table 21-5 lists some (but not all) members of the
DbConnection base class.

Table 21-5. Members of the DbConnection Type

Member Meaning in Life

BeginTransaction() You use this method to begin a database transaction.

ChangeDatabase() You use this method to change the database on an open connection.

ConnectionTimeout This read-only property returns the amount of time to wait while establishing
a connection before terminating and generating an error (the default value is
15 seconds). If you would like to change the default, specify a Connect Timeout
segment in the connection string (e.g., Connect Timeout=30).

Database This read-only property gets the name of the database maintained by the
connection object.

DataSource This read-only property gets the location of the database maintained by the
connection object.

GetSchema() This method returns a DataTable object that contains schema information from
the data source.

State This read-only property gets the current state of the connection, which is
represented by the ConnectionState enumeration.

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

832

The properties of the DbConnection type are typically read-only in nature and are useful only when
you want to obtain the characteristics of a connection at runtime. When you need to override default
settings, you must alter the construction string itself. For example, the following connection string sets the
connection timeout setting from 15 seconds to 30 seconds:

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Readers *****\n");

 using(SqlConnection connection = new SqlConnection())
 {
 connection.ConnectionString =
 @"Data Source=(local)\SQLEXPRESS2014;" +
 "Integrated Security=SSPI;Initial Catalog=AutoLot;Connect Timeout=30";
 connection.Open();

 // New helper function (see below).
 ShowConnectionStatus(connection);
...
}

In the preceding code, you pass your connection object as a parameter to a new static helper method in
the Program class named ShowConnectionStatus(), which you implement as follows:

static void ShowConnectionStatus(SqlConnection connection)
{
 // Show various stats about current connection object.
 WriteLine("***** Info about your connection *****");
 WriteLine($"Database location: {connection.DataSource}");
 WriteLine($"Database name: {connection.Database}");
 WriteLine($"Timeout: {connection.ConnectionTimeout}");
 WriteLine($"Connection state: {connection.State}\n");
}

While most of these properties are self-explanatory, the State property is worth special mention. You
can assign this property any value of the ConnectionState enumeration, as shown here:

public enum ConnectionState
{
 Broken, Closed,
 Connecting, Executing,
 Fetching, Open
}

However, the only valid ConnectionState values are ConnectionState.Open, ConnectionState.
Connecting, and ConnectionState.Closed (the remaining members of this enum are reserved for future use).
Also, it is always safe to close a connection where connection state is currently ConnectionState.Closed.

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

833

Working with ConnectionStringBuilder Objects
Working with connection strings programmatically can be cumbersome because they are often represented
as string literals, which are difficult to maintain and error-prone at best. The Microsoft- supplied ADO.NET
data providers support connection string builder objects, which allow you to establish the name-value pairs
using strongly typed properties. Consider the following update to the current Main() method:

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Readers *****\n");

 // Create a connection string via the builder object.
 var cnStringBuilder = new SqlConnectionStringBuilder
 {
 InitialCatalog = "AutoLot",
 DataSource = @"(local)\SQLEXPRESS2014",
 ConnectTimeout = 30,
 IntegratedSecurity = true
 };

 using(SqlConnection connection = new SqlConnection())
 {
 connection.ConnectionString = cnStringBuilder.ConnectionString;
 connection.Open();
 ShowConnectionStatus(connection);
...
 }
 ReadLine();
}

In this iteration, you create an instance of SqlConnectionStringBuilder, set the properties accordingly,
and obtain the internal string using the ConnectionString property. Also note that you use the default
constructor of the type. If you so choose, you can also create an instance of your data provider’s connection
string builder object by passing in an existing connection string as a starting point (this can be helpful when
you read these values dynamically from an App.config file). Once you have hydrated the object with the
initial string data, you can change specific name-value pairs using the related properties, as in this example:

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Readers *****\n");

 // Assume you really obtained the connectionString value from a *.config file.
 string connectionString = @"Data Source=(local)\SQLEXPRESS;" +
 "Integrated Security=SSPI;Initial Catalog=AutoLot";

 SqlConnectionStringBuilder cnStringBuilder =
 new SqlConnectionStringBuilder(connectionString);

 // Change timeout value.
 cnStringBuilder.ConnectTimeout = 5;
...
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

834

Working with Command Objects
Now that you understand better the role of the connection object, the next order of business is to check out
how to submit SQL queries to the database in question. The SqlCommand type (which derives from DbCommand)
is an OO representation of a SQL query, table name, or stored procedure. You specify the type of command
using the CommandType property, which can take any value from the CommandType enum, as shown here:

public enum CommandType
{
 StoredProcedure,
 TableDirect,
 Text // Default value.
}

When you create a command object, you can establish the SQL query as a constructor parameter or
directly by using the CommandText property. Also when you create a command object, you need to specify
the connection you want to use. Again, you can do so as a constructor parameter or by using the Connection
property. Consider this code snippet:

// Create command object via ctor args.
string sql = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(sql, connection);
// Create another command object via properties.
SqlCommand testCommand = new SqlCommand();
testCommand.Connection = connection;
testCommand.CommandText = sql;

Realize that, at this point, you have not literally submitted the SQL query to the AutoLot database but
instead prepared the state of the command object for future use. Table 21-6 highlights some additional
members of the DbCommand type.

Table 21-6. Members of the DbCommand Type

Member Meaning in Life

CommandTimeout Gets or sets the time to wait while executing the command before terminating the
attempt and generating an error. The default is 30 seconds.

Connection Gets or sets the DbConnection used by this instance of the DbCommand.

Parameters Gets the collection of DbParameter objects used for a parameterized query.

Cancel() Cancels the execution of a command.

ExecuteReader() Executes a SQL query and returns the data provider’s DbDataReader object, which
provides forward-only, read-only access for the result of the query.

ExecuteNonQuery() Executes a SQL nonquery (e.g., an insert, update, delete, or create table).

ExecuteScalar() A lightweight version of the ExecuteReader() method that was designed
specifically for singleton queries (e.g., obtaining a record count).

Prepare() Creates a prepared (or compiled) version of the command on the data source.
As you might know, a prepared query executes slightly faster and is useful when
you need to execute the same query multiple times (typically with different
parameters each time).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

835

Working with Data Readers
After you establish the active connection and SQL command, the next step is to submit the query to the
data source. As you might guess, you have a number of ways to do this. The DbDataReader type (which
implements IDataReader) is the simplest and fastest way to obtain information from a data store. Recall that
data readers represent a read-only, forward-only stream of data returned one record at a time. Given this,
data readers are useful only when submitting SQL selection statements to the underlying data store.

Data readers are useful when you need to iterate over large amounts of data quickly and you do not
need to maintain an in-memory representation. For example, if you request 20,000 records from a table to
store in a text file, it would be rather memory-intensive to hold this information in a DataSet (because a
DataSet holds the entire result of the query in memory at the same time).

A better approach is to create a data reader that spins over each record as rapidly as possible. Be aware,
however, that data reader objects (unlike data adapter objects, which you’ll examine later) maintain an open
connection to their data source until you explicitly close the connection.

You obtain data reader objects from the command object using a call to ExecuteReader().The data
reader represents the current record it has read from the database. The data reader has an indexer method
(e.g, [] syntax in C#) that allows you to access a column in the current record. You can access the column
either by name or by zero-based integer.

The following use of the data reader leverages the Read() method to determine when you have reached
the end of your records (using a false return value). For each incoming record that you read from the
database, you use the type indexer to print out the make, pet name, and color of each automobile. Also note
that you call Close() as soon as you finish processing the records, which frees up the connection object.

static void Main(string[] args)
{
...
 // Obtain a data reader via ExecuteReader().
 using(SqlDataReader myDataReader = myCommand.ExecuteReader())
 {
 // Loop over the results.
 while (myDataReader.Read())
 {
 WriteLine($"-> Make: { myDataReader["Make"]}, PetName: { myDataReader["PetName"]},
Color: { myDataReader["Color"]}.");
 }
 }
 ReadLine();
}

In the preceding snippet, you overload the indexer of a data reader object to take either a string
(representing the name of the column) or an int (representing the column’s ordinal position). Thus, you can
clean up the current reader logic (and avoid hard-coded string names) with the following update (note the
use of the FieldCount property):

while (myDataReader.Read())
{
 WriteLine("***** Record *****");
 for (int i = 0; i < myDataReader.FieldCount; i++)

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

836

 {
 WriteLine($"{myDataReader.GetName(i)} = { myDataReader.GetValue(i)} ");
 }
 WriteLine();
}

If you compile and run your project at this point, you should see a list of all automobiles in the
Inventory table of the AutoLot database. The following output shows the initial few records from my own
version of AutoLot:

***** Fun with Data Readers *****

***** Info about your connection *****
Database location: (local)\SQLEXPRESS2014
Database name: AutoLot
Timeout: 30
Connection state: Open

***** Record *****
CarId = 1
Make = VW
Color = Black
PetName = Zippy

***** Record *****
CarId = 2
Make = Ford
Color = Rust
PetName = Rusty

Obtaining Multiple Result Sets Using a Data Reader
Data reader objects can obtain multiple result sets using a single command object. For example, if you want
to obtain all rows from the Inventory table, as well as all rows from the Customers table, you can specify
both SQL Select statements using a semicolon delimiter, like so:

string sql = "Select * From Inventory;Select * from Customers";

After you obtain the data reader, you can iterate over each result set using the NextResult() method.
Note that you are always returned the first result set automatically. Thus, if you want to read over the rows of
each table, you can build the following iteration construct:

do
{
 while (myDataReader.Read())
 {
 WriteLine("***** Record *****");
 for (int i = 0; i < myDataReader.FieldCount; i++)

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

837

 {
 WriteLine($"{myDataReader.GetName(i)} = {myDataReader.GetValue(i)}");
 }
 WriteLine();
 }
} while (myDataReader.NextResult());

At this point, you should be more aware of the functionality data reader objects bring to the table.
Always remember that a data reader can process only SQL Select statements; you cannot use them to
modify an existing database table using Insert, Update, or Delete requests. Modifying an existing database
requires additional investigation of command objects.

 ■ Source Code You can find the AutoLotDataReader project in the Chapter 21 subdirectory.

Building a Reusable Data Access Library
The ExecuteReader() method extracts a data reader object that allows you to examine the results of a SQL
Select statement using a forward-only, read-only flow of information. However, when you want to submit
SQL statements that result in the modification of a given table (or any other nonquery SQL statement, such as
creating tables or granting permissions), you call the ExecuteNonQuery() method of your command object.
This single method performs inserts, updates, and deletes based on the format of your command text.

 ■ Note Technically speaking, a nonquery is a SQL statement that does not return a result set. Thus, Select
statements are queries, while Insert, Update, and Delete statements are not. Given this, ExecuteNonQuery()
returns an int that represents the number of rows affected, not a new set of records.

Next, you will learn how to modify an existing database using nothing more than a call to
ExecuteNonQuery(); your next goal is to build a custom data access library that can encapsulate the process
of operating upon the AutoLot database. In a production-level environment, your ADO.NET logic will
almost always be isolated to a .NET *.dll assembly for one simple reason: code reuse! The first examples of
this chapter have not done this, simply so you can keep focused on the task at hand; however, it would be a
waste of time to author the same connection logic, the same data reading logic, and the same command logic
for every application that needs to interact with the AutoLot database.

Isolating data access logic to a .NET code library means that multiple applications using any sort of
front end (e.g., console based, desktop based, or web based) can reference the library at hand in a language-
independent manner. Thus, if you author your data library using C#, other developers can build a UI in the
.NET language of their choice.

In this chapter, your data library (AutoLotDAL.dll) will contain a single namespace
(AutoLotConnectedLayer) that interacts with AutoLot using the connected types of ADO.NET. In the
next chapter, you will add a new namespace (AutoLotDisconnectionLayer) to this same *.dll that
contains types to communicate with AutoLot using the disconnected layer. In Chapter 23, you will create a
complete data access layer using Entity Framework. Multiple applications will take advantage of this library
throughout the remainder of this book.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

838

Begin by creating a new C# Class Library project named AutoLotDAL (short for AutoLot Data Access
Layer) and delete the default class file. Add a new folder using the Project ➤ New Folder menu option (make
sure you have the Project selected in Solution Explorer), and name this folder ConnectedLayer. In this new
folder, add a new class named InventoryDAL.cs, and change the class to public. This class will define
various members to interact with the Inventory table of the AutoLot database. Finally, import the following
.NET namespaces:

using System;

// You will use the SQL server
// provider; however, it would also be
// permissible to use the ADO.NET
// factory pattern for greater flexibility.
using System.Data;
using System.Data.SqlClient;
using System.Collections.Generic;

namespace AutoLotDAL.ConnectedLayer
{
 public class InventoryDAL
 {
 }
}

 ■ Note You might recall from Chapter 13 that when objects use types that manage raw resources (e.g.,
a database connection), it is a good practice to implement IDisposable and author a proper finalizer. In a
production environment, classes such as InventoryDAL would do the same; however, you won’t do that here,
so you can stay focused on the particulars of ADO.NET.

Adding the Connection Logic
The first task you must attend to is to define some methods that allow the caller to connect to and
disconnect from the data source using a valid connection string. You will hard-code your AutoLotDAL.dll
assembly to use the types of System.Data.SqlClient, so you need to define a private member variable of
SqlConnection that is allocated at the time the InventoryDAL object is created. Also, define a method named
OpenConnection() and another named CloseConnection() to interact with this member variable.

public class InventoryDAL
{
 // This member will be used by all methods.
 private SqlConnection _sqlConnection = null;

 public void OpenConnection(string connectionString)
 {
 _sqlConnection = new SqlConnection {ConnectionString = connectionString};
 _sqlConnection.Open();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

839

 public void CloseConnection()
 {
 _sqlConnection.Close();
 }
}

For the sake of brevity, your InventoryDAL type will not test for possible exceptions, nor will it throw
custom exceptions under various circumstances (e.g., a malformed connection string). If you were to build
an industrial-strength data access library, you would absolutely want to use structured exception handling
techniques to account for any runtime anomalies.

Adding the Insertion Logic
Inserting a new record into the Inventory table is as simple as formatting the SQL Insert statement (based
on user input) and calling the ExecuteNonQuery() using your command object. You can see this in action
by adding a public method to your InventoryDAL type named InsertAuto() that takes four parameters
that map to the four columns of the Inventory table (CarId, Color, Make, and PetName). You use these
arguments to format a string type to insert the new record. Finally, use your SqlConnection object to
execute the SQL statement.

public void InsertAuto(int id, string color, string make, string petName)
{
 // Format and execute SQL statement.
 string sql = "Insert Into Inventory" +
 $"(Make, Color, PetName) Values ('{make}', '{color}', '{petName}')";

 // Execute using our connection.
 using (SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 command.ExecuteNonQuery();
 }
}

This method is syntactically fine, but you could supply an overloaded version that allows the caller
to pass in a strongly typed class that represents the data for the new row. Add a new folder to your project
named Models, and add a new public class named NewCar. Define the following new NewCar class, which
represents a new row in the Inventory table:

public class NewCar
{
 public int CarId { get; set; }
 public string Color { get; set; }
 public string Make { get; set; }
 public string PetName { get; set; }
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

840

Now add the following version of InsertAuto() to your InventoryDAL class (add a using for
AutoLotDAL.Models to the top of the class):

public void InsertAuto(NewCar car)
{
 // Format and execute SQL statement.
 string sql = "Insert Into Inventory" +
 "(Make, Color, PetName) Values" +
 $"('{car.Make}', '{car.Color}', '{car.PetName}')";

 // Execute using our connection.
 using (SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 command.ExecuteNonQuery();
 }
}

Defining classes that represent records in a relational database is a common way to build a data access
library. In fact, as you will see in Chapter 23, the ADO.NET Entity Framework can automatically generate
strongly typed classes that allow you to interact with database data. On a related note, the disconnected layer
of ADO.NET (see Chapter 22) generates strongly typed DataSet objects to represent data from a given table
in a relational database.

 ■ Note As you might know, building a SQL statement using string concatenation can be risky from a security
point of view (think: SQL injection attacks). The preferred way to build command text is to use a parameterized
query, which you will learn about shortly.

Adding the Deletion Logic
Deleting an existing record is as simple as inserting a new record. Unlike when you created the code for
InsertAuto(), this time you will learn about an important try/catch scope that handles the possibility
of attempting to delete a car that is currently on order for an individual in the Customers table. Add the
following method to the InventoryDAL class type:

public void DeleteCar(int id)
{
 // Delete the car with the specified CarId
 string sql = $"Delete from Inventory where CarId = '{id}'";
 using(SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 try
 {
 command.ExecuteNonQuery();
 }
 catch(SqlException ex)
 {
 Exception error = new Exception("Sorry! That car is on order!", ex);

http://dx.doi.org/10.1007/978-1-4842-1332-2_23
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

841

 throw error;
 }
 }
}

Adding the Update Logic
When it comes to the act of updating an existing record in the Inventory table, the first thing you must
decide is what you want to allow the caller to change, whether it’s the car’s color, the pet name, the make, or
all of the above. One way to give the caller complete flexibility is to define a method that takes a string type
to represent any sort of SQL statement, but that is risky at best.

Ideally, you want to have a set of methods that allow the caller to update a record in a variety of ways.
However, for this simple data access library, you will define a single method that allows the caller to update
the pet name of a given automobile, like so:

public void UpdateCarPetName(int id, string newPetName)
{
 // Update the PetName of the car with the specified CarId.
 string sql = $"Update Inventory Set PetName = '{newPetName}' Where CarId = '{id}'";
 using (SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 command.ExecuteNonQuery();
 }
}

Adding the Selection Logic
Next, you need to add a selection method. As you saw earlier in this chapter, a data provider’s data reader
object allows for a selection of records using a read-only, forward-only server-side cursor. As you call the
Read() method, you can process each record in a fitting manner. While this is all well and good, you need to
contend with the issue of how to return these records to the calling tier of your application.

One approach would be to populate and return a multidimensional array (or other such return value,
such as a generic List<NewCar> object) with the data obtained by the Read() method. Here is a second way
to obtain data from the Inventory table that uses the latter approach:

public List<NewCar> GetAllInventoryAsList()
{
 // This will hold the records.
 List<NewCar> inv = new List<NewCar>();

 // Prep command object.
 string sql = "Select * From Inventory";
 using (SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 SqlDataReader dataReader = command.ExecuteReader();
 while (dataReader.Read())
 {
 inv.Add(new NewCar
 {

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

842

 CarId = (int)dataReader["CarId"],
 Color = (string)dataReader["Color"],
 Make = (string)dataReader["Make"],
 PetName = (string)dataReader["PetName"]
 });
 }
 dataReader.Close();
 }
 return inv;
}

Still another approach is to return a System.Data.DataTable object, which is actually part of the
disconnected layer of ADO.NET. You will find complete coverage of the disconnected layer in the next
chapter; however, for the time being, you should understand that a DataTable is a class type that represents
a tabular block of data (e.g., a grid on a spreadsheet).

Internally, the DataTable class represents data as a collection of rows and columns. While you can fill
these collections programmatically, the DataTable type provides a method named Load() that automatically
populates these collections using a data reader object! Consider the following methods, which return data
from Inventory as a DataTable:

public DataTable GetAllInventoryAsDataTable()
{
 // This will hold the records.
 DataTable dataTable = new DataTable();

 // Prep command object.
 string sql = "Select * From Inventory";
 using (SqlCommand cmd = new SqlCommand(sql, _sqlConnection))
 {
 SqlDataReader dataReader = cmd.ExecuteReader();
 // Fill the DataTable with data from the reader and clean up.
 dataTable.Load(dataReader);
 dataReader.Close();
 }
 return dataTable;
}

Working with Parameterized Command Objects
Currently, the insert, update, and delete logic for the InventoryDAL type uses hard-coded string literals for
each SQL query. As you might know, you can use a parameterized query to treat SQL parameters as objects,
rather than as a simple blob of text. Treating SQL queries in a more object-oriented manner helps reduce
the number of typos (given strongly typed properties); plus, parameterized queries typically execute much
faster than a literal SQL string because they are parsed exactly once (rather than each time the SQL string
is assigned to the CommandText property). Parameterized queries also help protect against SQL injection
attacks (a well-known data access security issue).

To support parameterized queries, ADO.NET command objects maintain a collection of individual
parameter objects. By default, this collection is empty, but you can insert any number of parameter objects
that map to a placeholder parameter in the SQL query. When you want to associate a parameter within a SQL
query to a member in the command object’s parameters collection, you can prefix the SQL text parameter
with the @ symbol (at least when using Microsoft SQL Server; not all DBMSs support this notation).

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

843

Specifying Parameters Using the DbParameter Type
Before you build a parameterized query, you need to familiarize yourself with the DbParameter type (which is
the base class to a provider’s specific parameter object). This class maintains a number of properties that allow
you to configure the name, size, and data type of the parameter, as well as other characteristics, including the
parameter’s direction of travel. Table 21-7 describes some key properties of the DbParameter type.

Table 21-7. Key Members of the DbParameter Type

Property Meaning in Life

DbType Gets or sets the native data type of the parameter, represented as a CLR data type

Direction Gets or sets whether the parameter is input-only, output-only, bidirectional, or a
return value parameter

IsNullable Gets or sets whether the parameter accepts null values

ParameterName Gets or sets the name of the DbParameter

Size Gets or sets the maximum parameter size of the data in bytes; this is useful only for
textual data

Value Gets or sets the value of the parameter

Now let’s look at how to populate a command object’s collection of DBParameter-compatible objects
by reworking the following version of the InsertAuto() method to leverage parameter objects (you could
perform a similar reworking for your remaining methods; however, that’s not necessary for this example):

public void InsertAuto(int id, string color, string make, string petName)
{
 // Note the "placeholders" in the SQL query.
 string sql = "Insert Into Inventory" +
 "(Make, Color, PetName) Values" +
 "(@Make, @Color, @PetName)";

 // This command will have internal parameters.
 using (SqlCommand command = new SqlCommand(sql, _sqlConnection))
 {
 // Fill params collection.
 SqlParameter parameter = new SqlParameter
 {
 ParameterName = "@Make",
 Value = make,
 SqlDbType = SqlDbType.Char,
 Size = 10
 };
 command.Parameters.Add(parameter);

 parameter = new SqlParameter
 {
 ParameterName = "@Color",
 Value = color,
 SqlDbType = SqlDbType.Char,

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

844

 Size = 10
 };
 command.Parameters.Add(parameter);

 parameter = new SqlParameter
 {
 ParameterName = "@PetName",
 Value = petName,
 SqlDbType = SqlDbType.Char,
 Size = 10
 };
 command.Parameters.Add(parameter);

 command.ExecuteNonQuery();
 }
}

Again, notice that your SQL query consists of four embedded placeholder symbols, each of which is
prefixed with the @ token. You can use the SqlParameter type to map each placeholder using the ParameterName
property and specify various details (e.g., its value, data type, and size) in a strongly typed matter. After each
parameter object is hydrated, it is added to the command object’s collection through a call to Add().

 ■ Note This example uses various properties to establish a parameter object. Note, however, that parameter
objects support a number of overloaded constructors that allow you to set the values of various properties (which
will result in a more compact code base). Also be aware that Visual Studio provides many graphical designers
that will generate a good deal of this grungy parameter-centric code on your behalf (see Chapters 22 and 23).

While building a parameterized query often requires more code, the end result is a more convenient
way to tweak SQL statements programmatically, as well as to achieve better overall performance. While you
are free to use this technique whenever a SQL query is involved, parameterized queries prove most helpful
when you want to trigger a stored procedure.

Executing a Stored Procedure
Recall that a stored procedure is a named block of SQL code stored in the database. You can construct stored
procedures so they return a set of rows or scalar data types or do anything else that makes sense (e.g., insert,
update, or delete); you can also have them take any number of optional parameters. The end result is a
unit of work that behaves like a typical function, except that it is located on a data store rather than a binary
business object. Currently, your AutoLot database defines a single stored procedure named GetPetName,
which you formatted as follows:

GetPetName
@carID int,
@petName char(10) output
AS
SELECT @petName = PetName from Inventory where CarId = @carID

http://dx.doi.org/10.1007/978-1-4842-1332-2_22
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

845

Now consider the following final method of the InventoryDAL type, which invokes your stored
procedure:

public string LookUpPetName(int carID)
{
 string carPetName;

 // Establish name of stored proc.
 using (SqlCommand command = new SqlCommand("GetPetName", _sqlConnection))
 {
 command.CommandType = CommandType.StoredProcedure;

 // Input param.
 SqlParameter param = new SqlParameter
 {
 ParameterName = "@carID",
 SqlDbType = SqlDbType.Int,
 Value = carID,
 Direction = ParameterDirection.Input
 };
 command.Parameters.Add(param);

 // Output param.
 param = new SqlParameter
 {
 ParameterName = "@petName",
 SqlDbType = SqlDbType.Char,
 Size = 10,
 Direction = ParameterDirection.Output
 };
 command.Parameters.Add(param);

 // Execute the stored proc.
 command.ExecuteNonQuery();

 // Return output param.
 carPetName = (string)command.Parameters["@petName"].Value;
 }
 return carPetName;
}

One important aspect of invoking a stored procedure is to keep in mind that a command object can
represent a SQL statement (the default) or the name of a stored procedure. When you want to inform a
command object that it will be invoking a stored procedure, you pass in the name of the procedure (as a
constructor argument or by using the CommandText property) and must set the CommandType property to the
value CommandType.StoredProcedure. (If you fail to do this, you will receive a runtime exception because the
command object is expecting a SQL statement by default.)

SqlCommand command = new SqlCommand("GetPetName", _sqlConnection);
command.CommandType = CommandType.StoredProcedure;

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

846

Next, notice that the Direction property of a parameter object allows you to specify the direction
of travel for each parameter passed to the stored procedure (e.g., input parameter, output parameter,
in/out parameter, or return value). As before, you add each parameter object to the command object’s
parameters collection.

// Input param.
SqlParameter param = new SqlParameter
{
 ParameterName = "@carID",
 SqlDbType = SqlDbType.Int,
 Value = carID,
 Direction = ParameterDirection.Input
};
command.Parameters.Add(param);

After the stored procedure completes with a call to ExecuteNonQuery(), you can obtain the value of the
output parameter by investigating the command object’s parameter collection and casting accordingly.

// Return output param.
carPetName = (string)command.Parameters["@petName"].Value;

At this point, your initial iteration of the AutoLotDAL.dll data access library is complete! You can use
this assembly to build any sort of front end to display and edit your data (e.g., console based, desktop GUI, or
an HTML-based web application). You have not yet examined how to build graphical user interfaces, so next
you will test your data library from a new console application.

 ■ Source Code You can find the AutoLotDAL project in the Chapter 21 subdirectory.

Creating a Console UI–Based Front End
Create a new Console Application project named AutoLotCUIClient. After you create your new project, be
sure to add a reference to your AutoLotDAL.dll assembly, as well as System.Configuration.dll. If you
are using the sample code supplied with the book, you can reference the AutoLotDAL project from the
Chapter 21 subdirectory. If you are creating new solutions for each sample, navigate to your AutoLotDAL
solution, and locate the AutoLotDAL.dll file in the build directory. Next, add the following using statements
to your C# code file:

using AutoLotDAL.ConnectedLayer;
using AutoLotDAL.Models;
 using System.Configuration;
using System.Data;
using static System.Console;

http://dx.doi.org/10.1007/978-1-4842-1332-2_21
http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

847

Open the App.config file in your project (or add a new one if one doesn’t already exist) and add the
<connectionStrings> element, which you will use to connect to your instance of the AutoLot database, as in
this example:

<configuration>
 <connectionStrings>
 <add name ="AutoLotSqlProvider" connectionString =
 "Data Source=(local)\SQLEXPRESS2014;
 Integrated Security=SSPI;Initial Catalog=AutoLot"/>
 </connectionStrings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
</configuration>

Implementing the Main() Method
The Main() method is responsible for prompting the user for a specific course of action and executing that
request using a switch statement. This program allows the user to enter the following commands:

•	 I: Inserts a new record into the Inventory table

•	 U: Updates an existing record in the Inventory table

•	 D: Deletes an existing record from the Inventory table

•	 L: Displays the current inventory using a data reader

•	 S: Shows these options to the user

•	 P: Looks up pet name from carID

•	 Q: Quits the program

Each possible option is handled by a unique static method within the Program class. The next snippet
shows the complete implementation of Main(). Notice that each method invoked from the do/while loop
(with the exception of the ShowInstructions() method) takes an InventoryDAL object as its sole parameter.

static void Main(string[] args)
{
 WriteLine("***** The AutoLot Console UI *****\n");

 // Get connection string from App.config.
 string connectionString =
 ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;
 bool userDone = false;
 string userCommand = "";

 // Create our InventoryDAL object.
 InventoryDAL invDAL = new InventoryDAL();
 invDAL.OpenConnection(connectionString);

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

848

 // Keep asking for input until user presses the Q key.
 try
 {
 ShowInstructions();
 do
 {
 Write("\nPlease enter your command: ");
 userCommand = ReadLine();
 WriteLine();
 switch (userCommand?.ToUpper()??"")
 {
 case "I":
 InsertNewCar(invDAL);
 break;
 case "U":
 UpdateCarPetName(invDAL);
 break;
 case "D":
 DeleteCar(invDAL);
 break;
 case "L":
 ListInventory(invDAL);
 break;
 case "S":
 ShowInstructions();
 break;
 case "P":
 LookUpPetName(invDAL);
 break;
 case "Q":
 userDone = true;
 break;
 default:
 WriteLine("Bad data! Try again");
 break;
 }
 } while (!userDone);
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
 finally
 {
 invDAL.CloseConnection();
 }
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

849

Implementing the ShowInstructions() Method
The ShowInstructions() method does what you would expect, as shown here:

private static void ShowInstructions()
{
 WriteLine("I: Inserts a new car.");
 WriteLine("U: Updates an existing car.");
 WriteLine("D: Deletes an existing car.");
 WriteLine("L: Lists current inventory.");
 WriteLine("S: Shows these instructions.");
 WriteLine("P: Looks up pet name.");
 WriteLine("Q: Quits program.");
}

Implementing the ListInventory() Method
You could implement the ListInventory() method in either of two ways, based on how you constructed
your data access library. Recall that the GetAllInventoryAsDataTable() method of InventoryDAL returns a
DataTable object. You could implement this approach like this:

private static void ListInventory(InventoryDAL invDAL)
{
 // Get the list of inventory.
 DataTable dt = invDAL.GetAllInventoryAsDataTable();
 // Pass DataTable to helper function to display.
 DisplayTable(dt);
}

The DisplayTable() helper method displays the table data using the Rows and Columns properties of
the incoming DataTable (again, you will learn the full details of the DataTable object the next chapter, so
don’t fret over the details).

private static void DisplayTable(DataTable dt)
{
 // Print out the column names.
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write($"{dt.Columns[curCol].ColumnName}\t");
 }
 WriteLine("\n----------------------------------");

 // Print the DataTable.
 for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
 {
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write($"{dt.Rows[curRow][curCol]}\t");
 }
 WriteLine();
 }
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

850

If you would prefer to call the GetAllInventoryAsList() method of InventoryDAL, you could implement
a method named ListInventoryViaList(), like so (you will need to add a using for AutoLotDAL.Models):

private static void ListInventoryViaList(InventoryDAL invDAL)
{
 // Get the list of inventory.
 List<NewCar> record = invDAL.GetAllInventoryAsList();

 WriteLine("CarId:\tMake:\tColor:\tPetName:");
 foreach (NewCar c in record)
 {
 WriteLine($"{c.CarId}\t{c.Make}\t{c.Color}\t{c.PetName}");
 }
}

Implementing the DeleteCar() Method
Deleting an existing automobile is as simple as asking the user for the ID of the car and passing this to the
DeleteCar() method of the InventoryDAL type, as shown here:

private static void DeleteCar(InventoryDAL invDAL)
{
 // Get ID of car to delete.
 Write("Enter ID of Car to delete: ");
 int id = int.Parse(ReadLine()??"0");

 // Just in case you have a referential integrity violation!
 try
 {
 invDAL.DeleteCar(id);
 }
 catch(Exception ex)
 {
 WriteLine(ex.Message);
 }
}

Implementing the InsertNewCar() Method
Inserting a new record into the Inventory table is a simple matter of asking the user for the new bits of data
(using ReadLine() calls) and passing this data into the InsertAuto() method of InventoryDAL, like so:

private static void InsertNewCar(InventoryDAL invDAL)
{
 Write("Enter Car ID: ");
 var newCarId = int.Parse(ReadLine()??"0");
 Write("Enter Car Color: ");
 var newCarColor = ReadLine();
 Write("Enter Car Make: ");
 var newCarMake = ReadLine();

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

851

 Write("Enter Pet Name: ");
 var newCarPetName = ReadLine();

 // Now pass to data access library.
 invDAL.InsertAuto(newCarId, newCarColor, newCarMake, newCarPetName);
}

Recall that you overloaded InsertAuto() to take a NewCar object, rather than a set of independent
arguments. Thus, you could have implemented InsertNewCar() like this:

private static void InsertNewCar(InventoryDAL invDAL)
{
 // First get the user data.
..//omitted for brevity
 // Now pass to data access library.
 var c = new NewCar
 {
 CarId = newCarId,
 Color = newCarColor,
 Make = newCarMake,
 PetName = newCarPetName
 };
 invDAL.InsertAuto(c);
}

Implementing the UpdateCarPetName() Method
The following implementation of UpdateCarPetName() looks similar:

private static void UpdateCarPetName(InventoryDAL invDAL)
{
 // First get the user data.
 Write("Enter Car ID: ");
 var carID = int.Parse(ReadLine()??"0");
 Write("Enter New Pet Name: ");
 var newCarPetName = ReadLine();

 // Now pass to data access library.
 invDAL.UpdateCarPetName(carID, newCarPetName);
}

Implementing LookUpPetName()
Obtaining the pet name of a given automobile works similarly to the previous methods; this is because the
data access library encapsulates all the lower-level ADO.NET calls.

private static void LookUpPetName(InventoryDAL invDAL)
{
 // Get ID of car to look up.
 Write("Enter ID of Car to look up: ");
 int id = int.Parse(ReadLine()??"0");
 WriteLine($"Petname of {id} is {invDAL.LookUpPetName(id).TrimEnd()}.");
}

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

852

With this, your console-based front end is finished! It’s time to run your program and test each method.
Here is some partial output that tests the L, P, and Q commands:

***** The AutoLot Console UI *****

I: Inserts a new car.
U: Updates an existing car.
D: Deletes an existing car.
L: Lists current inventory.
S: Shows these instructions.
P: Looks up pet name.
Q: Quits program.

Please enter your command: L

CarId: Make: Color: PetName:
1 VW Black Zippy
2 Ford Rust Rusty
3 Saab Black Mel
4 Yugo Yellow Cluncker
5 BMW Black Bimmer
6 BMW Green Hank
7 BMW Pink Pinkey

Please enter your command: P

Enter ID of Car to look up: 6
Petname of 6 is Hank.

Please enter your command: Q

Press any key to continue . . .

 ■ Source Code You can find the AutoLotCUIClient application in the Chapter 21 subdirectory.

Understanding Database Transactions
Let’s wrap up this examination of the connected layer of ADO.NET by taking a look at the concept of a
database transaction. Simply put, a transaction is a set of database operations that must either all work or all
fail as a collective unit. As you might imagine, transactions are quite important to ensure that table data is
safe, valid, and consistent.

Transactions are important when a database operation involves interacting with multiple tables or
multiple stored procedures (or a combination of database atoms). The classic transaction example involves
the process of transferring monetary funds between two bank accounts. For example, if you were to

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

853

transfer $500 from your savings account into your checking account, the following steps should occur in a
transactional manner:

 1. The bank should remove $500 from your savings account.

 2. The bank should add $500 to your checking account.

It would be an extremely bad thing if the money were removed from the savings account but not
transferred to the checking account (because of some error on the bank’s part) because then you would
be out $500! However, if these steps are wrapped up into a database transaction, the DBMS ensures that all
related steps occur as a single unit. If any part of the transaction fails, the entire operation is rolled back to
the original state. On the other hand, if all steps succeed, the transaction is committed.

 ■ Note You might be familiar with the acronym ACID from looking at transactional literature. This represents
the four key properties of a prim-and-proper transaction: Atomic (all or nothing), Consistent (data remains stable
throughout the transaction), Isolated (transactions do not step on each other’s feet), and Durable (transactions
are saved and logged).

It turns out that the .NET platform supports transactions in a variety of ways. This chapter will look
at the transaction object of your ADO.NET data provider (SqlTransaction, in the case of System.Data.
SqlClient). The .NET base class libraries also provide transactional support within numerous APIs,
including the following:

•	 System.EnterpriseServices: This namespace (located in the System.
EnterpriseServices.dll assembly) provides types that allow you to integrate with
the COM+ runtime layer, including its support for distributed transactions.

•	 System.Transactions: This namespace (located in the System.Transactions.dll
assembly) contains classes that allow you to write your own transactional applications
and resource managers for a variety of services (e.g., MSMQ, ADO.NET, and COM+).

•	 Windows Communication Foundation: The WCF API provides services to facilitate
transactions with various distributed binding classes.

•	 Windows Workflow Foundations: The WF API provides transactional support for
workflow activities.

In addition to the baked-in transactional support within the .NET base class libraries, it is possible
to use the SQL language of your database management system. For example, you could author a stored
procedure that uses the BEGIN TRANSACTION, ROLLBACK, and COMMIT statements.

Key Members of an ADO.NET Transaction Object
While transactional-aware types exist throughout the base class libraries, you will focus on transaction
objects found within an ADO.NET data provider, all of which derive from DBTransaction and implement the
IDbTransaction interface. Recall from the beginning of this chapter that IDbTransaction defines a handful
of members as follows:

public interface IDbTransaction : IDisposable
{
 IDbConnection Connection { get; }
 IsolationLevel IsolationLevel { get; }

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

854

 void Commit();
 void Rollback();
}

Notice the Connection property, which returns a reference to the connection object that initiated the
current transaction (as you’ll see, you obtain a transaction object from a given connection object). You call
the Commit() method when each of your database operations have succeeded. Doing this causes each of
the pending changes to be persisted in the data store. Conversely, you can call the Rollback() method in
the event of a runtime exception, which informs the DMBS to disregard any pending changes, leaving the
original data intact.

 ■ Note The IsolationLevel property of a transaction object allows you to specify how aggressively a
transaction should be guarded against the activities of other parallel transactions. By default, transactions
are isolated completely until committed. Consult the .NET Framework 4.6 SDK documentation for full details
regarding the values of the IsolationLevel enumeration.

Beyond the members defined by the IDbTransaction interface, the SqlTransaction type defines an
additional member named Save(), which allows you to define save points. This concept allows you to roll
back a failed transaction up until a named point, rather than rolling back the entire transaction. Essentially,
when you call Save() using a SqlTransaction object, you can specify a friendly string moniker. When you
call Rollback(), you can specify this same moniker as an argument to perform an effective partial rollback.
Calling Rollback() with no arguments causes all the pending changes to be rolled back.

Adding a CreditRisks Table to the AutoLot Database
Now let’s look at how you use ADO.NET transactions. Begin by using the Server Explorer of Visual Studio
to add a new table named CreditRisks to the AutoLot database, which has the same columns as the
Customers table you created earlier in this chapter: CustId, which is the primary key; FirstName; and
LastName. As its name suggests, CreditRisks is where you banish the undesirable customers who fail a
credit check (see Figure 21-15).

Figure 21-15. The interconnected Orders, Inventory, and Customers tables

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

855

Like the earlier savings-to-checking money transfer example, this example, where you move a risky
customer from the Customers table into the CreditRisks table, should occur under the watchful eye of a
transactional scope (after all, you will want to remember the names of those who are not creditworthy).
Specifically, you need to ensure that either that you successfully delete the current credit risks from the
Customers table and add them to the CreditRisks table or that neither of these database operations occurs.

 ■ Note In a production environment, you would not need to build a whole new database table to capture
high-risk customers; instead, you could add a Boolean column named IsCreditRisk to the existing Customers
table. however, this new table lets you play with a simple transaction.

Adding a Transaction Method to InventoryDAL
Now let’s look at how you work with ADO.NET transactions programmatically. Begin by opening
the AutoLotDAL code library project you created earlier and add a new public method named
ProcessCreditRisk() to the InventoryDAL class to deal with perceived a credit risks. (Note that this
example avoids using a parameterized query to keep the implementation simple; however, you’d want use
such a query for a production-level method.)

// A new member of the InventoryDAL class.
public void ProcessCreditRisk(bool throwEx, int custID)
{
 // First, look up current name based on customer ID.
 string fName;
 string lName;
 var cmdSelect =
 new SqlCommand($"Select * from Customers where CustId = {custID}",
 _sqlConnection);
 using (var dataReader = cmdSelect.ExecuteReader())
 {
 if (dataReader.HasRows)
 {
 dataReader.Read();
 fName = (string) dataReader["FirstName"];
 lName = (string) dataReader["LastName"];
 }
 else
 {
 return;
 }
 }

 // Create command objects that represent each step of the operation.
 var cmdRemove =
 new SqlCommand($"Delete from Customers where CustId = {custID}",
 _sqlConnection);

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

856

 var cmdInsert =
 new SqlCommand("Insert Into CreditRisks" +
 $"(FirstName, LastName) Values('{fName}', '{lName}')",
 _sqlConnection);

 // We will get this from the connection object.
 SqlTransaction tx = null;
 try
 {
 tx = _sqlConnection.BeginTransaction();

 // Enlist the commands into this transaction.
 cmdInsert.Transaction = tx;
 cmdRemove.Transaction = tx;

 // Execute the commands.
 cmdInsert.ExecuteNonQuery();
 cmdRemove.ExecuteNonQuery();

 // Simulate error.
 if (throwEx)
 {
 throw new Exception("Sorry! Database error! Tx failed...");
 }

 // Commit it!
 tx.Commit();
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 // Any error will roll back transaction.
 // Using the new conditional access operator to check for null.
 tx?.Rollback();
 }
}

Here, you use an incoming bool parameter to represent whether you will throw an arbitrary
exception when you attempt to process the offending customer. This allows you to simulate an unforeseen
circumstance that will cause the database transaction to fail. Obviously, you do this here only for illustrative
purposes; a true database transaction method would not want to allow the caller to force the logic to fail on
a whim!

Note that you use two SqlCommand objects to represent each step in the transaction you will kick off.
After you obtain the customer’s first and last names based on the incoming custID parameter, you can
obtain a valid SqlTransaction object from the connection object using BeginTransaction(). Next, and
most importantly, you must enlist each command object by assigning the Transaction property to the
transaction object you have just obtained. If you fail to do so, the Insert/Delete logic will not be under a
transactional context.

After you call ExecuteNonQuery() on each command, you throw an exception if (and only if) the
value of the bool parameter is true. In this case, all pending database operations are rolled back. If you do
not throw an exception, both steps will be committed to the database tables once you call Commit(). Now
compile your modified AutoLotDAL project to ensure you do not have any typos.

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

857

Testing Your Database Transaction
You could update your previous AutoLotCUIClient application with a new option to invoke the
ProcessCreditRisk() method; instead, however, you will create a new Console Application project named
AdoNetTransaction to accomplish this. Set a reference to your AutoLotDAL.dll assembly and import the
AutoLotDAL.ConnectedLayer, AutoLotDAL.Models, and static System.Console namespaces.

Next, open your Customers table for data entry by right-clicking the table icon from the Server Explorer
and selecting Show Table Data. Now add the following new customer who will be the victim of a low credit
score (make a note of the assigned Id for the new record):

•	 FirstName: Homer

•	 LastName: Simpson

Finally, update your Main() method as follows:

static void Main(string[] args)
{
 WriteLine("***** Simple Transaction Example *****\n");

 // A simple way to allow the tx to succeed or not.
 bool throwEx = true;

 Write("Do you want to throw an exception (Y or N): ");
 var userAnswer = ReadLine();
 if (userAnswer?.ToLower() == "n")
 {
 throwEx = false;
 }

 var dal = new InventoryDAL();
 dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS2014;Integrated Security=SSPI;" +
 "Initial Catalog=AutoLot");

 // Process customer 5 – enter the id for Homer Simpson in the next line.
 dal.ProcessCreditRisk(throwEx, 5);
 WriteLine("Check CreditRisk table for results");
 ReadLine();
}

If you were to run your program and elect to throw an exception, you would find that Homer is not
removed from the Customers table because the entire transaction has been rolled back. However, if you did
not throw an exception, you would find that Customer ID 5 is no longer in the Customers table and has been
placed in the CreditRisks table instead.

 ■ Source Code You can find the AdoNetTransaction project in the Chapter 21 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTER 21 ■ ADO.NET pART I: ThE CONNECTED LAYER

858

Summary
ADO.NET is the native data access technology of the .NET platform, and you can use it in three distinct
manners: connected, disconnected, or through the Entity Framework. In this chapter, you examined the
connected layer and learned the role of data providers, which are essentially concrete implementations of
several abstract base classes (in the System.Data.Common namespace) and interface types (in the System.Data
namespace). You also saw that it is possible to build a provider-neutral code base using the ADO.NET data
provider factory model.

You also learned that you can use connection objects, transaction objects, command objects, and data
reader objects of the connected layer to select, update, insert, and delete records. Also, recall that command
objects support an internal parameter collection, which you can use to add some type safety to your SQL
queries; these also prove quite helpful when triggering stored procedures.

859

Chapter 22

ADO.NET Part II:
The Disconnected Layer

The previous chapter gave you a chance to examine the connected layer and the foundational components
of ADO.NET, which allow you to submit SQL statements to a database using the connection, command,
and data reader objects of your data provider. In this chapter, you will learn about the disconnected layer of
ADO.NET. Using this facet of ADO.NET lets you model database data in memory, within the calling tier, by
leveraging numerous members of the System.Data namespace (most notably, DataSet, DataTable, DataRow,
DataColumn, DataView, and DataRelation). By doing so, you can provide the illusion that the calling tier is
continuously connected to an external data source; the reality is that the caller is operating on a local copy of
relational data.

 ■ Note As mentioned in the introduction of the previous chapter, the Entity Framework (EF) is gaining
momentum and is seeing increased adoption. I will cover EF in the next chapter, but it’s still important to know
how ADO.NET works at its core, since EF (and the other .NET object-relational mappers [ORMs]) are built on
top of ADO.NET. While it is possible to use this disconnected aspect of ADO.NET without ever making a literal
connection to a relational database, you will most often obtain populated DataSet objects using the data
adapter object of your data provider. As you will see, data adapter objects function as a bridge between the
client tier and a relational database. Using these objects, you can obtain DataSet objects, manipulate their
contents, and send modified rows back for processing. The end result is a highly scalable data-centric .NET
application.

This chapter will also illustrate some data-binding techniques, using the context of a Windows Forms
GUI desktop application, and examine the role of a strongly typed DataSet. You will also update the
AutoLotDAL.dll data library you created in Chapter 21 with a new namespace that uses the disconnected
layer of ADO.NET. Last but not least, you will learn about the role of LINQ to DataSet, which allows you to
apply LINQ queries to your in-memory data cache.

 ■ Note You will learn about various data-binding techniques for Windows Presentation Foundation and
ASP.NET applications later in this book.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

860

Understanding the Disconnected Layer of ADO.NET
As you saw in the previous chapter, working with the connected layer allows you to interact with a database
using the primary connection, command, and data reader objects. You can use this handful of classes to
select, insert, update, and delete records to your heart’s content (as well as invoke stored procedures or
perform other data operations [e.g., DDL to create table and DCL to grant permissions]). However, you have
seen only part of the ADO.NET story. Recall that you can use the ADO.NET object model in a disconnected
manner.

Using the disconnected layer, it is possible to model relational data using an in-memory object model.
Far beyond simply modeling a tabular block of rows and columns, the types within System.Data allow you to
represent table relationships, column constraints, primary keys, views, and other database primitives. After
you model the data, you can apply filters, submit in-memory queries, and persist (or load) your data in XML
and binary formats. You can do all of this without ever making a literal connection to a DBMS (which is why
it’s called a disconnected layer) by loading data from a local XML file or manually building a DataSet in code.

 ■ Note In Chapter 23, you will examine the ADO.NET Entity Framework, which builds upon the concepts
found in the disconnected layer examined here.

You could use the disconnected types without ever connecting to a database, but you will typically
still use connection and command objects. In addition, you will leverage a specific object, the data adapter
(which extends the abstract DbDataAdapter class), to fetch and update data. Unlike the connected layer,
data obtained with a data adapter is not processed using data reader objects. Rather, data adapter objects
use DataSet objects (or more specifically, the DataTable objects in a DataSet) to move data between the
caller and data source. The DataSet type is a container for any number of DataTable objects, each of which
contains a collection of DataRow and DataColumn objects.

The data adapter object of your data provider handles the database connection automatically. In
an effort to increase scalability, data adapters keep the connection open for the shortest amount of time
possible. After the caller receives the DataSet object, the calling tier is completely disconnected from the
database and left with a local copy of the remote data. The caller is free to insert, delete, or update rows from
a given DataTable, but the physical database is not updated until the caller explicitly passes a DataTable in
the DataSet to the data adapter for updating. In a nutshell, DataSets allow the clients to pretend they are
always connected; however, they actually operate on an in-memory database (see Figure 22-1).

Given that the centerpiece of the disconnected layer is the DataSet class, the first task of this chapter
is to learn how to manipulate a DataSet manually. Once you can do this, you will have no problem
manipulating the contents of a DataSet retrieved from a data adapter object.

Figure 22-1. Data adapter objects move DataSets to and from the client tier

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

861

Understanding the Role of the DataSet
As noted previously, a DataSet is an in-memory representation of relational data. More specifically, a
DataSet is a class type that internally maintains three strongly typed collections (see Figure 22-2).

The Tables property of the DataSet allows you to access the DataTableCollection that contains the
individual DataTables. Another important collection used by the DataSet is DataRelationCollection.
Given that a DataSet is a disconnected version of a database schema, you can use it to represent the parent-
child relationships programmatically between its tables. For example, you can create a relation between
two tables to model a foreign key constraint using the DataRelation type. You can add this object to the
DataRelationCollection with the Relations property. At this point, you can navigate between the related
tables as you search for data. You will see how to do this later in the chapter.

The ExtendedProperties property provides access to the PropertyCollection object, which allows
you to associate any extra information to the DataSet as name-value pairs. This information can be
literally anything, even if it has no bearing on the database data itself. For example, you can associate
your company’s name to a DataSet, which can then function as in-memory metadata. Other examples of
extended properties might include time stamps, an encrypted password that must be supplied to access the
contents of the DataSet, a number representing a data refresh rate, and so forth.

 ■ Note The DataTable and DataColumn classes also support the ExtendedProperties property.

Key Properties of the DataSet
Before exploring too many other programmatic details, let’s take a look at some core members of the
DataSet. Table 22-1 describes some additional properties of interest beyond the Tables, Relations, and
ExtendedProperties properties.

Figure 22-2. The anatomy of a DataSet

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

862

Key Methods of the DataSet
The methods of the DataSet work in conjunction with some of the functionality provided by the
aforementioned properties. In addition to interacting with XML streams, the DataSet provides methods
that allow you to copy the contents of your DataSet, navigate between the internal tables, and establish the
beginning and ending points of a batch of updates. Table 22-2 describes some core methods.

Table 22-1. Properties of the DataSet

Property Meaning in Life

CaseSensitive Indicates whether string comparisons in DataTable objects are case sensitive
(or not). The default is false (string comparisons are not case sensitive by
default).

DataSetName Represents the friendly name of this DataSet. Typically, you establish this
value as a constructor parameter.

EnforceConstraints Gets or sets a value indicating whether constraint rules are followed when
attempting any update operations (the default is true).

HasErrors Gets a value indicating whether there are errors in any of the rows in any of the
DataTables of the DataSet.

RemotingFormat Allows you to define how the DataSet should serialize its content (binary or
XML, which is the default).

Table 22-2. Select Methods of the DataSet

Methods Meaning in Life

AcceptChanges() Commits all the changes made to this DataSet since it was loaded or the last time
AcceptChanges() was called.

Clear() Completely clears the DataSet data by removing every row in each DataTable.

Clone() Clones the structure, but not the data, of the DataSet, including all DataTables, as
well as all relations and any constraints.

Copy() Copies both the structure and data for this DataSet.

GetChanges() Returns a copy of the DataSet containing all changes made to it since it was last
loaded or since AcceptChanges() was called. This method is overloaded so that
you can get just the new rows, just the modified rows, or just the deleted rows.

HasChanges() Gets a value indicating whether the DataSet has changes, including new, deleted,
or modified rows.

Merge() Merges this DataSet with a specified DataSet.

ReadXml() Allows you to define the structure of a DataSet object and populate it with data,
based on XML schema and data read from a stream.

RejectChanges() Rolls back all the changes made to this DataSet since it was created or since the
last time AcceptChanges() was called.

WriteXml() Allows you to write out the contents of a DataSet into a valid stream.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

863

Building a DataSet
Now that you have a better understanding of the role of the DataSet (and some idea of what you can do
with one), create a new Console Application project named SimpleDataSet and import the System.Data
namespace. Within the Main() method, define a new DataSet object that contains three extended properties
that represent a time stamp, a unique identifier (represented as a System.Guid type), and your company’s
name, as follows (you also need to add using static System.Console;):

using static System.Console;
static void Main(string[] args)
{
 WriteLine("***** Fun with DataSets *****\n");

 // Create the DataSet object and add a few properties.
 var carsInventoryDS = new DataSet("Car Inventory");

 carsInventoryDS.ExtendedProperties["TimeStamp"] = DateTime.Now;
 carsInventoryDS.ExtendedProperties["DataSetID"] = Guid.NewGuid();
 carsInventoryDS.ExtendedProperties["Company"] =
 "Mikko’s Hot Tub Super Store";

 FillDataSet(carsInventoryDS);
 PrintDataSet(carsInventoryDS);

 ReadLine();
}

 ■ Note A GUID (aka a globally unique identifier) is a statically unique 128-bit number.

A DataSet object is not terribly interesting until you insert any number of DataTables. Therefore, the
next task is to examine the internal composition of the DataTable, beginning with the DataColumn type.

Working with DataColumns
The DataColumn type represents a single column within a DataTable. Collectively speaking, the set of all
DataColumn types bound to a given DataTable represents the foundation of a table’s schema information.
For example, if you were to model the Inventory table of the AutoLot database (see Chapter 21), you would
create four DataColumns, one for each column (CarID, Make, Color, and PetName). After you create your
DataColumn objects, you typically add them into the columns collection of the DataTable type (using the
Columns property).

Based on your background, you might know that you can assign a given column in a database table
a set of constraints (e.g., configured as a primary key, assigned a default value, or configured to contain
read-only information). Also, every column in a table must map to an underlying data type. For example, the
Inventory table’s schema requires that the CarID column map to an integer, while Make, Color, and PetName
map to an array of characters. The DataColumn class has numerous properties that allow you to configure
precisely these things. Table 22-3 provides a rundown of some core properties.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

864

Table 22-3. Properties of the DataColumn

Properties Meaning in Life

AllowDBNull You use this property to indicate whether a row can specify null values in this
column. The default value is true.

AutoIncrement
AutoIncrementSeed
AutoIncrementStep

You use these properties to configure the autoincrement behavior for a given
column. This can be helpful when you want to ensure unique values in a given
DataColumn (such as a primary key). By default, a DataColumn does not support
autoincrement behavior.

Caption This property gets or sets the caption you want to display for this column. This
allows you to define a user-friendly version of a literal database column name.

ColumnMapping This property determines how a DataColumn is represented when a DataSet is
saved as an XML document using the DataSet.WriteXml() method. You can
specify that the data column should be written out as an XML element, an XML
attribute, simple text content, or ignored altogether.

ColumnName This property gets or sets the name of the column in the Columns collection
(meaning how it is represented internally by the DataTable). If you do not set
the ColumnName explicitly, the default values are Column with (n+1) numerical
suffixes (e.g., Column1, Column2, and Column3).

DataType This property defines the data type (e.g., Boolean, string, or float) stored in
the column.

DefaultValue This property gets or sets the default value assigned to this column when you
insert new rows.

Expression This property gets or sets the expression used to filter rows, calculate a
column’s value, or create an aggregate column.

Ordinal This property gets the numerical position of the column in the Columns
collection maintained by the DataTable.

ReadOnly This property determines whether this column is read-only, once a row has
been added to the table. The default is false.

Table This property gets the DataTable that contains this DataColumn.

Unique This property gets or sets a value indicating whether the values in each row of
the column must be unique or if repeating values are permissible. If you assign
a column a primary key constraint, then you must set the Unique property to
true.

Building a DataColumn
To continue with the SimpleDataSet project (and illustrate the use of the DataColumn), assume you
would like to model the columns of the Inventory table. Given that the CarID column will be the table’s
primary key, you will configure this DataColumn object as read-only, unique, and non-null (using the
ReadOnly, Unique, and AllowDBNull properties). Next, update the Program class with a new method named
FillDataSet(), which you use to build four DataColumn objects. Note this method takes a DataSet object as
its only parameter.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

865

static void FillDataSet(DataSet ds)
{
 // Create data columns that map to the
 // "real" columns in the Inventory table
 // of the AutoLot database.
 var carIDColumn = new DataColumn("CarID", typeof (int))
 {
 Caption = "Car ID",
 ReadOnly = true,
 AllowDBNull = false,
 Unique = true,
 };

 var carMakeColumn = new DataColumn("Make", typeof (string));
 var carColorColumn = new DataColumn("Color", typeof (string));
 var carPetNameColumn = new DataColumn("PetName", typeof (string))
 { Caption = "Pet Name"};
}

Notice that when you configure the carIDColumn object, you assign a value to the Caption property.
This property is helpful because it allows you to define a string value for display purposes, which can be
distinct from the literal database table column name (column names in a literal database table are typically
better suited for programming purposes [e.g., au_fname] than display purposes [e.g., Author First Name]).
Here, you set the caption for the PetName column for the same reason, because Pet Name looks nicer than
PetName to the end user.

Enabling Autoincrementing Fields
One aspect of the DataColumn you can choose to configure is its ability to autoincrement. You use an
autoincrementing column to ensure that when a new row is added to a given table, the value of this column
is assigned automatically, based on the current step of the increase. This can be helpful when you want to
ensure that a column has no repeating values (e.g., a primary key).

You control this behavior using the AutoIncrement, AutoIncrementSeed, and AutoIncrementStep
properties. You use the seed value to mark the starting value of the column; you use the step value to identify
the number to add to the seed when incrementing. Consider the following update to the construction of the
carIDColumn DataColumn:

static void FillDataSet(DataSet ds)
{
 var carIDColumn = new DataColumn("CarID", typeof (int))
 {
 Caption = "Car ID",
 ReadOnly = true,
 AllowDBNull = false,
 Unique = true,
 AutoIncrement = true,
 AutoIncrementSeed = 1,
 AutoIncrementStep = 1
 };
}

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

866

Here, you configure the carIDColumn object to ensure that, as rows are added to the respective table, the
value for this column is incremented by 1. You set the seed at 1, so this column would be numbered 1, 2, 3, 4,
and so forth.

Adding DataColumn Objects to a DataTable
The DataColumn type does not typically exist as a stand-alone entity; however, you do typically insert it into a
related DataTable. For example, create a new DataTable object (fully detailed in a moment) and insert each
DataColumn object in the columns collection using the Columns property, like so:

static void FillDataSet(DataSet ds):
{
...
 // Now add DataColumns to a DataTable.
 var inventoryTable = new DataTable("Inventory");
 inventoryTable.Columns.AddRange(new[]
 {carIDColumn, carMakeColumn, carColorColumn, carPetNameColumn});
}

At this point, the DataTable object contains four DataColumn objects that represent the schema of the
in-memory Inventory table. However, the table is currently devoid of data, and the table is currently outside
of the table collection maintained by the DataSet. You will deal with both of these shortcomings, beginning
by populating the table with data using DataRow objects.

Working with DataRows
As you have seen, a collection of DataColumn objects represents the schema of a DataTable. In contrast,
a collection of DataRow objects represents the actual data in the table. Thus, if you have 20 rows in the
Inventory table of the AutoLot database, you can represent these records using 20 DataRow objects.

Table 22-4 documents some (but not all) of the members of the DataRow type.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

867

Working with a DataRow is a bit different from working with a DataColumn; you cannot create a direct
instance of this type because there is no public constructor.

// Error! No public constructor!
DataRow r = new DataRow();

Instead, you obtain a new DataRow object from a given DataTable. For example, assume you want to
insert two rows in the Inventory table. The DataTable.NewRow() method allows you to obtain the next slot
in the table, at which point you can fill each column with new data using the type indexer. When doing so,
you can specify either the string name assigned to the DataColumn or its (zero-based) ordinal position.

static void FillDataSet(DataSet ds)
{
...
 // Now add some rows to the Inventory Table.
 DataRow carRow = inventoryTable.NewRow();
 carRow["Make"] = "BMW";
 carRow["Color"] = "Black";
 carRow["PetName"] = "Hamlet";
 inventoryTable.Rows.Add(carRow);

Table 22-4. Key Members of the DataRow Type

Members Meaning in Life

HasErrors
GetColumnsInError()
GetColumnError()
ClearErrors() RowError

The HasErrors property returns a Boolean value indicating whether
there are errors in a DataRow. If so, you can use the GetColumnsInError()
method to obtain the offending columns and GetColumnError() to
obtain the error description. Similarly, you can use the ClearErrors()
method to remove each error listing for the row. The RowError property
allows you to configure a textual description of the error for a given row.

ItemArray This property gets or sets all the column values for this row using an
array of objects.

RowState You use this property to pinpoint the current state of the DataRow in
the DataTable containing the DataRow, using values of the RowState
enumeration (e.g., a row can be flagged as new, modified, unchanged, or
deleted).

Table You use this property to obtain a reference to the DataTable containing
this DataRow.

AcceptChanges()
RejectChanges()

These methods commit or reject all changes made to this row since the
last time AcceptChanges() was called.

BeginEdit() EndEdit()
CancelEdit()

These methods begin, end, or cancel an edit operation on a DataRow
object.

Delete() This method marks a row you want to remove when the
AcceptChanges() method is called.

IsNull() This method gets a value indicating whether the specified column
contains a null value.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

868

 carRow = inventoryTable.NewRow();
 // Column 0 is the autoincremented ID field,
 // so start at 1.
 carRow[1] = "Saab";
 carRow[2] = "Red";
 carRow[3] = "Sea Breeze";
 inventoryTable.Rows.Add(carRow);
}

 ■ Note If you pass the DataRow’s indexer method an invalid column name or ordinal position, you will
receive a runtime exception.

At this point, you have a single DataTable containing two rows. Of course, you can repeat this general
process to create a number of DataTables to define the schema and data content. Before you insert the
inventoryTable object into your DataSet object, you should check out the all-important RowState property.

Understanding the RowState Property
The RowState property is useful when you need to identify programmatically the set all rows in a table that
have changed from their original value, have been newly inserted, and so forth. You can assign this property
any value from the DataRowState enumeration, as shown in Table 22-5.

When you manipulate the rows of a given DataTable programmatically, the RowState property is set
automatically. For example, add a new method to your Program class, which operates on a local DataRow
object, printing out its row state along the way, like so:

private static void ManipulateDataRowState()
{
 // Create a temp DataTable for testing.
 var temp = new DataTable("Temp");
 temp.Columns.Add(new DataColumn("TempColumn", typeof(int)));

Table 22-5. Values of the DataRowState Enumeration

Value Meaning in Life

Added The row has been added to a DataRowCollection, and AcceptChanges() has not been
called.

Deleted The row has been marked for deletion using the Delete() method of the DataRow, and
AcceptChanges() has not been called.

Detached The row has been created but is not part of any DataRowCollection. A DataRow is in this
state immediately after it has been created, but before it is added to a collection. It is also in
this state if it has been removed from a collection.

Modified The row has been modified, and AcceptChanges() has not been called.

Unchanged The row has not changed since AcceptChanges() was last called.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

869

 // RowState = Detached.
 var row = temp.NewRow();
 WriteLine($"After calling NewRow(): {row.RowState}");

 // RowState = Added.
 temp.Rows.Add(row);
 WriteLine($"After calling Rows.Add(): {row.RowState}");

 // RowState = Added.
 row["TempColumn"] = 10;
 WriteLine($"After first assignment: {row.RowState}");

 // RowState = Unchanged.
 temp.AcceptChanges();
 WriteLine($"After calling AcceptChanges: {row.RowState}");

 // RowState = Modified.
 row["TempColumn"] = 11;
 WriteLine($"After first assignment: {row.RowState}");

 // RowState = Deleted.
 temp.Rows[0].Delete();
 WriteLine($"After calling Delete: {row.RowState}");
}

 ■ Note Remember to add using static System.Console; to the top of your code file for this example
(and all other examples where you are using the console).

The ADO.NET DataRow is smart enough to remember its current state of affairs. Given this, the owning
DataTable is able to identify which rows have been added, updated, or deleted. This is a key feature of the
DataSet because when it comes time to send updated information to the data store, only the modified data
is submitted.

Understanding the DataRowVersion Property
Beyond maintaining the current state of a row with the RowState property, a DataRow object maintains
three possible versions of the data it contains using the DataRowVersion property. When a DataRow object
is first constructed, it contains only a single copy of data, represented as the current version. However, as
you programmatically manipulate a DataRow object (using various method calls), additional versions of the
data spring to life. Specifically, you can set the DataRowVersion to any value of the related DataRowVersion
enumeration (see Table 22-6).

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

870

Table 22-6. Values of the DataRowVersion Enumeration

Value Meaning in Life

Current This represents the current value of a row, even after changes have been made.

Default This is the default version of DataRowState. For a DataRowState value of Added, Modified, or
Deleted, the default version is Current. For a DataRowState value of Detached, the version is
Proposed.

Original This represents the value first inserted into a DataRow or the value the last time
AcceptChanges() was called.

Proposed This is the value of a row currently being edited because of a call to BeginEdit().

As suggested in Table 22-6, the value of the DataRowVersion property is dependent on the value of
the DataRowState property in many cases. As mentioned previously, the DataRowVersion property will
be changed behind the scenes when you invoke various methods on the DataRow (or, in some cases, the
DataTable) object. Here is a breakdown of the methods that can affect the value of a row’s DataRowVersion
property:

•	 If you call the DataRow.BeginEdit() method and change the row’s value, the
Current and Proposed values become available.

•	 If you call the DataRow.CancelEdit() method, the Proposed value is deleted.

•	 After you call DataRow.EndEdit(), the Proposed value becomes the Current value.

•	 After you call the DataRow.AcceptChanges() method, the Original value becomes
identical to the Current value. The same transformation occurs when you call
DataTable.AcceptChanges().

•	 After you call DataRow.RejectChanges(), the Proposed value is discarded, and the
version becomes Current.

Yes, this is a bit convoluted, not least because a DataRow might or might not have all versions at any
given time (you’ll receive runtime exceptions if you attempt to obtain a row version that is not currently
tracked). Regardless of the complexity, given that the DataRow maintains three copies of data, it becomes
simple to build a front end that allows an end user to alter values, change his or her mind and roll back
values, or commit values permanently. You’ll see various examples of manipulating these methods over the
remainder of this chapter.

Working with DataTables
The DataTable type defines many members, many of which are identical in name and functionality to those
of the DataSet. Table 22-7 describes some core members of the DataTable type beyond Rows and Columns.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

871

To continue with the current example, you can set the PrimaryKey property of the DataTable to
the carIDColumn DataColumn object. Be aware that the PrimaryKey property is assigned a collection of
DataColumn objects to account for a multicolumned key. In this case, however, you need to specify only the
CarID column (being the first ordinal position in the table), like so:

static void FillDataSet(DataSet ds)
{
...
 // Mark the primary key of this table.
 inventoryTable.PrimaryKey = new [] { inventoryTable.Columns[0] };
}

Inserting DataTables into DataSets
At this point, your DataTable object is complete. The final step is to insert the DataTable into the
carsInventoryDS DataSet object using the Tables collection, like this:

static void FillDataSet(DataSet ds)
{
...
 // Finally, add our table to the DataSet.
 ds.Tables.Add(inventoryTable);
}

Table 22-7. Key Members of the DataTable Type

Member Meaning in Life

CaseSensitive Indicates whether string comparisons within the table are case sensitive. The
default value is false.

ChildRelations Returns the collection of child relations for this DataTable (if any).

Constraints Gets the collection of constraints maintained by the table.

Copy() A method that copies the schema and data of a given DataTable into a new
instance.

DataSet Gets the DataSet that contains this table (if any).

DefaultView Gets a customized view of the table that might include a filtered view or a cursor
position.

ParentRelations Gets the collection of parent relations for this DataTable.

PrimaryKey Gets or sets an array of columns that function as primary keys for the data table.

TableName Gets or sets the name of the table. This same property might also be specified as a
constructor parameter.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

872

Now update your Main() method to call FillDataSet(), passing in your local DataSet object as an
argument. Next, pass the same object into a new (yet to be written) helper method named PrintDataSet(),
as follows:

static void Main(string[] args)
{
 WriteLine("***** Fun with DataSets *****\n");
...
 FillDataSet(carsInventoryDS);
 PrintDataSet(carsInventoryDS);
 ReadLine();
}

Obtaining Data in a DataSet
The PrintDataSet() method simply iterates over the DataSet metadata (using the ExtendedProperties
collection) and each DataTable in the DataSet, printing out the column names and row values using the
type indexers. Add a using for System.Collections to the top of the file for the DictionaryEntry type.

static void PrintDataSet(DataSet ds)
{
 // Print out the DataSet name and any extended properties.
 WriteLine($"DataSet is named: {ds.DataSetName}");
 foreach (DictionaryEntry de in ds.ExtendedProperties)
 {
 WriteLine($"Key = {de.Key}, Value = {de.Value}");
 }
 WriteLine();
 // Print out each table using rows and columns.
 foreach (DataTable dt in ds.Tables)
 {
 WriteLine($"=> {dt.TableName} Table:");

 // Print out the column names.
 for (var curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write($"{dt.Columns[curCol].ColumnName}\t");
 }
 WriteLine("\n----------------------------------");

 // Print the DataTable.
 for (var curRow = 0; curRow < dt.Rows.Count; curRow++)
 {
 for (var curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write($"{dt.Rows[curRow][curCol]}\t");
 }
 WriteLine();
 }
 }
}

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

873

If you run your program now, you’ll see the following output (your timestamp and GUID value will
differ, of course):

***** Fun with DataSets *****

DataSet is named: Car Inventory
Key = TimeStamp, Value = 7/24/2015 6:41:09 AM
Key = DataSetID, Value = 11c533ed-d1aa-4c82-96d4-b0f88893ab21
Key = Company, Value = Mikko's Hot Tub Super Store

=> Inventory Table:
CarID Make Color PetName

1 BMW Black Hamlet
2 Saab Red Sea Breeze

Processing DataTable Data Using DataTableReader Objects
Given your work in Chapter 21, you should notice that the manner in which you process data using the
connected layer (e.g., data reader objects) and the disconnected layer (e.g., DataSet objects) is quite
different. Working with a data reader typically involves establishing a while loop, calling the Read() method,
and using an indexer to pluck out the name-value pairs. On the other hand, DataSet processing typically
involves a series of iteration constructs to drill into the data within the tables, rows, and columns (remember
that DataReader requires an open database connection so that it can read the data from the actual database).

DataTables support a method named CreateDataReader(). This method allows you to obtain the data
within a DataTable using a data reader–like navigation scheme (the data reader will now read data from the
in-memory DataTable, not from the actual database, so there’s no database connection involved here). The
major benefit of this approach is that you now use a single model to process data, regardless of which layer
of ADO.NET you use to obtain it. Assume you have authored a new method in your Program class named
PrintTable(), as follows:

static void PrintTable(DataTable dt)
{
 // Get the DataTableReader type.
 DataTableReader dtReader = dt.CreateDataReader();

 // The DataTableReader works just like the DataReader.
 while (dtReader.Read())
 {
 for (var i = 0; i < dtReader.FieldCount; i++)
 {
 Write($"{dtReader.GetValue(i).ToString().Trim()}\t");
 }
 WriteLine();
 }
 dtReader.Close();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

874

Notice that the DataTableReader works identically to the data reader object of your data provider.
A DataTableReader can be an ideal choice when you need to pump out the data within a DataTable quickly,
without needing to traverse the internal row and column collections. Now assume you have updated the
previous PrintDataSet() method to invoke PrintTable(), rather than drilling into the Rows and Columns
collections.

static void PrintDataSet(DataSet ds)
{
 // Print out any name and extended properties.
 WriteLine($"DataSet is named: {ds.DataSetName}");
 foreach (DictionaryEntry de in ds.ExtendedProperties)
 {
 WriteLine($"Key = {de.Key}, Value = {de.Value}");
 }
 WriteLine();

 //Print out each table using data reader
 foreach (DataTable dt in ds.Tables)
 {
 WriteLine($"=> {dt.TableName} Table:");

 // Print out the column names.
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write($"{dt.Columns[curCol].ColumnName.Trim()}\t");
 }
 WriteLine("\n----------------------------------");

 // Call our new helper method.
 PrintTable(dt);
 }
}

When you run the application, the output is identical to that shown previously. The only difference is
how you access the DataTable’s contents internally.

Serializing DataTable/DataSet Objects As XML
DataSets and DataTables both support the WriteXml() and ReadXml() methods. WriteXml() allows you
to persist an object’s content to a local file (as well as into any System.IO.Stream-derived type) as an
XML document. ReadXml() allows you to hydrate the state of a DataSet (or DataTable) from a given XML
document. In addition, DataSets and DataTables both support WriteXmlSchema() and ReadXmlSchema() for
saving or loading an *.xsd file.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

875

To test this for yourself, update your Main() method to call the following helper function (notice that
you pass a DataSet as the sole parameter):

static void SaveAndLoadAsXml(DataSet carsInventoryDS)
{
 // Save this DataSet as XML.
 carsInventoryDS.WriteXml("carsDataSet.xml");
 carsInventoryDS.WriteXmlSchema("carsDataSet.xsd");

 // Clear out DataSet.
 carsInventoryDS.Clear();

 // Load DataSet from XML file.
 carsInventoryDS.ReadXml("carsDataSet.xml");
}

If you open the carsDataSet.xml file (which you will find under the \bin\Debug folder of your project),
you will find that each column in the table has been encoded as an XML element.

<?xml version="1.0" standalone="yes"?>
<Car_x0020_Inventory>
 <Inventory>
 <CarID>1</CarID>
 <Make>BMW</Make>
 <Color>Black</Color>
 <PetName>Hamlet</PetName>
 </Inventory>
 <Inventory>
 <CarID>2</CarID>
 <Make>Saab</Make>
 <Color>Red</Color>
 <PetName>Sea Breeze</PetName>
 </Inventory>
</Car_x0020_Inventory>

If you were to double-click the generated *.xsd file (also found in your \bin\Debug folder) within Visual
Studio, you will open the IDE’s XML schema editor (see Figure 22-3).

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

876

 ■ Note Chapter 24 will introduce you to the LINQ to XML API, which is the preferred manner for manipulating
XML data in the .NET platform.

Serializing DataTable/DataSet Objects in a Binary Format
It is also possible to persist the contents of a DataSet (or an individual DataTable) as a compact binary
format. This can be especially helpful when a DataSet object needs to be passed across a machine boundary
(in the case of a distributed application). One drawback of XML data representation is that its descriptive
nature can result in a good deal of overhead.

To persist DataTables or DataSets in a binary format, set the RemotingFormat property to
SerializationFormat.Binary. At this point, you can use the BinaryFormatter type (see Chapter 20) as
expected. Consider the following final method of the SimpleDataSet project (don’t forget to import the
System.IO and System.Runtime.Serialization.Formatters.Binary namespaces):

static void SaveAndLoadAsBinary(DataSet carsInventoryDS)
{
 // Set binary serialization flag.
 carsInventoryDS.RemotingFormat = SerializationFormat.Binary;

 // Save this DataSet as binary.
 var fs = new FileStream("BinaryCars.bin", FileMode.Create);
 var bFormat = new BinaryFormatter();
 bFormat.Serialize(fs, carsInventoryDS);
 fs.Close();

 // Clear out DataSet.
 carsInventoryDS.Clear();

Figure 22-3. The XSD editor of Visual Studio

http://dx.doi.org/10.1007/978-1-4842-1332-2_24
http://dx.doi.org/10.1007/978-1-4842-1332-2_20

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

877

 // Load DataSet from binary file.
 fs = new FileStream("BinaryCars.bin", FileMode.Open);
 var data = (DataSet)bFormat.Deserialize(fs);
}

If you call this method from Main(), you can find the *.bin file in your bin\Debug folder. Figure 22-4
shows the contents of the BinaryCars.bin file.

 ■ Source Code You can find the SimpleDataSet application in the Chapter 22 subdirectory.

Binding DataTable Objects to Windows Forms GUIs
So far, you have examined how to create, hydrate, and iterate over the contents of a DataSet object manually
using the inherit object model of ADO.NET. While understanding how to do so is quite important, the
.NET platform ships with numerous APIs that have the ability to bind data to user interface elements
automatically.

For example, the original GUI toolkit of .NET, Windows Forms, supplies a control named DataGridView
that includes the built-in ability to display the contents of a DataSet or DataTable object using only a few
lines of code. ASP.NET (.NET’s web development API) and the Windows Presentation Foundation API
also support the notion of data binding. You will learn to bind data to WPF and ASP.NET GUI elements
later in this book; however, in this chapter, you will use Windows Forms because it is a fairly simple and
straightforward programming model.

 ■ Note The next example assumes you have some experience using Windows Forms to build graphical user
interfaces. If this is not the case, you might want to open the solution and follow along or return to this section
after you have read Appendix A.

Figure 22-4. A DataSet saved to a binary format

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

878

Your next task is to build a Windows Forms application that will display the contents of a DataTable
object within its user interface. Along the way, you will also examine how to filter and change table data. You
will also learn about the role of the DataView object.

Begin by creating a new Windows Forms project workspace named WindowsFormsDataBinding.
Rename your initial Form1.cs file to the more fitting MainForm.cs using the Solution Explorer. Change the
text of the form to Windows Forms Data Binding using the Properties window. Next, use the Visual Studio
Toolbox to drag a DataGridView control located in the Data tab (renamed to carInventoryGridView using
the (Name) property of the Properties window) onto the designer surface. You might notice that when you
first add the DataGridView on the designer, you activate a context menu that allows you to connect to a
physical data source. For the time being, ignore this aspect of the designer because you will be binding
your DataTable object programmatically. Finally, add a descriptive Label to your designer for information
purposes. Figure 22-5 shows one possible look and feel.

Hydrating a DataTable from a Generic List<T>
Similar to the previous SimpleDataSet example, the WindowsFormsDataBinding application will construct
a DataTable that contains a set of DataColumns representing various columns and rows of data. This time,
however, you will fill the rows using a generic List<T> member variable. First, insert a new C# class into your
project (named Car), which you define as follows:

public class Car
{
 public int Id { get; set; }
 public string PetName { get; set; }
 public string Make { get; set; }
 public string Color { get; set; }
}

Figure 22-5. The initial GUI of your Windows Forms application

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

879

Within the default constructor of your main form, populate a List<T> member variable (named
listCars) with a set of new Car objects, like so:

public partial class MainForm : Form
{
 // A collection of Car objects.
 List<Car> listCars = null;

 public MainForm()
 {
 InitializeComponent();

 // Fill the list with some cars.
 listCars = new List<Car>
 {
 new Car { Id = 1, PetName = "Chucky", Make = "BMW", Color = "Green" },
 new Car { Id = 2, PetName = "Tiny", Make = "Yugo", Color = "White" },},
 new Car { Id = 3, PetName = "Ami", Make = "Jeep", Color = "Tan" },
 new Car { Id = 4, PetName = "Pain Inducer", Make = "Caravan", Color = "Pink" },
 new Car { Id = 5, PetName = "Fred", Make = "BMW", Color = "Green" },
 new Car { Id = 6, PetName = "Sidd", Make = "BMW", Color = "Black" },
 new Car { Id = 7, PetName = "Mel", Make = "Firebird", Color = "Red" },
 new Car { Id = 8, PetName = "Sarah", Make = "Colt", Color = "Black" },
 };
 }
}

Next, add a new member variable named inventoryTable of type DataTable to your MainForm class
type, like so:

public partial class MainForm : Form
{
 // A collection of Car objects.
 List<Car> listCars = null;

 // Inventory information.
 DataTable inventoryTable = new DataTable();
...
}

Now add a new helper function to your class named CreateDataTable() and call this method within
the default constructor of the MainForm class.

void CreateDataTable()
{
 // Create table schema.
 var carIDColumn = new DataColumn("Id", typeof(int));
 var carMakeColumn = new DataColumn("Make", typeof(string));
 var carColorColumn = new DataColumn("Color", typeof(string));
 var carPetNameColumn = new DataColumn("PetName", typeof (string))
 { Caption = "Pet Name"};
 inventoryTable.Columns.AddRange(
 new[] { carIDColumn, carMakeColumn,carColorColumn, carPetNameColumn });

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

880

 // Iterate over the array list to make rows.
 foreach (var c in listCars)
 {
 var newRow = inventoryTable.NewRow();
 newRow["Id"] = c.Id;
 newRow["Make"] = c.Make;
 newRow["Color"] = c.Color;
 newRow["PetName"] = c.PetName;
 inventoryTable.Rows.Add(newRow);
 }

 // Bind the DataTable to the carInventoryGridView.
 carInventoryGridView.DataSource = inventoryTable;
}

The method implementation begins by creating the schema of the DataTable by creating four
DataColumn objects (for the sake of simplicity, you don’t need to bother auto-incrementing the ID field or set
it as a primary key). After you do this, you can add them to the column collection of the DataTable member
variable. You map the row data from your List<Car> collection into the DataTable using a foreach iteration
construct and the native ADO.NET object model.

However, notice that the final code statement within the CreateDataTable() method assigns the
inventoryTable to the DataSource property of the DataGridView object. This single property is all you need
to set to bind a DataTable to a Windows Forms DataGridView object. Under the hood, this GUI control reads
the row and column collections internally, much like what happens with the PrintDataSet() method of the
SimpleDataSet example. At this point, you should be able to run your application and see the DataTable
within the DataGridView control, as shown in Figure 22-6.

Figure 22-6. Binding a DataTable to a Windows Forms DataGridView

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

881

Deleting Rows from a DataTable
Now, assume you would like to update your graphical interface to allow the user to delete a row from the in-
memory DataTable that is bound to the DataGridView. One approach is to call the Delete() method of the
DataRow object that represents the row to terminate. In this case, you specify the index (or DataRow object)
representing the row to remove. To allow the user to specify which row to delete, add a TextBox (named
txtCarToRemove) and a Button control (named btnRemoveCar) to the current designer. Figure 22-7 shows
one possible UI update (note this example wraps the two controls in a GroupBox control, illustrating how
they are related).

The following logic behind the new Button’s Click event handler removes the user-specified row, based
on the ID of a car, from your in-memory DataTable. The Select() method of the DataTable class allows
you to specify a search criteria, which is modeled after normal SQL syntax. The return value is an array of
DataRow objects that matches the search criteria.

// Remove this row from the DataRowCollection.
private void btnRemoveCar_Click (object sender, EventArgs e)
{
 try
 {
 // Find the correct row to delete.
 DataRow[] rowToDelete = inventoryTable.Select($"Id={int.Parse(txtCarToRemove.Text)}");

Figure 22-7. Updating the UI to enable removal of rows from the underlying DataTable

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

882

 // Delete it!
 rowToDelete[0].Delete();
 inventoryTable.AcceptChanges();
 }
 catch (Exception ex)
 {{
 MessageBox.Show(ex.Message);
 }
}

You should now be able to run your application and specify a car ID to delete from the DataTable. As
you remove DataRow objects from the DataTable, you will notice that the grid’s UI is updated immediately;
this occurs because it is bound to the state of the DataTable object.

Selecting Rows Based on Filter Criteria
Many data-centric applications require the need to view a small subset of a DataTable’s data, as specified
by some sort of filtering criteria. For example, assume you want to see only a certain make of automobile
from the in-memory DataTable (e.g., only BMWs). You’ve already seen how the Select() method of the
DataTable class allows you to find a row to delete; however, you can also use this method to grab a subset of
records for display purposes.

To see this in action, update your UI again, this time allowing users to specify a string that represents the
make of the automobile they want to see (see Figure 22-8) using a new TextBox (named txtMakeToView) and
a new Button (named btnDisplayMakes).

Figure 22-8. Updating the UI to enable row filtering

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

883

The Select() method has been overloaded a number of times to provide different selection semantics.
At its most basic level, the parameter sent to Select() is a string that contains some conditional operation.
To begin, observe the following logic for the Click event handler of your new button:

private void btnDisplayMakes_Click(object sender, EventArgs e)
{
 // Build a filter based on user input.
 string filterStr = $"Make='{txtMakeToView.Text}'";

 // Find all rows matching the filter.
 DataRow[] makes = inventoryTable.Select(filterStr);

 // Show what we got!
 if (makes.Length == 0)
 MessageBox.Show("Sorry, no cars...", "Selection error!");
 else
 {
 string strMake = null;
 for (var i = 0; i < makes.Length; i++)
 {
 strMake += makes[i]["PetName"] + "\n";
 }
 // Now show all matches in a message box.
 MessageBox.Show(strMake,$"We have {txtMakeToView.Text}s named:");
 }
 }
}

Here, you begin by building a simple filter based on the value in the associated TextBox. If you specify
BMW in the filter text box, it will create a filter equivalent to Make = 'BMW'. When you send this filter to the
Select() method, you get back an array of DataRow types that represent each row that matches the filter
(see Figure 22-9).

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

884

Again, the filtering logic is based on standard SQL syntax. For example, assume you want to obtain the
results of the previous Select() invocation alphabetically, based on the pet name. In terms of SQL, this
translates into a sort based on the PetName column. Fortunately, the Select() method has been overloaded
to send in a sort criterion.

// Sort by PetName.
makes = inventoryTable.Select(filterStr, "PetName");

Call Select(), as shown here, if you want the results in descending order:

// Return results in descending order.
makes = inventoryTable.Select(filterStr, "PetName DESC");

In general, the sort string contains the column name, followed by ASC (ascending, which is the default)
or DESC (descending). If necessary, you can separate multiple columns by commas. Finally, understand that
a filter string can be composed of any number of relational operators. For example, assume you want to find
all cars with an ID greater than 5. This helper function lets you accomplish that:

private void ShowCarsWithIdGreaterThanFive()
{
 // Now show the pet names of all cars with ID greater than 5.
 DataRow[] properIDs;
 string newFilterStr = "ID > 5";
 properIDs = inventoryTable.Select(newFilterStr);
 string strIDs = null;

Figure 22-9. Displaying filtered data

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

885

 for(int i = 0; i < properIDs.Length; i++)
 {
 DataRow temp = properIDs[i];
 strIDs += $"{temp["PetName"]} is ID {temp["ID"]}\n";
 }
 MessageBox.Show(strIDs, "Pet names of cars where ID > 5");
}

Updating Rows Within a DataTable
The final aspect of the DataTable you should be aware of is the process of updating an existing row with
new values. One approach is to first obtain the row (or rows) that matches a given filter criterion using the
Select() method. Once you obtain the DataRow (or DataRows) in question, modify them accordingly. For
example, assume you have a new Button on your form named btnChangeMakes that (when clicked) searches
the DataTable for all rows where Make is equal to BMW. Once you identify these items, you change the Make
from BMW to Yugo, as so:

// Find the rows you want to edit with a filter.
private void btnChangeMakes_Click(object sender, EventArgs e)
{
 // Make sure user has not lost his or her mind.
 if (DialogResult.Yes !=
 MessageBox.Show("Are you sure?? BMWs are much nicer than Yugos!",
 "Please Confirm!", MessageBoxButtons.YesNo)) return;
 // Build a filter.
 string filterStr = "Make='BMW'";

 // Find all rows matching the filter.
 DataRow[] makes = inventoryTable.Select(filterStr);

 // Change all Beemers to Yugos!
 for (int i = 0; i < makes.Length; i++)
 {
 makes[i]["Make"] = "Yugo";
 }
}

Working with the DataView Type
A view object is an alternative representation of a table (or set of tables). For example, you can use Microsoft
SQL Server to create a view for your Inventory table that returns a new table containing automobiles only of
a given color. In ADO.NET, the DataView type allows you to extract a subset of data programmatically from
the DataTable into a stand-alone object.

One great advantage of holding multiple views of the same table is that you can bind these views to
various GUI widgets (such as the DataGridView). For example, one DataGridView might be bound to a
DataView showing all automobiles in the Inventory, while another might be configured to display only
green automobiles.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

886

To see this in action, update the current UI with an additional DataGridView type named
dataGridYugosView and a descriptive Label. Next, define a member variable named yugosOnlyView of type
DataView.

public partial class MainForm : Form
{
 // View of the DataTable.
 DataView yugosOnlyView;
...
}

Now create a new helper function named CreateDataView() and call this method within the form’s
default constructor immediately after the DataTable has been fully constructed, as shown here:

public MainForm()
{
...
 // Make a data table.
 CreateDataTable();

 // Make a view.
 CreateDataView();
}

Here is the implementation of this new helper function. Notice that the constructor of the DataView has
been passed the DataTable that you will use to build the custom set of data rows.

private void CreateDataView()()
{
 // Set the table that is used to construct this view.
 yugosOnlyView = new DataView(inventoryTable);

 // Now configure the views using a filter.
 yugosOnlyView.RowFilter = "Make = 'Yugo'";

 // Bind to the new grid.
 dataGridYugosView.DataSource = yugosOnlyView;
}

As you can see, the DataView class supports a property named RowFilter, which contains the string
representing the filtering criteria used to extract matching rows. After you establish your view, set the
grid’s DataSource property accordingly. Figure 22-10 shows the completed Windows Forms data-binding
application in action.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

887

Figure 22-10. Displaying a unique view of your data

 ■ Source Code You can find the WindowsFormsDataBinding project in the Chapter 22 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

888

Working with Data Adapters
Now that you understand the ins and outs of manipulating ADO.NET DataSets manually, it’s time to turn
your attention to the topic of data adapter objects. A data adapter is a class used to fill a DataSet with
DataTable objects; this class can also send modified DataTables back to the database for processing.
Table 22-8 documents the core members of the DbDataAdapter base class, the common parent to every data
adapter object (e.g., SqlDataAdapter and OdbcDataAdapter).

Notice that a data adapter defines four properties: SelectCommand, InsertCommand, UpdateCommand,
and DeleteCommand. When you create the data adapter object for your particular data provider (e.g.,
SqlDataAdapter), you can pass in a string that represents the command text used by the SelectCommand’s
command object.

Assuming each of the four command objects has been properly configured, you can then call the
Fill() method to obtain a DataSet (or a single DataTable, if you so choose). To do so, you have the data
adapter execute the SQL SELECT statement specified by the SelectCommand property.

Similarly, if you want to persist a modified DataSet (or DataTable) object back to the database, you can
call the Update() method, which will use any of the remaining command objects, based on the state of each
row in the DataTable (you’ll learn more about this in a bit).

One of the strangest aspects of working with a data adapter object is that you are never required to open
or close a connection to the database. Rather, the underlying connection to the database is managed on your
behalf. However, you will still need to supply the data adapter with a valid connection object or a connection
string (which you will use to build a connection object internally) to inform the data adapter exactly which
database you want to communicate with.

 ■ Note A data adapter is agnostic by nature. You can plug in different connection objects and command
objects on the fly and fetch data from a diverse variety of databases. For example, a single DataSet could
contain table data obtained from SQL Server, Oracle, and MySQL database providers.

A Simple Data Adapter Example
The next step is to add new functionality to the data access library assembly (AutoLotDAL.dll) you created
in Chapter 21. You will begin by creating a simple example that fills a DataSet with a single table using an
ADO.NET data adapter object.

Table 22-8. Core Members of the DbDataAdapter Class

Members Meaning in Life

Fill() Executes a SQL SELECT command (as specified by the
SelectCommand property) to query the database for data and loads
the data into a DataTable.

SelectCommand InsertCommand
UpdateCommand DeleteCommand

Establishes the SQL commands that you will issue to the data store
when the Fill() and Update() methods are called.

Update() Executes SQL INSERT, UPDATE, and DELETE commands (as
specified by the InsertCommand, UpdateCommand, and DeleteCommand
properties) to persist DataTable changes to the database.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

889

Create a new Console Application project named FillDataSetUsingSqlDataAdapter and import the
System.Data, System.Data.SqlClient, and System.Collections namespaces into your initial C# code file.
Now update your Main() method as follows (you might need to change the connection string based on how
you created the AutoLot database in Chapter 21):

static void Main(string[] args)
{
 WriteLine("***** Fun with Data Adapters *****\n");

 // Hard-coded connection string.
 string connectionString = "Integrated Security = SSPI;Initial Catalog=AutoLot;" +
 @"Data Source=(local)\SQLEXPRESS2014";

 // Caller creates the DataSet object.
 DataSet ds = new DataSet("AutoLot");

 // Inform adapter of the Select command text and connection.
 SqlDataAdapter adapter =
 new SqlDataAdapter("Select * From Inventory", connectionString);

 // Fill our DataSet with a new table, named Inventory.
 adapter.Fill(ds, "Inventory");

 // Display contents of DataSet.
 PrintDataSet(ds);
 ReadLine();

}

Notice that you construct the data adapter by specifying a string literal that will map to the SQL SELECT
statement. You will use this value to build a command object internally, which you can obtain later using the
SelectCommand property.

Next, notice that it is the job of the caller to create an instance of the DataSet type, which is passed into
the Fill() method. Optionally, you can pass the Fill() method as a second argument a string name that
you use to set the TableName property of the new DataTable (if you do not specify a table name, the data
adapter will simply name the table, Table). In most cases, the name you assign a DataTable will be identical
to the name of the physical table in the relational database; however, this is not required.

 ■ Note The Fill() method returns an integer that represents the number of rows returned by the
SQL query.

Finally, notice that you do not explicitly open or close the connection to the database anywhere in the
Main() method. You preprogram the Fill() method of a given data adapter to open and then close the
underlying connection before returning from the Fill() method. Therefore, when you pass the DataSet to
the PrintDataSet() method (implemented earlier in this chapter and included here for your reference), you
are operating on a local copy of disconnected data, incurring no round-trips to fetch the data.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

890

static void PrintDataSet(DataSet ds)
{
 // Print out any name and extended properties.
 WriteLine($"DataSet is named: {ds.DataSetName}");
 foreach (DictionaryEntry de in ds.ExtendedProperties)
 {
 WriteLine($"Key = {de.Key}, Value = {de.Value}");
 }
 WriteLine();
 foreach (DataTable dt in ds.Tables)
 {
 WriteLine($"=> {dt.TableName} Table:");
 // Print out the column names.
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write(dt.Columns[curCol].ColumnName + "\t");
 }
 WriteLine("\n----------------------------------");
 // Print the DataTable.
 for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
 {
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write(dt.Rows[curRow][curCol].ToString().Trim() + "\t");
 }
 WriteLine();
 }
 }
}

Mapping Database Names to Friendly Names
As mentioned previously, database administrators tend to create table and column names that are less
than friendly to end users (e.g., au_id, au_fname, or au_lname). The good news is that data adapter objects
maintain an internal strongly typed collection (named DataTableMappingCollection) of System.Data.
Common.DataTableMapping objects. You can access this collection using the TableMappings property of your
data adapter object.

If you so choose, you can manipulate this collection to inform a DataTable which display names
it should use when asked to print its contents. For example, assume you want to map the table name
Inventory to Current Inventory for display purposes. For example, assume you want to display the CarID

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

891

column name as Car ID (note the extra space) and the PetName column name as Name of Car. To do so,
add the following code before calling the Fill() method of your data adapter object (be sure to import the
System.Data.Common namespace to gain the definition of the DataTableMapping type):

static void Main(string[] args)
{
...
 // Now map DB column names to user-friendly names.
 DataTableMapping tableMapping =
 adapter.TableMappings.Add("Inventory", "Current Inventory");
 tableMapping.ColumnMappings.Add("CarId", "Car Id");
 tableMapping.ColumnMappings.Add("PetName", "Name of Car");
 dAdapt.Fill(ds, "Inventory");
...
}

If you were to run this program again, you would find that the PrintDataSet() method now displays
the friendly names of the DataTable and DataRow objects, rather than the names established by the database
schema.

***** Fun with Data Adapters *****

DataSet is named: AutoLot

=> Current Inventory Table:
Car ID Make Color Name of Car

1 VW Black Zippy
2 Ford Rust Rusty
3 Saab Black Mel
4 Yugo Yellow Clunker
5 BMW Black Bimmer
6 BMW Green Hank
7 BMW Pink Pinkey

 ■ Source Code You can find the FillDataSetUsingSqlDataAdapter project in the Chapter 22 subdirectory.

Adding Disconnected Functionality to AutoLotDAL.dll
To illustrate the process of using a data adapter to push changes in a DataTable back to the database for
processing, you will now update the AutoLotDAL.dll assembly created in Chapter 21 to include a new
namespace (named AutoLotDisconnectedLayer). This namespace contains a new class, InventoryDALDC,
that uses a data adapter to interact with a DataTable. You can continue working in your AutoLotDAL project.
In the downloaded code for the chapter, the next example is in AutoLotDAL (Version Two).

http://dx.doi.org/10.1007/978-1-4842-1332-2_22
http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

892

Defining the Initial Class Type
Add a new folder using the Project ➤ New Folder menu option. Name this folder DisconnectedLayer. In this
new folder, insert a new class named InventoryDALDC (for DisConnected) using the Project ➤ Add Class
menu option. Next, add public to the class type in your new code file. Import the System.Data.SqlClient
namespaces.

Unlike the connection-centric InventoryDAL type, this new class doesn’t need to provide custom open/
close methods because the data adapter handles the details automatically.

Begin by adding a custom constructor that sets a private string variable representing the connection
string. Also, define a private SqlDataAdapter member variable, which you configure by calling a (yet to be
created) helper method called ConfigureAdapter(), which takes a SqlDataAdapter output parameter.

namespace AutoLotDAL2.DisconnectedLayer
{
 public class InventoryDALDC
 {
 // Field data.
 private string _connectionString;
 private SqlDataAdapter _adapter = null;

 public InventoryDALDC(string connectionString)
 {
 _connectionString = connectionString;

 // Configure the SqlDataAdapter.
 ConfigureAdapter(out _adapter);
 }

 }
}

Configuring the Data Adapter Using the SqlCommandBuilder
When you use a data adapter to modify tables in a DataSet, the first order of business is to assign the
UpdateCommand, DeleteCommand, and InsertCommand properties with valid command objects (until you do
so, these properties return null references).

Configuring the command objects manually for the InsertCommand, UpdateCommand, and
DeleteCommand properties can entail a significant amount of code, especially if you use parameterized
queries. Recall from Chapter 21 that a parameterized query allows you to build a SQL statement using a set
of parameter objects. Thus, if you were to take the long road, you could implement ConfigureAdapter() to
create three new SqlCommand objects manually, each of which contains a set of SqlParameter objects. At this
point, you could set each object to the UpdateCommand, DeleteCommand, and InsertCommand properties of the
adapter.

Visual Studio provides several designer tools to take care of this mundane and tedious code on your
behalf. These designers differ a bit based on which API you use (e.g., Windows Forms, WPF, or ASP.NET),
but their overall functionality is similar. You’ll see examples of using these designers throughout this book,
including some Windows Forms designers later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

893

You won’t need to author the numerous code statements to configure a data adapter fully at this time;
instead, you can take a massive shortcut by implementing ConfigureAdapter() like this:

private void ConfigureAdapter(out SqlDataAdapter adapter)
{
 // Create the adapter and set up the SelectCommand.
 adapter = new SqlDataAdapter("Select * From Inventory", _connectionString);

 // Obtain the remaining command objects dynamically at runtime
 // using the SqlCommandBuilder.
 var builder = new SqlCommandBuilder(adapter);
}

To simplify the construction of data adapter objects, each of the Microsoft-supplied ADO.NET data
providers provides a command builder type. The SqlCommandBuilder automatically generates the values
contained within the SqlDataAdapter’s InsertCommand, UpdateCommand, and DeleteCommand properties,
based on the initial SelectCommand. The benefit here is that you do not need to build all the SqlCommand and
SqlParameter types by hand.

Here’s an obvious question at this point: how is a command builder able to build these SQL command
objects on the fly? The short answer is metadata. When you call the Update() method of a data adapter at
runtime, the related command builder will read the database’s schema data to autogenerate the underlying
insert, delete, and update command objects.

Obviously, doing so requires additional round-trips to the remote database; this means it will hurt
performance if you use the SqlCommandBuilder numerous times in a single application. Here, you minimize
the negative effect by calling your ConfigureAdapter() method at the time the InventoryDALDC object is
constructed, retaining the configured SqlDataAdapter for use throughout the object’s lifetime.

In the previous code snippet, you did not use the command builder object (SqlCommandBuilder, in this
case) beyond passing in the data adapter object as a constructor parameter. As odd as this might seem, this
is all you must do (at a minimum). Under the hood, this type configures the data adapter with the remaining
command objects.

While you might love the idea of getting something for nothing, you should understand that command
builders come with some critical restrictions. Specifically, a command builder is able only to autogenerate
SQL commands for use by a data adapter if all the following conditions are true:

•	 The SQL SELECT command interacts with only a single table (e.g., no joins).

•	 The single table has been attributed with a primary key.

•	 The table must have a column or columns representing the primary key that you
include in your SQL SELECT statement.

Based on the way you constructed your AutoLot database, these restrictions pose no problem. However,
in a more industrial-strength database, you will need to consider whether this type is at all useful (if not,
remember that Visual Studio will autogenerate a good deal of the required code using various database
designer tools, as you will see later).

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

894

Implementing GetAllInventory()
Now that your data adapter is ready to go, the first method of your new class type will use the Fill() method
of the SqlDataAdapter object to fetch a DataTable representing all records in the Inventory table of the
AutoLot database, like so:

public DataTable GetAllInventory()
{
 DataTable inv = new DataTable("Inventory");
 _adapter.Fill(inv);
 return inv;
}

Implementing UpdateInventory()
The UpdateInventory() method is simple, as shown here:

public void UpdateInventory(DataTable modifiedTable)
{
 _adapter.Update(modifiedTable);
}

Here, the data adapter object examines the RowState value of each row of the incoming DataTable.
Based on this value (e.g., RowState.Added, RowState.Deleted, or RowState.Modified), the correct
command object is leveraged behind the scenes.

Setting Your Version Number
Great! At this point, the logic of the second version of your data access library is complete. You are not
required to do so, but set the version number of this library to 2.0.0.0, just for good housekeeping. As
described in Chapter 14, you can change the version of a .NET assembly by double-clicking the Properties
node of your Solution Explorer and then clicking the Assembly Information button located in the Application
tab. In the resulting dialog box, set the Major number of the assembly version to the value of 2 (see Chapter 14
for more details). After you do this, recompile your application to update the assembly manifest.

 ■ Source Code You can find the AutoLotDAL2 project in the Chapter 22 subdirectory.

Testing the Disconnected Functionality
At this point, you can build a front end to test your new InventoryDALDC class. Once again, you will use
the Windows Forms API to display your data on a graphical user interface. Create a new Windows Forms
application named InventoryDALDisconnectedGUI, change your initial Form1.cs file to MainForm.cs using
the Solution Explorer, and set the Text property of the form to Simple GUI Front End to the Inventory Table.
After you create the project, set a reference to your updated AutoLotDAL.dll assembly (be sure you pick
version 2.0.0.0!) and import the following namespace:

using AutoLotDAL2.DisconnectedLayer;

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

895

The design of the form consists of a single Label, DataGridView (named inventoryGrid), and Button
control (named btnUpdateInventory), which you configure to handle the Click event. Here is the definition
of the form:

public partial class MainForm : Form
{
 InventoryDALDC _dal = null;

 public MainForm()
 {
 InitializeComponent();

 string cnStr =
 @"Data Source=(local)\SQLEXPRESS2014;Initial Catalog=AutoLot;" +
 "Integrated Security=True;Pooling=False";

 // Create our data access object.
 _dal = new InventoryDALDC(cnStr);

 // Fill up our grid!
 inventoryGrid.DataSource = _dal.GetAllInventory();
 }

 private void btnUpdateInventory_Click(object sender, EventArgs e)
 {
 // Get modified data from the grid.
 DataTable changedDT = (DataTable)inventoryGrid.DataSource;

 try
 {
 // Commit our changes.
 _dal.UpdateInventory(changedDT);
 inventoryGrid.DataSource = _dal.GetAllInventory();
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
}

After you create the InventoryDALDC object, you can bind the DataTable returned from
GetAllInventory() to the DataGridView object. When the user clicks the Update button, you extract the
modified DataTable from the grid (with the DataSource property) and pass it into your UpdateInventory()
method.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

896

That’s it! After you run this application, add a set of new rows to the grid and update/delete a few others.
Assuming you click the Button control, you will see your changes have persisted into the AutoLot database.
Because of the way data binding works with Windows Forms, you need to reset the DataSource on the
Grid for the changes to show up immediately. As you will see when you build applications with Windows
Presentation Foundation (WPF), the Observable pattern fixes this behavior.

 ■ Source Code You can find the updated InventoryDALDisconnectedGUI project in the Chapter 22
subdirectory.

Multitabled DataSet Objects and Data Relationships
So far, all of this chapter’s examples have operated on a single DataTable object. However, the power of the
disconnected layer shines through when a DataSet object contains numerous interrelated DataTables. In
this case, you can define any number of DataRelation objects in the DataSet’s DataRelation collection to
account for the interdependencies of the tables. The client tier can use these objects to navigate between the
table data without incurring network round-trips.

 ■ Note Rather than updating AutoLotDAL.dll to account for the Customers and Orders tables, this
example isolates all the data access logic within a new Windows Forms project. however, intermixing UI and
data logic in a production-level application is not recommended. The final examples of this chapter leverage
various database design tools to decouple the UI logic from the data logic code.

Begin this example by creating a new Windows Forms application named MultitabledDataSetApp. The
GUI is simple enough (note I changed the name of my initial Form1.cs file to MainForm.cs and the text
property to AutoLot Database Manipulator). In Figure 22-11, you can see three DataGridView widgets
(dataGridViewInventory, dataGridViewCustomers, and dataGridViewOrders) that hold the data retrieved
from the Inventory, Customers, and Orders tables of the AutoLot database. In addition, the initial Button
(named btnUpdateDatabase) submits all changes entered within the grids to the database for processing
using data adapter objects.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

897

Prepping the Data Adapters
To keep the data access code as simple as possible, the MainForm will use command builder objects to
autogenerate the SQL commands for each of the three SqlDataAdapters (one for each table). Here is the
initial update to the Form-derived type (don’t forget to import the System.Data.SqlClient namespace):

public partial class MainForm : Form
{
 // Form wide DataSet.
 private DataSet _autoLotDs = new DataSet("AutoLot");

 // Make use of command builders to simplify data adapter configuration.
 private SqlCommandBuilder _sqlCbInventory;
 private SqlCommandBuilder _sqlCbCustomers;
 private SqlCommandBuilder _sqlCbOrders;

 // Our data adapters (for each table).
 private SqlDataAdapter _invTableAdapter;
 private SqlDataAdapter _custTableAdapter;
 private SqlDataAdapter _ordersTableAdapter;

 // Form wide connection string.
 private string _connectionString;
...
}

Figure 22-11. The initial UI will display data from each table of the AutoLot database

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

898

The constructor does the grunt work of creating your data-centric member variables and filling the
DataSet. This example assumes you have authored an App.config file that contains the correct connection
string data (and that you have referenced System.Configuration.dll and imported the System.
Configuration namespace), as in this example:

<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
 <connectionStrings>
 <add name ="AutoLotSqlProvider" connectionString =
 "Data Source=(local)\SQLEXPRESS2014;
 Integrated Security=SSPI;Initial Catalog=AutoLot"
 />
 </connectionStrings>
</configuration>

Also note that you include a call to a private helper function, BuildTableRelationship(), as follows:

public MainForm()
{
 InitializeComponent();

 // Get connection string.
 _connectionString =
 ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"]
 .ConnectionString;

 // Create adapters.
 _invTableAdapter = new SqlDataAdapter(
 "Select * from Inventory", _connectionString);
 _custTableAdapter = new SqlDataAdapter(
 "Select * from Customers", _connectionString);
 _ordersTableAdapter = new SqlDataAdapter(
 "Select * from Orders", _connectionString);

 // Autogenerate commands.
 _sqlCbInventory = new SqlCommandBuilder(_invTableAdapter);
 _sqlCbOrders = new SqlCommandBuilder(_ordersTableAdapter);
 _sqlCbCustomers = new SqlCommandBuilder(_custTableAdapter);

 // Fill tables in DataSet.
 _invTableAdapter.Fill(_autoLotDs, "Inventory");
 _custTableAdapter.Fill(_autoLotDs, "Customers");
 _ordersTableAdapter.Fill(_autoLotDs, "Orders");

 // Build relations between tables.
 BuildTableRelationship();

 // Bind to grids
 dataGridViewInventory.DataSource = _autoLotDs.Tables["Inventory"];
 dataGridViewCustomers.DataSource = _autoLotDs.Tables["Customers"];
 dataGridViewOrders.DataSource = _autoLotDs.Tables["Orders"];
}

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

899

Building the Table Relationships
The BuildTableRelationship() helper function does the grunt work to add two DataRelation objects into
the autoLotDS object. Recall from Chapter 21 that the AutoLot database expresses a number of parent-child
relationships, which you can account for with the following code:

private void BuildTableRelationship()
{
 //Create CustomerOrder data relation object.
 DataRelation dr = new DataRelation("CustomerOrder",
 _autoLotDs.Tables["Customers"].Columns["CustID"],
 _autoLotDs.Tables["Orders"].Columns["CustID"]);
 _autoLotDs.Relations.Add(dr);

 // Create InventoryOrder data relation object.
 dr = new DataRelation("InventoryOrder",
 _autoLotDs.Tables["Inventory"].Columns["CarID"],
 _autoLotDs.Tables["Orders"].Columns["CarID"]);
 _autoLotDs.Relations.Add(dr);
}

Note that you establish a friendly string moniker with the first parameter when you create a
DataRelation object (you’ll see the usefulness of doing so in just a minute). You also establish the keys used
to build the relationship itself. Notice that the parent table (the second constructor parameter) is specified
before the child table (the third constructor parameter).

Updating the Database Tables
Now that the DataSet has been filled with data from the data source, you can manipulate each
DataTable locally. To do so, run the application and insert, update, or delete values from any of the three
DataGridViews. When you are ready to submit the data back for processing, click the Update button. You
should find it easy to follow along with the code behind the related Click event at this point.

private void btnUpdateDatabase_Click(object sender, EventArgs e)
{
 try
 {
 _invTableAdapter.Update(_autoLotDs, "Inventory");
 _custTableAdapter.Update(_autoLotDs, "Customers");
 _ordersTableAdapter.Update(_autoLotDs, "Orders");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Now run your application and perform various updates. When you rerun the application, you should
find that your grids are populated with the recent changes.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

900

Navigating Between Related Tables
Now let’s look at how a DataRelation allows you to move between related tables programmatically. Extend
your UI to include a new Button (named btnGetOrderInfo), a related TextBox (named txtCustID), and a
descriptive Label (you can group these controls within a GroupBox for more visual appeal).

Figure 22-12 shows one possible UI of the application.

Figure 22-12. The updated UI allows the user to look up customer order information

This updated UI lets the user enter the ID of a customer and retrieve all the relevant information about
that customer’s order (e.g., name, order ID, and car order). This information will be formatted into a string
type that is eventually displayed within a message box. Consider the following code behind the new Button’s
Click event handler:

private void btnGetOrderInfo_Click(object sender, EventArgs e)
{
 string strOrderInfo = string.Empty;

 // Get the customer ID in the text box.
 int custID = int.Parse(txtCustID.Text);

 // Now based on custID, get the correct row in Customers table.
 var drsCust = _autoLotDs.Tables["Customers"].Select($"CustID = {custID}");
 strOrderInfo +=
 $"Customer {drsCust[0]["CustID"]}: {drsCust[0]["FirstName"].ToString().Trim()}
{drsCust[0]["LastName"].ToString().Trim()}\n";

 // Navigate from customer table to order table.
 var drsOrder = drsCust[0].GetChildRows(_autoLotDs.Relations["CustomerOrder"]);

 // Loop through all orders for this customer.
 foreach (DataRow order in drsOrder)
 {
 strOrderInfo += $"----\nOrder Number: {order["OrderID"]}\n";

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

901

 // Get the car referenced by this order.
 DataRow[] drsInv = order.GetParentRows(_autoLotDs.Relations["InventoryOrder"]);

 // Get info for (SINGLE) car info for this order.
 DataRow car = drsInv[0];
 strOrderInfo += $"Make: {car["Make"]}\n";
 strOrderInfo += $"Color: {car["Color"]}\n";
 strOrderInfo += $"Pet Name: {car["PetName"]}\n";
 }

 MessageBox.Show(strOrderInfo, "Order Details");

}

Figure 22-13 shows one possible output when specifying a customer ID with the value of 3 (your output
may differ based on the data within your AutoLot database tables).

Figure 22-13. Navigating data relations

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

902

This previous example should probably convince you of the usefulness of the DataSet class. Given that
a DataSet is completely disconnected from the underlying data source, you can work with an in-memory
copy of data and navigate around each table to make any necessary updates, deletes, or inserts without
incurring any round-trips to the database. After you finish this, you can submit your changes to the data
store for processing. The end result is a scalable and robust application.

 ■ Source Code You can find the MultitabledDataSetApp project in the Chapter 22 subdirectory.

The Windows Forms Database Designer Tools
All the examples thus far have involved a fair amount of elbow grease in the sense that you had to author
all data access logic by hand. While you did offload a good amount of this code to a .NET code library
(AutoLotDAL.dll) for reuse in later chapters of the book, you still had to create the various objects of your
data provider manually before interacting with the relational database. The next task in this chapter is to
look at how you use various Windows Forms database designer tools, which can produce a good deal of data
access code on your behalf.

One way you can use these integrated tools is to use the designers supported by the Windows Forms
DataGridView control. The problem with this approach is that the database designer tools will embed all the
data access code directly into your GUI code base! Ideally, you want to isolate all this designer- generated
code in a dedicated .NET code library, so you can easily reuse your database access logic across multiple
projects.

Nevertheless, it might be helpful to begin with an examination of how you can use the DataGridView
control to generate the required data access code, given that this approach does have some usefulness in
small-scale projects and application prototypes. After this point, you will learn how to isolate the same
designer-generated code into a third version of AutoLotDAL.dll.

Visually Designing the DataGridView
The DataGridView control has an associated wizard that can generate data access code on your behalf. Begin
by creating a new Windows Forms application project named DataGridViewDataDesigner. Rename the
initial form to MainForm.cs using the Solution Explorer, set Text to Windows Forms Data Wizards, and then
add an instance of the DataGridView control (named inventoryDataGridView) to your initial form. When
you select your DataGridView control, an inline editor should open to the right side of the control (if not,
just click the small “triangle” button found on the upper right of the control). From the Choose Data Source
drop-down box, select the Add Project Data Source link (see Figure 22-14).

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

903

This launches the Data Source Configuration Wizard. This tool guides you through a series of steps
that allow you to select and configure a data source, which you can then bind to the DataGridView. The first
step of the wizard asks you to identify the type of data source you want to interact with. Select Database (see
Figure 22-15) and click the Next button.

Figure 22-15. Selecting the type of data source

Figure 22-14. The DataGridView editor

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

904

The next step (which will differ slightly based on your selection in step 1) asks what type of database
model to use. You will see the Dataset database model only if you’ve added the Entity Framework to your
project. Pick the Dataset database model (see Figure 22-16).

The next step allows you to configure your database connection. If you have a database currently added
to Server Explorer, you should find it listed automatically in the drop-down list. If this is not the case (or if
you ever need to connect to a database you have not previously added to Server Explorer), click the New
Connection button. Figure 22-17 shows the result of selecting the local instance of AutoLot.

Figure 22-16. Choosing the database model

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

905

Figure 22-17. Choosing the database

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

906

In the wizard’s next step, you will be asked if you would like to save the connection string in an
application configuration file as in Figure 22-18. Elect to save your connection string and then click the Next
button.

Figure 22-18. Saving the connection string in the app.config file

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

907

Figure 22-19. Selecting the Inventory table

In the final step, you select the database objects that will be accounted for by the autogenerated
DataSet and related data adapters. While you could select each of the data objects of the AutoLot database,
here you concern yourself only with the Inventory table. Given this, change the suggested name of the
DataSet to InventoryDataSet (see Figure 22-19), check the Inventory table, and click the Finish button.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

908

After you do this, you will see that the visual designer has been updated in many ways. The most
noticeable change is that the DataGridView displays the schema of the Inventory table, as illustrated by
the column headers. Also, you will see three components on the bottom of the form designer (in a region
dubbed the component tray): a DataSet component, a BindingSource component, and a TableAdapter
component (see Figure 22-20).

At this point, you can run your application, and lo and behold, the grid is filled with the records of the
Inventory table! Of course, there is no magic to speak of in this case. The IDE has authored a good amount
of code on your behalf and set up the grid control to use it. Let’s dig into some of this autogenerated code.

Figure 22-20. Your Windows Forms project, after running the Data Source Configuration Wizard

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

909

The Generated App.config File
If you examine your Solution Explorer, you will find your project now contains an App.config file that
contains a <connectionStrings> element that has been given a somewhat peculiar name, as shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name="DataGridViewDataDesigner.Properties.Settings.AutoLotConnectionString"
 c onnectionString="Data Source=.\SQLEXPRESS2014;Initial Catalog=AutoLot;Integrated

Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
</configuration>

The autogenerated data adapter object (which you will learn more about momentarily) uses the lengthy
value, "DataGridViewDataDesigner.Properties.Settings.AutoLotConnectionString".

Examining the Strongly Typed DataSet
In addition to your configuration file, the data wizard tools generated what is termed a strongly typed
DataSet. This term describes a custom class that extends DataSet and exposes a number of members that
allow you to interact with the database using a more intuitive object model. For example, strongly typed
DataSet objects contain properties that map directly to the database table names. Thus, you can use the
Inventory property to nab the rows and columns directly, rather than having to drill into the collection of
tables using the Tables property.

If you insert a new class diagram file into your project, you’ll notice that the wizard has created a class
named InventoryDataSet. This class defines a handful of members, the most important of which is a
property named Inventory (see Figure 22-21).

Figure 22-21. The Data Source Configuration Wizard created a strongly typed DataSet

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

910

If you double-click the InventoryDataSet.xsd file within Solution Explorer, you will load the Visual Studio
Dataset Designer (you’ll learn more details about this designer momentarily). If you right-click anywhere within
this designer and select the View Code option, you will notice the following fairly empty partial class definition:

partial class InventoryDataSet {
}

If necessary, you can add custom members to this partial class definition; however, the real action
takes place within the designer-maintained file, InventoryDataSet.Designer.cs. If you open this file
using Solution Explorer, you will see that InventoryDataSet extends the DataSet parent class. Consider the
following partial code, with comments added for clarity:

// This is all designer-generated code!
public partial class InventoryDataSet : global::System.Data.DataSet
{
 // A member variable of type InventoryDataTable.
 private InventoryDataTable tableInventory;

 // Each constructor calls a helper method named InitClass().
 public InventoryDataSet()
 {
 ...
 this.InitClass();
 ...
 }

 // InitClass() preps the DataSet and adds the InventoryDataTable
 // to the Tables collection.
 private void InitClass()
 {
 this.DataSetName = "InventoryDataSet";
 this.Prefix = "";
 this.Namespace = "http://tempuri.org/InventoryDataSet.xsd";
 this.EnforceConstraints = true;
 this.SchemaSerializationMode =
 global::System.Data.SchemaSerializationMode.IncludeSchema;
 this.tableInventory = new InventoryDataTable();
 base.Tables.Add(this.tableInventory);
 }

 // The read-only Inventory property returns
 // the InventoryDataTable member variable.
 public InventoryDataTable Inventory
 {
 get { return this.tableInventory; }
 }
}

Notice that your strongly typed DataSet has a member variable that is a strongly typed DataTable; in this
case, the class is named InventoryDataTable. The constructor of the strongly typed DataSet class makes
a call to a private initialization method named InitClass(), which adds an instance of this strongly typed
DataTable to the Tables collection of the DataSet. Last but not least, notice that the implementation of the
Inventory property returns the InventoryDataTable member variable.

http://tempuri.org/InventoryDataSet.xsd

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

911

Examining the Strongly Typed DataTable
Now return to the class diagram file and open up the Nested Types node on the InventoryDataSet icon. Here
you will see the strongly typed DataTable class named InventoryDataTable and a strongly typed DataRow
class named InventoryRow.

The InventoryDataTable class (which is the same type as the member variable of the strongly typed
DataSet you examined) defines a set of properties that are based on the column names of the physical
Inventory table (CarIDColumn, ColorColumn, MakeColumn, and PetNameColumn), as well as a custom indexer
and a Count property to obtain the current number of records.

More interestingly, this strongly typed DataTable class defines a set of methods that allow you to insert,
locate, and delete rows within the table using strongly typed members (an attractive alternative to navigating
the Rows and Columns indexers manually). For example, AddInventoryRow() lets you add a new record row
to the table in memory, FindByCarID() lets you do a lookup based on the primary key of the table, and
RemoveInventoryRow() lets you remove a row from the strongly typed table (see Figure 22-22).

Figure 22-22. The strongly typed DataTable is nested in the strongly typed DataSet

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

912

Examining the Strongly Typed DataRow
The strongly typed DataRow class, which is also nested in the strongly typed DataSet, extends the DataRow
class and exposes properties that map directly to the schema of the Inventory table. Also, the data designer
tool has created a method (IsPetNameNull()) that will perform a check on whether this column has a value
(see Figure 22-23).

Figure 22-23. The strongly typed DataRow

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

913

Examining the Strongly Typed Data Adapter
Strong typing for your disconnected types is a solid benefit of using the Data Source Configuration Wizard,
given that creating these classes by hand would be tedious (but entirely possible). This same wizard was
kind enough to generate a custom data adapter object that can fill and update the InventoryDataSet and
InventoryDataTable objects in a strongly typed manner. Locate the InventoryTableAdapter on the visual
class designer and examine the generated members in Figure 22-24.

Figure 22-24. A customized data adapter that operates on the strongly typed DataSet and DataTable

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

914

The autogenerated InventoryTableAdapter type maintains a collection of SqlCommand objects
(which you can access using the CommandCollection property), each of which has a fully populated set
of SqlParameter objects. Furthermore, this custom data adapter provides a set of properties to extract
the underlying connection, transaction, and data adapter objects, as well as a property to obtain an array
representing each command type.

Completing the Windows Forms Application
If you examine the Load event handler of the form-derived type (in other words, if you view the code for
MainForm.cs and locate the MainForm_Load() method), you will find that the Fill() method of the custom
table adapter is called upon startup, passing in the custom DataTable maintained by the custom DataSet.

private void MainForm_Load(object sender, EventArgs e)
{
 this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);
}

You can use this same custom data adapter object to update changes to the grid. Update the UI of your
form with a single Button control (named btnUpdateInventory). Next, handle the Click event and author
the following code within the event handler:

private void btnUpdateInventory_Click(object sender, EventArgs e)
{
 try
 {
 // Save changes with the Inventory table back to the database.
 this.inventoryTableAdapter.Update(this.inventoryDataSet.Inventory);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 // Get fresh copy for grid.
 this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);
}

Run your application again; add, delete, or update the records displayed in the grid; and click the
Update button. When you run the program again, you will find your changes are present and accounted for.

Great! This example shows how helpful the DataGridView control designer can be. It lets you work with
strongly typed data and generates a majority of the necessary database logic on your behalf. The obvious
problem is that this code is tightly connected to the window that uses it. Ideally, this sort of code belongs
in your AutoLotDAL.dll assembly (or some other data access library). However, you might wonder how to
harvest the code generated using the DataGridView’s associated wizard in a Class Library project, given that
there is no form designer by default.

 ■ Source Code You can find the DataGridViewDataDesigner project in the Chapter 22 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

915

Isolating Strongly Typed Database Code into a Class Library
Fortunately, you can activate the data design tools of Visual Studio from any sort of project (UI-based or
otherwise) without the need to copy and paste massive amounts of code between projects. You can see this
in action by adding more functionality to AutoLotDAL.dll. You can continue working with your existing
project. In the downloaded code for the chapter, the code for the next section is in a separate project named
AutoLotDAL3.dll.

Create a new folder named DataSets in the project, and insert a new strongly typed DataSet class
(named AutoLotDataSet.xsd) into your new folder using the Project ➤ Add New Item menu option (to
quickly find the DataSet project type, select the Data section of the New Item dialog; see Figure 22-25).

Figure 22-25. Inserting a new strongly typed DataSet

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

916

Viewing the Generated Code
The DataSet designer created the same sort of code that the DataGridView wizard did in the previous
Windows Forms example. However, this time you account for the Inventory, Customers, and Orders tables,
as well as the GetPetName stored procedure, so you have many more generated classes. Basically, each
database table you drag onto the designer surface gives you DataTable, DataRow, and data adapter classes
contained in a strongly typed DataSet.

The strongly typed DataSet, DataTable, and DataRow classes will be placed into the root namespace
of the project (AutoLotDAL). The custom table adapters will be placed within a nested namespace. You can
view all the generated types most easily by using the Class View tool, which you open from the Visual Studio
View menu (see Figure 22-27).

Figure 22-26. Your custom strongly typed types, this time within a Class Library project

This opens a blank Dataset Designer surface. At this point, you can use the Server Explorer to connect to
a given database (you should already have a connection to AutoLot) and then drag and drop each table and
stored procedure you want in the DataSet onto the design surface. In Figure 22-26, you can see the custom
aspects of AutoLot are accounted for, and their relationships are realized automatically (this example does
not drag over the CreditRisk table).

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

917

Figure 22-27. The autogenerated strongly typed data of the AutoLot database

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

918

For the sake of completion, you might want use the Visual Studio Properties editor (see Chapter 14 for
details) to set the version of this latest incarnation of AutoLotDAL.dll to 3.0.0.0.

 ■ Source Code You can find the AutoLotDAL3 project in the Chapter 22 subdirectory.

Selecting Data with the Generated Code
At this point, you can use your strongly typed data within any .NET application that needs to communicate
with the AutoLot database. To make sure you understand the basic mechanics, create a Console
Application project named StronglyTypedDataSetConsoleClient. Next, add a reference to your latest-and-
greatest version of AutoLotDAL3.dll and import the AutoLotDAL3.DataSets, AutoLotDAL3.DataSets.
AutoLotDataSetTableAdapters, and static System.Console namespaces into your initial C# code file.

Here is a Main() method that uses the InventoryTableAdapter object to retrieve all data in the
Inventory table. Notice that you do not need to specify a connection string because that information is now
part of the strongly typed object model. After you fill the table, you print the results using a helper method
named PrintInventory(). Note that you can manipulate the strongly typed DataTable just as you do a
“normal” DataTable using the Rows and Columns collections.

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("***** Fun with Strongly Typed DataSets *****\n");

 // Caller creates the DataSet object.
 var table = new AutoLotDataSet.InventoryDataTable();

 // Inform adapter of the Select command text and connection.
 var adapter = new InventoryTableAdapter();

 // Fill our DataSet with a new table, named Inventory.
 adapter.Fill(table);

 PrintInventory(table); Console.ReadLine();
 }

 static void PrintInventory(AutoLotDataSet.InventoryDataTable dt)
 {
 // Print out the column names.
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write(dt.Columns[curCol].ColumnName + "\t");
 }
 WriteLine("\n----------------------------------");

http://dx.doi.org/10.1007/978-1-4842-1332-2_14
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

919

 // Print the DataTable.
 for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
 {
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write(dt.Rows[curRow][curCol] + "\t");
 }
 WriteLine();
 }
 }
}

Inserting Data with the Generated Code
Now assume you want to insert new records using this strongly typed object model. The following helper
function adds two new rows to the current InventoryDataTable and then updates the database using the
data adapter. You add the first row manually by configuring a strongly typed DataRow; you add the second
row by passing in the needed column data, which allows the DataRow to be created in the background
automatically.

public static void AddRecords(
 AutoLotDataSet.InventoryDataTable table,
 InventoryTableAdapter adapter)
{
 try
 {
 // Get a new strongly typed row from the table.
 AutoLotDataSet.InventoryRow newRow = table.NewInventoryRow();

 // Fill row with some sample data.
 newRow.Color = "Purple";
 newRow.Make = "BMW";
 newRow.PetName = "Saku";

 // Insert the new row.
 table.AddInventoryRow(newRow);

 // Add one more row, using overloaded Add method.
 table.AddInventoryRow("Yugo", "Green", "Zippy");

 // Update database.
 adapter.Update(table);
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

920

The Main() method can invoke this method; doing so updates the database table with these new
records.

static void Main(string[] args)
{
...
 // Add rows, update, and reprint.
 AddRecords(table, adapter);
 table.Clear();
 adapter.Fill(table);
 PrintInventory(table);
 Console.ReadLine();
}

Deleting Data with the Generated Code
Deleting records with this strongly typed object model is also simple. The autogenerated FindByXXXX()
method (where XXXX is the name of the primary key column) of the strongly typed DataTable returns the
correct (strongly typed) DataRow using the primary key. Here is another helper method that deletes the two
records you just created:

private static void RemoveRecords(
 AutoLotDataSet.InventoryDataTable table, InventoryTableAdapter adapter)
{
 try
 {
 AutoLotDataSet.InventoryRow rowToDelete = table.FindByCarId(1);
 adapter.Delete(rowToDelete.CarId, rowToDelete.Make, rowToDelete.Color,
 rowToDelete.PetName);
 rowToDelete = table.FindByCarId(2);
 adapter.Delete(rowToDelete.CarId, rowToDelete.Make, rowToDelete.Color,
 rowToDelete.PetName);
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

If you call this from your Main() method and reprint the table, you should find these two test records
are no longer displayed.

 ■ Note If you want to make this example more flexible, you can gather data from the user using the
Console class.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

921

Invoking a Stored Procedure Using the Generated Code
Let’s look at one more example of using the strongly typed object model. In this case, you create a final
method that invokes the GetPetName stored procedure. When the data adapters for the AutoLot database
were created, there was a special class created named QueriesTableAdapter, which, as the name implies,
encapsulates the process of invoking stored procedures in the relational database. This final helper function
displays the name of the specified car when called from Main():

public static void CallStoredProc()
{
 try
 {
 var queriesTableAdapter = new QueriesTableAdapter();
 Write("Enter ID of car to look up: ");
 string carID = ReadLine() ?? "0";
 string carName = "";
 queriesTableAdapter.GetPetName(int.Parse(carID), ref carName);
 WriteLine($"CarID {carID} has the name of {carName}");
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

At this point, you know how to use strongly typed database types and package them up into a dedicated
class library. You can find more aspects of this object model to play around with, but you should be in a
perfect position to dig deeper if that interests you. To wrap things up for this chapter, you will learn how to
apply LINQ queries to an ADO.NET DataSet object.

 ■ Source Code You can find the StronglyTypedDataSetConsoleClient project in the Chapter 22 subdirectory.

Programming with LINQ to DataSet
You have seen in this chapter that you can manipulate the data within a DataSet in three distinct manners:

•	 By using the Tables, Rows, and Columns collections

•	 By using data table readers

•	 By using strongly typed data classes

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

922

When you use the various indexers of the DataSet and DataTable type, you can interact with the
contained data in a straightforward but loosely typed manner. Recall that this approach requires you to treat
the data as a tabular block of cells, as in this example:

static void PrintDataWithIndxers(DataTable dt)
{
 // Print the DataTable.
 for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
 {
 for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
 {
 Write(dt.Rows[curRow][curCol + "\t");
 }
 WriteLine();
 }
}

The CreateDataReader() method of the DataTable type offers a second approach, where you can treat
the data in the DataSet as a linear set of rows to be processed in a sequential manner. This allows you to
apply a connected data reader programming model to a disconnected DataSet.

static void PrintDataWithDataTableReader(DataTable dt)
{
 // Get the DataTableReader type.
 DataTableReader dtReader = dt.CreateDataReader();
 while (dtReader.Read())
 {
 for (int i = 0; i < dtReader.FieldCount; i++)
 {
 Write($"{dtReader.GetValue(i)}\t");
 }
 WriteLine();
 }
 dtReader.Close();
}

Finally, you can use a strongly typed DataSet to yield a code base that allows you to interact with data
in the object using properties that map to the column names in the relational database. Using strongly typed
objects allows you to author code such as the following:

static void AddRowWithTypedDataSet()
{
 InventoryTableAdapter invDA = new InventoryTableAdapter();
 AutoLotDataSet.InventoryDataTable inv = invDA.GetData();
 inv.AddInventoryRow("Ford", "Yellow", "Sal");
 invDA.Update(inv);
}

While all of these approaches have their place, the LINQ to DataSet API provides yet another option to
manipulate DataSet data using LINQ query expressions.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

923

 ■ Note You use the LINQ to DataSet API to apply LINQ queries only to DataSet objects returned by a data
adapter, but this has nothing to do with applying LINQ queries directly to the database engine. Chapter 23
will introduce you to the ADO.NET Entity Framework, which provides a way to represent SQL queries as LINQ
queries.

Out of the box, the ADO.NET DataSet (and related types such as DataTable and DataView) do not
have the necessary infrastructure to be a direct target for a LINQ query. For example, the following method
(which uses types in the AutoLotDisconnectedLayer namespace) results in a compile-time error:

static void LinqOverDataTable()
{
 // Get a DataTable of data.
 InventoryDALDC dal = new InventoryDALDC(
 @"Data Source=(local)\SQLEXPRESS2014;Initial Catalog=AutoLot;Integrated Security=True");
 DataTable data = dal.GetAllInventory();
 // Apply a LINQ query to the DataSet?
 var moreData = from c in data where (int)c["CarID"] > 5 select c;
}

If you were to compile the LinqOverDataTable() method, the compiler would inform you that the
DataTable type provides a query pattern implementation. Similar to the process of applying LINQ queries to
objects that do not implement IEnumerable<T>, ADO.NET objects must be transformed into a compatible
type. Understanding how to do so requires examining the types of System.Data.DataSetExtensions.dll.

The Role of the DataSet Extensions Library
The System.Data.DataSetExtensions.dll assembly, which is referenced by default in all Visual Studio
projects, augments the System.Data namespace with a handful of new types (see Figure 22-28).

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

924

The two most useful types by far are DataTableExtensions and DataRowExtensions. These classes
extend the functionality of DataTable and DataRow by using a set of extension methods (see Chapter 12).
The other key class is TypedTableBaseExtensions, which defines extension methods that you can apply to
strongly typed DataSet objects to make the internal DataTable objects LINQ aware. All of the remaining
members within the System.Data.DataSetExtensions.dll assembly are pure infrastructure, and they are
not intended to be used directly in your code base.

Obtaining a LINQ-Compatible DataTable
Now let’s look at how you use the DataSet extensions. Assume you have a new C# Console Application
project named LinqToDataSetApp. Add a reference to the latest-and-greatest version (3.0.0.0) of the
AutoLotDAL.dll assembly and update your initial code file with the following logic:

using System;
...

// Location of strongly typed data containers.
using AutoLotDAL3.DataSets;

// Location of strongly typed data adapters.
using AutoLotDAL3.DataSets.AutoLotDataSetTableAdapters;
using static System.Console;

Figure 22-28. The System.Data.DataSetExtensions.dll assembly

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

925

namespace LinqToDataSetApp
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("***** LINQ over DataSet *****\n");

 // Get a strongly typed DataTable containing the current Inventory
 // of the AutoLot database.
 AutoLotDataSet dal = new AutoLotDataSet();
 InventoryTableAdapter tableAdapter = new InventoryTableAdapter();
 AutoLotDataSet.InventoryDataTable data = tableAdapter.GetData();

 // Invoke the methods that follow here!
 ReadLine();
 }
 }
}

When you want to transform an ADO.NET DataTable (including a strongly typed DataTable)
into a LINQ-compatible object, you must call the AsEnumerable() extension method defined by the
DataTableExtensions type. This returns an EnumerableRowCollection object that contains a collection of
DataRows.

You can then use the EnumerableRowCollection type to operate on each row using basic DataRow
syntax (e.g., indexer syntax). Consider the following new method of your Program class, which takes a
strongly typed DataTable, obtains an enumerable copy of the data, and prints out each CarID value:

static void PrintAllCarIDs(DataTable data)
{
 // Get enumerable version of DataTable.
 EnumerableRowCollection enumData = data.AsEnumerable();

 // Print the car ID values.
 foreach (DataRow r in enumData)
 {
 WriteLine($"Car ID = {r["CarID"]}");
 }
}

At this point, you have not applied a LINQ query; however, the point here is that the enumData object
can now be the target of a LINQ query expression. Again, notice that the EnumerableRowCollection contains
a collection of DataRow objects because you are applying a type indexer against each subobject to print out
the value of the CarID column.

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

926

In most cases, you do not need to declare a variable of type EnumerableRowCollection to hold the
return value of AsEnumerable(). Rather, you can invoke this method from within the query expression itself.
Here is a more interesting method of the Program class, which obtains a projection of CarID + Makes from
all entries in the DataTable where the color is black (if you don’t have any black autos in your Inventory
table, you update this LINQ query as necessary):

static void ShowRedCars(DataTable data)
{
 // Project a new result set containing
 // the ID/color for rows where Color = Red.
 var cars = from car in data.AsEnumerable()
 where
 (string)car["Color"] == "Black"
 select new
 {
 ID = (int)car["CarID"],
 Make = (string)car["Make"]
 };
 WriteLine("Here are the red cars we have in stock:");
 foreach (var item in cars)
 {
 WriteLine($"-> CarID = {item.ID} is {item.Make}");
 }
}

The Role of the DataRowExtensions.Field<T>() Extension Method
One undesirable aspect of the current LINQ query expression is that you use numerous casting operations
and DataRow indexers to gather the result set, which could result in runtime exceptions if you attempt to
cast to an incompatible data type. To inject some strong typing into your query, you can use the Field<T>()
extension method of the DataRow type. Doing so lets you increase the type safety of your query because the
compatibility of data types is checked at compile time. Consider the following update:

var cars = from car in data.AsEnumerable()
 where
 car.Field<string>("Color") == "Black"
 select new
 {
 ID = car.Field<int>("CarID"),
 Make = car.Field<string>("Make")
 };

In this case, you can invoke Field<T>() and specify a type parameter to represent the underlying data
type of the column. As an argument to this method, you pass in the column name itself. Given the additional
compile-time checking, you should consider it a best practice to use Field<T>() (rather than the DataRow
indexer) when you process the roles of a EnumerableRowCollection.

Beyond the fact that you call the AsEnumerable() method, the overall format of the LINQ query is
identical to what you already saw in Chapter 13. Given this, there is no reason to repeat the details of the
various LINQ operators here. If you would like to see additional examples, you can look up the topic “LINQ
to DataSet Examples” in the .NET Framework 4.5 SDK documentation.

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

927

Hydrating New DataTables from LINQ Queries
It is also possible to populate the data of a new DataTable easily, based on the results of a LINQ query and
provided that you are not using projections. When you have a result set where the underlying type can be
represented as IEnumerable<T>, you can call the CopyToDataTable<T>() extension method on the result, as
in this example:

static void BuildDataTableFromQuery(DataTable data)
{
 var cars = from car in data.AsEnumerable()
 where car.Field<int>("CarID") > 5
 select car;
 // Use this result set to build a new DataTable.
 DataTable newTable = cars.CopyToDataTable();

 // Print the DataTable.
 for (int curRow = 0; curRow < newTable.Rows.Count; curRow++)
 {
 for (int curCol = 0; curCol < newTable.Columns.Count; curCol++)
 {
 Write(newTable.Rows[curRow][curCol].ToString().Trim() + "\t");
 }
 WriteLine();
 }
}

 ■ Note It is also possible to transform a LINQ query to a DataView type by using the AsDataView<T>()
extension method.

You might find this technique helpful when you want to use the result of a LINQ query as the source of a
data-binding operation. Recall that the DataGridView of Windows Forms (as well as an ASP.NET or WPF grid
control) supports a property named DataSource. You could bind a LINQ result to the grid as follows:

// Assume myDataGrid is a GUI-based grid object.
myDataGrid.DataSource = (from car in data.AsEnumerable()
 where car.Field<int>("CarID") > 5
 select car).CopyToDataTable();

This wraps up the examination of the disconnected layer of ADO.NET. Using this aspect of the API, you
can fetch data from a relational database, munch on the data, and return it for processing while keeping the
database connection open for the shortest possible amount of time.

 ■ Source Code You can find the LinqToDataSetApp example in the Chapter 22 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPTER 22 ■ ADO.NET PART II: ThE DISCONNECTED LAYER

928

Summary
This chapter dove into the details of the disconnected layer of ADO.NET. As you saw, the centerpiece of the
disconnected layer is the DataSet. This type is an in-memory representation of any number of tables and
any number of optional interrelationships, constraints, and expressions. The beauty of establishing relations
on your local tables is that you can programmatically navigate between them while disconnected from the
remote data store.

You also examined the role of the data adapter type in this chapter. Using this type (and the related
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties), the adapter can resolve
changes in the DataSet with the original data store. You also learned how to navigate the object model of a
DataSet using the brute-force manual approach, as well as with strongly typed objects, which the Dataset
Designer tools of Visual Studio typically generate.

You wrapped up by looking at one aspect of the LINQ technology set named LINQ to DataSet. This
allows you to obtain a queryable copy of the DataSet, which can receive well-formatted LINQ queries.

929

Chapter 23

ADO.NET Part III: Entity Framework

The previous two chapters examined the fundamental ADO.NET programming models—the connected and
disconnected layers, specifically. These approaches have enabled .NET programmers to work with relational
data (in a relatively straightforward manner) since the initial release of the platform. However, Microsoft
introduced a new component of the ADO.NET API called the Entity Framework (or simply, EF) in .NET 3.5
Service Pack 1.

 ■ Note While this first version was widely criticized, the EF team at Microsoft has been hard at work
releasing new versions. Visual Studio 2015 currently (at the time of this writing) ships with version 6.1.3, which
is packed full of features and performance enhancements over earlier versions. Entity Framework 7 is still in the
early beta stages (again, at the time of this writing). I made the decision to focus on EF 6.x for this book since
there are too many issues with EF 7.

The overarching goal of EF is to allow you to interact with data from relational databases using an object
model that maps directly to the business objects (or domain objects) in your application. For example, rather
than treating a batch of data as a collection of rows and columns, you can operate on a collection of strongly
typed objects termed entities. These entities are also natively LINQ aware, and you can query against them
using the same LINQ grammar you learned about in Chapter 12. The EF runtime engine translates your
LINQ queries into proper SQL queries on your behalf.

This chapter will introduce you to data access using the Entity Framework. You will learn about creating
a domain model, mapping model classes to the database, and the role of the DbContext class. You will also
learn about navigation properties, transactions, and concurrency checking.

By the time you complete this chapter, you will have the final version of AutoLotDAL.dll. You will use
this version of AutoLotDAL.dll later in this book when you learn about Windows Presentation Foundation
(WPF), ASP.NET WebForms, and ASP.NET MVC.

 ■ Note All the versions of the Entity Framework (up to and including EF 6.x) support using an entity designer
to create an entity data model XML (EDMX) file. Starting with version 4.1, EF added support for plain old CLR
objects (POCO) using a technique referred to as Code First. EF 7 will support only the Code First paradigm,
dropping all designer support. For this reason, this chapter will focus on Code First.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

930

Understanding the Role of the Entity Framework
The connected and disconnected layers of ADO.NET discussed in Chapters 21 and 22 provide you with a
fabric that lets you select, insert, update, and delete data with connections, commands, data readers, data
adapters, and DataSet objects. While this is all well and good, these aspects of ADO.NET force you to treat
the fetched data in a manner that is tightly coupled to the physical database schema. Recall, for example,
that when you use the connected layer, you typically iterate over each record by specifying column names
to a data reader. On the other hand, if you opt to use the disconnected layer, you find yourself traversing the
rows and columns collections of a DataTable object within a DataSet container.

If you use the disconnected layer in conjunction with strongly typed DataSets/data adapters, you end
up with a programming abstraction that provides some helpful benefits. First, the strongly typed DataSet
class exposes a table data using class properties. Second, the strongly typed table adapter supports methods
that encapsulate the construction of the underlying SQL statements. Recall the following AddRecords()
method from Chapter 22:

public static void AddRecords(AutoLotDataSet.InventoryDataTable table,
 InventoryTableAdapter adapter)
{
 // Get a new strongly typed row from the table.
 AutoLotDataSet.InventoryRow newRow = table.NewInventoryRow();

 // Fill row with some sample data.
 newRow.Color = "Purple";
 newRow.Make = "BMW";
 newRow.PetName = "Saku";

 // Insert the new row.
 table.AddInventoryRow(newRow);

 // Add one more row, using overloaded Add method.
 table .AddInventoryRow("Yugo", "Green", "Zippy");

 // Update database.
 adapter.Update(table);
}

Things got even better when you combined the disconnected layer with LINQ to DataSet. In the
example, you applied LINQ queries to your in-memory data to obtain a new result set. You could then
optionally map to a stand-alone object such as a new DataTable, a List<T>, a Dictionary<K,V>, or an array
of data, as follows:

static void BuildDataTableFromQuery(DataTable data)
{
 var cars = from car in data.AsEnumerable()
 where car.Field<int>("CarID") > 5 select car;

 // Use this result set to build a new DataTable.
 DataTable newTable = cars.CopyToDataTable();

 // Work with DataTable...
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_21
http://dx.doi.org/10.1007/978-1-4842-1332-2_22
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

931

While LINQ to DataSet is useful, you need to remember that the target of your LINQ query is the data
returned from the database, not the database engine itself. This means you are pulling all the data from the
database into the client and then using LINQ to get a subset or transform the data. Ideally, you could build a
LINQ query that you send directly to the database engine for processing and get some strongly typed data in
return (which is exactly what the ADO.NET Entity Framework lets you accomplish).

When you use either the connected or disconnected layer of ADO.NET, you must always be mindful
of the physical structure of the back-end database. You must know the schema of each data table, author
potentially complex SQL queries to interact with said data table, and so forth. This can force you to author
some fairly verbose C# code because C# itself does not speak the language of database schema directly.

To make matters worse, the way in which a physical database is constructed (by your friendly DBA) is
squarely focused on database constructs such as foreign keys, views, and stored procedures. The databases
constructed by your friendly DBA can grow quite complex as the DBA endeavors to account for security and
scalability. This also complicates the sort of C# code you must author to interact with the data store.

The ADO.NET Entity Framework (EF) is a programming model that attempts to lessen the gap between
database constructs and object-oriented programming constructs. Using EF, you can interact with a
relational database without ever seeing a line of SQL code (if you so choose). Rather, when you apply LINQ
queries to your strongly typed classes, the EF runtime generates proper SQL statements on your behalf.

 ■ Note LINQ to Entities is the term that describes the act of applying LINQ queries to ADO.NEt EF
entity objects.

Another possible approach (rather than updating database data by finding a row, updating the row, and
sending the row back for processing with a batch of SQL queries), you can simply change properties on an
object and save its state. Again, the EF runtime updates the database automatically.

As far as Microsoft is concerned, the ADO.NET Entity Framework is simply another approach to the
data-access APIs and is not intended to completely replace using ADO.NET directly from C# code. However,
once you spend some time working with EF, you might quickly find yourself preferring this rich object model
over the more primitive world of SQL queries and row/column collections.

Nevertheless, chances are you will find uses for all three approaches in your .NET projects; in some
cases, the EF model might complicate your code base. For example, if you want to build an in-house
application that needs to communicate with only a single database table, you might prefer to use the
connected layer to call a batch of related stored procedures. Larger applications can particularly benefit from
EF, especially if the development team is comfortable working with LINQ. As with any new technology, you
will need to determine how (and when) ADO.NET EF is appropriate for the task at hand.

 ■ Note you might recall a database programming API introduced with .NEt 3.5 called LINQ to SQL. this
API is close in concept (and fairly close in terms of programming constructs) to ADO.NEt EF. LINQ to SQL is in
maintenance mode, meaning it will receive only critical bug fixes. If you have an application using LINQ to SQL,
know that Microsoft’s official policy is to support all software for at least ten years after its “end of life.” So
while it won’t be removed from your machine by the software guardians, the official word from those kind folks
in Redmond is that you should put your efforts into EF, not LINQ to SQL. they certainly are.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

932

The Role of Entities
The strongly typed classes mentioned previously are called entities. Entities are a conceptual model of a
physical database that maps to your business domain. Formally speaking, this model is termed an entity
data model (EDM). The EDM is a client-side set of classes that are mapped to a physical database by Entity
Framework convention and configuration. You should understand that the entities need not map directly to
the database schema insofar as naming conventions go. You are free to restructure your entity classes to fit
your needs, and the EF runtime will map your unique names to the correct database schema.

 ■ Note In the Code First world, most people refer to the POCO classes as models and the collection of these
classes as the model. When the model classes are instantiated with data from the data store, they are then
referred to as entities. In reality, the terms are pretty much used interchangeably.

For example, you might recall that you created the simple Inventory table in the AutoLot database
using the database schema shown in Figure 23-1.

Figure 23-1. Structure of the Inventory table of the AutoLot database

If you were to create the model for the Inventory table of the AutoLot database (you’ll see how to do
so momentarily), the class would be called Inventory by default. However, you could rename this class to
Car and define uniquely named properties of your choosing, which will be mapped to the columns of the
Inventory table. This loose coupling means you can shape the entities so they closely model your business
domain. Figure 23-2 shows such an entity class.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

933

 ■ Note In many cases, the model classes will be identically named to the related database tables. however,
remember that you can always reshape the model to match your business situation.

You will build a full example with EF in just a bit. However, for the time being, consider the following
Program class, which uses the Car model class (and a related context class named AutoLotEntities) to add
a new row to the Inventory table of AutoLot. The AutoLotEntities context class derives from DbContext.
The job of this class is to communicate with the physical database on your behalf (you will learn more
details soon).

class Program
{
 static void Main(string[] args)
 {
 // Connection string automatically read from config file.
 using (AutoLotEntities context = new AutoLotEntities())
 {
 // Add a new record to Inventory table, using our model.
 context.Cars.Add(new Car() { ColorOfCar = "Black",
 MakeOfCar = "Pinto",
 NicknameOfCar = "Pete" });
 context.SaveChanges();
 }
 }
}

It is up to the EF runtime to take the client-side representation of the Inventory table (here, a class
named Car) and map it back to the correct columns of the Inventory table. Notice that you see no trace of
any sort of SQL INSERT statement. You simply add a new Car object to the collection maintained by the
aptly named Cars property of the context object and save your changes. Sure enough, if you view the table
data using the Server Explorer of Visual Studio, you will see a new record (see Figure 23-3).

Figure 23-2. The Car model is a client-side reshaping of the Inventory schema

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

934

There is no magic in the preceding example. Under the covers, a connection to the database is made, a
proper SQL statement is generated, and so forth. The benefit of EF is that these details are handled on your
behalf. Now let’s look at the core services of EF that make this possible.

The Building Blocks of the Entity Framework
The EF API sits on top of the existing ADO.NET infrastructure you have already examined in the previous
two chapters. Like any ADO.NET interaction, the Entity Framework uses an ADO.NET data provider to
communicate with the data store. However, the data provider must be updated so it supports a new set
of services before it can interact with the EF API. As you might expect, the Microsoft SQL Server data
provider has been updated with the necessary infrastructure, which is accounted for when using the
System.Data.Entity.dll assembly.

 ■ Note Many third-party databases (e.g., Oracle and MySQL) provide EF-aware data providers. Consult your
database vendor for details or log on to https://msdn.microsoft.com/en-us/library/dd363565.aspx for a
list of known ADO.NEt data providers. EF builds on top of the ADO.NEt data provider model and will work with
any datasource where a data provider is available.

In addition to adding the necessary bits to the Microsoft SQL Server data provider, the System.Data.
Entity.dll assembly contains various namespaces that account for the EF services themselves. The two key
pieces of the EF API to concentrate on (for the time being) are the DbContext class and the derived model-
specific context.

Figure 23-3. The result of saving the context

https://msdn.microsoft.com/en-us/library/dd363565.aspx

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

935

The Role of the DbContext Class
The DbContext class represents a combination of the Unit of Work and Repository patterns that can be
used to query from a database and group together changes that will be written back as a single unit of
work. DbContext provides a number of core services to child classes, including the ability to save all
changes (which results in a database update), tweak the connection string, delete objects, call stored
procedures, and handle other fundamental details. Table 23-1 shows some of the more commonly used
members of the DbContext.

Table 23-1. Common Members of DbContext

Member of DbContext Meaning in Life

DbContext Constructor used by default in the derived context class. The string
parameter is either the database name or the connection string stored
in the *.config file.

Entry
Entry<TEntity>

Retrieves the System.Data.Entity.Infrastructure.DbEntityEntry
object providing access to information and the ability to perform
actions on the entity.

GetValidationErrors Validates tracked entries and returns a collection of System.Data.
Entity.Validation.DbEntityValidationResults.

SaveChanges
SaveChangesAsync

Saves all changes made in this context to the database. Returns the
number of affected entities.

Configuration Provides access to the configuration properties of the context.

Database Provides a mechanism for creation/deletion/existence checks for
the underlying database, executes stored procedures and raw SQL
statements against the underlying data store, and exposes transaction
functionality.

Table 23-2. Events in DbContext

Events of DbContext Meaning in Life

ObjectMaterialized Fires when a new entity object is created from the data store as part of a query or
load operation

SavingChanges Occurs when changes are being saved to the data store but prior to the data being
persisted

DbContext also implements IObjectContextAdapter, so any of the functionality available in the
ObjectContext class is also available. While DbContext takes care of most of your needs, there are two events
that can be extremely helpful, as you will see later in the chapter. Table 23-2 lists the events.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

936

The Role of the Derived Context Class
As mentioned, the DbContext class provides the core functionality when working with EF Code First. In your
projects, you will create a class that derives from DbContext for your specific domain. In the constructor, you
need to pass the name of the connection string for this context class to the base class, as shown here:

public class AutoLotEntities : DbContext
{
 public AutoLotEntities() base("name=AutoLotConnection")
 {
 }
 protected override void Dispose(bool disposing)
 {
 }
}

The Role of DbSet<T>
To add tables into your context, you add a DbSet<T> for each table in your object model. To enable lazy
loading, the properties in the context need to be virtual, like this:

public virtual DbSet<CreditRisk> CreditRisks { get; set; }
public virtual DbSet<Customer> Customers { get; set; }
public virtual DbSet<Inventory> Inventory { get; set; }
public virtual DbSet<Order> Orders { get; set; }

Each DbSet<T> provides a number of core services to each collection, such as creating, deleting, and
finding records in the represented table. Table 23-3 describes some of the core members of the DbSet<T> class.

Table 23-3. Common Members of DbSet<T>

Member of DbSet<T> Meaning in Life

Add
AddRange

Allows you to insert a new object (or range of objects) into the collection.
They will be marked with the Added state and will be inserted into the database
when SaveChanges (or SaveChangesAsync) is called on the DbContext.

Attach Associates an object with the DbContext. This is commonly used in disconnected
applications like ASP.NET/MVC.

Create
Create<T>

Creates a new instance of the specified entity type.

Find
FindAsync

Finds a data row by the primary key and returns an object representing that row.

Remove
RemoveRange

Marks an object (or range of objects) for deletion.

SqlQuery Creates a raw SQL query that will return entities in this set.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

937

Once you drill into the correct property of the object context, you can call any member of DbSet<T>.
Consider again the sample code shown in the first few pages of this chapter:

using (AutoLotEntities context = new AutoLotEntities())
{
 // Add a new record to Inventory table, using our entity.
 context.Cars.Add(new Car() { ColorOfCar = "Black",
 MakeOfCar = "Pinto",
 NicknameOfCar = "Pete" });
 context.SaveChanges();
}

Here, AutoLotEntities is-a derived Context. The Cars property gives you access to the DbSet<Car>
variable. You use this reference to insert a new Car entity object and tell the DbContext to save all changes to
the database.

DbSet<T> is typically the target of LINQ to Entity queries; as such, DbSet<T> supports the same
extension methods you learned about in Chapter 12, such as ForEach(), Select(), and All(). Moreover,
DbSet<T> gains a good deal of functionality from its direct parent class, DbQuery<T>, which is a class that
represents a strongly typed LINQ (or Entity SQL) query.

Empty Code First Model or Code First from Database
Before you build your first Entity Framework example, there’s one more point to discuss. You can build an
Entity Framework data model from scratch or reverse engineer it from an existing database (just as you can
using the Entity Framework Designer). You will examine both of these methods in the following sections.

Transaction Support
All versions of EF wrap each call to SaveChanges/SaveChangesAsync in a transaction. The isolation level
of these automatic transactions is the same as the default isolation level for the database (which is READ
COMMITTED for SQL Server). You can add more control to the transactional support in EF if you need it.
For more information, see https://msdn.microsoft.com/en-us/data/dn456843.aspx.

 ■ Note Although not covered in this book, executing SQL statements using ExecuteSqlCommand() from the
DbContext database object is now wrapped in an implicit transaction. this is new in EF version 6.

Entity State
The DbContext automatically tracks the state for any object within its context. In the previous examples,
while inside the using statement, any changes to the data will be tracked and saved when SaveChanges is
called on the AutoLotEntities class. Table 23-4 lists the possible values for the state of an object.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
https://msdn.microsoft.com/en-us/data/dn456843.aspx

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

938

If you need to check the state of an object, use the following code:

EntityState state = context.Entry(entity).State;

You usually don’t need to worry about the state of your objects. However, in the case of deleting an
object, you can set the state of an object to EntityState.Deleted and save a round-trip to the database. You
will do this later in the chapter.

Code First from an Existing Database
Now that you have a better understanding of what the ADO.NET Entity Framework is and how it works from
a high level, it’s time to look at your first full example. You will build a simple console app that uses Code
First from an existing database to create the model classes representing the existing AutoLot database you
built in Chapters 21 and 22. You will write code in the console app that performs typical create, read, update,
and delete (CRUD) operations, and then you will look at everything that was built for you.

Generating the Model
Begin by creating a new Console Application project named AutoLotConsoleApp. Add a folder to the project
through the Project ➤ New Folder menu option and name it EF. Select the new EF folder and then select
Project ➤ Add New Item (be sure to highlight the Data node) to insert a new ADO.NET Entity Data Model
item named AutoLotEntities (as in Figure 23-4).

Table 23-4. Entity State Enumeration Values

Value Meaning in Life

Detached The object exists but is not being tracked. An entity is in this state immediately after it has
been created and before it is added to the object context.

Unchanged The object has not been modified since it was attached to the context or since the last time
that the SaveChanges() method was called.

Added The object is new and has been added to the object context, and the SaveChanges() method
has not been called.

Deleted The object has been deleted from the object context but not yet removed from the
data store.

Modified One of the scalar properties on the object was modified, and the SaveChanges() method
has not been called.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

939

Clicking the Add button launches the Entity Model Data Wizard. The wizard’s first step allows you
to select the option to generate an EDM using the Entity Framework Designer (from an existing database
or by creating an empty designer) or using Code First (from an existing database or by creating an empty
DbContext). Select the “Code First from database” option and click the Next button (see Figure 23-5).

Figure 23-4. Inserting a new ADO.NET EDM project item

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

940

You can select your database in the wizard’s second step. If you already have a connection to a database
within the Visual Studio Server Explorer, you will see it listed in the drop-down combo box. If this is not
the case, you can click the New Connection button. Either way, pick your AutoLot database and then
make certain you save the connection string data in the (autogenerated) App.config file (see Figure 23-6),
changing the name to AutoLotConnection.

Figure 23-5. Generating an EDM from an existing database

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

941

Before you click the Next button, take a moment to examine the format of your connection string.

Data source= .\SQLEXPRESS2014;Initial Catalog=AutoLot;Integrated
Security=True;MultipleActiveResultSets=true;App=EntityFramework

This is extremely similar to what you used in Chapters 21 and 22, with the addition of the
App=EntityFramework name-value pair. App is short for application name, which can be used when
troubleshooting SQL Server issues.

In the wizard’s final step, you can select the items from the database you want to use to generate
the EDM. Select all the application tables, making sure you don’t select sysdiagrams (if it exists in your
database). The dialog will look something like Figure 23-7.

Figure 23-6. Selecting the database used to generate the model

http://dx.doi.org/10.1007/978-1-4842-1332-2_21
http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

942

Now, click the Finish button to generate your EDM data.

What Did That Do?
After you complete the wizard, you will see several new classes in your project: one for each table that you
selected in the wizard and another one named AutoLotEntities (the same name that you entered in the
first step of the wizard). By default, the names of your entities will be based on the original database object
names; however, recall that the names of entities in your conceptual model can be anything you choose. You
can change the entity name, as well as property names of the entity, by using special .NET attributes referred
to as data annotations. You will use data annotations to make some modifications to your model.

Figure 23-7. Selecting the database items

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

943

 ■ Note the Fluent API is another way to configure your model classes and properties to map them to the
database. Everything you can do with data annotations, you can also do with code through the Fluent API.
Because of space and time constraints, I focus on covering data annotations in this chapter with only a brief
mention of the Fluent API.

Open the Inventory class. The first thing you will notice is a series of attributes decorating the class
and properties in the class. These are called data annotations, and they instruct EF how to build your
tables and properties when generating the database. They also instruct EF how to map the data from the
database to your model classes. At the class level, the Table attribute specifies what table the class maps to.
At the property level, there are two attributes in use. The first you see is the Key attribute. This specifies the
primary key for the table. The other attribute in use is StringLength, which specifies the string length when
generating the DDL for the field. This attribute is also used in validations, as you will see in later chapters.

 ■ Note there are also two SuppressMessage attributes. this instructs static analyzers such as FXCop and
the new Roslyn code analyzers to turn off the specific rules listed in the constructor.

[Table("Inventory")]
public partial class Inventory
{
 [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
"CA2214:DoNotCallOverridableMethodsInConstructors")]

 public Inventory()
 {
 Orders = new HashSet<Order>();
 }

 [Key]
 public int CarId { get; set; }

 [StringLength(50)]
 public string Make { get; set; }

 [StringLength(50)]
 public string Color { get; set; }

 [StringLength(50)]
 public string PetName { get; set; }

 [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
"CA2227:CollectionPropertiesShouldBeReadOnly")]

 public virtual ICollection<Order> Orders { get; set; }
}

You can also see that the Inventory class has a collection of Order objects. This specifies a one-to-many
relationship between Inventory and Order. At the other end of the relationship, the Order class specifies a
CarId property and a Car property.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

944

public partial class Order
{
 public int OrderId { get; set; }

 public int CustId { get; set; }

 public int CarId { get; set; }

 public virtual Customer Customer { get; set; }

 public virtual Inventory Inventory { get; set; }
}

Next, open the AutoLotEntities class. This class derives from DbContext and contains a DbSet<TEntity>
property for each table that you specified in the wizard. It also overrides OnModelCreating() to use the
FluentAPI to define the relationships between Customer and Orders and between Orders and Inventory.

public partial class AutoLotEntities : DbContext
{
 public AutoLotEntities()
 : base("name=AutoLotConnection")
 {
 }

 public virtual DbSet<CreditRisk> CreditRisks { get; set; }
 public virtual DbSet<Customer> Customers { get; set; }
 public virtual DbSet<Inventory> Inventories { get; set; }
 public virtual DbSet<Order> Orders { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Customer>()
 .HasMany(e => e.Orders)
 .WithRequired(e => e.Customer)
 .WillCascadeOnDelete(false);

 modelBuilder.Entity<Inventory>()
 .HasMany(e => e.Orders)
 .WithRequired(e => e.Inventory)
 .WillCascadeOnDelete(false);
 }
}

Finally, open the App.config file. You will see a new configSection (named entityFramework),
as well as the connection string generated by the wizard. Most of this you can ignore, but if you change
the database, know that the only thing you might need to modify is the connection string values for the
AutoLotConnection connection string (the same name you specified in the wizard).

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

945

<configuration>
 <configSections>
 <!-- For more information on Entity Framework configuration, visit

http://go.microsoft.com/fwlink/?LinkID=237468 -->
 <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.

EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />

 </configSections>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
 <entityFramework>
 <defaultConnectionFactory type="System.Data.Entity.Infrastructure.SqlConnectionFactory,

EntityFramework" />
 <providers>
 <provider invariantName="System.Data.SqlClient" type="System.Data.Entity.SqlServer.

SqlProviderServices, EntityFramework.SqlServer" />
 </providers>
 </entityFramework>
 <connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=.\SQLEXPRESS2014;initial

catalog=AutoLot;integrated security=True;MultipleActiveResultSets=True;App=Entity
Framework" providerName="System.Data.SqlClient" />

 </connectionStrings>
</configuration>

Changing the Default Mappings
As discussed in the previous section, the [Table("Inventory")] attribute specifies that the class maps to
the Inventory table. With this attribute in place, you can change the name of your class to anything you
want. Change the class name (and the constructor) to Car. In addition to the Table attribute, EF also uses the
Column attribute. By adding the [Column("PetName")] attribute to the PetName property, you can change the
name of the property to CarNickName. The relevant code should look like this:

[Table("Inventory")]
public partial class Car
{
 public Car()
 {
 Orders = new HashSet<Order>();
 }

 [StringLength(50), Column("PetName")]
 public string CarNickName { get; set; }

 //remainder of the class not shown for brevity
}

http://go.microsoft.com/fwlink/?LinkID=237468

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

946

If you changed the name and didn’t use the Visual Studio refactoring capabilities, your application
won’t compile. If it doesn’t compile, open the Order class and change the type and name of the Inventory
property to Car. The relevant code is shown here:

public partial class Order
{
 public virtual Car Car { get; set; }

 //remainder of the class not shown for brevity
}

The last change to make is to the AutoLotEntities class (unless you used the automatic refactorings
available to you in Visual Studio 2015). Open the file and change the two occurrences of Inventory to Car
and the DbSet<Car> to Cars. The updated code is shown here:

public partial class AutoLotEntities : DbContext
{
 public AutoLotEntities()
 : base("name=AutoLotConnection")
 {
 }

 // Additional code removed for brevity

 public virtual DbSet<Car> Cars { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Car>()
 .HasMany(e => e.Orders)
 .WithRequired(e => e.Car
 .WillCascadeOnDelete(false);

 // Additional code removed for brevity
 }
}

 ■ Note the EF team has released a set of power tools (appropriately named Entity Framework Power
tools) for Visual Studio. these tools allow various ways to diagram your EDM and additional functionality.
At the time of this writing, unfortunately they are not available for Visual Studio 2015. keep an eye on
https://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d/
for an update.

Adding to the Generated Model Classes
All the designer-generated classes have been declared with the partial keyword, which, if you recall, allows
you to implement a class across multiple C# code files. This is especially useful when working with the EF
programming model because it means you can add additional methods to your entity classes that help you
model your business domain better.

https://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d/

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

947

For example, you can override the ToString() method of the Car entity class to return the state of the
entity with a well-formatted string. If you add this to the generated class, you risk losing that custom code
each time you regenerate your model classes. Instead, define the following partial class declaration in a new
file named CarPartial.cs. The new class is listed here:

public partial class Car
{
 public override string ToString()
 {
 // Since the PetName column could be empty, supply
 // the default name of **No Name**.
 return $"{this.CarNickName ?? "**No Name**"} is a {this.Color} {this.Make} with ID

{this.CarId}.";
 }
}

Using the Model Classes in Code
Now that you have your model classes, you can author some code that interacts with them and therefore
the database. Begin by adding using statements for AutoLotConsoleApp.EF and static System.Console to
your Program class.

Inserting a Record
Add a helper method from Main() (named AddNewRecord()), which will insert a new record to the
Inventory table.

 private static int AddNewRecord()
 {
 // Add record to the Inventory table of the AutoLot
 // database.
 using (var context = new AutoLotEntities())
 {
 try
 {
 // Hard-code data for a new record, for testing.
 var car = new Car() { Make = "Yugo", Color = "Brown", CarNickName="Brownie"};
 context.Cars.Add(car);
 context.SaveChanges();
 // On a successful save, EF populates the database generated identity field.
 return car.CarId;
 }
 catch(Exception ex)
 {
 WriteLine(ex.InnerException.Message);
 return 0;
 }
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

948

This code uses the Add() method on the DbSet<Car> class. The Add() method takes an object of type
Car and adds it to the Cars collection on the AutoLotEntities context class. By inserting a new Car object
with the Add() method of DbSet<Car> and then calling SaveChanges() on the context, you have performed a
SQL INSERT. When SaveChanges is called, all pending changes (in this case, only the one additional record)
are saved to the database. If no errors occur, then the record is added, and the Car object gets updated with
any database-generated values, in this case, the CarId.

To see this in action, update the Main() method like this:

static void Main(string[] args)
{
 WriteLine("***** Fun with ADO.NET EF *****\n");
 int carId = AddNewRecord();
 WriteLine(carId);
 ReadLine();
}

The output to the console is indeed the CarId of the new record. It’s important to note that while you
didn’t have to do anything special to get the database generated IDs, EF executed a SELECT statement
on your behalf to get the CarId value. This is not a big deal in most applications, but it’s important to
understand in case performance or scaling issues arise and you need to start trimming calls.

Selecting Records
There are several ways to get records out of the database using EF. The simplest is to iterate over the
DbSet<Car> collection. To see this in action, add a new method named PrintAllInventory(). Add a foreach
loop for the Cars property of the DbContext (which returns a DbSet<Car>) and print each car, as follows:

private static void PrintAllInventory()
{
 // Select all items from the Inventory table of AutoLot,
 // and print out the data using our custom ToString()
 // of the Car entity class.
 using (var context = new AutoLotEntities())
 {
 foreach (Car c in context.Cars)
 {
 WriteLine(c);
 }
 }
}

To see this in action, update your Main() method as follows:

class Program
{
 static void Main(string[] args)
 {
 WriteLine("***** Fun with ADO.NET EF *****\n");

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

949

 //int carId = AddNewRecord();
 //WriteLIne(carId);
 PrintAllInventory();
 ReadLine();
 }

Enumerating each item exposed by the Cars property submits a SQL SELECT statement implicitly to the
underlying ADO.NET data provider. It is important to note that underneath EF is creating a DataReader to
load the records from the database and then transforms the records from the DataReader into Car types.

Querying with SQL
EF also supports filling DbSets with SQL (either inline or stored procedures). To test this, update the
PrintInventory() method to the following:

private static void PrintAllInventory()
{
 // Select all items from the Inventory table of AutoLot,
 // and print out the data using our custom ToString()
 // of the Car entity class.
 using (var context = new AutoLotEntities())
 {
 //foreach (Car c in context.Cars)
 //{
 // WriteLine(c);
 //}
 foreach (Car c in context.Cars.SqlQuery("Select CarId,Make,Color,PetName as CarNickName

from Inventory where Make=@p0", "BMW"))
 {
 WriteLine(c);
 }
 }
}

The good news is that this fills the list with tracked entities, which means that any changes or deletions
will get propagated to the database when SaveChanges is called. The bad news (as you can see from the SQL
text) is that SqlQuery doesn’t understand the mapping changes that you made earlier. Not only do you have
to use the database table and field names, but any field name changes (such as the change to PetName) must
be aliased from the database field name to the model property name.

Querying with LINQ
EF becomes much more powerful when you incorporate LINQ queries. Consider this update to the
PrintInventory() method that uses LINQ to get the records from the database:

private static void PrintAllInventory()
{
 // Select all items from the Inventory table of AutoLot,
 // and print out the data using our custom ToString()
 // of the Car entity class.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

950

 using (var context = new AutoLotEntities())
 {
 //foreach (Car c in context.Cars)
 //{
 // WriteLine(c);
 //}
 // foreach (Car c in context.Cars.SqlQuery("Select CarId,Make,Color,PetName as

CarNickName from Inventory where Make=@p0", "BMW"))
 //{
 // WriteLine(c);
 //}
 foreach (Car c in context.Cars.Where(c => c.Make == "BMW"))
 {
 WriteLine(c);
 }
}

The LINQ statement is translated into a SQL query, which creates a DataReader, and then returns a
collection of attached Cars. The generated query looks something like this (it might differ slightly on your
machine):

SELECT
 [Extent1].[CarId] AS [CarId],
 [Extent1].[Make] AS [Make],
 [Extent1].[Color] AS [Color],
 [Extent1].[PetName] AS [PetName]
 FROM [dbo].[Inventory] AS [Extent1]
 WHERE N'BMW' = [Extent1].[Make]

Given that you have already worked with many LINQ expressions in Chapter 13, a few more examples
will suffice for the time being.

private static void FunWithLinqQueries()
{
 using (var context = new AutoLotEntities())
 {
 // Get a projection of new data.
 var colorsMakes = from item in context.Cars select new { item.Color, item.Make };
 foreach (var item in colorsMakes)
 {
 WriteLine(item);
 }

 // Get only items where Color == "Black"
 var blackCars = from item in context.Cars where item.Color == "Black" select item;
 foreach (var item in blackCars)
 {
 WriteLine(item);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_13

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

951

While the syntax of these queries is simple enough, remember that you are hitting a database each
time you apply a LINQ query to the object context! Recall that when you want to obtain an independent
copy of data, which can be the target of new LINQ queries, you want to use immediate execution with the
ToList<T>(), ToArray<T>(), or ToDictionary<K,V>() extension methods (among others). Here is an
update of the previous method, which performs the equivalent of a SELECT *, caches the entities as an array,
and manipulates the array data using LINQ to Objects:

using (var context = new AutoLotEntities())
{
 // Get all data from the Inventory table.
 // Could also write:
 // var allData = (from item in context.Cars select item).ToArray();
 var allData = context.Cars.ToArray();

 // Get a projection of new data.
 var colorsMakes = from item in allData select new { item.Color, item.Make };
 foreach (var item in colorsMakes)
 {
 WriteLine(item);
 }

 // Get only items where Color == “Black”.
 var blackCars = from item in allData where item.Color== "Black" select item;
 foreach (var item in blackCars)
 {
 WriteLine(item);
 }
}

To run this, update the Main() method to this:

static void Main(string[] args)
{
 WriteLine("***** Fun with ADO.NET EF *****\n");
 //int carId = AddNewRecord();
 //WriteLine(carId);
 //PrintAllInventory();
 FunWithLinqQueries();
 ReadLine();
}

The Role of Navigation Properties
As the name suggests, navigation properties allow you to capture JOIN operations in the Entity Framework
programming model (without the need to author complex SQL statements). To account for these foreign key
relationships, each class in your model contains virtual properties that connect your classes together. For
example, in the Inventory.cs class, the Orders property is defined as virtual ICollection<Order>.

public virtual ICollection<Order> Orders { get; set; }

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

952

This tells EF that each Inventory database record (renamed to the Car class for the C# code) can have
zero-to-many Order records.

The Order model has zero-to-one Inventory (Car) records associated with it. The Order model
navigates back to the Inventory model through another virtual property of type Inventory.

public virtual Car Car { get; set; }

Lazy, Eager, and Explicit Loading
There are three ways that EF loads data into models. Lazy and Eager fetching are based on settings on the
context, and the third, Explicit, is developer controlled.

Lazy Loading

The virtual modified allows EF to lazy load the data. This means that EF loads the bare minimum for each
object and then retrieves additional details when properties are asked for in code. For example, if you had
the following code, EF would call one query to get all the Cars and then for each Car execute another query
to get all the Orders:

using (var context = new AutoLotEntities())
{
 foreach (Car c in context.Cars)
 {
 foreach (Order o in c.Orders)
 {
 WriteLine(o.OrderId);
 }
 }
}

Lazy loading prevents the entire database (or at least much more than was intended) to be loaded into
memory. Since Orders are tied to Cars and Customers are tied to Orders, if the records were eagerly loaded,
then getting all Cars would also get all Orders and Customers (except for those customers who didn’t have
any orders).

Eager Loading

Sometimes you want to load all related records. For example, if you absolutely knew you needed all Orders
and all Cars, you could change the previous code to this:

using (var context = new AutoLotEntities())
{
 foreach (Car c in context.Cars.Include(c=>c.Orders))
 {
 foreach (Order o in c.Orders)
 {
 WriteLine(o.OrderId);
 }
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

953

Then the initial query would get all Cars and all Orders. The Include LINQ expression instructs EF to
write one query to get them all, like this:

SELECT
 [Project1].[CarId] AS [CarId],
 [Project1].[Make] AS [Make],
 [Project1].[Color] AS [Color],
 [Project1].[PetName] AS [PetName],
 [Project1].[C1] AS [C1],
 [Project1].[OrderId] AS [OrderId],
 [Project1].[CustId] AS [CustId],
 [Project1].[CarId1] AS [CarId1]
 FROM (SELECT
 [Extent1].[CarId] AS [CarId],
 [Extent1].[Make] AS [Make],
 [Extent1].[Color] AS [Color],
 [Extent1].[PetName] AS [PetName],
 [Extent2].[OrderId] AS [OrderId],
 [Extent2].[CustId] AS [CustId],
 [Extent2].[CarId] AS [CarId1],
 CASE WHEN ([Extent2].[OrderId] IS NULL) THEN CAST(NULL AS int) ELSE 1 END AS [C1]
 FROM [dbo].[Inventory] AS [Extent1]
 LEFT OUTER JOIN [dbo].[Orders] AS [Extent2] ON [Extent1].[CarId] = [Extent2].[CarId]
) AS [Project1]
 ORDER BY [Project1].[CarId] ASC, [Project1].[C1] ASC

The exact syntax of the query doesn’t really matter; I’ve shown it to demonstrate that all Cars and
Orders are getting retrieved in one call to the database.

Explicit Loading

Explicit loading loads a collection or class that is referenced by a navigation property. If lazy loading is
disabled, then you need to either eager load related objects or explicitly load them. You can turn off lazy
loading by setting the LazyLoadingEnabled property on the DbContext configuration, like this:

context.Configuration.LazyLoadingEnabled = false;

Then, to get the related object(s), you have to use the Collection (for collections) or Property (for
single objects) methods of the context and Load. The following code shows using Collection.Load():

foreach (Car c in context.Cars)
{
 context.Entry(c).Collection(x => x.Orders).Load();
 foreach (Order o in c.Orders)
 {
 WriteLine(o.OrderId);
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

954

Deleting a Record
When you want to remove a record from the database, one way is to locate the correct item in the DbSet<T> and
then call Remove, passing in that instance. You can find the correct record by calling the Find() method on the
DbSet<T> and passing in the primary key of the car you want to delete. Add the following method to your class:

private static void RemoveRecord(int carId)
{
 // Find a car to delete by primary key.
 using (var context = new AutoLotEntities())
 {
 // See if we have it.
 Car carToDelete = context.Cars.Find(carId);
 if (carToDelete != null)
 {
 context.Cars.Remove(carToDelete);
 context.SaveChanges();
 }
 }
}

To run this, update the Main() method to this (remember to uncomment the AddNewRecord() line if you
commented it out for the previous examples):

static void Main(string[] args)
{
 WriteLine("***** Fun with ADO.NET EF *****\n");
 int carId = AddNewRecord();
 RemoveRecord(carId);
 //WriteLine(carId);
 //PrintAllInventory();
 //FunWithLinqQueries();
 ReadLine();
}

 ■ Note Calling Find() before deleting a record requires an extra round-trip to the database. As you will see
next, setting EntityState is a much more efficient way to delete records.

Deleting a Record Using EntityState
As mentioned earlier, you can delete a record using EntityState, which doesn’t require a round-trip to the
database. Add a new method named RemoveRecordUsingEntityState(), as follows:

private static void RemoveRecordUsingEntityState(int carId)
{
 using (var context = new AutoLotEntities())
 {
 Car carToDelete = new Car() { CarId = carId };
 context.Entry(carToDelete).State = EntityState.Deleted;

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

955

 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 WriteLine(ex);
 }
 }
}

Create a new Car object, set the primary key to the value you want to delete, set EntityState to
EntityState.Deleted, and then call SaveChanges(). You gain performance (since you are not making an
extra call to the database), but you lose the validation that the object exists in the database (if that matters to
your scenario). If the CarId does not exist in the database, EF will throw a DbUpdateConcurrencyException
in the System.Data.Entity.Infrastructure namespace. The exact entities in error are accessible from the
Entries property of the exception, so you can determine which ones were in error.

 ■ Note the fact that nothing is updated does not trigger the DbUpdateConcurrencyException exception. It
is thrown when the total number objects that should be updated or deleted (based on the entity state) is greater
than the total number of objects that actually were updated. the objects in error are exposed through the
Entries property of the exception. On each entry, you can access the current values, the original values, and
the current database values (by executing another query) of the properties.

Updating a Record
Updating a record is also straightforward. Locate the object you want to change, set new property values on
the returned entity, and save the changes, like so:

private static void UpdateRecord(int carId)
{
 // Find a car to delete by primary key.
 using (var context = new AutoLotEntities())
 {
 // Grab the car, change it, save!
 Car carToUpdate = context.Cars.Find(carId);
 if (carToUpdate != null)
 {
 WriteLine(context.Entry(carToUpdate).State);
 carToUpdate.Color = "Blue";
 WriteLine(context.Entry(carToUpdate).State);
 context.SaveChanges();
 }
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

956

Handling Database Changes
In this section, you created an EF solution that started with an existing database. This works great, for
example, when your organization has dedicated DBAs and you are provided with a database that you don’t
control. As your database changes over time, all you need to do is run the wizard again and re-create your
AutoLotEntities class; the model classes will be rebuilt for you as well. Of course, you will most likely need to
refactor any code that uses your model. But hey, it wouldn’t be any fun if everything was magically done for you!

This initial example should go a long way toward helping you understand the nuts and bolts of working
with the Entity Framework.

 ■ Source Code you can find the AutoLotConsoleApp example in the Chapter 23 subdirectory.

AutoLotDAL Version 4
In the previous section, you created the EF code from an existing database. EF can also create your database
for you based on your model classes and derived DbContext class. In addition to creating the initial database,
EF enables you to create migrations to update your database to match model changes.

 ■ Note this is the version of AutoLotDAL.dll that will carry forward for the rest of the book.

To get started, create a new Class Library project named AutoLotDAL. Delete the default class that
was created and add two folders, named EF and Models. Add the Entity Framework to the project using
NuGet. Right-click the project name and click Manage NuGet Packages (see Figure 23-8). (You didn’t need
to explicitly add EF to the previous example because the wizard took care of that for you. I like to add the
packages in manually so I know what version is getting installed.)

Figure 23-8. Selecting Manage NuGet Packages

Once the NuGet Package Manager loads, select Entity Framework (shown in Figure 23-9).

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

957

Accept the changes and the license agreement, and the Entity Framework (version 6.1.3 at the time of
this writing) will be installed into your project.

Entity Framework Data Annotations
I briefly discussed data annotations earlier, and you saw Table, Column, Key, and StringLength in use. There
are many more annotations that you can use to refine your model and add validations, and you will use
many of them through the remainder of this chapter and book.

 ■ Note there are many more data annotations available in the .NEt Framework than shown in table 23-5.
Consult the System.ComponentModel.DataAnnotations and System.ComponentModel.DataAnnotations.
Schema namespaces in the .NEt 4.6 Framework documentation for more information.

Figure 23-9. NuGet Package Manager

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

958

 ■ Note In addition to data annotations, EF supports a Fluent API to define your table structure and
relationships. Although you saw a small example in the earlier section, the Fluent API is beyond the scope
of this chapter. you can find more information on defining tables and columns using the Fluent API here:
https://msdn.microsoft.com/en-us/data/jj591617. you can find more information on defining
relationships here: https://msdn.microsoft.com/en-us/data/jj591620.

Adding or Updating the Model Classes
In this section, you can either start from the model classes created in the previous example or start from
scratch and create new classes as you work through the chapter exercises. I will start from scratch so you can
follow the whole process from start to finish.

Start by adding a new folder named Models to your project and add four classes, named CreditRisk.cs,
Customer.cs, Inventory.cs, and Order.cs.

Table 23-5. Data Annotations Supported by Entity Framework

Data Annotation Meaning in Life

Key Defines the primary key for the model. This is not necessary if the key property
is named Id or combines the class name with Id, such as OrderId. If the key
is a composite, you must add the Column attribute with an Order, such as
Column[Order=1] and Column[Order=2]. Key fields are implicitly also [Required].

Required Declares the property as not nullable.

ForeignKey Declares a property that is used as the foreign key for a navigation property.

StringLength Specifies the min and max lengths for a string property.

NotMapped Declares a property that is not mapped to a database field.

ConcurrencyCheck Flags a field to be used in concurrency checking when the database server does
updates, inserts, or deletes.

TimeStamp Declares a type as a row version or timestamp (depending on the database
provider).

Table
Column

Allows you to name your model classes and fields differently than how they are
declared in the database. The Table attribute allows specification of the schema as
well (as long as the data store supports schemas).

DatabaseGenerated Specifies if the field is database generated. This takes one of Computed, Identity,
or None.

NotMapped Specifies that EF needs to ignore this property in regard to database fields.

Index Specifies that a column should have an index created for it. You can specify
clustered, unique, name, and order.

https://msdn.microsoft.com/en-us/data/jj591617
https://msdn.microsoft.com/en-us/data/jj591620

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

959

Creating the Inventory Model Class
Open Inventory.cs, change the class to public and partial, and add the following properties as well as
usings for System.ComponentModel.DataAnnotations and System.ComponentModel.DataAnnotations.
Schema to the top of the class:

public partial class Inventory
{
 public int CarId { get; set; }
 public string Make { get; set; }
 public string Color { get; set; }
 public string PetName { get; set; }
}

Configuring the Model with Data Annotations

Start by using the Table attribute to specify the table name of Inventory. By default, EF uses the convention
that table names are pluralized, so the default table name is Inventories. Add the Key attribute to the CarId
property and add StringLength(50) for each of the string properties. The Key attribute indicates that the
field is the primary key for the table. StringLength(50) sets the max length for the string property. You can
also set the min length as well, although the min value is used only for validation and does not affect the
creation of the database field like max does. The updated code is listed here:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
 namespace AutoLotDAL.Models
{
 [Table("Inventory")]
 public partial class Inventory
 {
 [Key]
 public int CarId { get; set; }

 [StringLength(50)]
 public string Make { get; set; }

 [StringLength(50)]
 public string Color { get; set; }

 [StringLength(50)]
 public string PetName { get; set; }
 }
}

Adding the Navigation Property to Inventory

As mentioned in the section on navigation properties, the Orders related to an Inventory record are
accessed through an ICollection<Order>, as follows:

public virtual ICollection<Order> Orders { get; set; } = new HashSet<Order>();

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

960

The complete class is listed here:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
namespace AutoLotDAL.Models
{
 [Table("Inventory")]
 public partial class Inventory
 {
 [Key]
 public int CarId { get; set; }

 [StringLength(50)]
 public string Make { get; set; }

 [StringLength(50)]
 public string Color { get; set; }

 [StringLength(50)]
 public string PetName { get; set; }

 public virtual ICollection<Order> Orders { get; set; } = new HashSet<Order>();
 }
}

Adding the InventoryPartial Class

You are now going to add a partial class to override the ToString() method of the Inventory class. Create a
new directory under the Models directory named Partials. Add a new class named InventoryPartial.cs.
Open the InventoryPartial.cs class, rename the class to Inventory, and make sure the namespace is set to
AutoLotDAL.Models (not AutoLotDAL.Models.Partials, which is the default). Add the following code:

public partial class Inventory
{
 public override string ToString()
 {
 // Since the PetName column could be empty, supply
 // the default name of **No Name**.
 return $"{this.PetName ?? "**No Name**"} is a {this.Color} {this.Make} with ID {this.

CarId}.";
 }
}

Next, add a calculated field that combines the Make and Color of the car. This is a field that is not to
be stored in the database and doesn’t get populated when an object is materialized with data from the
database, so you need to add the [NotMapped] attribute to the property.

[NotMapped]
public string MakeColor => $"{Make} + ({Color})";

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

961

Creating the Customer Model Class
Open the Customer.cs class and add usings for System.ComponentModel.DataAnnotations and
System.ComponentModel.DataAnnotations.Schema to the top of the class. The process is the same as
you entered for the Inventory class, so I will just list the code here. The one item to note is the FullName
property, which is calculated and therefore has the NotMapped attribute applied. Here is the class in its
entirety:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace AutoLotDAL.Models
{
 public partial class Customer
 {
 [Key]
 public int CustId { get; set; }

 [StringLength(50)]
 public string FirstName { get; set; }

 [StringLength(50)]
 public string LastName { get; set; }

 [NotMapped]
 public string FullName => FirstName + " " + LastName;

 public virtual ICollection<Order> Orders { get; set; } = new HashSet<Order>();
 }
}

Creating the Order Model Class
Open the Order.cs class and add usings for System.ComponentModel.DataAnnotations and
System.ComponentModel.DataAnnotations.Schema to the top of the class. Add the OrderId primary key
field and then the Customer and Car navigation properties. In addition to the navigation properties, add the
foreign key fields CustId and CarId. The class is shown here:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace AutoLotDAL.Models
{
 public partial class Order
 {
 public int OrderId { get; set; }

 public int CustId { get; set; }

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

962

 public int CarId { get; set; }

 public virtual Customer Customer { get; set; }

 public virtual Inventory Car { get; set; }
 }
}

Now you will apply the data annotation attributes to the Order.cs class. The primary key, OrderId, is
also the primary key of the table (and therefore required) and is set up as an Identity column. You want to
add three attributes to the OrderId property.

•	 [Key]: Denotes the primary key

•	 [Required]: Denotes that the field is non-nullable

•	 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]: Denotes that the
field is an Identity column

As you recall from earlier in the book, you can list all three attributes separately or together as a comma-
separated list. Place them all together, and your OrderId property should look like this:

[Key, Required, DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int OrderId { get; set;}

Both of the values that back the navigation properties are, by default, required since the types are not
nullable. However, for readability, you will mark them as required explicitly.

[Required]
public int CustId { get; set; }

[Required]
public int CarId { get; set; }

Finally, you use annotations to indicate which properties serve as the backing fields for the two
navigation properties.

[ForeignKey("CustId")]
public virtual Customer Customer { get; set; }

[ForeignKey("CarId")]
public virtual Inventory Car { get; set; }

The entire class is listed here:

public partial class Order
{
 [Key, Required, DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 public int OrderId { get; set; }

 [Required]
 public int CustId { get; set; }

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

963

 [Required]
 public int CarId { get; set; }

 [ForeignKey("CustId")]
 public virtual Customer Customer { get; set; }

 [ForeignKey("CarId")]
 public virtual Inventory Car { get; set; }
}

Creating the CreditRisk Class
Open the CreditRisk.cs class and add usings for System.ComponentModel.DataAnnotations and
System.ComponentModel.DataAnnotations.Schema to the top of the class. The only changes you need to
make to the CreditRisk.cs model class is moving to the new namespace. The initial class is shown here:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
namespace AutoLotDAL.Models
{
 public partial class CreditRisk
 {
 public int CustId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }
 }
}

Add in the Key attribute for CustId and StringLength attributes for FirstName and LastName. The full
Order.cs class is shown here:

namespace AutoLotDAL.Models
{
 public partial class CreditRisk
 {
 [Key]
 public int CustId { get; set; }

 [StringLength(50)]
 public string FirstName { get; set; }

 [StringLength(50)]
 public string LastName { get; set; }

 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

964

Adding the DbContext
One important piece of the puzzle is still missing: the context class that derives from DbContext! Fortunately,
this is easy to add. Select the EF folder in the AutoLotDAL project and select the Project ➤ Add New Item
menu option. Select Data in the left sidebar, select ADO.NET Entity Data Model in the main section, and
enter AutoLotEntities for the name (as shown in Figure 23-10).

Figure 23-10. Adding a context to your project

In the Entity Data Model Wizard, select Empty Code First Model (shown in Figure 23-11).

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

965

One difference might have become apparent: the wizard never asked you for a connection string! The
Code First From an Empty Database wizard presumes that there isn’t a database (go figure), so it builds a
new connection string for you, which you’ll examine in the next section.

Updates to the *.config File and the EF Connection String
Open the App.config file and look at the changes that were made by EF. Most of them should look familiar to
you. Two glaring differences are the data source and initial catalog properties in the connection string.

 <connectionStrings>
 <add name="AutoLotEntities" connectionString="data source=(LocalDb)\MSSQLLocalDB;initial
catalog=AutoLotDAL.EF.AutoLotEntities;integrated security=True;MultipleActiveResultSets=True;
App=EntityFramework" providerName="System.Data.SqlClient" />
 </connectionStrings>

LocalDb is a flavor of SQL Server Express targeted to application developers. It uses the minimal set of
files and doesn’t require any configuration on the part of the developer. Instead of a server name, such as
(local)\SQLEXPRESS2014, you can use (LocalDb) with a unique name.

The catalog (database name) was derived from the namespace plus the name assigned in the wizard.
In this case, it’s AutoLotDAL.EF.AutoLotEntities.

Figure 23-11. Selecting the Empty Code First model

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

966

Later in the chapter you will move the database to SQL Server Express (for the benefit of later chapters),
but for now just change the name of the catalog to AutoLot and the connection string to AutoLotConnection.

<add name="AutoLotConnection" connectionString="data source=(LocalDb)\MSSQLLocalDb;initial
catalog=AutoLot;integrated security=True;MultipleActiveResultSets=True;App=EntityFramework"
providerName="System.Data.SqlClient" />

Update the Context
The constructor for your derived DbContext class passes the name of the connection string to the base
DbContext class. Open AutoLotEntities.cs and change the connection string in the constructor to
AutoLotConnection. The updated code is shown here:

public class AutoLotEntities : DbContext
{
 public AutoLotEntities()
 : base("name=AutoLotConnection")
 {
 }
}

Add the using statement for the models (AutoLotDAL.Models) and then add a DbSet for each of the
model classes. The relevant code is shown here:

public virtual DbSet<CreditRisk> CreditRisks { get; set; }
public virtual DbSet<Customer> Customers { get; set; }
public virtual DbSet<Inventory> Inventory { get; set; }
public virtual DbSet<Order> Orders { get; set; }

Adding the Repositories
A common data access design pattern is the Repository pattern. As described by Martin Fowler, the core of
this pattern is to mediate between the domain and data mapping layers. While the full explanation of the
repository pattern is beyond the scope of this book, the pattern is helpful in eliminating duplicate code.

 ■ Note you can find more information on the repository pattern on Martin Fowler’s web site at
www.martinfowler.com/eaaCatalog/repository.html.

Adding the IRepo Interface
One of the advantages of EF is that all the models and collections are strongly typed. You want to continue
that trend with your repository classes. Start by adding a new folder in the AutoLotDAL project named Repos.
Add a new interface into the Repos folder named IRepo.

http://www.martinfowler.com/eaaCatalog/repository.html

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

967

The interface will expose the essential CRUD methods for your models. You will expose both the
synchronous and asynchronous versions (for more information on the asynchronous versions, see Chapter 19).
The full interface is listed here:

interface IRepo<T>
{
 int Add(T entity);
 Task<int> AddAsync(T entity);
 int AddRange(IList<T> entities);
 Task<int> AddRangeAsync(IList<T> entities);
 int Save(T entity);
 Task<int> SaveAsync(T entity);
 int Delete(int id);
 Task<int> DeleteAsync(int id);
 int Delete(T entity);
 Task<int> DeleteAsync(T entity);
 T GetOne(int? id);
 Task<T> GetOneAsync(int? id);
 List<T> GetAll();
 Task<List<T>> GetAllAsync();

 List<T> ExecuteQuery(string sql);
 Task<List<T>> ExecuteQueryAsync(string sql);
 List<T> ExecuteQuery(string sql,object[] sqlParametersObjects);
 Task<List<T>> ExecuteQueryAsync(string sql, object[] sqlParametersObjects);
}

The last four members allow for passing in a string SQL query (with overloads that accept parameters for
the SQL string). Executing these methods will load (and track) the entities into the DbSet<T> of the context.
These methods are not typically used, as you can build powerful queries with LINQ that hide the SQL details
from the developer, but they are included here to show how to call SQL directly within the context.

 ■ Note there has been a lot of discussion on the merits and potential problems of executing data access code
asynchronously from a high-volume system (such as a web application or service). I am presenting the synchronous
and asynchronous mechanisms with EF in this book and leaving it up to you to test your particular application.

Adding the BaseRepo
Next, add another class to the Repos directory named BaseRepo. This class will implement the common
functionality for all your repository classes, which they will all subclass. The class will be a generic class
so the derived repositories can strongly type the methods. Start by adding a protected property for the
AutoLotEntities context and instantiating it. The initial class definition is shown here:

using AutoLotDAL.EF;
public abstract class BaseRepo<T> where T:class,new()
{
 public AutoLotEntities Context { get; } = new AutoLotEntities();
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

968

All the actions start with the DbSet<T> property of the context, so add a protected property of the
DbSet<T> named table, like this:

using AutoLotDAL.EF;
public abstract class BaseRepo<T>:where T:class,new()
{
 public AutoLotEntities Context { get; } = new AutoLotEntities();
 protected DbSet<T> Table;
}

Implementing the SaveChanges() Helper Methods

Next, add two methods for saving changes, one synchronous and the other asynchronous. These methods
are merely wrappers for the SaveChanges() and SaveChangesAsync() methods of the DbContext and are
placed here in the base class so all derived repositories can share the implementation. There is typically a
significant amount of code and error handling code associated with calling these methods, and it is best
to write that code only once. The exception handlers for the SaveChanges() method on the DbContext are
stubbed out. In a production application, you would need to handle any exceptions accordingly.

internal int SaveChanges()
{
 try
 {
 return Context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 //Thrown when there is a concurrency error
 //for now, just rethrow the exception
 throw;
 }
 catch (DbUpdateException ex)
 {
 //Thrown when database update fails
 //Examine the inner exception(s) for additional
 //details and affected objects
 //for now, just rethrow the exception
 throw;
 }
 catch (CommitFailedException ex)
 {
 //handle transaction failures here
 //for now, just rethrow the exception
 throw;
 }
 catch (Exception ex)
 {
 //some other exception happened and should be handled
 throw;
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

969

internal async Task<int> SaveChangesAsync()
{
 try
 {
 return await Context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 //Thrown when there is a concurrency error
 //for now, just rethrow the exception
 throw;
 }
 catch (DbUpdateException ex)
 {
 //Thrown when database update fails
 //Examine the inner exception(s) for additional
 //details and affected objects
 //for now, just rethrow the exception
 throw;
 }
 catch (CommitFailedException ex)
 {
 //handle transaction failures here
 //for now, just rethrow the exception
 throw;
 }
 catch (Exception ex)
 {
 //some other exception happened and should be handled
 throw;
 }
}

 ■ Note Creating a new instance of the DbContext can be an expensive process from a performance
perspective. When a new instance of your context class is created, the base DbContext communicates
several times with the database. the amount of this communication varies based on several factors,
including the complexity of the model and the number of migrations, to name a few. If you will be using
this class on a client like WPF or WinForms, then in reality there won’t be that many instances of this
class created. If this is for a web app (like ASP.NEt WebForms or ASP.NEt MVC), it might be prudent to
make BaseRepo a singleton. there isn’t one absolute way because every situation is different and must be
customized to your particular application.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

970

Retrieving Records

The GetOne()/GetOneAsync() methods wrap the Find()/FindAsync() methods of the DbSet<T>. Similarly,
the GetAll()/GetAllAsync() methods wrap the ToList()/ToListAsync() methods. The code is listed here:

public T GetOne(int? id) => Table.Find(id);

public Task<T> GetOneAsync(int? id) => Table.FindAsync(id);

public List<T> GetAll() => Table.ToList();

public Task<List<T>> GetAllAsync() => Table.ToListAsync();

Retrieving Records with SQL

The last four methods of the interface to implement are the SQL string methods. They pass through the
string and parameters to the DbSet<T> and are shown here:

public List<T> ExecuteQuery(string sql) => Table.SqlQuery(sql).ToList();

public Task<List<T>> ExecuteQueryAsync(string sql)
 => Table.SqlQuery(sql).ToListAsync();

public List<T> ExecuteQuery(string sql, object[] sqlParametersObjects)
 => Table.SqlQuery(sql, sqlParametersObjects).ToList();

public Task<List<T>> ExecuteQueryAsync(string sql, object[] sqlParametersObjects)
 => Table.SqlQuery(sql).ToListAsync();

 ■ Note you should be extremely careful running raw SQL strings against a data store, especially if the string
accepts input from a user. Doing so makes your application ripe for SQL injection attacks. this book doesn’t
cover security, but I do want to point out the dangers of running raw SQL statements.

Adding Records

Many of the methods can be handled in the BaseRepo with generics. Start with the Add() and AddRange()
methods (remember that you are implementing both asynchronous and synchronous versions in your
examples; you might need only one or the other). Each of the Add()/AddRange() methods adds a
T/IList<T> to the DbSet<T> (referenced by the property Table). Then you need to call
SaveChanges()/SaveChangesAsync(). The code is shown here:

public int Add(T entity)
{
 Table.Add(entity);
 return SaveChanges();
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

971

public Task<int> AddAsync(T entity)
{
 Table.Add(entity);
 return SaveChangesAsync();
}

public int AddRange(IList<T> entities)
{
 Table.AddRange(entities);
 return SaveChanges();
}
public Task<int> AddRangeAsync(IList<T> entities)
{
 Table.AddRange(entities);
 return SaveChangesAsync();
}

You finish the core of the BaseRepo by implementing the IDisposable interface, which helps to ensure
any resources are released in a timely manner. Start by adding the IDisposable interface to the class and
then add the following code (notice calling Context.Dispose() in the Dispose() method):

public abstract class BaseRepo: IDisposable
{
 protected AutoLotEntities Context { get; } = new AutoLotEntities();

 //SaveChanges and SaveChangesAsync omitted for brevity

 bool disposed = false;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 return;
 if (disposing)
 {
 Context.Dispose();
 // Free any managed objects here.
 //
 }

 // Free any unmanaged objects here.
 //
 disposed = true;
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

972

 ■ Note you can find more information on implementing IDisposable at https://msdn.microsoft.com/
en-us/library/system.idisposable(v=vs.110).aspx.

Updating Records

For the Save()/SaveAsync() methods, first set the EntityState of the entity to EntityState.Modified and
then call SaveChanges()/SaveChangesAsync(). Setting the state ensures that the context will propagate the
changes to the server. The code is listed here:

public int Save(T entity)
{
 Context.Entry(entity).State = EntityState.Modified;
 return SaveChanges();
}

public Task<int> SaveAsync(T entity)
{
 Context.Entry(entity).State = EntityState.Modified;
 return SaveChangesAsync();
}

Deleting Records

You will add similar code for the Delete()/DeleteAsync() methods. If the calling code passes in an object,
the generic methods in the BaseRepo set the state to EntityState.Deleted and then call SaveChanges()/
SaveChangesAsync(). The code is listed here:

public int Delete(T entity)
{
 Context.Entry(entity).State = EntityState.Deleted;
 return SaveChanges();
}

public Task<int> DeleteAsync(T entity)
{
 Context.Entry(entity).State = EntityState.Deleted;
 return SaveChangesAsync();
}

https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

973

Adding the Inventory Repository
Add a new class to the Repos directory and name it InventoryRepo.cs. Inherit BaseRepo<Inventory>,
implement IRepo<Inventory>, and assign the Table variable to the DbSet<Inventory>. The initial code
should look like this:

public class InventoryRepo : BaseRepo<Inventory>, IRepo<Inventory>
{
 public InventoryRepo()
 {
 Table = Context.Inventory;
 }
}

Next, you need to implement all the members of the interface.

Deleting Records by Id

When you need to delete an Inventory record by the primary key, you need to create a new instance of the
Inventory class, assign the CarId to the id parameter, and then set the state to EntityState.Deleted. After
setting the state, call SaveChanges/SaveChangesAsync. The code is listed here:

public int Delete(int id)
{
 Context.Entry(new Inventory() {CarId=id}).State = EntityState.Deleted;
 return SaveChanges();
}

public Task<int> DeleteAsync(int id)
{
 Context.Entry(new Inventory() { CarId = id }).State = EntityState.Deleted;
 return SaveChangesAsync();
}

Adding the Remaining Repositories
The CustomerRepo, OrderRepo, and CreditRiskRepo classes follow the same pattern as the InventoryRepo
class. Copy the InventoryRepo.cs class to CreditRiskRepo.cs, CustomerRepo.cs, and OrderRepo.cs,
and update the Delete() methods, generic types, and constructors accordingly. They are shown here for
completeness:

public class OrderRepo:BaseRepo<Order>,IRepo<Order>
{
 public OrderRepo()
 {
 Table = Context.Orders;
 }
 public int Delete(int id)

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

974

 {
 Context.Entry(new Order()
 {
 OrderId = id
 }).State = EntityState.Deleted;
 return SaveChanges();
 }

 public Task<int> DeleteAsync(int id)
 {
 Context.Entry(new Order()
 {
 OrderId = id
 }).State = EntityState.Deleted;
 return SaveChangesAsync();
 }
}

public class CustomerRepo:BaseRepo<Customer>,IRepo<Customer>
{
 public CustomerRepo()
 {
 Table = Context.Customers;
 }
 public int Delete(int id)
 {
 Context.Entry(new Customer()
 {
 CustId = id
 }).State = EntityState.Deleted;
 return SaveChanges();
 }

 public Task<int> DeleteAsync(int id)
 {
 Context.Entry(new Customer()
 {
 CustId = id
 }).State = EntityState.Deleted;
 return SaveChangesAsync();
 }
}

public class CreditRiskRepo:BaseRepo<CreditRisk>,IRepo<CreditRisk>
{
 public CreditRiskRepo()
 {
 Table = Context.CreditRisks;
 }
 public int Delete(int id)
 {
 Context.Entry(new CreditRisk()

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

975

 {
 CustId = id
 }).State = EntityState.Deleted;
 return SaveChanges();
 }

 public Task<int> DeleteAsync(int id)
 {
 Context.Entry(new CreditRisk()
 {
 CustId = id
 }).State = EntityState.Deleted;
 return SaveChangesAsync();
 }
}

Initializing the Database
A powerful feature of EF is the ability to initialize the database with data. This is especially handy during
development since the process can restore the database to a known state before each run of your code.
The process is to create a class that inherits from DropCreateDatabaseIfModelChanges<TContext> or
DropCreateDatabaseAlways<TContext>

Start by creating a new class in the EF directory, and name the class DataInitializer. Inherit
DropCreateDatabaseAlways<AutoLotEntities> and override the Seed() method, like this:

using System.Collections.Generic;
using System.Data.Entity;
using AutoLotDAL.Models;
public class DataInitializer : DropCreateDatabaseAlways<AutoLotEntities>
{
 protected override void Seed(AutoLotEntities context)
 {
 }
}

The DropCreateDatabaseAlways class is strongly typed to the AutoLotEntities context class and, as
the name states, will drop and re-create the database every time the program is executed. Likewise, the
DropCreateDatabaseIfModelChanges<TContext> class will drop and re-create the database only when there
are changes in the model. The Seed() method brings an instance of your derived context that you can use to
populate the tables. The process is simple: call Add on the correct DbSet, and when you are finished adding
records, call SaveChanges. Here is an example of how to seed the database with the same records you used in
the previous chapter:

protected override void Seed(AutoLotEntities context)
{
 var customers = new List<Customer>
 {
 new Customer {FirstName = "Dave", LastName = "Brenner"},
 new Customer {FirstName = "Matt", LastName = "Walton"},
 new Customer {FirstName = "Steve", LastName = "Hagen"},
 new Customer {FirstName = "Pat", LastName = "Walton"},
 new Customer {FirstName = "Bad", LastName = "Customer"},
 };

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

976

 customers.ForEach(x => context.Customers.Add(x));
 var cars = new List<Inventory>
 {
 new Inventory {Make = "VW", Color = "Black", PetName = "Zippy"},
 new Inventory {Make = "Ford", Color = "Rust", PetName = "Rusty"},
 new Inventory {Make = "Saab", Color = "Black", PetName = "Mel"},
 new Inventory {Make = "Yugo", Color = "Yellow", PetName = "Clunker"},
 new Inventory {Make = "BMW", Color = "Black", PetName = "Bimmer"},
 new Inventory {Make = "BMW", Color = "Green", PetName = "Hank"},
 new Inventory {Make = "BMW", Color = "Pink", PetName = "Pinky"},
 new Inventory {Make = "Pinto", Color = "Black", PetName = "Pete"},
 new Inventory {Make = "Yugo", Color = "Brown", PetName = "Brownie"},
 };
 cars.ForEach(x => context.Inventory.Add(x));
 var orders = new List<Order>
 {
 new Order {Car = cars[0], Customer = customers[0]},
 new Order {Car = cars[1], Customer = customers[1]},
 new Order {Car = cars[2], Customer = customers[2]},
 new Order {Car = cars[3], Customer = customers[3]},
 };
 orders.ForEach(x => context.Orders.Add(x));

 context.CreditRisks.Add(
 new CreditRisk
 {
 CustId = customers[4].CustId,
 FirstName = customers[4].FirstName,
 LastName = customers[4].LastName,
 });
 context.SaveChanges();
}

The last step is to set the initializer, with the following code (which you will add in the next section):
Database.SetInitializer(new DataInitializer());

Test-Driving AutoLotDAL
The test-drive code is similar to what you did in the prior version of AutoLotDal.dll, but instead of
programming directly against the context, you will be using the Repository classes. Start by adding a new
Console Application project named AutoLotTestDrive to the solution and set this project as the Startup
project. Add EF to the project through NuGet, and update the connectionStrings in App.config to the
following:

<connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=(LocalDb)\MSSQLLocalDb;initial
catalog=AutoLot;integrated security=True;MultipleActiveResultSets=
True;App=EntityFramework" providerName="System.Data.SqlClient" />

</connectionStrings>

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

977

Add a reference to the AutoLotDAL project. Open Program.cs and add the following code to the Main()
method:

static void Main(string[] args)
{
 Database.SetInitializer(new DataInitializer());
 WriteLine("***** Fun with ADO.NET EF Code First *****\n");
 ReadLine();
}

Printing All Inventory Records
To print all records, call the GetAll() method on the Inventory repo and then iterate through the returned
list. There isn’t much difference between this and coding directly against the context, but the Repository
pattern provides a consistent way to access and operate on data across all classes.

private static void PrintAllInventory()
{
 using (var repo = new InventoryRepo())
 {
 foreach (Inventory c in repo.GetAll())
 {
 WriteLine(c);
 }
 }
}

Adding Inventory Records
Adding new records shows the simplicity of calling EF using a repository. In a production system you
would want to add error handling, of course, but the work of adding a record is as simple as calling Add() or
AddRange() on the repository. The code is shown here:

private static void AddNewRecord(Inventory car)
{
 // Add record to the Inventory table of the AutoLot
 // database.
 using (var repo = new InventoryRepo())
 {
 repo.Add(car);
 }
}
private static void AddNewRecords(IList<Inventory> cars)
{
 // Add record to the Inventory table of the AutoLot
 // database.
 using (var repo = new InventoryRepo())
 {
 repo.AddRange(cars);
 }
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

978

To test this code, add the following to the Main() method:

static void Main(string[] args)
{
 Database.SetInitializer(new MyDataInitializer());
 WriteLine("***** Fun with ADO.NET EF Code First *****\n");
 var car1 = new Inventory() { Make = "Yugo", Color = "Brown", PetName = "Brownie" };
 var car2 = new Inventory() { Make = "SmartCar", Color = "Brown", PetName = "Shorty" };
 AddNewRecord(car1);
 AddNewRecord(car2);
 AddNewRecords(new List<Inventory> { car1, car2 });
 PrintAllInventory();
 ReadLine();
}

Editing Records
Saving changes to records is just as simple. Get an Inventory object, make some changes, and call Save()
on the InventoryRepo class. The code is shown here (with some extra code to output the EntityState of the
object along the way):

private static void UpdateRecord(int carId)
{
 using (var repo = new InventoryRepo())
 {
 // Grab the car, change it, save!
 var carToUpdate = repo.GetOne(carId);
 if (carToUpdate != null)
 {
 WriteLine("Before change: " + repo.Context.Entry(carToUpdate).State);
 carToUpdate.Color = "Blue";
 WriteLine("After change: " + repo.Context.Entry(carToUpdate).State);
 repo.Save(carToUpdate);
 WriteLine("After save: " + repo.Context.Entry(carToUpdate).State);
 }
 }
}

To test this code, add the following to the Main() method:

static void Main(string[] args)
{
 Database.SetInitializer(new MyDataInitializer());
 WriteLine("***** Fun with ADO.NET EF Code First *****\n");
 var car1 = new Inventory() { Make = "Yugo", Color = "Brown", PetName = "Brownie" };
 var car2 = new Inventory() { Make = "SmartCar", Color = "Brown", PetName = "Shorty" };
 AddNewRecord(car1);
 AddNewRecord(car2);
 AddNewRecords(new List<Inventory> { car1, car2 });

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

979

 UpdateRecord(car1.CarId);
 PrintAllInventory();
 ReadLine();
}

Using Navigation Properties
Add a method named ShowAllOrders(). In the method, add a using statement around the OrdersRepo
class. For each record returned from the GetAll() method, print the itm.Customer.FullName and
itm.Car.PetName properties. The code is shown here:

private static void ShowAllOrders()
{
 using (var repo = new OrderRepo())
 {
 WriteLine("*********** Pending Orders ***********");
 foreach (var itm in repo.GetAll())
 {
 WriteLine($"->{itm.Customer.FullName} is waiting on {itm.Car.PetName}");
 }
 }
}

Add a call to the method in the Main() method. When you run the program, you will get output similar
to this (your mileage will vary based on the data currently in your database):

***** Fun with ADO.NET EF Code First *****

*********** Pending Orders ***********
-> Dave Brenner is waiting on Bimmer
-> Matt Walton is waiting on Zippy
-> Steve Hagen is waiting on Clunker
-> Pat Walton is waiting on Pinky

If you look at the Output window when you run the app, you will see that there are many individual
database calls made to the database: one to get all of the orders and then additional calls to get each
individual Customer name and Car PetName. This is because of lazy loading, as discussed earlier in this
chapter. Next, you will use eager loading with the InventoryRepo.

To call this from Main(), add the following line:

ShowAllOrders();

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

980

Eager Loading
Begin by adding a using statement for System.Data.Entity. Next, create a method named
ShowAllOrdersEagerlyFetched(). You need to code directly against AutoLotEntities since you don’t have
a Repo method to eagerly fetch the data. (If this is something that you will use often, you can add it into the
OrderRepo class.) The new method is shown here:

private static void ShowAllOrdersEagerlyFetched()
{
 using (var context = new AutoLotEntities())
 {
 WriteLine("*********** Pending Orders ***********");
 var orders = context.Orders
 .Include(x => x.Customer)
 .Include(y => y.Car)
 .ToList();
 foreach (var itm in orders)
 {
 WriteLine($"->{itm.Customer.FullName} is waiting on {itm.Car.PetName}");
 }
 }
}

To call this from Main(), add the following line:

ShowAllOrdersEagerlyFetched();

Multitable Actions/Implicit Transactions
As you recall, EF automatically enlists all changes that are propagated with a SaveChanges call into an
implicit transaction. Replicating the transaction example in Chapter 22 of moving a record from the
Customer table to the CreditRisk table is extremely simple. The repositories that you have coded so far work
on only one table at a time, so you need to code directly against the context.

Start by creating a method named MakeCustomerARisk(). This method will remove a customer from
the Customers table into the CreditRisk table. Since there isn’t a Move() method, you have to code it as a
two-stage operation. Add to CreditRisk and then Delete from Customers. When an entity is brought into
existence with one context, you have to detach it and then connect it to the new context. That is the reason
for setting EntityState to EntityState.Detached in Main() and then calling Attach() on the new context.
The code is shown here:

private static CreditRisk MakeCustomerARisk(Customer customer)
{
 using (var context = new AutoLotEntities())
 {
 context.Customers.Attach(customer);
 context.Customers.Remove(customer);
 var creditRisk = new CreditRisk()
 {
 FirstName = customer.FirstName,
 LastName = customer.LastName
 };

http://dx.doi.org/10.1007/978-1-4842-1332-2_22

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

981

 context.CreditRisks.Add(creditRisk);
 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateException ex)
 {
 WriteLine(ex);
 }
 catch (Exception ex)
 {
 WriteLine(ex);
 }
 return creditRisk;
 }
}

To show the results of this, create a method called PrintAllCustomersAndCreditRisks(). Use the
existing repository classes to iterate through the Customer and CreditRisk records.

private static void PrintAllCustomersAndCreditRisks()
{
 WriteLine("*********** Customers ***********");
 using (var repo = new CustomerRepo())
 {
 foreach (var cust in repo.GetAll())
 {
 WriteLine($"->{cust.FirstName} {cust.LastName} is a Customer.");
 }
 }
 WriteLine("*********** Credit Risks ***********");
 using (var repo = new CreditRiskRepo())
 {
 foreach (var risk in repo.GetAll())
 {
 WriteLine($"->{risk.FirstName} {risk.LastName} is a Credit Risk!");
 }
 }
}

Call these methods from the Main() method, passing in a new Customer object, similar to this:

WriteLine("***** Fun with ADO.NET EF Code First *****\n");
PrintAllCustomersAndCreditRisks();
var customerRepo = new CustomerRepo();
var customer = customerRepo.GetOne(4);
customerRepo.Context.Entry(customer).State = EntityState.Detached;
var risk = MakeCustomerARisk(customer);
PrintAllCustomersAndCreditRisks();

If one of the operations (deleting from Customer or adding to CreditRisk) fail, both operations will fail.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

982

 ■ Source Code you can find the AutoLotTestDrive example in the Chapter 23 subdirectory.

Entity Framework Migrations
You created this version of AutoLotDAL.dll from code and then created the database. Each time the
application is run, the database is dropped and re-created through the initialization process. This works
great in development, but once you deploy your app to production, you can’t keep dropping the database
every time your users run the app. If your model changes, you need to keep your database in sync. This
is where EF migrations come into play. Before creating your first migration, you are going to make some
changes to illustrate the problem. Start by opening Program.cs and comment out the following line:
Database.SetInitializer(new MyDataInitializer());

 ■ Note As discussed earlier, the data initializer drops and re-creates the database, either each time the app
runs or when the model changes. If you don’t comment out the SetInitializer line, this next section won’t
work for you.

Updating the Model
Suppose the business has requested a few changes to the application, including concurrency checking. To
do this, you will add a Timestamp property to all your tables (you will learn about concurrency checking with
EF in the next section). Recall from the list of data annotations that the Timestamp attribute is used for this.
In SQL Server, the Timestamp annotations maps to the RowVersion data type, which in C# is represented by
the byte[] data type. This is the only change that you will make this time for the Inventory, Customer, and
Order classes. You will also add the Timestamp property to the CreditRisk, but you are going to make some
additional changes to that class in the next section. The updated Inventory, Customer, and Order classes are
listed next.

Inventory Class
Here is the Inventory class:

[Table("Inventory")]
public partial class Inventory
{
 [Key]
 public int CarId { get; set; }

 [StringLength(50)]
 public string Make { get; set; }

 [StringLength(50)]
 public string Color { get; set; }

 [StringLength(50)]
 public string PetName { get; set; }

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

983

 [Timestamp]
 public byte[] Timestamp { get; set; }

 public virtual ICollection<Order> Orders { get; set; } = new HashSet<Order>();
}

Customer Class
Here is the Customer class:

public partial class Customer
{
 [Key]
 public int CustId { get; set; }

 [StringLength(50)]
 public string FirstName { get; set; }

 [StringLength(50)]
 public string LastName { get; set; }

 [Timestamp]
 public byte[] Timestamp { get; set; }

 [NotMapped]
 public string FullName => FirstName + " " + LastName;

 public virtual ICollection<Order> Orders { get; set; } = new HashSet<Order>();
}

Order Class
Here is the Order class:

public partial class Order
{
 [Key, Required, DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 public int OrderId { get; set; }

 [Required]
 public int CustId { get; set; }

 [Required]
 public int CarId { get; set; }

 [Timestamp]
 public byte[] Timestamp { get; set; }

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

984

 [ForeignKey("CustId")]
 public virtual Customer Customer { get; set; }

 [ForeignKey("CarId")]
 public virtual Inventory Car { get; set; }
}

Credit Risk Class
In addition to the Timestamp property, you are going to create a unique index on the FirstName and
LastName properties using data annotations. Since this is a complex key, you also need to specify a
name for the index and the order for each column in the index. In this example, the index name is
IDX_CreditRisk_Name, and the column order for the index is LastName and then FirstName and is created
as a unique index. The updated code is shown here:

public partial class CreditRisk
{
 [Key]
 public int CustId { get; set; }

 [StringLength(50)]
 [Index("IDX_CreditRisk_Name",IsUnique = true,Order=2)]
 public string FirstName { get; set; }

 [StringLength(50)]
 [Index("IDX_CreditRisk_Name", IsUnique = true, Order = 1)]
 public string LastName { get; set; }

 [Timestamp]
 public byte[] Timestamp { get; set; }

}

Testing the App
Comment everything out of the Main() method in Program.cs except for the call to PrintAllInventory()
(like the following code snippet) and run the app.

static void Main(string[] args)
{
 WriteLine("***** Fun with ADO.NET EF Code First *****\n");
 PrintAllInventory();
 ReadLine();
}

You will get a System.InvalidOperationException with the following error message:

The model backing the 'AutoLotEntities' context has changed since the database was created.
Consider using Code First Migrations to update the database (http://go.microsoft.com/fwlink
/?LinkId=238269).

http://go.microsoft.com/fwlink/?LinkId=238269
http://go.microsoft.com/fwlink/?LinkId=238269

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

985

Entering EF Migrations
How did EF know that the database and the model were out of sync? Before EF makes its first call to the
database, it looks for a table named __MigrationHistory and compares a hash of the current EF model to
the most recent hash stored in the table. If you open the AutoLot database in Server Explorer, you will see
one record. This was created automatically by EF when it created the database. Now that you have changed
your model, you need to create a new migration entry.

 ■ Note When you create your model from an existing database, the __MigrationHistory table does not
get created (at least at the time of this writing). Why does it matter? When your DbContext class is instantiated
and before the first call to the database from your custom code, EF checks the migration history. Since this
table doesn’t exist, there are a series of exceptions generated. As you well know, exceptions can be expensive
operations, and this can potentially cause a performance issue. Even if you don’t ever plan on using migrations,
you should enable migrations as covered in the next section.

Creating the Baseline Migration
Start by enabling migrations for your project. To do this, open the Package Manager Console (the
command-line tool for managing NuGet packages) by selecting View ➤ Other Windows ➤ Package Manager
Console. Make sure Default Project is set to AutoLotDAL and enter enable-migrations, as shown in
Figure 23-12.

Figure 23-12. Enabling migrations on AutoLotDAL

This creates a Migrations folder with two classes: Configuration.cs and
201510060510505_InitialCreate.cs Note: The name of the second file is based on the date and CPU
time followed by the name of the migration. This format for the name enables EF to run migrations in the
correct chronological order (if more than one exists). Since you did not specify a name when you enabled
migrations, the migration name defaulted to InitialCreate.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

986

Open the InitialCreate.cs class. This class has two methods named Up() and Down(). The Up()
method is for applying the changes to the database, and the Down() method is to roll back the changes.
EF built the database based on your model prior to the changes you made in the previous section and
populated the __MigrationHistory table with the hash of these tables and fields. If you examine the
InitialCreate class, you will see that the Timestamp fields and the additional index in the CreditRisk table
aren’t listed. The file should look like this:

public partial class InitialCreate : DbMigration
{
 public override void Up()
 {
 CreateTable(
 "dbo.CreditRisks",
 c => new
 {
 CustId = c.Int(nullable: false, identity: true),
 FirstName = c.String(maxLength: 50),
 LastName = c.String(maxLength: 50),
 })
 .PrimaryKey(t => t.CustId);

 CreateTable(
 "dbo.Customers",
 c => new
 {
 CustId = c.Int(nullable: false, identity: true),
 FirstName = c.String(maxLength: 50),
 LastName = c.String(maxLength: 50),
 })
 .PrimaryKey(t => t.CustId);

 CreateTable(
 "dbo.Orders",
 c => new
 {
 OrderId = c.Int(nullable: false, identity: true),
 CustId = c.Int(nullable: false),
 CarId = c.Int(nullable: false),
 })
 .PrimaryKey(t => t.OrderId)
 .ForeignKey("dbo.Inventory", t => t.CarId, cascadeDelete: true)
 .ForeignKey("dbo.Customers", t => t.CustId, cascadeDelete: true)
 .Index(t => t.CustId)
 .Index(t => t.CarId);

 CreateTable(
 "dbo.Inventory",
 c => new
 {
 CarId = c.Int(nullable: false, identity: true),
 Make = c.String(maxLength: 50),

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

987

 Color = c.String(maxLength: 50),
 PetName = c.String(maxLength: 50),
 })
 .PrimaryKey(t => t.CarId);

 }

 public override void Down()
 {
 DropForeignKey("dbo.Orders", "CustId", "dbo.Customers");
 DropForeignKey("dbo.Orders", "CarId", "dbo.Inventory");
 DropIndex("dbo.Orders", new[] { "CarId" });
 DropIndex("dbo.Orders", new[] { "CustId" });
 DropTable("dbo.Inventory");
 DropTable("dbo.Orders");
 DropTable("dbo.Customers");
 DropTable("dbo.CreditRisks");
 }
}

The Configuration.cs class also has one method and some constructor code. The code in the
constructor instructs EF to disable automatic migrations (which is the setting you will use most of the time,
since you want to have control over how migrations work) and sets the ContextKey (in the base class) to the
fully qualified name of your derived DbContext class. The Seed() method enables you to add data to the
database, which you will use shortly.

internal sealed class Configuration : DbMigrationsConfiguration<AutoLotDAL.
EF.AutoLotEntities>
{
 public Configuration()
 {
 AutomaticMigrationsEnabled = false;
 ContextKey = "AutoLotDAL.EF.AutoLotEntities";
 }

 protected override void Seed(AutoLotDAL.EF.AutoLotEntities context)
 {
 }
}

To create a migration, type add-migration TimeStamps in the Package Manager Console.
add-migration instructs EF to take a hash of the current model and compare it to the most recent hash in
the __MigrationHistory table. The second parameter is the name for the migration, which can be anything
but should be meaningful to you. Executing this command (Figure 23-13) creates a new file under the
Migrations folder with the name <timestamp>_TimeStamps.cs.

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

988

Open the new file (mine is named 201510062307304_TimeStamps.cs) and examine the contents. Again,
it has an Up() method that applies the changes and a Down() method that rolls back the changes. The file is
listed here:

public partial class TimeStamps : DbMigration
{
 public override void Up()
 {
 AddColumn("dbo.CreditRisks", "Timestamp",
 c => c.Binary(nullable: false, fixedLength: true, timestamp: true, storeType:

"rowversion"));
 AddColumn("dbo.Customers", "Timestamp",
 c => c.Binary(nullable: false, fixedLength: true, timestamp: true, storeType:

"rowversion"));
 AddColumn("dbo.Orders", "Timestamp",
 c => c.Binary(nullable: false, fixedLength: true, timestamp: true, storeType:

"rowversion"));
 AddColumn("dbo.Inventory", "Timestamp",
 c => c.Binary(nullable: false, fixedLength: true, timestamp: true, storeType:

"rowversion"));
 CreateIndex("dbo.CreditRisks", new[] { "LastName", "FirstName" },
 unique: true, name: "IDX_CreditRisk_Name");
 }

 public override void Down()
 {
 DropIndex("dbo.CreditRisks", "IDX_CreditRisk_Name");
 DropColumn("dbo.Inventory", "Timestamp");
 DropColumn("dbo.Orders", "Timestamp");

Figure 23-13. Creating the initial migration

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

989

 DropColumn("dbo.Customers", "Timestamp");
 DropColumn("dbo.CreditRisks", "Timestamp");
 }
}

The final task is to update the database. Type update-database in the Package Manager Console, and
you will get a message that the migration has been applied. Open Server Explorer, and refresh the Tables
node. You will see the __MigrationHistory table. If you select Show Table Data on the table, you will see
something similar to Figure 23-14.

Figure 23-14. The contents of the __MigrationHistory table

Seeding the Database
The Seed() method in Configure.cs leverages the AddOrUpdate() method on the DbSet class. The
AddOrUpdate() method takes two parameters; the first is a lambda representing the unique field(s) to
identify for updating, and the second is the record to add (or update) in the database. The base syntax is this:

context.Customers.AddOrUpdate(c=> c.CustId,
 new Customer {CustId = 1, FirstName="Foo",LastName="Bar"});

In this example, you aren’t checking by the primary key since it’s an identity. You want to check to
make sure the FirstName and LastName combination is unique. To use a complex identifier, you create an
anonymous object to identify the fields, instead of a single property, like this:

context.Customers.AddOrUpdate(c=> new {c.FirstName,c.LastName},
 new Customer { FirstName="Foo",LastName="Bar"});

Copy the code from the DataInitialize class into the Seed() method. Change the Add() calls to
AddOrUpdate(), as shown here:

protected override void Seed(AutoLotDAL.EF.AutoLotEntities context)
{
 var customers = new List<Customer>
 {
 new Customer {FirstName = "Dave", LastName = "Brenner"},
 new Customer {FirstName = "Matt", LastName = "Walton"},
 new Customer {FirstName = "Steve", LastName = "Hagen"},
 new Customer {FirstName = "Pat", LastName = "Walton"},
 new Customer {FirstName = "Bad", LastName = "Customer"},
 };

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

990

 customers.ForEach(x =>
 context.Customers.AddOrUpdate(c=> new { c.FirstName,c.LastName},x));

 var cars = new List<Inventory>
 {
 new Inventory {Make = "VW", Color = "Black", PetName = "Zippy"},
 new Inventory {Make = "Ford", Color = "Rust", PetName = "Rusty"},
 new Inventory {Make = "Saab", Color = "Black", PetName = "Mel"},
 new Inventory {Make = "Yugo", Color = "Yellow", PetName = "Clunker"},
 new Inventory {Make = "BMW", Color = "Black", PetName = "Bimmer"},
 new Inventory {Make = "BMW", Color = "Green", PetName = "Hank"},
 new Inventory {Make = "BMW", Color = "Pink", PetName = "Pinky"},
 new Inventory {Make = "Pinto", Color = "Black", PetName = "Pete"},
 new Inventory {Make = "Yugo", Color = "Brown", PetName = "Brownie"},
 };
 cars.ForEach(x =>
 context.Inventory.AddOrUpdate(i => new { i.Make, i.Color, i.PetName }, x));

 var orders = new List<Order>
 {
 new Order {Car = cars[0], Customer = customers[0]},
 new Order {Car = cars[1], Customer = customers[1]},
 new Order {Car = cars[2], Customer = customers[2]},
 new Order {Car = cars[3], Customer = customers[3]},
 };
 orders.ForEach(x =>
 context.Orders.AddOrUpdate(o => new { o.CarId, o.CustId }, x));

 context.CreditRisks.AddOrUpdate(c => new { c.FirstName, c.LastName },
 new CreditRisk
 {
 CustId = customers[4].CustId,
 FirstName = customers[4].FirstName,
 LastName = customers[4].LastName,
 });
}

The Seed() methods runs each time you run update-database from the Package Manager Console.
To seed the database, open the Package Manager Console, type update-database, and hit Enter.

Revisiting the Transaction Test
Now that you have a unique index for the CreditRisk table based on the customer first and last names,
update the MakeACustomerRisk() method to add the new record twice. Because of the implicit transaction
created when SaveChanges() is called, not only will the customer not be added to the CreditRisk table
(either time), but the customer will not be removed from the Customer table. Add a try-catch block around

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

991

the call to SaveChanges() catching the DbUpdateException. In the catch block, write the exception to the
console. When you run the application, you see that indeed the changes to the database are not made, and
the exception detail is written to the console window. The updated code is shown here:

private static CreditRisk MakeCustomerARisk(Customer customer)
{
 using (var context = new AutoLotEntities())
 {
 context.Customers.Attach(customer);
 context.Customers.Remove(customer);
 var creditRisk = new CreditRisk()
 {
 FirstName = customer.FirstName,
 LastName = customer.LastName
 };
 context.CreditRisks.Add(creditRisk);
 var creditRiskDupe = new CreditRisk()
 {
 FirstName = customer.FirstName,
 LastName = customer.LastName
 };
 context.CreditRisks.Add(creditRiskDupe);
 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateException ex)
 {
 WriteLine(ex);
 }

 return creditRisk;
 }
}

Concurrency
A common problem in multiuser applications is concurrency issues. If your application does not check for
concurrency issues, when two users update the same record, the last one in wins. This might be perfectly
fine for your application, but if not, EF and SQL Server provide a convenient mechanism for checking for
concurrency clashes.

When you added the timestamp properties to your model classes in the previous section, it changed
how EF builds and runs queries that update or delete data from the database. A call to delete no longer just
looks for the primary key (CarId) but also looks for the Timestamp. For example, the generated SQL looks
like this:

Execute NonQuery "DELETE [dbo].[Inventory] WHERE (([CarId] = @0) AND ([Timestamp] = @1))"

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

992

EF automatically added the timestamp as part of the WHERE clause on the delete. This prevents one user
(or process) from stepping on another user’s (or process’s) changes. If the delete call isn’t working with the
most recent version of record, nothing will be updated, and a DbUpdateConcurrencyException will be raised.

Correcting the Repositories
The Delete(int id) and DeleteAsync(int id) methods in the repos will now fail every time they are called
because the Timestamp is not being passed in. Correct the method definitions in the IRepo<T> interface first
to accept a timestamp value. The updated code is shown here:

int Delete(int id, byte[] timeStamp);
Task<int> DeleteAsync(int id, byte[] timeStamp);

Now update all the repositories to leverage the new method signatures. The relevant code from the
InventoryRepo class is shown here (the rest of the repositories follow the same pattern, and the updated
code can be found in the sample download):

public int Delete(int id, byte[] timeStamp)
{
 Context.Entry(new Inventory()
 {
 CarId=id,
 Timestamp = timeStamp
 }).State = EntityState.Deleted;
 return SaveChanges();
}

public Task<int> DeleteAsync(int id, byte[] timeStamp)
{
 Context.Entry(new Inventory()
 {
 CarId = id,
 Timestamp = timeStamp
 }).State = EntityState.Deleted;
 return SaveChangesAsync();
}

Testing Concurrency
The following code demonstrates concurrency checking on an Inventory record. It replicates two different
users updating the same record. When the users get the records from the database, the timestamps are the
same. When one user updates their record, the timestamp is updated by SQL Server, but the second user
hasn’t refreshed their object, so the timestamp value is still the original value. When that user attempts to
save the record, the timestamps don’t match, the SaveChanges call doesn’t update any records, and the
exception is thrown. The updated code is shown here:

private static void UpdateRecordWithConcurrency)
{
 var car = new Inventory()
 { Make = "Yugo", Color = "Brown", PetName = "Brownie" };
 AddNewRecord(car);

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

993

 var repo1 = new InventoryRepo();
 var car1 = repo1.GetOne(car.CarId);
 car1.PetName = "Updated";

 var repo2 = new InventoryRepo();
 var car2 = repo2.GetOne(car.CarId);
 car2.Make = "Nissan";

 repo1.Save(car1);
 try
 {
 repo2.Save(car2);
 }
 catch (DbUpdateConcurrencyException ex)
 {
 WriteLine(ex);
 }
 RemoveRecordById(car1.CarId, car1.Timestamp);
}

All this code does is expose the problem. You still need to decide what to do when a concurrency error
occurs. That will depend on your specific business requirements.

Interception
The final topic in this chapter regarding EF covers interception. As you have seen in the previous examples,
a lot of “magic” happens behind the scenes for the data to move from the data store into your object
model, and vice versa. Interception is the process of running code at different phases of the process.

The IDbCommandInterceptor Interface
It all starts with the IDbCommandInterceptor interface, listed here:

public interface IDbCommandInterceptor : IDbInterceptor
{
 void NonQueryExecuted(DbCommand command,
 DbCommandInterceptionContext<int> interceptionContext);
 void NonQueryExecuting(DbCommand command,
 DbCommandInterceptionContext<int> interceptionContext);
 void ReaderExecuted(DbCommand command,
 DbCommandInterceptionContext<DbDataReader> interceptionContext);
 void ReaderExecuting(DbCommand command,
 DbCommandInterceptionContext<DbDataReader> interceptionContext);
 void ScalarExecuted(DbCommand command,
 DbCommandInterceptionContext<object> interceptionContext);
 void ScalarExecuting(DbCommand command,
 DbCommandInterceptionContext<object> interceptionContext);
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

994

As you can probably infer from the names, this interface contains methods that are called by EF just
prior and just after certain events. For example, the ReaderExecuting() method is called just before a reader
is executed, and ReaderExecuted() is called just after a reader is executed. For this example, you will simple
write to the console in each of these methods. In a production system, the logic will be more appropriate to
your requirements.

Adding Interception to AutoLotDAL
Add a new folder named Interception to the AutoLotDAL project and a new class to the folder name
ConsoleWriterInterceptor. Make the class public, add System.Data.Entity.Infrastructure.
Interception as a using, and inherit from IDbCommandInterceptor. After you implement the missing
members, you code should look like this:

public class ConsoleWriterInterceptor : IDbCommandInterceptor
{
 public void NonQueryExecuting(DbCommand command,
 DbCommandInterceptionContext<int> interceptionContext)
 {
 }

 public void NonQueryExecuted(DbCommand command,
 DbCommandInterceptionContext<int> interceptionContext)
 {
 }

 public void ReaderExecuting(DbCommand command,
 DbCommandInterceptionContext<DbDataReader> interceptionContext)
 {
 }

 public void ReaderExecuted(DbCommand command,
 DbCommandInterceptionContext<DbDataReader> interceptionContext)
 {
 }

 public void ScalarExecuting(DbCommand command,
 DbCommandInterceptionContext<object> interceptionContext)
 {
 }
 public void ScalarExecuted(DbCommand command,
 DbCommandInterceptionContext<object> interceptionContext)
 {
 }
}

To keep the example simple, you are just going to write to the console whether the call is asynchronous
and the text of the command. Add a using for static System.Console and add a private method named
WriteInfo() that takes a bool and a string. The code is listed here:

private void WriteInfo(bool isAsync, string commandText)
{
 WriteLine($"IsAsync: {isAsync}, Command Text: {commandText}");
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

995

In each of the methods from the interface, add a call to the WriteInfo() method like this:

WriteInfo(interceptionContext.IsAsync,command.CommandText);

Registering the Interceptor
Interceptors can be registered through code or in the application configuration file. Registering them in code
isolates them from changes to the configuration file and therefore ensures that they are always registered. If
you need more flexibility, the configuration file might be the better choice. For this example, you are going to
register the interceptor in code.

Open the AutoLotEntities.cs class and add the following usings:

using System.Data.Entity.Infrastructure;
using System.Data.Entity.Infrastructure.Interception;

Next, in the constructor, add the following line of code:

DbInterception.Add(new ConsoleWriterInterceptor());

Execute one of the test methods from earlier in this chapter, and you will see the additional output
from the logger written to the console. This is a simple example but illustrates the capabilities of the
interceptor class.

 ■ Note the DbCommandInterceptionContext<T> contains much more than you have explored here. Please
consult the .NEt Framework 4.6 SDk documentation for more information.

Adding the DatabaseLogger Interceptor
EF now ships with a built-in logging interceptor if all you want to do is simple logging. To add this capability,
start by opening the AutoLotEntities.cs class and comment out your console logger. Add a static
read-only member of type DatabaseLogger (in the System.Data.Entity.Infrastructure.Interception
namespace). The constructor takes two parameters; the first is the file name for the log file, and the second
is optional and indicates whether the log should be appended to (the default is false). In the constructor,
call StartLogging() on the interceptor and add the instance to the list of interceptors. The updated code is
shown here:

static readonly DatabaseLogger DatabaseLogger =
 new DatabaseLogger("sqllog.txt", true);
public AutoLotEntities() : base("name=AutoLotConnection")
{
 //DbInterception.Add(new ConsoleWriterInterceptor());
 DatabaseLogger.StartLogging();
 DbInterception.Add(DatabaseLogger);
}

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

996

The last change is to leverage the DbContext implementation of the IDisposable pattern to stop logging
and remove the interceptor. The code is shown here:

protected override void Dispose(bool disposing)
{
 DbInterception.Remove(DatabaseLogger);
 DatabaseLogger.StopLogging();
 base.Dispose(disposing);
}

ObjectMaterialized and SavingChanges Events
The ObjectContext class contains two events, ObjectMaterialized and SavingChanges. These events can
save you from creating an interceptor—as long as they meet your needs, that is! The ObjectMaterialized
event fires when an object is reconstituted from the data store, and the SavingChanges event occurs when
the object’s data is about to be propagated to the data store, just after the SaveChanges() method is called on
the context.

Accessing the Object Context
As you recall, the context is derived from the DbContext class. Fortunately, it also extends the
IObjectContextAdapter interface. To get to the ObjectContext, you need to cast AutoLotEntities to
IObjectContextAdapter. You do this in the constructor like this:

public AutoLotEntities(): base("name=AutoLotConnection")
{
 //Interceptor code
 var context = (this as IObjectContextAdapter).ObjectContext;
 context.ObjectMaterialized += OnObjectMaterialized;
 context.SavingChanges += OnSavingChanges;
}

private void OnSavingChanges(object sender, EventArgs eventArgs)
{
}

private void OnObjectMaterialized(object sender,
System.Data.Entity.Core.Objects.ObjectMaterializedEventArgs e)
{
}

ObjectMaterialized
The ObjectMaterialized event’s arguments provide access to the entity being reconstituted. While you
won’t use this event in this chapter, you will need it for Chapter 30. For now, suffice it to say that this event
fires immediately after a model class’s properties are populated by EF and before the context serves it up to
the calling code.

http://dx.doi.org/10.1007/978-1-4842-1332-2_30

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

997

SavingChanges
As mentioned, the SavingChanges event fires just after the SaveChanges() method is called (on the
DbContext) but before the database is updated. By accessing the ObjectContext passed into the event
handler, all the entities in the transaction are accessible through the ObjectStateEntry property on the
DbContext. Table 23-6 shows some of the key properties.

Table 23-7. Key Methods of ObjectStateEntry

Member of DbContext Meaning in Life

AcceptChanges Accepts the current values as the original values

ApplyCurrentValues Sets the current values to match those of a supplied object

ApplyOriginalValues Sets the original values to match those of a supplied object

ChangeState Updates the state of the entity

GetModifiedProperties Returns the names of all changed properties

IsPropertyChanges Checks a specific property for changes

RejectPropertyChanges The current state of the entity (e.g. Modified, Added, Deleted)

Table 23-6. Key Members of ObjectStateEntry

Member of DbContext Meaning in Life

CurrentValues The current values of the entity’s properties

OriginalValues The original values of the entity’s properties

Entity The entity represented by the ObjectStateEntry object

State The current state of the entity (e.g., Modified, Added, Deleted)

The ObjectStateEntry also exposes a set of methods that can be used on the entity. Some of these are
listed in Table 23-7.

This permits you to write code that rejects any changes to a vehicle’s color if the color is red, like this:

private void OnSavingChanges(object sender, EventArgs eventArgs)
{
 //Sender is of type ObjectContext. Can get current and original values, and
 //cancel/modify the save operation as desired.
 var context = sender as ObjectContext;
 if (context == null) return;
 foreach (ObjectStateEntry item in
 context.ObjectStateManager.GetObjectStateEntries(
 EntityState.Modified | EntityState.Added))
 {
 //Do something important here
 if ((item.Entity as Inventory)!=null)
 {
 var entity = (Inventory) item.Entity;

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

998

 if (entity.Color == "Red")
 {
 item.RejectPropertyChanges(nameof(entity.Color));
 }
 }
 }
}

 ■ Source Code you can find the updated AutoLotDAL example in the Chapter 23 subdirectory.

Deploying to SQL Server
As the final step, you will deploy your database to SQL Server Express. This is as simple as changing the
connection string and executing update-database! Open the App.config file in AutoLotDAL and update the
connection string to point to SQL Server Express. Note: I also changed the name of the default catalog since
I already have an AutoLot database in SQL Express. The exact string will depend on how you installed SQL
Server, but it should look something like this:

<connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=.\SQLEXPRESS2014;initial
catalog=AutoLot2;integrated security=True;MultipleActiveResultSets=True;App=EntityFramewo
rk" providerName="System.Data.SqlClient" />

</connectionStrings>

When you run update database, you will see the updates getting applied (as in Figure 23-15).

Figure 23-15. Deploying to SQL Server Express

 ■ Source Code If you have an issue with the migrations not executing, the Package Manager Console might
be using the console app as the target. you can specify the following to rectify the situation: Update-Database
-ProjectName AutoLotDAL -StartUpProjectName AutoLotDAL

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPtER 23 ■ ADO.NEt PARt III: ENtIty FRAMEWORk

999

Summary
Over the past three chapters, you went on a tour of three approaches to data manipulation using ADO.NET,
specifically the connection layer, the disconnected layer, and the Entity Framework. Each approach has
merit, and many of your applications will likely use various aspects of each of them. Now to be sure, you
have only scratched the surface of all the topics found within the ADO.NET technology set. To dive deeper
into any of the topics presented in this book (as well to examine a number of related items), I recommend
consulting the .NET Framework 4.6 SDK documentation.

This chapter wrapped up your formal investigation of database programming using ADO.NET by
examining the role of the Entity Framework. EF allows you to program against a conceptual model that
closely maps to your business domain. While you can reshape your entities in any way you choose, the EF
runtime ensures that the changed data is mapped to the correct physical table data.

Along the way you learned about data annotations, which is one way to describe the mapping between
your domain model and the database model. You learned about how EF handles transactions; creating,
saving, and deleting data; and how entity state fits in.

You then used database migrations to keep the changes to your model in sync with the database,
checked for concurrency errors, and added logging and interception. Finally, you walked through a lot of
different examples while test-driving AutoLotDAL.dll.

1001

Chapter 24

Introducing LINQ to XML

As a .NET developer, you are bound to encounter XML-based data in numerous places. Application and
web-based configuration files store information as XML. Windows Presentation Foundation uses an
XML-based grammar (XAML) to represent desktop GUIs. ADO.NET DataSets can easily save out (or load in)
data as XML. Even Windows Communication Foundation stores numerous settings as the well-formatted
string called XML.

Although XML is indeed everywhere, programming with XML has historically been tedious, verbose,
and complex if you are not well versed in a great number of XML technologies (XPath, XQuery, XSLT, DOM,
SAX, etc.). Since the inception of the .NET platform, Microsoft has provided a specific assembly, named
System.Xml.dll, devoted to programming with XML documents. Within this binary are a number of
namespaces and types to various XML programming techniques, as well as a few .NET-specific XML APIs
such as the XmlReader/XmlWriter classes.

These days, most .NET programmers prefer to interact with XML data using the LINQ to XML API. As
you will see in this chapter, the LINQ to XML programming model allows you to capture the structure of an
XML data in code and provides a much simpler way to create, manipulate, load, and save XML data. While
you could use LINQ to XML as little more than a simpler way to create XML documents, you can also easily
incorporate LINQ query expressions into the mix to quickly query a document for information.

A Tale of Two XML APIs
When the .NET platform was first introduced, programmers were able to manipulate XML documents using
the types within the System.Xml.dll assembly. Using the contained namespaces and types, you were able
to generate XML data in memory and save it to disk storage. As well, the System.Xml.dll assembly provided
types allowing you to load XML documents into memory, search an XML document for specific nodes,
validate a document against a given schema, and other common programming tasks.

While this original library has been used successfully in many .NET projects, working with these types
was a bit cumbersome (to put it politely), as the programming model bore no relationship to the structure of
the XML document itself. For example, assume you needed to build an XML file in memory and save it to the
file system. If you were to use the types of System.Xml.dll, you might author code like the following (if you
want to follow along, create a new Console Application project named LinqToXmlFirstLook and import the
System.Xml namespace):

private static void BuildXmlDocWithDOM()
{
 // Make a new XML document in memory.
 XmlDocument doc = new XmlDocument();

Chapter 24 ■ IntroduCIng LInQ to XML

1002

 // Fill this document with a root element
 // named <Inventory>.
 XmlElement inventory = doc.CreateElement("Inventory");

 // Now, make a subelement named <Car> with
 // an ID attribute.
 XmlElement car = doc.CreateElement("Car");
 car.SetAttribute("ID", "1000");

 // Build the data within the <Car> element.
 XmlElement name = doc.CreateElement("PetName");
 name.InnerText = "Jimbo";
 XmlElement color = doc.CreateElement("Color");
 color.InnerText = "Red";
 XmlElement make = doc.CreateElement("Make");
 make.InnerText = "Ford";

 // Add <PetName>, <Color>, and <Make> to the <Car>
 // element.
 car.AppendChild(name);
 car.AppendChild(color);
 car.AppendChild(make);

 // Add the <Car> element to the <Inventory> element.
 inventory.AppendChild(car);

 // Insert the complete XML into the XmlDocument object,
 // and save to file.
 doc.AppendChild(inventory);
 doc.Save("Inventory.xml");
}

If you were to call this method, you would be able to see that the Inventory.xml file (located in the
bin\Debug folder) contains the following data:

<Inventory>
 <Car ID="1000">
 <PetName>Jimbo</PetName>
 <Color>Red</Color>
 <Make>Ford</Make>
 </Car>
</Inventory>

While this method works as expected, a few observations are in order. First, the programming model of
System.Xml.dll is Microsoft’s implementation of the W3C Document Object Model (DOM) specification.
Under this model, an XML document is created from the bottom up. First you create a document, then you
create subelements, and finally you add the elements to the document. To account for this in code, you need
to author quite a bit of function calls off the XmlDocument and XmlElement classes (among others).

Chapter 24 ■ IntroduCIng LInQ to XML

1003

For this example, it took 16 lines of code (not including code comments) to build even this simple
XML document. If you needed to build a more complex document with the System.Xml.dll assembly, you
could end up with a great deal of code. While you could certainly streamline this code, by building nodes
via various looping or decision constructs, the fact remains that the body of code has little visual indicators
regarding the final XML tree.

LINQ to XML As a Better DOM
The LINQ to XML API is an alternative manner to create, manipulate, and query XML documents, which
uses a much more functional approach than the System.Xml DOM model. Rather than building an XML
document by assembling elements individually and updating the XML tree through a set of function calls,
you can author top-down code such as the following:

private static void BuildXmlDocWithLINQToXml()
{
 // Create an XML document in a more "functional" manner.
 XElement doc =
 new XElement("Inventory",
 new XElement("Car", new XAttribute("ID", "1000"),
 new XElement("PetName", "Jimbo"),
 new XElement("Color", "Red"),
 new XElement("Make", "Ford")
)
);

 // Save to file.
 doc.Save("InventoryWithLINQ.xml");
}

Here, you are using a new set of types from the System.Xml.Linq namespace, specifically XElement and
XAttribute. If you were to call this method, you would find the same XML data has been created, this time
with much less fuss and bother. Notice how, through some careful indentation, your source code has the
same overall structure of the resulting XML document. This is useful in and of itself, but also notice that you
have a much smaller body of code than the previous example (based on how you space your code, you saved
about ten lines!)

Here, you have not made use of any LINQ query expressions but have simply used the types of the
System.Xml.Linq namespace to generate an in-memory XML document, which is then saved to file.
Effectively, you have used LINQ to XML as a better DOM. As you will see later in this chapter, the classes of
System.Xml.Linq are LINQ-aware and can be the target for the same sort of LINQ queries you learned about
in Chapter 12.

As you learn more about LINQ to XML, you will most likely find it much easier to work with than the initial
XML libraries of .NET. This is not to say you will never use the namespaces of the original System.Xml.dll
library; however, chances are that the times you will opt to use System.Xml.dll for new projects will be
significantly reduced.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 24 ■ IntroduCIng LInQ to XML

1004

VB Literal Syntax As a Better LINQ to XML
Before you begin your formal examination into LINQ to XML as seen through C#, I do want to briefly
mention that the Visual Basic language takes the functional approach of this API to the next level. In VB, you
can define XML literals, which allow you to assign an XElement to a stream of inline XML markup, directly in
code. Assuming you had a VB project, you could build the following method:

Public Class XmlLiteralExample
 Public Sub MakeXmlFileUsingLiterals()
 ' Notice that we can inline XML data
 ' to an XElement.
 Dim doc As XElement =
 <Inventory>
 <Car ID="1000">
 <PetName>Jimbo</PetName>
 <Color>Red</Color>
 <Make>Ford</Make>
 </Car>
 </Inventory>

 ' Save to file.
 doc.Save("InventoryVBStyle.xml")
 End Sub
End Class

After the VB compiler processes the XML literal, it will map the XML data into the correct underlying
LINQ to XML object model. In fact, when you are working with LINQ to XML within a VB project, the
IDE already understands that your XML literal syntax is just a shorthand notation for the related code.
In Figure 24-1, notice how you can apply the dot operator to the </Inventory> end tag and see the same
members as you would find if you apply the dot operator to a strongly typed XElement.

Chapter 24 ■ IntroduCIng LInQ to XML

1005

Although this book is about the C# programming language, few developers can argue that VB’s XML
support is quite awesome. Even if you are the sort of developer who can’t imagine using a language from
the BASIC family for your data-to-day development, I encourage you to check out VB literal syntax using the
.NET Framework 4.6 SDK documentation. You could find yourself isolating your XML data- manipulation
routines to a dedicated *.dll, just so you can use VB to do so!

Members of the System.Xml.Linq Namespace
Somewhat surprisingly, the core LINQ to XML assembly (System.Xml.Linq.dll) defines a small
number of types in three distinct namespaces, specifically System.Xml.Linq, System.Xml.Schema, and
System.Xml.XPath (see Figure 24-2).

Figure 24-1. VB XML literal syntax is a shorthand notation for working with the LINQ to XML object model

Chapter 24 ■ IntroduCIng LInQ to XML

1006

The core namespace, System.Xml.Linq, contains a manageable set of classes that represent various
aspects of an XML document (its elements and their attributes, XML namespaces, XML comments,
processing instructions, etc.). Table 24-1 documents the core members of System.Xml.Linq.

Figure 24-2. The namespaces of System.Xml.Linq.dll

Chapter 24 ■ IntroduCIng LInQ to XML

1007

Figure 24-3 shows how the inheritance chain of the key class types.

Table 24-1. Select Members of the System.Xml.Linq Namespace

Member of System.Xml.Linq Meaning in Life

XAttribute Represents an XML attribute on a given XML element.

XCData Represents a CDATA section in the XML document. Information in
a CDATA section represents data in an XML document that must be
included but does not conform to the rules of XML grammars
(for example, script code).

XComment Represents an XML comment.

XDeclaration Represents the opening declaration of an XML document.

XDocument Represents the entirety of an XML document.

XElement Represents a given element within an XML document, including the root
element.

XName Represents the name of an XML element or XML attribute.

XNamespace Represents an XML namespace.

XNode Represents the abstract concept of a node (element, comment,
document type, processing instruction, or text node) in the XML tree.

XProcessingInstruction Represents an XML processing instruction.

XStreamingElement Represents elements in an XML tree that supports deferred streaming
output.

Figure 24-3. The LINQ to XML core class hierarchy

Chapter 24 ■ IntroduCIng LInQ to XML

1008

The LINQ to XML Axis Methods
In addition to the X* classes, System.Xml.Linq defines a class named Extensions, which (of course) defines
a set of extension methods that typically extend IEnumerable<T>, where T is some descendant of XNode or
XContainer. Table 24-2 documents some of the important extension methods to be aware of (as you will see,
these are useful when you want to work with LINQ queries).

Table 24-2. Select Members of the LINQ to XML Extensions Class

Member of Extensions Meaning in Life

Ancestors<T>() Returns a filtered collection of elements that contains the ancestors of every
node in the source collection.

Attributes() Returns a filtered collection of the attributes of every element in the source
collection.

DescendantNodes<T>() Returns a collection of the descendant nodes of every document and element
in the source collection.

Descendants<T> Returns a filtered collection of elements that contains the descendant
elements of every element and document in the source collection.

Elements<T> Returns a collection of the child elements of every element and document in
the source collection.

Nodes<T> Returns a collection of the child nodes of every document and element in the
source collection.

Remove() Removes every attribute in the source collection from its parent element.

Remove<T>() Removes all occurrences of a given node from the source collection.

As you can tell from their names, these methods allow you to query a loaded XML tree to find elements,
attributes, and their values. Collectively, these methods are termed axis methods, or simply axes. You can
apply these methods directly to parts of a tree of nodes or use them to build more elaborate LINQ queries.

 ■ Note the abstract XContainer class support a number of methods that are identically named to the
members of Extensions. XContainer is the parent to both XElement and XDocument; therefore, they both
support the same overall functionality.

You’ll see examples of using some of these axis methods over the chapter. However, here is a quick example:

private static void DeleteNodeFromDoc()
{
 XElement doc =
 new XElement("Inventory",
 new XElement("Car", new XAttribute("ID", "1000"),
 new XElement("PetName", "Jimbo"),
 new XElement("Color", "Red"),
 new XElement("Make", "Ford")
)
);

Chapter 24 ■ IntroduCIng LInQ to XML

1009

 // Delete the PetName element from the tree.
 doc.Descendants("PetName").Remove();
 Console.WriteLine(doc);
}

If you were to invoke this method, you’d see the following “pruned” XML tree:

<Inventory>
 <Car ID="1000">
 <Color>Red</Color>
 <Make>Ford</Make>
 </Car>
</Inventory>

The Oddness of XName (and XNamespace)
If you examine the signatures of the LINQ to XML axis methods (or the identically named members of
XContainer), you’ll notice that they typically require you to specify what looks to be an XName object.
Consider the following signature of the Desendants() method defined by XContainer:

public IEnumerable<XElement> Descendants(XName name)

XName is “odd” in that you will never really directly use it in your code. In fact, since this class has no
public constructor, you cannot make an XName object, as demonstrated here:

// Error! Can't make XName objects!
doc.Descendants(new XName("PetName")).Remove();

If you were to view the formal definition of XName, you would see that this class defines a custom implicit
conversion operator (see Chapter 11 for information of defining custom conversion operators), which will
map a simple System.String to the correct XName object.

// We really make an XName in the background!
doc.Descendants("PetName").Remove();

 ■ Note the XNamespace class also supports the same flavor of implicit string conversion.

The good news is that you can use textual values to represent the names of elements or attributes when
you work with these axis methods and allow the LINQ to XML API to map your string data to the necessary
object types.

 ■ Source Code the LinqtoXmlFirstLook example can be found in the Chapter 24 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_11
http://dx.doi.org/10.1007/978-1-4842-1332-2_24

Chapter 24 ■ IntroduCIng LInQ to XML

1010

Working with XElement and XDocument
Let’s continue the investigation of LINQ to XML with a new Console Application project named
ConstructingXmlDocs. After you have created the project, import the System.Xml.Linq namespace into your
initial code file. As you have already seen, XDocument represents the entirety of an XML document in the LINQ
to XML programming model, as it can be used to define a root element and all contained elements, processing
instructions, and XML declarations. Here is another example of building XML data using XDocument:

static void CreateFullXDocument()

{
 XDocument inventoryDoc =
 new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Current Inventory of cars!"),
 new XProcessingInstruction("xml-stylesheet",
 "href='MyStyles.css' title='Compact' type='text/css'"),
 new XElement("Inventory",
 new XElement("Car", new XAttribute("ID", "1"),
 new XElement("Color", "Green"),
 new XElement("Make", "BMW"),
 new XElement("PetName", "Stan")
),
 new XElement("Car", new XAttribute("ID", "2"),
 new XElement("Color", "Pink"),
 new XElement("Make", "Yugo"),
 new XElement("PetName", "Melvin")
)
)
);

 // Save to disk.
 inventoryDoc.Save("SimpleInventory.xml");
}

Again, notice that the constructor of the XDocument object is, in fact, a tree of additional LINQ to XML
objects. The constructor called here takes as the first parameter an XDeclaration, followed by a parameter
array of objects (recall, C# parameter arrays allow you to pass in a comma-delimited list of arguments,
which are packaged as an array on your behalf):

public XDocument(System.Xml.Linq.XDeclaration declaration, params object[] content)

Chapter 24 ■ IntroduCIng LInQ to XML

1011

If you were to invoke this method from Main(), you’d see the following data in the SimpleInventory.xml file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--Current Inventory of cars!-->
<?xml-stylesheet href='MyStyles.css' title='Compact' type='text/css'?>
<Inventory>
 <Car ID="1">
 <Color>Green</Color>
 <Make>BMW</Make>
 <PetName>Stan</PetName>
 </Car>
 <Car ID="2">
 <Color>Pink</Color>
 <Make>Yugo</Make>
 <PetName>Melvin</PetName>
 </Car>
</Inventory>

As it turns out, the default XML declaration for any XDocument is to use UTF-8 encoding, XML version 1.0,
as a stand-alone document. Therefore, you could completely delete the creation of the XDeclaration object
and end up with the same data; given that just about every document requires this same declaration, use of
XDeclaration is typically not that common.

If you do not need to define processing instructions or a custom XML declaration, you can avoid the use
of XDocument altogether and simply use XElement. Remember, XElement can be used to represent the root
element of the XML document and all subobjects. Thus, you could generate a commented list of inventory
items as so:

static void CreateRootAndChildren()
{
 XElement inventoryDoc =
 new XElement("Inventory",
 new XComment("Current Inventory of cars!"),
 new XElement("Car", new XAttribute("ID", "1"),
 new XElement("Color", "Green"),
 new XElement("Make", "BMW"),
 new XElement("PetName", "Stan")
),
 new XElement("Car", new XAttribute("ID", "2"),
 new XElement("Color", "Pink"),
 new XElement("Make", "Yugo"),
 new XElement("PetName", "Melvin")
)
);

 // Save to disk.
 inventoryDoc.Save("SimpleInventory.xml");
}

Chapter 24 ■ IntroduCIng LInQ to XML

1012

The output is more or less identical, sans the custom processing instruction for a hypothetical style sheet.

<?xml version="1.0" encoding="utf-8"?>
<Inventory>
 <!--Current Inventory of cars!-->
 <Car ID="1">
 <Color>Green</Color>
 <Make>BMW</Make>
 <PetName>Stan</PetName>
 </Car>
 <Car ID="2">
 <Color>Pink</Color>
 <Make>Yugo</Make>
 <PetName>Melvin</PetName>
</Car>
</Inventory>

Generating Documents from Arrays and Containers
So far, you have been building XML documents using fixed hard-coded constructor values. More commonly,
you will need to generate XElements (or XDocuments) by reading data from arrays, ADO.NET objects, file
data, or whatnot. One way to map in-memory data to a new XElement is by using a set of standard for loops
to move data into the LINQ to XML object model. While this is certainly doable, it is more streamlined to
embed a LINQ query within the construction of the XElement directly.

Assume you have an anonymous array of anonymous classes (just to avoid the amount of code for this
example; any array, List<T>, or other container would do here). You could map this data into an XElement
as so:

static void MakeXElementFromArray()
{
 // Create an anonymous array of anonymous types.
 var people = new[] {
 new { FirstName = "Mandy", Age = 32},
 new { FirstName = "Andrew", Age = 40 },
 new { FirstName = "Dave", Age = 41 },
 new { FirstName = "Sara", Age = 31}
};

XElement peopleDoc =
 new XElement("People",
 from c in people select new XElement("Person", new XAttribute("Age", c.Age),
 new XElement("FirstName", c.FirstName))
);
 Console.WriteLine(peopleDoc);
}

Chapter 24 ■ IntroduCIng LInQ to XML

1013

Here, the peopleDoc object defines the root <People> element with the results of a LINQ query. This
LINQ query creates new XElements based on each item in the people array. If this embedded query is a bit
hard on the eyes, you could break things down into explicit steps, like so:

static void MakeXElementFromArray()
{
 // Create an anonymous array of anonymous types.
 var people = new[] {
 new { FirstName = "Mandy", Age = 32},
 new { FirstName = "Andrew", Age = 40 },
 new { FirstName = "Dave", Age = 41 },
 new { FirstName = "Sara", Age = 31}
};

var arrayDataAsXElements = from c in people
 select
 new XElement("Person",
 new XAttribute("Age", c.Age),
 new XElement("FirstName", c.FirstName));
 XElement peopleDoc = new XElement("People", arrayDataAsXElements);
 Console.WriteLine(peopleDoc);
}

Either way, the output is the same.

<People>
 <Person Age="32">
 <FirstName>Mandy</FirstName>
 </Person>
 <Person Age="40">
 <FirstName>Andrew</FirstName>
 </Person>
 <Person Age="41">
 <FirstName>Dave</FirstName>
 </Person>
 <Person Age="31">
 <FirstName>Sara</FirstName>
 </Person>
</People>

Chapter 24 ■ IntroduCIng LInQ to XML

1014

Loading and Parsing XML Content
The XElement and XDocument types both support Load() and Parse() methods, which allow you to hydrate
an XML object model from string objects containing XML data or external XML files. Consider the
following method, which illustrates both approaches:

static void ParseAndLoadExistingXml()
{
 // Build an XElement from string.
 string myElement =
 @"<Car ID ='3'>
 <Color>Yellow</Color>
 <Make>Yugo</Make>
 </Car>";
 XElement newElement = XElement.Parse(myElement);
 Console.WriteLine(newElement);
 Console.WriteLine();

 // Load the SimpleInventory.xml file.
 XDocument myDoc = XDocument.Load("SimpleInventory.xml");
 Console.WriteLine(myDoc);
}

 ■ Source Code the ConstructingXmldocs example can be found in the Chapter 24 subdirectory.

Manipulating an In-Memory XML Document
So, at this point, you have seen various ways in which LINQ to XML can be used to create, save, parse, and
load XML data. The next aspect of LINQ to XML you need to examine is how to navigate a given document to
locate and change specific items in the tree using LINQ queries and the LINQ to XML axis methods.

To do so, you will build a Windows Forms application that will display the data within an XML
document saved on the hard drive. The GUI will allow the user to enter data for a new node, which will be
added to the same XML document. Finally, you will provide a few ways for the user to perform searches on
the document, via a handful of LINQ queries.

 ■ Note given that you have already built a number of LInQ queries in Chapter 12, I won’t bother to relist
numerous queries here. If you are interested in seeing some additional LInQ to XML examples, look up the topic
“Querying XML trees” in the .net Framework 4.6 SdK documentation.

Building the UI of the LINQ to XML App
Create a Windows Forms application named LinqToXmlWinApp and change the name of your initial
Form1.cs file to MainForm.cs (using the Solution Explorer). The GUI of this window is quite simple. On the
left of the window, you have a TextBox control (named txtInventory), which has the Multiline property set
to true and the ScrollBars property set to Both.

http://dx.doi.org/10.1007/978-1-4842-1332-2_24
http://dx.doi.org/10.1007/978-1-4842-1332-2_12

Chapter 24 ■ IntroduCIng LInQ to XML

1015

Beyond that, you have one group of simple TextBox controls (txtMake, txtColor, and txtPetName) and a
Button (btnAddNewItem), which will allow the user to add a new entry to the XML document. Finally, you have
another group of controls (a TextBox named txtMakeToLookUp and a final Button named btnLookUpColors),
which allows the user to query the XML document for a set of specified nodes. Figure 24-4 shows one
possible layout.

Handle the Click event for each button to generate the event handler methods. Also handle the Load
event of the form. You will implement these handlers in a bit, so leave them empty for now.

Import the Inventory.xml File
The downloadable code for this book contains a file named Inventory.xml within the solution code for this
example. It supports a set of entries within the root <Inventory> element. Import this file into your project
by selecting the Project Add Existing Item menu option. As you look at the data, you will see the root element
defines a set of <Car> elements, each of which is defined similar to the following:

<Car carID ="0">
 <Make>Ford</Make>
 <Color>Blue</Color>
 <PetName>Chuck</PetName>
</Car>

Figure 24-4. The GUI of the LINQ to XML application

Chapter 24 ■ IntroduCIng LInQ to XML

1016

Before you continue, be sure you select this file in the Solution Explorer, and then, using the Properties
window, set the Copy to Output Directory property to Copy Always. This will ensure the data is deployed to
your \bin\Debug folder when you compile the application.

Defining a LINQ to XML Helper Class
To isolate the LINQ to XML data, insert a new class to your project named LinqToXmlObjectModel. This
class will define a set of static methods that encapsulate some LINQ to XML logic. First, define a method
that returns a populated XDocument based on the contents of the Inventory.xml file (be sure to import the
System.Xml.Linq and System.Windows.Forms namespaces into this new file).

public static XDocument GetXmlInventory()
{
 try
 {
 XDocument inventoryDoc = XDocument.Load("Inventory.xml");
 return inventoryDoc;
 }
 catch (System.IO.FileNotFoundException ex)
 {
 MessageBox.Show(ex.Message);
 return null;
 }
}

The InsertNewElement() method (shown in the following) receives the values of the Add Inventory
Item TextBox controls to place a new node into the <Inventory> element using the Descendants() axis
method. After this is done, you will save the document.

public static void InsertNewElement(string make, string color, string petName)
{
 // Load current document.
 XDocument inventoryDoc = XDocument.Load("Inventory.xml");

 // Generate a random number for the ID.
 Random r = new Random();

 // Make new XElement based on incoming parameters.
 XElement newElement = new XElement("Car", new XAttribute("ID", r.Next(50000)),
 new XElement("Color", color),
 new XElement("Make", make),
 new XElement("PetName", petName));

 // Add to in-memory object.
 inventoryDoc.Descendants("Inventory").First().Add(newElement);

 // Save changes to disk.
 inventoryDoc.Save("Inventory.xml");
}

Chapter 24 ■ IntroduCIng LInQ to XML

1017

The final method, LookUpColorsForMake(), will receive the data in the final TextBox to build a string
that contains the colors of a specified make, using a LINQ query. Consider the following implementation:

public static void LookUpColorsForMake(string make)
{
 // Load current document.
 XDocument inventoryDoc = XDocument.Load("Inventory.xml");

 // Find the colors for a given make.
 var makeInfo = from car in inventoryDoc.Descendants("Car")
 where (string)car.Element("Make") == make
 select car.Element("Color").Value;

 // Build a string representing each color.
 string data = string.Empty;
 foreach (var item in makeInfo.Distinct())
 {
 data += string.Format("- {0}\n", item);
 }

 // Show colors.
 MessageBox.Show(data, string.Format("{0} colors:", make));
}

Attaching the UI to Your Helper Class
All you need to do at this point is fill in the details of your event handlers. Doing so is as simple as making
calls to your static helper methods, like so:

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 // Display current XML inventory document in TextBox control.
 txtInventory.Text = LinqToXmlObjectModel.GetXmlInventory().ToString();
 }

 private void btnAddNewItem_Click(object sender, EventArgs e)
 {
 // Add new item to doc.
 LinqToXmlObjectModel.InsertNewElement(txtMake.Text, txtColor.Text, txtPetName.Text);

 // Display current XML inventory document in TextBox control.
 txtInventory.Text = LinqToXmlObjectModel.GetXmlInventory().ToString();
 }

Chapter 24 ■ IntroduCIng LInQ to XML

1018

 private void btnLookUpColors_Click(object sender, EventArgs e)
 {
 LinqToXmlObjectModel.LookUpColorsForMake(txtMakeToLookUp.Text);
 }
}

Figure 24-5 shows the end result after adding a new auto and looking up all BMWs.

Figure 24-5. The completed LINQ to XML application

That wraps up the introductory look at LINQ to XML and your investigation of LINQ. You first
encountered LINQ in Chapter 12, where you learned about LINQ to Objects. Chapter 19 showed various
examples using PLINQ, while Chapter 23 showcased how you can apply LINQ queries to ADO.NET Entity
objects. Using all this information, you are in good shape to dig deeper, which you should. Microsoft has
made it clear that LINQ will continue to evolve as the .NET platform grows.

 ■ Source Code the LinqtoXmlWinapp to XML example can be found in the Chapter 24 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_12
http://dx.doi.org/10.1007/978-1-4842-1332-2_19
http://dx.doi.org/10.1007/978-1-4842-1332-2_23
http://dx.doi.org/10.1007/978-1-4842-1332-2_24

Chapter 24 ■ IntroduCIng LInQ to XML

1019

Summary
This chapter examined the role of LINQ to XML. As you have seen, this API is an alternative to the initial XML
manipulation library, System.Xml.dll, which shipped with the .NET platform. Using System.Xml.Linq.dll,
you are able to generate new XML documents using a top-down approach, where the structure of your code
has a striking resemblance to the final XML data. In this light, LINQ to XML is a better DOM. You also learned
how to build XDocument and XElement objects in a variety of ways (parsing, loading from file, mapping from
in-memory objects) and how to navigate and manipulate data using LINQ queries.

1021

Chapter 25

Introducing Windows
Communication Foundation

Windows Communication Foundation (WCF) is the name of the API designed specifically for the process
of building distributed systems. Unlike other specific distributed APIs you might have used in the past
(e.g., DCOM, .NET remoting, XML web services, message queuing), WCF provides a single, unified, and
extendable programming object model that you can use to interact with a number of previously diverse
distributed technologies.

This chapter begins by framing the need for WCF and examining the problems it intends to solve by way
of a quick review of previous distributed computing APIs. After you look at the services provided by WCF,
you’ll turn your attention to examining the key .NET assemblies, namespaces, and types that represent this
programming model. Over the remainder of this chapter, you’ll build several WCF services, hosts, and clients
using various WCF development tools.

 ■ Note In this chapter, you will author code that will require that you launch Visual Studio with administrative
privileges (furthermore, you must have administrative privileges). To launch Visual Studio with the correct admin
rights, right-click the Visual Studio icon and select Run As Administrator.

A Potpourri of Distributed Computing APIs
The Windows operating system has historically provided many APIs for building distributed systems.
While it is true that most people consider a distributed system to involve at least two networked computers,
this term in the broader sense can refer to two executables that need to exchange data, even if they happen
to be running on the same physical machine. Using this definition, selecting a distributed API for your
current programming task typically involves asking the following pivotal question:

Will this system be used exclusively in house, or will external users require access to the
application’s functionality?

If you build a distributed system for in-house use, you have a far greater chance of ensuring that each
connected computer is running the same operating system and using the same programming framework
(e.g., .NET, COM, or the Java platform). Running in-house systems also means that you can leverage your
existing security system for purposes of authentication, authorization, and so forth. In this situation, you might

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1022

be willing to select a particular distributed API that will tie you to a specific operating system/programming
framework for the purposes of performance.

In contrast, if you build a system that others must reach from outside of your walls, you have a whole
other set of issues to contend with. First, you will most likely not be able to dictate to external users which
operating system(s) they can use, which programming framework(s) they can use, or how they configure
their security settings.

Second, if you happen to work for a larger company or in a university setting that uses numerous
operating systems and programming technologies, an in-house application suddenly faces the same
challenges as an outward-facing application. In either of these cases, you need to limit yourself to a more
flexible distributed API to ensure the furthest reach of your application.

Based on your answer to this key distributed computing question, the next task is to pinpoint exactly
which API (or set of APIs) to use. The following sections provide a quick recap of some of the major
distributed APIs historically used by Windows software developers. After you finish this brief history lesson,
you will be able to see the usefulness of Windows Communication Foundation quite easily.

 ■ Note To ensure we are on the same page here, I feel compelled to point out that WCF (and the technologies
it encompasses) has nothing to do with building an hTmL-based web site. While it is true that web applications
can be considered distributed because two machines are typically involved in the exchange, WCF is about
establishing connections between machines to share the functionality of remote components—not for displaying
hTmL in a web browser. Chapter 32 will begin your examination of building web sites with the .neT platform.

The Role of DCOM
Prior to the release of the .NET platform, the Distributed Component Object Model (DCOM) was the
remoting API of choice for Microsoft-centric development endeavors. Using DCOM, it was possible to
build distributed systems using COM objects, the system registry, and a good amount of elbow grease. One
benefit of DCOM was that it allowed for location transparency of components. Simply put, this allowed you
to program client software in such a way that the physical locations of the remote objects were not hard-
coded in the application. Regardless of whether the remote object was on the same machine or a secondary
networked machine, the code base could remain neutral because the actual location was recorded externally
in the system registry.

While DCOM did enjoy some degree of success, for all practical purposes it was a Windows-centric API.
DCOM alone did not provide a fabric to build comprehensive solutions involving multiple operating systems
(e.g., Windows, Unix, and Mac) or promote sharing of data between diverse architectures (e.g., COM, Java,
or CORBA).

 ■ Note There were some attempts to port dCom to various flavors of unix/Linux, but the end results were
lackluster and eventually became technology footnotes.

By and large, DCOM was best suited for in-house application development because exposing COM
objects outside company walls entailed a set of additional complications (firewalls and so forth). With the
release of the .NET platform, DCOM quickly became a legacy programming model; and unless you maintain
legacy DCOM systems, you can consider it a deprecated technology.

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1023

The Role of COM+/Enterprise Services
DCOM alone did little more than define a way to establish a communication channel between two pieces of
COM-based software. To fill in the missing pieces required for building a feature-rich distributed computing
solution, Microsoft eventually released Microsoft Transaction Server (MTS), which was later renamed to COM+.

Despite its name, COM+ is not used only by COM programmers—it is completely accessible to .NET
professionals, as well. Since the first release of the .NET platform, the base class libraries provided a
namespace named System.EnterpriseServices. Here, .NET programmers could build managed libraries
that could be installed into the COM+ runtime to access the same set of services as a traditional COM+-
aware COM server. In either case, once a COM+-aware library was installed into the COM+ runtime, it was
termed a serviced component.

COM+ provides a number of features that serviced components can leverage, including transaction
management, object lifetime management, pooling services, a role-based security system, a loosely coupled
event model, and so on. This was a major benefit at the time, given that most distributed systems require the
same set of services. Rather than forcing developers to code them by hand, COM+ provided an out-of-the-box
solution.

One of the compelling aspects of COM+ was that all these settings could be configured in a declarative
manner using administrative tools. Thus, if you wanted to ensure an object was monitored under a
transactional context or belonged to a particular security role, you simply selected the correct check boxes.

While COM+/Enterprise Services is still in use today, this technology is a Windows-only solution that is
best suited for in-house application development or as a back-end service indirectly manipulated by more
agonistic front ends (e.g., a public web site that makes calls on serviced components [a.k.a. COM+ objects] in
the background).

 ■ Note WCF does not provide a way to build serviced components. however, it does provide a manner for
WCF services to communicate with existing Com+ objects. If you need to build serviced components using C#,
you will need to make direct use of the System.EnterpriseServices namespace. Consult the .neT Framework
4.6 SdK documentation for details.

The Role of MSMQ
The Microsoft Message Queuing (MSMQ) API allows developers to build distributed systems that need to
ensure reliable delivery of message data on the network. As developers know all too well, in any distributed
system there is the risk that a network server is down, a database is offline, or connections are inexplicably
lost. Furthermore, you must construct many applications in such a way that they hold message data for
delivery at a later time (this process is known as queuing data).

Microsoft initially packaged MSMQ as a set of low-level C-based APIs and COM objects. With the release
of the .NET platform, C# programmers could use the System.Messaging namespace to hook into MSMQ and
build software that communicated with intermittently connected applications in a dependable fashion.

On a related note, the COM+ layer incorporated MSMQ functionality into the runtime (in a simplified
format) using a technology termed Queued Components (QC). This manner of communicating with MSMQ
was packaged up into the System.EnterpriseServices namespace mentioned in the previous section.

Regardless of which programming model you used to interact with the MSMQ runtime, the end result
ensured that applications could deliver messages in a reliable and timely fashion. Like COM+, MSMQ is still
part of the fabric of building distributed software on the Windows operating system.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1024

The Role of .NET Remoting
As mentioned previously, DCOM quickly became a legacy distributed API after the release of the .NET
platform. In its place, the .NET base class libraries shipped with the .NET remoting layer, represented by
the System.Runtime.Remoting namespace. This (now legacy) API allows multiple computers to distribute
objects, provided they all run the applications on the .NET platform.

The .NET remoting APIs provided a number of useful features. Most important was the use of XML-
based configuration files to define declaratively the underlying plumbing used by the client and the server
software. Using *.config files, it was easy to alter the functionality of your distributed system radically
simply by changing the content of the configuration files and restarting the application.

Also, given that only .NET applications can use this API, you can gain various performance benefits
because data can be encoded in a compact binary format, and you can use the Common Type System (CTS)
when defining parameters and return values. While it is possible to use .NET remoting to build distributed
systems that span multiple operating systems (using Mono, which was briefly mentioned in Chapter 1),
interoperability between other programming architectures (e.g., Java) was still not directly possible.

The Role of XML Web Services
Each of the previous distributed APIs provided little (if any) support to allow external callers to access the
supplied functionality in an agnostic manner. When you need to expose the services of remote objects to any
operating system and any programming model, XML web services provide a straightforward way of doing so.

Unlike a traditional browser-based web application, a web service provides a way to expose the
functionality of remote components using standard web protocols. Since the initial release of .NET,
programmers have been provided with superior support for building and consuming XML web services with
the System.Web.Services namespace. In many cases, building a feature-complete web service is no more
complicated than applying the [WebMethod] attribute to each public method you want to provide access to.
Furthermore, Visual Studio allows you to connect to a remote web service with the click of a button (or two).

Web services allow developers to build .NET assemblies containing types that can be accessed using
simple HTTP. Furthermore, a web service encodes its data as simple XML. Given that web services are
based on open industry standards (e.g., HTTP, XML, and SOAP) rather than proprietary type systems and
proprietary wire formats (as is the case with DCOM or .NET remoting), they allow for a high degree of
interoperability and data exchange. Figure 25-1 illustrates the agnostic nature of XML web services.

http://dx.doi.org/10.1007/978-1-4842-1332-2_1

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1025

Of course, no distributed API is perfect. One potential drawback of web services is that they can suffer
from some performance issues (given the use of HTTP and XML data representation). Another drawback is
that they might not be an ideal solution for in-house applications where you could use a TCP-based protocol
and binary formatting of data without incurring a penalty.

Web Service Standards
Another problem that web services faced early on was that all the big industry players (e.g., Microsoft, IBM,
and Sun Microsystems) created web service implementations that were not 100 percent compatible with
other web service implementations. Obviously, this was an issue because the whole point of web services is
to achieve a high degree of interoperability across platforms and operating systems!

To ensure the interoperability of web services, groups such as the World Wide Web Consortium
(W3C: www.w3.org) and the Web Services Interoperability Organization (WS-I: www.ws-i.org) began to
author several specifications that laid out how a software vendor (e.g., IBM, Microsoft, or Sun Microsystems)
should build web service–centric software libraries to ensure compatibility.

Collectively, all these specifications are given the blanket name WS-*, and they cover such issues as
security, attachments, the description of web services (using the Web Service Description Language, or
WSDL), policies, SOAP formats, and a slew of other important details. As you will see, WCF supports many
of these WS-* specifications. Typically, your WCF services will opt into various WS-* specifications based on
your choice of bindings.

Figure 25-1. XML web services allow for a high degree of interoperability

http://www.w3.org/
http://www.ws-i.org/

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1026

 ■ Note In addition to the distributed ApIs briefly examined, developers could also use various interprocess
communication protocols such as named pipes and sockets.

The Role of WCF
The wide array of distributed technologies makes it difficult to pick the right tool for the job. This is further
complicated by the fact that several of these technologies overlap in the services they provide (most notably
in the areas of transactions and security).

Even when a .NET developer has selected what appear to be the correct technologies for the task at
hand, building, maintaining, and configuring such an application is complex, at best. Each API has its
own programming model, its own unique set of configuration tools, and so forth. Prior to WCF, this meant
that it was difficult to plug and play distributed APIs without authoring a considerable amount of custom
infrastructure. For example, if you build your system using the .NET remoting APIs and you later decide that
XML web services are a more appropriate solution, you need to reengineer your code base.

WCF is a distributed computing toolkit that integrates these previously independent distributed
technologies into a streamlined API represented primarily by the System.ServiceModel namespace. Using
WCF, you can expose services to callers using a wide variety of techniques. For example, if you build an in-house
application where all connected machines are Windows-based, you can use various TCP protocols to ensure
the fastest possible performance. You can also expose this same service with HTTP and SOAP to allow external
callers to leverage its functionality, regardless of the programming language or operating system.

Given that WCF allows you to pick the correct protocol for the job (using a common programming
model), you will find that it becomes quite easy to plug and play the underlying plumbing of your distributed
application. In most cases, you can do so without having to recompile or redeploy the client/service software
because the grungy details are often relegated to application configuration files.

An Overview of WCF Features
Interoperability and integration of diverse APIs are only two (important) aspects of WCF. WCF also provides
a rich software fabric that complements the remoting technologies it exposes. Consider the following list of
major WCF features:

•	 Support for strongly typed as well as untyped messages. This approach allows .NET
applications to share custom types efficiently, while software created using other
platforms (such as Java) can consume streams of loosely typed XML.

•	 Support for several bindings (e.g., raw HTTP, TCP, MSMQ, WebSockets, named
pipes, and so on) allows you to choose the most appropriate plumbing to transport
message data.

•	 Support for the latest-and-greatest web service specifications (WS-*).

•	 A fully integrated security model encompassing both native Windows/.NET security
protocols and numerous neutral-security techniques built on web service standards.

•	 Support for session-like state management techniques, as well as support for one-
way or stateless messages.

As impressive as this list of features might be, it only scratches the surface of the functionality WCF
provides. WCF also offers tracing and logging facilities, performance counters, a publish-and-subscribe
event model, and transactional support, among other features.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1027

An Overview of Service-Oriented Architecture
Yet another benefit of WCF is that it is based on the design principles established by service-oriented
architecture (SOA). To be sure, SOA is a major buzzword in the industry; and like most buzzwords, SOA
can be defined in numerous ways. Simply put, SOA is a way to design a distributed system where several
autonomous services work in conjunction by passing messages across boundaries (either networked
machines or two processes on the same machine) using well-defined interfaces.

In the world of WCF, you typically create these well-defined interfaces using CLR interface types (see
Chapter 9). In a more general sense, however, the interface of a service simply describes the set of members
that might be invoked by external callers.

The team that designed WCF observed the four tenets of SOA design principles. While these tenets are
typically honored automatically simply by building a WCF application, understanding these four cardinal
design rules of SOA can help you understand WCF better. The sections that follow provide a brief overview of
each tenet.

Tenet 1: Boundaries are Explicit
This tenet reiterates that the functionality of a WCF service is expressed using well-defined interfaces (e.g.,
descriptions of each member, its parameters, and its return values). The only way that an external caller can
communicate with a WCF service is through the interface, and the external caller remains blissfully unaware
of the underlying implementation details.

Tenet 2: Services are Autonomous
The term autonomous entities refers to the fact that a given WCF service is (as much as possible) an
island unto itself. An autonomous service should be independent with regard to version, deployment,
and installation issues. To help promote this tenet, you can fall back on a key aspect of interface-based
programming. Once an interface is in production, it should never be changed (or you will risk breaking
existing clients). When you need to extend the functionality of your WCF service, you author new interfaces
that model the desired functionality.

Tenet 3: Services Communicate via Contract, Not Implementation
The third tenet is yet another by-product of interface-based programming. The implementation details of a
WCF service (e.g., the language it was written in, how it accomplishes its work, etc.) are of no concern to the
external caller. WCF clients interact with services solely through their exposed public interfaces.

Tenet 4: Service Compatibility is Based on Policy
Because CLR interfaces provide strongly typed contracts for all WCF clients (and can also be used to
generate a related WSDL document based on your choice of binding), it is important to realize that
interfaces and WSDL alone are not expressive enough to detail aspects of what the service is capable of
doing. Given this, SOA allows you to define policies that further qualify the semantics of the service (e.g., the
expected security requirements used to talk to the service). Using these policies, you can basically separate
the low-level syntactic description of your service (the exposed interfaces) from the semantic details of how
they work and how they need to be invoked.

http://dx.doi.org/10.1007/978-1-4842-1332-2_9

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1028

WCF: The Bottom Line
The preceding short history lesson explains why WCF is the preferred approach for building distributed
applications. WCF is the recommended API whether you want to build an in-house application using TCP
protocols, move data between programs on the same machine using named pipes, or expose data to the
world at large using HTTP-based protocols.

This is not to say that you cannot use the original .NET distributed-centric namespaces (e.g., System.
Runtime.Remoting, System.Messaging, System.EnterpriseServices, and System.Web.Services) in
new development efforts. In some cases (e.g., if you need to build COM+ objects), you must do so. In any
case, if you have used these APIs in previous projects, you will find learning WCF straightforward. Like
the technologies that preceded it, WCF makes considerable use of XML-based configuration files, .NET
attributes, and proxy generation utilities.

With this introductory foundation behind you, you can concentrate on the topic of building WCF
applications. Again, you should understand that full coverage of WCF would require an entire book because
each of the supported services (e.g., MSMQ, COM+, P2P, and named pipes) could be a chapter unto itself.
Here, you will learn the overall process of building WCF programs using both TCP- and HTTP-based (e.g.,
web service) protocols. This should put you in a good position to study these topics further, as you see fit.

Investigating the Core WCF Assemblies
As you might expect, the programming fabric of WCF is represented by a set of .NET assemblies installed
into the GAC. Table 25-1 describes the overall role of the core WCF assemblies you need to use in just about
any WCF application.

Table 25-1. Core WCF Assemblies

Assembly Meaning in Life

System.Runtime.Serialization.dll This core assembly defines namespaces and types that you
can use for serializing and deserializing objects in the WCF
framework.

System.ServiceModel.dll This core assembly contains the types used to build any sort of
WCF application.

The two assemblies listed in Table 25-1 define many new namespaces and types. You should consult the
.NET Framework 4.6 SDK documentation for complete details; however, Table 25-2 documents the roles of
some of the important namespaces.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1029

Table 25-2. Core WCF Namespaces

Namespace Meaning in Life

System.Runtime.Serialization This defines many types you use to control how data is
serialized and deserialized within the WCF framework.

System.ServiceModel This primary WCF namespace defines binding and hosting
types, as well as basic security and transactional types.

System.ServiceModel.Configuration This defines numerous types that provide programmatic
access to WCF configuration files.

System.ServiceModel.Description This defines types that provide an object model to the
addresses, bindings, and contracts defined within WCF
configuration files.

System.ServiceModel.MsmqIntegration This contains types to integrate with the MSMQ service.

System.ServiceModel.Security This defines numerous types to control aspects of the WCF
security layers.

The Visual Studio WCF Project Templates
As will be explained in more detail later in this chapter, a WCF application is typically represented by
three interrelated assemblies, one of which is a *.dll that contains the types that external callers can
communicate with (in other words, the WCF service itself). When you want to build a WCF service, it is
perfectly permissible to select a standard Class Library project template (see Chapter 14) as a starting point
and manually reference the WCF assemblies.

Alternatively, you can create a new WCF service by selecting the WCF Service Library project template
of Visual Studio (see Figure 25-2). This project type automatically sets references to the required WCF
assemblies; however, it also generates a good deal of starter code, which you will likely often delete.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1030

One benefit of selecting the WCF Service Library project template is that it also supplies you with
an App.config file, which might seem strange because you are building a .NET *.dll, not a .NET *.exe.
However, this file is useful because when you debug or run your WCF Service Library project, the Visual
Studio IDE will automatically launch the WCF Test Client application. This program (WcfTestClient.exe)
will look up the settings in the App.config file, so it can host your service for testing purposes. You’ll learn
more about the WCF Test Client later in this chapter.

 ■ Note The App.config file of the WCF Service Library project is also useful because it shows you the
bare-bones settings used to configure a WCF host application. In fact, you can copy and paste much of this
code into the configuration file of your production services.

In addition to the basic WCF Service Library template, the WCF project category of the New Project
dialog box defines a WCF library project that integrates Windows Workflow Foundation (WF) functionality
into a WCF service, as well as a template to build an RSS library (see Figure 25-2).

The WCF Service Web Site Project Template
You can find yet another Visual Studio WCF-centric project template in the New Web Site dialog box, which
you activate using the File ➤ New ➤ Web Site menu option (see Figure 25-3).

Figure 25-2. The Visual Studio WCF Service Library project template

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1031

This WCF Service project template is useful when you know from the outset that your WCF service will
use HTTP-based protocols rather than, for example, TCP or named pipes. This option can automatically
create a new Internet Information Services (IIS) virtual directory to contain your WCF program files, create
a proper Web.config file to expose the service through HTTP, and author the necessary *.svc file (you’ll
learn more about *.svc files later in this chapter). Thus, the web-based WCF Service project is a time-saver
because the IDE automatically sets up the required IIS infrastructure.

In contrast, if you build a new WCF service using the WCF Service Library option, you have the ability
to host the service in a variety of ways (e.g., custom host, Windows service, or manually built IIS virtual
directory). This option is more appropriate when you need to build a custom host for your WCF service that
can work with any number of WCF bindings.

The Basic Composition of a WCF Application
When you build a WCF distributed system, you will typically do so by creating the following three
interrelated assemblies:

•	 The WCF Service assembly: This *.dll contains the classes and interfaces that
represent the overall functionality you want to expose to external callers.

•	 The WCF Service host: This software module is the entity that hosts your WCF service
assembly.

•	 The WCF client: This is the application that accesses the service’s functionality
through an intervening proxy.

As mentioned previously, the WCF Service assembly is a .NET class library that contains a number of
WCF contracts and their implementations. The key difference is that the interface contracts are adorned
with various attributes that control data type representation, how the WCF runtime interacts with the
exposed types, and so forth.

The second assembly, the WCF Service host, can be literally any .NET executable. As you will see later
in this chapter, WCF was set up so that you can expose services easily from any type of application (e.g.,
Windows Forms, a Windows service, and WPF applications). When you build a custom host, you use the
ServiceHost type and possibly a related *.config file. The latter contains details regarding the server-side

Figure 25-3. The Visual Studio web-based WCF Service project template

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1032

plumbing you want to use. However, if you use IIS as the host for your WCF service, you don’t need to build a
custom host programmatically because IIS will use the ServiceHost type behind the scenes.

 ■ Note It is also possible to host a WCF service using the Windows Activation Service (WAS); you can consult
the .neT Framework 4.6 SdK documentation for details.

The final assembly represents the client that makes calls into the WCF service. As you might expect, this
client can be any type of .NET application. Similar to the host, client applications typically use a client-side
*.config file that defines the client-side plumbing. You should also be aware that you can easily have a
client application written in another framework (e.g., Java) if you build your WCF service using HTTP-based
bindings.

Figure 25-4 illustrates the relationship between these three interrelated WCF assemblies (from a high
level). Behind the scenes, several lower-level details are used to represent the required plumbing (e.g.,
factories, channels, and listeners). These low-level details are usually hidden from view; however, they can
be extended or customized if required. In most cases, the default plumbing fits the bill sufficiently.

Figure 25-4. A high-level look at a typical WCF application

It is also worth pointing out that using a server-side or client-side *.config file is technically optional. If
you want, you can hard-code the host (as well as the client) to specify the necessary plumbing (e.g., endpoints,
binding, and addresses). The obvious problem with this approach is that if you need to change the plumbing
details, you will need to recode, recompile, and redeploy a number of assemblies. Using a *.config file keeps
your code base much more flexible because changing the plumbing is as simple as updating the file’s content
and restarting the application. On the other hand, programmatic configuration allows an application more
dynamic flexibility—it can choose how to configure the plumbing based on if-tests, for example.

The ABCs of WCF
Hosts and clients communicate with each other by agreeing on the ABCs, a friendly mnemonic for
remembering the core building blocks of a WCF application address, binding, and contract, defined as follows:

•	 Address: Describes the location of the service. In code, you represent this with a
System.Uri type; however, you typically store the value in *.config files.

•	 Binding: WCF ships with a many different bindings that specify network protocols,
encoding mechanisms, and the transport layer.

•	 Contract: Provides a description of each method exposed from the WCF service.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1033

You should realize that the ABC abbreviation does not imply that a developer must define the address
first, followed by binding, and ending with the contract. In many cases, a WCF developer begins by defining
a contract for the service, followed by establishing an address and bindings (any order will do, as long as
each aspect is accounted for). Before you move on to building your first WCF application, let’s take a more
detailed look at the ABCs.

Understanding WCF Contracts
Understanding the notion of a contract is the key to building a WCF service. While not mandatory, the
vast majority of your WCF applications will begin by defining a set of .NET interface types that are used to
represent the set of members a given WCF service will support. Specifically, interfaces that represent a WCF
contract are called service contracts. The classes (or structures) that implement them are called service types.

WCF service contracts are adorned with various attributes, the most common of which are defined in the
System.ServiceModel namespace. When the members of a service contract (the methods in the interface)
contain only simple data types (e.g., numerical data, Booleans, and string data), you can build a complete
WCF service using nothing more than the [ServiceContract] and [OperationContract] attributes.

However, if your members expose custom types, you will likely use various types in the
System.Runtime.Serialization namespace (see Figure 25-5) of the System.Runtime.Serialization.dll
assembly. Here you will find additional attributes (e.g., [DataMember] and [DataContract]) to fine-tune the
process of defining how your composite types are serialized to and from XML when they are passed to and
from service operations.

Figure 25-5. System.Runtime.Serialization defines a number of attributes used when building WCF data contracts

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1034

Strictly speaking, you are not required to use CLR interfaces to define a WCF contract. Many of these
same attributes can be applied on public members of a public class (or structure). However, given the many
benefits of interface-based programming (e.g., polymorphism and elegant versioning), it is safe to consider
that using CLR interfaces to describe a WCF contract is a best practice.

Understanding WCF Bindings
Once you define and implement a contract (or a set of contracts) in your service library, the next logical step
is to build a hosting agent for the WCF service itself. As mentioned previously, you have a variety of possible
hosts to choose from, all of which must specify the bindings used by remote callers to gain access to the
service type’s functionality.

WCF ships with many of binding choices, each of which is tailored to a specific need. If none of the
out-of-the-box bindings fits the bill, you can create your own by extending the CustomBinding type
(something you will not do in this chapter). A WCF binding can specify the following characteristics:

•	 The transport layer used to move data (HTTP, MSMQ, named pipes, REST,
WebSockets, and TCP)

•	 The channels used by the transport (one-way, request-reply, and duplex)

•	 The encoding mechanism used to deal with the data itself (e.g., XML and binary)

•	 Any supported web service protocols (if permitted by the binding), such as
WS- Security, WS-Transactions, WS-Reliability, and so on

Let’s take a look at your basic choices.

HTTP-Based Bindings
The BasicHttpBinding, WSHttpBinding, WSDualHttpBinding, and WSFederationHttpBinding options are
geared toward exposing contract types through HTTP/SOAP protocols. If you require the furthest reach
possible for your service (e.g., multiple operating systems and multiple programming architectures),
you want to focus on these bindings because all of these binding types encode data based on XML
representation and use HTTP on the wire.

Table 25-3 shows how you can represent a WCF binding in code (using class types within the System.
ServiceModel namespace) or as XML attributes defined within *.config files.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1035

As its name suggests, BasicHttpBinding is the simplest of all web service–centric protocols. Specifically,
this binding ensures that your WCF service conforms to a specification named WS-I Basic Profile 1.1
(defined by WS-I). The main reason to use this binding is for maintaining backward compatibility with
applications that were previously built to communicate with ASP.NET web services (which have been part of
the .NET libraries since version 1.0).

The WSHttpBinding protocol not only incorporates support for a subset of the WS-* specification
(transactions, security, and reliable sessions) but also supports the ability to handle binary data encoding
using Message Transmission Optimization Mechanism (MTOM).

The main benefit of WSDualHttpBinding is that it adds the ability to allow the caller and sender
to communicate using duplex messaging, which is a fancy way of saying they can engage in a two-way
conversation. When selecting WSDualHttpBinding, you can hook into the WCF publish/subscribe event model.

Finally, WSFederationHttpBinding is the web service–based protocol you might want to consider when
security among a group of organizations is of the utmost importance. This binding supports the WS-Trust,
WS-Security, and WS-SecureConversation specifications, which are represented by the WCF CardSpace APIs.

TCP-Based Bindings
If you build a distributed application involving machines that are configured with the .NET 4.5 libraries (in
other words, all machines are running the Windows operating system), you can gain performance benefits
by bypassing web service bindings and opting for a TCP binding, which ensures that all data is encoded in a
compact binary format, rather than XML. Again, when you use the bindings shown in Table 25-4, the client
and host must be .NET applications.

Table 25-3. The HTTP-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

BasicHttpBinding <basicHttpBinding> You use this to build a WS-Basic Profile–
conformant (WS-I Basic Profile 1.1) WCF
service. This binding uses HTTP as the
transport and Text/XML as the default
message encoding.

WSHttpBinding <wsHttpBinding> This is similar to BasicHttpBinding but
provides more web service features. This
binding adds support for transactions,
reliable messaging, and WS-Addressing.

WSDualHttpBinding <wsDualHttpBinding> This is similar to WSHttpBinding but
intended for use with duplex contracts (e.g.,
the service and client can send messages
back and forth). This binding supports
only SOAP security and requires reliable
messaging.

WSFederationHttpBinding <wsFederationHttpBinding> This is a secure and interoperable binding
that supports the WS- Federation protocol,
enabling organizations that are in a
federation to authenticate and authorize
users efficiently.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1036

The NetTcpBinding class uses TCP to move binary data between the client and WCF service. As
mentioned previously, this will result in higher performance than the web service protocols but limits you
to an in-house Windows solution. On the plus side, NetTcpBinding supports transactions, reliable sessions,
and secure communications.

Like NetTcpBinding, NetNamedPipeBinding supports transactions, reliable sessions, and secure
communications; however, it has no ability to make cross-machine calls. If you want to find the fastest
way to push data between WCF applications on the same machine (e.g., cross-application domain
communications), NetNamedPipeBinding is the binding choice of champions. For more information
on NetPeerTcpBinding, consult the .NET Framework 4.6 SDK documentation for details regarding P2P
networking.

MSMQ-Based Bindings
Finally, the NetMsmqBinding and MsmqIntegrationBinding bindings are of immediate interest if you want to
integrate with a Microsoft MSMQ server. This chapter will not examine the details of using MSMQ bindings,
but Table 25-5 documents the basic role of each.

Table 25-4. The TCP-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

NetNamedPipeBinding <netNamedPipeBinding> Serves as a secure, reliable, optimized binding for
on-the-same-machine communication between
.NET applications

NetPeerTcpBinding <netPeerTcpBinding> Provides a secure binding for P2P network
applications

NetTcpBinding <netTcpBinding> Serves as a secure and optimized binding suitable
for cross-machine communication between .NET
applications

Table 25-5. The MSMQ-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

MsmqIntegrationBinding <msmqIntegrationBinding> You can use this binding to enable WCF
applications to send and receive messages to
and from existing MSMQ applications that
use COM, native C++, or the types defined in
the System.Messaging namespace.

NetMsmqBinding <netMsmqBinding> You can use this queued binding for
cross-machine communication between .NET
applications. This is the preferred approach
among the MSMQ-centric bindings.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1037

Understanding WCF Addresses
Once you establish the contracts and bindings, the final piece of the puzzle is to specify an address for the
WCF service. This is important because remote callers will be unable to communicate with the remote types
if they cannot locate them! Like most aspects of WCF, an address can be hard-coded in an assembly (using
the System.Uri type) or offloaded to a *.config file.

In either case, the exact format of the WCF address will differ based on your choice of binding (HTTP
based, named pipes, TCP based, or MSMQ based). From a high level, WCF addresses can specify the
following bits of information:

•	 Scheme: The transport protocol (e.g., HTTP)

•	 MachineName: The fully qualified domain of the machine

•	 Port: This is optional in many cases; for example, the default for HTTP bindings is
port 80.

•	 Path: The path to the WCF service

This information can be represented by the following generalized template (the Port value is optional
because some bindings don’t use them):

scheme://<MachineName>[:Port]/Path

When you use an HTTP-based binding (e.g., basicHttpBinding, wsHttpBinding, wsDualHttpBinding,
or wsFederationHttpBinding), the address breaks down like this (recall that HTTP-based protocols default
to port 80 if you do not specify a port number):

http://localhost:8080/MyWCFService

If you use TCP-centric bindings (e.g., NetTcpBinding or NetPeerTcpBinding), the URI takes the
following format:

net.tcp://localhost:8080/MyWCFService

The MSMQ-centric bindings (NetMsmqBinding and MsmqIntegrationBinding) are unique in their URI
format because MSMQ can use public or private queues (which are available only on the local machine),
and port numbers have no meaning in an MSMQ-centric URI. Consider the following URI, which describes
a private queue named MyPrivateQ:

net.msmq://localhost/private$/MyPrivateQ

Last but not least, the address format used for the named-pipe binding, NetNamedPipeBinding, breaks
down like this (recall that named pipes allow for interprocess communication for applications on the same
physical machine):

net.pipe://localhost/MyWCFService

While a single WCF service might expose only a single address (based on a single binding), it is possible
to configure a collection of unique addresses (with different bindings). You can do this in a *.config file by
defining multiple <endpoint> elements. Here, you can specify any number of ABCs for the same service.
This approach can be helpful when you want to allow callers to select which protocol they would like to use
when communicating with the service.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1038

Building a WCF Service
Now that you have a better understanding about the building blocks of a WCF application, it’s time to create
your first sample application and see how the ABCs are accounted for in code and configuration. This
first example avoids using the Visual Studio WCF project templates, so you can focus on the specific steps
involved in making a WCF service.

Begin by creating a new C# Class Library project named MagicEightBallServiceLib. Next, rename
your initial file from Class1.cs to MagicEightBallService.cs and then add a reference to the
System.ServiceModel.dll assembly. In the initial code file, specify that you are using the System.ServiceModel
namespace. At this point, your C# file should look like this (note you have a public class at this point):

// The key WCF namespace.
using System.ServiceModel;

namespace MagicEightBallServiceLib
{
 public class MagicEightBallService
 {
 }
}

Your class type implements a single WCF service contract represented by a strongly typed CLR interface
named IEightBall. As you most likely know, the Magic 8-Ball is a toy that allows you to view one of a
handful of fixed answers to a question you might ask. Your interface here will define a single method that
allows the caller to pose a question to the Magic 8-Ball to obtain a random answer.

WCF service interfaces are adorned with the [ServiceContract] attribute, while each interface
member is decorated with the [OperationContract] attribute (you’ll learn more details regarding these two
attributes in just a moment). Here is the definition of the IEightBall interface:

[ServiceContract]
public interface IEightBall
{
 // Ask a question, receive an answer!
 [OperationContract]
 string ObtainAnswerToQuestion(string userQuestion);
}

 ■ Note It is permissible to define a service contract interface that contains methods not adorned with the
[OperationContract] attribute; however, such members will not be exposed through the WCF runtime.

As you know from your study of the interface type (see Chapter 8), interfaces are quite useless until
they are implemented by a class or structure that fleshes out their functionality. Like a real Magic 8-Ball,
the implementation of your service type (MagicEightBallService) will randomly return a canned answer
from an array of strings. Also, your default constructor will display an information message that will be
(eventually) displayed within the host’s console window (for diagnostic purposes).

http://dx.doi.org/10.1007/978-1-4842-1332-2_8

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1039

public class MagicEightBallService : IEightBall
{
 // Just for display purposes on the host.
 public MagicEightBallService()
 {
 Console.WriteLine("The 8-Ball awaits your question...");
 }

 public string ObtainAnswerToQuestion(string userQuestion)
 {
 string[] answers = { "Future Uncertain", "Yes", "No",
 "Hazy", "Ask again later", "Definitely" };

 // Return a random response.
 Random r = new Random();
 return answers[r.Next(answers.Length)];
 }
}

At this point, your WCF Service Library is complete. However, before you construct a host for this service,
you need to examine some additional details of the [ServiceContract] and [OperationContract] attributes.

The [ServiceContract] Attribute
For a CLR interface to participate in the services provided by WCF, it must be adorned with the
[ServiceContract] attribute. Like many other .NET attributes, the ServiceContractAttribute type
supports many properties that further qualify its intended purpose. You can set two properties, Name and
Namespace, to control the name of the service type and the name of the XML namespace that defines the
service type. If you use an HTTP-specific binding, you use these values to define the <portType> elements of
the related WSDL document.

Here, you do not bother to assign a Name value because the default name of the service type is directly
based on the C# class name. However, the default name for the underlying XML namespace is simply
http://tempuri.org (you should change this for all your WCF services).

When you build a WCF service that will send and receive custom data types (which you are not
currently doing), it is important that you establish a meaningful value to the underlying XML namespace
because this ensures that your custom types are unique. As you might know from your experience building
XML web services, XML namespaces provide a way to wrap your custom types in a unique container to
ensure that your types do not clash with types in another organization.

For this reason, you can update your interface definition with a more fitting definition, which, much like
the process of defining an XML namespace in a .NET Web Service project, is typically the URI of the service’s
point of origin, as in the following example:

[ServiceContract(Namespace = "http://MyCompany.com")]
public interface IEightBall
{
 ...
}

Beyond Namespace and Name, the [ServiceContract] attribute can be configured with the additional
properties shown in Table 25-6. Be aware that some of these settings will be ignored, depending on your
binding selection.

http://tempuri.org/
http://mycompany.com/

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1040

The [OperationContract] Attribute
Methods that you intend to use within the WCF framework must be attributed with the
[OperationContract] attribute, which can also be configured with various named properties. You can
use the properties shown in Table 25-7 to declare that a given method is intended to be one-way in nature,
supports asynchronous invocation, requires encrypted message data, and so forth (again, many of these
values might be ignored based on your binding selection).

Table 25-6. Various Named Properties of the [ServiceContract] Attribute

Property Meaning in Life

CallbackContract Establishes whether this service contract requires callback functionality for
two-way message exchange (e.g., duplex bindings).

ConfigurationName Locates the service element in an application configuration file. The default is the
name of the service implementation class.

ProtectionLevel Allows you to specify the degree to which the contract binding requires
encryption, digital signatures, or both for endpoints that expose the contract.

SessionMode Establishes whether sessions are allowed, not allowed, or required by this
service contract.

Table 25-7. Various Named Properties of the [OperationContract] Attribute

Property Meaning in Life

AsyncPattern Indicates whether the operation is implemented asynchronously using a Begin/End
method pair on the service. This allows the service to offload processing to another
server-side thread; this has nothing to do with the client calling the method
asynchronously!

IsInitiating Specifies whether this operation can be the initial operation in a session.

IsOneWay Indicates whether the operation consists of only a single input message (and no
associated output).

IsTerminating Specifies whether the WCF runtime should attempt to terminate the current session
after the operation completes.

For the initial example, you don’t need to configure the ObtainAnswerToQuestion() method with
additional traits; this means you can use the [OperationContract] attribute as currently defined.

Service Types As Operational Contracts
Finally, recall that the use of interfaces is not required when building WCF service types. In fact, it is possible
to apply the [ServiceContract] and [OperationContract] attributes directly to the service type itself, like so:

// This is only for illustrative purposes
// and not used for the current example.
[ServiceContract(Namespace = "http://MyCompany.com")]
public class ServiceTypeAsContract

http://mycompany.com/

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1041

{
 [OperationContract]
 void SomeMethod() { }

 [OperationContract]
 void AnotherMethod() { }
}

You can take this approach; however, you receive many benefits if you explicitly define an interface
type to represent the service contract. The most obvious benefit is that you can apply a given interface to
multiple service types (authored in a variety of languages and architectures) to achieve a high degree of
polymorphism. Another benefit is that you can use a service contract interface as the basis of new contracts
(using interface inheritance), without having to carry any implementation baggage.

In any case, your first WCF Service Library is now complete. Compile your project to ensure you do not
have any typos.

 ■ Source Code You can find the magiceightBallServiceLib project in the MagicEightBallServiceHTTP
subdirectory of Chapter 25.

Hosting the WCF Service
You are now ready to define a host. Although you would host a production-level service from a
Windows service or an IIS virtual directory, you will make your first host a simple console named
MagicEightBallServiceHost.

After you create this new Console Application project, add a reference to the System.ServiceModel.
dll and MagicEightBallServiceLib.dll assemblies, and then update your initial code file by importing the
System.ServiceModel and MagicEightBallServiceLib namespaces, like so:

using System;
...

using System.ServiceModel;
using MagicEightBallServiceLib;

namespace MagicEightBallServiceHost
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Console Based WCF Host *****");
 Console.ReadLine();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1042

The first step you must take when building a host for a WCF service type is to decide whether you
want to define the necessary hosting logic completely in code or to relegate several low-level details to an
application configuration file. As mentioned previously, the benefit of *.config files is that the host can
change the underlying plumbing without requiring you to recompile and redeploy the executable. However,
always remember this is strictly optional because you can hard-code the hosting logic using the types within
the System.ServiceModel.dll assembly.

This console-based host will use an application configuration file, so insert this new file (if your project
does not currently have one) into your current project by using the Project ➤ Add New Item menu option
and then choosing Application Configuration File.

Establishing the ABCs Within an App.config File
When you build a host for a WCF service type, you follow a predictable set of steps—some that rely on
configuration and some that rely on code. These steps are as follows:

•	 Define the endpoint for the WCF service being hosted within the host’s configuration file.

•	 Programmatically use the ServiceHost type to expose the service types available
from this endpoint.

•	 Ensure the host remains running to service incoming client requests. Obviously, this
step is not required if you host your service types using a Windows service or IIS.

In the world of WCF, the term endpoint represents the address, binding, and contract rolled together
in a nice, tidy package. In XML, an endpoint is expressed using the <endpoint> element and the address,
binding, and contract elements. Update your *.config file to specify a single endpoint (reachable through
port 8080) exposed by this host, like so:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService">
 <endpoint address = "http://localhost:8080/MagicEightBallService"
 binding = "basicHttpBinding"
 contract = "MagicEightBallServiceLib.IEightBall"/>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Notice that the <system.serviceModel> element is the root for all of a host’s WCF settings. Each service
exposed by the host is represented by a <service> element that is wrapped by the <services> base element.
Here, your single <service> element uses the (optional) name attribute to specify the friendly name of the
service type.

The nested <endpoint> element handles the task of defining the address, the binding model
(basicHttpBinding, in this example), and the fully qualified name of the interface type defining the WCF
service contract (IEightBall). Because you are using an HTTP-based binding, you use the http:// scheme,
specifying an arbitrary port ID.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1043

Coding Against the ServiceHost Type
With the current configuration file in place, the actual programming logic required to complete the host is
simple. When your executable starts up, you will create an instance of the ServiceHost class and inform
it which WCF service it is responsible for hosting. At runtime, this object will automatically read the data
within the scope of the <system.serviceModel> element of the host’s *.config file to determine the correct
address, binding, and contract. It will then create the necessary plumbing.

static void Main(string[] args)
{
 Console.WriteLine("***** Console Based WCF Host *****");
 using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
 {
 // Open the host and start listening for incoming messages.
 serviceHost.Open();

 // Keep the service running until the Enter key is pressed.
 Console.WriteLine("The service is ready.");
 Console.WriteLine("Press the Enter key to terminate service.");
 Console.ReadLine();
 }
}

If you run this application now, you will find that the host is alive in memory, ready to take incoming
requests from remote clients.

 ■ Note Recall that you must launch Visual Studio with administrative privileges to run many WCF project types!

Specifying Base Addresses
Currently, you create your ServiceHost using a constructor that requires only the service’s type information.
However, it is also possible to pass in an array of System.Uri types as a constructor argument to represent
the collection of addresses this service is accessible from. Currently, you find the address using the *.config
file. However, assume that you were to update the using scope like this:

using (ServiceHost serviceHost = new
 ServiceHost(typeof(MagicEightBallService),
 new Uri[]{new Uri("http://localhost:8080/MagicEightBallService")}))
{
 ...
}

If you did, you could now define your endpoint like this:

<endpoint address = ""
 binding = "basicHttpBinding"
 contract = "MagicEightBallServiceLib.IEightBall"/>

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1044

Of course, too much hard-coding within a host’s code base decreases flexibility. Therefore, the current
host example assumes you create the service host simply by supplying the following type information, as you
did before:

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
{
 ...
}

One of the (slightly frustrating) aspects of authoring host *.config files is that you have several ways
to construct the XML descriptors, based on the amount of hard-coding you have in the code base (as you
have just seen in the case of the optional Uri array). Here’s a reworking that shows yet another way to author
*.config files:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService">

 <!-- Address obtained from <baseAddresses> -->
 <endpoint address = ""
 binding = "basicHttpBinding"
 contract = "MagicEightBallServiceLib.IEightBall"/>

 <!-- List all of the base addresses in a dedicated section -->
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

In this case, the address attribute of the <endpoint> element is still empty; regardless of the fact that
you do not specify an array of Uri objects in code when creating the ServiceHost, the application runs as
before because the value is pulled from the baseAddresses scope. The benefit of storing the base address in
a <host>’s <baseAddresses> region is that other parts of a *.config file also need to know the address of the
service’s endpoint. Thus, rather than having to copy and paste address values within a single *.config file,
you can isolate the single value, as shown in the preceding snippet.

 ■ Note In a later example, you’ll be introduced to a graphical configuration tool that allows you to author
configuration files in a less tedious manner.

In any case, you have a bit more work to do before you build a client application to communicate with
your service. Specifically, you will dig a bit deeper into the role of the ServiceHost class type and <service.
serviceModel> element, as well as the role of metadata exchange (MEX) services.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1045

Details of the ServiceHost Type
You use the ServiceHost class type to configure and expose a WCF service from the hosting executable.
However, be aware that you will use this type directly only when building a custom *.exe to host your
services. If you use IIS to expose a service, the ServiceHost object is created automatically on your behalf.

As you have seen, this type requires a complete service description, which is obtained dynamically
through the configuration settings of the host’s *.config file. While this happens automatically when you
create a ServiceHost object, it is possible to configure the state of your ServiceHost object manually using
a number of members. In addition to Open() and Close() (which communicate with your service in a
synchronous manner), Table 25-8 illustrates some further members of interest.

Table 25-8. Select Members of the ServiceHost Type

Members Meaning in Life

Authorization This property gets the authorization level for the service being hosted.

AddDefaultEndpoints() This method is used to configure a WCF Service host programmatically so
it uses any number of prebuilt endpoints supplied by the framework.

AddServiceEndpoint() This method allows you to register an endpoint to the host
programmatically.

BaseAddresses This property obtains the list of registered base addresses for the
current service.

BeginOpen() BeginClose() These methods allow you to open and close a ServiceHost object
asynchronously, using the standard asynchronous .NET delegate syntax.

CloseTimeout This property allows you to set and get the time allowed for the service to
close down.

Credentials This property obtains the security credentials used by the current service.

EndOpen() EndClose() These methods are the asynchronous counterparts to BeginOpen() and
BeginClose().

OpenTimeout This property allows you to set and get the time allowed for the service to
start up.

State This property gets a value that indicates the current state of the
communication object, which is represented by the CommunicationState
enum (e.g., opened, closed, and created).

You can see some additional aspects of ServiceHost in action by updating your Program class as
follows, with a new static method that prints out the ABCs of each endpoint used by the host:

static void DisplayHostInfo(ServiceHost host)
{
 Console.WriteLine();
 Console.WriteLine("***** Host Info *****");

 foreach (System.ServiceModel.Description.ServiceEndpoint se
 in host.Description.Endpoints)

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1046

 {
 Console.WriteLine("Address: {0}", se.Address);
 Console.WriteLine("Binding: {0}", se.Binding.Name);
 Console.WriteLine("Contract: {0}", se.Contract.Name);
 Console.WriteLine();
 }
 Console.WriteLine("**********************");
}

Now, assuming that you call this new method from within Main() after opening your host:

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
{
 // Open the host and start listening for incoming messages.
 serviceHost.Open();
 DisplayHostInfo(serviceHost);
...
}

the following statistics will be shown as output:

***** Console Based WCF Host *****

***** Host Info *****
Address: http://localhost:8080/MagicEightBallService
Binding: BasicHttpBinding
Contract: IEightBall

The service is ready.
Press the Enter key to terminate service.

 ■ Note When running a host (or client) in this chapter, be sure to truly “run” the program from within Visual
Studio (Ctrl+F5) and not debug (F5) the program to ensure your host and client processes can run independently.

Details of the <system.serviceModel> Element
Like any XML element, <system.serviceModel> can define a set of subelements, each of which can be qualified
using various attributes. While you should consult the .NET Framework 4.6 SDK documentation for full details
regarding the set of possible attributes, here is a skeleton that lists some (but not all) useful subelements:

<system.serviceModel>
 <behaviors>
 </behaviors>
 <client>
 </client>
 <commonBehaviors>
 </commonBehaviors>
 <diagnostics>
 </diagnostics>

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1047

 <comContracts>
 </comContracts>
 <services>
 </services>
 <bindings>
 </bindings>
</system.serviceModel>

You’ll see more exotic configuration files as you move through the chapter; however, you can see the
crux of each subelement in Table 25-9.

Table 25-9. Select Subelements of <service.serviceModel>

Subelement Meaning in Life

behaviors WCF supports various endpoint and service behaviors. In a nutshell, a behavior
allows you to qualify further the functionality of a host, service, or client.

bindings This element allows you to fine-tune each of the WCF-supplied bindings
(e.g., basicHttpBinding and netMsmqBinding), as well as to specify any custom
bindings used by the host.

client This element contains a list of endpoints a client uses to connect to a service.
Obviously, this is not particularly useful in a host’s *.config file.

comContracts This element defines COM contracts enabled for WCF and COM interoperability.

commonBehaviors This element can be set only within a machine.config file. You can use it to define all
of the behaviors used by each WCF service on a given machine.

diagnostics This element contains settings for the diagnostic features of WCF. The user can
enable/disable tracing, performance counters, and the WMI provider; the user can
also add custom message filters.

services This element contains a collection of WCF services exposed by the host.

Enabling Metadata Exchange
Recall that WCF client applications communicate with the WCF service through an intervening proxy type.
While you could author the proxy code completely by hand, doing so would be tedious and error- prone.
Ideally, you could use a tool to generate the necessary grunge code (including the client-side *.config file).
Thankfully, the .NET Framework 4.6 SDK provides a command-line tool (svcutil.exe) for this purpose.
Also, Visual Studio provides similar functionality through its Project ➤ Add Service Reference menu option.

For these tools to generate the necessary proxy code/*.config file, however, they must be able to
discover the format of the WCF service interfaces and any defined data contracts (e.g., the method names
and type of parameters).

Metadata exchange (MEX) is a WCF service behavior that you can use to fine-tune how the WCF runtime
handles your service. Simply put, each <behavior> element can define a set of activities a given service can
subscribe to. WCF provides numerous behaviors out of the box, and it is possible to build your own.

The MEX behavior (which is disabled by default) will intercept any metadata requests sent through
HTTP GET. You must enable MEX if you want to allow svcutil.exe or Visual Studio to automate the creation
of the required client-side proxy *.config file.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1048

Enabling MEX is a matter of tweaking the host’s *.config file with the proper settings (or authoring the
corresponding C# code). First, you must add a new <endpoint> just for MEX. Second, you need to define a
WCF behavior to allow HTTP GET access. Third, you need to associate this behavior by name to your service
using the behaviorConfiguration attribute on the opening <service> element. Finally, you need to add a
<host> element to define the base address of this service (MEX will look here to figure out the locations of
the types to describe).

 ■ Note You can bypass this final step if you pass in a System.Uri object to represent the base address as a
parameter to the ServiceHost constructor.

Consider the following updated host *.config file, which creates a custom <behavior> element (named
EightBallServiceMEXBehavior) that is associated to your service through the behaviorConfiguration
attribute within the <service> definition:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService"
 behaviorConfiguration="EightBallServiceMEXBehavior">
 <endpoint address = ""
 binding = "basicHttpBinding"
 contract = "MagicEightBallServiceLib.IEightBall"/>

 <!-- Enable the MEX endpoint -->
 <endpoint address = "mex"
 binding = "mexHttpBinding"
 contract = "IMetadataExchange" />

 <!-- Need to add this so MEX knows the address of our service -->
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>

 <!-- A behavior definition for MEX -->
 <behaviors>
 <serviceBehaviors>
 <behavior name = "EightBallServiceMEXBehavior" >
 <serviceMetadata httpGetEnabled = "true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1049

You can now rerun your service host application and view its metadata description using the web
browser of your choice. To do so, enter the address as the URL while the host is still running, like so:

http://localhost:8080/MagicEightBallService

Once you are at the home page for your WCF service (see Figure 25-6), you are provided with basic
details regarding how to interact with this service programmatically, as well as a way to view the WSDL
contract by clicking the hyperlink at the top of the page. Recall that Web Service Description Language
(WSDL) is a grammar that describes the structure of web services at a given endpoint.

Figure 25-6. Ready-to-view metadata using MEX

Your host now exposes two different endpoints (one for the service and one for MEX), so your host’s
console output will appear like this:

***** Console Based WCF Host *****

***** Host Info *****
Address: http://localhost:8080/MagicEightBallService
Binding: BasicHttpBinding
Contract: IEightBall

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1050

Address: http://localhost:8080/MagicEightBallService/mex
Binding: MetadataExchangeHttpBinding
Contract: IMetadataExchange

The service is ready.

 ■ Source Code You can find the magiceightBallServicehost project in the MagicEightBallServiceHTTP
subdirectory of Chapter 25.

Building the WCF Client Application
Now that your host is in place, the final task is to build a piece of software to communicate with this WCF
service type. While you could take the long road and build the necessary infrastructure by hand (a feasible
but labor-intensive task), the .NET Framework 4.6 SDK provides several approaches to generate a client-side
proxy quickly. Begin by creating a new Console Application project named MagicEightBallServiceClient.

Generating Proxy Code Using svcutil.exe
The first way you can build a client-side proxy is to use the svcutil.exe command-line tool. Using svcutil.exe,
you can generate a new C# language file that represents the proxy code itself, as well as a client-side
configuration file. You can do this by specifying the service’s endpoint as the first parameter. You use the
/out: flag to define the name of the *.cs file containing the proxy, and you use the /config: option to
specify the name of the generated client-side *.config file.

Assuming your service is currently running, the following command set passed into svcutil.exe will
generate two new files in the working directory (which should, of course, be entered as a single line within a
developer command prompt):

svcutil http://localhost:8080/MagicEightBallService
 /out:myProxy.cs /config:app.config

If you open the myProxy.cs file, you will find a client-side representation of the IEightBall interface,
as well as a new class named EightBallClient, which is the proxy class itself. This class derives from the
generic class, System.ServiceModel.ClientBase<T>, where T is the registered service interface.

In addition to a number of custom constructors, each method of the proxy (which is based on the
original interface methods) will be implemented to use the inherited Channel property to invoke the correct
service method. Here is a partial snapshot of the proxy type:

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel",
 "4.0.0.0")]
public partial class EightBallClient :
 System.ServiceModel.ClientBase<IEightBall>, IEightBall
{
...

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1051

 public string ObtainAnswerToQuestion(string userQuestion)
 {
 return base.Channel.ObtainAnswerToQuestion(userQuestion);
 }
}

When you create an instance of the proxy type in your client application, the base class will establish a
connection to the endpoint using the settings specified in the client-side application configuration file. Much
like the server-side configuration file, the generated client-side App.config file contains an <endpoint>
element and details about the basicHttpBinding used to communicate with the service.

You will also find the following <client> element, which (again) establishes the ABCs from the client’s
perspective:

<client>
 <endpoint
 address = "http://localhost:8080/MagicEightBallService"
 binding = "basicHttpBinding" bindingConfiguration = "BasicHttpBinding_IEightBall"
 contract = "IEightBall" name = "BasicHttpBinding_IEightBall" />
</client>

At this point, you could include these two files into a client project (and reference the
System.ServiceModel.dll assembly) and then use the proxy type to communicate with the remote WCF
service. However, you’ll take a different approach here, looking at how Visual Studio can help you further
automate the creation of client-side proxy files.

Generating Proxy Code Using Visual Studio
Like any good command-line tool, svcutil.exe provides a great number of options that you can use to
control how the client proxy is generated. If you do not require these advanced options, you can generate the
same two files using the Visual Studio IDE. For the client project, create a new Console Application project
and simply select the Add Service Reference option from the Project menu.

After you activate this menu option, you will be prompted to enter the service URI. At this point, click
the Go button to see the service description (see Figure 25-7).

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1052

Beyond creating and inserting the proxy files into your current project, this tool is kind enough to
reference the WCF assemblies automatically on your behalf. In accordance with a naming convention,
the proxy class is defined within a namespace called ServiceReference1, which is nested in the client’s
namespace (to avoid possible name clashes). Here is the complete client code:

// Location of the proxy.
using MagicEightBallServiceClient.ServiceReference1;

namespace MagicEightBallServiceClient
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***** Ask the Magic 8 Ball *****\n");

Figure 25-7. Generating the proxy files using Visual Studio

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1053

 using (EightBallClient ball = new EightBallClient())
 {
 Console.Write("Your question: ");
 string question = Console.ReadLine();
 string answer =
 ball.ObtainAnswerToQuestion(question);
 Console.WriteLine("8-Ball says: {0}", answer);
 }
 Console.ReadLine();
 }
 }
}

Now assume your WCF console host is running so you can execute the client. Here is one possible output:

***** Ask the Magic 8 Ball *****

Your question: Will I ever finish Fallout 4?
8-Ball says: No

Press any key to continue...

 ■ Source Code You can find the magiceightBallServiceClient project located in the
MagicEightBallServiceHTTP subdirectory of Chapter 25.

Configuring a TCP-Based Binding
At this point, the host and client applications are both configured to use the simplest of the HTTP-based
bindings, basicHttpBinding. Recall that the benefit of offloading settings to configuration files is that you can
change the underlying plumbing in a declarative manner and expose multiple bindings for the same service.

To illustrate this, you can try a little experiment. Create a new folder on your C: drive (or wherever you
happen to be saving your code) named EightBallTCP; in this new folder, create two subdirectories named
Host and Client.

Next, use Windows Explorer to navigate to the \bin\Debug folder of the host project (from earlier in
this chapter) and copy MagicEightBallServiceHost.exe, MagicEightBallServiceHost.exe.config, and
MagicEightBallServiceLib.dll to the C:\EightBallTCP\Host folder. Now use a simple text editor to open
the *.config file for editing and modify the existing contents as follows:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService">
 <endpoint address = ""
 binding = "netTcpBinding"
 contract = "MagicEightBallServiceLib.IEightBall"/>

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1054

 <host>
 <baseAddresses>
 <add baseAddress = "net.tcp://localhost:8090/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Essentially, this host’s *.config file strips out all the MEX settings (because you already built the
proxy) and establishes that it is using the netTcpBinding binding type through a unique port. Now run the
application by double-clicking the *.exe. If all is well, you should see the host output shown here:

***** Console Based WCF Host *****

***** Host Info *****
Address: net.tcp://localhost:8090/MagicEightBallService
Binding: NetTcpBinding
Contract: IEightBall

The service is ready.
Press the Enter key to terminate service.

To complete the test, copy the MagicEightBallServiceClient.exe and
MagicEightBallServiceClient.exe.config files from the \bin\Debug folder of the client application
(from earlier in this chapter) into the C:\EightBallTCP\Client folder. Update the client configuration file
like this:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <client>
 <endpoint address = "net.tcp://localhost:8090/MagicEightBallService"
 binding = "netTcpBinding"
 contract = "ServiceReference1.IEightBall"
 name = "netTcpBinding_IEightBall" />
 </client>
 </system.serviceModel>
</configuration>

This client-side configuration file is a massive simplification compared to what the Visual Studio proxy
generator authored. Notice how you have completely removed the existing <bindings> element. Originally,
the *.config file contained a <bindings> element with a <basicHttpBinding> subelement that supplied
numerous details of the client’s binding settings (e.g., timeouts).

The truth is you never needed that detail for this example because you automatically obtain the default
values of the underlying BasicHttpBinding object. If you needed to, you could of course update the existing
<bindings> element to define details of the <netTcpBinding> subelement; however, doing so is not required
if you are happy with the default values of the NetTcpBinding object.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1055

In any case, you should now be able to run your client application. Assuming the host is still running in
the background, you will be able to move data between your assemblies using TCP.

 ■ Source Code You can find the magiceightBallTCp config files in the Chapter 25 subdirectory.

Simplifying Configuration Settings
As you were working through the first example of the chapter, you might have noticed that the hosting
configuration logic is quite verbose. For example, your host’s *.config file (for the original basic HTTP
binding) needed to define an <endpoint> element for the service, a second <endpoint> element for MEX, a
<baseAddresses> element (technically optional) to reduce redundant URIs, and then a <behaviors> section
to define the runtime nature of metadata exchange.

To be sure, learning how to author hosting *.config files can be a major hurdle when building WCF
services. To make matters more frustrating, a good number of WCF services tend to require the same basic
settings in a host configuration file. For example, if you were to make a new WCF service and a new host and
you wanted to expose this service using <basicHttpBinding> with MEX support, the required *.config file
would look almost identical to the one you previously authored.

Thankfully, since the release of .NET 4.0, the Windows Communication Foundation API ships with a
number of simplifications, including default settings (and other shortcuts) that make the process of building
host configuration files much easier.

Leveraging Default Endpoints
Before support for default endpoints, if you called Open() on the ServiceHost object and you had not yet
specified at least one <endpoint> element in your configuration file, the runtime would throw an exception.
And you would get a similar result if you called AddServiceEndpoint() in code to specify an endpoint.
However, since the release of .NET 4.5, every WCF service is automatically provided with default endpoints
that capture commonplace configuration details for each supported protocol.

If you were to open the machine.config file for .NET 4.5, you would find a new element named
<protocolMapping>. This element documents which WCF bindings to use by default, if you do not specify any.

<system.serviceModel>
...
 <protocolMapping>
 <add scheme = "http" binding="basicHttpBinding"/>
 <add scheme = "net.tcp" binding="netTcpBinding"/>
 <add scheme = "net.pipe" binding="netNamedPipeBinding"/>
 <add scheme = "net.msmq" binding="netMsmqBinding"/>
 </protocolMapping>
 ...
</system.serviceModel>

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1056

To use these default bindings, all you need to do is specify base addresses in your host configuration file.
To see this in action, open the HTTP-based MagicEightBallServiceHost project in Visual Studio. Now update
your hosting *.config file by completely removing the <endpoint> element for your WCF service and all
MEX-specific data. Your configuration file should now look like this:

<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService" >
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Because you specified a valid HTTP <baseAddress>, your host will automatically use
basicHttpBinding. If you run your host again, you will see the same listing of ABC data.

***** Console Based WCF Host *****

***** Host Info *****
Address: http://localhost:8080/MagicEightBallService
Binding: BasicHttpBinding
Contract: IEightBall

The service is ready.
Press the Enter key to terminate service.

You have not yet enabled MEX, but you will do so in a moment using another simplification known
as default behavior configurations. First, however, you will learn how to expose a single WCF service using
multiple bindings.

Exposing a Single WCF Service Using Multiple Bindings
Since its first release, WCF has had the ability to allow a single host to expose a WCF service using multiple
endpoints. For example, you could expose the MagicEightBallService using HTTP, TCP, and named
pipe bindings simply by adding new endpoints to your configuration file. Once you restart the host, all the
necessary plumbing is created automatically.

This is a huge benefit for many reasons. Before WCF, it was difficult to expose a single service using
multiple bindings because each type of binding (e.g., HTTP and TCP) had its own programming model.

Nevertheless, the ability to allow a caller to pick the most appropriate binding is extremely useful.
In-house callers might like to use TCP bindings that an outwardly facing client (outside of your company
firewall) would need to use HTTP to access, while clients on the same machine might opt to use a named pipe.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1057

To do this before .NET 4.5, your hosting configuration file would need to define multiple <endpoint>
elements manually. It would also have to define multiple <baseAddress> elements for each protocol.
However, today you can simply author the following configuration file:

<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService" >
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 <add baseAddress =
 "net.tcp://localhost:8099/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

If you compile your project (to refresh the deployed *.config file) and restart the host, you will now see
the following endpoint data:

***** Console Based WCF Host *****

***** Host Info *****
Address: http://localhost:8080/MagicEightBallService
Binding: BasicHttpBinding
Contract: IEightBall

Address: net.tcp://localhost:8099/MagicEightBallService
Binding: NetTcpBinding
Contract: IEightBall

The service is ready.
Press the Enter key to terminate service.

Now that your WCF service can be reachable from two unique endpoints, you might wonder how the
caller is able to select between them. When you generate a client-side proxy, the Add Service reference tool
will give each exposed endpoint a string name in the client-side *.config file. In code, you can pass in the
correct string name to the proxy’s constructor, and sure enough, the correct binding will be used. Before you
can do this, however, you need to reestablish MEX for this modified hosting configuration file and learn how
to tweak the settings of a default binding.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1058

Changing Settings for a WCF Binding
If you specify the ABCs of a service in C# code (which you will do later in this chapter), it becomes obvious
how you change the default settings of a WCF binding; you simply change the property values of the object!
For example, if you want to use BasicHttpBinding but also want to change the timeout settings, you could
do so as follows:

void ConfigureBindingInCode()
{
 BasicHttpBinding binding = new BasicHttpBinding();
 binding.OpenTimeout = TimeSpan.FromSeconds(30);
 ...
}

It has always been possible to configure settings for a binding in a declarative manner. For
example, .NET 3.5 lets you build a host configuration file that changed the OpenTimeout property of
BasicHttpBinding, like so:

<configuration>
 <system.serviceModel>

 <bindings>
 <basicHttpBinding>
 <binding name = "myCustomHttpBinding"
 openTimeout = "00:00:30" />
 </basicHttpBinding>
 </bindings>

 <services>
 <service name = "WcfMathService.MyCalc">
 <endpoint address = "http://localhost:8080/MyCalc"
 binding = "basicHttpBinding"
 bindingConfiguration = "myCustomHttpBinding"
 contract = "WcfMathService.IBasicMath" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Here, you have a configuration file for a service named WcfMathService.MyCalc, which supports
a single interface named IBasicMath. Note how the <bindings> section allows you to define a named
<binding> element, which tweaks settings for a given binding. Within the <endpoint> of the service, you can
connect your specific settings using the bindingConfiguration attribute.

This sort of hosting configuration still works as expected; however, if you leverage a default endpoint, you
can’t connect the <binding> to the <endpoint>! As luck would have it, you can control the settings of a default
endpoint simply by omitting the name attribute of the <binding> element. For example, this snippet changes
some properties of the default BasicHttpBinding and NetTcpBinding objects used in the background:

<configuration>
 <system.serviceModel>
 <services>

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1059

 <service name = "MagicEightBallServiceLib.MagicEightBallService" >
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 <add baseAddress =
 "net.tcp://localhost:8099/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>

 <bindings>
 <basicHttpBinding>
 <binding openTimeout = "00:00:30" />
 </basicHttpBinding>
 <netTcpBinding>
 <binding closeTimeout = "00:00:15" />
 </netTcpBinding>
 </bindings>

 </system.serviceModel>
</configuration>

Leveraging the Default MEX Behavior Configuration
A proxy generation tool must discover the composition of a service at runtime before it can do its work. In
WCF, you allow this runtime discovery to occur by enabling MEX. Again, most host configuration files need
to enable MEX (at least during development); fortunately, the way you configure MEX seldom changes, so
.NET 4.5 and above provides a few handy shortcuts.

The most useful shortcut is out-of-the-box MEX support. You don’t need to add a MEX endpoint, define
a named MEX service behavior, and then connect the named binding to the service (as you did in the HTTP
version of the MagicEightBallServiceHost); instead, you can now simply add the following:

<configuration>
 <system.serviceModel>
 <services>
 <service name = "MagicEightBallServiceLib.MagicEightBallService" >
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/MagicEightBallService"/>
 <add baseAddress =
 "net.tcp://localhost:8099/MagicEightBallService"/>
 </baseAddresses>
 </host>
 </service>
 </services>

 <bindings>
 <basicHttpBinding>
 <binding openTimeout = "00:00:30" />
 </basicHttpBinding>

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1060

 <netTcpBinding>
 <binding closeTimeout = "00:00:15" />
 </netTcpBinding>
 </bindings>

 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To get default MEX,
 don't name your <serviceMetadata> element -->
 <serviceMetadata httpGetEnabled = "true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

The trick is that the <serviceMetadata> element no longer has a name attribute (also notice the
<service> element no longer needs the behaviorConfiguration attribute). With this adjustment, you
get free MEX support at runtime. To test this, you can run your host (after you compile to refresh the
configuration file) and type in the following URL in a browser:

http://localhost:8080/MagicEightBallService

After you do this, you can click the wsdl link at the top of the web page to see the WSDL description of
the service (refer to Figure 25-6 for a refresher). Note that you do not see the host’s console window print
data for the MEX endpoint because you have not explicitly defined an endpoint for IMetadataExchange in
your configuration file. Nevertheless, MEX is enabled, and you can start to build client proxies.

Refreshing the Client Proxy and Selecting the Binding
Assuming your updated host has been compiled and is running in the background, you will now want
to open the client application and refresh the current service reference. Begin by opening the Service
References folder in the Solution Explorer. Next, right-click the current ServiceReference1 and pick the
Update Service Reference menu option (see Figure 25-8).

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1061

After you have done this, you will see that the client-side *.config file has two bindings to select from:
one for HTTP and one for TCP. As you can see, you give each binding a fitting name. Here is a partial listing
of the refreshed configuration file:

<configuration>
 <system.serviceModel>

 <bindings>
 <basicHttpBinding>
 <binding name = "BasicHttpBinding_IEightBall" ... />
 </basicHttpBinding>

Figure 25-8. Refreshing the proxy and client-side *.config file

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1062

 <netTcpBinding>
 <binding name = "NetTcpBinding_IEightBall" ... />
 </netTcpBinding>
 </bindings>
...
 </system.serviceModel>
</configuration>

The client can use these names when it creates the proxy object to select the binding it wants to use.
Thus, if your client would like to use TCP, you could update the client side C# code as follows:

static void Main(string[] args)
{
 Console.WriteLine("***** Ask the Magic 8 Ball *****\n");

 using (EightBallClient ball = new EightBallClient("NetTcpBinding_IEightBall"))
 {
 ...
 }
 Console.ReadLine();
}

If a client would rather use the HTTP binding, you could write the following:

using (EightBallClient ball = new
 EightBallClient("BasicHttpBinding_IEightBall"))
{
...
}

That wraps up the current example, which showcased a number of useful shortcuts. These features
simplify how you can author hosting configuration files. Next up, you will see how to use the WCF Service
Library project template.

 ■ Source Code You can find the magiceightBallServicehTTpdefaultBindings project located in the Chapter 25
subdirectory.

Using the WCF Service Library Project Template
Before building a more exotic WCF service that communicates with the AutoLot database you created in
Chapter 21, the next example will illustrate a number of important topics, including the benefits of the WCF
Service Library project template, the WCF Test Client, the WCF configuration editor, hosting WCF services
within a Windows service, and asynchronous client calls. To stay focused on these new concepts, this WCF
service will be kept intentionally simple.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25
http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1063

Building a Simple Math Service
To begin, create a new WCF Service Library project named MathServiceLibrary, making sure you select the
correct option under the WCF node of the New Project dialog box (see Figure 25-2 if you need a nudge). Now
change the name of the initial IService1.cs file to IBasicMath.cs. After you do so, delete all the example
code within the MathServiceLibrary namespace and replace it with the following code:

[ServiceContract(Namespace="http://MyCompany.com")]
public interface IBasicMath
{
 [OperationContract]
 int Add(int x, int y);
}

Next, change the name of the Service1.cs file to MathService.cs, delete all the example code within
the MathServiceLibrary namespace (again), and implement your service contract as follows:

public class MathService : IBasicMath
{
 public int Add(int x, int y)
 {
 // To simulate a lengthy request.
 System.Threading.Thread.Sleep(5000);
 return x + y;
 }
}

Also take a moment to notice that this *.config file has already been enabled to support MEX; by
default, your service endpoint uses the basicHttpBinding protocol.

Testing the WCF Service with WcfTestClient.exe
One benefit of using the WCF Service Library project is that when you debug or run your library, it will read
the settings in the *.config file and use them to load the WCF Test Client application (WcfTestClient.exe).
This GUI-based application allows you to test each member of your service interface as you build the WCF
service; this means you don’t have to build a host/client manually simply for testing purposes, as you did
previously.

Figure 25-9 shows the testing environment for MathService. Notice that when you double-click an
interface method, you can specify input parameters and invoke the member.

http://mycompany.com/

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1064

This utility works out of the box when you have created a WCF Service Library project; however, be
aware that you can use this tool to test any WCF service when you start it at the command line by specifying
a MEX endpoint. For example, if you were to start the MagicEightBallServiceHost.exe application, you
could specify the following command at a developer command prompt:

wcftestclient http://localhost:8080/MagicEightBallService

After you do this, you can invoke ObtainAnswerToQuestion() in a similar manner.

Altering Configuration Files Using SvcConfigEditor.exe
Another benefit of using the WCF Service Library project is that you are able to right-click the App.config
file within the Solution Explorer to activate the GUI-based Service Configuration Editor, SvcConfigEditor.exe
(see Figure 25-10). This same technique can be used from a client application that has referenced
a WCF service.

Figure 25-9. Testing the WCF service using WcfTestClient.exe

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1065

After you activate this tool, you can change the XML-based data using a friendly user interface. Using a
tool such as this to maintain your *.config files provides many benefits. First (and foremost), you can rest
assured that the generated markup conforms to the expected format and is typo-free. Second, it is a great
way to see the valid values that could be assigned to a given attribute. Finally, you no longer need to author
tedious XML data manually.

Figure 25-11 shows the overall look and feel of the Service Configuration Editor. Truth be told, an
entire chapter could be devoted to describing all the interesting options SvcConfigEditor.exe supports.
Be sure to take time to investigate this tool; also be aware that you can access a fairly detailed help system
by pressing F1.

Figure 25-10. GUI-based *.config file editing starts here

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1066

 ■ Note The SvcConfigEditor.exe utility can edit (or create) configuration files, even if you do not select an
initial WCF Service Library project. use a developer Command window to launch the tool and then use the File
open menu option to load an existing *.config file for editing.

You have no need to further configure your WCF MathService; at this point, you can move on to the task
of building a custom host.

Hosting the WCF Service Within a Windows Service
Hosting a WCF service from within a console application (or within a GUI desktop application, for that
matter) is not an ideal choice for a production-level server, given that the host must remain running visibly
in the background to service clients. Even if you were to minimize the hosting application to the Windows
taskbar, it would still be far too easy to accidentally shut down the host, thereby terminating the connection
with any client applications.

 ■ Note While it is true that a desktop Windows application does not have to show a main window, a typical
*.exe does require user interaction to load the executable. however, you can configure a Windows service
(described next) to run even if no users are currently logged on to the workstation.

Figure 25-11. Working with the WCF Service Configuration Editor

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1067

If you build an in-house WCF application, another alternative you have is to host your WCF Service
Library from within a dedicated Windows service. One benefit of doing so is that you can configure a
Windows service to start automatically when the target machine boots up. Another benefit is that Windows
services run invisibly in the background (unlike your console application) and do not require user
interactivity (and you don’t need IIS installed on the host computer).

Next, you will learn how to build such a host. Begin by creating a new Windows service project named
MathWindowsServiceHost (see Figure 25-12). After you do this, rename your initial Service1.cs file to
MathWinService.cs using the Solution Explorer.

Figure 25-12. Creating a Windows service to host your WCF service

Specifying the ABCs in Code
Now assume you have set a reference to your MathServiceLibrary.dll and System.ServiceModel.dll
assemblies. All you need to do is use the ServiceHost type in the OnStart() and OnStop() methods of your
Windows service type. Open the code file for your service host class (by right-clicking the designer and
selecting View Code) and add the following logic:

// Be sure to import these namespaces:
using MathServiceLibrary;
using System.ServiceModel;

namespace MathWindowsServiceHost
{
 public partial class MathWinService: ServiceBase
 {
 // A member variable of type ServiceHost.
 private ServiceHost myHost;

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1068

 public MathWinService()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 // Just to be really safe.
 if (myHost != null)
 {
 myHost.Close();
 myHost = null;
 }

 // Create the host.
 myHost = new ServiceHost(typeof(MathService));

 // The ABCs in code!
 Uri address = new Uri("http://localhost:8080/MathServiceLibrary");
 WSHttpBinding binding = new WSHttpBinding();
 Type contract = typeof(IBasicMath);

 // Add this endpoint.
 myHost.AddServiceEndpoint(contract, binding, address);

 // Open the host.
 myHost.Open();
 }

 protected override void OnStop()
 {
 // Shut down the host.
 if(myHost != null)
 myHost.Close();
 }
 }
}

While nothing prevents you from using a configuration file when building a Windows service host
for a WCF service, here (for a change of pace) you establish the endpoint programmatically using the Uri,
WSHttpBinding, and Type classes, rather than by using a *.config file. After you create each aspect of the
ABCs, you inform the host programmatically by calling AddServiceEndpoint().

If you want to inform the runtime that you want to gain access to each of the default endpoint bindings
stored in the .NET 4.6 machine.config file, you can simplify your programming logic by specifying base
addresses when you invoke the constructor of ServiceHost. In this case, you do not need to specify the ABCs
manually in code or call AddServiceEndpoint(); instead, you call AddDefaultEndpoints(). Consider the
following update:

protected override void OnStart(string[] args)
{
 if (myHost != null)

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1069

 {
 myHost.Close();
 }
 // Create the host and specify a URL for an HTTP binding.
 myHost = new ServiceHost(typeof(MathService),
 new Uri("http://localhost:8080/MathServiceLibrary"));

 // Opt in for the default endpoints!
 myHost.AddDefaultEndpoints();

 // Open the host.
 myHost.Open();
}

Enabling MEX
While you could enable MEX programmatically as well, here you will opt for a configuration file. Modify the
App.config file into your Windows service project that contains the following default MEX settings:

<?xml version = "1.0" encoding = "utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name = "MathServiceLibrary.MathService">
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled = "true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>

 </system.serviceModel>
</configuration>

Creating a Windows Service Installer
To register your Windows service with the operating system, you need to add an installer to your project that
contains the necessary code to allow you to register the service. To do so, right-click the Windows service
designer surface and select Add Installer (see Figure 25-13).

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1070

Once you do this, you can see two components have been added to a new designer surface representing
the installer. The first component (named serviceProcessInstaller1 by default) represents an item that
can install a new Windows service on the target machine. Select this item on the designer and use the
Properties window to set the Account property to LocalSystem (see Figure 25-14).

Figure 25-13. Adding an installer for the Windows service

Figure 25-14. Be sure to run the Windows service as a local system account

The second component (named serviceInstaller1) represents a type that will install your particular
Windows service. Again, use the Properties window to change the ServiceName property to MathService,
set the StartType property to Automatic, and add a friendly description of your Windows service using the
Description property (see Figure 25-15).

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1071

At this point, you can compile your application.

Installing the Windows Service
A Windows service can be installed on the host machine using a traditional setup program (such as an *.msi
installer) or via the installutil.exe command-line tool.

 ■ Note To install a Windows service using installutil.exe, you must start the developer command prompt
under administrative privileges. To do so, right-click the developer Command prompt icon and select Run As
Administrator.

Using a command prompt, change into the \bin\Debug folder of your MathWindowsServiceHost
project. Now, enter the following command (be sure you are running as administrator!):

installutil MathWindowsServiceHost.exe

Assuming the installation succeeded, you can now open the Services applet located under the
Administrative Tools folder of your Control Panel. You should see the friendly name of your Windows service
listed alphabetically. After you locate it, make sure you start the service on your local machine using the Start
link (see Figure 25-16).

Figure 25-15. Configuring installer details

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1072

Now that the service is alive and kicking, the last step is to build a client application to consume its services.

 ■ Source Code You can find the mathWindowsServicehost project located in the Chapter 25 subdirectory.

Invoking a Service Asynchronously from the Client
Create a new Console Application project named MathClient and set a service reference to your running
WCF service (that is currently hosted by the Windows service running in the background) using the Add
Service Reference option of Visual Studio (you’ll need to type the URL in the Addresses box, which should be
http://localhost:8080/MathServiceLibrary). Don’t click the OK button yet, however! Notice that the Add
Service Reference dialog box has an Advanced button in the lower-left corner (see Figure 25-17).

Figure 25-16. Viewing your Windows service, which hosts your WCF service

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1073

Click this button now to view the additional proxy configuration settings (see Figure 25-18). You can
use this dialog box to generate code that allows you to call the remote methods in an asynchronous manner,
provided you check the “Generate asynchronous operators” radio option. Go ahead and check this option
for the time being.

Figure 25-17. Referencing your MathService and getting ready to configure advanced settings

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1074

At this point, the proxy code contains additional methods that allow you to invoke each member of the
service contract using the expected Begin/End asynchronous invocation pattern described in Chapter 19. Here is
a simple implementation that uses a lambda expression rather than a strongly typed AsyncCallback delegate:

using System;
using MathClient.ServiceReference1;
...

namespace MathClient
{
 class Program
 {

Figure 25-18. Advanced client-side proxy configuration options

http://dx.doi.org/10.1007/978-1-4842-1332-2_19

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1075

 static void Main(string[] args)
 {
 Console.WriteLine("***** The Async Math Client *****\n");

 using (BasicMathClient proxy = new BasicMathClient())
 {
 proxy.Open();

 // Add numbers in an async manner, using a lambda expression.
 IAsyncResult result = proxy.BeginAdd(2, 3,
 ar =>
 {
 Console.WriteLine("2 + 3 = {0}", proxy.EndAdd(ar));
 },
 null);

 while (!result.IsCompleted)
 {
 Thread.Sleep(200);
 Console.WriteLine("Client working...");
 }
 }
 Console.ReadLine();
 }
 }
}

 ■ Source Code You can find the mathClient project located in the Chapter 25 subdirectory.

Designing WCF Data Contracts
This chapter’s final example shows you how to construct WCF data contracts. The previous WCF services
defined simple methods that operate on primitive CLR data types. When you use of any of the HTTP binding
types (e.g., basicHttpBinding and wsHttpBinding), incoming and outgoing simple data types are automatically
formatted into XML elements. On a related note, if you use a TCP-based binding (such as netTcpBinding), the
parameters and return values of simple data types are transmitted using a compact binary format.

 ■ Note The WCF runtime will also automatically encode any type marked with the [Serializable] attribute;
however, this is not the preferred way to define WCF contracts, and it is included only for backward compatibility.

However, when you define service contracts that use custom classes as parameters or return values, it
is a best practice to model such data using WCF data contracts. Simply put, a data contract is a type adorned
with the [DataContract] attribute. Likewise, you must mark each field you expect to be used as part of the
proposed contract with the [DataMember] attribute.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1076

 ■ Note In earlier versions of the .neT platform, it was mandatory to use [DataContract] and [DataMember]
to ensure custom data types were correctly represented. microsoft has since relaxed this requirement;
technically speaking, you are not required to use these attributes on custom data types; however, it is
considered a .neT best practice.

Using the Web-centric WCF Service Project Template
The next WCF service will allow external callers to interact with the AutoLot database you created in
Chapter 21. Moreover, this final WCF service will be created using the web-based WCF Service template and
be hosted under IIS.

To begin, launch Visual Studio (with administrator rights) and access the File ➤ New ➤ Web Site menu
option. Select the WCF Service project type and ensure the Web Location drop-down is set to HTTP (which
will install the service under IIS). Expose the service from the following URI:

http://localhost/AutoLotWCFService

Figure 25-19 shows the configured project.

Figure 25-19. Creating a web-centric WCF service

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1077

After you have done this, set a reference to the AutoLotDAL.dll assembly you created in Chapter 21
(using the Website ➤ Add Reference menu option). You have been given some example starter code (located
under the App_Code folder), which you will want to delete. Begin by renaming the initial IService.cs file to
IAutoLotService.cs and then define the initial service contract within your newly named file, like so:

[ServiceContract]
public interface IAutoLotService
{
 [OperationContract]
 void InsertCar(int id, string make, string color, string petname);

 [OperationContract]
 void InsertCar(InventoryRecord car);

 [OperationContract]
 InventoryRecord[] GetInventory();
}

This interface defines three methods, one of which returns an array of the (yet-to-be-created)
InventoryRecord type. You might recall that the GetInventory() method of InventoryDAL simply returned
a DataTable object, and this might make you wonder why your service’s GetInventory() method does not
do the same.

While it would work to return a DataTable from a WCF service method, recall that WCF was built to
honor the use of SOA principles, one of which is to program against contracts, not implementations.

Therefore, you won’t return the .NET-specific DataTable type to an external caller; instead, you will
return a custom data contract (InventoryRecord) that will be correctly expressed in the contained WSDL
document in an agnostic manner.

Also note that the interface listed previously defines an overloaded method named InsertCar(). The
first version takes four incoming parameters, while the second version takes an InventoryRecord type as
input. You can define the InventoryRecord data contract as follows:

[DataContract]
public class InventoryRecord
{
 [DataMember]
 public int ID;

 [DataMember]
 public string Make;

 [DataMember]
 public string Color;

 [DataMember]
 public string PetName;
}

If you were to implement the IAutoLotService interface as it now stands, and then build a host and
attempt to call these methods from a client, you might be surprised to see that you would get a runtime
exception. The reason: one of the requirements of a WSDL description is that each method exposed from
a given endpoint must be uniquely named. Thus, while method overloading works just fine as far as C# is
concerned, the current web service specifications do not permit two identically named InsertCar() methods.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1078

Fortunately, the [OperationContract] attribute supports a named property (Name) that allows you to
specify how the C# method will be represented within a WSDL description. Given this, you can update the
second version of InsertCar() as follows:

public interface IAutoLotService
{
...
 [OperationContract(Name = "InsertCarWithDetails")]
 void InsertCar(InventoryRecord car);
}

Implementing the Service Contract
Now rename Service.cs to AutoLotService.cs. The AutoLotService type implements the
IAutoLotService interface as follows (be sure to import the AutoLotConnectedLayer and System.Data
namespaces into this code file and update your connection string if required):

using AutoLotDAL.ConnectedLayer;
using System.Data;

public class AutoLotService : IAutoLotService
{
 private const string ConnString =
 @"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot"+
 ";Integrated Security=True";

 public void InsertCar(int id, string make, string color, string petname)
 {
 InventoryDAL d = new InventoryDAL();
 d.OpenConnection(ConnString);
 d.InsertAuto(id, color, make, petname);
 d.CloseConnection();
 }

 public void InsertCar(InventoryRecord car)
 {
 InventoryDAL d = new InventoryDAL();
 d.OpenConnection(ConnString);
 d.InsertAuto(car.ID, car.Color, car.Make, car.PetName);
 d.CloseConnection();
 }

 public InventoryRecord[] GetInventory()
 {
 // First, get the DataTable from the database.
 InventoryDAL d = new InventoryDAL();
 d.OpenConnection(ConnString);
 DataTable dt = d.GetAllInventoryAsDataTable();
 d.CloseConnection();

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1079

 // Now make a List<T> to contain the records.
 List<InventoryRecord> records = new List<InventoryRecord>();

 // Copy the data table into List<> of custom contracts.
 DataTableReader reader = dt.CreateDataReader();
 while (reader.Read())
 {
 InventoryRecord r = new InventoryRecord();
 r.ID = (int)reader["CarID"];
 r.Color = ((string)reader["Color"]);
 r.Make = ((string)reader["Make"]);
 r.PetName = ((string)reader["PetName"]);
 records.Add(r);
 }

 // Transform List<T> to array of InventoryRecord types.
 return (InventoryRecord[])records.ToArray();
 }
}

There isn’t too much to say about the preceding code. For the sake of simplicity, you hard-code the
connection string value (which you might need to adjust based on your machine settings), rather than store
it in your Web.config file. Given that your data access library does all the real work of communicating with
the AutoLot database, all you need to do is pass the incoming parameters to the InsertAuto() method of
the InventoryDAL class type. The only other point of interest is the act of mapping the DataTable object’s
values into a generic list of InventoryRecord types (using a DataTableReader) and then transforming the
List<T> into an array of InventoryRecord types.

The Role of the *.svc File
When you create a web-centric WCF service, you will find your project contains a specific file with an *.svc
file extension. This particular file is required for any WCF service hosted by IIS; it describes the name and
location of the service implementation within the install point. Because you have changed the names of your
starter files and WCF types, you must now update the contents of the Service.svc file as follows:

<%@ ServiceHost Language="C#" Debug="true"
 Service="AutoLotService" CodeBehind="~/App_Code/AutoLotService.cs" %>

Examining the Web.config File
The Web.config file of a WCF service created under HTTP will use a number of the WCF simplifications
examined earlier in this chapter. As will be described in more detail during your examination of ASP.NET
later in this book, the Web.config file serves a similar purpose to an executable’s *.config file; however, it
also controls a number of web-specific settings. For this example, notice that MEX is enabled, and you do
not have to specify a custom <endpoint> manually.

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1080

<configuration>
...

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the
 metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true.
 Set to false before deployment to avoid
 disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 </system.serviceModel>

...
</configuration>

Testing the Service
Now you are free to build any sort of client to test your service, including passing in the endpoint of the
*.svc file to the WcfTestClient.exe application.

WcfTestClient http://localhost/AutoLotWCFService/Service.svc

If you want to build a custom client application, you can use the Add Service Reference dialog box, as
you did for the MagicEightBallServiceClient and MathClient project examples earlier in this chapter.

 ■ Source Code You can find the AutoLotService project located in the Chapter 25 subdirectory.

That wraps up your look at the Windows Communication Foundation API. Of course, there is much
more to WCF than could be covered in this introductory chapter; however, if you understand the materials
presented here, you are in great shape to seek out more details as you see fit. Be sure to consult the .NET
Framework 4.6 SDK documentation if you want to learn more about WCF.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

ChApTeR 25 ■ InTRoduCIng WIndoWS CommunICATIon FoundATIon

1081

Summary
This chapter introduced you to Windows Communication Foundation (WCF), which represents the core
distributed programming API under the .NET platform. As explained in this chapter, the major motivation
behind WCF was to provide a unified object model that exposes a number of (previously unrelated)
distributed computing APIs under a single umbrella. Furthermore, a WCF service is represented by specified
addresses, bindings, and contracts (which you can remember easily by the friendly abbreviation ABC).

You also learned that a typical WCF application involves the use of three interrelated assemblies. The
first assembly defines the service contracts and service types that represent the service’s functionality.
This assembly is then hosted by a custom executable, an IIS virtual directory, or a Windows service. Finally,
the client assembly uses a generated code file that defines a proxy type (and settings within the application
configuration file) to communicate with the remote type.

The chapter also examined how to use a number of WCF programming tools, such as
SvcConfigEditor.exe (which allows you to modify *.config files), the WcfTestClient.exe application
(to test a WCF service quickly), and various Visual Studio WCF project templates. You also learned about a
number of configuration simplifications, including default endpoints and behaviors.

Part VII

Windows Presentation
Foundation

1085

Chapter 26

Introducing Windows Presentation
Foundation and XAML

When version 1.0 of the .NET platform was released, programmers who needed to build graphical desktop
applications made use of two APIs named Windows Forms and GDI+, packaged up primarily in the
System.Windows.Forms.dll and System.Drawing.dll assemblies. While Windows Forms/GDI+ are
excellent APIs for building traditional desktop GUIs, Microsoft shipped an alternative GUI desktop API
named Windows Presentation Foundation (WPF) beginning with the release of .NET 3.0.

This initial WPF chapter begins by examining the motivation behind this new GUI framework, which
will help you see the differences between the Windows Forms/GDI+ and WPF programming models. Next,
you will examine the different types of WPF applications supported by the API, and come to know the role
of several important classes, including Application, Window, ContentControl, Control, UIElement, and
FrameworkElement. During this time, you will learn to intercept keyboard and mouse activities, define
application-wide data, and other common WPF tasks using nothing but C# code.

This chapter will then introduce you to an XML-based grammar named Extensible Application
Markup Language (XAML; pronounced “zammel”). Here, you will learn the syntax and semantics of XAML
(including attached property syntax, and the role of type converters and markup extensions), and come
to understand how to generate, load, and parse XAML at runtime. As well, you will learn how to integrate
XAML data into a C# WFP code base (and the benefits of doing so).

This chapter wraps up by investigating the integrated WPF designers of Visual Studio. Here, you will
build your own custom XAML editor/parser, which will illustrate how XAML can be manipulated at runtime
to build dynamic user interfaces.

The Motivation Behind WPF
Over the years, Microsoft has created numerous graphical user interface toolkits (raw C/C++/Windows
API development, VB6, MFC, etc.) to build desktop executables. Each of these APIs provided a code base
to represent the basic aspects of a GUI application, including main windows, dialog boxes, controls, menu
systems, and other basic necessities. With the initial release of the .NET platform, the Windows Forms API
quickly became the preferred model for UI development, given its simple yet very powerful object model.

While many full-featured desktop applications have been successfully created using Windows Forms,
the fact of the matter is that this programming model is rather asymmetrical. Simply put, System.Windows.
Forms.dll and System.Drawing.dll do not provide direct support for many additional technologies
required to build a feature-rich desktop application. To illustrate this point, consider the ad hoc nature of
GUI desktop development before the release of WPF (see Table 26-1).

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1086

As you can see, a Windows Forms developer must pull in types from a number of unrelated APIs and
object models. While it is true that making use of these diverse APIs might look similar syntactically (it is
just C# code, after all), you might also agree that each technology requires a radically different mind-set. For
example, the skills required to create a 3D rendered animation using DirectX are completely different from
those used to bind data to a grid. To be sure, it is very difficult for a Windows Forms programmer to master
the diverse nature of each API.

Unifying Diverse APIs
WPF (introduced with .NET 3.0) was purposely created to merge these previously unrelated programming
tasks into a single unified object model. Thus, if you need to author a 3D animation, you have no need to
manually program against the DirectX API (although you could) because 3D functionality is baked directly
into WPF. To see how well things have cleaned up, consider Table 26-2, which illustrates the desktop
development model ushered in as of .NET 3.0.

Table 26-1. Pre-WPF Solutions to Desired Functionalities

Desired Functionality Technology

Building windows with controls Windows Forms

2D graphics support GDI+ (System.Drawing.dll)

3D graphics support DirectX APIs

Support for streaming video Windows Media Player APIs

Support for flow-style documents Programmatic manipulation of PDF files

Table 26-2. .NET 3.0 Solutions to Desired Functionalities

Desired Functionality Technology

Building forms with controls WPF

2D graphics support WPF

3D graphics support WPF

Support for streaming video WPF

Support for flow-style documents WPF

The obvious benefit here is that .NET programmers now have a single, symmetrical API for all common
GUI desktop programming needs. After you become comfortable with the functionality of the key WPF
assemblies and the grammar of XAML, you’ll be amazed how quickly you can create very sophisticated UIs.

Providing a Separation of Concerns via XAML
Perhaps one of the most compelling benefits is that WPF provides a way to cleanly separate the look and feel
of a GUI application from the programming logic that drives it. Using XAML, it is possible to define the UI of
an application via XML markup. This markup (ideally generated using tools such as Microsoft Visual Studio
or Microsoft Expression Blend) can then be connected to a related C# code file to provide the guts of the
program’s functionality.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1087

 ■ Note XaML is not limited to WpF applications. any application can use XaML to describe a tree of .net
objects, even if they have nothing to do with a visible user interface. For example, the Windows Workflow
Foundation apI uses a XaML-based grammar to define business processes and custom activities. as well, other
.net guI frameworks such as silverlight (on the wane, but still very much in use today), Windows phone, and
Windows 10 applications all make use of XaML.

As you dig into WPF, you might be surprised how much flexibility this “desktop markup” provides.
XAML allows you to define not only simple UI elements (buttons, grids, list boxes, etc.) in markup, but
also interactive 2D and 3D graphics, animations, data binding logic, and multimedia functionality (such
as video playback).

XAML also makes it very easy to customize how a control should render out its visual appearance. For
example, defining a circular button control that animates your company logo requires just a few lines of
markup. As shown in Chapter 29, WPF controls can be modified through styles and templates, which allow
you to change the overall look and feel of an application with minimum fuss and bother. Unlike Windows
Forms development, the only compelling reason to build a custom WPF control from the ground up is if
you need to change the behaviors of a control (e.g., add custom methods, properties, or events; subclass
an existing control to override virtual members). If you simply need to change the look and feel of a control
(again, such as a circular animated button), you can do so entirely through markup.

Providing an Optimized Rendering Model
GUI toolkits such as Windows Forms, MFC, or VB6 performed all graphical rendering requests (including
the rendering of UI elements such as buttons and list boxes) using a low-level, C-based API (GDI), which
has been part of the Windows OS for years. GDI provides adequate performance for typical business
applications or simple graphical programs; however, if a UI application needed to tap into high-performance
graphics, DirectX was required.

The WPF programming model is quite different in that GDI is not used when rendering graphical data.
All rendering operations (e.g., 2D graphics, 3D graphics, animations, control rendering, etc.) now make use
of the DirectX API. The first obvious benefit is that your WPF applications will automatically take advantage
of hardware and software optimizations. As well, WPF applications can tap into very rich graphical services
(blur effects, anti-aliasing, transparency, etc.) without the complexity of programming directly against the
DirectX API.

 ■ Note although WpF does push all rendering requests to the directX layer, I don’t want to suggest that a
WpF application will perform as fast as building an application using unmanaged C++ and directX directly.
although significant advances have been made in WpF in .net 4.6, if you are intending to build a desktop
application that requires the fastest possible execution speed (such as a 3d video game), unmanaged
C++ and directX are still the best approach.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1088

Simplifying Complex UI Programming
To recap the story thus far, Windows Presentation Foundation (WPF) is an API for building desktop
applications that integrates various desktop APIs into a single object model and provides a clean separation
of concerns via XAML. In addition to these major points, WPF applications also benefit from a very simple
way to integrate services into your programs, which historically were quite complex to account for. The
following is a quick rundown of the core WPF features:

•	 A number of layout managers (far more than Windows Forms) to provide extremely
flexible control over placement and reposition of content.

•	 Use of an enhanced data-binding engine to bind content to UI elements in a variety
of ways.

•	 A built-in style engine, which allows you to define “themes” for a WPF application.

•	 Use of vector graphics, which allows content to be automatically resized to fit the size
and resolution of the screen hosting the application.

•	 Support for 2D and 3D graphics, animations, and video and audio playback.

•	 A rich typography API, such as support for XML Paper Specification (XPS)
documents, fixed documents (WYSIWYG), flow documents, and document
annotations (e.g., a Sticky Notes API).

•	 Support for interoperating with legacy GUI models (e.g., Windows Forms, ActiveX,
and Win32 HWNDs). For example, you can incorporate custom Windows Forms
controls into a WPF application, and vice versa.

Now that you have some idea of what WPF brings to the table, let’s look at the various types of
applications that can be created using this API. Many of these features will be explored in detail in the
chapters to come.

The Various Flavors of WPF
The WPF API can be used to build a variety of GUI-centric applications that basically differ in their
navigational structure and deployment models. The sections that follow present a high-level tour through
each option.

Traditional Desktop Applications
The first (and most familiar) option is to use WPF to build a traditional executable assembly that runs on
a local machine. For example, you could use WPF to build a text editor, painting program, or multimedia
program such as a digital music player, photo viewer, and so forth. Like any other desktop application, these
*.exe files can be installed using traditional means (setup programs, Windows Installer packages, etc.) or via
ClickOnce technology to allow desktop applications to be distributed and installed via a remote web server.

Programmatically speaking, this type of WPF application will make use (at a minimum) of the Window
and Application class types, in addition to the expected set of dialog boxes, toolbars, status bars, menu
systems, and other UI elements.

Now, you can certainly use WPF to build your basic business application that does not support any bells
and whistles, but WPF really shines when you do incorporate such features. Consider Figure 26-1, which
shows a WPF sample desktop application for viewing patient records in a medical environment.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1089

Sadly, the printed page does not show the full feature set of this program. For example, if you were to see
this application running, you would note that the upper right of the main window is displaying a real-time
graph of the patient’s sinus rhythm. If you click the Patient Details button on the lower right, several
animations take place to flip, rotate, and transform the UI to the look and feel shown in Figure 26-2.

Figure 26-1. This WPF desktop application makes use of several WPF APIs

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1090

Could you build this same application without WPF? Absolutely. However, the amount of code—and
the complexity of the code—would be much higher.

 ■ Note this example application, and many others, can be downloaded (with the source code) from the
official WpF web site, http://windowsclient.net. here, you will find numerous WpF (and Windows Forms)
whitepapers, sample projects, technology walkthroughs, and forums. unfortunately, at the time of this writing,
there are only a scant few .net 4.6 examples. the good news is that the XaML team is committed to updating
the samples to .net 4.6.

Navigation-Based WPF Applications
WPF applications can optionally choose to make use of a navigation-based structure, which makes a
traditional desktop application take on the basic behavior of a web browser application. Using this model,
you can build a desktop *.exe that provides a forward and back button that allows the end user to move
back and forth between various UI displays called pages.

Figure 26-2. Transformations and animations are very simple under WPF

http://windowsclient.net/

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1091

This type of application maintains a list of each page and provides the necessary infrastructure to
navigate between them, pass data across pages (similar to a web-based application variable), and maintain a
history list. By way of a concrete example, consider Windows Explorer (see Figure 26-3), which makes use of
such functionality. Notice the navigation buttons mounted on the upper-left corner of the window.

Figure 26-3. A navigation-based desktop program

Regardless of the fact that a WPF desktop application can take on a web-like navigational structure,
understand that this is simply a UI design issue. The application itself is still just a local executable running
on a desktop machine, and it has little to do with a web application beyond the option of adopting a slightly
similar look and feel. Programmatically speaking, this type of WPF application is constructed using classes
such as Application, Page, NavigationWindow, and Frame.

XBAP Applications
WPF also allows you to build applications that can be hosted within a web browser. This flavor of WPF
application is termed a XAML browser application, or XBAP. Under this model, the end user navigates to
a given URL, at which point the XBAP (which is essentially a collection of Page objects) is transparently
downloaded and installed to the local machine. Unlike a traditional ClickOnce installation for an executable
application, however, the XBAP program is hosted directly within the browser and adopts the browser’s
intrinsic navigational system. Figure 26-4 illustrates an XBAP program in action (specifically, the ExpenseIt
WPF sample program, which can be found at http://windowsclient.net).

http://windowsclient.net/

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1092

One benefit of an XBAP is that it allows you to create sophisticated UIs that are much more expressive
than a typical web page built with HTML and JavaScript (however, HTML 5 certainly improves the current
situation). An XBAP Page object can make use of the same WPF services as a desktop WPF application,
including animations, 2D and 3D graphics, themes, and whatnot. In effect, the web browser is just a
container for WPF Page objects, and is not displaying ASP.NET web pages.

However, given that these Page objects are deployed to a remote web server, XBAPs can be easily
versioned and updated without the need to redeploy executables to the user’s desktop. Like a traditional
web program, you can simply update the Page objects in the web server, and the user will get the “latest and
greatest” when they access the URL.

One downside to this flavor of WPF is that XBAPs must be hosted within Microsoft Internet Explorer or
Firefox web browsers. Note that XBAPs are not supported on Microsoft Edge, the new Windows 10 browser;
you must use Internet Explorer on Windows 10. If you are deploying XBAPs across a company intranet,
browser compatibility should not be a problem, given that system administrators can play dictator regarding
which browser should be installed on users’ machines. However, if you want the outside world to make use
of your XBAP, it is not possible to ensure that each end user is making use of Internet Explorer/Firefox, and
therefore some external users may not be able to view your WPF XBAP.

Another issue to be aware of is that the machine that is viewing an XBAP must have a local installation
of the .NET framework because the Page objects will be using the same .NET assemblies as an application
running natively on the machine. Given this particular point, XBAPs are limited to Windows operating
systems and, thus, cannot be viewed on a system running Mac OS X or Linux.

 ■ Note While you can still create XBap projects in Visual studio 2015, they are largely being replaced with
htML5/Javascript-based applications (such as asp.net MVC).

Figure 26-4. XBAP programs are downloaded to a local machine and hosted within a web browser

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1093

The WPF/Silverlight Relationship
WPF and XAML also provided the foundation for the cross-platform, cross-browser WPF-based technology
termed Silverlight. From a high level, you can consider Silverlight as a competitor to Adobe Flash, with the
benefit of using C# and XAML rather than a new set of tools and languages. Silverlight is a subset of WPF
functionality, which is used to build highly interactive plug-ins for a larger HTML-based web page. In reality,
however, Silverlight is a completely unique distribution of the .NET platform, which ships with a “mini” CLR
and “mini” version of the .NET base class libraries.

Unlike an XBAP, the user’s machine does not need a full installation of the .NET Framework. As long
as the target machine has the Silverlight runtime installed, the browser will load the Silverlight runtime
and display the Silverlight application automatically. Best of all, Silverlight plug-ins are not limited to the
Windows operating systems. Microsoft has also created a Silverlight runtime for Mac OS X.

With Silverlight, you are able to build extremely feature-rich (and interactive) web applications. For
example, like WPF, Silverlight has a vector-based graphical system, animation support, and multimedia
support. Furthermore, you are able to incorporate a subset of the .NET base class library into your
applications. This subset includes LINQ APIs, generic collections, support for WCF, and a healthy subset of
mscorlib.dll (file I/O, XML manipulation, etc.).

 ■ Note Microsoft is moving away from silverlight as a development platform. While you can still create
silverlight projects in Visual studio 2015, the need silverlight once filled is largely being replaced with
htML5/Javascript-based applications. Microsoft is committed to supporting silverlight for 10 years after it
was officially end-of-lifed, which gives you about another 8 years (depending on when you read this book)
of active support.

Investigating the WPF Assemblies
Regardless of which type of WPF application you want to build, WPF is ultimately little more than a collection
of types bundled within .NET assemblies. Table 26-3 describes the key assemblies used to build WPF
applications, each of which must be referenced when creating a new project. As you would hope, Visual
Studio WPF projects reference these required assemblies automatically.

Table 26-3. Core WPF Assemblies

Assembly Meaning in Life

PresentationCore.dll This assembly defines numerous namespaces that constitute the foundation
of the WPF GUI layer. For example, this assembly contains support for the WPF
Ink API (for programming against stylus input for Pocket PCs and Tablet PCs),
animation primitives, and numerous graphical rendering types.

PresentationFramework.dll This assembly contains a majority of the WPF controls, the Application
and Window classes, support for interactive 2D graphics and numerous types
used in data binding.

System.Xaml.dll This assembly provides namespaces that allow you to program against a
XAML document at runtime. By and large, this library is only useful if you are
authoring WPF support tools or need absolute control over XAML at runtime.

WindowsBase.dll This assembly defines types that constitute the infrastructure of the
WPF API, including those representing WPF threading types, security types,
various type converters, and support for dependency properties and routed
events (described in Chapter 27).

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1094

Collectively, these four assemblies define a number of new namespaces and hundreds of new .NET
classes, interfaces, structures, enumerations, and delegates. While you should consult the .NET
Framework 4.6 SDK documentation for complete details, Table 26-4 describes the role of some (but
certainly not all) of the important namespaces.

Table 26-4. Core WPF Namespaces

Namespace Meaning in Life

System.Windows This is the root namespace of WPF. Here, you will find core classes
(such as Application and Window) that are required by any WPF
desktop project.

System.Windows.Controls Contains all of the expected WPF widgets, including types to build menu
systems, tool tips, and numerous layout managers.

System.Windows.Data Contains types to work with the WPF data-binding engine, as well as
support for data-binding templates.

System.Windows.Documents Contains types to work with the documents API, which allows you to
integrate PDF-style functionality into your WPF applications, via the
XML Paper Specification (XPS) protocol.

System.Windows.Ink Provides support for the Ink API, which allows you to capture input from
a stylus or mouse, respond to input gestures, and so forth. Very useful for
Tablet PC programming; however, any WPF can make use of this API.

System.Windows.Markup This namespace defines a number of types that allow XAML markup
(and the equivalent binary format, BAML) to be parsed and processed
programmatically.

System.Windows.Media This is the root namespace to several media-centric namespaces. Within
these namespaces you will find types to work with animations, 3D
rendering, text rendering, and other multimedia primitives.

System.Windows.Navigation This namespace provides types to account for the navigation logic
employed by XAML browser applications (XBAPs) as well as standard
desktop applications that require a navigational page model.

System.Windows.Shapes Defines classes that allow you to render interactive 2D graphics that
automatically respond to mouse input.

To begin your journey into the WPF programming model, you’ll examine two members of the
System.Windows namespace that are commonplace to any traditional desktop development effort:
Application and Window.

 ■ Note If you have created desktop uIs using the Windows Forms apI, be aware that the System.Windows.
Forms.* and System.Drawing.* assemblies are not related to WpF. these libraries represent the original .net
guI toolkit, Windows Forms/gdI+.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1095

The Role of the Application Class
The System.Windows.Application class represents a global instance of a running WPF application. This
class supplies a Run() method (to start the application), a series of events that you are able to handle in
order to interact with the application’s lifetime (such as Startup and Exit), and a number of events that
are specific to XAML browser applications (such as events that fire as a user navigates between pages).
Table 26-5 details some of the key properties.

Table 26-5. Key Properties of the Application Type

Property Meaning in Life

Current This static property allows you to gain access to the running Application object
from anywhere in your code. This can be very helpful when a window or dialog box
needs to gain access to the Application object that created it, typically to access
application-wide variables and functionality.

MainWindow This property allows you to programmatically get or set the main window of the
application.

Properties This property allows you to establish and obtain data that is accessible throughout all
aspects of a WPF application (windows, dialog boxes, etc.).

StartupUri This property gets or sets a URI that specifies a window or page to open automatically
when the application starts.

Windows This property returns a WindowCollection type, which provides access to each window
created from the thread that created the Application object. This can be very helpful
when you want to iterate over each open window of an application and alter its state
(such as minimizing all windows).

Constructing an Application Class
Any WPF application will need to define a class that extends Application. Within this class, you will define
your program’s entry point (the Main() method), which creates an instance of this subclass and typically
handles the Startup and Exit events. You will build a full example project in just a moment, but here is a
quick example:

// Define the global application object
// for this WPF program.
class MyApp : Application
{
 [STAThread]
 static void Main(string[] args)
 {
 // Create the application object.
 MyApp app = new MyApp();

 // Register the Startup/Exit events.
 app.Startup += (s, e) => { /* Start up the app */ };
 app.Exit += (s, e) => { /* Exit the app */ };
 }
}

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1096

Within the Startup handler, you will most often process any incoming command-line arguments and
launch the main window of the program. The Exit handler, as you would expect, is where you can author
any necessary shutdown logic for the program (e.g., save user preferences, write to the Windows registry).

Enumerating the Windows Collection
Another interesting property exposed by Application is Windows, which provides access to a collection
representing each window loaded into memory for the current WPF application. Recall that as you create
new Window objects, they are automatically added into the Application.Windows collection. Here is an
example method that will minimize each window of the application (perhaps in response to a given
keyboard gesture or menu option triggered by the end user):

static void MinimizeAllWindows()
{
 foreach (Window wnd in Application.Current.Windows)
 {
 wnd.WindowState = WindowState.Minimized;
 }
}

You’ll build a complete Application-derived type in an upcoming example. Until then, let’s check out the
core functionality of the Window type and learn about a number of important WPF base classes in the process.

The Role of the Window Class
The System.Windows.Window class (located in the PresentationFramework.dll assembly) represents a
single window owned by the Application-derived class, including any dialog boxes displayed by the main
window. Not surprisingly, Window has a series of parent classes, each of which brings more functionality
to the table. Consider Figure 26-5, which shows the inheritance chain (and implemented interfaces) for
System.Windows.Window as seen through the Visual Studio object browser.

Figure 26-5. The hierarchy of the Window class

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1097

You’ll come to understand the functionality provided by many of these base classes as you progress
through this chapter and the chapters to come. However, to whet your appetite, the following sections
present a breakdown of the functionality provided by each base class (consult the .NET Framework 4.6 SDK
documentation for full details).

The Role of System.Windows.Controls.ContentControl
The direct parent of Window is ContentControl, which is quite possibly the most enticing of all WPF
classes. This base class provides derived types with the ability to host a single piece of content, which,
simply put, refers to the visual data placed within the interior of the control’s surface area via the
Content property. The WPF content model makes it very simple to customize the basic look and feel of a
content control.

For example, when you think of a typical “button” control, you tend to assume that the content is
a simple string literal (OK, Cancel, Abort, etc.). If you are using XAML to describe a WPF control, and
the value you want to assign to the Content property can be captured as a simple string, you may set the
Content property within the element’s opening definition as so (don’t fret over the exact markup at
this point):

<!-- Setting the Content value in the opening element -->
<Button Height="80" Width="100" Content="OK"/>

 ■ Note the Content property can also be set in C# code, which allows you to change the interior of a
control at runtime.

However, content can be almost anything. For example, let’s say you want to have a “button” that
has something more interesting than a simple string, perhaps a custom graphic and a blurb of text. In
other UI frameworks such as Windows Forms, you would be required to build a custom control, which
could entail quite a bit of code and a whole new class to maintain. With the WPF content model, there is
no need to do so.

When you want to assign the Content property to a value that cannot be captured as a simple array
of characters, you can’t assign it using an attribute in the control’s opening definition. Rather, you must
define the content data implicitly, within the element’s scope. For example, the following <Button>
contains a <StackPanel> as content, which itself contains some unique data (an <Ellipse> and <Label>,
to be exact):

<!-- Implicitly setting the Content property with complex data -->
<Button Height="80" Width="100">
 <StackPanel>
 <Ellipse Fill="Red" Width="25" Height="25"/>
 <Label Content ="OK!"/>
 </StackPanel>
</Button>

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1098

You can also make use of XAML’s property-element syntax to set complex content. Consider the
following functionally equivalent <Button> definition, which sets the Content property explicitly using
property-element syntax (again, you’ll find more information on XAML later in this chapter, so don’t sweat
the details just yet):

<!-- Setting the Content property using property-element syntax -->
<Button Height="80" Width="100">
 <Button.Content>
 <StackPanel>
 <Ellipse Fill="Red" Width="25" Height="25"/>
 <Label Content ="OK!"/>
 </StackPanel>
 </Button.Content>
</Button>

Do be aware that not every WPF element derives from ContentControl and, therefore, not all controls
support this unique content model (however, most do). As well, some WPF controls add a few refinements to
the basic content model you have just examined. Chapter 27 will examine the role of WPF content in much
more detail.

The Role of System.Windows.Controls.Control
Unlike ContentControl, all WPF controls share the Control base class as a common parent. This base class
provides numerous core members that account for basic UI functionality. For example, Control defines
properties to establish the control’s size, opacity, tab order logic, the display cursor, background color, and so
forth. Furthermore, this parent class provides support for templating services. As explained in Chapter 29, WPF
controls can completely change the way they render their appearance using templates and styles. Table 26-6
documents some key members of the Control type, grouped by related functionality.

Table 26-6. Key Members of the Control Type

Members Meaning in Life

Background, Foreground, BorderBrush,
BorderThickness, Padding,
HorizontalContentAlignment,
VerticalContentAlignment

These properties allow you to set basic settings regarding
how the control will be rendered and positioned.

FontFamily, FontSize, FontStretch, FontWeight These properties control various font-centric settings.

IsTabStop, TabIndex These properties are used to establish tab order among
controls on a window.

MouseDoubleClick, PreviewMouseDoubleClick These events handle the act of double-clicking a widget.

Template This property allows you to get and set the control’s
template, which can be used to change the rendering
output of the widget.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27
http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1099

The Role of System.Windows.FrameworkElement
This base class provides a number of members that are used throughout the WPF framework, such as
support for storyboarding (used within animations) and support for data binding, as well as the ability to
name a member (via the Name property), obtain any resources defined by the derived type, and establish the
overall dimensions of the derived type. Table 26-7 hits the highlights.

Table 26-7. Key Members of the FrameworkElement Type

Members Meaning in Life

ActualHeight, ActualWidth,
MaxHeight, MaxWidth, MinHeight,
MinWidth, Height, Width

These properties control the size of the derived type.

ContextMenu Gets or sets the pop-up menu associated with the derived type.

Cursor Gets or sets the mouse cursor associated with the derived type.

HorizontalAlignment,
VerticalAlignment

Gets or sets how the type is positioned within a container
(such as a panel or list box).

Name Allows to you assign a name to the type, in order to access its
functionality in a code file.

Resources Provides access to any resources defined by the type
(see Chapter 29 for an examination of the WPF resource system).

ToolTip Gets or sets the tool tip associated with the derived type.

Table 26-8. Key Members of the UIElement Type

Members Meaning in Life

Focusable, IsFocused These properties allow you to set focus on a given derived type.

IsEnabled This property allows you to control whether a given derived type is
enabled or disabled.

IsMouseDirectlyOver, IsMouseOver These properties provide a simple way to perform hit-testing logic.

IsVisible, Visibility These properties allow you to work with the visibility setting of a
derived type.

RenderTransform This property allows you to establish a transformation that will be
used to render the derived type.

The Role of System.Windows.UIElement
Of all the types within a Window’s inheritance chain, the UIElement base class provides the greatest amount
of functionality. The key task of UIElement is to provide the derived type with numerous events to allow the
derived type to receive focus and process input requests. For example, this class provides numerous events
to account for drag-and-drop operations, mouse movement, keyboard input, and stylus input (for Pocket
PCs and Tablet PCs).

Chapter 27 digs into the WPF event model in detail; however, many of the core events will look quite
familiar (MouseMove, KeyUp, MouseDown, MouseEnter, MouseLeave, etc.). In addition to defining dozens
of events, this parent class provides a number of properties to account for control focus, enabled state,
visibility, and hit testing logic, as shown in Table 26-8.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29
http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1100

The Role of System.Windows.Media.Visual
The Visual class type provides core rendering support in WPF, which includes hit testing of graphical data,
coordinate transformation, and bounding box calculations. In fact, the Visual class interacts with the
underlying DirectX subsystem to actually draw data on the screen. As you will examine in Chapter 28, WPF
provides three possible manners in which you can render graphical data, each of which differs in terms of
functionality and performance. Use of the Visual type (and its children, such as DrawingVisual) provides
the most lightweight way to render graphical data, but it also entails the greatest amount of manual code to
account for all the required services. Again, more details to come in Chapter 28.

The Role of System.Windows.DependencyObject
WPF supports a particular flavor of .NET properties termed dependency properties. Simply put, this style of
property provides extra code to allow the property to respond to several WPF technologies such as styles,
data binding, animations, and so forth. In order for a type to support this new property scheme, it will need
to derive from the DependencyObject base class. While dependency properties are a key aspect of WPF
development, much of the time their details are hidden from view. Chapter 27 dives further into the details
of dependency properties.

The Role of System.Windows.Threading.DispatcherObject
The final base class of the Window type (beyond System.Object, which I assume needs no further
explanation at this point in the book) is DispatcherObject. This type provides one property of interest,
Dispatcher, which returns the associated System.Windows.Threading.Dispatcher object. The Dispatcher
class is the entry point to the event queue of the WPF application, and it provides the basic constructs for
dealing with concurrency and threading.

Building a WPF Application Without XAML
Given all of the functionality provided by the parent classes of the Window type, it is possible to represent a
window in your application by either directly creating a Window object or using this class as the parent to a
strongly typed descendent. Let’s examine both approaches in the following code example. Although most
WPF applications will make use of XAML, doing so is technically optional. Anything that can be expressed
in XAML can be expressed in code and (for the most part) vice versa. If you so desire, it is possible to build a
complete WPF project using the underlying object model and procedural C# code.

To illustrate, let’s create a minimal but complete application without the use of XAML using
the Application and Window classes directly. Begin by creating a new Console Application named
WpfAppAllCode (don’t worry; you will use the Visual Studio WPF project template later in this chapter). Go
into the project properties and change the output type to Windows Application (this prevents the console
window from popping up). Next, access the Project Add Reference dialog box and add a reference to
WindowsBase.dll, PresentationCore.dll, System.Xaml.dll, and PresentationFramework.dll.

Now, update your initial C# file with the following code, which creates a window of modest functionality
(here, I am only showing the namespaces that must be imported to compile the code; feel free to leave any
auto-including using statements in place):

// A simple WPF application, written without XAML.
using System;
using System.Windows;
using System.Windows.Controls;

http://dx.doi.org/10.1007/978-1-4842-1332-2_28
http://dx.doi.org/10.1007/978-1-4842-1332-2_28
http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1101

namespace WpfAppAllCode
{
 // In this first example, you are defining a single class type to
 // represent the application itself and the main window.
 class Program : Application
 {
 [STAThread]
 static void Main(string[] args)
 {
 // Handle the Startup and Exit events, and then run the application.
 Program app = new Program();
 app.Startup += AppStartUp;
 app.Exit += AppExit;
 app.Run(); // Fires the Startup event.
 }

 static void AppExit(object sender, ExitEventArgs e)
 {
 MessageBox.Show("App has exited");
 }

 static void AppStartUp(object sender, StartupEventArgs e)
 {
 // Create a Window object and set some basic properties.
 Window mainWindow = new Window();
 mainWindow.Title = "My First WPF App!";
 mainWindow.Height = 200;
 mainWindow.Width = 300;
 mainWindow.WindowStartupLocation = WindowStartupLocation.CenterScreen;
 mainWindow.Show();
 }
 }
}

 ■ Note the Main() method of a WpF application must be attributed with the [STAThread] attribute, which
ensures any legacy CoM objects used by your application are thread safe. If you do not annotate Main() in this
way, you will encounter a runtime exception.

Note that the Program class extends the System.Windows.Application class. Within the Main() method,
you create an instance of the application object and handle the Startup and Exit events using method
group conversion syntax. Recall from Chapter 10 that this shorthand notation removes the need to manually
specify the underlying delegates used by a particular event. Of course, if you want, you can specify the
underlying delegates directly by name.

In the following modified Main() method, notice that the Startup event works in conjunction
with the StartupEventHandler delegate, which can only point to methods taking an Object as the first
parameter and a StartupEventArgs as the second. The Exit event, on the other hand, works with the
ExitEventHandler delegate, which demands that the method pointed to take an ExitEventArgs type as the
second parameter.

http://dx.doi.org/10.1007/978-1-4842-1332-2_10

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1102

[STAThread]
static void Main(string[] args)
{
 // This time, specify the underlying delegates.
 Program app = new Program();
 app.Startup += new StartupEventHandler(AppStartUp);
 app.Exit += new ExitEventHandler(AppExit);
 app.Run(); // Fires the Startup event.
}

In any case, the AppStartUp() method has been configured to create a Window object, establish some
very basic property settings, and call Show() to display the window on the screen in a modeless fashion (the
ShowDialog() method can be used to launch a modal dialog). The AppExit() method simply makes use of
the WPF MessageBox class to display a diagnostic message when the application is being terminated.

Once you compile and run the project, you will find a very simple main window that can be minimized,
maximized, and closed. To spice things up a bit, you need to add some user interface elements. Before you
do, however, you should refactor your code base to account for a strongly typed and well-encapsulated
Window-derived class.

Creating a Strongly Typed Window
Currently, the Application-derived class directly creates an instance of the Window type upon application
startup. Ideally, you would create a class deriving from Window in order to encapsulate its appearance and
functionality. Add another class to your project named MainWindow, and add the following class definition
(be sure to import the System.Windows namespace):

class MainWindow : Window
{
 public MainWindow(string windowTitle, int height, int width)
 {
 this.Title = windowTitle;
 this.WindowStartupLocation = WindowStartupLocation.CenterScreen;
 this.Height = height;
 this.Width = width;
 }
}

You can now update your Startup event handler to simply directly create an instance of MainWindow,
like so:

static void AppStartUp(object sender, StartupEventArgs e)
{
 // Create a MainWindow object.
 var main = new MainWindow("My better WPF App!", 200, 300);
 main.Show();
}

Once the program is recompiled and executed, the output is identical. The obvious benefit is that you
now have a strongly typed class representing the main window to build upon.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1103

 ■ Note When you create a Window (or Window-derived) object, it will automatically be added to the windows
collection of the Application class (via some constructor logic found in the Window class itself). You can use
the Application.Windows property to iterate over the list of Window objects currently in memory.

Creating a Simple User Interface
Adding a UI element (such as a Button) to a Window in C# code will involve the following basic steps:

 1. Define a member variable to represent the control.

 2. Configure the control’s look and feel upon Window construction.

 3. Assign the control to the inherited Content property, or alternatively,
as a parameter to the inherited AddChild() method.

Recall that the WPF control content model demands that the Content property is set to a single element.
Of course, a Window that contained only a single UI control would be quite useless. Therefore, in almost every
case, the “single piece of content” that is assigned to the Content property is, in reality, a layout manager,
such as DockPanel, Grid, Canvas, or StackPanel. Within the layout manager, you can have any combination
of internal controls, including other nested layout managers. (Read more on this aspect of WPF development
in Chapter 27.)

For now, you will add a single Button control to your Window-derived class. When you click the button,
you will close the current window, which will indirectly terminate the application because you have no
other windows in memory. Ponder the following update to the MainWindow class (be sure you have imported
System.Windows.Controls to gain access to the Button class):

class MainWindow : Window
{
 // Our UI element.
 private Button btnExitApp = new Button();

 public MainWindow(string windowTitle, int height, int width)
 {
 // Configure button and set the child control.
 btnExitApp.Click += new RoutedEventHandler(btnExitApp_Clicked);
 btnExitApp.Content = "Exit Application";
 btnExitApp.Height = 25;
 btnExitApp.Width = 100;

 // Set the content of this window to a single button.
 this.Content = btnExitApp;

 // Configure the window.
 this.Title = windowTitle;
 this.WindowStartupLocation = WindowStartupLocation.CenterScreen;
 this.Height = height;
 this.Width = width;
 this.Show();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1104

 private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
 {
 // Close the window.
 this.Close();
 }
}

Notice that the Click event of the WPF Button works in conjunction with a delegate named
RoutedEventHandler, which begs the question, what is a routed event? You’ll examine the details of
the WPF event model in the next chapter; for the time being, simply understand that targets of the
RoutedEventHandler delegate must supply an object as the first parameter and a RoutedEventArgs as
the second.

In any case, after you recompile and run this application, you will find the customized window shown
in Figure 26-6. Notice that your button is automatically placed in the dead center of the window’s client area;
this is the default behavior when content is not placed within a WPF panel type.

Figure 26-6. A simple WPF application writen entirely in C# code

Interacting with Application-Level Data
Recall that the Application class defines a property named Properties, which allows you to define a
collection of name/value pairs via a type indexer. Because this indexer has been defined to operate on type
System.Object, you are able to store any sort of item within this collection (including your custom classes),
to be retrieved at a later time using a friendly moniker. Using this approach, it is simple to share data across
all windows in a WPF application.

To illustrate, you will update the current Startup event handler to check the incoming command-
line arguments for a value named /GODMODE (a common cheat code for many PC video games). If you find
this token, you will establish a bool value set to true within the properties collection of the same name
(otherwise, you will set the value to false).

Sounds simple enough, but how are you going to pass the incoming command-line arguments
(typically obtained from the Main() method) to your Startup event handler? One approach is to call the
static Environment.GetCommandLineArgs() method. However, these same arguments are automatically
added to the incoming StartupEventArgs parameter and can be accessed via the Args property. That being
said, here is the first update to the current code base:

private static void AppStartUp(object sender, StartupEventArgs e)
{
 // Check the incoming command-line arguments and see if they
 // specified a flag for /GODMODE.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1105

 Application.Current.Properties["GodMode"] = false;
 foreach(string arg in e.Args)
 {
 if (arg.ToLower() == "/godmode")
 {
 Application.Current.Properties["GodMode"] = true;
 break;
 }
 }
 // Create a MainWindow object.
 MainWindow wnd = new MainWindow("My better WPF App!", 200, 300);
}

Application-wide data can be accessed from anywhere within the WPF application. All you are required
to do is obtain an access point to the global application object (via Application.Current) and investigate
the collection. For example, you could update the Click event handler of the Button as so:

private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
 // Did user enable /godmode?
 if((bool)Application.Current.Properties["GodMode"])
 {
 MessageBox.Show("Cheater!");
 }
 this.Close();
}

With this, if the end user launches your program via

WpfAppAllCode.exe /godmode

he or she will see the shameful message box displayed when terminating the application.

 ■ Note recall that you can supply command-line arguments within Visual studio. simply double-click the
properties icon within solution explorer, click the debug tab from the resulting editor, and enter /godmode within
the “Command line arguments” editor.

Handling the Closing of a Window Object
End users can shut down a window using numerous built-in system-level techniques (e.g., clicking the “X”
close button on the window’s frame) or by indirectly calling the Close() method in response to some user
interaction element (e.g., File ➤ Exit). In either case, WPF provides two events that you can intercept to
determine whether the user is truly ready to shut down the window and remove it from memory. The first
event to fire is Closing, which works in conjunction with the CancelEventHandler delegate.

This delegate expects target methods to take System.ComponentModel.CancelEventArgs as the second
parameter. CancelEventArgs provides the Cancel property, which when set to true will prevent the window
from actually closing (this is handy when you have asked the user if he really wants to close the window or if
perhaps he would like to save his work first).

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1106

If the user does indeed wish to close the window, CancelEventArgs.Cancel can be set to false
(which is the default setting). This will then cause the Closed event to fire (which works with the System.
EventHandler delegate), making it the point at which the window is about to be closed for good.

Update the MainWindow class to handle these two events by adding these code statements to the current
constructor, like so:

public MainWindow(string windowTitle, int height, int width)
{
...
 this.Closing += MainWindow_Closing;
 this.Closed += MainWindow_Closed;
}

Now, implement the corresponding event handlers as so:

private void MainWindow_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // See if the user really wants to shut down this window.
 string msg = "Do you want to close without saving?";
 MessageBoxResult result = MessageBox.Show(msg,
 "My App", MessageBoxButton.YesNo, MessageBoxImage.Warning);

 if (result == MessageBoxResult.No)
 {
 // If user doesn't want to close, cancel closure.
 e.Cancel = true;
 }
}

private void MainWindow_Closed(object sender, EventArgs e)
{
 MessageBox.Show("See ya!");
}

Now, run your program and attempt to close the window, either by clicking the “X” icon on the
upper right of the window or by clicking the button control. You should see the confirmation dialog
shown in Figure 26-7.

Figure 26-7. Trapping the closing event of a window

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1107

If you click the Yes button, the application will terminate; however, clicking the No button will keep the
window in memory.

Intercepting Mouse Events
The WPF API provides a number of events you can capture in order to interact with the mouse. Specifically,
the UIElement base class defines a number of mouse-centric events such as MouseMove, MouseUp, MouseDown,
MouseEnter, MouseLeave, and so forth.

Consider, for example, the act of handling the MouseMove event. This event works in conjunction with the
System.Windows.Input.MouseEventHandler delegate, which expects its target to take a System.Windows.
Input.MouseEventArgs type as the second parameter. Using MouseEventArgs, you are able to extract out the
(x, y) position of the mouse and other relevant details. Consider the following partial definition:

public class MouseEventArgs : InputEventArgs
{
...
 public Point GetPosition(IInputElement relativeTo);
 public MouseButtonState LeftButton { get; }
 public MouseButtonState MiddleButton { get; }
 public MouseDevice MouseDevice { get; }
 public MouseButtonState RightButton { get; }
 public StylusDevice StylusDevice { get; }
 public MouseButtonState XButton1 { get; }
 public MouseButtonState XButton2 { get; }
}

 ■ Note the XButton1 and XButton2 properties allow you to interact with “extended mouse buttons” (such
as the “next” and “previous” buttons found on some mouse controls). these are often used to interact with a
browser’s history list to navigate between visited pages.

The GetPosition() method allows you to get the (x, y) value relative to a UI element on the window. If
you are interested in capturing the position relative to the activated window, simply pass in this. Handle the
MouseMove event in the constructor of your MainWindow class, like so:

public MainWindow(string windowTitle, int height, int width)
{
...
 this.MouseMove += MainWindow_MouseMove;
}

Here is an event handler for MouseMove that will display the location of the mouse in the window’s title
area (notice you are translating the returned Point type into a text value via ToString()):

private void MainWindow_MouseMove(object sender,
 System.Windows.Input.MouseEventArgs e)
{
 // Set the title of the window to the current (x,y) of the mouse.
 this.Title = e.GetPosition(this).ToString();
}

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1108

Intercepting Keyboard Events
Processing keyboard input for the focused window is also very straightforward. UIElement defines a number
of events that you can capture to intercept keypresses from the keyboard on the active element (e.g., KeyUp,
KeyDown). The KeyUp and KeyDown events both work with the System.Windows.Input.KeyEventHandler
delegate, which expects the target’s second event handler to be of type KeyEventArgs, which defines several
public properties of interest, shown here:

public class KeyEventArgs : KeyboardEventArgs
{
...
 public bool IsDown { get; }
 public bool IsRepeat { get; }
 public bool IsToggled { get; }
 public bool IsUp { get; }
 public Key Key { get; }
 public KeyStates KeyStates { get; }
 public Key SystemKey { get; }
}

To illustrate handling the KeyDown event in the constructor of MainWindow (just like you did for the
previous events), implement the following event handler that changes the content of the button with the
currently pressed key:

private void MainWindow_KeyDown(object sender, System.Windows.Input.KeyEventArgs e)
{
 // Display key press on the button.
 btnExitApp.Content = e.Key.ToString();
}

Figure 26-8 shows the final product of your first WPF program.

Figure 26-8. Your first WPF program, 100 percent XAML free

At this point in the chapter, WPF might look like nothing more than yet another GUI framework that
is providing (more or less) the same services as Windows Forms, MFC, or VB6. If this were in fact the case,
you might question the need for yet another UI toolkit. To truly see what makes WPF so unique requires an
understanding of the XML-based grammar, XAML.

 ■ Source Code the WpfappallCode project is included in the Chapter 26 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1109

Building a WPF Application Using Only XAML
A typical WPF application will not be composed exclusively of code, as you did in this first example.
Rather, your C# code files will be paired with a related XAML source file, and together they represent the
entirety of a given Window or Application, as well as other class types you have not yet examined, such as
UserControl and Page.

This approach is termed the code file approach to building a WPF application, and you will make use
of this technique extensively throughout the remainder of the book’s WPF coverage. However, before you
do, the next example will illustrate how to build a WPF application using nothing but XAML files. While this
100-percent XAML approach is not recommended, it will help you clearly understand how blobs of markup
are transformed into a corresponding C# code base, and ultimately, a .NET assembly.

 ■ Note this next example will make use of a number of XaML techniques you have not yet formally
examined, so don’t become concerned if you encounter some unfamiliar syntax. You might want to simply load
the solution files into a text editor and follow along; however, don’t use Visual studio to do so! Visual studio will
automatically make changes to the content, and interfere with the goal of this section. You will have plenty of
time to use Vs2015 to create WpF applications. Just not yet.

In general, XAML files will contain markup that describes the look and feel of the window, while the
related C# code files contain the implementation logic. For example, the XAML file for a Window might
describe the overall layout system, the controls within that layout system, and specify the names of various
event handlers. The related C# file would contain the implementation logic of these event handlers and any
custom code required by the application.

XAML is an XML-based grammar that allows you to define the state (and, to some extent, the
functionality) of a tree of .NET objects through markup. While XAML is frequently used when building
UIs with WPF, in reality it can be used to describe any tree of nonabstract .NET types (including your own
custom types defined in a custom .NET assembly), provided each supports a default constructor. As you will
see, the markup within a *.xaml file is transformed into a full-blown object model.

Because XAML is an XML-based grammar, we gain all the benefits (and drawbacks) XML affords us.
On the plus side, XAML files are very self-describing (as any XML document should be). By and large, each
element in a XAML file represents a type name (such as Button, Window, or Application) within a given
.NET namespace. Attributes within the scope of an opening element map to properties (Height, Width, etc.)
and events (Startup, Click, etc.) of the specified type.

Given the fact that XAML is simply a declarative way to define the state of an object, it is possible to
define a WPF widget via markup or procedural code. For example, this XAML

<!-- Defining a WPF Button in XAML -->
<Button Name = "btnClickMe" Height = "40" Width = "100" Content = "Click Me" />

can be represented programmatically as

// Defining the same WPF Button in C# code.
Button btnClickMe = new Button();
btnClickMe.Height = 40;
btnClickMe.Width = 100;
btnClickMe.Content = "Click Me";

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1110

On the downside, XAML can be verbose and is (like any XML document) case sensitive. Thus,
complex XAML definitions can result in a good deal of markup. Most developers will not need to manually
author a complete XAML description of their WPF applications. Rather, the majority of this task will
(thankfully) be relegated to development tools such as Visual Studio, Microsoft Expression Blend, or any
number of third-party products. After the tools generate the basic markup, you can go in and fine-tune the
XAML definitions by hand, if necessary.

Defining a Window Object in XAML
While tools can generate a good deal of XAML on your behalf, it is important for you to understand the basic
workings of XAML syntax and how this markup is eventually transformed into a valid .NET assembly. To
illustrate XAML in action, in the next example you’ll build a WPF application using nothing more than a pair
of *.xaml files.

The first Window-derived class (MainWindow) was defined in C# as a class type that extends the
System.Windows.Window base class. This class contains a single Button object that calls a registered event
handler when clicked. Defining this same Window type in the grammar of XAML can be achieved as follows.
First, use a simple text editor (such as Notepad) to create a new file named MainWindow.xaml, and be sure to
save this in an easily accessible subdirectory on your C: drive because you will be processing this file at the
command line. Now, add the following XAML:

<!-- Here is your Window definition -->
<Window x:Class="WpfAppAllXaml.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="A Window built using 100% XAML"
 Height="200" Width="300"
 WindowStartupLocation ="CenterScreen">
 <Windows.Content>
 <!-- This window has a single button as content -->
 <Button x:Name="btnExitApp" Width="133" Height="24"
 Content = "Close Window" Click ="btnExitApp_Clicked"/>
 </Window.Content>

<!-- The implementation of your button's Click event handler! -->
<x:Code>
 <![CDATA[
 private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
 {
 this.Close();
 }
]]>
 </x:Code>
</Window>

First, notice that the root element <Window> makes use of the Class attribute, which is used to specify
the name of the C# class that will be generated when this XAML file is processed. Also notice that the Class
attribute is prefixed with the x: tag prefix. If you look within the opening <Window> element, you’ll see that
this XML tag prefix is assigned to the string "http://schemas.microsoft.com/winfx/2006/xaml" to build an
XML namespace declaration. You will understand the details of these XML namespace definitions a bit later
in the chapter, but for now, just be aware that any time you want to make reference to an item defined by the
"http://schemas.microsoft.com/winfx/2006/xaml" XAML namespace, you must prefix the x: token.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1111

Within the scope of the <Window> start tag, you have specified values for the Title, Height, Width, and
WindowStartupLocation attributes, which are a direct mapping to properties of the same name supported
by the System.Windows.Window class in the PresentationFramework.dll assembly.

Next up, notice that within the scope of the window’s definition, you have authored markup to describe
the look and feel of a Button object that will be used to implicitly set the Content property of the window.
Beyond setting up the variable name (using the x:Name XAML token) and its overall dimensions, you have
also handled the Click event of the Button type by assigning the method to delegate to when the Click
event occurs.

The final aspect of this XAML file is the <x:Code> element, which allows you to author event handlers
and other methods of this class directly within an *.xaml file. As a safety measure, the code itself is wrapped
within a CDATA scope to prevent XML parsers from attempting to directly interpret the data (although this is
not strictly required for the current example).

It is important to point out that authoring functionality within a <Code> element is not recommended.
Although this “single-file approach” isolates all the action to one location, inline code does not provide
a clear separation of concerns between UI markup and programming logic. In most WPF applications,
implementation code will be found within a related C# file (which you will do eventually).

Defining the Application Object in XAML
Remember that XAML can be used to define in markup any nonabstract .NET class that supports a default
constructor. Given this, you could most certainly define your application object in markup as well. Consider
the following content within a new file, MyApp.xaml:

<!-- The Main() method seems to be missing!
 However, the StartupUri attribute is the
 functional equivalent -->
<Application x:Class="WpfAppAllXaml.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
</Application>

Here, you might agree, the mapping between the Application-derived C# class type and its XAML
description is not as clear-cut as was the case for your MainWindow’s XAML definition. Specifically, there does
not seem to be any trace of a Main() method. Given that any .NET executable must have a program entry
point, you are correct to assume it is generated at compile time, based in part on the StartupUri property.
The value assigned to StartupUri represents which XAML resource to load when the application starts up.
In this example, you have set the StartupUri property to the name of XAML resource defining your initial
Window object, MainWindow.xaml.

Although the Main() method is automatically created at compile time, you are free to use the <x:Code>
element to capture other C# code blocks. For example, if you want to display a message when your program
shuts down, you can handle the Exit event and implement it as so (note that the opening <Application>
element has now set the Exit attribute to capture the Exit event of the Application class):

<Application x:Class="WpfAppAllXaml.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml" Exit ="AppExit">
 <x:Code>
 <![CDATA[
 private void AppExit(object sender, ExitEventArgs e)

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1112

 {
 MessageBox.Show("App has exited");
 }
]]>
 </x:Code>
</Application>

Processing the XAML Files Using msbuild.exe
At this point, you are ready to transform your markup into a valid .NET assembly. However, you cannot
directly use the C# compiler to do so. To date, the C# compiler does not have a native understanding of
XAML markup. However, the msbuild.exe command-line utility does understand how to transform XAML
into C# code and compile this code on the fly when it is informed of the correct *.targets files.

Msbuild.exe is a tool that will compile .NET code based on the instructions contained within an
XML-based build script. As it turns out, these build script files contain the exact same sort of data that is found
in the *.csproj file generated by Visual Studio. Therefore, it is possible to compile a .NET program at the
command line using msbuild.exe or using Visual Studio itself.

 ■ Note a full examination of the msbuild.exe utility is beyond the scope of this chapter. If you’d like to learn
more, perform a search for the topic “MsBuild” in the .net Framework 4.6 sdK documentation.

Here is a very simple build script, WpfAppAllXaml.csproj, which contains just enough information to
inform msbuild.exe how to transform your XAML files into a related C# code base:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <RootNamespace>WpfAppAllXaml</RootNamespace>
 <AssemblyName>WpfAppAllXaml</AssemblyName>
 <OutputType>winexe</OutputType>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.XAML" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 </ItemGroup>
 <ItemGroup>
 <ApplicationDefinition Include="MyApp.xaml" />
 <Page Include="MainWindow.xaml" />
 </ItemGroup>
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
</Project>

 ■ Note this *.csproj file cannot be loaded directly into Visual studio because it contains only the minimal
instructions necessary to build your application at the command line.

http://schemas.microsoft.com/developer/msbuild/2003

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1113

The <PropertyGroup> element is used to specify some basic aspects of the build, such as the root
namespace, the name of the resulting assembly, and the output type (the equivalent of the /target:winexe
option of csc.exe).

The first <ItemGroup> specifies the set of external assemblies to reference with the current build, which,
as you can see, are the core WPF assemblies examined earlier in this chapter.

The second <ItemGroup> is much more interesting. Notice that the <ApplicationDefinition>
element’s Include attribute is assigned to the *.xaml file that defines your application object. The <Page>’s
Include attribute can be used to list each of the remaining *.xaml files that define the windows (and pages,
which are often used when building XAML browser applications) processed by the application object.

However, the magic of this build script is the final <Import> element. Here, you are referencing
Microsoft.CSharp.Targets , which contains data to interact with the C# compiler itself.

In any case, at this point you can use a developer command prompt to process your XAML data
with msbuild.exe. To do so, change to the directory containing your MainWindow.xaml, MyApp.xaml and
WpfAppAllXaml.csproj files, and enter the following command:

msbuild WpfAppAllXaml.csproj

After the build process has completed, you will find that your working directory now contains a \bin
and \obj subdirectory (just like a Visual Studio project). If you were to open the \bin\Debug folder, you
would find a new .NET assembly named WpfAppAllXaml.exe. If you open this assembly into ildasm.exe,
you can see that your XAML has been transformed into a valid executable application (see Figure 26-9).

Figure 26-9. Transforming XAML into a .NET executable? Interesting . . .

And if you run your program by double-clicking the executable, you will see your main window launch
on the screen.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1114

Transforming Markup into a .NET Assembly
To understand exactly how your markup was transformed into a .NET assembly, you need to dig a bit deeper
into the msbuild.exe process and examine a number of compiler-generated files, including a particular
binary resource embedded within the assembly at compile time. The first task is to learn how your *.xaml
files are transformed into a corresponding C# code base.

Mapping the Window XAML Markup to C# Code
The *.targets files specified in an msbuild script contain numerous instructions to translate XAML
elements into C# code. When msbuild.exe processed your *.csproj file, it produced two files with the form
of *.g.cs (where g denotes autogenerated) that were saved into the \obj\Debug directory. Based on the
names of your *.xaml file names, the C# files in question are MainWindow.g.cs and MyApp.g.cs.

If you open the MainWindow.g.cs file into a text editor, you will find a class named MainWindow,
which extends the Window base class. The name of this class is a direct result of the x:Class attribute in
the <Window> start tag. This class also contains a member variable of type System.Windows.Controls.
Button, named btnExitApp. In this case, the name of the control is based on the x:Name attribute value
within the opening <Button> declaration. This class also contains the handler for the button’s Click event,
btnExitApp_Clicked(). Here is a partial listing of this compiler-generated MainWindow.g.cs file:

public partial class MainWindow :
 System.Windows.Window, System.Windows.Markup.IComponentConnector
{
 internal System.Windows.Controls.Button btnExitApp;

 private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
 {
 this.Close();
 }
...
}

This class defines a private member variable of type bool (named _contentLoaded), which was not
directly accounted for in the XAML markup. This data member is used to determine (and ensure) the
content of the window is assigned only once.

public partial class MainWindow :
 System.Windows.Window, System.Windows.Markup.IComponentConnector
{
 // This member variable will be explained soon enough.
 private bool _contentLoaded;
...
}

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1115

Notice that the compiler-generated class also explicitly implements the WPF IComponentConnector
interface defined in the System.Windows.Markup namespace. This interface defines a single method called
Connect(), which has been implemented to prep each control defined in the markup and rig up the event
logic as specified within the original MainWindow.xaml file. Before the method completes,
the _contentLoaded member variable is set to true. Here is the crux of the method:

void System.Windows.Markup.IComponentConnector.Connect(int connectionId, object target)
{
 switch (connectionId)
 {
 case 1:
 this.btnExitApp = ((System.Windows.Controls.Button)(target));
 this.btnExitApp.Click += new
 System.Windows.RoutedEventHandler(this.btnExitApp_Clicked);
 return;
 }
 this._contentLoaded = true;
}

Last but not least, the MainWindow class also defines and implements a method named
InitializeComponent(). You might expect that this method contains code that sets up the look and feel of
each control by setting various properties (Height, Width, Content, etc.). However, this is not the case! How
then do the controls take on the correct UI? The logic with InitializeComponent() resolves the location of
an embedded assembly resource that is named identical to the original *.xaml file, like so:

public void InitializeComponent()
{
 if (_contentLoaded)
 {
 return;
 }
 _contentLoaded = true;
 System.Uri resourceLocater = new
 System.Uri("/WpfAppAllXaml;component/mainwindow.xaml",
 System.UriKind.Relative);
 System.Windows.Application.LoadComponent(this, resourceLocater);
}

At this point, the question becomes, what exactly is this embedded resource?

The Role of BAML
When msbuild.exe processed your *.csproj file, it generated a file taking a *.baml file extension. The full
name of this file is named based on the initial MainWindow.xaml file. Therefore, you should see a file called
MainWindow.baml in the \obj\Debug folder (see Figure 26-10).

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1116

As you might have guessed from the name, Binary Application Markup Language (BAML) is a compact,
binary representation of the original XAML data. This *.baml file is embedded as a resource (via a generated
*.g.resources file) into the compiled assembly.

This BAML resource contains all of the data needed to establish the look and feel of the UI widgets
(again, such as the Height and Width properties).

The important take-away here is to understand that a WPF application contains within itself a binary
representation (the BAML) of the markup. At runtime, this BAML will be plucked out of the resource
container and used to make sure all windows and controls are initialized to the correct look and feel.

Also, remember that the name of these binary resources are identical to the name of the stand-alone
*.xaml files you authored. However, this does not imply in any way that you must distribute the loose *.xaml
files with your compiled WPF program. Unless you build a WPF application that will dynamically load and
parse *.xaml files at runtime, you will never need to ship the original markup.

Mapping the Application XAML Markup to C# Code
The final piece of the autogenerated code to examine is the MyApp.g.cs file. Here, you see your
Application-derived class with a proper Main() entry point method. The implementation of this method
calls InitializeComponent() on the Application-derived type, which, in turn, sets the StartupUri property,
allowing each of the objects to establish its correct property settings based on the binary XAML definition.

namespace WpfAppAllXaml
{
 public partial class MyApp : System.Windows.Application
 {
 void AppExit(object sender, ExitEventArgs e)
 {
 MessageBox.Show("App has exited");
 }
 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public void InitializeComponent()

Figure 26-10. BAML is simply a compact, binary version of XAML

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1117

 {
 this.Exit += new System.Windows.ExitEventHandler(this.AppExit);
 this.StartupUri = new System.Uri("MainWindow.xaml", System.UriKind.Relative);
 }

 [System.STAThreadAttribute()]
 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static void Main() {
 WpfAppAllXaml.MyApp app = new WpfAppAllXaml.MyApp();
 app.InitializeComponent();
 app.Run();
 }
 }
}

XAML-to-Assembly Process Summary
So at this point in the chapter, you have created a full-blown WPF program using nothing but two XAML
files and a related build script. As you have seen, msbuild.exe leverages auxiliary settings defined within
the *.targets file to process the XAML files (and generate the *.baml) for the build process. Figure 26-11
illustrates the overall picture regarding the compile-time processing of *.xaml files.

Figure 26-11. The XAML-to-assembly compile-time process

Hopefully you now have a much better idea how XAML data is used to build a .NET application. At this
point, you are ready to take a look at the syntax and semantics of XAML itself.

 ■ Source Code the WpfappallXaml project can be found in the Chapter 26 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1118

Understanding the Syntax of WPF XAML
Production-level WPF applications will typically make use of dedicated tools to generate the necessary
XAML. As helpful as these tools are, it is a very good idea to have an understanding of the overall structure
of XAML markup. To help in your learning process, allow me to introduce a very popular (and free) tool that
allows you to easily experiment with XAML.

Introducing Kaxaml
When you are first learning the grammar of XAML, it can be very helpful to use a free tool named Kaxaml.
You can obtain this popular XAML editor/parser from the following web site:

http://www.kaxaml.com

Kaxaml is helpful in that it has no clue about C# source code, event handlers, or implementation logic.
It is a much more straightforward way to test XAML snippets than using a full-blown Visual Studio WPF
project template. As well, Kaxaml has a number of integrated tools, such as a color chooser, XAML snippet
manager, and even an “XAML scrubber” option that will format your XAML based on your settings. When
you first open Kaxaml, you will find simple markup for a <Page> control, as follows:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>

 </Grid>
</Page>

Like a Window, a Page contains various layout managers and controls. However, unlike a Window, Page
objects cannot run as stand-alone entities. Rather, they must be placed inside a suitable host such as a
NavigationWindow, Frame, or a web browser (and in that case, you have just made an XBAP!). The good news
is that you can type identical markup within a <Page> or <Window> scope.

 ■ Note If you change the <Page> and </Page> elements in the Kaxaml markup window to <Window> and
</Window>, you can press the F5 key to load a new window onto the screen.

As an initial test, enter the following markup into the XAML pane at the bottom of the tool:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <!-- A button with custom content -->
 <Button Height="100" Width="100">
 <Ellipse Fill="Green" Height="50" Width="50"/>
 </Button>
 </Grid>
</Page>

http://www.kaxaml.com/
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1119

You should now see your page render at the upper part of the Kaxaml editor (see Figure 26-12).

Figure 26-12. Kaxaml is a very helpful (and free) tool used to learn the grammar of XAML

As you work with Kaxaml, remember that this tool does not allow you to author any markup that
entails code compilation (however, using x:Name is allowed). This includes defining a x:Class attribute
(for specifying a code file), entering event handler names in markup, or using any XAML keywords that also
entail code compilation (such as FieldModifier or ClassModifier). Any attempt to do so will result in a
markup error.

XAML XML Namespaces and XAML “Keywords”
The root element of a WPF XAML document (such as a <Window>, <Page>, <UserControl>, or <Application>
definition) will almost always make reference to the following two predefined XML namespaces:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>

 </Grid>
</Page>

The first XML namespace, http://schemas.microsoft.com/winfx/2006/xaml/presentation, maps
a slew of WPF .NET namespaces for use by the current *.xaml file (System.Windows, System.Windows.
Controls, System.Windows.Data, System.Windows.Ink, System.Windows.Media, System.Windows.
Navigation, etc.).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1120

This one-to-many mapping is actually hard-coded within the WPF assemblies (WindowsBase.dll,
PresentationCore.dll, and PresentationFramework.dll) using the assembly-level [XmlnsDefinition]
attribute. For example, if you open the Visual Studio object browser and select the PresentationCore.dll
assembly, you will see listings such as the following, which essentially imports System.Windows:

[assembly: XmlnsDefinition("http://schemas.microsoft.com/winfx/2006/xaml/presentation",
 "System.Windows")]

The second XML namespace, http://schemas.microsoft.com/winfx/2006/xaml, is used to include
XAML-specific “keywords” (for lack of a better term) as well as the inclusion of the System.Windows.Markup
namespace, as follows:

[assembly: XmlnsDefinition("http://schemas.microsoft.com/winfx/2006/xaml",
 "System.Windows.Markup")]

One rule of any well-formed XML document (remember, XAML is an XML-based grammar) is that
the opening root element designates one XML namespace as the primary namespace, which typically is
the namespace that contains the most commonly used items. If a root element requires the inclusion of
additional secondary namespaces (as seen here), they must be defined using a unique tag prefix (to resolve
any possible name clashes). As a convention, the prefix is simply x; however, this can be any unique token
you require, such as XamlSpecificStuff.

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:XamlSpecificStuff="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <!-- A button with custom content -->
 <Button XamlSpecificStuff:Name="button1" Height="100" Width="100">
 <Ellipse Fill="Green" Height="50" Width="50"/>
 </Button>
 </Grid>
</Page>

The obvious downside of defining wordy XML namespace prefixes is you are required to type
XamlSpecificStuff each time your XAML file needs to refer to one of the items defined within this
XAML-centric XML namespace. Given that XamlSpecificStuff requires many additional keystrokes,
just stick with x.

In any case, beyond the x:Name, x:Class and x:Code keywords, the http://schemas.microsoft.com/
winfx/2006/xaml XML namespace also provides access to additional XAML keywords, the most common of
which are shown in Table 26-9.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1121

In addition to these two necessary XML namespace declarations, it is possible, and sometimes
necessary, to define additional tag prefixes in the opening element of a XAML document. You will typically
do so whenever you need to describe in XAML a .NET class defined in an external assembly.

For example, say you have built a few custom WPF controls and packaged them in a library named
MyControls.dll. Now, if you want to create a new Window that uses these controls, you can establish a custom
XML namespace that maps to your library using the clr-namespace and assembly tokens. Here is some
example markup that creates a tag prefix named myCtrls, which can be used to access controls in your library:

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:myCtrls="clr-namespace:MyControls;assembly=MyControls"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <myCtrls:MyCustomControl />
 </Grid>
</Window>

The clr-namespace token is assigned to the name of the .NET namespace in the assembly, while the
assembly token is set to the friendly name of the external *.dll assembly. You can use this syntax for any external
.NET library you would like to manipulate in markup. While there is no need to do so at the current time, future
chapters will require you to define custom XML namespace declarations to describe types in markup.

 ■ Note If you need to define a class in markup that is part of the current assembly, but in a different .net
namespace, your xmlns tag prefix is defined without the assembly= attribute, like so:

 xmlns:myCtrls="clr-namespace:SomeNamespaceInMyApp"

Table 26-9. XAML Keywords

XAML Keyword Meaning in Life

x:Array Represents a .NET array type in XAML.

x:ClassModifier Allows you to define the visibility of the C# class (internal or public) denoted by
the Class keyword.

x:FieldModifier Allows you to define the visibility of a type member (internal, public, private,
or protected) for any named subelement of the root (e.g., a <Button> within a
<Window> element). A named element is defined using the Name XAML keyword.

x:Key Allows you to establish a key value for a XAML item that will be placed into a
dictionary element.

x:Name Allows you to specify the generated C# name of a given XAML element.

x:Null Represents a null reference.

x:Static Allows you to make reference to a static member of a type.

x:Type The XAML equivalent of the C# typeof operator (it will yield a System.Type
based on the supplied name).

x:TypeArguments Allows you to establish an element as a generic type with a specific type
parameter (e.g., List<int> vs. List<bool>).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1122

Controlling Class and Member Variable Visibility
You will see many of these keywords in action where required in the chapters to come; however, by way of
a simple example, consider the following XAML <Window> definition that makes use of the ClassModifier
and FieldModifier keywords, as well as x:Name and x:Class (remember that kaxaml.exe will not allow
you to make use of any XAML keyword that entails code compilation, such as x:Code, x:FieldModifier, or
x:ClassModifier):

<!-- This class will now be declared internal in the *.g.cs file -->
<Window x:Class="MyWPFApp.MainWindow" x:ClassModifier ="internal"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <!-- This button will be public in the *.g.cs file -->
 <Button x:Name ="myButton" x:FieldModifier ="public" Content = "OK"/>
</Window>

By default, all C#/XAML type definitions are public, while members default to internal. However, based
on your XAML definition, the resulting autogenerated file contains an internal class type with a public
Button variable.

internal partial class MainWindow : System.Windows.Window,
 System.Windows.Markup.IComponentConnector
{
 public System.Windows.Controls.Button myButton;
...
}

XAML Elements, XAML Attributes, and Type Converters
After you have established your root element and any required XML namespaces, your next task is to
populate the root with a child element. In a real-world WPF application, the child will be a layout manager
(such as a Grid or StackPanel) that contains, in turn, any number of additional UI elements that describe
the user interface. The next chapter examines these layout managers in detail, so for now just assume that
your <Window> type will contain a single Button element.

As you have already seen over the course of this chapter, XAML elements map to a class or structure type
within a given .NET namespace, while the attributes within the opening element tag map to properties or
events of the type. To illustrate, enter the following <Button> definition into Kaxaml:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <!-- Configure the look and feel of a Button -->
 <Button Height="50" Width="100" Content="OK!"
 FontSize="20" Background="Green" Foreground="Yellow"/>
 </Grid>
</Page>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1123

Notice that the values assigned to each property have been captured as a simple text value. This may
seem like a complete mismatch of data types because if you were to make this Button in C# code, you would
not assign string objects to these properties but would make use of specific data types. For example, here is
the same button authored in code:

public void MakeAButton()
{
 Button myBtn = new Button();
 myBtn.Height = 50;
 myBtn.Width = 100;
 myBtn.FontSize = 20;
 myBtn.Content = "OK!";
 myBtn.Background = new SolidColorBrush(Colors.Green);
 myBtn.Foreground = new SolidColorBrush(Colors.Yellow);
}

As it turns out, WPF ships with a number of type converter classes, which will be used to transform
simple text values into the correct underlying data type. This process happens transparently (and
automatically).

While this is all well and good, there will be many times when you need to assign a much more complex
value to a XAML attribute, which cannot be captured as a simple string. For example, let’s say you want to
build a custom brush to set the Background property of the Button. If you are building the brush in code, it is
quite straightforward, as seen here:

public void MakeAButton()
{
...
 // A fancy brush for the background.
 LinearGradientBrush fancyBruch =
 new LinearGradientBrush(Colors.DarkGreen, Colors.LightGreen, 45);
 myBtn.Background = fancyBruch;
 myBtn.Foreground = new SolidColorBrush(Colors.Yellow);
}

How, however, can you represent your complex brush as a string? Well, you can’t! Thankfully, XAML
provides a special syntax that can be used whenever you need to assign a property value to a complex object,
termed property-element syntax.

Understanding XAML Property-Element Syntax
Property-element syntax allows you to assign complex objects to a property. Here is a XAML description for a
Button that makes use of a LinearGradientBrush to set its Background property:

<Button Height="50" Width="100" Content="OK!"
 FontSize="20" Foreground="Yellow">
 <Button.Background>
 <LinearGradientBrush>
 <GradientStop Color="DarkGreen" Offset="0"/>
 <GradientStop Color="LightGreen" Offset="1"/>
 </LinearGradientBrush>
 </Button.Background>
</Button>

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1124

Notice that within the scope of the <Button> and </Button> tags, you have defined a subscope named
<Button.Background>. Within this scope, you have defined a custom <LinearGradientBrush>. (Don’t worry
about the exact code for the brush; you’ll learn about WPF graphics in Chapter 28.)

Generally speaking, any property can be set using property-element syntax, which always breaks down
to the following pattern:

<DefiningClass>
 <DefiningClass.PropertyOnDefiningClass>
 <!-- Value for Property here! -->
 </DefiningClass.PropertyOnDefiningClass>
</DefiningClass>

While any property could be set using this syntax, if you can capture a value as a simple string, you will
save yourself typing time. For example, here is a much more verbose way to set the Width of your Button:

<Button Height="50" Content="OK!"
 FontSize="20" Foreground="Yellow">
...
 <Button.Width>
 100
 </Button.Width>
</Button>

Understanding XAML Attached Properties
In addition to property-element syntax, XAML defines a special syntax used to set a value to an attached
property. Essentially, an attached property allows a child element to set the value for a property that is
actually defined in a parent element. The general template to follow looks like this:

<ParentElement>
 <ChildElement ParentElement.PropertyOnParent = "Value">
</ParentElement>

The most common use of attached property syntax is to position UI elements within one of the WPF
layout manager classes (Grid, DockPanel, etc.). The next chapter dives into these panels in some detail; for
now, enter the following in Kaxaml:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Canvas Height="200" Width="200" Background="LightBlue">
 <Ellipse Canvas.Top="40" Canvas.Left="40" Height="20" Width="20" Fill="DarkBlue"/>
 </Canvas>
</Page>

Here, you have defined a Canvas layout manager that contains an Ellipse. Notice that the Ellipse is
able to inform its parent (the Canvas) where to position its top/left position using attached property syntax.

http://dx.doi.org/10.1007/978-1-4842-1332-2_28
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1125

There are a few items to be aware of regarding attached properties. First and foremost, this is not an
all-purpose syntax that can be applied to any property of any parent. For example, the following XAML
cannot be parsed without error:

<!-- Error! Set Background property on Canvas via attached property? -->
<Canvas Height="200" Width="200">
 <Ellipse Canvas.Background="LightBlue"
 Canvas.Top="40" Canvas.Left="90"
 Height="20" Width="20" Fill="DarkBlue"/>
</Canvas>

In reality, attached properties are a specialized form of a WPF-specific concept termed a dependency
property. Unless a property was implemented in a very specific manner, you cannot set its value using
attached property syntax. You will explore dependency properties in a detail in Chapter 27.

 ■ Note Kaxaml, Visual studio, and expression Blend (a free companion tool that ships with Visual studio 2015
and is useful for editing XaML based applications) all have Intellisense, which will show you valid attached
properties that can be set by a given element.

Understanding XAML Markup Extensions
As explained, property values are most often represented using a simple string or via property-element
syntax. There is, however, another way to specify the value of a XAML attribute, using markup extensions.
Markup extensions allow a XAML parser to obtain the value for a property from a dedicated, external class.
This can be very beneficial, given that some property values require a number of code statements to execute
to figure out the value.

Markup extensions provide a way to cleanly extend the grammar of XAML with new functionality.
A markup extension is represented internally as a class that derives from MarkupExtension. Note that the
chances of you ever needing to build a custom markup extension will be slim to none. However, a subset of
XAML keywords (such as x:Array, x:Null, x:Static, and x:Type) are markup extensions in disguise!

A markup extension is sandwiched between curly brackets, like so:

<Element PropertyToSet = "{MarkUpExtension}"/>

To see some markup extensions in action, author the following into Kaxaml:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:CorLib="clr-namespace:System;assembly=mscorlib">

 <StackPanel>
 <!-- The Static markup extension lets us obtain a value
 from a static member of a class -->
 <Label Content ="{x:Static CorLib:Environment.OSVersion}"/>
 <Label Content ="{x:Static CorLib:Environment.ProcessorCount}"/>

http://dx.doi.org/10.1007/978-1-4842-1332-2_27
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1126

 <!-- The Type markup extension is a XAML verion of
 the C# typeof operator -->
 <Label Content ="{x:Type Button}" />
 <Label Content ="{x:Type CorLib:Boolean}" />

 <!-- Fill a ListBox with an array of strings! -->
 <ListBox Width="200" Height="50">
 <ListBox.ItemsSource>
 <x:Array Type="CorLib:String">
 <CorLib:String>Sun Kil Moon</CorLib:String>
 <CorLib:String>Red House Painters</CorLib:String>
 <CorLib:String>Besnard Lakes</CorLib:String>
 </x:Array>
 </ListBox.ItemsSource>
 </ListBox>
 </StackPanel>
</Page>

First, notice that the <Page> definition has a new XML namespace declaration, which allows you to gain
access to the System namespace of mscorlib.dll. With this XML namespace established, you first make
use of the x:Static markup extension and grab values from OSVersion and ProcessorCount of the System.
Environment class.

The x:Type markup extension allows you to gain access to the metadata description of the specified
item. Here, you are simply assigning the fully qualified names of the WPF Button and System.Boolean types.

The most interesting part of this markup is the ListBox. Here, you are setting the ItemsSource property
to an array of strings declared entirely in markup! Notice here how the x:Array markup extension allows you
to specify a set of subitems within its scope:

<x:Array Type="CorLib:String">
 <CorLib:String>Sun Kil Moon</CorLib:String>
 <CorLib:String>Red House Painters</CorLib:String>
 <CorLib:String>Besnard Lakes</CorLib:String>
</x:Array>

 ■ Note the previous XaML example is only used to illustrate a markup extension in action. as you will see in
Chapter 27, there are much easier ways to populate ListBox controls!

Figure 26-13 shows the mark up of this <Page> in Kaxaml.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1127

You have now seen numerous examples that showcase each of the core aspects of the XAML syntax.
As you might agree, XAML is very interesting in that it allows you to describe a tree of .NET objects in
a declarative manner. While this is extremely helpful when configuring graphical user interfaces, do
remember that XAML can describe any type from any assembly, provided it is a nonabstract type containing
a default constructor.

Building a WPF Application Using Code-Behind Files
The first two examples of this chapter illustrated the extreme ends of building a WPF application, using all
code or using all XAML. The recommended way to build any WPF application, however, is to use the code file
approach. Under this model, the XAML files of your project contain nothing but the markup that describes
the general state of your classes, while the code file contains the implementation details.

Adding a Code File for the MainWindow Class
To illustrate, you will update the WpfAppAllXaml example to use code files. If you are following along, copy
this entire folder and give it the name WpfAppCodeFiles. Now, create a new C# code file in this folder named
MainWindow.xaml.cs (by convention, the name of a C# code-behind file takes the form *.xaml.cs). Add the
following code to this new file:

// MainWindow.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

Figure 26-13. Markup extensions allow you to set values via the functionality of a dedicated class

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1128

namespace WpfAppAllXaml
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 // Remember! This method is defined
 // within the generated MainWindow.g.cs file.
 InitializeComponent();
 }

 private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
 {
 this.Close();
 }
 }
}

Here, you have defined a partial class to contain the event-handling logic that will be merged with the
partial class definition of the same type in the *.g.cs file. Given that InitializeComponent() is defined
within the MainWindow.g.cs file, your window’s constructor makes a call in order to load and process the
embedded BAML resource.

The MainWindow.xaml file will also need to be updated; this simply involves gutting all traces of the
previous C# code.

<Window x:Class="WpfAppAllXaml.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="A Window built using Code Files!"
 Height="200" Width="300"
 WindowStartupLocation ="CenterScreen">

 <Window.Content>
 <!-- The event handler is now in your code file -->
 <Button x:Name="btnExitApp" Width="133" Height="24"
 Content = "Close Window" Click ="btnExitApp_Clicked"/>
 </Window.Content>

</Window>

Adding a Code File for the MyApp Class
If desired, you could also build a code-behind file for your Application-derived type. Because most of the
action takes place in the MyApp.g.cs file, the code within MyApp.xaml.cs is little more than the following:

// MyApp.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;
namespace WpfAppAllXaml

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1129

{
 public partial class MyApp : Application
 {
 private void AppExit(object sender, ExitEventArgs e)
 {
 MessageBox.Show("App has exited");
 }
 }
}

The MyApp.xaml file now looks like so:

<Application x:Class="WpfAppAllXaml.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml"
 Exit ="AppExit">
</Application>

Processing the Code Files with msbuild.exe
Before you recompile your files using msbuild.exe, you need to update your *.csproj file to account for the
new C# files to include in the compilation process, via the <Compile> elements (shown here in bold):

<Project DefaultTargets="Build" xmlns=
 "http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <RootNamespace>WpfAppAllXaml</RootNamespace>
 <AssemblyName>WpfAppAllXaml</AssemblyName>
 <OutputType>winexe</OutputType>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 <Reference Include=”System.Xaml” />
 </ItemGroup>
 <ItemGroup>
 <ApplicationDefinition Include="MyApp.xaml" />
 <Compile Include = "MainWindow.xaml.cs" />
 <Compile Include = "MyApp.xaml.cs" />
 <Page Include="MainWindow.xaml" />
 </ItemGroup>
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
</Project>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/developer/msbuild/2003

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1130

Once you pass the build script into msbuild.exe via

msbuild WpfAppAllXaml.csproj

you will find, once again, the same executable assembly as the WpfAppAllXaml application (located in the
bin\Debug folder, remember?). However, as far as development is concerned, you now have a clean partition
of presentation (XAML) from programming logic (C#).

Given that this is the preferred method for WPF development, you’ll be happy to know that WPF
applications created using Visual Studio (or Expression Blend) always make use of the code-behind model
just presented.

 ■ Source Code the WpfappCodeFiles project can be found in the Chapter 26 subdirectory.

Building WPF Applications Using Visual Studio
Over the course of this chapter you created examples using no-frills text editors, the command-line
compiler, and Kaxaml. The reason for doing so, of course, was to focus on the core syntax of WPF
applications without getting distracted by the bells and whistles of a graphical designer. Now that you have
seen how to build WPF applications from the ground up, let’s examine how Visual Studio can simplify the
construction of WPF programs.

 ■ Note here, I will point out some key features of using Visual studio to build WpF applications. Forthcoming
chapters will illustrate additional aspects of the Ide where necessary.

The WPF Project Templates
The New Project dialog box of Visual Studio defines a set of WPF project workspaces, all of which are
contained under the Window node of the Visual C# root. Here, you can choose from a WPF Application, WPF
User Control Library, WPF Custom Control Library, and WPF Browser Application (i.e., XBAP). To begin,
create a new WPF application named WpfTesterApp (see Figure 26-14).

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1131

Figure 26-14. The WPF project templates of Visual Studio can be found under the Windows node

Beyond setting references to each of the WPF assemblies (PresentationCore.dll,
PresentationFramework.dll, System.Xaml.dll, and WindowsBase.dll), you will also be provided with
initial Window and Application derived classes, each represented using a XAML and C# code file. Consider
Figure 26-15, which shows the Solution Explorer for this new WPF project.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1132

Figure 26-15. The initial files of a WPF application project

The Toolbox and XAML Designer/Editor
Visual Studio provides a toolbox (which you can open via the View menu) that contains numerous WPF
controls (see Figure 26-16).

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1133

Figure 26-16. The toolbox contains the WPF controls that can be placed on the designer surface

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1134

Using a standard mouse drag-and-drop operation, you can place any of these controls onto the
Window’s designer surface or drag the control into the XAML markup editor at the bottom of the designer.
When you do, the initial XAML will be authored on your behalf. Use your mouse to drag a Button and
Calendar control onto the designer surface. After you have done so, notice how you can relocate and resize
your controls (and be sure to examine the resulting XAML generated based on your edits).

In addition to building the UI via the mouse and toolbox, you can also manually enter your markup
using the integrated XAML editor. As you can see in Figure 26-17, you do get IntelliSense support, which can
help simplify the authoring of the markup. For example, try to add the Background property to the opening
<Window> element.

Figure 26-17. The WPF Window designer

Take a few moments to add some property values directly in the XAML editor. Be sure you take the time
to become comfortable using this aspect of the WPF designer.

Setting Properties Using the Properties Window
After you have placed some controls onto your designer (or manually defined them in the editor), you can
then make use of the Properties window to set property values for the selected control, as well as rig up event
handlers for the selected control. By way of a simple test, select your Button control on the designer. Now,
use the Properties window to change the Background color of the Button using the integrated brush editor
(see Figure 26-18; you will learn more about the Brushes editor in Chapter 28, during your examination of
WPF graphics).

 ■ Note the properties window provides a search text area mounted on the very top. type in the name of a
property you would like to set to quickly find the item in question.

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1135

After you have finished tinkering with the brush editor, check out the generated markup. It might look
something like this:

<Button x:Name="button" Content="Button" HorizontalAlignment="Left" Margin="10,10,0,0"
 VerticalAlignment="Top" Width="75">
 <Button.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF80EB4F" Offset="0"/>
 <GradientStop Color="#FFCE3058" Offset="1"/>
 <GradientStop Color="#FF8293DD" Offset="0.5"/>
 </LinearGradientBrush>
 </Button.Background>
</Button>

Figure 26-18. The Properties window can be used to configure the UI of a WPF control

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1136

Handling Events Using the Properties Window
If you want to handle events for a given control, you can also make use of the Properties window, but this
time you need to click the Events button on the upper right of the Properties window (look for the lightning
bolt icon). Ensure that the button is selected on your designer, and locate the Click event. Once you do,
double-click directly on the Click event entry. This will cause Visual Studio to automatically build an event
handler that takes the following general form:

NameOfControl_NameOfEvent

Since you did not rename your button, the Properties window shows it generated an event handler
named Button_Click (see Figure 26-19).

Figure 26-19. Handling events using the Properties window

As well, Visual Studio generated the corresponding C# event handler in your window’s code file. Here,
you can add any sort of code that must execute when the button is clicked. For a quick test, just enter the
following code statement:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("You clicked the button!");
 }
}

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1137

Figure 26-20. Handling events using the XAML editor

Handling Events in the XAML Editor
You can also handle events directly in the XAML editor. By way of an example, place your mouse within the
<Window> element and type in the MouseMove event, followed by the equals sign. Once you do, you will see
that Visual Studio displays any compatible handlers in your code file (if they exist), as well as the Create
method option (see Figure 26-20).

Let the IDE create the MouseMove event handler, enter the following code, and then run the application
to see the end result:

private void MainWindow_MouseMove (object sender, MouseEventArgs e)
{
 this.Title = e.GetPosition(this).ToString();
}

The Document Outline Window
When you work with any XAML-based project (WPF, Silverlight, Windows Phone/Windows 10 Mobile or
a Windows 10 Application), you will certainly make use of a healthy amount of markup to represent your
UIs. When you begin to work with more complex XAML, it can be useful to visualize the markup in order to
quickly select an item to edit on the Visual Studio designer.

Currently, your markup is quite tame because you have only defined a few controls within the initial
<Grid>. Nevertheless, locate the Documents Outline window in your IDE, mounted by default on the lower
left of the IDE (if you cannot locate it, simply activate it using the View Other Windows menu option). Now,
make sure your XAML designer is the active window in the IDE (rather than a C# code file), and you will
notice the Document Outline displays the nested elements (see Figure 26-21).

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1138

Figure 26-21. Visualizing your XAML via the Document Outline window

This tool also provides a way to temporarily hide a given item (or set of items) on the designer as well as
lock items to prevent additional edits from taking place. In the next chapter, you will see how the Document
Outline window also provides many other features to group selected items into new layout managers
(among other features).

Viewing the Autogenerated Code Files
Before building the last example of this chapter, locate the Solution Explorer window, and click the Show All
Files button (seen in Figure 26-22). Notice that the BAML and *.g.cs files are present and accounted for (in
the obj\Debug folder). I’m not advising you to add your own code to these autogenerated files, the previous
examples of the chapter should have helped clarify exactly how your XAML is processed.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1139

Figure 26-22. Viewing the output files of a WPF project using Solution Explorer

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1140

Building a Custom XAML Editor with Visual Studio
Now that you have seen the basic tools used within Visual Studio to design a WPF window, the final example
of this chapter will walk you through building an application that will allow you to manipulate XAML at
runtime. Close down your current project, and create a fresh WPF application named MyXamlPad. This
project (when finished) will function similar to Kaxaml without the bells and whistles. Specifically, this
application will allow you to type in any well-formed markup, and click a button to dynamically render the
XAML into a new Window object.

Designing the GUI of Your Window
The WPF API supports the ability to load, parse, and save XAML descriptions programmatically. Doing so
can be quite useful in a variety of situations. For example, assume you have five different XAML files that
describe the look and feel of a Window type. As long as the names of each control (and any necessary event
handlers) are identical within each file, it is possible to dynamically apply “skins” to the window (perhaps
based on a startup argument passed into the application).

Interacting with XAML at runtime revolves around the XamlReader and XamlWriter types, both of which
are defined within the System.Windows.Markup namespace. To illustrate how to programmatically hydrate a
Window object from an external *.xaml file, you will build an application that mimics the basic functionality
of the Kaxaml.

 ■ Note the XamlReader and XamlWriter classes provide basic functionality to manipulate XaML at
runtime. If you ever have a need to gain full control over the XaML object model, you will want to explore
the System.Xaml.dll assembly.

While your application will certainly not be as feature-rich as Kaxaml, it will provide the ability to
enter valid XAML markup, view the results, and save the XAML to an external file. To begin, update the
initial XAML definition of your <Window> as shown next (I suggest manually typing the XAML at this point;
however, use the IDE to generate event handlers as shown previously).

 ■ Note the next chapter will dive into the details of working with controls and panels, so don’t fret over the
details of the control declarations.

<Window x:Class="MyXamlPad.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="My Custom XAML Editor"
 Height="338" Width="1041"
 Loaded="Window_Loaded" Closed="Window_Closed"
 WindowStartupLocation="CenterScreen">

 <!-- You will use a DockPanel, not a Grid -->
 <DockPanel LastChildFill="True" >

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1141

 <!-- This button will launch a window with defined XAML -->
 <Button DockPanel.Dock="Top" Name = "btnViewXaml" Width="100" Height="40"
 Content ="View Xaml" Click="btnViewXaml_Click" />

 <!-- This will be the area to type within -->
 <TextBox AcceptsReturn ="True" Name ="txtXamlData"
 FontSize ="14" Background="Black" Foreground="Yellow"
 BorderBrush ="Blue" VerticalScrollBarVisibility="Auto"
 AcceptsTab="True"/>
 </DockPanel>
</Window>

First, notice that you have replaced the initial <Grid> with a <DockPanel> layout manager that contains
a Button (named btnViewXaml) and a TextBox (named txtXamlData), and that the Click event of the Button
type has been handled.

Also notice that the Loaded and Closed events of the Window itself have been handled within the
opening <Window> element (again, use the IDE to generate the event handlers as described earlier in this
section of the chapter). If you have used the designer to handle your events, you should find the following
code in your MainWindow.xaml.cs file:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void btnViewXaml_Click(object sender, RoutedEventArgs e)
 {
 }

 private void Window_Closed(object sender, EventArgs e)
 {
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 }
}

Before continuing, be sure to import the following namespaces into your MainWindow.xaml.cs file:

using System.IO;
using System.Windows.Markup;

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1142

Implementing the Loaded Event
The Loaded event of your main window is in charge of determining whether there is currently a file named
YourXaml.xaml in the folder containing the application. If this file does exist, you will read in the data and
place it into the TextBox on the main window. If not, you will fill the TextBox with an initial default XAML
description of an empty window (this description is the exact same markup as an initial window definition,
except that you are using a <StackPanel> rather than a <Grid>).

 ■ Note the string you are building to represent the initial markup to display in your editor is a bit
cumbersome to type, given the escape characters required for the embedded quotations, so type carefully.

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // When the main window of the app loads,
 // place some basic XAML text into the text block.
 if (File.Exists("YourXaml.xaml"))
 {
 txtXamlData.Text = File.ReadAllText("YourXaml.xaml");
 }
 else
 {
 txtXamlData.Text =
 "<Window xmlns=\"http://schemas.microsoft.com/winfx/2006/xaml/presentation\"\n"
 +"xmlns:x=\"http://schemas.microsoft.com/winfx/2006/xaml\"\n"
 +"Height =\"400\" Width =\"500\" WindowStartupLocation=\"CenterScreen\">\n"
 +"<StackPanel>\n"
 +"</StackPanel>\n"
 +"</Window>";
 }
}

Using this approach, your application will be able to load the XAML entered in a previous session or
supply a default block of markup if necessary. At this point, you should be able to run your program and find
the display shown in Figure 26-23 within the TextBox type.

Figure 26-23. The first run of MyXamlPad.exe

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1143

Implementing the Button’s Click Event
When you click the Button, you will first save the current data in the TextBox into the YourXaml.xaml file.
At this point, you will read in the persisted data via File.Open() to obtain a FileStream . This is necessary,
as the XamlReader.Load() method requires a Stream-derived type (rather than a simple System.String) to
represent the XAML to be parsed.

After you have loaded the XAML description of the <Window> you would like to construct, create an
instance of System.Windows.Window based on the in-memory XAML and display the Window as a modal
dialog, like so:

private void btnViewXaml_Click(object sender, RoutedEventArgs e)
{
 // Write out the data in the text block to a local *.xaml file.
 File.WriteAllText("YourXaml.xaml", txtXamlData.Text);
 // This is the window that will be dynamically XAML-ed.
 Window myWindow = null;
 // Open local *.xaml file.
 try
 {
 using (Stream sr = File.Open("YourXaml.xaml", FileMode.Open))
 {
 // Connect the XAML to the Window object.
 myWindow = (Window)XamlReader.Load(sr);

 // Show window as a dialog and clean up.
 myWindow.ShowDialog();
 myWindow.Close();
 myWindow = null;
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Note that you are wrapping much of your logic within a try/catch block. In this way, if the YourXaml.xaml
file contains ill-formed markup, you can see the error of your ways within the resulting message box.
For example, run your program, and purposely misspell <StackPanel> by adding an extra letter P in the
opening element or whatnot. If you click the button, you will see an error similar to Figure 26-24.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1144

Implementing the Closed Event
Finally, the Closed event of your Window type will ensure that the latest and greatest data in the TextBox is
persisted to the YourXaml.xaml file.

private void Window_Closed(object sender, EventArgs e)
{
 // Write out the data in the text block to a local *.xaml file.
 File.WriteAllText("YourXaml.xaml", txtXamlData.Text);
 Application.Current.Shutdown();
}

Testing Your Application
Now fire up your program and enter some XAML into your text area. Do be aware that (like Kaxaml) this
program does not allow you to specify any code generation–centric XAML attributes (such as Class or any
event handlers). As a first test, enter the following XAML within your <StackPanel> scope:

<Button Height = "100" Width = "100" Content = "Click Me!">
 <Button.Background>
 <LinearGradientBrush StartPoint = "0,0" EndPoint = "1,1">
 <GradientStop Color = "Blue" Offset = "0" />
 <GradientStop Color = "Yellow" Offset = "0.25" />
 <GradientStop Color = "Green" Offset = "0.75" />
 <GradientStop Color = "Pink" Offset = "0.50" />
 </LinearGradientBrush>
 </Button.Background>
</Button>

Figure 26-24. Catching markup errors

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1145

Figure 26-25. MyXamlPad.exe in action

When you click the button, you will see a window appear that renders your XAML definitions (or possibly
you’ll see a parsing error in the message box—watch your typing!). Figure 26-25 shows possible output.

Now, enter the following XAML markup directly after the current <Button> definition:

<Label Content = "Interesting...">
 <Label.Triggers>
 <EventTrigger RoutedEvent = "Label.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard TargetProperty = "FontSize">
 <DoubleAnimation From = "12" To = "100" Duration = "0:0:4"
 RepeatBehavior = "Forever"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Label.Triggers>
</Label>

This markup is a great example of how powerful XAML really is. When you test this markup,
you’ll notice you have created a simple animation sequence. Animation services (as well as graphical
renderings) will be examined in detail in upcoming chapters; however, feel free to tweak the XAML and
see the end result.

Chapter 26 ■ IntroduCIng WIndoWs presentatIon FoundatIon and XaML

1146

Exploring the WPF Documentation
To close this chapter, I want to point out that the .NET 4.6 Framework SDK documentation provides an
entire section devoted to the topic of WPF. As you explore this API and read over the remaining WPF-centric
chapters, you will do yourself a great service if you consult the help system early and often. Here, you will
find a huge amount of sample XAML plus detailed tutorials on a wide variety of topics ranging from 3D
graphics programing to complex data binding operations.

The WPF documentation is located under the .NET Framework 4.6 ➤ .NET Framework
Development Guide ➤ Developing Client Applications path located at https://msdn.microsoft.com/
en-us/library/vstudio/54xbah2z(v=vs.110).

As you dig around this part of the help system, you will run into numerous XAML examples you can
copy directly to your clipboard and paste into your custom XAML editor. However, you will need to make
sure the root element is changed from <Page> to <Window> (if the samples use the <Page> element) before
testing (your application was not programmed to display Page objects, only full Window objects). Before
moving on to the next chapter, take time to dig into topics that interest you and test additional markup in
your custom tool.

 ■ Source Code the MyXamlpad project can be found in the Chapter 26 subdirectory.

Summary
Windows Presentation Foundation (WPF) is a user interface toolkit introduced since the release of .NET 3.0.
The major goal of WPF is to integrate and unify a number of previously unrelated desktop technologies
(2D graphics, 3D graphics, window and control development, etc.) into a single, unified programming model.
Beyond this point, WPF programs typically make use of Extendable Application Markup Language (XAML),
which allows you to declare the look and feel of your WPF elements via markup.

Recall that XAML allows you to describe trees of .NET objects using a declarative syntax. During this
chapter’s investigation of XAML, ou were exposed to several new bits of syntax, including property-element
syntax and attached properties, as well as the role of type converters and XAML markup extensions.

While XAML is a key aspect for any production-level WPF application, your first example of this chapter
illustrated how you can build a WPF program using nothing but C# code. Next, you discovered how to
build a WPF program using nothing but XAML (this is not recommended; however, it was a useful learning
exercise!). Finally, you learned about the use of code-behind files, which allow you to partition look-and-feel
from functionality.

The final example of this chapter gave you a chance to build a WPF application that allowed you to
programmatically interact with XAML definitions using the XamlReader and XamlWriter classes. Along the
way, you took a tour of the core WPF designers of Visual Studio. You will learn much more about the WPF
designers in upcoming chapters.

https://msdn.microsoft.com/en-us/library/vstudio/54xbah2z(v=vs.110)
https://msdn.microsoft.com/en-us/library/vstudio/54xbah2z(v=vs.110)
http://dx.doi.org/10.1007/978-1-4842-1332-2_26

1147

Chapter 27

Programming with WPF Controls

Chapter 26 provided a foundation for the WPF programming model, including an examination of the Window
and Application classes, the grammar of XAML, and the use of code files. Chapter 26 also introduced you
to the process of building WPF applications using the designers of Visual Studio. In this chapter, you will dig
into the construction of more sophisticated graphical user interfaces using several new controls and layout
managers, learning about additional features of the WPF designers of Visual Studio along the way.

This chapter will also examine some important related WPF control topics such as the data-binding
programming model and the use of control commands. You will also learn how to use the Ink and
Documents APIs, which allow you to capture stylus (or mouse) input and build rich text documents using
the XML Paper Specification, respectively.

 ■ Note Previous editions of this text made use of a product named Microsoft Expression Blend to facilitate
building GUIs using the WPF API. However, the latest version of Visual Studio provides sufficient functionality
to build WPF UIs for the topics examined in this text. If you would like to learn the details of working with
Expression Blend, check out Andrew’s book Pro Expression Blend 4 (2011, Apress).

A Survey of the Core WPF Controls
Unless you are new to the concept of building graphical user interfaces (which is fine), the general purpose
of the major WPF controls should not raise too many issues. Regardless of which GUI toolkit you might have
used in the past (e.g., VB 6.0, MFC, Java AWT/Swing, Windows Forms, Mac OS X [Cocoa], or GTK+/GTK#
[among others]), the core WPF controls listed in Table 27-1 are likely to look familiar.

http://dx.doi.org/10.1007/978-1-4842-1332-2_26
http://dx.doi.org/10.1007/978-1-4842-1332-2_26

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1148

The WPF Ink Controls
In addition to the common WPF controls listed in Table 27-1, WPF defines additional controls for working
with the digital Ink API. This aspect of WPF development is useful during Tablet PC development because
it lets you capture input from the stylus. However, this is not to say a standard desktop application cannot
leverage the Ink API because the same controls can capture input using the mouse.

The System.Windows.Ink namespace of PresentationCore.dll contains various Ink API support
types (e.g., Stroke and StrokeCollection); however, a majority of the Ink API controls (e.g., InkCanvas
and InkPresenter) are packaged up with the common WPF controls under the System.Windows.Controls
namespace in the PresentationFramework.dll assembly. You’ll work with the Ink API later in this chapter.

The WPF Document Controls
WPF also provides controls for advanced document processing, allowing you to build applications that
incorporate Adobe PDF-style functionality. Using the types within the System.Windows.Documents
namespace (also in the PresentationFramework.dll assembly), you can create print-ready documents that
support zooming, searching, user annotations (sticky notes), and other rich text services.

Under the covers, however, the document controls do not use Adobe PDF APIs; rather, they use the
XML Paper Specification (XPS) API. To the end user, there will really appear to be no difference because
PDF documents and XPS documents have an almost identical look-and-feel. In fact, you can find many free
utilities that allow you to convert between the two file formats on the fly. You’ll work with some aspects of
the document controls in an upcoming example.

Table 27-1. The Core WPF Controls

WPF Control Category Example Members Meaning in Life

Core user input
controls

Button, RadioButton, ComboBox,
CheckBox, Calendar, DatePicker,
Expander, DataGrid, ListBox, ListView,
ToggleButton, TreeView, ContextMenu,
ScrollBar, Slider, TabControl, TextBlock,
TextBox, RepeatButton, RichTextBox, Label

WPF provides an entire family of
controls you can use to build the
crux of a user interface.

Window
and control
adornments

Menu, ToolBar, StatusBar, ToolTip,
ProgressBar

You use these UI elements to
decorate the frame of a Window
object with input devices (such as
the Menu) and user informational
elements (e.g., StatusBar and
ToolTip).

Media controls Image, MediaElement, SoundPlayerAction These controls provide support for
audio/video playback and image
display.

Layout controls Border, Canvas, DockPanel, Grid, GridView,
GridSplitter, GroupBox, Panel, TabControl,
StackPanel, Viewbox, WrapPanel

WPF provides numerous controls
that allow you to group and
organize other controls for the
purpose of layout management.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1149

WPF Common Dialog Boxes
WPF also provides you with a few common dialog boxes such as OpenFileDialog and SaveFileDialog.
These dialog boxes are defined within the Microsoft.Win32 namespace of the PresentationFramework.dll
assembly. Working with either of these dialog boxes is a matter of creating an object and invoking the
ShowDialog() method, like so:

using Microsoft.Win32;

namespace WpfControls
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void btnShowDlg_Click(object sender, RoutedEventArgs e)
 {
 // Show a file save dialog.
 SaveFileDialog saveDlg = new SaveFileDialog();
 saveDlg.ShowDialog();
 }
 }
}

As you would hope, these classes support various members that allow you to establish file filters and
directory paths, and gain access to user-selected files. You will put these file dialogs to use in later examples;
you will also learn how to build custom dialog boxes to gather user input.

The Details Are in the Documentation
Despite what you might be thinking, the intent of this chapter is not to walk through each and every member
of each and every WPF control. Rather, you will receive an overview of the various controls with an emphasis
on the underlying programming model and key services common to most WPF controls.

To round out your understanding of the particular functionality of a given control, be sure to consult
the .NET Framework 4.6 SDK documentation—specifically, the Control Library section of the help system,
which you can find at https://msdn.microsoft.com/en-us/library/bb613551(v=vs.100).aspx.

 ■ Note At the time of this writing, the WPF documentation is somewhat lacking, as you will discover when
you navigate to the aforementioned link. the current documentation is for .nEt 4.5. the good news is that there
are very few changes in WPF between .nEt 4.5 and .nEt 4.6 (mostly performance improvements).

Here you will find full details of each control, various code samples (in XAML, as well as C#), and
information regarding a control’s inheritance chain, implemented interfaces, and applied attributes. Make
sure you take time to look up the controls examined in this chapter for complete details.

https://msdn.microsoft.com/en-us/library/bb613551(v=vs.100).aspx

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1150

A Brief Review of the Visual Studio WPF Designer
A majority of these standard WPF controls have been packaged up in the System.Windows.Controls
namespace of the PresentationFramework.dll assembly. When you build a WPF application using Visual
Studio, you will find most of these common controls contained in the toolbox, provided you have a WPF
designer open as the active window (see Figure 27-1).

Figure 27-1. The Visual Studio toolbox exposes the many commonly used WPF controls

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1151

Similar to other UI frameworks created with Visual Studio, you can drag these controls onto the WPF
window designer and configure them using the Properties window (which you learned about in Chapter 26).
While Visual Studio will generate a good amount of the XAML on your behalf, it is not uncommon to edit the
markup yourself manually. Let’s review the basics.

Working with WPF Controls Using Visual Studio
You might recall from Chapter 26 that when you place a WPF control onto the Visual Studio designer, you
want to set the x:Name property through the Properties window because this allows you to access the object
in your related C# code file. You might also recall that you can use the Events tab of the Properties window to
generate event handlers for a selected control. Thus, you could use Visual Studio to generate the following
markup for a simple Button control:

<Button x:Name="btnMyButton" Content="Click Me!" Height="23" Width="140"
 Click="btnMyButton_Click" />

Here, you set the Content property of the Button to a simple string with the value "Click Me!".
However, thanks to the WPF control content model, you could fashion a Button that contains the following
complex content:

<Button x:Name="btnMyButton" Height="121" Width="156" Click="btnMyButton_Click">
 <Button.Content>
 <StackPanel Height="95" Width="128" Orientation="Vertical">
 <Ellipse Fill="Red" Width="52" Height="45" Margin="5"/>
 <Label Width="59" FontSize="20" Content="Click!" Height="36" />
 </StackPanel>
 </Button.Content>
</Button>

You might also recall that the immediate child element of a ContentControl-derived class is the implied
content; therefore, you do not need to define a <Button.Content> scope explicitly when specifying complex
content. You could simply author the following:

<Button x:Name="btnMyButton" Height="121" Width="156" Click="btnMyButton_Click">
 <StackPanel Height="95" Width="128" Orientation="Vertical">
 <Ellipse Fill="Red" Width="52" Height="45" Margin="5"/>
 <Label Width="59" FontSize="20" Content="Click!" Height="36" />
 </StackPanel>
</Button>

In either case, you set the button’s Content property to a <StackPanel> of related items. You can also
author this sort of complex content using the Visual Studio designer. After you define the layout manager for
a content control, you can select it on the designer to serve as a drop target for the internal controls. At this
point, you can edit each using the Properties window. If you were to use the Properties window to handle the
Click event for the Button control (as seen in the previous XAML declarations), the IDE would generate an
empty event handler, to which you could add your own custom code, like so:

private void btnMyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("You clicked the button!");
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_26
http://dx.doi.org/10.1007/978-1-4842-1332-2_26

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1152

Working with the Document Outline Editor
You should also be aware that the Document Outline window of Visual Studio (which you can open using
the View ➤ Other Windows menu) is useful when designing a WPF control that has complex content. Notice
in Figure 27-2 how the logical tree of XAML is displayed for the Window you are building. If you click any of
these nodes, it is automatically selected in the designer for editing.

Figure 27-2. The Visual Studio Document Outline window can help you navigate complex content

With the current edition of Visual Studio, the Document Outline editor has a few additional features that
you might find useful. To the right of any node you will find an icon that looks similar to an eyeball. When
you toggle this button, you can opt to hide or show an item on the designer, which can be helpful when you
want to focus in on a particular segment to edit (note that this will not hide the item at runtime; this is only
hides items on the designer surface).

Right next to the “eyeball icon” is a second toggle that allows you to “lock” an item on the designer.
As you might guess, this can be very helpful when you want to make sure you (or your coworkers) do not
accidently change the XAML for a given item. In effect, locking an item makes it read-only at design time
(however, you can obviously change the object’s state at runtime).

Controlling Content Layout Using Panels
A WPF application invariably contains a good number of UI elements (e.g., user input controls, graphical
content, menu systems, and status bars) that need to be well organized within various windows. After
you place the UI elements, you need to make sure they behave as intended when the end user resizes the
window or possibly a portion of the window (as in the case of a splitter window). To ensure your WPF
controls retain their position within the hosting window, you can take advantage of a good number of panel
types (also known as layout managers).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1153

By default, a new WPF Window created with Visual Studio will use a layout manager of type <Grid> (more
details in just a bit). However, for now, assume a Window with no declared layout manager, like so:

<Window x:Class="MyWPFApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
...
 Title="Fun with Panels!" Height="285" Width="325">

</Window>

When you declare a control directly inside a window that doesn’t use panels, the control is positioned
dead-center in the container. Consider the following simple window declaration, which contains a single
Button control. Regardless of how you resize the window, the UI widget is always equidistant from all four
sides of the client area. The Button’s size is determined by the assigned Height and Width properties of
the Button.

<!- This button is in the center of the window at all times ->
<Window x:Class="MyWPFApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
...
 Title="Fun with Panels!" Height="285" Width="325">

 <Button x:Name="btnOK" Height = "100"
 Width="80" Content="OK"/>
</Window>

You might also recall that if you attempt to place multiple elements directly within the scope of a
<Window>, you will receive markup and compile-time errors. The reason for these errors is that a window
(or any descendant of ContentControl for that matter) can assign only a single object to its Content
property. Therefore, the following XAML yields markup and compile time errors:

<!- Error! Content property is implicitly set more than once! ->
<Window x:Class="MyWPFApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
...
 Title="Fun with Panels!" Height="285" Width="325">

 <!- Error! Two direct child elements of the <Window>! ->
 <Label x:Name="lblInstructions" Width="328" Height="27"
 FontSize="15" Content="Enter Information"/>
 <Button x:Name="btnOK" Height = "100" Width="80" Content="OK"/>
</Window>

Obviously, a window that can only contain a single control is of little use. When a window needs to
contain multiple elements, those elements must be arranged within any number of panels. The panel will
contain all of the UI elements that represent the window, after which the panel itself is used as the single
object assigned to the Content property.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1154

The System.Windows.Controls namespace provides numerous panels, each of which controls how
subelements are maintained. You can use panels to establish how the controls behave if the end user resizes
the window, if the controls remain exactly where they were placed at design time, if the controls reflow
horizontally from left-to-right or vertically from top-to-bottom, and so forth.

You can also intermix panel controls within other panels (e.g., a DockPanel that contains a StackPanel
of other items) to provide a great deal of flexibility and control. Table 27-2 documents the role of some
commonly used WPF panel controls.

Figure 27-3. You will be loading the supplied XAML data into your MyXamlPad.exe appliction to test
various layouts

Table 27-2. Core WPF Panel Controls

Panel Control Meaning in Life

Canvas Provides a classic mode of content placement. Items stay exactly where you put them at
design time.

DockPanel Locks content to a specified side of the panel (Top, Bottom, Left, or Right).

Grid Arranges content within a series of cells, maintained within a tabular grid.

StackPanel Stacks content in a vertical or horizontal manner, as dictated by the Orientation property.

WrapPanel Positions content from left-to-right, breaking the content to the next line at the edge of the
containing box. Subsequent ordering happens sequentially from top-to-bottom or from
right-to-left, depending on the value of the Orientation property.

In the next few sections, you will learn how to use these commonly used panel types by copying some
predefined XAML data into the MyXamlPad.exe application you created in Chapter 26 (you could also load
this data into kaxaml.exe, if you so choose). You can find all these loose XAML files contained inside the
PanelMarkup subfolder of your Chapter 27 code download folder (see Figure 27-3).

http://dx.doi.org/10.1007/978-1-4842-1332-2_26
http://dx.doi.org/10.1007/978-1-4842-1332-2_27

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1155

Positioning Content Within Canvas Panels
You will probably feel most at home with the Canvas panel because it allows for absolute positioning of
UI content. If the end user resizes the window to an area that is smaller than the layout maintained by the
Canvas panel, the internal content will not be visible until the container is stretched to a size equal to or
larger than the Canvas area.

To add content to a Canvas, you begin by defining the required controls within the scope of the opening
<Canvas> and closing </Canvas> tags. Next, specify the upper-left corner for each control; this is where the
rendering should begin using the Canvas.Top and Canvas.Left properties. You can specify the bottom-right
area indirectly in each control by setting its Height and Width properties, or directly by using the Canvas.Right
and Canvas.Bottom properties.

To see Canvas in action, open the provided SimpleCanvas.xaml file using a text editor and copy the
content into MyXamlPad.exe (or kaxaml.exe). You should see the following Canvas definition:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
...
 Title="Fun with Panels!" Height="285" Width="325">
 <Canvas Background="LightSteelBlue">
 <Button x:Name="btnOK" Canvas.Left="212" Canvas.Top="203"
 Width="80" Content="OK"/>
 <Label x:Name="lblInstructions" Canvas.Left="17" Canvas.Top="14"
 Width="328" Height="27" FontSize="15"
 Content="Enter Car Information"/>
 <Label x:Name="lblMake" Canvas.Left="17" Canvas.Top="60"
 Content="Make"/>
 <TextBox x:Name="txtMake" Canvas.Left="94" Canvas.Top="60"
 Width="193" Height="25"/>
 <Label x:Name="lblColor" Canvas.Left="17" Canvas.Top="109"
 Content="Color"/>
 <TextBox x:Name="txtColor" Canvas.Left="94" Canvas.Top="107"
 Width="193" Height="25"/>
 <Label x:Name="lblPetName" Canvas.Left="17" Canvas.Top="155"
 Content="Pet Name"/>
 <TextBox x:Name="txtPetName" Canvas.Left="94" Canvas.Top="153"
 Width="193" Height="25"/>
 </Canvas>
</Window>

Clicking your View Xaml button causes the window shown in Figure 27-4 to display on the screen.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1156

Note that the order you declare content within a Canvas is not used to calculate placement; instead,
placement is based on the control’s size and the Canvas.Top, Canvas.Bottom, Canvas.Left, and
Canvas.Right properties.

 ■ Note If subelements within a Canvas do not define a specific location using attached property syntax
(e.g., Canvas.Left and Canvas.Top), they automatically attach to the extreme upper-left corner of Canvas.

Using the Canvas type might seem like the preferred way to arrange content (because it feels so familiar),
but this approach does suffer from some limitations. First, items within a Canvas do not dynamically resize
themselves when applying styles or templates (e.g., their font sizes are unaffected). Second, the Canvas will
not attempt to keep elements visible when the end user resizes the window to a smaller surface.

Perhaps the best use of the Canvas type is for positioning graphical content. For example, if you were
building a custom image using XAML, you certainly would want the lines, shapes, and text to remain in the
same location, rather than see them dynamically repositioned as the user resizes the window! You’ll revisit
Canvas in Chapter 28 when you examine WPF’s graphical rendering services.

Positioning Content Within WrapPanel Panels
A WrapPanel allows you to define content that will flow across the panel as the window is resized. When
positioning elements in a WrapPanel, you do not specify top, bottom, left, and right docking values as you
typically do with Canvas. However, each subelement is free to define a Height and Width value (among other
property values) to control its overall size in the container.

Because content within a WrapPanel does not dock to a given side of the panel, the order in which you
declare the elements is important (content is rendered from the first element to the last). If you were to
load the XAML data found within the SimpleWrapPanel.xaml file, you would find it contains the following
markup (enclosed within a <Window> definition):

<WrapPanel Background="LightSteelBlue">
 <Label x:Name="lblInstruction" Width="328"
 Height="27" FontSize="15" Content="Enter Car Information"/>

Figure 27-4. The Canvas layout manager allows for absolute positioning of content

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1157

 <Label x:Name="lblMake" Content="Make"/>
 <TextBox x:Name="txtMake" Width="193" Height="25"/>
 <Label x:Name="lblColor" Content="Color"/>
 <TextBox x:Name="txtColor" Width="193" Height="25"/>
 <Label x:Name="lblPetName" Content="Pet Name"/>
 <TextBox x:Name="txtPetName" Width="193" Height="25"/>
 <Button x:Name="btnOK" Width="80" Content="OK"/>
</WrapPanel>

When you load this markup, the content looks out of sorts as you resize the width because it flows from
left-to-right across the window (see Figure 27-5).

Figure 27-5. Content in a WrapPanel behaves much like a traditional HTML page

By default, content within a WrapPanel flows from left-to-right. However, if you change the value of the
Orientation property to Vertical, you can have content wrap in a top-to-bottom manner.

<WrapPanel Background="LightSteelBlue" Orientation ="Vertical">

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1158

Figure 27-6. A WrapPanel can establish the width and height of a given item

As you might agree after looking at Figure 27-6, a WrapPanel is not typically the best choice for arranging
content directly in a window because its elements can become scrambled as the user resizes the window. In
most cases, a WrapPanel will be a subelement to another panel type, allowing a small area of the window to
wrap its content when resized (e.g., a ToolBar control).

Positioning Content Within StackPanel Panels
Like a WrapPanel, a StackPanel control arranges content into a single line that can be oriented horizontally
or vertically (the default), based on the value assigned to the Orientation property. The difference, however,
is that the StackPanel will not attempt to wrap the content as the user resizes the window. Rather, the
items in the StackPanel will simply stretch (based on their orientation) to accommodate the size of the
StackPanel itself. For example, the SimpleStackPanel.xaml file contains the following markup, which
results in the output shown in Figure 27-7:

<StackPanel Background="LightSteelBlue">
 <Label x:Name="lblInstruction"
 FontSize="15" Content="Enter Car Information"/>
 <Label x:Name="lblMake" Content="Make"/>
 <TextBox Name="txtMake"/>
 <Label x:Name="lblColor" Content="Color"/>
 <TextBox x:Name="txtColor"/>
 <Label x:Name="lblPetName" Content="Pet Name"/>

You can declare a WrapPanel (as well as some other panel types) by specifying ItemWidth and ItemHeight
values, which control the default size of each item. If a subelement does provide its own Height and/or Width
value, it will be positioned relative to the size established by the panel. Consider the following markup:

<WrapPanel Background="LightSteelBlue" Orientation ="Horizontal" ItemWidth ="200" ItemHeight ="30">
 <Label x:Name="lblInstruction"
 FontSize="15" Content="Enter Car Information"/>
 <Label x:Name="lblMake" Content="Make"/>
 <TextBox x:Name="txtMake"/>
 <Label x:Name="lblColor" Content="Color"/>
 <TextBox x:Name="txtColor"/>
 <Label x:Name="lblPetName" Content="Pet Name"/>
 <TextBox x:Name="txtPetName"/>
 <Button x:Name="btnOK" Width ="80" Content="OK"/>
</WrapPanel>

The rendered code looks like Figure 27-6 (notice the size and position of the Button control, which has a
specified unique Width value).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1159

 <TextBox x:Name="txtPetName"/>
 <Button x:Name="btnOK" Width ="80" Content="OK"/>
</StackPanel>

Figure 27-7. Vertical stacking of content

Figure 27-8. Horizontal stacking of content

If you assign the Orientation property to Horizontal as follows, the rendered output will match that
shown in Figure 27-8:

<StackPanel Background="LightSteelBlue" Orientation="Horizontal">

Again, as is the case with the WrapPanel, you will seldom want to use a StackPanel to arrange content
directly within a window. Instead, you should use StackPanel as a subpanel to a master panel.

Positioning Content Within Grid Panels
Of all the panels provided with the WPF APIs, Grid is far and away the most flexible. Like an HTML table,
the Grid can be carved up into a set of cells, each one of which provides content. When defining a Grid, you
perform three steps.

 1. Define and configure each column.

 2. Define and configure each row.

 3. Assign content to each cell of the grid using attached property syntax.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1160

 ■ Note If you do not define any rows or columns, the <Grid> defaults to a single cell that fills the entire
surface of the window. Furthermore, if you do not assign a cell value for a subelement within a <Grid>, it
automatically attaches to column 0, row 0.

You achieve the first two steps (defining the columns and rows) by using the <Grid.ColumnDefinitions>
and <Grid.RowDefinitions> elements, which contain a collection of <ColumnDefinition> and
<RowDefinition> elements, respectively. Each cell within a grid is indeed a true .NET object, so you can
configure the look-and-feel and behavior of each cell as you see fit.

Here is a <Grid> definition (that you can find in the SimpleGrid.xaml file) that arranges your UI content
as shown in Figure 27-9:

<Grid ShowGridLines ="True" Background ="LightSteelBlue">
 <!- Define the rows/columns ->
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <!- Now add the elements to the grid's cells ->
 <Label x:Name="lblInstruction" Grid.Column ="0" Grid.Row ="0"
 FontSize="15" Content="Enter Car Information"/>
 <Button x:Name="btnOK" Height ="30" Grid.Column ="0"
 Grid.Row ="0" Content="OK"/>
 <Label x:Name="lblMake" Grid.Column ="1"
 Grid.Row ="0" Content="Make"/>
 <TextBox x:Name="txtMake" Grid.Column ="1"
 Grid.Row ="0" Width="193" Height="25"/>
 <Label x:Name="lblColor" Grid.Column ="0"
 Grid.Row ="1" Content="Color"/>
 <TextBox x:Name="txtColor" Width="193" Height="25"
 Grid.Column ="0" Grid.Row ="1" />

 <!- Just to keep things interesting, add some color to the pet name cell ->
 <Rectangle Fill ="LightGreen" Grid.Column ="1" Grid.Row ="1" />
 <Label x:Name="lblPetName" Grid.Column ="1" Grid.Row ="1" Content="Pet Name"/>
 <TextBox x:Name="txtPetName" Grid.Column ="1" Grid.Row ="1"
 Width="193" Height="25"/>
</Grid>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1161

Notice that each element (including a light green Rectangle element thrown in for good measure)
connects itself to a cell in the grid using the Grid.Row and Grid.Column attached properties. By default, the
ordering of cells in a grid begins at the upper left, which you specify using Grid.Column="0" Grid.Row="0".
Given that your grid defines a total of four cells, you can identify the bottom-right cell using
Grid.Column="1" Grid.Row="1".

Grids with GridSplitter Types
Grid objects can also support splitters. As you might know, splitters allow the end user to resize rows or
columns of a grid type. As this is done, the content within each resizable cell will reshape itself based
on how the items have been contained. Adding splitters to a Grid is easy to do; you simply define the
<GridSplitter> control, using attached property syntax to establish which row or column it affects.

Be aware that you must assign a Width or Height value (depending on vertical or horizontal splitting)
for the splitter to be visible on the screen. Consider the following simple Grid type with a splitter on the first
column (Grid.Column = "0"). The contents of the provided GridWithSplitter.xaml file look like this:

<Grid Background ="LightSteelBlue">
 <!- Define columns ->
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width ="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <!- Add this label to cell 0 ->
 <Label x:Name="lblLeft" Background ="GreenYellow"
 Grid.Column="0" Content ="Left!"/>

 <!- Define the splitter ->
 <GridSplitter Grid.Column ="0" Width ="5"/>

 <!- Add this label to cell 1 ->
 <Label x:Name="lblRight" Grid.Column ="1" Content ="Right!"/>
</Grid>

First and foremost, notice that the column that will support the splitter has a Width property of Auto.
Next, notice that the <GridSplitter> uses attached property syntax to establish which column it is working
with. If you were to view this output, you would find a five-pixel splitter that allows you to resize each Label
(marked with the red arrow). Note that the content fills up the entire cell because you have not specified
Height or Width properties for either Label (see Figure 27-10).

Figure 27-9. The Grid panel in action

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1162

Positioning Content Within DockPanel Panels
DockPanel is typically used as a container that holds any number of additional panels for grouping related
content. DockPanels use attached property syntax (as seen with the Canvas or Grid types) to control where
each item docks itself within the DockPanel.

The SimpleDockPanel.xaml file defines the following simple DockPanel definition that results in the
output shown in Figure 27-11:

<DockPanel LastChildFill ="True">
 <!- Dock items to the panel ->
 <Label x:Name="lblInstruction" DockPanel.Dock ="Top"
 FontSize="15" Content="Enter Car Information"/>
 <Label x:Name="lblMake" DockPanel.Dock ="Left" Content="Make"/>
 <Label x:Name="lblColor" DockPanel.Dock ="Right" Content="Color"/>
 <Label x:Name="lblPetName" DockPanel.Dock ="Bottom" Content="Pet Name"/>
 <Button x:Name="btnOK" Content="OK"/>
</DockPanel>

Figure 27-10. Grid types containing splitters

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1163

 ■ Note If you add multiple elements to the same side of a DockPanel, they will stack along the specified
edge in the order that they are declared.

The benefit of using DockPanel types is that, as the user resizes the window, each element remains
connected to the specified side of the panel (through DockPanel.Dock). Also notice that the opening
<DockPanel> tag in this example sets the LastChildFill attribute to true. Given that the Button control is
indeed the “last child” in the container, it will therefore be stretched within the remaining space.

Enabling Scrolling for Panel Types
It is worth pointing out that WPF supplies a ScrollViewer class, which provides automatic scrolling
behaviors for data within panel objects. The ScrollViewer.xaml file defines the following:

<ScrollViewer>
 <StackPanel>
 <Button Content ="First" Background = "Green" Height ="40"/>
 <Button Content ="Second" Background = "Red" Height ="40"/>

Figure 27-11. A simple DockPanel

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1164

As you would expect, each panel provides numerous members that allow you to fine-tune content
placement. On a related note, many WPF controls support two properties of interest (Padding and Margin)
that allow the control itself to inform the panel how it wishes to be treated. Specifically, the Padding property
controls how much extra space should surround the interior control, while Margin controls the extra space
around the exterior of a control.

This wraps up this chapter’s look at the major panel types of WPF, as well as the various ways they
position their content. Next, you’ll learn how to use the Visual Studio designers to create layouts.

Configuring Panels Using the Visual Studio Designers
Now that you have been given a walkthrough of the XAML used to define some common layout managers,
you will be happy to know that Visual Studio has some very good design-time support for constructing your
layouts. The key to doing so lies with the Document Outline window described earlier in this chapter. To
illustrate some of the basics, create a new WPF application project named VisualLayoutTesterApp.

Notice how your initial Window makes use of a Grid layout by default:

<Window x:Class="VisualLayoutTesterApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:VisualLayoutTesterApp"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

Figure 27-12. Working with the ScrollViewer type

 <Button Content ="Third" Background = "Pink" Height ="40"/>
 <Button Content ="Fourth" Background = "Yellow" Height ="40"/>
 <Button Content ="Fifth" Background = "Blue" Height ="40"/>
 </StackPanel>
</ScrollViewer>

You can see the result of the previous XAML definition in Figure 27-12 (notice the scroll bar on the right
since the window isn’t sized to show all five buttons).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1165

Now, let’s say you have defined a grid with some number of cells. You can then drag and drop controls
into a given cell of the layout system, and the IDE will automatically set the Grid.Row and Grid.Column
properties of the control in question. Here is some possible markup generated by the IDE after dragging a
Button into a predefined cell:

<Button x:Name="button" Content="Button" Grid.Column="1" HorizontalAlignment="Left"
Margin="21,21.4,0,0" Grid.Row="1" VerticalAlignment="Top" Width="75"/>

Now, let’s say you would rather not use a Grid at all. If you right-click any layout node in the Document
Outline window, you will find a menu option that allows you to change the current container into another
(see Figure 27-14). Be very aware that when you do so, you will (most likely) radically change the positioning
of the controls because the controls will conform to the rules of the new panel type.

Figure 27-13. The Grid control can be visually cut into cells using the IDE’s designer

If you are happy using the Grid layout system, notice in Figure 27-13 that you can easily carve out and
resize the grid’s cells using the visual layout. To do so, first select the Grid component in your Document
Outline window, and then click the grid’s border to create new rows and columns.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1166

Another handy trick is the ability to select a set of controls on the visual designer and group them into a
new, nested layout manager. Assume you have a Canvas that defines a set of random objects (if you want to
try, convert the initial Grid to a Canvas using the technique shown in the Figure 27-14). Now, select a set of
items on the designer by holding down the CTRL key and clicking each item with the left mouse button. If
you then right-click the selection, you can group the selected items into a new subpanel (see Figure 27-15).

Figure 27-14. The Document Outline window allows you to convert to new panel types

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1167

After you have done so, examine the Document Outline window once again to verify the nested layout
system. As you build full-featured WPF windows, you will most likely always need to make use of a nested
layout system, rather than simply picking a single panel for all of the UI display (in fact, the remaining WPF
examples in the text will typically do so). On a final note, the nodes in the Document Outline window are all
drag and droppable. For example, if you wanted to move a control currently in the Canvas into the parent
panel, you could do so as suggested in Figure 27-16.

Figure 27-15. Grouping items into a new subpanel

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1168

As you work through the remaining WPF chapters, I’ll point out additional layout shortcuts where
possible. However, it’s definitely worth your time to experiment and test out various features yourself. To
keep us moving in the right direction, the next example in the chapter will illustrate how to build a nested
layout manager for a custom text processing application (with spell checking!).

Building a Window’s Frame Using Nested Panels
As mentioned, a typical WPF window will not use a single panel control, but instead will nest panels
within other panels to gain the desired layout system. Begin by creating a new WPF application named
MyWordPad.

Your goal is to construct a layout where the main window has a topmost menu system, a toolbar under
the menu system, and a status bar mounted on the bottom of the window. The status bar will contain a
pane to hold text prompts that are displayed when the user selects a menu item (or toolbar button), while
the menu system and toolbar will offer UI triggers to close the application and display spelling suggestions
in an Expander widget. Figure 27-17 shows the initial layout you are shooting for; it also displays spelling
suggestions for “XAML.”

Figure 27-16. Relocating items via the Document Outline window

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1169

Notice that the two toolbar buttons are not supporting an expected image, but a simple text value. This
would not be sufficient for a production-level application, but assigning images to toolbar buttons typically
involves using embedded resources, a topic that you will examine in Chapter 28 (so text data will do for
now). Also note that, as the mouse button is placed over the Check button, the mouse cursor changes and
the single pane of the status bar displays a useful UI message.

To begin building this UI, update the initial XAML definition for your Window type so it uses a
<DockPanel> child element, rather than the default <Grid>, as follows:

<Window x:Class="MyWordPad.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:MyWordPad"
 mc:Ignorable="d"
 Title="My Spell Checker" Height="350" Width="525">

 <!- This panel establishes the content for the window ->
 <DockPanel>
 </DockPanel>

</Window>

Figure 27-17. Using nested panels to establish a window’s UI

http://dx.doi.org/10.1007/978-1-4842-1332-2_28
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1170

Building the Menu System
Menu systems in WPF are represented by the Menu class, which maintains a collection of MenuItem objects.
When building a menu system in XAML, you can have each MenuItem handle various events. The most
notable of these events is Click, which occurs when the end user selects a subitem. In this example, you
begin by building the two topmost menu items (File and Tools; you will build the Edit menu later in this
example), which expose Exit and Spelling Hints subitems, respectively.

In addition to handling the Click event for each subitem, you also need to handle the MouseEnter
and MouseExit events, which you will use to set the status bar text in a later step. Add the following markup
within your <DockPanel> scope (feel free to use Properties window of Visual Studio to handle each event; see
Chapter 26 for a walkthrough on how to do so):

<!-- Dock menu system on the top -->
<Menu DockPanel.Dock ="Top"
 HorizontalAlignment="Left" Background="White" BorderBrush ="Black">
 <MenuItem Header="_File">
 <Separator/>
 <MenuItem Header ="_Exit" MouseEnter ="MouseEnterExitArea"
 MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
 </MenuItem>
 <MenuItem Header="_Tools">
 <MenuItem Header ="_Spelling Hints"
 MouseEnter ="MouseEnterToolsHintsArea"
 MouseLeave ="MouseLeaveArea" Click ="ToolsSpellingHints_Click"/>
 </MenuItem>
</Menu>

Notice that you dock the menu system to the top of the DockPanel. Also, you use the <Separator>
element to insert a thin horizontal line in the menu system, directly before the Exit option. Also notice
that the Header values for each MenuItem contain an embedded underscore token (e.g., _Exit). You use
this token to establish which letter will be underlined when the end user presses the Alt key (for keyboard
shortcuts). This is a change from the & character used in Windows Forms since XAML is based on XML, and
the & character has meaning in XML.

So far you’ve implemented the complete the menu system definition; next, you need to implement the
various event handlers. First, you have the File Exit handler, FileExit_Click(), which simply closes the
window, which in turn terminates the application because this is your topmost window. The MouseEnter and
MouseExit event handlers for each subitem will eventually update your status bar; however, for now, you will
simply provide shells. Finally, the ToolsSpellingHints_Click() handler for the Tools Spelling Hints menu
item will also remain a shell for the time being. Here are the current updates to your code-behind file:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 protected void FileExit_Click(object sender, RoutedEventArgs args)
 {
 // Close this window.
 this.Close();
 }

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1171

 protected void ToolsSpellingHints_Click(object sender, RoutedEventArgs args)
 {
 }
 protected void MouseEnterExitArea(object sender, RoutedEventArgs args)
 {
 }
 protected void MouseEnterToolsHintsArea(object sender, RoutedEventArgs args)
 {
 }
 protected void MouseLeaveArea(object sender, RoutedEventArgs args)
 {
 }
}

Building Menus Visually
While it is always good to know how to manually define items in XAML, it can be a tad on the tedious side.
Visual Studio supports visual design support for menu systems, toolbars, status bars, and many other UI
controls. By way of a quick example, assume you had a fresh Menu control on a new Window (you might want
to insert a test Window via the Project ➤ Add Window menu option and follow along). Now, if you right-click
the Menu control, you will notice an Add MenuItem option (see Figure 27-18).

Figure 27-18. Visually adding items to a Menu object

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1172

After you have added a set of topmost items, you can then add submenu items, separators, expand or
collapse the menu itself, and perform other menu-centric operations via a second right-click. Figure 27-19
shows one possible way to visually design a simple menu system (be sure you examine the generated XAML).

Figure 27-19. Visually adding items to a MenuItem object

As you read over the reminder of the current MyWordPad example, I’ll typically show you the final
generated XAML; however, do take the time to experiment with the visual designers to simplify the task
at hand.

Building the ToolBar
Toolbars (represented by the ToolBar class in WPF) typically provide an alternative manner for activating a
menu option. Add the following markup directly after the closing scope of your <Menu> definition:

<!-- Put Toolbar under the Menu -->
<ToolBar DockPanel.Dock ="Top" >
 <Button Content ="Exit" MouseEnter ="MouseEnterExitArea"
 MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
 <Separator/>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1173

 <Button Content ="Check" MouseEnter ="MouseEnterToolsHintsArea"
 MouseLeave ="MouseLeaveArea" Click ="ToolsSpellingHints_Click"
 Cursor="Help" />
</ToolBar>

Your ToolBar control consists of two Button controls, which just so happen to handle the same events
and are handled by the same methods in your code file. Using this technique, you can double-up your
handlers to serve both menu items and toolbar buttons. Although this toolbar uses the typical push buttons,
you should appreciate that the ToolBar type “is-a” ContentControl; therefore, you are free to embed any
types into its surface (e.g., drop-down lists, images, and graphics). The only other point of interest here is
that the Check button supports a custom mouse cursor through the Cursor property.

 ■ Note You can optionally wrap the ToolBar element within a <ToolBarTray> element, which controls
layout, docking, and drag-and-drop operations for a set of ToolBar objects. Consult the .nEt Framework 4.6
SDK documentation for details.

Building the StatusBar
A StatusBar control will be docked to the lower portion of the <DockPanel> and contain a single
<TextBlock> control, which you have not used prior to this point in the chapter. You can use a TextBlock to
hold text that supports numerous textual annotations, such as bold text, underlined text, line breaks, and so
forth. Add the following markup directly after the previous ToolBar definition:

<!-- Put a StatusBar at the bottom -->
<StatusBar DockPanel.Dock ="Bottom" Background="Beige" >
 <StatusBarItem>
 <TextBlock Name="statBarText" Text="Ready"/>
 </StatusBarItem>
</StatusBar>

Finalizing the UI Design
The final aspect of your UI design is to define a splittable Grid that defines two columns. On the left, place an
Expander control that will display a list of spelling suggestions, wrapped within a <StackPanel>. On the right,
place a TextBox control that supports multiple lines and scrollbars, and includes enabled spell checking.
You mount the entire <Grid> to the left of the parent <DockPanel>. Add the following XAML markup directly
under the markup describing the StatusBar to complete the definition of your window’s UI:

<Grid DockPanel.Dock ="Left" Background ="AliceBlue">
 <!-- Define the rows and columns -->
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1174

 <GridSplitter Grid.Column ="0" Width ="5" Background ="Gray" />
 <StackPanel Grid.Column="0" VerticalAlignment ="Stretch" >
 <Label Name="lblSpellingInstructions" FontSize="14" Margin="10,10,0,0">
 Spelling Hints
 </Label>

 <Expander Name="expanderSpelling" Header ="Try these!"
 Margin="10,10,10,10">
 <!-- This will be filled programmatically -->
 <Label Name ="lblSpellingHints" FontSize ="12"/>
 </Expander>
 </StackPanel>

 <!-- This will be the area to type within -->
 <TextBox Grid.Column ="1"
 SpellCheck.IsEnabled ="True"
 AcceptsReturn ="True"
 Name ="txtData" FontSize ="14"
 BorderBrush ="Blue"
 VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Auto">
 </TextBox>
</Grid>

Implementing the MouseEnter/MouseLeave Event Handlers
At this point, the UI of your window is complete. The only remaining tasks are to provide an implementation
for the remaining event handlers. Begin by updating your C# code file so that each of the MouseEnter,
MouseLeave, and MouseExit handlers set the text pane of the status bar with a fitting message to help the end
user, like so:

public partial class MainWindow : System.Windows.Window
{
...
 protected void MouseEnterExitArea(object sender, RoutedEventArgs args)
 {
 statBarText.Text = "Exit the Application";
 }
 protected void MouseEnterToolsHintsArea(object sender, RoutedEventArgs args)
 {
 statBarText.Text = "Show Spelling Suggestions";
 }
 protected void MouseLeaveArea(object sender, RoutedEventArgs args)
 {
 statBarText.Text = "Ready";
 }
}

At this point, you can run your application. You should see your status bar change its text based on
which menu item/toolbar button you hover your mouse over.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1175

Implementing the Spell Checking Logic
The WPF API ships with built-in spell checker support, which is independent of Microsoft Office products.
This means you don’t need to use the COM interop layer to use the spell checker of Microsoft Word; instead,
you can easily add the same type of support with only a few lines of code.

You might recall that when you defined the <TextBox> control, you set the SpellCheck.IsEnabled
property to true. When you do this, misspelled words are underlined with a red squiggle, just as they are
in Microsoft Office. Even better, the underlying programming model gives you access to the spell- checker
engine, which allows you to get a list of suggestions for misspelled words. Add the following code to your
ToolsSpellingHints_Click() method:

protected void ToolsSpellingHints_Click(object sender, RoutedEventArgs args)
{
 string spellingHints = string.Empty;

 // Try to get a spelling error at the current caret location.
 SpellingError error = txtData.GetSpellingError(txtData.CaretIndex);
 if (error != null)
 {
 // Build a string of spelling suggestions.
 foreach (string s in error.Suggestions)
 {
 spellingHints += $"{s}\n";
 }

 // Show suggestions and expand the expander.
 lblSpellingHints.Content = spellingHints;
 expanderSpelling.IsExpanded = true;
 }
}

The preceding code is quite simple. You simply figure out the current location of the caret in the text
box by using the CaretIndex property to extract a SpellingError object. If there is an error at said location
(meaning the value is not null), you loop over the list of suggestions using the aptly named Suggestions
property. After you have all of the suggestions for the misspelled word, you connect the data to the Label in
the Expander.

So there you have it! With only a few lines of procedural code (and a healthy dose of XAML), you have
the beginnings of a functioning word processor. An understanding of control commands can help you add a
bit more pizzazz.

Understanding WPF Commands
Windows Presentation Foundation provides support for what might be considered control-agnostic events
via the command architecture. A typical .NET event is defined within a specific base class and can be used
only by that class or a derivative thereof. Therefore, normal .NET events are tightly coupled to the class in
which they are defined.

In contrast, WPF commands are event-like entities that are independent from a specific control and, in
many cases, can be successfully applied to numerous (and seemingly unrelated) control types. By way of a
few examples, WPF supports copy, paste, and cut commands, which you can apply to a wide variety of UI
elements (e.g., menu items, toolbar buttons, and custom buttons), as well as keyboard shortcuts (e.g., Ctrl+C
and Ctrl+V).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1176

While other UI toolkits (such as Windows Forms) provided standard events for such purposes, using
them typically left you with redundant and hard-to-maintain code. Under the WPF model, you can use
commands as an alternative. The end result typically yields a smaller and more flexible code base.

The Intrinsic Command Objects
WPF ships with numerous built-in control commands, all of which you can configure with associated
keyboard shortcuts (or other input gestures). Programmatically speaking, a WPF command is any object that
supports a property (often called Command) that returns an object implementing the ICommand interface, as
shown here:

public interface ICommand
{
 // Occurs when changes occur that affect whether
 // or not the command should execute.
 event EventHandler CanExecuteChanged;

 // Defines the method that determines whether the command
 // can execute in its current state.
 bool CanExecute(object parameter);

 // Defines the method to be called when the command is invoked.
 void Execute(object parameter);
}

WPF provides various command classes, which expose close to 100 command objects, out of the box.
These classes define numerous properties that expose specific command objects, each of which implements
ICommand. Table 27-3 documents some of the standard command objects available (be sure to consult the
.NET Framework 4.6 SDK documentation for complete details).

Table 27-3. The Intrinsic WPF Control Command Objects

WPF Class Command Objects Meaning in Life

ApplicationCommands Close, Copy, Cut, Delete, Find, Open,
Paste, Save, SaveAs, Redo, Undo

Various application-level
commands

ComponentCommands MoveDown, MoveFocusBack, MoveLeft,
MoveRight, ScrollToEnd, ScrollToHome

Various commands common to
UI components

MediaCommands BoostBase, ChannelUp, ChannelDown,
FastForward, NextTrack, Play, Rewind,
Select, Stop

Various media-centric commands

NavigationCommands BrowseBack, BrowseForward,
Favorites, LastPage, NextPage, Zoom

Various commands relating to the
WPF navigation model

EditingCommands AlignCenter, CorrectSpellingError,
DecreaseFontSize, EnterLineBreak,
EnterParagraphBreak, MoveDownByLine,
MoveRightByWord

Various commands relating to the
WPF Documents API

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1177

Connecting Commands to the Command Property
If you want to connect any of the WPF command properties to a UI element that supports the Command
property (such as a Button or MenuItem), you have very little work to do. You can see how to do this by
updating the current menu system so it supports a new topmost menu item named Edit and three subitems
to account for copying, pasting, and cutting of textual data, like so:

<Menu DockPanel.Dock ="Top"
 HorizontalAlignment="Left"
 Background="White" BorderBrush ="Black">
 <MenuItem Header="_File" Click ="FileExit_Click" >
 <MenuItem Header ="_Exit" MouseEnter ="MouseEnterExitArea"
 MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
 </MenuItem>

 <!-- New menu item with commands! -->
 <MenuItem Header="_Edit">
 <MenuItem Command ="ApplicationCommands.Copy"/>
 <MenuItem Command ="ApplicationCommands.Cut"/>
 <MenuItem Command ="ApplicationCommands.Paste"/>
 </MenuItem>

 <MenuItem Header="_Tools">
 <MenuItem Header ="_Spelling Hints"
 MouseEnter ="MouseEnterToolsHintsArea"
 MouseLeave ="MouseLeaveArea"
 Click ="ToolsSpellingHints_Click"/>
 </MenuItem>
</Menu>

Notice that each of the subitems on the Edit menu has a value assigned to the Command property. Doing
this means that the menu items automatically receive the correct name and shortcut key (e.g., Ctrl+C for a
cut operation) in the menu item UI; it also means that the application is now copy, cut, and paste-aware with
no procedural code!

If you run the application and select some of text, you can use your new menu items out of the box. As
a bonus, your application is also equipped to respond to a standard right-click operation to present the user
with the same options (see Figure 27-20).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1178

Connecting Commands to Arbitrary Actions
If you want to connect a command object to an arbitrary (application-specific) event, you will need to drop
down to procedural code. Doing so is not complex, but it does involve a bit more logic than you see in
XAML. For example, assume that you want to have the entire window respond to the F1 key, so that when
the end user presses this key, he will activate an associated help system. Also, assume your code file for the
main window defines a new method named SetF1CommandBinding(), which you call within the constructor
after the call to InitializeComponent().

Figure 27-20. Command objects provide a good deal of built-in functionality for free

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1179

public MainWindow()
{
 InitializeComponent();
 SetF1CommandBinding();
}

This new method will programmatically create a new CommandBinding object, which you can use
whenever you need to bind a command object to a given event handler in your application. Here, you
configure your CommandBinding object to operate with the ApplicationCommands.Help command, which is
automatically F1-aware:

private void SetF1CommandBinding()
{
 CommandBinding helpBinding = new CommandBinding(ApplicationCommands.Help);
 helpBinding.CanExecute += CanHelpExecute;
 helpBinding.Executed += HelpExecuted;
 CommandBindings.Add(helpBinding);
}

Most CommandBinding objects will want to handle the CanExecute event (which allows you to specify
whether the command occurs based on the operation of your program) and the Executed event (which is
where you can author the content that should occur once the command occurs). Add the following event
handlers to your Window-derived type (note the format of each method, as required by the associated
delegates):

private void CanHelpExecute(object sender, CanExecuteRoutedEventArgs e)
{
 // Here, you can set CanExecute to false if you want to prevent the
 // command from executing.
 e.CanExecute = true;
}

private void HelpExecuted(object sender, ExecutedRoutedEventArgs e)
{
 MessageBox.Show("Look, it is not that difficult. Just type something!",
 "Help!");
}

In the preceding snippet, you implemented CanHelpExecute() so it always allows F1 help to launch;
you do this by simply returning true. However, if you have certain situations where the help system should
not display, you can account for this and return false when necessary. Your “help system” displayed within
HelpExecuted() is little more than a message box. At this point, you can run your application. When you
press the F1 key on your keyboard, you will see your (less than helpful, if not a bit insulting) user-guidance
system (see Figure 27-21).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1180

Working with the Open and Save Commands
To complete the current example, you will add functionality to save your text data to an external file and
open up *.txt files for editing. If you want to take the long road, you can manually add programming logic
that enables or disables new menu items based on whether your TextBox has data inside it. Once again,
however, you can use commands to decrease your burden.

Begin by updating the <MenuItem> element that represents your topmost File menu by adding the
following two new submenus that use the Save and Open ApplicationCommands objects:

<MenuItem Header="_File">
 <MenuItem Command ="ApplicationCommands.Open"/>
 <MenuItem Command ="ApplicationCommands.Save"/>
 <Separator/>
 <MenuItem Header ="_Exit"
 MouseEnter ="MouseEnterExitArea"
 MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>

</MenuItem>

Again, remember that all command objects implement the ICommand interface, which defines two
events (CanExecute and Executed). Now you need to enable the entire window, so it can check whether it is
currently okay to fire these commands; if so, you can define an event handler to execute the custom code.

You do this by populating the CommandBindings collection maintained by the window. To do so in
XAML requires that you use property element syntax to define a <Window.CommandBindings> scope in which
you place two <CommandBinding> definitions. Update your <Window> like this:

<Window x:Class="MyWordPad.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Figure 27-21. Your custom help system (which might not be as helpful as the user would hope)

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1181

 Title="MySpellChecker" Height="331" Width="508"
 WindowStartupLocation ="CenterScreen" >

 <!-- This will inform the Window which handlers to call,
 when testing for the Open and Save commands. -->
 <Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Open"
 Executed="OpenCmdExecuted"
 CanExecute="OpenCmdCanExecute"/>
 <CommandBinding Command="ApplicationCommands.Save"
 Executed="SaveCmdExecuted"
 CanExecute="SaveCmdCanExecute"/>
 </Window.CommandBindings>

 <!-- This panel establishes the content for the window -->
 <DockPanel>
 ...
 </DockPanel>
</Window>

Now right-click each of the Executed and CanExecute attributes in your XAML editor and pick the
Navigate to Event Handler menu option. As you might recall from Chapter 26, this will automatically
generate stub code for the event itself. At this point, you should have four empty handlers in the C# code file
for the window.

The implementation of CanExecute event handlers will tell the window that it is okay to fire
the corresponding Executed events at any time by setting the CanExecute property of the incoming
CanExecuteRoutedEventArgs object.

private void OpenCmdCanExecute(object sender, CanExecuteRoutedEventArgs e)
{
 e.CanExecute = true;
}

private void SaveCmdCanExecute(object sender, CanExecuteRoutedEventArgs e)
{
 e.CanExecute = true;
}

The corresponding Executed handlers perform the actual work of displaying the open and save dialog
boxes; they also send the data in your TextBox to a file. Begin by making sure that you import the System.IO
and Microsoft.Win32 namespaces into your code file. The following completed code is straightforward:

private void OpenCmdExecuted(object sender, ExecutedRoutedEventArgs e)
{
 // Create an open file dialog box and only show XAML files.
 var openDlg = new OpenFileDialog { Filter = "Text Files |*.txt"};

 // Did they click on the OK button?
 if (true == openDlg.ShowDialog())
 {
 // Load all text of selected file.
 string dataFromFile = File.ReadAllText(openDlg.FileName);

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1182

 // Show string in TextBox.
 txtData.Text = dataFromFile;
 }
}

private void SaveCmdExecuted(object sender, ExecutedRoutedEventArgs e)
{
 var saveDlg = new SaveFileDialog { Filter = "Text Files |*.txt"};

 // Did they click on the OK button?
 if (true == saveDlg.ShowDialog())
 {
 // Save data in the TextBox to the named file.
 File.WriteAllText(saveDlg.FileName, txtData.Text);
 }
}

 ■ Note Chapter 30 will take a much deeper look into the WPF command system. In it, you will create custom
commands base on ICommand as well as RelayCommands.

That wraps up this example and your initial look at working with WPF controls. Here, you learned
how to work with basic commands, menu systems, status bars, toolbars, nested panels, and a few basic UI
controls, such as TextBox and Expander. The next example will work with some more exotic controls, while
examining several important WPF services at the same time.

 ■ Source Code You can find the MyWordPad project in the Chapter 27 subdirectory.

Understanding Routed Events
You might have noticed the RoutedEventArgs parameter instead of EventArgs in the previous code example.
The routed events model is a refinement of the standard CLR event model designed to ensure that events
can be processed in a manner that is fitting for XAML’s description of a tree of objects. Assume you have a
new WPF application project named WPFRoutedEvents. Now, update the XAML description of the initial
window by adding the following <Button> control, which defines some complex content:

<Button Name="btnClickMe" Height="75" Width = "250"
 Click ="btnClickMe_Clicked">
 <StackPanel Orientation ="Horizontal">
 <Label Height="50" FontSize ="20">Fancy Button!</Label>
 <Canvas Height ="50" Width ="100" >
 <Ellipse Name = "outerEllipse" Fill ="Green" Height ="25"
 Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>
 <Ellipse Name = "innerEllipse" Fill ="Yellow" Height = "15" Width ="36"
 Canvas.Top="17" Canvas.Left="32"/>
 </Canvas>
 </StackPanel>
</Button>

http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_27

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1183

Notice in the <Button>’s opening definition you have handled the Click event by specifying the
name of a method to be called when the event is raised. The Click event works with the
RoutedEventHandler delegate, which expects an event handler that takes an object as the first parameter
and a System.Windows.RoutedEventArgs as the second. Implement this handler as so:

public void btnClickMe_Clicked(object sender, RoutedEventArgs e)
{
 // Do something when button is clicked.
 MessageBox.Show("Clicked the button");
}

If you run your application, you will see this message box display, regardless of which part of the
button’s content you click (the green Ellipse, the yellow Ellipse, the Label, or the Button’s surface). This is
a good thing. Imagine how tedious WPF event handling would be if you were forced to handle a Click event
for every one of these subelements. Not only would the creation of separate event handlers for each aspect of
the Button be labor intensive, you would end up with some mighty nasty code to maintain down the road.

Thankfully, WPF routed events take care of ensuring that your single Click event handler will be
called regardless of which part of the button is clicked automatically. Simply put, the routed events model
automatically propagates an event up (or down) a tree of objects, looking for an appropriate handler.

Specifically speaking, a routed event can make use of three routing strategies. If an event is moving from
the point of origin up to other defining scopes within the object tree, the event is said to be a bubbling event.
Conversely, if an event is moving from the outermost element (e.g., a Window) down to the point of origin, the
event is said to be a tunneling event. Finally, if an event is raised and handled only by the originating element
(which is what could be described as a normal CLR event), it is said to be a direct event.

The Role of Routed Bubbling Events
In the current example, if the user clicks the inner yellow oval, the Click event bubbles out to the next level
of scope (the Canvas), then to the StackPanel, and finally to the Button where the Click event handler is
handled. In a similar way, if the user clicks the Label, the event is bubbled to the StackPanel and then finally
to the Button element.

Given this bubbling routed event pattern, you have no need to worry about registering specific Click
event handlers for all members of a composite control. However, if you want to perform custom clicking
logic for multiple elements within the same object tree, you can do so.

By way of illustration, assume you need to handle the clicking of the outerEllipse control in a unique
manner. First, handle the MouseDown event for this subelement (graphically rendered types such as the Ellipse
do not support a Click event; however, they can monitor mouse button activity via MouseDown, MouseUp, etc.).

<Button Name="btnClickMe" Height="75" Width = "250"
 Click ="btnClickMe_Clicked">
 <StackPanel Orientation ="Horizontal">
 <Label Height="50" FontSize ="20">Fancy Button!</Label>
 <Canvas Height ="50" Width ="100" >
 <Ellipse Name = "outerEllipse" Fill ="Green"
 Height ="25" MouseDown ="outerEllipse_MouseDown"
 Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>
 <Ellipse Name = "innerEllipse" Fill ="Yellow" Height = "15" Width ="36"
 Canvas.Top="17" Canvas.Left="32"/>
 </Canvas>
 </StackPanel>
</Button>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1184

Then implement an appropriate event handler, which for illustrative purposes will simply change the
Title property of the main window, like so:

public void outerEllipse_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Change title of window.
 this.Title = "You clicked the outer ellipse!";
}

With this, you can now take different courses of action depending on where the end user has clicked
(which boils down to the outer ellipse and everywhere else within the button’s scope).

 ■ Note routed bubbling events always move from the point of origin to the next defining scope. thus,
in this example, if you click the innerEllipse object, the event will be bubbled to the Canvas, not to the
outerEllipse because they are both Ellipse types within the scope of Canvas.

Continuing or Halting Bubbling
Currently, if the user clicks the outerEllipse object, it will trigger the registered MouseDown event handler for
this Ellipse object, at which point the event bubbles to the button’s Click event. If you want to inform WPF
to stop bubbling up the tree of objects, you can set the Handled property of the EventArgs parameter to true,
as follows:

public void outerEllipse_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Change title of window.
 this.Title = "You clicked the outer ellipse!";

 // Stop bubbling!
 e.Handled = true;
}

In this case, you would find that the title of the window is changed, but you will not see the MessageBox
displayed by the Click event handler of the Button. In a nutshell, routed bubbling events make it possible to
allow a complex group of content to act either as a single logical element (e.g., a Button) or as discrete items
(e.g., an Ellipse within the Button).

The Role of Routed Tunneling Events
Strictly speaking, routed events can be bubbling (as just described) or tunneling in nature. Tunneling events
(which all begin with the Preview suffix—e.g., PreviewMouseDown) drill down from the topmost element into
the inner scopes of the object tree. By and large, each bubbling event in the WPF base class libraries is paired
with a related tunneling event that fires before the bubbling counterpart. For example, before the bubbling
MouseDown event fires, the tunneling PreviewMouseDown event fires first.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1185

Handling a tunneling event looks just like the processing of handling any other events; simply assign the
event handler name in XAML (or, if needed, use the corresponding C# event-handling syntax in your code file)
and implement the handler in the code file. Just to illustrate the interplay of tunneling and bubbling events,
begin by handling the PreviewMouseDown event for the outerEllipse object, like so:

<Ellipse Name = "outerEllipse" Fill ="Green" Height ="25"
 MouseDown ="outerEllipse_MouseDown"
 PreviewMouseDown ="outerEllipse_PreviewMouseDown"
 Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>

Next, retrofit the current C# class definition by updating each event handler (for all objects) to append
data about the current event into a string member variable named mouseActivity, using the incoming
event args object. This will allow you to observe the flow of events firing in the background.

public partial class MainWindow : Window
{
 string _mouseActivity = string.Empty;
 public MainWindow()
 {
 InitializeComponent();
 }

 public void btnClickMe_Clicked(object sender, RoutedEventArgs e)
 {
 AddEventInfo(sender, e);
 MessageBox.Show(_mouseActivity, "Your Event Info");

 // Clear string for next round.
 _mouseActivity = "";
 }

 private void AddEventInfo(object sender, RoutedEventArgs e)
 {
 _mouseActivity += string.Format(
 "{0} sent a {1} event named {2}.\n", sender,
 e.RoutedEvent.RoutingStrategy,
 e.RoutedEvent.Name);
 }

 private void outerEllipse_MouseDown(object sender, MouseButtonEventArgs e)
 {
 AddEventInfo(sender, e);
 }

 private void outerEllipse_PreviewMouseDown(object sender, MouseButtonEventArgs e)
 {
 AddEventInfo(sender, e);
 }
}

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1186

Notice that you are not halting the bubbling of an event for any event handler. If you run this
application, you will see a unique message box display based on where you click the button. Figure 27-22
shows the result of clicking the outer Ellipse object.

Figure 27-22. Tunneling first, bubbling second

So, why do WPF events typically tend to come in pairs (one tunneling and one bubbling)? The answer is
that by previewing events, you have the power to perform any special logic (data validation, disable bubbling
action, etc.) before the bubbling counterpart fires. By way of an example, assume you have a TextBox that
should contain only numerical data. You could handle the PreviewKeyDown event, and if you see the user has
entered nonnumerical data, you could cancel the bubbling event by setting the Handled property to true.

As you would guess, when you are building a custom control that contains custom events, you could
author the event in such a way that it can bubble (or tunnel) through a tree of XAML. For the purpose of this
chapter, I will not be examining how to build custom routed events (however, the process is not that different
from building a custom dependency property). If you are interested, check out the topic “Routed Events
Overview” within the .NET Framework 4.5 SDK documentation. In it you will find a number of tutorials that
will help you on your way.

 ■ Source Code the WPFroutedEvents project is included in the Chapter 27 subdirectory.

A Deeper Look at WPF APIs and Controls
The remainder of this chapter will give you a chance to build a brand-new WPF application using Visual
Studio. The goal is to create a UI that consists of a TabControl widget containing a set of tabs. Each tab
will illustrate some new WPF controls and interesting APIs you might want to make use of in your software
projects. Along the way, you will also learn additional features of the Visual Studio WPF designers.

Working with the TabControl
To get started, create a new WPF application named WpfControlsAndAPIs. As mentioned, your initial
window will contain a TabControl with four different tabs, each of which shows off a set of related controls
and/or WPF APIs. Locate the TabControl control in the Visual Studio toolbox, drop one onto your designer,
resize the component to take up a majority of the display area, and rename this UI element to myTabSystem.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1187

You will notice that you are given two tab items automatically. In order to add additional tabs, you
simply need to right-click the TabControl node in the Document Outline window and select the Add
TabItem menu option (you can also right-click the TabControl on the designer to activate the same menu
option). Add two additional tabs using either approach (Figure 27-23 shows the Designer approach).

Figure 27-23. Visually adding TabItems

Now, select each TabItem control (on the designer or via the Document Outline window) and change
the Header property for each tab, naming them Ink API, Documents, Data Binding, and DataGrid. At this
point, your window designer should look like what you see in Figure 27-24.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1188

Now click each tab again and use the Properties window to give each tab a unique, proper name. Be
aware that when you select a tab for editing, that tab becomes the active tab, and you can design that tab by
dragging controls from the Toolbox window. Before you begin to design each tab, take a peek at the XAML
that the IDE generates on your behalf. You should see markup similar to the following (your markup might
differ based on the properties you set):

<TabControl x:Name="myTabControl" HorizontalAlignment="Left" Height="280"
 Margin="10,10,0,0" VerticalAlignment="Top" Width="489">
 <TabItem Header="Ink API">
 <Grid Background="#FFE5E5E5"/>
 </TabItem>
 <TabItem Header="Documents">
 <Grid Background="#FFE5E5E5"/>
 </TabItem>
 <TabItem Header="Data Binding" HorizontalAlignment="Left" Height="20"
 VerticalAlignment="Top" Width="95" Margin="-2,-2,-36,0">
 <Grid Background="#FFE5E5E5"/>
 </TabItem>
 <TabItem Header="DataGrid" HorizontalAlignment="Left" Height="20"
 VerticalAlignment="Top" Width="74" Margin="-2,-2,-15,0">
 <Grid Background="#FFE5E5E5"/>
 </TabItem>
</TabControl>

Now that you have the core TabControl defined, you can work out the details tab by tab, and learn more
features of the WPF API along the way.

Figure 27-24. The initial layout of the tab system

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1189

Building the Ink API Tab
The first tab shows the overall role of WPF’s digital Ink API, which allows you to incorporate painting
functionality into a program easily. Of course, the application does not literally need to be a painting
application; you can use this API for a wide variety of purposes, including capturing handwriting input with
a stylus for a Tablet PC.

Begin by locating the node that represents the Ink API tab in your Document Outline area and expand
it. You should see that the default layout manager for this TabItem is a <Grid>. Right-click this and change it
to a StackPanel (see Figure 27-25).

Figure 27-25. Changing the layout manager of the first tab item

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1190

Designing the ToolBar
Ensure that the StackPanel is the currently selected node in the Document Outline editor and insert a
new ToolBar control named inkToolbar. Next, select the inkToolbar for editing and set the Height of
the Toolbar control to 60 (the current Width value should be fine). Now find the Common section of the
Properties window and click the ellipse button for the Items (Collection) property (see Figure 27-26).

Figure 27-26. Populating the ToolBar with items begins here

After you click this button, you are presented with a dialog box that allows you to select the controls you
want to add to the ToolBar. Click the drop-down list box on the bottom center of the dialog, and add three
RadioButton controls. You can use the embedded Properties editor of this dialog to give each RadioButton
a Height of 50 and a Width of 100 (again, you can find these properties in the Layout area). Also, set the
Content property (located in the Common area) of each RadioButton to the values Ink Mode!, Erase Mode!,
and Select Mode! (see Figure 27-27).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1191

After you add your three RadioButton controls, add a Separator control using the drop-down list of the
Items editor. Now you need to add the final ComboBox (not ComboBoxItem) control listed in the drop-down.
When you need to insert nonstandard controls using the Items dialog, just select the <Other Type> option
from the drop-down. This opens the Select Object editor, where you can type in the name of the control you
want. Make sure the Show all assemblies option is checked, and then do a search for your control of interest
(see Figure 27-28).

Figure 27-27. Configuring each RadioButton

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1192

Set the Width property of the ComboBox to 100 and add three ComboBoxItem objects to the ComboBox
using the Items (Collection) property (again) in the Common section of the Properties editor. Set the
Content property of each ComboBoxItem to the strings Red, Green, and Blue.

After you do this, close the editor to return to the window designer. The last task for this section is to
use the Name property to assign variable names to your new items. Name your three RadioButton controls
inkRadio, selectRadio, and eraseRadio. Also, name your ComboBox control comboColors. When all is said
and done, the XAML for your first TabItem control should look similar to the following (you might need to
adjust the width and height):

<TabItem Header="Ink API">
 <StackPanel Background="#FFE5E5E5">
 <ToolBar x:Name="inkToolbar" HorizontalAlignment="Left" Width="479" Height="60">
 <RadioButton x:Name="inkRadio" Content="Ink Mode!" Height="50" Width="100"/>
 <RadioButton x:Name="selectRadio" Content="Erase Mode!" Height="50" Width="100"/>
 <RadioButton x:Name="eraseRadio" Content="Select Mode!" Height="50" Width="100"/>
 <Separator/>
 <ComboBox x:Name="comboColors" Width="100">
 <ComboBoxItem Content="Red"/>
 <ComboBoxItem Content="Green"/>
 <ComboBoxItem Content="Blue"/>
 </ComboBox>
 </ToolBar>
 </StackPanel>
</TabItem>

Figure 27-28. Using the Select Object editor to add unique items to the toolbar

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1193

 ■ Note As you built your toolbar using the IDE, you might have thought to yourself how much quicker your
task would be if you could simply edit the XAMl by hand. If you feel comfortable typing in the markup directly,
you are certainly free to do so. However, I do encourage you to spend time becoming comfortable with the
Visual Studio WPF Properties editor. As you will see, a number of advanced features are exposed via this editor.

The RadioButton Control
In this example, you want these three RadioButton controls to be mutually exclusive. In other GUI
frameworks, ensuring that a group of related controls (such as radio buttons) were mutually exclusive
required that you place them in the same group box. You don’t need to do this under WPF. Instead, you can
simply assign them all to the same group name. This is helpful because the related items do not need to be
physically collected in the same area, but can be anywhere in the window.

Do this by selecting each RadioButton on the designer (you can select all three using a Shift-Click
operation), and then setting the GroupName property (located in the Common Properties area of the
Properties window) to InkMode.

When a RadioButton control is not placed inside of a parent panel control, it will take on a UI identical
to a Button control! However, unlike a Button, the RadioButton class includes an IsChecked property,
which toggles between true and false when the end user clicks the UI element. Furthermore, RadioButton
provides two events (Checked and Unchecked) that you can use to intercept this state change.

To configure your RadioButton controls to look like typical radio buttons, select each control on the
designer using a Shift+Click operation, then right-click the selection and pick the Group Into Border menu
option (see Figure 27-29).

Figure 27-29. Grouping items in a Border control

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1194

At this point, you’re ready to test the program, which you can do by pressing the F5 key. You should now
see three mutually exclusive radio buttons and a combo box with three selections (see Figure 27-30).

Handling Events for the Ink API Tab
The next step for the Ink API tab is to handle the Click event for each RadioButton control. As you have
done in other WPF projects in this book, simply select the Lightning Bolt button of the Visual Studio
Properties editor to enter the names of event handlers. Using this approach, route the Click event for each
button to the same handler, named RadioButtonClicked. After you handle all three Click events, handle
the SelectionChanged event of the ComboBox using a handler named ColorChanged. When you finish, you
should have the following C# code:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 this.InitializeComponent();

 // Insert code required on object creation below this point.
 }
 private void RadioButtonClicked(object sender,RoutedEventArgs e)
 {
 // TODO: Add event handler implementation here.
 }

Figure 27-30. The completed toolbar system

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1195

 private void ColorChanged(object sender,SelectionChangedEventArgs e)
 {
 // TODO: Add event handler implementation here.
 }
}

You will implement these handlers in a later step, so leave them empty for the time being.

The InkCanvas Control
To finish the UI of this tab, you need to place an InkCanvas control into the StackPanel so it appears below
the Toolbar you just created. Unfortunately, the Visual Studio toolbox will not show you every possible WPF
component by default. While you could simply type in the necessary XAML, you should know that you can
indeed update the items to be displayed in the toolbox.

To do so, right-click anywhere in the Toolbox area and select the Choose Items menu option. After a
moment or two, you will see a list of possible components to add to the toolbox. For your purposes, you are
interested in adding the InkCanvas control (see Figure 27-31).

Figure 27-31. Adding new components to the Visual Studio toolbox

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1196

Select the StackPanel for the tabInk object in the Document Outline editor, and then add an InkCanvas
named myInkCanvas. Resize this new control so that it takes up a majority of the tab area. Also, you might
opt to use the Brushes editor to give your InkCanvas a unique background color (you’ll learn much more
about the Brushes editor in the next chapter). After you do this, run your program by pressing the F5 key.
You will see that the canvas is already able to draw data when you click-and-drag the left-mouse button
(see Figure 27-32).

Figure 27-32. The InkCanvas in action

The InkCanvas does more than draw mouse (or stylus) strokes; it also supports a number of unique
editing modes, controlled by the EditingMode property. You can assign this property any value from the
related InkCanvasEditingMode enumeration. For this example, you are interested in Ink mode, which is the
default option you just witnessed; Select mode, which allows the user to select a region with the mouse to
move or resize; and EraseByStoke, which will delete the previous mouse stroke.

 ■ Note A stroke is the rendering that takes place during a single mouse down/mouse up operation. the
InkCanvas stores all strokes in a StrokeCollection object, which you can access using the Strokes property.

Update your RadioButtonClicked() hander with the following logic, which places the InkCanvas in the
correct mode, based on the selected RadioButton:

private void RadioButtonClicked(object sender,RoutedEventArgs e)
{
 // Based on which button sent the event, place the InkCanvas in a unique
 // mode of operation.
 switch((sender as RadioButton)?.Content.ToString())
 {
 // These strings must be the same as the Content values for each
 // RadioButton.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1197

 case "Ink Mode!":
 this.myInkCanvas.EditingMode = InkCanvasEditingMode.Ink;
 break;

 case "Erase Mode!":
 this.myInkCanvas.EditingMode = InkCanvasEditingMode.EraseByStroke;
 break;

 case "Select Mode!":
 this.myInkCanvas.EditingMode = InkCanvasEditingMode.Select;
 break;
 }
}

Also, set the mode to Ink by default in the window’s constructor. And while you are at it, set a default
selection for the ComboBox (more details on this control in the next section), as follows:

public MainWindow()
{
 this.InitializeComponent();

 // Be in Ink mode by default.
 this.myInkCanvas.EditingMode = InkCanvasEditingMode.Ink;
 this.inkRadio.IsChecked = true;
 this.comboColors.SelectedIndex = 0;
}

Now run your program again by pressing F5. Enter Ink mode and draw some data. Next, enter Erase
mode and remove the previous mouse stroke you entered (you’ll notice the mouse icon automatically looks
like an eraser). Finally, enter Select mode and select some strokes by using the mouse as a lasso.

After you circle the item, you can move it around the canvas and resize its dimensions. Figure 27-33
shows your edit modes at work.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1198

The ComboBox Control
After you populate a ComboBox control (or a ListBox), you have three ways to determine the selected item.
First, if you want to find the numerical index of the item selected, you can use the SelectedIndex property
(which is zero-based; a value of -1 represents no selection). Second, if you want to obtain the object within
the list that has been selected, the SelectedItem property fits the bill. Third, the SelectedValue allows you
to obtain the value of the selected object (typically obtained using a call to ToString()).

You need to add the last bit of code for this tab to change the color of the strokes entered on the
InkCanvas. The DefaultDrawingAttributes property of InkCanvas returns a DrawingAttributes object that
allows you to configure numerous aspect of the pen nib, including its size and color (among other settings).
Update your C# code with this implementation of the ColorChanged() method:

private void ColorChanged(object sender, SelectionChangedEventArgs e)
{
 // Get the selected value in the combo box.
 string colorToUse =
 (this.comboColors.SelectedItem as ComboBoxItem)?.Content.ToString();

 // Change the color used to render the strokes.
 this.myInkCanvas.DefaultDrawingAttributes.Color =
 (Color)ColorConverter.ConvertFromString(colorToUse);
}

Figure 27-33. The InkCanvas in action, with edit modes!

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1199

Now recall that the ComboBox has a collection of ComboBoxItems. If you view the generated XAML, you’ll
see the following definition:

<ComboBox x:Name="comboColors" Width="100" SelectionChanged="ColorChanged">
 <ComboBoxItem Content="Red"/>
 <ComboBoxItem Content="Green"/>
 <ComboBoxItem Content="Blue"/>
</ComboBox>

When you call SelectedItem, you grab the selected ComboBoxItem, which is stored as a general Object.
After you cast the Object as a ComboBoxItem, you pluck out the value of the Content, which will be the string
Red, Green, or Blue. This string is then converted to a Color object using the handy ColorConverter utility
class. Now run your program again. You should be able to change between colors as you render your image.

Note that the ComboBox and ListBox controls can contain complex content as well, rather than a list of
text data. You can get a sense of some of the things that are possible by opening the XAML editor for your
window and changing the definition of your ComboBox so it contains a set of <StackPanel> elements, each of
which contains an <Ellipse> and a <Label> (notice that the Width of the ComboBox is 200).

<ComboBox x:Name="comboColors" Width="200" SelectionChanged="ColorChanged">
 <StackPanel Orientation ="Horizontal" Tag="Red">
 <Ellipse Fill ="Red" Height ="50" Width ="50"/>
 <Label FontSize ="20" HorizontalAlignment="Center"
 VerticalAlignment="Center" Content="Red"/>
 </StackPanel>

 <StackPanel Orientation ="Horizontal" Tag="Green">
 <Ellipse Fill ="Green" Height ="50" Width ="50"/>
 <Label FontSize ="20" HorizontalAlignment="Center"
 VerticalAlignment="Center" Content="Green"/>
 </StackPanel>

 <StackPanel Orientation ="Horizontal" Tag="Blue">
 <Ellipse Fill ="Blue" Height ="50" Width ="50"/>
 <Label FontSize ="20" HorizontalAlignment="Center"
 VerticalAlignment="Center" Content="Blue"/>
 </StackPanel>
</ComboBox>

Notice that each StackPanel assigns a value to its Tag property, which is a simple, fast, and convenient
way to discover which stack of items has been selected by the user (there are better ways to do this, but this
will do for now). With this adjustment, you need to change the implementation of your ColorChanged()
method, like this:

private void ColorChanged(object sender, SelectionChangedEventArgs e)
{
 // Get the Tag of the selected StackPanel.
 string colorToUse = (this.comboColors.SelectedItem
 as StackPanel).Tag.ToString();
 ...
}

Now run your program again and take note of your unique ComboBox (see Figure 27-34).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1200

Saving, Loading, and Clearing InkCanvas Data
The last part of this tab will enable you to save and load your canvas data, as well as clear it of all content.
At this point in the chapter, you might feel a bit more comfortable designing a UI, so the instructions will be
short and sweet.

Begin by importing the System.IO and System.Windows.Ink namespaces to your code file. Now add
three more Button controls to your ToolBar named btnSave, btnLoad, and btnClear. Next, handle the Click
event for each control, then implement the handlers, like this:

private void SaveData(object sender, RoutedEventArgs e)
{
 // Save all data on the InkCanvas to a local file.
 using (FileStream fs = new FileStream("StrokeData.bin", FileMode.Create))
 {
 this.myInkCanvas.Strokes.Save(fs);
 fs.Close();
 }
}

private void LoadData(object sender, RoutedEventArgs e)
{
 // Fill StrokeCollection from file.
 using(FileStream fs = new FileStream("StrokeData.bin",
 FileMode.Open, FileAccess.Read))
 {
 StrokeCollection strokes = new StrokeCollection(fs);
 this.myInkCanvas.Strokes = strokes;
 }
}

Figure 27-34. A custom ComboBox, thanks to the WPF content model

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1201

 private void Clear(object sender, RoutedEventArgs e)
 {
 // Clear all strokes.
 this.myInkCanvas.Strokes.Clear();
}

You should now be able to save your data to a file, load it from the file, and clear the InkCanvas of all
data. That wraps up the first tab of the TabControl, as well as your examination of the WPF digital Ink API.
To be sure, there is more to say about this technology; however, you should be in a good position to dig into
the topic further if that interests you. Next, you will learn how to use the WPF Documents API.

Introducing the Documents API
WPF ships with many controls that allow you to capture or display simple blurbs of textual data, including
Label, TextBox, TextBlock, and PasswordBox. These controls are useful, but some WPF applications require
the use of sophisticated, highly formatted text data, similar to what you might find in an Adobe PDF file. The
Documents API of WPF provides such functionality; however, it uses the XML Paper Specification (XPS)
format rather than the PDF file format.

You can use the Documents API to construct a print-ready document by leveraging several classes from
the System.Windows.Documents namespace. Here you will find a number of types that represent pieces of a
rich XPS document, such as List, Paragraph, Section, Table, LineBreak, Figure, Floater, and Span.

Block Elements and Inline Elements
Formally speaking, the items you add to an XPS document belong to one of two broad categories: block
elements and inline elements. This first category, block elements, consists of classes that extend the
System.Windows.Documents.Block base class. Examples of block elements include List, Paragraph,
BlockUIContainer, Section, and Table. You use classes from this category to group together other
content (e.g., a list containing paragraph data, and a paragraph containing subparagraphs for different text
formatting).

The second category, inline elements, consists of classes that extend the System.Windows.Documents.Inline
base class. You nest inline elements within another block item (or possibly within another inline element
inside a block element). Some common inline elements include Run, Span, LineBreak, Figure, and Floater.

These classes possess names that you might encounter when building a rich document with a
professional editor. As with any other WPF control, you can configure these classes in XAML or through
code. Therefore, you can either declare an empty <Paragraph> element that is populated at runtime (you’ll
see how to do such tasks in this example) or define a populated <Paragraph> element with static text.

Document Layout Managers
You might think you can simply place inline and block elements directly into a panel container such as a
Grid; however, you need to wrap them in a <FlowDocument> element or a <FixedDocument> element.

It is ideal to place items in a FlowDocument when you want to let your end user change the way the
data is presented on the computer screen. The user can do this by zooming text or changing how the data
is presented (e.g., a single long page or a pair of columns). You’re better off using FixedDocument for true
print-ready (WYSIWYG), unchangeable document data.

For this example, you will only concern yourself with the FlowDocument container. After you insert
inline and block items to your FlowDocument, the FlowDocument object is placed in one of four specialized
XPS-aware layout managers, listed in Table 27-4.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1202

The most feature-rich way to display a FlowDocument is to wrap it within a FlowDocumentReader
manager. When you do this, the user can alter the layout, search for words in the document, and
zoom in on the data using the provided UI. The one limitation of this container (as well as of
FlowDocumentScrollViewer and FlowDocumentPageViewer) is that the content you display with it is read-
only. However, if you do want to allow the end user to enter new information to the FlowDocument, you can
wrap it in a RichTextBox control.

Building the Documents Tab
Click the Documents tab of your TabItem and use the designer to open this control for editing. You should
already have a default <Grid> control as the direct child of the TabItem control; however, change it to a
StackPanel here using the Document Outline window. This tab will be used to display a FlowDocument that
allows the user to highlight selected text, as well as add annotations using the Sticky Notes API.

Begin by defining the following ToolBar control, which has three simple (and unnamed!) Button
controls. You will be rigging up a few new commands to these controls later on, so you do not need to refer to
them in code (feel free to enter the XAML directly, or use the IDE if you prefer).

<TabItem x:Name="tabDocuments" Header="Documents" VerticalAlignment="Bottom"
 Height="20">
 <StackPanel>
 <ToolBar>
 <Button BorderBrush="Green" Content="Add Sticky Note"/>
 <Button BorderBrush="Green" Content="Delete Sticky Notes"/>
 <Button BorderBrush="Green" Content="Highlight Text"/>
 </ToolBar>
 </StackPanel>
</TabItem>

If you want, you can update the toolbox of Visual Studio to include a FlowDocumentReader control
(using the same technique as you did when adding the InkCanvas), or update the current TabItem manually
using the XAML editor.

Table 27-4. XPS Control Layout Managers

Panel Control Meaning in Life

FlowDocumentReader Displays data in a FlowDocument and adds support for zooming, searching,
and content layout in various forms.

FlowDocumentScrollViewer Displays data in a FlowDocument; however, the data is presented as a
single document viewed with scrollbars. This container does not support
zooming, searching, or alternative layout modes.

RichTextBox Displays data in a FlowDocument and adds support for user editing.

FlowDocumentPageViewer Displays the document page by page, one page at a time. Data can also be
zoomed, but not searched.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1203

In either case, add a FlowDocumentReader into your StackPanel, rename it to myDocumentReader, and
stretch it out over the surface of your StackPanel. To this new component, add an empty <FlowDocument>.

<FlowDocumentReader x:Name="myDocumentReader" Height="269.4">
 <FlowDocument/>
</FlowDocumentReader>

At this point, you can add document classes (e.g., List, Paragraph, Section, Table, LineBreak, Figure,
Floater, and Span) to the <FlowDocument> element. Here is one possible way to configure the FlowDocument:

<FlowDocumentReader x:Name="myDocumentReader" Height="269.4">
 <FlowDocument>
 <Section Foreground = "Yellow" Background = "Black">
 <Paragraph FontSize = "20">
 Here are some fun facts about the WPF Documents API!
 </Paragraph>
 </Section>
 <List/>
 <Paragraph/>
</FlowDocument>
</FlowDocumentReader>

If you run your program now (hit the F5 key), you should already be able to zoom your document (using
the lower-right slider bar), search for a keyword (using the lower-left search editor), and display the data in
one of three manners (using the layout buttons).

Before moving to the next step, you might want to edit your XAML to use a different FlowDocument
container, such as the FlowDocumentScrollViewer or a RichTextBox, rather than the FlowDocumentReader.
After you have done this, run the application again and notice the different ways the document data is
handled. Be sure to roll back to the FlowDocumentReader type when you finish this task.

Populating a FlowDocument Using Code
Now, let’s build the List block and the remaining Paragraph block in code. This is important because you
might need to populate a FlowDocument based on user input, external files, database information, or what
have you. Before you do so, use the XAML editor to give the List and Paragraph elements proper names, so
you can access them in code.

<List x:Name="listOfFunFacts"/>
<Paragraph x:Name="paraBodyText"/>

In your code file, define a new private method named PopulateDocument(). This method first adds a
set of new ListItems to the List, each of which has a Paragraph with a single Run. Also, your helper method
dynamically builds a formatted paragraph using three separate Run objects, as in the following example:

private void PopulateDocument()
{
 // Add some data to the List item.
 this.listOfFunFacts.FontSize = 14;
 this.listOfFunFacts.MarkerStyle = TextMarkerStyle.Circle;
 this.listOfFunFacts.ListItems.Add(new ListItem(new
 Paragraph(new Run("Fixed documents are for WYSIWYG print ready docs!"))));

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1204

 this.listOfFunFacts.ListItems.Add(new ListItem(
 new Paragraph(new Run("The API supports tables and embedded figures!"))));
 this.listOfFunFacts.ListItems.Add(new ListItem(
 new Paragraph(new Run("Flow documents are read only!"))));
 this.listOfFunFacts.ListItems.Add(new ListItem(new Paragraph(new Run
 ("BlockUIContainer allows you to embed WPF controls in the document!")
)));

 // Now add some data to the Paragraph.
 // First part of sentence.
 Run prefix = new Run("This paragraph was generated ");

 // Middle of paragraph.
 Bold b = new Bold();
 Run infix = new Run("dynamically");
 infix.Foreground = Brushes.Red;
 infix.FontSize = 30;
 b.Inlines.Add(infix);

 // Last part of paragraph.
 Run suffix = new Run(" at runtime!");

 // Now add each piece to the collection of inline elements
 // of the Paragraph.
 this.paraBodyText.Inlines.Add(prefix);
 this.paraBodyText.Inlines.Add(infix);
 this.paraBodyText.Inlines.Add(suffix);
}

Make sure you call this method from your window’s constructor. After you do this, you can run the
application and see your new, dynamically generated document content, shown in Figure 27-35.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1205

Enabling Annotations and Sticky Notes
So far, so good. You can now build a document with interesting data using XAML and C# code; however,
you still need to address the three buttons on your toolbar for the Documents tab. WPF ships with a set of
commands that are used specifically with the Documents API. You can use these commands to allow the
user to select a part of a document for highlighting or to add sticky note annotations. Best of all, you can add
all of this with a few lines of code (and a tad of markup).

You can find the command objects for the Documents API bundled in the System.Windows.Annotations
namespace of PresentationFramework.dll. Thus, you need to define a custom XML namespace in the
opening element of the <Window> to use such objects in XAML (notice that the tag prefix is a), like so:

<Window
...
 xmlns:a=
 "clr-namespace:System.Windows.Annotations;assembly=PresentationFramework"
 x:Class="WpfControlsAndAPIs.MainWindow"
 x:Name="Window"
 Title="MainWindow"
 Width="856" Height="383" mc:Ignorable="d"
 WindowStartupLocation="CenterScreen" >
...
</Window>

Figure 27-35. The document reader control

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1206

Now update your three <Button> definitions to set the Command property to three of the supplied
annotation commands, as follows:

<ToolBar>
 <Button BorderBrush="Green" Content="Add Sticky Note"
 Command="a:AnnotationService.CreateTextStickyNoteCommand"/>
 <Button BorderBrush="Green" Content="Delete Sticky Notes"
 Command="a:AnnotationService.DeleteStickyNotesCommand"/>
 <Button BorderBrush="Green" Content="Highlight Text"
 Command="a:AnnotationService.CreateHighlightCommand"/>
</ToolBar>

The last thing you need to do is to enable annotation services for the FlowDocumentReader object, which
you named myDocumentReader. Add another private method in your class named EnableAnnotations(),
which is called from the constructor of the window. Now import the following namespaces:

using System.Windows.Annotations;
using System.Windows.Annotations.Storage;

Next, implement this method:

private void EnableAnnotations()
{
 // Create the AnnotationService object that works
 // with our FlowDocumentReader.
 AnnotationService anoService = new AnnotationService(myDocumentReader);

 // Create a MemoryStream that will hold the annotations.
 MemoryStream anoStream = new MemoryStream();

 // Now, create an XML-based store based on the MemoryStream.
 // You could use this object to programmatically add, delete,
 // or find annotations.
 AnnotationStore store = new XmlStreamStore(anoStream);

 // Enable the annotation services.
 anoService.Enable(store);
}

The AnnotationService class allows a given document layout manger to opt in to annotation support.
Before you call the Enable() method of this object, you need to provide a location for the object to store
annotation data, which in this example is a chunk of memory represented by a MemoryStream object. Notice
that you connect the AnnotationService object with the Stream using the AnnotationStore.

Now, run your application. When you select some text, you can click the Add Sticky Note button and
type in some information. Also, when you select some text, you can highlight data (the color is yellow by
default). Finally, you can delete created notes by selecting them and clicking the Delete Sticky Note button.
Figure 27-36 shows a test run.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1207

Saving and Loading a Flow Document
Let’s wrap up this look at the Documents API by looking at how simple it is to save a document out to
a file and to read a document in from a file. Recall that, unless you wrap your FlowDocument object in
a RichTextBox, the end user cannot edit the document; however, part of the document was created
dynamically at runtime, so you might like to save it for later use. The ability to load an XPS-style document
could also be useful in many WPF applications because you might want to define a blank document and
load it all on the fly.

This next snippet assumes you will add two new Buttons to the toolbar of the Documents tab, which
you declare like this (note that you did not handle any events in your markup):

<Button x:Name="btnSaveDoc" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Width="75" Content="Save Doc"/>
<Button x:Name="btnLoadDoc" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Width="75" Content="Load Doc"/>

Figure 27-36. Sticky notes!

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1208

Now, in the constructor of your window, author the following lambda expressions to save and load
the FlowDocument data (you’ll need to import the System.Windows.Markup namespace to gain access to the
XamlReader and XamlWriter classes):

public MainWindow()
{
...
 // Rig up some Click handlers for the save/load of the flow doc.
 btnSaveDoc.Click += (o, s) =>
 {
 using(FileStream fStream = File.Open(
 "documentData.xaml", FileMode.Create))
 {
 XamlWriter.Save(this.myDocumentReader.Document, fStream);
 }
 };

 btnLoadDoc.Click += (o, s) =>
 {
 using(FileStream fStream = File.Open("documentData.xaml", FileMode.Open))
 {
 try
 {
 FlowDocument doc = XamlReader.Load(fStream) as FlowDocument;
 this.myDocumentReader.Document = doc;
 }
 catch(Exception ex) {MessageBox.Show(ex.Message, "Error Loading Doc!");}
 }
 };
}

That is all you need to do to save the document (note that you did not save any annotations; however,
you can also accomplish that using annotation services). If you click your Save button, you will see a new
*.xaml file in your \bin\Debug folder. This file contains your document data.

That wraps up your look at the WPF Documents API. To be sure, there is more to this API than you have
seen here; but at this point, you know a good deal about the basics. To wrap up this chapter, you will look at a
handful of data-binding topics and complete the current application.

Introducing the WPF Data-Binding Model
Controls are often the target of various data-binding operations. Simply put, data binding is the act of
connecting control properties to data values that might change over the course of your application’s lifetime.
Doing so lets a user interface element display the state of a variable in your code. For example, you might use
data binding to accomplish the following:

•	 Check a CheckBox control based on a Boolean property of a given object.

•	 Display data in DataGrid objects from a relational database table.

•	 Connect a Label to an integer that represents the number of files in a folder.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1209

When you use the intrinsic WPF data-binding engine, you must be aware of the distinction between
the source and the destination of the binding operation. As you might expect, the source of a data-binding
operation is the data itself (e.g., a Boolean property or relational data), while the destination (target) is the UI
control property that uses the data content (e.g., a property on a CheckBox or TextBox control).

Truth be told, using the WPF data-binding infrastructure is always optional. If you were to roll your
own data-binding logic, the connection between a source and destination typically would involve handling
various events and authoring procedural code to connect the source and destination. For example, if
you had a ScrollBar on a window that needed to display its value on a Label type, you might handle the
ScrollBar’s ValueChanged event and update the Label’s content accordingly.

However, you can use WPF data binding to connect the source and destination directly in XAML (or use
C# code in your code file) without the need to handle various events or hard-code the connections between
the source and destination. Also, based on how you set up your data-binding logic, you can ensure that the
source and destination stay in sync if either of their values changes.

Building the Data Binding Tab
Using the Document Outline editor, change the Grid of your third tab to a StackPanel. Now, use the Toolbox
and Properties editor of Visual Studio to build the following initial layout:

<TabItem x:Name="tabDataBinding" Header="Data Binding">
 <StackPanel Width="250">
 <Label Content="Move the scroll bar to see the current value"/>

 <!-- The scrollbar's value is the source of this data bind. -->
 <ScrollBar x:Name="mySB" Orientation="Horizontal" Height="30"
 Minimum = "1" Maximum = "100" LargeChange="1" SmallChange="1"/>

 <!-- The label's content will be bound to the scroll bar! -->
 <Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue"
 BorderThickness="2" Content = "0"/>
 </StackPanel>
</TabItem>

Notice that the <ScrollBar> object (named mySB here) has been configured with a range between 1 and
100. The goal is to ensure that, as you reposition the thumb of the scrollbar (or click the left or right arrow),
the Label will automatically update with the current value. Currently, the Content property of the Label
control is set to the value "0"; however, you will change this via a data-binding operation.

Establishing Data Bindings Using Visual Studio
The glue that makes it possible to define a binding in XAML is the {Binding} markup extension. If you would
like to establish a binding between controls using Visual Studio, you can do so easily. For this example,
locate the Content property of the labelSBThumb Label object (in the Common area of the Properties
window) and click the small square next to the property to open a context menu. From here, select Create
Data Binding (see Figure 27-37).

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1210

Figure 27-37. Configuring a data-binding operation

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1211

Next, select the ElementName option from the Binding Type drop-down list, which will give you a list of
all items in your XAML file that can be selected as the source of the data-binding operation. In the Element
Name tree control, find your ScrollBar object (named mySB). In the Path tree, find the Value property
(see Figure 27-38). Click the OK button once you do this.

Figure 27-38. Selecting the source object and the property on the object

If you run your program again, you will find that the content of the label updates based on the scrollbar
value as you move the thumb! Now look at the following XAML the data-binding tool generated on your behalf:

<Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue" BorderThickness="2"
 Content = "{Binding Value, ElementName=mySB}"/>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1212

Note the value assigned to the Label’s Content property. Here, the ElementName value represents the
source of the data-binding operation (the ScrollBar object), while the first item after the Binding keyword
(Value) represents (in this case) the property of the element to obtain.

If you have worked with WPF data binding previously, you might expect to see the use of the Path
token to set the property to observe on the object. For example, the following markup would also update the
Label correctly:

<Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue"
 BorderThickness="2" Content = "{Binding Path=Value, ElementName=mySB }"/>

By default, the Path= aspect of the data-binding operation is omitted unless the property is a
subproperty of another object (e.g., myObject.MyProperty.Object2.Property2).

The DataContext Property
You can define a data-binding operation in XAML using an alternative format, where it is possible to break
out the values specified by the {Binding} markup extension by explicitly setting the DataContext property to
the source of the binding operation, as follows:

<!-- Breaking object/value apart via DataContext -->
<Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue"
 BorderThickness="2"
 DataContext = "{Binding ElementName=mySB}"
 Content = "{Binding Path=Value}" />

In the current example, the output would be identical if you were to modify the markup in this way.
Given this, you might wonder when you would want to set the DataContext property explicitly. Doing so can
be helpful because subelements can inherit its value in a tree of markup.

In this way, you can easily set the same data source to a family of controls, rather than having to repeat a
bunch of redundant "{Binding ElementName=X, Path=Y}" XAML values to multiple controls. For example,
assume you have added the following new Button to the <StackPanel> of this tab (you’ll see why it is so
large in just a moment):

<Button Content="Click" Height="140"/>

You could use Visual Studio to generate data bindings for multiple controls, but instead try entering the
modified markup manually using the XAML editor, like so:

<!-- Note the StackPanel sets the DataContext property. -->
<StackPanel Width="250" DataContext = "{Binding ElementName=mySB}">
 <Label Content="Move the scroll bar to see the current value"/>

 <ScrollBar Orientation="Horizontal" Height="30" Name="mySB"
 Maximum = "100" LargeChange="1" SmallChange="1"/>

 <!-- Now both UI elements use the scrollbar's value in unique ways. -->
 <Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue" BorderThickness="2"
 Content = "{Binding Path=Value}"/>

 <Button Content="Click" Height="200"
 FontSize = "{Binding Path=Value}"/>
</StackPanel>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1213

Here, you set the DataContext property on the <StackPanel> directly. Therefore, as you move the
thumb, you see not only the current value on the Label, but also see the font size of the Button grow and
shrink accordingly, based on the same value (see Figure 27-39 shows one possible output).

Figure 27-39. Binding the ScrollBar value to a Label and a Button

Data Conversion Using IValueConverter
The ScrollBar type uses a double to represent the value of the thumb, rather than an expected whole
number (e.g., an integer). Therefore, as you drag the thumb, you will find various floating-point numbers
displayed within the Label (e.g., 61.0576923076923). The end user would find this rather unintuitive because
he is most likely expecting to see whole numbers (e.g., 61, 62, and 63).

If you want to convert the value of a data-binding operation into an alternative format, you could create
a custom class that implements the IValueConverter interface of the System.Windows.Data namespace.
This interface defines two members that allow you to perform the conversion to and from the target and
destination (in the case of a two-way data binding). After you define this class, you can use it to qualify
further the processing of your data-binding operation.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1214

Assuming that you want to display whole numbers within the Label control, you can build the following
custom conversion class. Activate the Project Add Class menu and insert a class named MyDoubleConverter.
Next, add the following:

class MyDoubleConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 // Convert the double to an int.
 double v = (double)value;
 return (int)v;
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 // You won't worry about "two-way" bindings
 // here, so just return the value.
 return value;
 }
}

The Convert() method is called when the value is transferred from the source (the ScrollBar) to the
destination (the Text property of the TextBox). You will receive many incoming arguments, but you only
need to manipulate the incoming object for this conversion, which is the value of the current double. You
can use this type to cast the type into an integer and return the new number.

The ConvertBack() method will be called when the value is passed from the destination to the source
(if you have enabled a two-way binding mode). Here, you simply return the value straightaway. Doing
so lets you type a floating-point value into the TextBox (e.g., 99.9) and have it automatically convert to a
whole number value (e.g., 99) when the user tabs off the control. This “free” conversion happens due to the
fact that the Convert() method is called again, after a call to ConvertBack(). If you were simply to return
null from ConvertBack(), your binding would appear to be out of sync because the text box would still be
displaying a floating-point number.

Establishing Data Bindings in Code
With this class in place, you are ready to register your custom converter with any control that wishes to use it.
You could accomplish this exclusively in XAML; however, to do so, you would need to define some custom
object resources, which you will not learn how to do until the next chapter. For now, you can register your
data conversion class in code. Begin by cleaning up the current definition of the <Label> control in your data
binding tab, so that it no longer uses the {Binding} markup extension.

<Label x:Name="labelSBThumb" Height="30" BorderBrush="Blue"
 BorderThickness="2" Content = "0"/>

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1215

In your window’s constructor, call a new private helper function called SetBindings(). In this method,
add the following code (and make sure to call it from the constructor):

private void SetBindings()
{
 // Create a Binding object.
 Binding b = new Binding();

 // Register the converter, source, and path.
 b.Converter = new MyDoubleConverter();
 b.Source = this.mySB;
 b.Path = new PropertyPath("Value");

 // Call the SetBinding method on the Label.
 this.labelSBThumb.SetBinding(Label.ContentProperty, b);
}

The only part of this function that probably looks a bit off is the call to SetBinding(). Notice that
the first parameter calls a static, read-only field of the Label class named ContentProperty. As you will
learn later in this chapter, you are specifying what is known as a dependency property. For the time being,
just know that when you set bindings in code, the first argument will nearly always require you to specify
the name of the class that wants the binding (the Label, in this case), followed by a call to the underlying
property with the Property suffix. In any case, running the application illustrates that the Label only prints
out whole numbers.

Building the DataGrid Tab
The previous data-binding example illustrated how to configure two (or more) controls to participate in a
data-binding operation. While this is helpful, it is also possible to bind data from XML files, database data,
and in-memory objects. To complete this example, you will design the final tab of your tab control so it
displays data obtained from the Inventory table of the AutoLot database.

As with the other tabs, you begin by changing the current Grid to a StackPanel. Do this by directly
updating the XAML using Visual Studio. Now define a DataGrid control in your new StackPanel named
gridInventory, like so:

<TabItem x:Name="tabDataGrid" Header="DataGrid">
 <StackPanel>
 <DataGrid x:Name="gridInventory" Height="288"/>
 </StackPanel>
</TabItem>

Use NuGet package manager to add Entity Framework to your project. Next, reference the AutoLotDAL.dll
assembly you created in Chapter 23 (where you used the Entity Framework). This will update the app.config
file for Entity Framework except for the connection string. This you will have to add in manually. I’ve listed
the connection string for my machine here for your reference:

<connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=.\SQLEXPRESS2014;initial
catalog=AutoLot;integrated security=True;MultipleActiveResultSets=True;App=EntityFramework"
providerName="System.Data.SqlClient" />

</connectionStrings>

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1216

Open the code file for your window and add a final helper function called ConfigureGrid();make sure
you call this from your constructor. Assuming that you did import the AutoLotDAL namespace, all you need
to do is add a few lines of code, like so:

private void ConfigureGrid()
{
 using (var repo = new InventoryRepo())
 {
 // Build a LINQ query that gets back some data from the Inventory table.
 gridInventory.ItemsSource =
 repo.GetAll().Select(x=>new { x.CarId,x.Make,x.Color,x.PetName});
 }
}

Notice that you do not directly bind context.Inventories to the grid’s ItemsSource collection; instead,
you build a LINQ query that appears to ask for the same data in the entities. The reason for this approach:
the Inventory object set also contains additional EF (Entity Framework) properties that would appear on the
grid, but which don’t map to the physical database.

If you were to run the project as is, you would see an extremely plain grid. To make the grid a bit less
of an eyesore, use the Visual Studio Properties window to edit the Rows category of the DataGrid. At a
minimum, set the AlternationCount property to 2 and pick a custom brush using the integrated editor for
the AlternatingRowBackground and RowBackground properties. You can see the final tab for this example in
Figure 27-40.

Figure 27-40. The final tab of your project

That wraps up the current example. You’ll use some other controls in action during later chapters;
at this point, however, you should feel comfortable with the process of building UIs in Visual Studio and
manually using XAML and C# code.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1217

 ■ Source Code You can find the WpfControlsAndAPIs project in the Chapter 27 subdirectory.

Understanding the Role of Dependency Properties
Like any .NET API, WPF makes use of each member of the .NET type system (classes, structures, interfaces,
delegates, enumerations) and each type member (properties, methods, events, constant data, read-only
fields, etc.) within its implementation. However, WPF also supports a unique programming concept termed
a dependency property.

Like a “normal” .NET property (often termed a CLR property in the WPF literature), dependency
properties can be set declaratively using XAML or programmatically within a code file. Furthermore,
dependency properties (like CLR properties) ultimately exist to encapsulate data fields of a class and can be
configured as read-only, write-only, or read-write.

To make matters more interesting, in almost every case you will be blissfully unaware that you have
actually set (or accessed) a dependency property as opposed to a CLR property! For example, the Height
and Width properties that WPF controls inherit from FrameworkElement, as well as the Content member
inherited from ControlContent, are all, in fact, dependency properties.

<!-- Set three dependency properties! -->
<Button x:Name = "btnMyButton" Height = "50" Width = "100" Content = "OK"/>

Given all of these similarities, why does WPF define a new term for such a familiar concept? The answer
lies in how a dependency property is implemented within the class. You’ll see a coding example in just a
little bit; however, from a high level, all dependency properties are created in the following manner:

•	 First, the class that defined a dependency property must have DependencyObject in
its inheritance chain.

•	 A single dependency property is represented as a public, static, read-only field in the
class of type DependencyProperty. By convention, this field is named by suffixing the
word Property to the name of the CLR wrapper (see final bullet point).

•	 The DependencyProperty variable is registered via a static call to
DependencyProperty.Register(), which typically occurs in a static constructor or
inline when the variable is declared.

•	 Finally, the class will define a XAML-friendly CLR property, which makes calls to
methods provided by DependencyObject to get and set the value.

Once implemented, dependency properties provide a number of powerful features that are used by
various WPF technologies including data binding, animation services, styles, templates, and so forth. In a
nutshell, the motivation of dependency properties is to provide a way to compute the value of a property
based on the value of other inputs. Here is a list of some of these key benefits, which go well beyond those of
the simple data encapsulation found with a CLR property:

•	 Dependency properties can inherit their values from a parent element’s XAML
definition. For example, if you defined a value for the FontSize attribute in the opening
tag of a <Window>, all controls in that Window would have the same font size by default.

•	 Dependency properties support the ability to have values set by elements contained
within their XAML scope, such as a Button setting the Dock property of a DockPanel
parent. (Recall from Chapter 28 that attached properties do this very thing because
attached properties are a form of dependency properties.)

http://dx.doi.org/10.1007/978-1-4842-1332-2_27
http://dx.doi.org/10.1007/978-1-4842-1332-2_28

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1218

•	 Dependency properties allow WPF to compute a value based on multiple external
values, which can be very important for animation and data-binding services.

•	 Dependency properties provide infrastructure support for WPF triggers (also used
quite often when working with animation and data binding).

Now remember, in many cases you will interact with an existing dependency property in a manner
identical to a normal CLR property (thanks to the XAML wrapper). In the last section, which covered data
binding, you saw that if you need to establish a data binding in code, you must call the SetBinding()
method on the object that is the destination of the operation and specify the dependency property it will
operate on, like so:

private void SetBindings()
{
 Binding b = new Binding();
 b.Converter = new MyDoubleConverter();
 b.Source = this.mySB;
 b.Path = new PropertyPath("Value");

 // Specify the dependency property!
 this.labelSBThumb.SetBinding(Label.ContentProperty, b);
}

You will see similar code when you examine how to start an animation in code in Chapter 29.

// Specify the dependency property!
rt.BeginAnimation(RotateTransform.AngleProperty, dblAnim);

The only time you need to build your own custom dependency property is when you are authoring a
custom WPF control. For example, if you are building a UserControl that defines four custom properties and
you want these properties to integrate well within the WPF API, you should author them using dependency
property logic.

Specifically, if your properties need to be the target of a data-binding or animation operation, if the
property must broadcast when it has changed, if it must be able to work as a Setter in a WPF style, or if
it must be able to receive their values from a parent element, a normal CLR property will not be enough.
If you were to use a normal CLR property, other programmers may indeed be able to get and set a value;
however, if they attempt to use your properties within the context of a WPF service, things will not work as
expected. Because you can never know how others might want to interact with the properties of your custom
UserControl classes, you should get in the habit of always defining dependency properties when building
custom controls.

Examining an Existing Dependency Property
Before you learn how to build a custom dependency property, let’s take a look at how the Height property
of the FrameworkElement class has been implemented internally. The relevant code is shown here (with my
included comments):

// FrameworkElement is-a DependencyObject.
public class FrameworkElement : UIElement, IFrameworkInputElement,
 IInputElement, ISupportInitialize, IHaveResources, IQueryAmbient
{
...

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1219

 // A static read-only field of type DependencyProperty.
 public static readonly DependencyProperty HeightProperty;

 // The DependencyProperty field is often registered
 // in the static constructor of the class.
 static FrameworkElement()
 {
 ...
 HeightProperty = DependencyProperty.Register(
 "Height",
 typeof(double),
 typeof(FrameworkElement),
 new FrameworkPropertyMetadata((double) 1.0 / (double) 0.0,
 FrameworkPropertyMetadataOptions.AffectsMeasure,
 new PropertyChangedCallback(FrameworkElement.OnTransformDirty)),
 new ValidateValueCallback(FrameworkElement.IsWidthHeightValid));
 }

 // The CLR wrapper, which is implemented using
 // the inherited GetValue()/SetValue() methods.
 public double Height
 {
 get { return (double) base.GetValue(HeightProperty); }
 set { base.SetValue(HeightProperty, value); }
 }
}

As you can see, dependency properties require quite a bit of additional code from a normal CLR
property! And in reality, a dependency can be even more complex than what you see here (thankfully, many
implementations are simpler than Height).

First and foremost, remember that if a class wants to define a dependency property, it must have
DependencyObject in the inheritance chain because this is the class that defines the GetValue() and
SetValue() methods used in the CLR wrapper. Because FrameworkElement is-a DependencyObject, this
requirement is satisfied.

Next, recall that the entity that will hold the actual value of the property (a double in the case of Height)
is represented as a public, static, read-only field of type DependencyProperty. The name of this field should,
by convention, always be named by suffixing the word Property to the name of the related CLR wrapper,
like so:

public static readonly DependencyProperty HeightProperty;

Given that dependency properties are declared as static fields, they are typically created (and
registered) within the static constructor of the class. The DependencyProperty object is created via a call
to the static DependencyProperty.Register() method. This method has been overloaded many times;
however, in the case of Height, DependencyProperty.Register() is invoked as follows:

HeightProperty = DependencyProperty.Register(
 "Height",
 typeof(double),
 typeof(FrameworkElement),
 new FrameworkPropertyMetadata((double)0.0,

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1220

 FrameworkPropertyMetadataOptions.AffectsMeasure,
 new PropertyChangedCallback(FrameworkElement.OnTransformDirty)),
 new ValidateValueCallback(FrameworkElement.IsWidthHeightValid));

The first argument to DependencyProperty.Register() is the name of the normal CLR property on the
class (Height, in this case), while the second argument is the type information of the underlying data type it
is encapsulating (a double). The third argument specifies the type information of the class that this property
belongs to (FrameworkElement, in this case). While this might seem redundant (after all, the HeightProperty
field is already defined within the FrameworkElement class), this is a very clever aspect of WPF in that it
allows one class to register properties on another (even if the class definition has been sealed!).

The fourth argument passed to DependencyProperty.Register() in this example is what really
gives dependency properties their own unique flavor. Here, a FrameworkPropertyMetadata object is
passed that describes various details regarding how WPF should handle this property with respect to
callback notifications (if the property needs to notify others when the value changes) and various options
(represented by the FrameworkPropertyMetadataOptions enum) that control what is effected by the
property in question (Does it work with data binding?, Can it be inherited?, etc.). In this case, the constructor
arguments of FrameworkPropertyMetadata break down as so:

new FrameworkPropertyMetadata(
 // Default value of property.
 (double)0.0,

 // Metadata options.
 FrameworkPropertyMetadataOptions.AffectsMeasure,

 // Delegate pointing to method called when property changes.
 new PropertyChangedCallback(FrameworkElement.OnTransformDirty)
)

Because the final argument to the FrameworkPropertyMetadata constructor is a delegate, note
that its constructor parameter is pointing to a static method on the FrameworkElement class named
OnTransformDirty(). I won’t bother to show the code behind this method, but be aware that any time you
are building a custom dependency property, you can specify a PropertyChangedCallback delegate to point
to a method that will be called when your property value has been changed.

This brings me to the final parameter passed to the DependencyProperty.Register() method, a second
delegate of type ValidateValueCallback, which points to a method on the FrameworkElement class that is
called to ensure the value assigned to the property is valid.

new ValidateValueCallback(FrameworkElement.IsWidthHeightValid)

This method contains logic you might normally expect to find in the set block of a property (more
information on this point in the next section).

private static bool IsWidthHeightValid(object value)
{
 double num = (double) value;
 return ((!DoubleUtil.IsNaN(num) && (num >= 0.0))
 && !double.IsPositiveInfinity(num));
}

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1221

After the DependencyProperty object has been registered, the final task is to wrap the field within a
normal CLR property (Height, in this case). Notice, however, that the get and set scopes do not simply return
or set a class-level double-member variable, but do so indirectly using the GetValue() and SetValue()
methods from the System.Windows.DependencyObject base class, as follows:

public double Height
{
 get { return (double) base.GetValue(HeightProperty); }
 set { base.SetValue(HeightProperty, value); }
}

Important Notes Regarding CLR Property Wrappers
So, just to recap the story thus far, dependency properties look like normal everyday properties when you get
or set their values in XAML or code, but behind the scenes they are implemented with much more elaborate
coding techniques. Remember, the whole reason to go through this process is to build a custom control
that has custom properties that need to integrate with WPF services that demand communication with a
dependency property (e.g., animation, data binding, and styles).

Even though part of the implementation of a dependency property includes defining a CLR wrapper,
you should never put validation logic in the set block. For that matter, the CLR wrapper of a dependency
property should never do anything other than call GetValue() or SetValue().

The reason is that the WPF runtime has been constructed in such a way that when you write XAML that
seems to set a property, such as

<Button x:Name="myButton" Height="100" .../>

the runtime will completely bypass the set block of the Height property and directly call SetValue()! The
reason for this odd behavior has to do with a simple optimization technique. If the WPF runtime were to
call the set block of the Height property, it would have to perform runtime reflection to figure out where the
DependencyProperty field (specified by the first argument to SetValue()) is located, reference it in memory,
and so forth. The same story holds true if you were to write XAML that retrieves the value of the Height
property—GetValue() would be called directly.

Since this is the case, why do you need to build this CLR wrapper at all? Well, WPF XAML does not allow
you to call functions in markup, so the following markup would be an error:

<!-- Nope! Can't call methods in WPF XAML! -->
<Button x:Name="myButton" this.SetValue("100") .../>

In effect, when you set or get a value in markup using the CLR wrapper, think of it as a way to tell the
WPF runtime, “Hey! Go call GetValue()/SetValue() for me, since I can’t directly do it in markup!” Now,
what if you call the CLR wrapper in code like so:

Button b = new Button();
b.Height = 10;

In this case, if the set block of the Height property contained code other than a call to SetValue(), it
would execute because the WPF XAML parser optimization is not involved.

The basic rule to remember is that when registering a dependency property, use a ValidateValueCallback
delegate to point to a method that performs the data validation. This ensures that the correct behavior will occur,
regardless of whether you use XAML or code to get/set a dependency property.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1222

Building a Custom Dependency Property
If you have a slight headache at this point in the chapter, this is a perfectly normal response. Building
dependency properties can take some time to get used to. However, for better or worse, it is part of the
process of building many custom WPF controls, so let’s take a look at how to build a dependency property.

Begin by creating a new WPF application named CustomDepPropApp. Now, using the Project
menu, activate the Add User Control menu option, and create a control named ShowNumberControl.xaml
(see Figure 27-41).

Figure 27-41. Inserting a new custom UserControl

 ■ Note You will learn more details about the WPF UserControl in Chapter 29, so just follow along as shown
for now.

Just like a window, WPF UserControl types have a XAML file and a related code file. Update the XAML
of your user control to define a single Label control in the Grid, like so:

<UserControl x:Class="CustomDepPropApp.ShowNumberControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d=http://schemas.microsoft.com/expression/blend/2008

http://dx.doi.org/10.1007/978-1-4842-1332-2_29
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1223

 xmlns:local="clr-namespace:CustomDepPropApp"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>
 <Label x:Name="numberDisplay" Height="50" Width="200" Background="LightBlue"/>
 </Grid>
</UserControl>

In the code file of this custom control, create a normal, everyday .NET property that wraps an int and
sets the Content property of the Label with the new value, as follows:

public partial class ShowNumberControl : UserControl
{
 public ShowNumberControl()
 {
 InitializeComponent();
 }

 // A normal, everyday .NET property.
 private int _currNumber = 0;
 public int CurrentNumber
 {
 get { return _currNumber; }
 set
 {
 _currNumber = value;
 numberDisplay.Content = CurrentNumber.ToString();
 }
 }
}

Now, update the XAML definition of your window to declare an instance of your custom control within
a StackPanel layout manger. Because your custom control is not part of the core WPF assembly stack, you
will need to define a custom XML namespace that maps to your control. Here is the required markup:

<Window x:Class="CustomDepPropApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:myCtrls="clr-namespace:CustomDepPropApp"
 xmlns:local="clr-namespace:CustomDepPropApp"
 mc:Ignorable="d"
 Title="Simple Dependency Property App" Height="150" Width="250"
 WindowStartupLocation="CenterScreen">
 <StackPanel>
 <myCtrls:ShowNumberControl x:Name="myShowNumberCtrl" CurrentNumber="100"/>
 </StackPanel>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1224

As you can see, the Visual Studio designer appears to correctly display the value that you set in the
CurrentNumber property (see Figure 27-42).

Figure 27-42. It appears your property works as expected

However, what if you want to apply an animation object to the CurrentNumber property so that the value
changes from 100 to 200 over a period of 10 seconds? If you wanted to do so in markup, you might update
your <myCtrls:ShowNumberControl> scope as so:

<myCtrls:ShowNumberControl x:Name="myShowNumberCtrl" CurrentNumber="100">
 <myCtrls:ShowNumberControl.Triggers>
 <EventTrigger RoutedEvent = "myCtrls:ShowNumberControl.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard TargetProperty = "CurrentNumber">
 <Int32Animation From = "100" To = "200" Duration = "0:0:10"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </myCtrls:ShowNumberControl.Triggers>
</myCtrls:ShowNumberControl>

If you run your application, the animation object cannot find a proper target, so it is ignored. The reason
is that the CurrentNumber property has not been registered as a dependency property! To fix matters, return
to the code file of your custom control, and completely comment out the current property logic (including
the private backing field). Now, position your mouse cursor within the scope of the class and type in the
propdp code snippet. After you have typed propdp, press the Tab key twice. You will find the snippet expands
to give you the basic skeleton of a dependency property as follows:

public int MyProperty
{
 get { return (int)GetValue(MyPropertyProperty); }
 set { SetValue(MyPropertyProperty, value); }
}

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1225

// Using a DependencyProperty as the backing store for MyProperty. This enables animation,
styling, binding, etc...
public static readonly DependencyProperty MyPropertyProperty =
 DependencyProperty.Register("MyProperty", typeof(int), typeof(ownerclass), new
PropertyMetadata(0));

Update the entered template to match the following code:

public partial class ShowNumberControl : UserControl
{
 public int CurrentNumber
 {
 get { return (int)GetValue(CurrentNumberProperty); }
 set { SetValue(CurrentNumberProperty, value); }
 }

 public static readonly DependencyProperty CurrentNumberProperty =
 DependencyProperty.Register("CurrentNumber",
 typeof(int),
 typeof(ShowNumberControl),
 new UIPropertyMetadata(0));
 ...
}

This is similar to what you saw in the implementation of the Height property; however, the code
snippet registers the property inline rather than within a static constructor (which is fine). Also notice
that a UIPropertyMetadata object is used to define the default value of the integer (0) rather than the
more complex FrameworkPropertyMetadata object. This is the simplest version of CurrentNumber as a
dependency property.

Adding a Data Validation Routine
Although you now have a dependency property named CurrentNumber, you still won’t see your animation
take hold. The next adjustment you might want to make is to specify a function to call to perform some
data validation logic. For this example, assume that you need to ensure that the value of CurrentNumber is
between 0 and 500.

To do so, add a final argument to the DependencyProperty.Register() method of type
ValidateValueCallback, which points to a method named ValidateCurrentNumber.

ValidateValueCallback is a delegate that can only point to methods returning bool and take an
object as the only argument. This object represents the new value that is being assigned. Implement
ValidateCurrentNumber to return true or false, if the incoming value is within the expected range.

public static readonly DependencyProperty CurrentNumberProperty =
 DependencyProperty.Register("CurrentNumber",
 typeof(int),
 typeof(ShowNumberControl),
 new UIPropertyMetadata(100),
 new ValidateValueCallback(ValidateCurrentNumber));

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1226

public static bool ValidateCurrentNumber(object value)
{
 // Just a simple business rule. Value must be between 0 and 500.
 if (Convert.ToInt32(value) >= 0 && Convert.ToInt32(value) <= 500)
 return true;
 else
 return false;
}

Responding to the Property Change
Okay, so now you have a valid number, but still no animation. The final change you need to make is to
specify a second argument to the constructor of UIPropertyMetadata, which is a PropertyChangedCallback
object. This delegate can point to any method that takes a DependencyObject as the first parameter and a
DependencyPropertyChangedEventArgs as the second. First, update your code as so:

// Note the second param of UIPropertyMetadata construtor.
public static readonly DependencyProperty CurrentNumberProperty =
 DependencyProperty.Register("CurrentNumber", typeof(int), typeof(ShowNumberControl),
 new UIPropertyMetadata(100,
 new PropertyChangedCallback(CurrentNumberChanged)),
 new ValidateValueCallback(ValidateCurrentNumber));

Within the CurrentNumberChanged() method, your ultimate goal is to change the Content of the
Label to the new value assigned by the CurrentNumber property. You have one big problem, however:
the CurrentNumberChanged() method is static, as it must be to work with the static DependencyProperty
object. So how are you supposed to gain access to the Label for the current instance of ShowNumberControl?
That reference is contained in the first DependencyObject parameter. You can find the new value using the
incoming event arguments. Here is the necessary code that will change the Content property of the Label:

private static void CurrentNumberChanged(DependencyObject depObj,
 DependencyPropertyChangedEventArgs args)
{
 // Cast the DependencyObject into ShowNumberControl.
 ShowNumberControl c = (ShowNumberControl)depObj;

 // Get the Label control in the ShowNumberControl.
 Label theLabel = c.numberDisplay;

 // Set the Label with the new value.
 theLabel.Content = args.NewValue.ToString();
}

Whew! That was a long way to go just to change the output of a label. The benefit is that your
CurrentNumber dependency property can now be the target of a WPF style, an animation object, the target of
a data-binding operation, and so forth. If you run your application once again, you should now see the value
change during execution.

That wraps up your look at WPF dependency properties. While I hope you have a much better idea
about what these constructs allow you to do and have a better idea of how to make your own, please be
aware that there are many details I have not covered here.

CHAPtEr 27 ■ ProGrAMMInG WItH WPF ControlS

1227

If you find yourself in a position where you are building a number of custom controls that support
custom properties, please look up the topic “Properties” under the “WPF Fundamentals” node of the
.NET Framework 4.6 SDK documentation. In it you will find many more examples of building dependency
properties, attached properties, various ways to configure property metadata, and a slew of other details.

 ■ Source Code the CustomDepPropApp project is included in the Chapter 27 subdirectory.

Summary
This chapter examined several aspects of WPF controls, beginning with an overview of the control toolkit
and the role of layout managers (panels). The first example gave you a chance to build a simple word
processor application that illustrated the integrated spell-checking functionality of WPF, as well as how to
build a main window with menu systems, status bars, and toolbars.

More importantly, you examined how to use WPF commands. Recall that you can attach these control-
agnostic events to a UI element or an input gesture to inherit out-of-the-box services automatically (e.g.,
clipboard operations).

You also learned quite a bit about using Visual Studio to build out UIs via the integrated visual
designers. Specifically, you built a complex user interface using numerous aspects of the tool, and you
learned about the WPF Ink and Document APIs at the same time. You also received an introduction to WPF
data-binding operations, including how to use the WPF DataGrid class to display data from your custom
AutoLot database.

Finally, you investigated how WPF places a unique spin on traditional .NET programming primitives,
specifically properties and events. As you have seen, a dependency property allows you to build a property
that can integrate within the WPF set of services (animations, data bindings, styles, and so on). On a related
note, routed events provide a way for an event to flow up or down a tree of markup.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

1229

Chapter 28

WPF Graphics Rendering Services

In this chapter, we’ll examine the graphical rendering capabilities of WPF. As you’ll see, WPF provides three
separate ways to render graphical data: shapes, drawings, and visuals. After you understand the pros and
cons of each approach, you will start learning about the world of interactive 2D graphics using the classes
within System.Windows.Shapes. After this, you’ll see how drawings and geometries allow you to render
2D data in a more lightweight manner. And last but not least, you’ll learn how the visual layer gives you the
greatest level of power and performance.

Along the way, you will explore a number of related topics, such as the creation of custom brushes and
pens, how to apply graphical transformations to your renderings, and how to perform hit-test operations. In
particular, you’ll see how the integrated tools of Visual Studio, and an additional tool named Inkscape, can
simplify your graphical coding endeavors.

 ■ Note Graphics are a key aspect of WPF development. Even if you are not building a graphics-heavy
application (such as a video game or multimedia application), the topics in this chapter are critical when you
work with services such as control templates, animations, and data-binding customization.

Understanding WPF’s Graphical Rendering Services
WPF uses a particular flavor of graphical rendering that goes by the term retained-mode graphics. Simply
put, this means that since you are using XAML or procedural code to generate graphical renderings, it is the
responsibility of WPF to persist these visual items and ensure that they are correctly redrawn and refreshed
in an optimal manner. Thus, when you render graphical data, it is always present, even when the end user
hides the image by resizing or minimizing the window, by covering the window with another, and so forth.

In stark contrast, previous Microsoft graphical rendering APIs (including Windows Form’s GDI+) were
immediate-mode graphical systems. In this model, it was up to the programmer to ensure that rendered
visuals were correctly “remembered” and updated during the life of the application. For example, in a
Windows Forms application, rendering a shape such as a rectangle involved handling the Paint event
(or overriding the virtual OnPaint() method), obtaining a Graphics object to draw the rectangle and,
most important, adding the infrastructure to ensure that the image was persisted when the user resized
the window (for example, creating member variables to represent the position of the rectangle and calling
Invalidate() throughout your program).

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1230

The shift from immediate-mode to retained-mode graphics is indeed a good thing, as programmers
have far less grungy graphics code to author and maintain. However, I’m not suggesting that the WPF
graphics API is completely different from earlier rendering toolkits. For example, like GDI+, WPF supports
various brush types and pen objects, techniques for hit-testing, clipping regions, graphical transformations,
and so on. So, if you currently have a background in GDI+ (or C/C++-based GDI), you already know a good
deal about how to perform basic renderings under WPF.

WPF Graphical Rendering Options
As with other aspects of WPF development, you have a number of choices regarding how to perform
your graphical rendering, beyond the decision to do so via XAML or procedural C# code (or perhaps a
combination of both). Specifically, WPF provides the following three distinct ways to render graphical data:

•	 Shapes: WPF provides the System.Windows.Shapes namespace, which defines a
small number of classes for rendering 2D geometric objects (rectangles, ellipses,
polygons, etc.). While these types are very simple to use, and very powerful, they do
come with a fair amount of memory overhead if used with reckless abandon.

•	 Drawings and Geometries: The WPF API provides a second way to render graphical
data, using descendants from the System.Windows.Media.Drawing abstract class.
Using classes such as GeometryDrawing or ImageDrawing (in addition to various
geometry objects) you can render graphical data in a more lightweight (but less
feature-rich) manner.

•	 Visuals: The fastest and most lightweight way to render graphical data under WPF is
using the visual layer, which is accessible only through C# code. Using descendants
of System.Windows.Media.Visual, you can speak directly to the WPF graphical
subsystem.

The reason for offering different ways to do the exact same thing (i.e., render graphical data) has to do
with memory use and, ultimately, application performance. Because WPF is such a graphically intensive
system, it is not unreasonable for an application to render hundreds or even thousands of different images
on a window’s surface, and the choice of implementation (shapes, drawings, or visuals) could have a huge
impact.

Do understand that when you build a WPF application, chances are good you’ll use all three options. As
a rule of thumb, if you need a modest amount of interactive graphical data that can be manipulated by the
user (receive mouse input, display tooltips, etc.), you’ll want to use members in the System.Windows.Shapes
namespace.

In contrast, drawings and geometries are more appropriate when you need to model complex, generally
non-interactive, vector-based graphical data using XAML or C#. While drawings and geometries can still
respond to mouse events, hit-testing, and drag-and-drop operations, you will typically need to author more
code to do so.

Last but not least, if you require the fastest possible way to render massive amounts of graphical data,
the visual layer is the way to go. For example, let’s say you are using WPF to build a scientific application that
can plot out thousands of points of data. Using the visual layer, you can render the plot points in the most
optimal way possible. As you will see later in this chapter, the visual layer is only accessible via C# code, and
is not XAML-friendly.

No matter which approach you take (shapes, drawings and geometries, or visuals) you will make use
of common graphical primitives such as brushes (which fill interiors), pens (which draw exteriors), and
transformation objects (which, well, transform the data). To begin the journey, you will start working with
the classes of System.Windows.Shapes.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1231

 ■ Note WPF also ships with a full-blown aPi that can be used to render and manipulate 3d graphics, which is
not addressed in this edition of the text. Please consult the .nEt Framework 4.6 sdK documentation if you are
interested in incorporating 3d graphics into your applications.

Rendering Graphical Data Using Shapes
Members of the System.Windows.Shapes namespace provide the most straightforward, most interactive,
yet most memory-intensive way to render a two-dimensional image. This namespace (defined in the
PresentationFramework.dll assembly) is quite small and consists of only six sealed classes that extend the
abstract Shape base class: Ellipse, Rectangle, Line, Polygon, Polyline, and Path.

Create a new WPF Application named RenderingWithShapes, and change the title of MainWindow.xaml
to “Fun with Shapes!” Now, if you locate the abstract Shape class in the Visual Studio object browser (see
Figure 28-1) and expand each of the parent nodes, you can see that each descendant of Shape receives a
great deal of functionality up the inheritance chain.

Figure 28-1. The Shape base class receives a good deal of functionality from its parent classes

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1232

Now, given your work in the previous two chapters, some of these parent classes might ring a bell.
Recall, for example, that UIElement defines numerous methods to receive mouse input and deal with drag-
and-drop events, while FrameworkElement defines members to deal with sizing, tooltips, mouse cursors,
and whatnot. Given this inheritance chain, be aware that when you render graphical data using Shape-
derived classes, the objects are just about as functional (as far as user interactivity is concerned) as a WPF
control!

For example, determining whether the user has clicked on your rendered image is no more complicated
than handling the MouseDown event. By way of a simple example, if you authored this XAML of a Rectangle
object in the Grid of your initial Window

<Rectangle x:Name="myRect" Height="30" Width="30"
 Fill="Green" MouseDown="myRect_MouseDown"/>

you could implement a C# event handler for the MouseDown event that changes the rectangle’s background
color when clicked, like so:

private void myRect_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Change color of Rectangle when clicked.
 myRect.Fill = Brushes.Pink;
}

Unlike with other graphical toolkits you may have used, you do not need to author a ton of
infrastructure code that manually maps mouse coordinates to the geometry, manually calculates hit-testing,
renders to an off-screen buffer, and so forth. The members of System.Windows.Shapes simply respond to the
events you register with, just like a typical WPF control (e.g., Button, etc.).

The downside of all this out-of-the-box functionality is that the shapes do take up a fair amount of
memory. Again, if you’re building a scientific application that plots thousands of points on the screen, using
shapes would be a poor choice (essentially, it would be about as memory-intensive as rendering thousands
of Button objects!). However, when you need to generate an interactive 2D vector image, shapes are a
wonderful choice.

Beyond the functionality inherited from the UIElement and FrameworkElement parent classes,
Shape defines a number of members for each of the children; some of the more useful ones are shown in
Table 28-1.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1233

 ■ Note if you forget to set the Fill and Stroke properties, WPF will give you “invisible” brushes and,
therefore, the shape will not be visible on the screen!

Adding Rectangles, Ellipses, and Lines to a Canvas
Later in this chapter, you will learn to use Expression Design to generate XAML descriptions of graphical
data. For now, you will build a WPF application that can render shapes using XAML and C#, and while doing
so, learn a bit about the process of hit-testing. First, remove the current Rectangle description and the C#
event handler logic. Now, update the initial XAML of the <Window> to define a <DockPanel> containing a
(now empty) <ToolBar> and a <Canvas>. Note that each contained item has a fitting name via the Name
property.

<DockPanel LastChildFill="True">
 <ToolBar DockPanel.Dock="Top" Name="mainToolBar" Height="50">
 </ToolBar>
 <Canvas Background="LightBlue" Name="canvasDrawingArea"/>
</DockPanel>

Now, populate the <ToolBar> with a set of <RadioButton> objects, each of which contains a specific
Shape-derived class as content. Notice that each <RadioButton> is assigned to the same GroupName (to
ensure mutual exclusivity) and is also given a fitting name.

Table 28-1. Key Properties of the Shape Base Class

Properties Meaning in Life

DefiningGeometry Returns a Geometry object that represents the overall dimensions of the current
shape. This object contains only the plot points that are used to render the data,
and has no trace of the functionality from UIElement or FrameworkElement.

Fill Allows you to specify a “brush object” to render the interior portion of a shape.

GeometryTransform Allows you to apply transformations to a shape before it is rendered on the
screen. The inherited RenderTransform property (from UIElement) applies the
transformation after it has been rendered on the screen.

Stretch Describes how to fill a shape within its allocated space, such as its position
within a layout manager. This is controlled using the corresponding
System.Windows.Media.Stretch enumeration.

Stroke Defines a brush object, or in some cases, a pen object (which is really a brush in
disguise) that is used to paint the border of a shape.

StrokeDashArray,
StrokeEndLineCap,
StrokeStartLineCap,
StrokeThickness

These (and other) stroke-related properties control how lines are configured
when drawing the border of a shape. In a majority of cases, these properties will
configure the brush used to draw a border or line.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1234

<ToolBar DockPanel.Dock="Top" Name="mainToolBar" Height="50">
 <RadioButton Name="circleOption" GroupName="shapeSelection">
 <Ellipse Fill="Green" Height="35" Width="35" />
 </RadioButton>

 <RadioButton Name="rectOption" GroupName="shapeSelection">
 <Rectangle Fill="Red" Height="35"
 Width="35" RadiusY="10" RadiusX="10" />
 </RadioButton>
 <RadioButton Name="lineOption" GroupName="shapeSelection">
 <Line Height="35" Width="35"
 StrokeThickness="10" Stroke="Blue"
 X1="10" Y1="10" Y2="25" X2="25"
 StrokeStartLineCap="Triangle" StrokeEndLineCap="Round" />
 </RadioButton>
</ToolBar>

As you can see, declaring Rectangle, Ellipse, and Line objects in XAML is quite straightforward and
requires little comment. Recall that the Fill property is used to specify a brush to paint the interior of a
shape. When you require a solid-colored brush, just specify a hard-coded string of known values, and the
underlying type converter will generate the correct object. One interesting feature of the Rectangle type is
that it defines RadiusX and RadiusY properties to allow you to render curved corners.

Line represents its starting and end points using the X1, X2, Y1, and Y2 properties (given that height
and width make little sense when describing a line). Here you are setting up a few additional properties
that control how to render the starting and ending points of the Line, as well as how to configure the stroke
settings. Figure 28-2 shows the rendered toolbar, as seen through the Visual Studio WPF designer.

Figure 28-2. Using Shapes as content for a set of RadioButtons

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1235

Now, using the Properties window of Visual Studio, handle the MouseLeftButtonDown event for the
Canvas, and the Click event for each RadioButton. In your C# file, your goal is to render the selected shape
(a circle, square, or line) when the user clicks within the Canvas. First, define the following nested enum
(and corresponding member variable) within your Window-derived class:

public partial class MainWindow : Window
{
 private enum SelectedShape
 { Circle, Rectangle, Line }

 private SelectedShape _currentShape;
...
}

Within each Click event handler, set the currentShape member variable to the correct SelectedShape
value. For example, the following is the implementation code for the Click event of the circleOption
RadioButton. Implement the remaining two Click handlers in a similar manner.

private void circleOption_Click(object sender, RoutedEventArgs e)
{
 _currentShape = SelectedShape.Circle;
}

private void rectOption_Click(object sender, RoutedEventArgs e)
{
 _currentShape = SelectedShape.Rectangle;
}

private void lineOption_Click(object sender, RoutedEventArgs e)
{
 _currentShape = SelectedShape.Line;
}

With the MouseLeftButtonDown event handler of the Canvas, you will render out the correct shape
(of a predefined size), using the X,Y position of the mouse cursor as a starting point. Here is the complete
implementation, with analysis to follow:

private void canvasDrawingArea_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 Shape shapeToRender = null;

 // Configure the correct shape to draw.
 switch (_currentShape)
 {
 case SelectedShape.Circle:
 shapeToRender = new Ellipse() { Fill = Brushes.Green, Height = 35, Width = 35 };
 break;
 case SelectedShape.Rectangle:
 shapeToRender = new Rectangle()
 { Fill = Brushes.Red, Height = 35, Width = 35, RadiusX = 10, RadiusY = 10 };
 break;

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1236

 case SelectedShape.Line:
 shapeToRender = new Line()
 {
 Stroke = Brushes.Blue,
 StrokeThickness = 10,
 X1 = 0, X2 = 50, Y1 = 0, Y2 = 50,
 StrokeStartLineCap= PenLineCap.Triangle,
 StrokeEndLineCap = PenLineCap.Round
 };
 break;
 default:
 return;
}

// Set top/left position to draw in the canvas.
Canvas.SetLeft(shapeToRender, e.GetPosition(canvasDrawingArea).X);
Canvas.SetTop(shapeToRender, e.GetPosition(canvasDrawingArea).Y);

// Draw shape!
canvasDrawingArea.Children.Add(shapeToRender);
}

 ■ Note You might notice that the Ellipse, Rectangle, and Line objects being created in this method have
the same property settings as the corresponding XaML definitions! as you might hope, you can streamline this
code, but that requires an understanding of the WPF object resources, which you will examine in Chapter 29.

As you can see, you are testing the currentShape member variable to create the correct Shape-
derived object. After this point, you set the top-left value within the Canvas using the incoming
MouseButtonEventArgs. Last but not least, you add the new Shape-derived type to the collection of
UIElement objects maintained by the Canvas. If you run your program now, you should be able to click
anywhere in the canvas and see the selected shape rendered at the location of the left mouse-click.

Removing Rectangles, Ellipses, and Lines from a Canvas
With the Canvas maintaining a collection of objects, you might wonder how you can dynamically remove an
item, perhaps in response to the user right-clicking on a shape. You can certainly do this using a class in the
System.Windows.Media namespace called the VisualTreeHelper. Chapter 29 will explain the roles of “visual
trees” and “logical trees” in some detail. Until then, you can handle the MouseRightButtonDown event on
your Canvas object and implement the corresponding event handler like so:

private void canvasDrawingArea_MouseRightButtonDown(object sender, MouseButtonEventArgs e)
{
 // First, get the X,Y location of where the user clicked.
 Point pt = e.GetPosition((Canvas)sender);

 // Use the HitTest() method of VisualTreeHelper to see if the user clicked
 // on an item in the canvas.
 HitTestResult result = VisualTreeHelper.HitTest(canvasDrawingArea, pt);

http://dx.doi.org/10.1007/978-1-4842-1332-2_29
http://dx.doi.org/10.1007/978-1-4842-1332-2_29

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1237

 // If the result is not null, they DID click on a shape!
 if (result != null)
 {
 // Get the underlying shape clicked on, and remove it from
 // the canvas.
 canvasDrawingArea.Children.Remove(result.VisualHit as Shape);
 }
}

This method begins by obtaining the exact X,Y location the user clicked in the Canvas, and performs a
hit-test operation via the static VisualTreeHelper.HitTest() method. The return value, a HitTestResult
object, will be set to null if the user does not click on a UIElement within the Canvas. If HitTestResult is not
null, you can obtain the underlying UIElement that was clicked via the VisualHit property, which you are
casting into a Shape-derived object (remember, a Canvas can hold any UIElement, not just shapes!). Again,
you’ll get more details on exactly what a “visual tree” is in the next chapter.

 ■ Note By default, VisualTreeHelper.HitTest() returns the topmost UIElement clicked on, and does not
provide information on other objects below that item (e.g., objects overlapping by Z-order).

With this modification, you should be able to add a shape to the canvas with a left mouse-click and
delete an item from the canvas with a right mouse-click! Figure 28-3 shows the functionality of the current
example.

Figure 28-3. Fun with shapes

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1238

So far, so good. At this point, you have used Shape-derived objects to render content on RadioButtons
using XAML and populated a Canvas using C#. You will add a bit more functionality to this example when
you examine the role of brushes and graphical transformations. On a related note, a different example in
this chapter will illustrate drag-and-drop techniques on UIElement objects. Until then, let’s examine the
remaining members of System.Windows.Shapes.

Working with Polylines and Polygons
The current example used only three of the Shape-derived classes. The remaining child classes (Polyline,
Polygon, and Path) are extremely tedious to render correctly without tool support (such as Expression Blend
or other tools that can create vector graphics), simply because they require a large number of plot points to
represent their output. You’ll learn about the role of Expression Design in just a moment, but until then, here
is an overview of the remaining Shapes types.

The Polyline type lets you define a collection of (x, y) coordinates (via the Points property) to draw
a series of line segments that do not require connecting ends. The Polygon type is similar; however, it is
programmed so that it will always close the starting and ending points and fill the interior with the specified
brush. Assume you have authored the following <StackPanel> in the Kaxaml editor, or better yet, in the
custom XAML editor you created in Chapter 26:

<!-- Polylines do not automatically connect the ends. -->
<Polyline Stroke ="Red" StrokeThickness ="20" StrokeLineJoin ="Round"
 Points ="10,10 40,40 10,90 300,50"/>

<!-- A Polygon always closes the end points. -->
<Polygon Fill ="AliceBlue" StrokeThickness ="5" Stroke ="Green"
 Points ="40,10 70,80 10,50" />

Figure 28-4 shows the rendered output in MyXAMLPad.

Figure 28-4. Polygons and polylines

http://dx.doi.org/10.1007/978-1-4842-1332-2_26

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1239

Working with Paths
Using the Rectangle, Ellipse, Polygon, Polyline, and Line types alone to draw a detailed 2D vector image
would be extremely complex, as these primitives do not allow you to easily capture graphical data such as
curves, unions of overlapping data, and so forth. The final Shape-derived class, Path, provides the ability
to define complex 2D graphical data represented as a collection of independent geometries. After you have
defined a collection of such geometries, you can assign them to the Data property of the Path class, where
this information will be used to render your complex 2D image.

The Data property takes a System.Windows.Media.Geometry-derived class, which contains the key
members described in Table 28-2.

Table 28-2. Select Members of the System.Windows.Media.Geometry Type

Member Meaning in Life

Bounds Establishes the current bounding rectangle containing the geometry.

FillContains() Determines whether a given Point (or other Geometry object) is within the bounds
of a particular Geometry-derived class. This is useful for hit-testing calculations.

GetArea() Returns the entire area a Geometry-derived type occupies.

GetRenderBounds() Returns a Rect that contains the smallest possible rectangle that could be used to
render the Geometry-derived class.

Transform Assigns a Transform object to the geometry to alter the rendering.

Table 28-3. Geometry-Derived Classes

Geometry Class Meaning in Life

LineGeometry Represents a straight line

RectangleGeometry Represents a rectangle

EllipseGeometry Represents an ellipse

GeometryGroup Allows you to group together several Geometry objects

CombinedGeometry Allows you to merge two different Geometry objects into a single shape

PathGeometry Represents a figure composed of lines and curves

The classes that extend Geometry (see Table 28-3) look very much like their Shape-derived counterparts.
For example, EllipseGeometry has similar members to Ellipse. The big distinction is that Geometry-
derived classes do not know how to render themselves directly because they are not UIElements. Rather,
Geometry-derived classes represent little more than a collection of plot-point data, which say in effect “If a
Path uses my data, this is how I would render myself.”

 ■ Note Path is not the only class in WPF that can use a collection of geometries. For example,
DoubleAnimationUsingPath, DrawingGroup, GeometryDrawing, and even UIElement can all use geometries
for rendering, using the PathGeometry, ClipGeometry, Geometry, and Clip properties, respectively.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1240

The following is a Path that makes use of a few Geometry-derived types. Notice that you are setting
the Data property of Path to a GeometryGroup object that contains other Geometry-derived objects such as
EllipseGeometry, RectangleGeometry, and LineGeometry. Figure 28-5 shows the output.

<!-- A Path contains a set of geometry objects,
 set with the Data property. -->
<Path Fill = "Orange" Stroke = "Blue" StrokeThickness = "3">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry Center = "75,70"
 RadiusX = "30" RadiusY = "30" />
 <RectangleGeometry Rect = "25,55 100 30" />
 <LineGeometry StartPoint="0,0" EndPoint="70,30" />
 <LineGeometry StartPoint="70,30" EndPoint="0,30" />
 </GeometryGroup>
 </Path.Data>
</Path>

Figure 28-5. A Path containing various Geometry objects

The image in Figure 28-5 could have been rendered using the Line, Ellipse, and Rectangle classes
shown earlier. However, this would have put various UIElement objects in memory. When you use
geometries to model the plot points of what to draw, and then place the geometry collection into a container
that can render the data (Path, in this case), you reduce the memory overhead.

Now recall that Path has the same inheritance chain as any other member of System.Windows.Shapes,
and therefore has the ability to send the same event notifications as other UIElements. Thus, if you were to
define this same <Path> element in a Visual Studio project, you could determine whether the user clicked
anywhere in the sweeping line simply by handling a mouse event (remember, Kaxaml does not allow you to
handle events for the markup you have authored).

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1241

The Path Modeling “Mini-Language”
Of all the classes listed in Table 28-3, PathGeometry is the most complex to configure in terms of XAML or
code. This has to do with the fact that each segment of the PathGeometry is composed of objects that contain
various segments and figures (for example, ArcSegment, BezierSegment, LineSegment, PolyBezierSegment,
PolyLineSegment, PolyQuadraticBezierSegment, etc.). Here is an example of a Path object whose Data
property has been set to a <PathGeometry> composed of various figures and segments:

<Path Stroke="Black" StrokeThickness="1" >
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="10,50">
 <PathFigure.Segments>
 <BezierSegment
 Point1="100,0"
 Point2="200,200"
 Point3="300,100"/>
 <LineSegment Point="400,100" />
 <ArcSegment
 Size="50,50" RotationAngle="45"
 IsLargeArc="True" SweepDirection="Clockwise"
 Point="200,100"/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

Now, to be perfectly honest, very few programmers will ever need to manually build complex 2D images
by directly describing Geometry- or PathSegment-derived classes. Later on in this chapter, you will learn how
to convert vector graphics into path statements that can be used in XAML.

Even with the assistance of these tools, the amount of XAML required to define a complex Path object
would be ghastly, as the data consists of full descriptions of various Geometry- or PathSegment-derived
classes. In order to produce more concise and compact markup, the Path class has been designed to
understand a specialized “mini-language.”

For example, rather than setting the Data property of Path to a collection of Geometry- and
PathSegment-derived types, you can set the Data property to a single string literal containing a number of
known symbols and various values that define the shape to be rendered. Here is a simple example, and the
resulting output is shown in Figure 28-6:

<Path Stroke="Black" StrokeThickness="3"
 Data="M 10,75 C 70,15 250,270 300,175 H 240" />

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1242

The M command (short for move) takes an X,Y position that represents the starting point of the drawing.
The C command takes a series of plot points to render a curve (a cubic Bézier curve to be exact), while H
draws a horizontal line.

Now, to be perfectly honest, the chances that you will ever need to manually build or parse a string
literal containing path mini-language instructions are slim to none. However, at the very least, you will no
longer be surprised when you view XAML-generated dedicated tools. If you are interested in examining
the details of this particular grammar, look up “Path Markup Syntax” in the .NET Framework 4.6 SDK
documentation.

Figure 28-6. The path mini-language allows you to compactly describe a Geometry/PathSegment object model

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1243

WPF Brushes and Pens
Each of the WPF graphical rendering options (shape, drawing and geometries, and visuals) makes extensive
use of brushes, which allow you to control how the interior of a 2D surface is filled. WPF provides six different
brush types, all of which extend System.Windows.Media.Brush. While Brush is abstract, the descendants
described in Table 28-4 can be used to fill a region with just about any conceivable option.

Table 28-4. WPF Brush-Derived Types

Brush Type Meaning in Life

DrawingBrush Paints an area with a Drawing-derived object (GeometryDrawing, ImageDrawing,
or VideoDrawing)

ImageBrush Paints an area with an image (represented by an ImageSource object)

LinearGradientBrush Paints an area with a linear gradient

RadialGradientBrush Paints an area with a radial gradient

SolidColorBrush Paints a single color, set with the Color property

VisualBrush Paints an area with a Visual-derived object (DrawingVisual, Viewport3DVisual,
and ContainerVisual)

The DrawingBrush and VisualBrush classes allow you to build a brush based on an existing Drawing-
or Visual-derived class. These brush classes are used when you are working with the other two graphical
options of WPF (drawings or visuals) and will be examined later in this chapter.

ImageBrush, as the name suggests, lets you build a brush that displays image data from an external
file or embedded application resource, by setting the ImageSource property. The remaining brush types
(LinearGradientBrush and RadialGradientBrush) are quite straightforward to use, though typing in the
required XAML can be a tad verbose. Thankfully, Visual Studio supports integrated brush editors that make
it simple to generate stylized brushes.

Configuring Brushes Using Visual Studio
Let’s update your WPF drawing program, RenderingWithShapes, to use some more interesting brushes.
The three shapes you’ve employed so far to render data on your toolbar use simple, solid colors, so you can
capture their values using simple string literals. To spice things up a tad, you will now use the integrated
brush editor. Ensure that the XAML editor of your initial window is the open window within the IDE, and
select the Ellipse element. Now, in the Properties window, locate the Brush category and then click Fill
property listed on the top (see Figure 28-7).

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1244

Figure 28-7. Any property that requires a brush can be configured with the integrated brush editor

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1245

At the top of the Brushes editor, you will see a set of properties that are all “brush compatible” for
the selected item (i.e., Fill, Stroke, and OpacityMask). Below this, you will see a series of tabs that allow
you to configure different types of brushes, including the current solid color brush. You can use the color
selector tool, as well as the ARGB (alpha, red, green, and blue, where “alpha” controls transparency) editors
to control the color of the current brush. Using these sliders and the related color selection area, you can
create any sort of solid color. Use these tools to change the Fill color of your Ellipse, and view the resulting
XAML. You’ll notice the color is stored as a hexadecimal value, such as

<Ellipse Fill="#FF47CE47" Height="35" Width="35" />

More interestingly, this same editor allows you to configure gradient brushes, which are used to define
a series of colors and transition points. Recall that this Brushes editor provides you with a set of tabs, the
first of which lets you set a null brush for no rendered output. The other four allow you to set up a solid color
brush (what you just examined), gradient brush, tile brush, or image brush.

Click the gradient brush button and the editor will display a few new options (see Figure 28-8). The
three buttons on the lower left allow you to pick a linear gradient, a radial gradient, or to reverse the
gradient stops. The bottommost strip will show you the current color of each gradient stop, each of which is
marked by a “thumb” on the strip. As you drag these thumbs around the gradient strip, you can control the
gradient offset. Furthermore, when you click on a given thumb, you can change the color for that particular
gradient stop via the color selector. Finally, if you click directly on the gradient strip, you can add additional
gradient stops.

Take a few minutes to play around with this editor to build a radial gradient brush containing three
gradient stops, set to your colors of choice. Figure 28-8 shows the brush you just constructed, using three
different shades of green.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1246

Figure 28-8. The Visual Studio brush editor allows you to build basic gradient brushes

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1247

When you are done, the IDE will update your XAML with a custom brush, set to a brush-compatible
property (the Fill property of the Ellipse in this example) using property-element syntax, such as

<Ellipse Height="35" Width="35">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="#FF87E71B" Offset="0.589" />
 <GradientStop Color="#FF2BA92B" Offset="0.013" />
 <GradientStop Color="#FF34B71B" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Configuring Brushes in Code
Now that you have built a custom brush for the XAML definition of your Ellipse, the corresponding C# code
is out of date, in that it will still render a solid green circle. To sync things back up, update the correct case
statement to use the same brush you just created. The following is the necessary update, which looks more
complex than you might expect, just because you are converting the hexadecimal value to a proper Color
object via the System.Windows.Media.ColorConverter class (see Figure 28-9 for the modified output):

case SelectedShape.Circle:
 shapeToRender = new Ellipse() { Height = 35, Width = 35 };

 // Make a RadialGradientBrush in code!
 RadialGradientBrush brush = new RadialGradientBrush();
 brush.GradientStops.Add(new GradientStop(
 (Color)ColorConverter.ConvertFromString("#FF87E71B"), 0.589));
 brush.GradientStops.Add(new GradientStop(
 (Color)ColorConverter.ConvertFromString("#FF2BA92B"), 0.013));
 brush.GradientStops.Add(new GradientStop(
 (Color)ColorConverter.ConvertFromString("#FF34B71B"), 1));

 shapeToRender.Fill = brush;
 break;

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1248

By the way, you can build GradientStop objects by specifying a simple color as the first constructor
parameter using the Colors enumeration, which returns a configured Color object.

GradientStop g = new GradientStop(Colors.Aquamarine, 1);

Or, if you require even finer control, you can pass in a configured Color object, like so:

Color myColor = new Color() { R = 200, G = 100, B = 20, A = 40 };
GradientStop g = new GradientStop(myColor, 34);

Of course, the Colors enum and Color class are not limited to gradient brushes. You can use them
anytime you need to represent a color value in code.

Configuring Pens
In comparison with brushes, a pen is an object for drawing borders of geometries, or in the case of the Line
or PolyLine class, the line geometry itself. Specifically, the Pen class allows you to draw a specified thickness,
represented by a double value. In addition, a Pen can be configured with the same sort of properties seen in
the Shape class, such as starting and stopping pen caps, dot-dash patterns, and so forth. For example, you
can add the following markup to a shape to define the pen attributes:

<Pen Thickness="10" LineJoin="Round" EndLineCap="Triangle" StartLineCap="Round" />

In many cases, you won’t need to directly create a Pen object because this will be done indirectly
when you assign a value to properties, such as StrokeThickness to a Shape-derived type (as well as other
UIElements). However, building a custom Pen object is very handy when working with Drawing-derived
types (described later in the chapter). Visual Studio does not have a pen editor, per se, but it does allow you
to configure all of the stroke-centric properties of a selected item using the Properties window.

Figure 28-9. Drawing circles with a bit more pizzazz!

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1249

Applying Graphical Transformations
To wrap up our discussion of using shapes, let’s address the topic of transformations. WPF ships with
numerous classes that extend the System.Windows.Media.Transform abstract base class. Table 28-5
documents many of the key out-of-the-box Transform-derived classes.

Table 28-5. Key Descendants of the System.Windows.Media.Transform Type

Type Meaning in Life

MatrixTransform Creates an arbitrary matrix transformation that is used to manipulate objects or
coordinate systems in a 2D plane

RotateTransform Rotates an object clockwise about a specified point in a 2D (x, y) coordinate
system

ScaleTransform Scales an object in the 2D (x, y) coordinate system

SkewTransform Skews an object in the 2D (x, y) coordinate system

TranslateTransform Translates (moves) an object in the 2-D (x-y) coordinate system

TransformGroup Represents a composite Transform composed of other Transform objects

Transformations can be applied to any UIElement (e.g., descendants of Shape as well as controls such
as Buttons, TextBoxes, and the like). Using these transformation classes, you can render graphical data at a
given angle, skew the image across a surface, and expand, shrink, or flip the target item in a variety of ways.

 ■ Note While transformation objects can be used anywhere, you will find them most useful when working
with WPF animations and custom control templates. as you will see later in the chapter, you can use WPF
animations to incorporate visual cues to the end user for a custom control.

Transformations (or a whole set of them) can be assigned to a target object (e.g., Button, Path, etc.)
using two common properties, LayoutTransform and RenderTransform.

The LayoutTransform property is helpful in that the transformation occurs before elements are
rendered into a layout manager, and therefore the transformation will not affect z-ordering operations (in
other words, the transformed image data will not overlap).

The RenderTransform property, on the other hand, occurs after the items are in their container, and
therefore it is quite possible that elements can be transformed in such a way that they could overlap each
other, based on how they were arranged in the container.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1250

A First Look at Transformations
You will add some transformational logic to your RenderingWithShapes project in just a moment. However,
to see transformation objects in action, open Kaxaml (or your custom XAML editor) and define a simple
<StackPanel> in the root <Page> or <Window>, and set the Orientation property to Horizontal. Now, add
the following <Rectangle>, which will be drawn at a 45-degree angle using a RotateTransform object:

<!-- A Rectangle with a rotate transformation. -->
<Rectangle Height ="100" Width ="40" Fill ="Red">
 <Rectangle.LayoutTransform>
 <RotateTransform Angle ="45"/>
 </Rectangle.LayoutTransform>
</Rectangle>

Here is a <Button> that is skewed across the surface by 20 degrees, using a <SkewTransform>:

<!-- A Button with a skew transformation. -->
<Button Content ="Click Me!" Width="95" Height="40">
 <Button.LayoutTransform>
 <SkewTransform AngleX ="20" AngleY ="20"/>
 </Button.LayoutTransform>
</Button>

And for good measure, here is an <Ellipse> that is scaled by 20 degrees with a ScaleTransform (note
the values set to the initial Height and Width), as well as a <TextBox> that has a group of transformation
objects applied to it:

<!-- An Ellipse that has been scaled by 20%. -->
<Ellipse Fill ="Blue" Width="5" Height="5">
 <Ellipse.LayoutTransform>
 <ScaleTransform ScaleX ="20" ScaleY ="20"/>
 </Ellipse.LayoutTransform>
</Ellipse>

<!-- A TextBox that has been rotated and skewed. -->
<TextBox Text ="Me Too!" Width="50" Height="40">
 <TextBox.LayoutTransform>
 <TransformGroup>
 <RotateTransform Angle ="45"/>
 <SkewTransform AngleX ="5" AngleY ="20"/>
 </TransformGroup>
 </TextBox.LayoutTransform>
</TextBox>

Note that when a transformation is applied, you are not required to perform any manual calculations
to correctly respond to hit-testing, input focus, or whatnot. The WPF graphics engine handles such tasks on
your behalf. For example, in Figure 28-10, you can see that the TextBox is still responsive to keyboard input.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1251

Transforming Your Canvas Data
Now, let’s incorporate some transformational logic into your RenderingWithShapes example. In addition
to applying a transformation object to a single item (e.g., Rectangle, TextBox, etc.), you can also apply
transformation objects to a layout manager in order to transform all of the internal data. You could, for
example, render the entire <DockPanel> of the main window at an angle:

<DockPanel LastChildFill="True">
 <DockPanel.LayoutTransform>
 <RotateTransform Angle="45"/>
 </DockPanel.LayoutTransform>
...
</DockPanel>

This is a bit extreme for this example, so let’s add a final (less aggressive) feature that allows the user to
flip the entire Canvas and all contained graphics. Begin by adding a final <ToggleButton> to your <ToolBar>,
defined as follows:

<ToggleButton Name="flipCanvas" Click="flipCanvas_Click" Content="Flip Canvas!"/>

Within the Click event handler, create a RotateTransform object and connect it to the Canvas object
via the LayoutTransform property if this new ToggleButton is clicked. If the ToggleButton is not clicked,
remove the transformation by setting the same property to null.

private void flipCanvas_Click(object sender, RoutedEventArgs e)
{
 if (flipCanvas.IsChecked == true)
 {
 RotateTransform rotate = new RotateTransform(-180);
 canvasDrawingArea.LayoutTransform = rotate;
 }
 else
 {
 canvasDrawingArea.LayoutTransform = null;
 }
}

Figure 28-10. The results of graphical transformation objects

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1252

Run your application and add a bunch of graphics throughout the canvas area. If you click your new
button, you will find that the shape data flows outside of the boundaries of the canvas! This is because you
have not defined a clipping region (see Figure 28-11).

Fixing this is trivial. Rather than manually authoring complex clipping-logic code, simply set the
ClipToBounds property of the <Canvas> to true, which prevents child elements from being rendered outside
the parent’s boundaries. If you run your program again, you’ll find the data will not bleed off the canvas
boundary.

<Canvas ClipToBounds = "True" ... >

The last tiny modification to make has to do with the fact that when you flip the canvas by pressing your
toggle button, and then click the canvas to draw a new shape, the point at which you click is not the point
where the graphical data is applied. Rather, the data is rendered above the mouse cursor.

To resolve this issue, check out the solution code for this example. The key is to add one final Boolean
member variable (isFlipped), which will apply the same transformation object to the shape being draw
before the rendering occurs (via RenderTransform). Here is the crux of the code:

private bool _isFlipped = false;
private void canvasDrawingArea_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 Shape shapeToRender = null;
...

 // isFlipped is a private boolean field. This is toggled when the
 // toggle button is clicked.
 if (_isFlipped)

Figure 28-11. Oops! Your data is flowing outside of the canvas after the transformation!

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1253

 {
 RotateTransform rotate = new RotateTransform(-180);
 shapeToRender.RenderTransform = rotate;
 }
 // Set top/left to draw in the canvas.
 Canvas.SetLeft(shapeToRender, e.GetPosition(canvasDrawingArea).X);
 Canvas.SetTop(shapeToRender, e.GetPosition(canvasDrawingArea).Y);

 // Draw shape!
 canvasDrawingArea.Children.Add(shapeToRender);
}
private void flipCanvas_Click(object sender, RoutedEventArgs e)
{
 if (flipCanvas.IsChecked == true)
 {
 RotateTransform rotate = new RotateTransform(-180);
 canvasDrawingArea.LayoutTransform = rotate;
 }
 else
 {
 canvasDrawingArea.LayoutTransform = null;
 }
}

This wraps up your examination of System.Windows.Shapes, brushes, and transformations. Before
looking at the role of rendering graphics using drawings and geometries, let’s see how Visual Studio can be
used to simplify how you work with primitive graphics.

 ■ Source Code the renderingWithshapes project can be found in the Chapter 28 subdirectory.

Working with the Visual Studio Transform Editor
In the previous example, you applied various transformations by manually entering markup and authoring
some C# code. While this is certainly useful, you will be happy to know that the latest version of Visual Studio
ships with an integrated transformation editor. It is not as powerful as the tooling in Expression Blend, but
it does allow you to easily generate the necessary transformational markup using integrated tools. Recall
that any UI element can be the recipient of transformational services, including a layout system containing
various UI elements. To illustrate the use of Visual Studio’s transform editor, create a new WPF Application
named FunWithTransforms.

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1254

Building the Initial Layout
First, split your initial Grid into two columns using the integrated grid editor (the exact size does not matter).
Now, locate the StackPanel control within your Toolbox and add this item to take up the entire space of the
first column of the Grid, like so:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <StakPanelGrid.Row="0" Grid.Columne="0"></StackPanel>
</Grid>

Next, select your new StackPanel in the Document Outline panel and add three Button controls to the
StackPanel container (see Figure 28-12).

Figure 28-12. A StackPanel of Button controls

Now, select each Button, one at a time, and change the Content property (located in the Common
Properties section of the Properties window) to the values Skew, Rotate, and Flip. As well, use the
Name area of the Properties panel to given each button a proper name, such as btnSkew, btnRotate, and
btnFlip; and using the Events tab of the Properties panel, handle the Click event for each Button. You will
implement these handlers in just a bit.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1255

To finalize the UI, create a graphic of your choosing (using any of the techniques seen in this chapter)
defined in the second column of the Grid. Figure 28-13 shows the final layout. Here, there are two Ellipse
controls grouped into a Canvas control, which has been named myCanvas.

Figure 28-13. The layout of your transformation example

The markup used in the sample is listed here:

<Canvas x:Name="myCanvas" Grid.Column="1" Grid.Row="0">
 <Ellipse HorizontalAlignment="Left" VerticalAlignment="Top"
 Height="186" Width="92" Stroke="Black"
 Canvas.Left="20" Canvas.Top="31">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="#FF951ED8" Offset="0.215"/>
 <GradientStop Color="#FF2FECB0" Offset="1"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse HorizontalAlignment="Left" VerticalAlignment="Top"
 Height="101" Width="110" Stroke="Black"
 Canvas.Left="122" Canvas.Top="126">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFB91DDC" Offset="0.355"/>
 <GradientStop Color="#FFB0381D" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
</Canvas>

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1256

Applying Transformations at Design Time
As mentioned, Visual Studio provides an integrated Transform editor, which can be found in the Properties
panel. Locate this area, and make sure you expand the Transform section to view the RenderTransform and
LayoutTransform sections of the editor (see Figure 28-14).

Figure 28-14. The Transform editor

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1257

Similar to the Brushes section, the Transform section provides a number of tabs to configure various
types of graphical transformation to the currently selected item. Table 28-6 describes each transformation
option, listed in the order of evaluating each tab left to right.

Table 28-6. Blend Transformation Options

Transformation Option Meaning in Life

Translate Allows you to offset the location of an item on an X, Y position.

Rotate Allows you to rotate an item on a 360-degree angle.

Scale Allows you to grow or shrink an item by a factor in the X and Y directions.

Skew Allows you to skew the bounding box containing the selected item by a factor
in the X and Y directions.

Center Point When you rotate or flip an object, the item moves relative to a fixed point, called
the object’s center point. By default, an object’s center point is located at the
object’s center; however, this transformation allows you to change an object’s
center point in order to rotate or flip the object around a different point.

Flip Flips a selected item based on an X or Y center point.

I suggest you test each of these transformations using your custom shape as a target (just press
Ctrl+Z to undo the previous operation). Like many other aspects of the Transform Properties panel,
each transformation section has a unique set of configuration options, which should become fairly
understandable as you tinker. For example, the Skew transform editor allows you to set the X and Y skew
values, the Flip transform editor allows you to flip on the X or Y axis, and so forth.

Transforming the Canvas in Code
The implementation of each Click event handler will be more or less the same. You will configure a
transformation object and assign it to the myCanvas object. Then, when you run the application, you can
click a button to see the result of the applied transformation. Here is the complete code for each event
handler (notice that you are setting the LayoutTransform property so the shape data remains positioned
relative to the parent container):

private void btnFlip_Click(object sender, System.Windows.RoutedEventArgs e)
{
 myCanvas.LayoutTransform = new ScaleTransform(-1, 1);
}

private void btnRotate_Click(object sender, System.Windows.RoutedEventArgs e)
{
 myCanvas.LayoutTransform = new RotateTransform(180);
}

private void btnSkew_Click(object sender, System.Windows.RoutedEventArgs e)
{
 myCanvas.LayoutTransform = new SkewTransform(40, -20);
}

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1258

 ■ Source Code the FunWithtransformations project can be found in the Chapter 28 subdirectory.

Rendering Graphical Data Using Drawings and Geometries
While the Shape types allow you to generate any sort of interactive two-dimensional surface, they entail quite
a bit of memory overhead due to their rich inheritance chain. And though the Path class can help remove
some of this overhead using contained geometries (rather than a large collection of other shapes), WPF
provides a sophisticated drawing and geometry programming interface that renders even more lightweight
2D vector images.

The entry point into this API is the abstract System.Windows.Media.Drawing class (in
PresentationCore.dll), which on its own does little more than define a bounding rectangle to hold
the rendering. Figure 28-15 shows that the inheritance chain of the Drawing class is significantly more
lightweight than Shape, given that neither UIElement nor FrameworkElement is in the inheritance chain.

Figure 28-15. The Drawing class is more lightwight than Shape

WPF provides various classes that extend Drawing, each of which represents a particular way of drawing
the content, as described in Table 28-7.

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1259

Because they are more lightweight, Drawing-derived types do not have intrinsic support for handling
input events, as they are not UIElements or FrameworkElements (although it is possible to programmatically
perform hit-testing logic).

Another key difference between Drawing-derived types and Shape-derived types is that Drawing-derived
types have no ability to render themselves, as they do not derive from UIElement! Rather, derived types must
be placed within a hosting object (specifically, DrawingImage, DrawingBrush, or DrawingVisual) to display
their content.

DrawingImage allows you to place drawing and geometries inside a WPF Image control, which typically
is used to display data from an external file. DrawingBrush allows you to build a brush based on a drawing
and its geometries, in order to set a property that requires a brush. Finally, DrawingVisual is used only in the
“visual” layer of graphical rendering, which is driven completely via C# code.

Although using drawings is a bit more complex than using simple shapes, this decoupling of graphical
composition from graphical rendering makes the Drawing-derived types much more lightweight than the
Shape-derived types, while still retaining key services.

Building a DrawingBrush Using Geometries
Earlier in this chapter, you filled a Path with a group of geometries, like so:

<Path Fill = "Orange" Stroke = "Blue" StrokeThickness = "3">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry Center = "75,70"
 RadiusX = "30" RadiusY = "30" />
 <RectangleGeometry Rect = "25,55 100 30" />
 <LineGeometry StartPoint="0,0" EndPoint="70,30" />
 <LineGeometry StartPoint="70,30" EndPoint="0,30" />
 </GeometryGroup>
 </Path.Data>
</Path>

Table 28-7. WPF Drawing-Derived Types

Type Meaning in Life

DrawingGroup Used to combine a collection of separate Drawing-derived objects into a single
composite rendering.

GeometryDrawing Used to render 2D shapes in a very lightweight manner.

GlyphRunDrawing Used to render textual data using WPF graphical rendering services.

ImageDrawing Used to render an image file, or geometry set, into a bounding rectangle.

VideoDrawing Used to play an audio file or video file. This type can only be fully exploited using
procedural code. If you would like to play videos via XAML, the MediaPlayer type is
a better choice.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1260

By doing this, you gain interactivity from Path but are still fairly lightweight given your geometries.
However, if you want to render the same output and have no need for any (out-of-the-box) interactivity, you
can place the same <GeometryGroup> inside a DrawingBrush, like this:

<DrawingBrush>
 <DrawingBrush.Drawing>
 <GeometryDrawing>
 <GeometryDrawing.Geometry>
 <GeometryGroup>
 <EllipseGeometry Center = "75,70"
 RadiusX = "30" RadiusY = "30" />
 <RectangleGeometry Rect = "25,55 100 30" />
 <LineGeometry StartPoint="0,0" EndPoint="70,30" />
 <LineGeometry StartPoint="70,30" EndPoint="0,30" />
 </GeometryGroup>
 </GeometryDrawing.Geometry>
 <!-- A custom pen to draw the borders. -->
 <GeometryDrawing.Pen>
 <Pen Brush="Blue" Thickness="3"/>
 </GeometryDrawing.Pen>
 <!-- A custom brush to fill the interior. -->
 <GeometryDrawing.Brush>
 <SolidColorBrush Color="Orange"/>
 </GeometryDrawing.Brush>
 </GeometryDrawing>
 </DrawingBrush.Drawing>
</DrawingBrush>

When you place a group of geometries into a DrawingBrush, you also need to establish the Pen object
used to draw the boundaries because you no longer inherit a Stroke property from the Shape base class.
Here, you created a <Pen> with the same settings used in the Stroke and StrokeThickness values of the
previous Path example.

Furthermore, since you no longer inherit a Fill property from Shape, you also need to use property
element syntax to define a brush object to use for the <DrawingGeometry>, which here is a solid colored
orange brush, just like the previous Path settings.

Painting with the DrawingBrush
Now that you have a DrawingBrush, you can use it to set the value of any property requiring a brush object.
For example, if you are authoring this markup in Kaxaml, you could use property-element syntax to paint
your drawing over the entire surface of a Page, like so:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Page.Background>
 <!-- Same DrawingBrush as seen above. -->
 <DrawingBrush>
 ...
 </DrawingBrush>
 </Page.Background>
</Page>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1261

Or, you can use this <DrawingBrush> to set a different brush-compatible property, such as the
Background property of a Button:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Button Height="100" Width="100">
 <Button.Background>
 <!-- Same DrawingBrush as seen above. -->
 <DrawingBrush>
 ...
 </DrawingBrush>
 </Button.Background>
 </Button>

</Page>

No matter which brush-compatible property you set with your custom <DrawingBrush>, the bottom
line is you are rendering a 2D vector image with much less overhead than the same 2D image rendered with
shapes.

Containing Drawing Types in a DrawingImage
The DrawingImage type allows you to plug your drawing geometry into a WPF <Image> control. Consider the
following:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Image Height="100" Width="100">
 <Image.Source>
 <DrawingImage>
 <DrawingImage.Drawing>
 <GeometryDrawing>
 <GeometryDrawing.Geometry>
 <GeometryGroup>
 <EllipseGeometry Center = "75,70"
 RadiusX = "30" RadiusY = "30" />
 <RectangleGeometry Rect = "25,55 100 30" />
 <LineGeometry StartPoint="0,0" EndPoint="70,30" />
 <LineGeometry StartPoint="70,30" EndPoint="0,30" />
 </GeometryGroup>
 </GeometryDrawing.Geometry>

 <!-- A custom pen to draw the borders. -->
 <GeometryDrawing.Pen>
 <Pen Brush="Blue" Thickness="3"/>
 </GeometryDrawing.Pen>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1262

 <!-- A custom brush to fill the interior. -->
 <GeometryDrawing.Brush>
 <SolidColorBrush Color="Orange"/>
 </GeometryDrawing.Brush>
 </GeometryDrawing>
 </DrawingImage.Drawing>
 </DrawingImage>
 </Image.Source>
 </Image>
</Page>

In this case, your <GeometryDrawing> has been placed into a <DrawingImage>, rather than a
<DrawingBrush>. Using this <DrawingImage>, you can set the Source property of the Image control.

Working with Vector Images
As you might agree, it would be quite challenging for a graphic artist to create a complex vector-based image
using the tools and techniques provided by Visual Studio. Graphic artists have their own set of tools that
can produce amazing vector graphics. Neither Visual Studio nor its companion Expression Blend for Visual
Studio have that type of design power. Before you can import vector images into WPF application, they must
be converted into Path expressions. At that point, you can program against the generated object model using
Visual Studio.

 ■ Note Previous editions of this text demonstrated a software package named Expression design. Expression
design was one of the products within Expression studio, and unfortunately the whole suite is no longer being
updated. While you can still access the software if you have a Msdn subscription, in this edition of this book i
am using open source software and a printer trick to convert vector graphics to the required path information
for XaML rendering. the image being used (laser_sign.svg) as well as the exported path (laser_sign.xaml)
data are included in the Chapter 28 folder of the download files. the image is originally from Wikipedia, located
in this article: https://en.wikipedia.org/wiki/Hazard_symbol.

Converting a Sample Vector Graphic File into XAML
Before you can import complex graphical data (such as vector graphics) into a WPF application, you need to
convert the graphics into path data. As an example of how to do this, start with a sample .svg image file, such
as the laser sign referenced in the preceding note. Then download and install an open source tool called
Inkscape (located at www.inkscape.org). Using Inkscape, open the laser_sign.svg file from the chapter
download. You should see something that resembles Figure 28-16.

http://dx.doi.org/10.1007/978-1-4842-1332-2_28
https://en.wikipedia.org/wiki/Hazard_symbol
http://www.inkscape.org/

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1263

 ■ Note imageMagick (www.ImageMagick.org) is also a very good free image handling tool. Unfortunately, the
trick that you will learn shortly doesn’t work on Windows 10 with imageMagick.

The next steps will seem a bit odd at first, but once you get over the oddity, it is a simple way to convert
vector images to XAML. When you have the image the way you want it, select the File ➤ Print menu option.
Next, select the Microsoft XPS Document Writer as the printer target, and then click Print (see Figure 28-17).
On the next screen, enter a file name and select where the file should be saved, then click Save. Now you
have a complete *.xps (or *.oxps) file.

 ■ Note depending on a number of variables with your system configuration, the generated file will have
either the .xps or .oxps extension. Either way, the process works the same.

Figure 28-16. The laser sign sample graphic in InkScape

http://www.imagemagick.org/

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1264

The *.xps and *.oxps formats are actually a zip file. Rename the extension of the file to .zip and you
can open the file in File Explorer (or 7-zip, or your favorite archive tool). You will see that it contains the
hierarchy shown in Figure 28-18.

Figure 28-17. Printing the graphic to the Microsoft XPS Document Printer

Figure 28-18. The folder hierarchy of the printed XPS file

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1265

The file that you need is in the Pages directory (Documents/1/Pages) and is named 1.fpage. Open the
file with a text editor and copy everything except the <FixedPage> open and closing tags. The path data
can then be copied into the MyXAMLPad (that you wrote earlier), and placed inside a Canvas in the main
Window. Click the View XAML button, and you will see your vector graphic reproduced in XAML!
Figure 28-19 shows the rendered image using MyXamlPad.

Importing the Graphical Data into a WPF Project
At this point, create a new WPF Application named InteractiveLaserSign. Resize the dimensions of the
Window to the following height and width, and delete the initial Grid control and replace it with a Canvas:

<Window x:Class="InteractiveTeddyBear.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="625" Width="675">
 <Canvas>
 </Canvas>
</Window>

Copy the entire XAML from MyXamlPad (excluding the outer Canvas) and paste into the MainWindow
Canvas control. View the Window in design mode, and you will see the sign reproduced in your application!

If you view the Document Outline, you will see that each XAML element is present and accounted for.
The goal here is to locate a couple of the lines and give each item a name. While you could manually hunt
for the correct objects (which would be very tedious), a better way is to click these items using the visual
designer. This will automatically highlight the correct node in the Document Outline editor. This particular
graphic uses two objects to make up each line, so click one of the lines in the graphic and see where it is
represented in the document editor. Check the object above and below to discover which pair are matched,

Figure 28-19. The vector graphic rendered in XAML

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1266

and then name them Line1_1 and Line1_2. Repeat this process with another line, and name the pair
Line2_1 and Line2_2. To make the interaction easier, change the Brush for Line1_1 and Line2_1 to another
color besides black by selecting the object in the Document Outline, selecting Brush in the properties, and
changing the color (just like you’ve done earlier in this chapter).

Interacting with the Sign
Now you will handle click events for the objects. Select Line1_1 and Line2_1 on the designer, activate the Events
area of the Properties window, and enter the event handler names as required. For the current example, handle
the MouseLeftButtonDown event for each object, specifying a unique method name each time.

Here is some simple C# code that will change the look and feel of each object when clicked (if you don’t
feel like typing all the code seen here, you can simply add a MessageBox.Show() statement for each handler,
and display a fitting message):

private void Line1_1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 // Change the color when clicked.
 Line1_2.Fill = new SolidColorBrush(Colors.Red);
}

private void Line2_1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 // Blur when clicked.
 System.Windows.Media.Effects.BlurEffect blur =
 new System.Windows.Media.Effects.BlurEffect();
 blur.Radius = 10;
 Line2_1.Effect = blur;
}

Now, run your application. Click the lines to see the effects. The results should resemble Figure 28-20.

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1267

You now understand the process of generating Path data for complex graphics and how to interact
with the graphical data in code. As you might agree, the ability for professional graphic artists to generate
complex graphical data and export the data as XAML is extremely powerful. Once the graphical data has
been generated, developers can import the markup and program against the object model.

 ■ Source Code the interactiveLasersign project can be found in the Chapter 28 subdirectory.

Rendering Graphical Data Using the Visual Layer
The final option for rendering graphical data with WPF is termed the visual layer. As mentioned, you can
only gain access to this layer through code (it is not XAML-friendly). While a vast majority of your WPF
applications will work just fine using shapes, drawings, and geometries, the visual layer does provide the
fastest possible way to render huge amounts of graphical data. Oddly, this very low-level graphical layer can
also be useful when you need to render a single image over a very large area. For example, if you need to fill
the background of a window with a plain, static image, the visual layer is the fastest way to do so. It can also
be useful if you need to change between window backgrounds very quickly, based on user input or whatnot.

Figure 28-20. Interacting with complex graphical data

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1268

We won’t spend too much time delving into the details of this aspect of WPF programming, but let’s
build a small sample program to illustrate the basics.

The Visual Base Class and Derived Child Classes
The abstract System.Windows.Media.Visual class type supplies a minimal set of services (rendering,
hit-testing, transformations) to render graphics, but it does not provide support for additional nonvisual
services, which can lead to code bloat (input events, layout services, styles, and data binding). Notice the
simple inheritance chain of the Visual type shown in Figure 28-21.

Figure 28-21. The Visual type provides basic hit-testing, coordinate transformation, and bounding box
calculations

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1269

Given that Visual is an abstract base class, you need to use one of the derived types to perform actual
rendering operations. WPF provides a handful of subclasses, including DrawingVisual, Viewport3DVisual,
and ContainerVisual.

In this example, you will focus only on DrawingVisual, a lightweight drawing class that is used to render
shapes, images, or text.

A First Look at Using the DrawingVisual Class
To render data onto a surface using DrawingVisual, you need to take the following basic steps:

•	 Obtain a DrawingContext object from the DrawingVisual class.

•	 Use the DrawingContext to render the graphical data.

These two steps represent the bare minimum necessary for rendering some data to a surface. However,
if you want the graphical data you’ve rendered to be responsive to hit-testing calculations (which would be
important for adding user interactivity), you will also need to perform these additional steps:

•	 Update the logical and visual trees maintained by the container upon which you are
rendering.

•	 Override two virtual methods from the FrameworkElement class, allowing the
container to obtain the visual data you have created.

You will examine these final two steps in a bit. First, to illustrate how you can use the DrawingVisual
class to render 2D data, create a new WPF application with Visual Studio named RenderingWithVisuals. Your
first goal is to use a DrawingVisual to dynamically assign data to a WPF Image control. Begin by updating the
XAML of your window, like so:

<Window x:Class="RenderingWithVisuals.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title=" Fun with the Visual Layer" Height="350" Width="525"
 Loaded="Window_Loaded" WindowStartupLocation="CenterScreen">
 <StackPanel Background="AliceBlue" Name="myStackPanel">
 <Image Name="myImage" Height="80"/>
 </StackPanel>
</Window>

Notice that your <Image> control does not yet have a Source value because that will happen at runtime.
Also notice that you are handling the Loaded event of the window, which will do the work of building the in-
memory graphical data, using a DrawingBrush object. Here is the implementation of the Loaded event handler:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 const int TextFontSize = 30;

 // Make a System.Windows.Media.FormattedText object.
 FormattedText text = new FormattedText("Hello Visual Layer!",
 new System.Globalization.CultureInfo("en-us"),
 FlowDirection.LeftToRight,
 new Typeface(this.FontFamily, FontStyles.Italic,
 FontWeights.DemiBold, FontStretches.UltraExpanded),
 TextFontSize,
 Brushes.Green);

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1270

 // Create a DrawingVisual, and obtain the DrawingContext.
 DrawingVisual drawingVisual = new DrawingVisual();
 using(DrawingContext drawingContext = drawingVisual.RenderOpen())
 {

 // Now, call any of the methods of DrawingContext to render data.
 drawingContext.DrawRoundedRectangle(Brushes.Yellow, new Pen(Brushes.Black, 5),
 new Rect(5, 5, 450, 100), 20, 20);
 drawingContext.DrawText(text, new Point(20, 20));
 }

 // Dynamically make a bitmap, using the data in the DrawingVisual.
 RenderTargetBitmap bmp = new RenderTargetBitmap(500, 100, 100, 90,
 PixelFormats.Pbgra32);
 bmp.Render(drawingVisual);

 // Set the source of the Image control!
 myImage.Source = bmp;
}

This code introduces a number of new WPF classes, which I will briefly comment on here (be sure to
check the .NET Framework 4.6 SDK documentation for full details if you are interested). The method begins
by creating a new FormattedText object that represents the textual portion of the in-memory image you are
constructing. As you can see, the constructor allows you to specify numerous attributes such as font size,
font family, foreground color, and the text itself.

Next, you obtain the necessary DrawingContext object via a call to RenderOpen() on the DrawingVisual
instance. Here, you are rendering a colored, rounded rectangle into the DrawingVisual, followed by your
formatted text. In both cases, you are placing the graphical data into the DrawingVisual using hard-coded
values, which is not necessarily a great idea for production, but is fine for this simple test.

 ■ Note Be sure to look up the DrawingContext class within the .nEt Framework 4.6 sdK documentation
to view all rendering members. if you have worked with the Windows Forms Graphics object in the past,
DrawingContext should look very similar.

The last few statements map the DrawingVisual into a RenderTargetBitmap object, which is a member
of the System.Windows.Media.Imaging namespace. This class will take a visual object and transform it into
an in-memory bitmap image. After this point, you set the Source property of the Image control, and sure
enough, you will see the output in Figure 28-22.

Figure 28-22. Using the visual layer to render an in-memory bitmap

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1271

 ■ Note the System.Windows.Media.Imaging namespace contains a number of additional encoding classes
that let you save the in-memory RenderTargetBitmap object to a physical file in a variety of formats. Check out
the JpegBitmapEncoder class (and friends) for more information.

Rendering Visual Data to a Custom Layout Manager
While it is interesting to use DrawingVisual to paint onto the background of a WPF control, it is perhaps
more common to build a custom layout manager (Grid, StackPanel, Canvas, etc.) that uses the visual layer
internally to render its content. After you have created such a custom layout manager, you can plug it into
a normal Window (or Page, or UserControl) and have a part of the UI using a highly optimized rendering
agent, while the noncritical aspects of the hosting Window use shapes and drawings for the remainder of the
graphical data.

If you don’t require the extra functionality provided by a dedicated layout manager, you could opt to
simply extend FrameworkElement, which does have the necessary infrastructure to also contain visual items.
To illustrate how this could be done, insert a new class to your project named CustomVisualFrameworkElement.
Extend this class from FrameworkElement and import the System.Windows, System.Windows.Input, and
System.Windows.Media namespaces.

This class will maintain a member variable of type VisualCollection, which contains two fixed
DrawingVisual objects (of course, you could add new members to this collection via a mouse operation, but
this example will keep it simple). Update your class with the following new functionality:

class CustomVisualFrameworkElement : FrameworkElement
{
 // A collection of all the visuals we are building.
 VisualCollection theVisuals;

 public CustomVisualFrameworkElement()
 {
 // Fill the VisualCollection with a few DrawingVisual objects.
 // The ctor arg represents the owner of the visuals.
 theVisuals = new VisualCollection(this);
 theVisuals.Add(AddRect());
 theVisuals.Add(AddCircle());
 }
 private Visual AddCircle()
 {
 DrawingVisual drawingVisual = new DrawingVisual();

 // Retrieve the DrawingContext in order to create new drawing content.
 using (DrawingContext drawingContext = drawingVisual.RenderOpen())
 {
 // Create a circle and draw it in the DrawingContext.
 Rect rect = new Rect(new Point(160, 100), new Size(320, 80));
 drawingContext.DrawEllipse(Brushes.DarkBlue, null, new Point(70, 90), 40, 50);
 }
 return drawingVisual;
 }

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1272

 private Visual AddRect()
 {
 DrawingVisual drawingVisual = new DrawingVisual();
 using (DrawingContext drawingContext = drawingVisual.RenderOpen())
 {
 Rect rect = new Rect(new Point(160, 100), new Size(320, 80));
 drawingContext.DrawRectangle(Brushes.Tomato, null, rect);
 }
 return drawingVisual;
 }
}

Now, before you can use this custom FrameworkElement in your Window, you must override two key
virtual methods mentioned previously, both of which are called internally by WPF during the rendering
process. The GetVisualChild() method returns a child at the specified index from the collection of child
elements. The read-only VisualChildrenCount property returns the number of visual child elements within
this visual collection. Both methods are easy to implement because you can delegate the real work to the
VisualCollection member variable.

protected override int VisualChildrenCount
{
 get { return theVisuals.Count; }
}

protected override Visual GetVisualChild(int index)
{
 // Value must be greater than zero, so do a sainity check.
 if (index < 0 || index >= theVisuals.Count)
 {
 throw new ArgumentOutOfRangeException();
 }
return theVisuals[index];
}

You now have just enough functionality to test your custom class. Update the XAML description of the
Window to add one of your CustomVisualFrameworkElement objects to the existing StackPanel. Doing so will
require you to build a custom XML namespace that maps to your .NET namespace.

<Window x:Class="RenderingWithVisuals.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:custom="clr-namespace:RenderingWithVisuals"
 Title="Fun with the Visual Layer" Height="350" Width="525"
 Loaded="Window_Loaded" WindowStartupLocation="CenterScreen">
 <StackPanel Background="AliceBlue" Name="myStackPanel">
 <Image Name="myImage" Height="80"/>
 <custom:CustomVisualFrameworkElement/>
 </StackPanel>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1273

If all is well, you should see something similar to Figure 28-23 when you run your program.

Responding to Hit-Test Operations
Because DrawingVisual does not have any of the infrastructure of UIElement or FrameworkElement, you will
need to programmatically add in the ability to calculate hit-test operations. Thankfully, this is fairly easy to
do in the visual layer because of the concept of logical and visual trees. As it turns out, when you author a
blob of XAML, you are essentially building a logical tree of elements. However, behind every logical tree is a
much richer description known as the visual tree, which contains lower-level rendering instructions.

Chapter 29 will delve into these trees in more detail but for now, just understand that until you register
your custom visuals with these data structures, you will not be able to perform hit-testing operations.
Luckily, the VisualCollection container does this on your behalf (which explains why you needed to pass
in a reference to the custom FrameworkElement as a constructor argument).

First, update the CustomVisualFrameworkElement class to handle the MouseDown event in the class
constructor using standard C# syntax, like so:

this.MouseDown += MyVisualHost_MouseDown;

Figure 28-23. Using the visual layer to render data to a custom FrameworkElement

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1274

The implementation of this handler will call the VisualTreeHelper.HitTest() method to see whether
the mouse is within the boundaries of one of the rendered visuals. To do this, you specify as a parameter to
HitTest() a HitTestResultCallback delegate that will perform the calculations. If you click on a visual, you
will toggle between a skewed rendering of the visual and the original rendering. Add the following methods
to your CustomVisualFrameworkElement class:

void MyVisualHost_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Figure out where the user clicked.
 Point pt = e.GetPosition((UIElement)sender);

 // Call helper function via delegate to see if we clicked on a visual.
 VisualTreeHelper.HitTest(this, null,
 new HitTestResultCallback(myCallback), new PointHitTestParameters(pt));
}

public HitTestResultBehavior myCallback(HitTestResult result)
{
 // Toggle between a skewed rendering and normal rendering,
 // if a visual was clicked.
 if (result.VisualHit.GetType() == typeof(DrawingVisual))
 {
 if (((DrawingVisual)result.VisualHit).Transform == null)
 {
 ((DrawingVisual)result.VisualHit).Transform = new SkewTransform(7, 7);
 }
 else
 {
 ((DrawingVisual)result.VisualHit).Transform = null;
 }
 }

 // Tell HitTest() to stop drilling into the visual tree.
 return HitTestResultBehavior.Stop;
}

Now, run your program once again. You should now be able to click either rendered visual and see the
transformation in action! While this is just a very simple example of working with the visual layer of WPF,
remember that you make use of the same brushes, transformations, pens, and layout managers as you would
when working with XAML. As a result, you already know quite a bit about working with this Visual-derived
classes.

 ■ Source Code the renderingWithvisuals project can be found in the Chapter 28 subdirectory.

That wraps up your investigation of the graphical rendering services of Windows Presentation
Foundation. While you learned a number of interesting topics, the reality is that you have only scratched the
surface of WPF’s graphical capabilities. I will leave it in your hands to dig deeper into the topics of shapes,
drawings, brushes, transformations, and visuals (and, to be sure, you will see some additional details of
these topics in the remaining WPF chapters).

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

ChaPtEr 28 ■ WPF GraPhiCs rEndErinG sErviCEs

1275

Summary
Because Windows Presentation Foundation is such a graphically intensive GUI API, it comes as no surprise
that we are given a number of ways to render graphical output. This chapter began by examining each of
three ways a WPF application can do so (shapes, drawings, and visuals) and discussed various rendering
primitives such as brushes, pens, and transformations.

Remember that when you need to build interactive 2D renderings, shapes make the process very
simple. However, static, non-interactive renderings can be rendered in a more optimal manner by using
drawings and geometries, while the visual layer (accessible only in code) gives you maximum control and
performance.

1277

Chapter 29

WPF Resources, Animations,
Styles, and Templates

This chapter introduces you to three important (and interrelated) topics that will deepen your understanding
of the Windows Presentation Foundation (WPF) API. The first order of business is to learn the role of logical
resources. As you will see, the logical resource (also known as an object resource) system is a way to name
and refer to commonly used objects within a WPF application. While logical resources are often authored in
XAML, they can also be defined in procedural code.

Next, you will learn how to define, execute, and control an animation sequence. Despite what you
might think, WPF animations are not limited to video game or multimedia applications. Under the WPF
API, animations can be as subtle as making a button appear to glow when it receives focus, or expanding the
size of a selected row in a DataGrid. Understanding animations is a key aspect of building custom control
templates (as you’ll see in later in this chapter).

You’ll then explore the role of WPF styles and templates. Much like a web page that uses CSS or the
ASP.NET theme engine, a WPF application can define a common look and feel for a set of controls. You can
define these styles in markup and store them as object resources for later use, and you can also apply them
dynamically at runtime. The final example will teach you how to build custom control templates.

Understanding the WPF Resource System
Your first task is to examine the topic of embedding and accessing application resources. WPF supports
two flavors of resources. The first is a binary resource, and this category typically includes items most
programmers consider a resource in the traditional sense (embedded image files or sound clips, icons used
by the application, and so on).

The second flavor, termed object resources or logical resources, represents a named .NET object that can
be packaged and reused throughout the application. While any .NET object can be packaged as an object
resource, logical resources are particularly helpful when working with graphical data of any sort, given
that you can define commonly used graphic primitives (brushes, pens, animations, etc.) and refer to them
when required.

Working with Binary Resources
Before we get to the topic of object resources, let’s quickly examine how to package up binary resources such
as icons or image files (e.g., company logos or images for an animation) into your applications. If you’d like
to follow along, create a new WPF application named BinaryResourcesApp using Visual Studio. Update the

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1278

markup for your initial window to handle the Window Loaded event and to use a DockPanel as the layout
root, like so:

<Window x:Class="BinaryResourcesApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:BinaryResourcesApp"
 mc:Ignorable="d"
 Title="Fun with Binary Resources" Height="500" Width="649"
 Loaded="MainWindow_OnLoaded">

 <DockPanel LastChildFill="True">
 </DockPanel>

</Window>

Now, let’s say your application needs to display one of three image files inside part of the window,
based on user input. The WPF Image control can be used to not only display a typical image file (*.bmp,
*.gif, *.ico, *.jpg, *.png, *.wdp, or *.tiff) but also data in a DrawingImage (as you saw in Chapter 28).
You might build a UI for your window that supports a DockPanel containing a simple toolbar with Next and
Previous buttons. Below this toolbar you can place an Image control, which currently does not have a value
set to the Source property, like so:

<Window x:Class="BinaryResourcesApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:BinaryResourcesApp"
 mc:Ignorable="d"
 Title="Fun with Binary Resources" Height="500" Width="649">
 Loaded="MainWindow_OnLoaded">

 <DockPanel LastChildFill="True">
 <ToolBar Height="60" Name="picturePickerToolbar" DockPanel.Dock="Top">
 <Button x:Name="btnPreviousImage" Height="40" Width="100" BorderBrush="Black"
 Margin="5" Content="Previous" Click="btnPreviousImage_Click"/>
 <Button x:Name="btnNextImage" Height="40" Width="100" BorderBrush="Black"
 Margin="5" Content="Next" Click="btnNextImage_Click"/>
 </ToolBar>

 <!-- We will fill this Image in code. -->
 <Border BorderThickness="2" BorderBrush="Green">
 <Image x:Name="imageHolder" Stretch="Fill" />
 </Border>
 </DockPanel>

</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://dx.doi.org/10.1007/978-1-4842-1332-2_28
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1279

Please note that the Click event has been handled for each Button object. Assuming you have used
the IDE to handle these events, you will have three empty methods in your C# code file. So, how can you
code the Click event handlers to cycle through the image data? More importantly, do you want to have
the image data located on the user’s hard drive or embedded in your compiled assembly? Let’s examine
your options.

Including Loose Resource Files in a Project
Let’s assume you want to ship your image files as a set of loose files in a subdirectory of the application
install path. Using the Solution Explorer window of Visual Studio, you can right-click your project node and
select the Add ➤ New Folder menu option to create such a subdirectory, which you should call Images.

Now, when you right-click this folder, you can select the Add ➤ Existing Item menu option to copy the
image files into the new subdirectory. In the downloadable source code for this project, you will find three
image files named Deer.jpg, Dogs.jpg, and Welcome.jpg that you can include in this project, or you can add
three image files of your choice. Figure 29-1 shows the current setup.

Figure 29-1. A new subdirectory that contains image data in your WPF project

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1280

Configuring the Loose Resources
When you want Visual Studio to copy project content to your output directory, you need to adjust a few
settings using the Properties window. To ensure that the content of your \Images folder is copied to the
\bin\Debug folder, begin by selecting each image in the Solution Explorer. Now, with these images still
selected, use the Properties window to set the Build Action property to Content, and the Copy to Output
Directory property to Copy always (see Figure 29-2).

Figure 29-2. Configuring the image data to be copied to your output directory

 ■ Note you could also select Copy if newer, which will save you time if you’re building large projects with a
lot of content. For this example, Copy always works just fine.

If you recompile your program, you can now click the Show all Files button of the Solution Explorer and
view the copied Image folder under your \bin\Debug directory (you might need to click the Refresh button).
See Figure 29-3.

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1281

Figure 29-3. The copied data

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1282

Programmatically Loading an Image
WPF provides a class named BitmapImage, which is part of the System.Windows.Media.Imaging namespace.
This class allows you to load data from an image file whose location is represented by a System.Uri object.
It’s now time to handle the Loaded event of your window, filling a List<T> of BitmapImages like so:

public partial class MainWindow : Window
{
 // A List of BitmapImage files.
 List<BitmapImage> _images = new List<BitmapImage>();

 // Current position in the list.
 private int _currImage = 0;
 private const int MAX_IMAGES = 2;
 private void MainWindow_OnLoaded(object sender, RoutedEventArgs e)
 {
 try
 {
 string path = Environment.CurrentDirectory;

 // Load these images when the window loads.
 _images.Add(new BitmapImage(new Uri($@"{path}\Images\Deer.jpg")));
 _images.Add(new BitmapImage(new Uri($@"{path}\Images\Dogs.jpg")));
 _images.Add(new BitmapImage(new Uri($@"{path}\Images\Welcome.jpg")));

 // Show first image in the List<>.
 imageHolder.Source = _images[_currImage];
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
...
}

Notice that this class also defines an int member variable (_currImage) that will allow the Click event
handlers to loop through each item in the List<T> and display it in the Image control by setting the Source
property. (Here, your Loaded event handler sets the Source property to the first image in the List<T>.) In
addition, your MAX_IMAGES constant will let you test for upper and lower limits as you iterate over the list.
Here are the Click handlers that do exactly this:

private void btnPreviousImage_Click(object sender, RoutedEventArgs e)
{
 if (--_currImage < 0)
 _currImage = MAX_IMAGES;
 imageHolder.Source = _images[_currImage];
}

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1283

private void btnNextImage_Click(object sender, RoutedEventArgs e)
{
 if (++_currImage > MAX_IMAGES)
 _currImage = 0;
 imageHolder.Source = _images[_currImage];
}

At this point, you can run your program and flip through each picture.

Embedding Application Resources
If you’d rather configure your image files to be compiled directly into your .NET assembly as binary resources,
select the image files in Solution Explorer (in the \Images folder, not in the \bin\Debug\Images folder).
Then change the Build Action property to Resource, and the Copy to Output Directory property to Do not
copy (see Figure 29-4).

Now, using Visual Studio’s Build menu, select the Clean Solution option to wipe out the current
contents of \bin\Debug\Images, and then rebuild your project. Refresh the Solution Explorer, and observe
the absence of data in your \bin\Debug\Images directory. With the current build options, your graphical
data is no longer copied to the output folder and is now embedded within the assembly itself.

With this adjustment, you now need to modify your code to load these images by extracting them from
the compiled assembly:

private void MainWindow_OnLoaded(object sender, RoutedEventArgs e)
{
 try
 {
 _images.Add(new BitmapImage(new Uri(@"/Images/Deer.jpg", UriKind.Relative)));
 _images.Add(new BitmapImage(new Uri(@"/Images/Dogs.jpg", UriKind.Relative)));

Figure 29-4. Configuring the images to be embedded resources

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1284

 _images.Add(new BitmapImage(new Uri(@"/Images/Welcome.jpg", UriKind.Relative)));
 imageHolder.Source = _images[_currImage];
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

In this case, you no longer need to determine the installation path and can simply list the resources by
name, which takes into account the name of the original subdirectory. Also notice, when you create your Uri
objects, you specify a UriKind value of Relative. In any case, at this point your executable is a stand-alone
entity that can be run from any location on the machine, as all compiled data is within the binary. Figure 29-5
shows the completed application.

Figure 29-5. Your simple picture viewer

 ■ Source Code the Binaryresourcesapp can be found in the Chapter 29 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1285

Working with Object (Logical) Resources
When you are building a WPF application, it is very common to define a blurb of XAML to use in multiple
locations within a window, or perhaps across multiple windows or projects. For example, say you have
created the perfect linear gradient brush, which consists of ten lines of markup. Now, you want to use that
brush as the background color for every Button control in the project (which consists of eight windows) for a
total of 16 Buttons.

The worst thing you could do is to copy and paste the XAML to every control. Clearly, this would be a
nightmare to maintain, as you would need to make numerous changes anytime you wanted to tweak the
look and feel of the brush.

Thankfully, object resources allow you to define a blob of XAML, give it a name, and store it in a fitting
dictionary for later use. Like a binary resource, object resources are often compiled into the assembly that
requires them. However, you don’t need to tinker with the Build Action property to do so. As long as you
place your XAML into the correct location, the compiler will take care of the rest.

Working with object resources is a big part of WPF development. As you will see, object resources can be
far more complex than a custom brush. You can define a XAML-based animation, a 3D rendering, a custom
control style, data template, control template, and more, and package each one as a reusable resource.

The Role of the Resources Property
As mentioned, object resources must be placed in a fitting dictionary object in order to be used across
an application. As it stands, every descendant of FrameworkElement supports a Resources property. This
property encapsulates a ResourceDictionary object that contains the defined object resources. The
ResourceDictionary can hold any type of item because it operates on System.Object types and may be
manipulated via XAML or procedural code.

In WPF, all controls, Windows, Pages (used when building navigation applications or XBAP
programs), and UserControls extend FrameworkElement, so just about all widgets provide access to a
ResourceDictionary. Furthermore, the Application class, while not extending FrameworkElement, supports
an identically named Resources property for the same purpose.

Defining Window-Wide Resources
To begin exploring the role of object resources, create a new WPF application named ObjectResourcesApp
using Visual Studio and change the initial Grid to a horizontally aligned StackPanel layout manager. Into
this StackPanel, define two Button controls like so (you really don’t need much to illustrate the role of
object resources, so this will do):

<Window x:Class="ObjectResourcesApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:ObjectResourcesApp"
 mc:Ignorable="d"
 Title="Fun with Object Resources" Height="350" Width="525">

 <StackPanel Orientation="Horizontal">
 <Button Margin="25" Height="200" Width="200" Content="OK" FontSize="20"/>
 <Button Margin="25" Height="200" Width="200" Content="Cancel" FontSize="20"/>
 </StackPanel>

</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1286

Now, select the OK button and set the Background color property to a custom brush type using the
integrated brush editor (discussed in Chapter 28). After you’ve done so, notice how the brush is embedded
within the scope of the <Button> and </Button> tags, as shown here:

<Button Margin="25" Height="200" Width="200" Content="OK" FontSize="20">
 <Button.Background>
 <RadialGradientBrush>
 <GradientStop Color="#FFC44EC4" Offset="0" />
 <GradientStop Color="#FF829CEB" Offset="1" />
 <GradientStop Color="#FF793879" Offset="0.669" />
 </RadialGradientBrush>
 </Button.Background>
</Button>

To allow the Cancel button to use this brush as well, you should promote the scope of your
<RadialGradientBrush> to a parent element’s resource dictionary. For example, if you move it to the
<StackPanel>, both buttons can use the same brush because they are child elements of the layout manager.
Even better, you could package the brush into the resource dictionary of the window itself, so all aspects of
the window’s content (nested panels, etc.) can freely make use of it.

When you need to define a resource, you use the property element syntax to set the Resources property
of the owner. You also give the resource item an x:Key value, which will be used by other parts of the window
when they want to refer to the object resource. Be aware that x:Key and x:Name are not the same! The x:Name
attribute allows you to gain access to the object as a member variable in your code file, while the x:Key
attribute allows you to refer to an item in a resource dictionary.

Visual Studio allows you to promote a resource to a higher scope using its respective Properties
window. To do so, first identify the property that has the complex object you want to package as a resource
(the Background property, in this example). Next to the property is a small white square that, when clicked,
will open a pop-up menu. From it, select the Convert to New Resource option (see Figure 29-6).

http://dx.doi.org/10.1007/978-1-4842-1332-2_28

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1287

You are asked to name your resource (myBrush) and specify where to place it. For this example, leave the
default selection of the current document (see Figure 29-7).

Figure 29-6. Moving a complex object into a resource container

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1288

When you’re done, the markup will be restructured like this:

<Window x:Class="ObjectResourcesApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:ObjectResourcesApp"
 mc:Ignorable="d"
 Title="Fun with Object Resources" Height="350" Width="525">

 <Window.Resources>
 <RadialGradientBrush x:Key="myBrush">
 <GradientStop Color="#FFC44EC4" Offset="0" />
 <GradientStop Color="#FF829CEB" Offset="1" />
 <GradientStop Color="#FF793879" Offset="0.669" />
 </RadialGradientBrush>
 </Window.Resources>

 <StackPanel Orientation="Horizontal">
 <Button Margin="25" Height="200" Width="200" Content="OK"
 FontSize="20" Background="{DynamicResource myBrush}"/>
 <Button Margin="25" Height="200" Width="200" Content="Cancel" FontSize="20"/>
 </StackPanel>
</Window>

Figure 29-7. Naming the object resource

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1289

Notice the new <Window.Resources> scope, which now contains the RadialGradientBrush object, which
has a key value of myBrush. The Create Resource wizard creates the new resource as a DynamicResource. You
will learn about DynamicResources later in the text, but for now, change it to a StaticResource, like this:

<Button Margin="25" Height="200" Width="200" Content="OK"
 FontSize="20" Background="{StaticResource myBrush}"/>
<Button Margin="25" Height="200" Width="200" Content="Cancel" FontSize="20"/>

The {StaticResource} Markup Extension
The other change that took place when you extracted your object resource was that the property that was
the target of the extraction (again, Background) now makes use of the {StaticResource} markup extension.
As you can see, the key name is specified as an argument. Now, if the Cancel button opts to use the same
brush to paint its background, it is free to do so. Or, if the Cancel button had some complex content, any
sub-element of that Button could also use the window-level resource, such as the Fill property of
an Ellipse.

<StackPanel Orientation="Horizontal">
 <Button Margin="25" Height="200" Width="200" Content="OK" FontSize="20"
 Background="{StaticResource myBrush}">
 </Button>

 <Button Margin="25" Height="200" Width="200" FontSize="20">
 <StackPanel>
 <Label HorizontalAlignment="Center" Content= "No Way!"/>
 <Ellipse Height="100" Width="100" Fill="{StaticResource myBrush}"/>
 </StackPanel>
 </Button>
</StackPanel>

The {DynamicResource} Markup Extension
It is also possible for a property to use the {DynamicResource} markup extension when connecting to a keyed
resource. To understand the difference, name your OK button btnOK and handle the Click event. In this event
handler, use the Resources property to obtain the custom brush, and then change some aspect of it, like so:

private void btnOK_Click(object sender, RoutedEventArgs e)
{
 // Get the brush and make a change.
 var b = (RadialGradientBrush)Resources["myBrush"];
 b.GradientStops[1] = new GradientStop(Colors.Black, 0.0);
}

 ■ Note you are using the Resources indexer to locate a resource by name here. Be aware, however, that
this will throw a runtime exception if the resource can’t be found. you could also use the TryFindResource()
method, which will not throw a runtime error; it will simply return null if the specified resource can’t be located.

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1290

If you run this application and click the OK button, you will see that the brush’s change is accounted for
and each button updates to render the modified brush. However, what if you completely changed the type of
brush specified by the myBrush key? For example,

private void btnOK_Click(object sender, RoutedEventArgs e)
{
 // Put a totally new brush into the myBrush slot.
 Resources["myBrush"] = new SolidColorBrush(Colors.Red);
}

This time, when you click the button, neither updates as expected. This is because the {StaticResource}
markup extension applies the resource only once and stays “connected” to the original object during the life of
the application. However, if you change each occurrence of {StaticResource} to {DynamicResource} in your
markup, you find your custom brush has been replaced with the expected solid red brush.

Essentially, the {DynamicResource} markup extension is able to detect whether the underlying
keyed object has been replaced with a new object. As you might guess, this requires some extra runtime
infrastructure, so you should typically stick to using {StaticResource} unless you know you have an object
resource that will be swapped with a different object at runtime, and you want all items using that resource
to be informed.

Application-Level Resources
When you have object resources in a window’s resource dictionary, all items in the window are free to make
use of it, but other windows in the application cannot. Give your Cancel button a name of btnCancel and
handle the Click event. Insert a new window into your current project (named TestWindow.xaml) that
contains a single Button, which, when clicked, will close the window.

public partial class TestWindow : Window
{
 public TestWindow()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, RoutedEventArgs e)
 {
 Close();
 }
}

Now, in the Click handler of the Cancel button on your first window, just load and display this new
window, like so:

private void btnCancel_Click(object sender, RoutedEventArgs e)
{
 var w = new TestWindow();
 w.Owner = this;
 w.WindowStartupLocation = WindowStartupLocation.CenterOwner;
 w.ShowDialog();
}

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1291

So, if the new window wants to use myBrush, it currently won’t be able to because it is not within the
correct “scope.” The solution is to define the object resource at the application level, rather than at the level
of a specific window. There is no way to automate this within Visual Studio, so simply cut the current brush
object out of the <Windows.Resources> scope, and place it in the <Application.Resources> scope in your
App.xaml file.

<Application x:Class="ObjectResourcesApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
 xmlns:local="clr-namespace:ObjectResourcesApp"
 StartupUri="MainWindow.xaml">

 <Application.Resources>
 <RadialGradientBrush x:Key="myBrush">
 <GradientStop Color="#FFC44EC4" Offset="0" />
 <GradientStop Color="#FF829CEB" Offset="1" />
 <GradientStop Color="#FF793879" Offset="0.669" />
 </RadialGradientBrush>
 </Application.Resources>

</Application>

Now your TestWindow is free to use this same brush to paint its background. If you want to find the
Background property for this new Window, click the Brush Resources tab (all the way on the right) to view
your application-level resources (see Figure 29-8).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1292

Defining Merged Resource Dictionaries
Application-level resources are a good starting point, but what if you need to define a set of complex (or
not so complex) resources that need to be reused across multiple WPF projects? In this case, you want to
define what is known as a merged resource dictionary. This is nothing more than a .xaml file that contains a
collection of object resources. A single project can have as many of these files as required (one for brushes,
one for animations, and so forth), each of which can be inserted using the Add New Item dialog box
activated via the Project menu (see Figure 29-9).

Figure 29-8. Applying application-level resources

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1293

In the new MyBrushes.xaml file, cut the current resources in the Application.Resources scope and
move them into your dictionary, like so:

<ResourceDictionary xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
 xmlns:local="clr-namespace:ObjectResourcesApp"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <RadialGradientBrush x:Key="myBrush">
 <GradientStop Color="#FFC44EC4" Offset="0" />
 <GradientStop Color="#FF829CEB" Offset="1" />
 <GradientStop Color="#FF793879" Offset="0.669" />
 </RadialGradientBrush>

</ResourceDictionary>

Now, even though this resource dictionary is part of your project, you will get runtime errors.
The reason is that all resource dictionaries must be merged (typically at the application level) into an
existing resource dictionary. To do this, use the following format in the App.xaml file (note that multiple
resource dictionaries can be merged by adding multiple <ResourceDictionary> elements within the
<ResourceDictionary.MergedDictionaries> scope):

<Application x:Class="ObjectResourcesApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
 xmlns:local="clr-namespace:ObjectResourcesApp"
 StartupUri="MainWindow.xaml">

Figure 29-9. Inserting a new merged resource dictionary

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1294

 <!-- Bring in the logical resources
 from the MyBrushes.xaml file. -->
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source = "MyBrushes.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>

</Application>

Defining a Resource-Only Assembly
Last but not least, it is possible to create .NET class libraries that contain nothing but dictionaries of object
resources. This can be useful if you have defined a set of themes that need to be used on a machine-wide
level. You could package up the object resource into a dedicated assembly, and then applications that need
to make use of them could load them into memory.

The easiest way to build a resource-only assembly is to actually begin with a WPF User Control Library
project. Add such a project (named MyBrushesLibrary) to your current solution via the Add ➤ New Project
menu option of Visual Studio (see Figure 29-10).

Figure 29-10. Adding a User Control Library as a starting point for a resource-only library

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1295

Now, completely delete the UserControl1.xaml file from the project (the only items you really want are the
referenced WPF assemblies). Next, drag and drop the MyBrushes.xaml file into your MyBrushesLibrary project
and delete it from the ObjectResourcesApp project. Finally, open MyBrushes.xaml in the MyBrushesLibrary
project, and change the x:local namespace in the file to clr-namespace:MyBrushesLibrary. Your Solution
Explorer should now look like Figure 29-11.

Compile your User Control Library project. Next, reference this library from the ObjectResourcesApp
project using the Add Reference dialog box. Now, merge these binary resources into the application-level
resource dictionary of the ObjectResourcesApp project. Doing so, however, requires some rather funky
syntax, shown here:

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <!-- The syntax is /NameOfAssembly;Component/NameOfXamlFileInAssembly.xaml -->
 <ResourceDictionary Source = "/MyBrushesLibrary;Component/MyBrushes.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

First, be aware that this string is space-sensitive. If you have extra white space around your semicolon
or forward slashes, you will generate runtime errors. The first part of the string is the friendly name of the
external library (no file extension). After the semicolon, type in the word Component followed by the name of
the compiled binary resource, which will be identical to the original XAML resource dictionary.

Figure 29-11. Moving the MyBrushes.xaml file into your new library project

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1296

That wraps up our examination of WPF’s resource management system. You will make good use of
these techniques for most of your applications. Next up, let’s investigate the integrated animation API of
Windows Presentation Foundation.

 ■ Source Code the objectresourcesapp project can be found in the Chapter 29 subdirectory.

Understanding WPF’s Animation Services
In addition to the graphical rendering services you examined in Chapter 28, WPF supplies a programming
interface to support animation services. The term animation may bring to mind visions of spinning
company logos, a sequence of rotating image resources (to provide the illusion of movement), text bouncing
across the screen, or specific types of programs such as video games or multimedia applications.

While WPF’s animation APIs could certainly be used for such purposes, animation can be used any time
you want to give an application additional flair. For example, you could build an animation for a button on
a screen that magnifies slightly when the mouse cursor hovers within its boundaries (and shrinks back once
the mouse cursor moves beyond the boundaries). Or you could animate a window so that it closes using a
particular visual appearance, such as slowly fading into transparency. In fact, WPF’s animation support can
be used within any sort of application (a business application, multimedia programs, video games, etc.)
whenever you want to provide a more engaging user experience.

As with many other aspects of WPF, the notion of building animations is nothing new. What is new is that,
unlike other APIs you might have used in the past (including Windows Forms), developers are not required to
author the necessary infrastructure by hand. Under WPF, there’s no need to create the background threads or
timers used to advance the animation sequence, define custom types to represent the animation, erase and
redraw images, or bother with tedious mathematical calculations. Like other aspects of WPF, we can build an
animation entirely using XAML, entirely using C# code, or using a combination of the two.

 ■ Note Visual studio has no support for authoring animations using Gui animation tools. if you author an
animation with Visual studio, you will do so by typing in the Xaml directly. however, Blend for Visual studio
(the companion product that ships with Visual studio 2015) does indeed have a built-in animation editor that
can simplify your life a good deal.

The Role of the Animation Class Types
To understand WPF’s animation support, you must begin by examining the animation classes within the
System.Windows.Media.Animation namespace of PresentationCore.dll. Here you will find over 100
different class types that are named using the Animation token.

All of these classes can be placed into one of three broad categories. First, any class that follows
the name convention DataTypeAnimation (ByteAnimation, ColorAnimation, DoubleAnimation,
Int32Animation, etc.) allows you to work with linear interpolation animations. This enables you to change a
value smoothly over time from a start value to a final value.

Next, the classes that follow the naming convention DataTypeAnimationUsingKeyFrames
(StringAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames, PointAnimationUsingKeyFrames, etc.)
represent “key frame animations,” which allow you to cycle through a set of defined values over a period of
time. For example, you could use key frames to change the caption of a button by cycling through a series of
individual characters.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29
http://dx.doi.org/10.1007/978-1-4842-1332-2_28

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1297

Finally, classes that follow the DataTypeAnimationUsingPath naming convention
(DoubleAnimationUsingPath, PointAnimationUsingPath, among others) are path-based animations that
allow you to animate objects to move along a path you define. By way of an example, if you were building a
GPS application, you could use a path-based animation to move an item along the quickest travel route to
the user’s destination.

Now, obviously, these classes are not used to somehow provide an animation sequence directly to a variable
of a particular data type (after all, how exactly could you animate the value “9” using an Int32Animation?).

For example, consider the Label type’s Height and Width properties, both of which are dependency
properties wrapping a double. If you wanted to define an animation that would increase the height of a label
over a time span, you could connect a DoubleAnimation object to the Height property and allow WPF to
take care of the details of performing the actual animation itself. By way of another example, if you wanted to
transition the color of a brush type from green to yellow over a period of five seconds, you could do so using
the ColorAnimation type.

To be very clear, these Animation classes can be connected to any dependency property of a given object
that matches the underlying types. As explained in Chapter 27, dependency properties are a specialized
form of property required by many WPF services including animation, data binding, and styles.

By convention, a dependency property is defined as a static, read-only field of the class, and is named
by suffixing the word Property to the normal property name. For example, the dependency property for the
Height property of a Button would be accessed in code using Button.HeightProperty.

The To, From, and By Properties
All Animation classes define the following handful of key properties that control the starting and ending
values used to perform the animation:

•	 To: This property represents the animation’s ending value.

•	 From: This property represents the animation’s starting value.

•	 By: This property represents the total amount by which the animation changes its
starting value.

Despite the fact that all Animation classes support the To, From, and By properties, they do not receive
them via virtual members of a base class. The reason for this is that the underlying types wrapped by these
properties vary greatly (integers, colors, Thickness objects, etc.), and representing all possibilities using a
single base class would result in very complex coding constructs.

On a related note, you might also wonder why .NET generics were not used to define a single generic
animation class with a single type parameter (e.g., Animate<T>). Again, given that there are so many
underlying data types (colors, vectors, ints, strings, etc.) used to animated dependency properties, it
would not be as clean a solution as you might expect (not to mention XAML has only limited support for
generic types).

The Role of the Timeline Base Class
Although a single base class was not used to define virtual To, From, and By properties, the Animation classes
do share a common base class: System.Windows.Media.Animation.Timeline. This type provides a number
of additional properties that control the pacing of the animation, as described in Table 29-1.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1298

Authoring an Animation in C# Code
Specifically, you will build a Window that contains a Button, which has the odd behavior of spinning in a
circle (based on the upper-left corner) whenever the mouse enters its surface area. Begin by creating a new
WPF application named SpinningButtonAnimationApp, using Visual Studio. Update the initial markup to
the following (note you are handling the button’s MouseEnter event):

<Window x:Class="SpinningButtonAnimationApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:SpinningButtonanimationApp"
 mc:Ignorable="d"
 Title="Animations in C# code" Height="350"
 Width="525" WindowStartupLocation="CenterScreen">
 <Grid>
 <Button x:Name="btnSpinner" Height="50" Width="100" Content="I Spin!"
 MouseEnter="btnSpinner_MouseEnter"/>
 </Grid>
</Window>

Now, import the System.Windows.Media.Animation namespace and add the following code in the
window’s C# code file:

public partial class MainWindow : Window
{
 private bool _isSpinning = false;

 private void btnSpinner_MouseEnter(object sender, MouseEventArgs e)
 {
 if (!_isSpinning)
 {
 _isSpinning = true;
 // Make a double animation object, and register

Table 29-1. Key Members of the Timeline Base Class

Properties Meaning in Life

AccelerationRatio,
DecelerationRatio,
SpeedRatio

These properties can be used to control the overall pacing of the animation
sequence.

AutoReverse This property gets or sets a value that indicates whether the timeline plays in
reverse after it completes a forward iteration (the default value is false).

BeginTime This property gets or sets the time at which this timeline should begin. The
default value is 0, which begins the animation immediately.

Duration This property allows you to set a duration of time to play the timeline.

FillBehavior,
RepeatBehavior

These properties are used to control what should happen once the timeline has
completed (repeat the animation, do nothing, etc.).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1299

 // with the Completed event.
 var dblAnim = new DoubleAnimation();
 dblAnim.Completed += (o, s) => { _isSpinning = false; };

 // Set the start value and end value.
 dblAnim.From = 0;
 dblAnim.To = 360;

 // Now, create a RotateTransform object, and set
 // it to the RenderTransform property of our
 // button.
 var rt = new RotateTransform();
 btnSpinner.RenderTransform = rt;

 // Now, animation the RotateTransform object.
 rt.BeginAnimation(RotateTransform.AngleProperty, dblAnim);
 }
 }
}

The first major task of this method is to configure a DoubleAnimation object, which will start at the
value 0 and end at the value 360. Notice that you are handling the Completed event on this object as well, to
toggle a class-level bool variable that is used to ensure that if an animation is currently being performed, you
don’t “reset” it to start again.

Next, you create a RotateTransform object that is connected to the RenderTransform property of your
Button control (btnSpinner). Last but not least, you inform the RenderTransform object to begin animating its
Angle property using your DoubleAnimation object. When you are authoring animations in code, you typically
do so by calling BeginAnimation(), and pass in the underlying dependency property you would like to animate
(remember, by convention, this is a static field on the class), followed by a related animation object.

Let’s add another animation to the program, which will cause the button to fade into invisibility when
clicked. First, handle the Click event of the btnSpinner object, and then add the following code in the
resulting event handler:

private void btnSpinner_Click(object sender, RoutedEventArgs e)
{
 var dblAnim = new DoubleAnimation
 {
 From = 1.0,
 To = 0.0
 };
 btnSpinner.BeginAnimation(Button.OpacityProperty, dblAnim);
}

Here, you are changing the Opacity property value to fade the button out of view. Currently, however,
this is hard to do, as the button is spinning very fast! How, then, can you control the pace of an animation?
Glad you asked.

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1300

Controlling the Pace of an Animation
By default, an animation will take approximately one second to transition between the values assigned to the
From and To properties. Therefore, your button has one second to spin around a full 360-degree angle, while
the button will fade away to invisibility (when clicked) over the course of one second.

If you want to define a custom amount of time for an animation’s transition, you may do so via the
animation object’s Duration property, which can be set to an instance of a Duration object. Typically, the
time span is established by passing a TimeSpan object to the Duration’s constructor. Consider the following
update that will give the button a full four seconds to rotate:

private void btnSpinner_MouseEnter(object sender, MouseEventArgs e)
{
 if (!_isSpinning)
 {
 _isSpinning = true;

 // Make a double animation object, and register
 // with the Completed event.
 var dblAnim = new DoubleAnimation();
 dblAnim.Completed += (o, s) => { _isSpinning = false; };

 // Button has four seconds to finish the spin!
 dblAnim.Duration = new Duration(TimeSpan.FromSeconds(4));

...
 }
}

With this adjustment, you should have a fighting chance of clicking the button while it is spinning, at
which point it will fade away.

 ■ Note the BeginTime property of an Animation class also takes a TimeSpan object. recall that this
property can be set to establish a wait time before starting an animation sequence.

Reversing and Looping an Animation
You can also tell Animation objects to play an animation in reverse at the completion of the animation
sequence by setting the AutoReverse property to true. For example, if you want to have the button come
back into view after it has faded away, you could author the following:

private void btnSpinner_Click(object sender, RoutedEventArgs e)
{
 DoubleAnimation dblAnim = new DoubleAnimation
 {
 From = 1.0,
 To = 0.0
 };

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1301

 // Reverse when done.
 dblAnim.AutoReverse = true;
 btnSpinner.BeginAnimation(Button.OpacityProperty, dblAnim);
}

If you’d like to have an animation repeat some number of times (or to never stop once activated), you
can do so using the RepeatBehavior property, which is common to all Animation classes. If you pass in a
simple numerical value to the constructor, you can specify a hard-coded number of times to repeat. On the
other hand, if you pass in a TimeSpan object to the constructor, you can establish an amount of time the
animation should repeat. Finally, if you want an animation to loop ad infinitum, you can simply specify
RepeatBehavior.Forever. Consider the following ways you could change the repeat behaviors of either of
the DoubleAnimation objects used in this example:

// Loop forever.
dblAnim.RepeatBehavior = RepeatBehavior.Forever;

// Loop three times.
dblAnim.RepeatBehavior = new RepeatBehavior(3);

// Loop for 30 seconds.
dblAnim.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(30));

That wraps up your investigation about how to animate aspects of an object using C# code and the WPF
animation API. Next, you will learn how to do the same using XAML.

 ■ Source Code the spinningButtonanimationapp project can be found in the Chapter 29 subdirectory.

Authoring Animations in XAML
Authoring animations in markup is similar to authoring them in code, at least for simple, straightforward
animation sequences. When you need to capture more complex animations, which may involve changing
the values of numerous properties at once, the amount of markup can grow considerably. Even if you
use a tool to generate XAML-based animations, it is important to know the basics of how an animation is
represented in XAML because this will make it easier for you to modify and tweak tool-generated content.

 ■ Note you will find a number of Xaml files in the XamlAnimations folder of the downloadable source code.
as you go through the next several pages, copy these markup files into your custom Xaml editor or into the
Kaxaml editor to see the results.

For the most part, creating an animation is similar to what you have already seen. You still configure
an Animation object and associate it to an object’s property. One big difference, however, is that WPF is not
function call–friendly. As a result, instead of calling BeginAnimation(), you use a storyboard as a layer of
indirection.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1302

Let’s walk through a complete example of an animation defined in terms of XAML, followed by a
detailed breakdown. The following XAML definition will display a window that contains a single label.
As soon as the Label object loads into memory, it begins an animation sequence in which the font size
increases from 12 points to 100 over a period of four seconds. The animation will repeat for as long as the
Window object is loaded in memory. You can find this markup in the GrowLabelFont.xaml file, so copy it into
your MyXamlPad.exe application (or Kaxaml) and observe the behavior:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="200" Width="600" WindowStartupLocation="CenterScreen" Title="Growing Label Font!">
 <StackPanel>
 <Label Content = "Interesting...">
 <Label.Triggers>
 <EventTrigger RoutedEvent = "Label.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard TargetProperty = "FontSize">
 <DoubleAnimation From = "12" To = "100" Duration = "0:0:4"
 RepeatBehavior = "Forever"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Label.Triggers>
 </Label>
 </StackPanel>
</Window>

Now, let’s break this example down, bit by bit.

The Role of Storyboards
Working from the innermost element outward, you first encounter the <DoubleAnimation> element, which
makes use of the same properties you set in procedural code (From, To, Duration, and RepeatBehavior).

<DoubleAnimation From = "12" To = "100" Duration = "0:0:4"
 RepeatBehavior = "Forever"/>

As mentioned, Animation elements are placed within a <Storyboard> element, which is used to map
the animation object to a given property on the parent type via the TargetProperty property, which in this
case is FontSize. A <Storyboard> is always wrapped in a parent element named <BeginStoryboard>.

<BeginStoryboard>
 <Storyboard TargetProperty = "FontSize">
 <DoubleAnimation From = "12" To = "100" Duration = "0:0:4"
 RepeatBehavior = "Forever"/>
 </Storyboard>
</BeginStoryboard>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1303

The Role of Event Triggers
After the <BeginStoryboard> element has been defined, you need to specify some sort of action that will
cause the animation to begin executing. WPF has a few different ways to respond to runtime conditions in
markup, one of which is termed a trigger. From a high level, you can consider a trigger a way of responding
to an event condition in XAML, without the need for procedural code.

Typically, when you respond to an event in C#, you author custom code that will execute when the
event occurs. A trigger, however, is just a way to be notified that some event condition has happened
(“I’m loaded into memory”, “The mouse is over me!”, “I have focus!”).

Once you’ve been notified that an event condition has occurred, you can start the storyboard. In this
example, you are responding to the Label being loaded into memory. Because it is the Label’s Loaded event
you are interested in, the <EventTrigger> is placed in the Label’s trigger collection.

<Label Content = "Interesting...">
 <Label.Triggers>
 <EventTrigger RoutedEvent = "Label.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard TargetProperty = "FontSize">
 <DoubleAnimation From = "12" To = "100" Duration = "0:0:4"
 RepeatBehavior = "Forever"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Label.Triggers>
</Label>

Let’s see another example of defining an animation in XAML, this time using a key frame animation.

Animation Using Discrete Key Frames
Unlike the linear interpolation animation objects, which can only move between a starting point and an
ending point, the key frame counterparts allow you to create a collection of specific values for an animation
that should take place at specific times.

To illustrate the use of a discrete key frame type, assume you want to build a Button control that
animates its content so that over the course of three seconds the value “OK!” appears, one character at
a time. You’ll find the following markup in the AnimateString.xaml file. Copy this markup into your
MyXamlPad.exe program (or Kaxaml) and view the results:

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="100" Width="300"
 WindowStartupLocation="CenterScreen" Title="Animate String Data!">
 <StackPanel>
 <Button Name="myButton" Height="40"
 FontSize="16pt" FontFamily="Verdana" Width = "100">
 <Button.Triggers>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1304

 <EventTrigger RoutedEvent="Button.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <StringAnimationUsingKeyFrames RepeatBehavior = "Forever"
 Storyboard.TargetProperty="Content"
 Duration="0:0:3">
 <DiscreteStringKeyFrame Value="" KeyTime="0:0:0" />
 <DiscreteStringKeyFrame Value="O" KeyTime="0:0:1" />
 <DiscreteStringKeyFrame Value="OK" KeyTime="0:0:1.5" />
 <DiscreteStringKeyFrame Value="OK!" KeyTime="0:0:2" />
 </StringAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
 </Button>
 </StackPanel>
</Window>

First, notice that you have defined an event trigger for your button to ensure that your storyboard
executes when the button has loaded into memory. The StringAnimationUsingKeyFrames class is in charge
of changing the content of the button, via the Storyboard.TargetProperty value.

Within the scope of the <StringAnimationUsingKeyFrames> element, you define four
DiscreteStringKeyFrame elements, which change the button’s Content property over the course of two
seconds (note that the duration established by StringAnimationUsingKeyFrames is a total of three seconds,
so you will see a slight pause between the final “!” and looping “O”).

Now that you have a better feel for how to build animations in C# code and XAML, let’s look at the role
of WPF styles, which make heavy use of graphics, object resources, and animations.

 ■ Source Code these loose Xaml files can be found in the XamlAnimations subdirectory of Chapter 29.

Understanding the Role of WPF Styles
When you are building the UI of a WPF application, it is not uncommon for a family of controls to require a
shared look and feel. For example, you might want all button types have the same height, width, background
color, and font size for their string content. Although you could handle this by setting each button’s
individual properties to identical values, such an approach makes it difficult to implement changes down
the road because you would need to reset the same set of properties on multiple objects for every change.

Thankfully, WPF offers a simple way to constrain the look and feel of related controls using styles.
Simply put, a WPF style is an object that maintains a collection of property/value pairs. Programmatically
speaking, an individual style is represented using the System.Windows.Style class. This class has a property
named Setters, which exposes a strongly typed collection of Setter objects. It is the Setter object that
allows you to define the property/value pairs.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1305

In addition to the Setters collection, the Style class also defines a few other important members that allow
you to incorporate triggers, restrict where a style can be applied, and even create a new style based on an existing
style (think of it as “style inheritance”). In particular, be aware of the following members of the Style class:

•	 Triggers: Exposes a collection of trigger objects, which allow you to capture various
event conditions within a style.

•	 BasedOn: Allows you to build a new style based on an existing style.

•	 TargetType: Allows you to constrain where a style can be applied.

Defining and Applying a Style
In almost every case, a Style object will be packaged as an object resource. Like any object resource, you can
package it at the window or application level, as well as within a dedicated resource dictionary (this is great
because it makes the Style object easily accessible throughout your application). Now recall that the goal is
to define a Style object that fills (at minimum) the Setters collection with a set of property/value pairs.

Create a new WPF application named WpfStyles using Visual Studio. Let’s build a style that captures the
basic font characteristics of a control in your application. Open your App.xaml file and define the following
named style:

<Application x:Class="WpfStyles.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfStyles"
 mc:Ignorable="d"
 StartupUri="MainWindow.xaml">

 <Application.Resources>
 <Style x:Key ="BasicControlStyle">
 <Setter Property = "Control.FontSize" Value ="14"/>
 <Setter Property = "Control.Height" Value = "40"/>
 <Setter Property = "Control.Cursor" Value = "Hand"/>
 </Style>
 </Application.Resources>

</Application>

Notice that your BasicControlStyle adds three Setter objects to the internal collection. Now, let’s
apply this style to a few controls in your main window. Because this style is an object resource, the controls
that want to use it still need to use the {StaticResource} or {DynamicResource} markup extension to locate
the style. (As you know from the earlier discussion on static vs. dynamic resources, static ones are a tad bit
more efficient, but are limited in how they get updated, so choose the one that best fits your needs.) When
they find the style, they will set the resource item to the identically named Style property. Consider the
following <Window> definition:

<Window x:Class="WpfStyles.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1306

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfStyles"
 mc:Ignorable="d"
 Title="A Window with Style!" Height="229"
 Width="525" WindowStartupLocation="CenterScreen">

 <StackPanel>
 <Label x:Name="lblInfo" Content="This style is boring..."
 Style="{StaticResource BasicControlStyle}" Width="150"/>
 <Button x:Name="btnTestButton" Content="Yes, but we are reusing settings!"
 Style="{StaticResource BasicControlStyle}" Width="250"/>
 </StackPanel>

</Window>

If you run this application, you’ll find that both controls support the same cursor, height, and font size.

Overriding Style Settings
Here you have a Button and Label that have both opted in to the constraints enforced by your style. Of
course, if a control wants to apply a style and then change some of the defined settings, that’s fine. For
example, the Button will now use the Help cursor (rather than the Hand cursor defined in the style):

<Button x:Name="btnTestButton" Content="Yes, but we are reusing settings!"
 Cursor="Help" Style="{StaticResource BasicControlStyle}" Width="250" />

Styles are processed before the individual property settings of the control using the style; therefore,
controls can “override” settings on a case-by-case basis.

Limiting Application of a Style with TargetType
Currently, your style is defined in such a way that any control can adopt it (and has to do so explicitly
by setting the control’s Style property), given that each property is qualified by the Control class. For a
program that defines dozens of settings, this would entail a good amount of repeated code. One way to
clean this style up a bit is to use the TargetType attribute. When you add this attribute to a Style’s opening
element, you can mark exactly once where it can be applied (in this example, in App.XAML).

<Style x:Key ="BasicControlStyle" TargetType="Control">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Height" Value = "40"/>
 <Setter Property = "Cursor" Value = "Hand"/>
</Style>

 ■ Note When you build a style that uses a base class type, you needn’t be concerned if you assign a value to
a dependency property not supported by derived types. if the derived type does not support a given dependency
property, it is ignored.

http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1307

This is somewhat helpful, but you still have a style that can apply to any control. The TargetType
attribute is more useful when you want to define a style that can be applied to only a particular type of
control. Add the following new style to the application’s resource dictionary:

<Style x:Key ="BigGreenButton" TargetType="Button">
 <Setter Property = "FontSize" Value ="20"/>
 <Setter Property = "Height" Value = "100"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Background" Value = "DarkGreen"/>
 <Setter Property = "Foreground" Value = "Yellow"/>
</Style>

This style will work only on Button controls (or a subclass of Button). If you apply it to an incompatible
element, you will get markup and compiler errors. If the Button uses this new style,

<Button x:Name="btnTestButton" Content="OK!"
 Cursor="Help" Style="{StaticResource BigGreenButton}" Width="250" />

you’ll see output like that shown in Figure 29-12.

Another effect of TargetType is that the style will get applied to all elements of that type within the
scope of the style definition as long as the x:Key property doesn’t exist. More on this shortly.

Automatically Applying a Style with TargetType
Assume you need to ensure that all TextBox controls have the same look and feel. Now assume you have
defined a style as an application-level resource, so all windows in the program have access to it. While this is
a step in the right direction, if you have numerous windows with numerous TextBox controls, you’ll need to
set the Style property numerous times!

WPF styles can be implicitly applied to all controls within a given XAML scope. To create such a style,
you use the TargetType property but you don’t assign the Style resource an x:Key value. This “unnamed
style” now applies to all controls of the correct type. Here is another application-level style that will apply
automatically to all TextBox controls in the current application:

<!-- The default style for all text boxes. -->
<Style TargetType="TextBox">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Height" Value = "30"/>

Figure 29-12. Controls with different styles

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1308

 <Setter Property = "BorderThickness" Value = "5"/>
 <Setter Property = "BorderBrush" Value = "Red"/>
 <Setter Property = "FontStyle" Value = "Italic"/>
</Style>

You can now define any number of TextBox controls and they will automatically get the defined look.
If a given TextBox does not want this default look and feel, it can opt out by setting the Style property to
{x:Null}. For example, txtTest will get the default unnamed style, while txtTest2 is doing things its
own way:

<TextBox x:Name="txtTest"/>
<TextBox x:Name="txtTest2" Style="{x:Null}" BorderBrush="Black"
 BorderThickness="5" Height="60" Width="100" Text="Ha!"/>

Subclassing Existing Styles
You can also build new styles using an existing style, via the BasedOn property. The style you are extending
must have been given a proper x:Key in the dictionary, as the derived style will reference it by name
using the {StaticResource} or {DynamicResource} markup extension. Here is a new style based on
BigGreenButton, which rotates the button element by 20 degrees:

<!-- This style is based on BigGreenButton. -->
<Style x:Key ="TiltButton" TargetType="Button" BasedOn = "{StaticResource BigGreenButton}">
 <Setter Property = "Foreground" Value = "White"/>
 <Setter Property = "RenderTransform">
 <Setter.Value>
 <RotateTransform Angle = "20"/>
 </Setter.Value>
 </Setter>
</Style>

This time the output appears as in Figure 29-13.

Defining Styles with Triggers
WPF styles can also contain triggers by packaging up Trigger objects within the Triggers collection of the
Style object. Using triggers in a style allows you to define certain <Setter> elements in such a way that they
will be applied only if a given trigger condition is true. For example, perhaps you want to increase the size of

Figure 29-13. Using a derived style

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1309

a font when the mouse is over a button. Or maybe you want to make sure that the text box with the current
focus is highlighted with a given color. Triggers are very useful for these sorts of situations, in that they
allow you to take specific actions when a property changes, without the need to author explicit C# code in a
code-behind file.

Here is an update to the TextBox style that ensures that when a TextBox has the input focus, it will
receive a yellow background:

<!-- The default style for all text boxes. -->
<Style TargetType="TextBox">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Height" Value = "30"/>
 <Setter Property = "BorderThickness" Value = "5"/>
 <Setter Property = "BorderBrush" Value = "Red"/>
 <Setter Property = "FontStyle" Value = "Italic"/>
 <!-- The following setter will be applied only when the text box is
 in focus. -->
 <Style.Triggers>
 <Trigger Property = "IsFocused" Value = "True">
 <Setter Property = "Background" Value = "Yellow"/>
 </Trigger>
 </Style.Triggers>
</Style>

If you test this style, you’ll find that as you tab between various TextBox objects, the currently selected
TextBox has a bright yellow background (provided it has not opted out by assigning {x:Null} to the Style
property).

Property triggers are also very smart, in that when the trigger’s condition is not true, the property
automatically receives the default assigned value. Therefore, as soon as a TextBox loses focus, it also
automatically becomes the default color without any work on your part. In contrast, event triggers
(examined when you looked at WPF animations) do not automatically revert to a previous condition.

Defining Styles with Multiple Triggers
Triggers can also be designed in such a way that the defined <Setter> elements will be applied when
multiple conditions are true. Let’s say you want to set the background of a TextBox to Yellow only if it
has the active focus and the mouse is hovering within its boundaries. To do so, you can make use of the
<MultiTrigger> element to define each condition, like so:

<!-- The default style for all text boxes. -->
<Style TargetType="TextBox">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Height" Value = "30"/>
 <Setter Property = "BorderThickness" Value = "5"/>
 <Setter Property = "BorderBrush" Value = "Red"/>
 <Setter Property = "FontStyle" Value = "Italic"/>
 <!-- The following setter will be applied only when the text box is
 in focus AND the mouse is over the text box. -->

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1310

 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property = "IsFocused" Value = "True"/>
 <Condition Property = "IsMouseOver" Value = "True"/>
 </MultiTrigger.Conditions>
 <Setter Property = "Background" Value = "Yellow"/>
 </MultiTrigger>
 </Style.Triggers>
</Style>

Animated Styles
Styles can also incorporate triggers that kick off an animation sequence. Here is one final style that, when
applied to Button controls, will cause the controls to grow and shrink in size when the mouse is inside the
button’s surface area:

<!-- The growing button style! -->
<Style x:Key = "GrowingButtonStyle" TargetType="Button">
 <Setter Property = "Height" Value = "40"/>
 <Setter Property = "Width" Value = "100"/>
 <Style.Triggers>
 <Trigger Property = "IsMouseOver" Value = "True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard TargetProperty = "Height">
 <DoubleAnimation From = "40" To = "200"
 Duration = "0:0:2" AutoReverse="True"/>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>
 </Style.Triggers>
</Style>

Here, the triggers collection is on the lookout for the IsMouseOver property to return true. When this
occurs, you define a <Trigger.EnterActions> element to execute a simple storyboard that forces the button
to grow to a Height value of 200 (and then return to a Height of 40) over two seconds. If you want to perform
other property changes, you could also define a <Trigger.ExitActions> scope to define any custom actions
to take when IsMouseOver changes to false.

Assigning Styles Programmatically
Recall that a style can be applied at runtime as well. This can be helpful if you want to let end users choose
how their UI looks and feels, or if you need to enforce a look and feel based on security settings (e.g., the
DisableAllButton style) or what have you.

During this project, you have defined a number of styles, many of which can apply to Button controls.
So, let’s retool the UI of your main window to allow the user to pick from some of these styles by selecting

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1311

names in a ListBox. Based on the user’s selection, you will apply the appropriate style. Here is the new
(and final) markup for the <Window> element:

<Window x:Class="WpfStyles.MainWindow"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfStyles"
 mc:Ignorable="d"
 Height="350" Title="A Window with Style!"
 Width="525" WindowStartupLocation="CenterScreen">

 <DockPanel >
 <StackPanel Orientation="Horizontal" DockPanel.Dock="Top">
 <Label Content="Please Pick a Style for this Button" Height="50"/>
 <ListBox x:Name ="lstStyles" Height ="80" Width ="150" Background="LightBlue"
 SelectionChanged ="comboStyles_Changed" />
 </StackPanel>
 <Button x:Name="btnStyle" Height="40" Width="100" Content="OK!"/>
 </DockPanel>

</Window>

The ListBox control (named lstStyles) will be filled dynamically within the window’s constructor, like so:

public MainWindow()
{
 InitializeComponent();

 // Fill the list box with all the Button
 // styles.
 lstStyles.Items.Add("GrowingButtonStyle");
 lstStyles.Items.Add("TiltButton");
 lstStyles.Items.Add("BigGreenButton");
 lstStyles.Items.Add("BasicControlStyle");}
}

The final task is to handle the SelectionChanged event in the related code file. Notice in the following
code how you are able to extract the current resource by name, using the inherited TryFindResource()
method:

private void comboStyles_Changed(object sender, SelectionChangedEventArgs e)
{
 // Get the selected style name from the list box.
 var currStyle = (Style)TryFindResource(lstStyles.SelectedValue);
 if (currStyle == null) return;
 // Set the style of the button type.
 this.btnStyle.Style = currStyle;
}

When you run this application, you can pick from one of these four button styles on the fly. Figure 29-14
shows your completed application.

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1312

 ■ Source Code the Wpfstyles project can be found in the Chapter 29 subdirectory.

Logical Trees, Visual Trees, and Default Templates
Now that you understand styles and resources, there are a few more preparatory topics to investigate before
you begin learning how to build custom controls. Specifically, you need to learn the distinction between
a logical tree, a visual tree, and a default template. When you are typing XAML into Visual Studio, or a tool
such as kaxaml.exe, your markup is the logical view of the XAML document. As well, if you author C# code
that adds new items to a StackPanel control, you are inserting new items into the logical tree. Essentially, a
logical view represents how your content will be positioned within the various layout managers for a main
Window (or another root element, such as Page or NavigationWindow).

However, behind every logical tree is a much more verbose representation termed a visual tree, which
is used internally by WPF to correctly render out elements onto the screen. Within any visual tree, there will
be full details of the templates and styles used to render out each object, including any necessary drawings,
shapes, visuals, and animations.

It is useful to understand the distinction between logical and visual trees because when you are
building a custom control template, you are essentially replacing all or part of the default visual tree of a
control and inserting your own. Therefore, if you want a Button control to be rendered as a star shape, you
could define a new star template and plug it into the Button’s visual tree. Logically, the Button is still of type
Button, and it supports all of the properties, methods, and events as expected. But visually, it has taken on a
whole new appearance. This fact alone makes WPF an extremely useful API, given that other toolkits would
require you to build a brand new class to make a star-shaped button. With WPF, you simply need to define
new markup.

Figure 29-14. Controls with different styles

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1313

 ■ Note WpF controls are often described as lookless. this refers to the fact that the look and feel of a WpF
control is completely independent (and customizable) from its behavior.

Programmatically Inspecting a Logical Tree
While analyzing a window’s logical tree at runtime is not a tremendously common WPF programming activity,
it is worth mentioning that the System.Windows namespace defines a class named LogicalTreeHelper, which
allows you to inspect the structure of a logical tree at runtime. To illustrate the connection between logical
trees, visual trees, and control templates, create a new WPF application named TreesAndTemplatesApp.

Update the markup for your window so that it contains two Button controls and a large read-only
TextBox with scrollbars enabled. Make sure you use the IDE to handle the Click event of each button. The
following XAML will do nicely:

<Window x:Class="TreesAndTemplatesApp.MainWindow"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:TreesAndTemplatesApp"
 mc:Ignorable="d"
 Title="Fun with Trees and Templates" Height="518"
 Width="836" WindowStartupLocation="CenterScreen">

 <DockPanel LastChildFill="True">
 <Border Height="50" DockPanel.Dock="Top" BorderBrush="Blue">
 <StackPanel Orientation="Horizontal">
 <Button x:Name="btnShowLogicalTree" Content="Logical Tree of Window"
 Margin="4" BorderBrush="Blue" Height="40" Click="btnShowLogicalTree_Click"/>
 <Button x:Name="btnShowVisualTree" Content="Visual Tree of Window"
 BorderBrush="Blue" Height="40" Click="btnShowVisualTree_Click"/>
 </StackPanel>
 </Border>
 <TextBox x:Name="txtDisplayArea" Margin="10" Background="AliceBlue" IsReadOnly="True"
 BorderBrush="Red" VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Auto" />
 </DockPanel>
</Window>

Within your C# code file, define a string member variable named _dataToShow. Now, within the
Click handler for the btnShowLogicalTree object, call a helper function that calls itself recursively in
order to populate the string variable with the logical tree of the Window. To do so, you will call the static
GetChildren() method of LogicalTreeHelper. Here is the code:

private string _dataToShow = string.Empty;

private void btnShowLogicalTree_Click(object sender, RoutedEventArgs e)
{
 _dataToShow = "";
 BuildLogicalTree(0, this);
 txtDisplayArea.Text = _dataToShow;
}

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1314

void BuildLogicalTree(int depth, object obj)
{
 // Add the type name to the dataToShow member variable.
 _dataToShow += new string(' ', depth) + obj.GetType().Name + "\n";

 // If an item is not a DependencyObject, skip it.
 if (!(obj is DependencyObject))
 return;

 // Make a recursive call for each logical child.
 foreach (var child in LogicalTreeHelper.GetChildren(
 (DependencyObject)obj))
 {
 BuildLogicalTree(depth + 5, child);
 }
}

If you run your application and click this first button, you will see a tree print out in the text area, which
is just about an exact replica of the original XAML (see Figure 29-15).

Figure 29-15. Viewing a logical tree at runtime

Programmatically Inspecting a Visual Tree
A Window’s visual tree can also be inspected at runtime using the VisualTreeHelper class of
System.Windows.Media. Here is a Click implementation of the second Button control (btnShowVisualTree),
which performs similar recursive logic to build a textual representation of the visual tree:

private void btnShowVisualTree_Click(object sender, RoutedEventArgs e)
{
 _dataToShow = "";
 BuildVisualTree(0, this);
 txtDisplayArea.Text = _dataToShow;
}

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1315

void BuildVisualTree(int depth, DependencyObject obj)
{
 // Add the type name to the dataToShow member variable.
 _dataToShow += new string(' ', depth) + obj.GetType().Name + "\n";
 // Make a recursive call for each visual child.
 for (int i = 0; i < VisualTreeHelper.GetChildrenCount(obj); i++)
 {
 BuildVisualTree(depth + 1, VisualTreeHelper.GetChild(obj, i));
 }
}

As you can see in Figure 29-16, the visual tree exposes a number of lower-level rendering agents such as
ContentPresenter, AdornerDecorator, TextBoxLineDrawingVisual, and so forth.

Figure 29-16. Viewing a visual tree at runtime

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1316

Programmatically Inspecting a Control’s Default Template
Recall that a visual tree is used by WPF to understand how to render a Window and all contained elements.
Every WPF control stores its own set of rendering commands within its default template. Programmatically
speaking, any template can be represented as an instance of the ControlTemplate class. As well, you can
obtain a control’s default template by using the aptly named Template property, like so:

// Get the default template of the Button.
Button myBtn = new Button();
ControlTemplate template = myBtn.Template;

Likewise, you could create a new ControlTemplate object in code and plug it into a control’s Template
property as follows:

// Plug in a new template for the button to use.
Button myBtn = new Button();
ControlTemplate customTemplate = new ControlTemplate();

// Assume this method adds all the code for a star template.
MakeStarTemplate(customTemplate);
myBtn.Template = customTemplate;

While you could build a new template in code, it is far more common to do so in XAML. However,
before you start building your own templates, let’s finish the current example and add the ability to view
the default template of a WPF control at runtime. This can be a really useful way to take a look at the overall
composition of a template. First, update the markup of your window with a new StackPanel of controls
docked to the left side of the master DockPanel, defined as so (placed just before the <TextBox> element):

<Border DockPanel.Dock="Left" Margin="10" BorderBrush="DarkGreen"
 BorderThickness="4" Width="358">
 <StackPanel>
 <Label Content="Enter Full Name of WPF Control" Width="340" FontWeight="DemiBold" />
 <TextBox x:Name="txtFullName" Width="340" BorderBrush="Green"
 Background="BlanchedAlmond" Height="22"
 Text="System.Windows.Controls.Button" />
 <Button x:Name="btnTemplate" Content="See Template" BorderBrush="Green"
 Height="40" Width="100" Margin="5"
 Click="btnTemplate_Click" HorizontalAlignment="Left" />
 <Border BorderBrush="DarkGreen" BorderThickness="2" Height="260"
 Width="301" Margin="10" Background="LightGreen" >
 <StackPanel x:Name="stackTemplatePanel" />
 </Border>
 </StackPanel>
</Border>

Do take note of the empty StackPanel, stackTemplatePanel, because you will refer to it in code. Add an
empty event handler function for the btnTemplate_Click event like this:

private void btnTemplate_Click(object sender, RoutedEventArgs e)
{
}

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1317

Now your window should now look something like Figure 29-17.

The upper-left text area allows you to enter in the fully qualified name of a WPF control located in the
PresentationFramework.dll assembly. Once the library is loaded, you will dynamically create an instance
of the object and display it in the large square in the bottom left. Last but not least, the control’s default
template will be displayed in the right-hand text area. First, add a new member variable to your C# class of
type Control, like so:

private Control _ctrlToExamine = null;

Here is the remaining code, which will require you to import the System.Reflection, System.Xml, and
System.Windows.Markup namespaces:

private void btnTemplate_Click(object sender, RoutedEventArgs e)
{
 _dataToShow = "";
 ShowTemplate();
 txtDisplayArea.Text = _dataToShow;
}

Figure 29-17. The updated UI of your window

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1318

private void ShowTemplate()
{
 // Remove the control that is currently in the preview area.
 if (_ctrlToExamine != null)
 stackTemplatePanel.Children.Remove(_ctrlToExamine);
 try
 {
 // Load PresentationFramework, and create an instance of the
 // specified control. Give it a size for display purposes, then add to the
 // empty StackPanel.
 Assembly asm = Assembly.Load("PresentationFramework, Version=4.0.0.0," +
 "Culture=neutral, PublicKeyToken=31bf3856ad364e35");
 _ctrlToExamine = (Control)asm.CreateInstance(txtFullName.Text);
 _ctrlToExamine.Height = 200;
 _ctrlToExamine.Width = 200;
 _ctrlToExamine.Margin = new Thickness(5);
 stackTemplatePanel.Children.Add(_ctrlToExamine);

 // Define some XML settings to preserve indentation.
 var xmlSettings = new XmlWriterSettings{Indent = true};

 // Create a StringBuilder to hold the XAML.
 var strBuilder = new StringBuilder();

 // Create an XmlWriter based on our settings.
 var xWriter = XmlWriter.Create(strBuilder, xmlSettings);

 // Now save the XAML into the XmlWriter object based on the ControlTemplate.
 XamlWriter.Save(_ctrlToExamine.Template, xWriter);

 // Display XAML in the text box.
 _dataToShow = strBuilder.ToString();
 }
 catch (Exception ex)
 {
 _dataToShow = ex.Message;
 }
}

The bulk of the work is just tinkering with the compiled BAML resource to map it into a XAML string.
Figure 29-18 shows your final application in action, displaying the default template of the System.Windows
.Controls.DatePicker control. The image shows the Calendar, which is accessed by clicking the button on
the right-hand side of the control.

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1319

Great! Hopefully you have a better idea about how logical trees, visual trees, and control default
templates work together. Now you can spend the remainder of this chapter learning how to build custom
templates and user controls.

 ■ Source Code the treesandtemplatesapp project is included in the Chapter 29 subdirectory.

Building a Control Template with the Trigger Framework
When you build a custom template for a control, you could do so with nothing but C# code. Using this
approach, you would add data to a ControlTemplate object and then assign it to a control’s Template
property. Most of the time, however, you will define the look and feel of a ControlTemplate using XAML and
add bits of code (or possible quite a bit of code) to drive the runtime behavior.

In the remainder of this chapter, you will examine how to build custom templates using Visual Studio.
Along the way, you will learn about the WPF trigger framework and the Visual State Manager (VSM), and
you’ll see how to use animations to incorporate visual cues for the end user. Using Visual Studio alone to
build complex templates can entail a fair amount of typing and a bit of heavy lifting. To be sure, production-
level templates will benefit from the use of Expression Blend for Visual Studio, the (now) free companion
install to Visual Studio. However, given that this edition of the text does not include coverage of Blend, it’s
time to roll up your sleeves and pound out some markup.

Figure 29-18. Investigating a ControlTemplate at runtime

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1320

To begin, create a new WPF application named ButtonTemplate. For this project, you are more interested
in the mechanics of creating and using templates, so the markup for this main window is very simple.

<Window x:Class="ButtonTemplate.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:ButtonTemplate"
 mc:Ignorable="d"
 Title="Fun with Templates" Height="350" Width="525">
 <StackPanel>
 <Button x:Name="myButton" Width="100" Height="100"
 Click="myButton_Click"/>
 </StackPanel>
</Window>

In the Click event handler, simply display a message box (via MessageBox.Show()) that displays a
message confirming the clicking of the control. Remember, when you build custom templates, the behavior
of the control is constant but the look may vary.

Currently, this Button is rendered using the default template, which, as the last example illustrated, is a
BAML resource within a given WPF assembly. When you want to define your own template, you essentially
replace this default visual tree with your own creation. To begin, update the definition of the <Button>
element to specify a new template using the property element syntax. This template will give the control a
round appearance.

<Button x:Name="myButton" Width="100" Height="100"
 Click="myButton_Click">
 <Button.Template>
 <ControlTemplate>
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill = "LightBlue"/>
 <Label x:Name="buttonCaption" VerticalAlignment = "Center"
 HorizontalAlignment = "Center"
 FontWeight = "Bold" FontSize = "20" Content = "OK!"/>
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Here, you have defined a template that consists of a named Grid control containing a named Ellipse
and a Label. Because your Grid has no defined rows or columns, each child stacks on top of the previous
control, allowing you to have centering of content. If you run your application now, you will notice that the
Click event will fire only when the mouse cursor is within the bounds of the Ellipse (i.e., not in the corners
around the edges of the ellipse)! This is a great feature of the WPF template architecture: you do not need to
recalculate hit-testing, bounds checking, or any other low-level detail. So, if your template used a Polygon
object to render some oddball geometry, you can rest assured that the mouse hit-testing details are relative
to the shape of the control, not the larger bounding rectangle.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1321

Templates as Resources
Currently, your template is embedded to a specific Button control, which limits your reuse options. Ideally,
you would place your template into a resource dictionary so you can reuse your round button template
between projects, or at minimum, move it into the application resource container for reuse within this
project. Let’s move the local Button resource to the application level. First, locate the Template property for
your Button in the Properties editor (you’ll find it under the Miscellaneous section). Now, click on the small
black square icon and select “Convert to New Resource.”

From the resulting dialog box, define a new template named RoundButtonTemplate, which is stored at
the Application level (i.e., in App.xaml; see Figure 29-19).

Figure 29-19. Placing your resource into App.xaml

At this point, you will find the following data in your Application object’s markup:

<Application x:Class="ButtonTemplate.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:ButtonTemplate"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ControlTemplate x:Key="RoundButtonTemplate" TargetType="{x:Type Button}>
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill = "LightBlue"/>
 <Label x:Name="buttonCaption" VerticalAlignment = "Center"
 HorizontalAlignment = "Center"
 FontWeight = "Bold" FontSize = "20" Content = "OK!"/>
 </Grid>
 </ControlTemplate>
 </Application.Resources>
</Application>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1322

Now, because this resource is available for the entire application, you can define any number of round
buttons. Create two additional Button controls that use this template for testing purposes (no need to handle
the Click event for these new items).

<StackPanel>
 <Button x:Name="myButton" Width="100" Height="100"
 Click="myButton_Click"
 Template="{StaticResource RoundButtonTemplate}"></Button>
 <Button x:Name="myButton2" Width="100" Height="100"
 Template="{StaticResource RoundButtonTemplate}"></Button>
 <Button x:Name="myButton3" Width="100" Height="100"
 Template="{StaticResource RoundButtonTemplate}"></Button>
</StackPanel>

Visual Studio 2015 and .NET 4.6 defaults to using DynamicResources. I prefer StaticResources as the
default; I move to Dynamic when the need arises. For these examples, make sure to change the default
DynamicResources to StaticResources.

Incorporating Visual Cues Using Triggers
When you define a custom template, all of the visual cues of the default template are removed as well. For
example, the default button template contains markup that informs the control how to look when certain
UI events occur, such as when it receives focus, when it is clicked with the mouse, when it is enabled (or
disabled), and so on. Users are quite accustomed to these sort of visual cues because it gives the control
somewhat of a tactile response. However, your RoundButtonTemplate does not define any such markup, so
the look of the control is identical regardless of the mouse activity. Ideally, your control should look slightly
different when clicked (maybe via a color change or drop shadow) to let the user know the visual state has
changed.

When WPF was first released, the way to add in such visual cues was to add to the template any
number of triggers that would typically change values of object properties or start a storyboard animation
(or both) when the trigger condition was true. By way of example, update your RoundButtonTemplate with
the following markup, which will change the color of the control to blue and the foreground color to yellow
when the mouse is over the surface:

<ControlTemplate x:Key="RoundButtonTemplate" TargetType="Button" >
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill="LightBlue" />
 <Label x:Name="buttonCaption" Content="OK!" FontSize="20" FontWeight="Bold"
 HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property = "IsMouseOver" Value = "True">
 <Setter TargetName = "buttonSurface" Property = "Fill" Value = "Blue"/>
 <Setter TargetName = "buttonCaption" Property = "Foreground"
 Value = "Yellow"/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1323

If you run the program yet again, you should find the color does toggle based on whether or not the mouse
is within the Ellipse area. Here is another trigger, which will shrink the size of the Grid (and, therefore, all child
elements) when the control is pressed via the mouse. Add this to your <ControlTemplate.Triggers> collection:

<Trigger Property = "IsPressed" Value="True">
 <Setter TargetName="controlLayout"
 Property="RenderTransformOrigin" Value="0.5,0.5"/>
 <Setter TargetName="controlLayout" Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleX="0.8" ScaleY="0.8"/>
 </Setter.Value>
 </Setter>
</Trigger>

The Role of the {TemplateBinding} Markup Extension
Your template can only be applied to Button controls and, therefore, it would stand to reason that you could
set properties on the <Button> element that will cause the template to render itself in a unique manner. For
example, right now the Fill property of the Ellipse is hard-coded to be blue and the Content of the Label
is always set to the string value “OK”. If you want buttons of different colors and text values, you could define
the following buttons in your main window:

<StackPanel>
 <Button x:Name="myButton" Width="100" Height="100"
 Background="Red" Content="Howdy!"
 Click="myButton_Click"
 Template="{StaticResource RoundButtonTemplate}" />
 <Button x:Name="myButton2" Width="100" Height="100"
 Background="LightGreen" Content="Cancel!"
 Template="{StaticResource RoundButtonTemplate}" />
 <Button x:Name="myButton3" Width="100" Height="100"
 Background="Yellow" Content="Format"
 Template="{StaticResource RoundButtonTemplate}" />
</StackPanel>

However, regardless of the fact that each Button is setting a unique Background and Content value, you
still end up with three blue buttons that contain the text “OK”. The problem is that the properties of the control
using the template (Button) have properties that do not match identically with the items on the template
(such as the Fill property of the Ellipse). As well, although the Label does have a Content property, the
value defined in the <Button> scope is not automatically routed to the internal child of the template.

You can solve these issues by using the {TemplateBinding} markup extension when you build your
template. This allows you to capture property settings defined by the control using your template and
use them to set values in the template itself. Here is a reworked version of RoundButtonTemplate, which
now uses this markup extension to map the Background property of the Button to the Fill property of the
Ellipse; it also makes sure the Content of the Button is indeed passed to the Content property of the Label:

<ControlTemplate x:Key="RoundButtonTemplate" TargetType="Button">
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill="{TemplateBinding Background}"/>

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1324

 <Label x:Name="buttonCaption" Content="{TemplateBinding Content}"
 FontSize="20" FontWeight="Bold"
 HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>
 ...
 </ControlTemplate.Triggers>
</ControlTemplate>

With this update, you can now create buttons of various colors and textual values (see Figure 29-20).
The example XAML is shown here:

<Button x:Name="myButton" Width="100" Height="100" Background="Red" Content="Howdy!"
 Click="myButton_Click" Style="{StaticResource RoundButtonStyle}" />
<Button x:Name="myButton2" Width="100" Height="100" Background="LightGreen" Content="Cancel!"
 Style="{StaticResource RoundButtonStyle}" />
<Button x:Name="myButton3" Width="100" Height="100" Background="Yellow" Content="Format"
 Style="{StaticResource RoundButtonStyle}" />

Figure 29-20. Template bindings allow values to pass through to the internal controls

The Role of ContentPresenter
When you designed your template, you used a Label to display the textual value of the control. Like the
Button, the Label supports a Content property. Therefore, given your use of {TemplateBinding}, you could
define a Button that contains complex content beyond that of a simple string. For example,

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1325

<Button x:Name="myButton4" Width="100" Height="100" Background="Yellow"
 Template="{StaticResource RoundButtonTemplate}">
 <Button.Content>
 <ListBox Height="50" Width="75">
 <ListBoxItem>Hello</ListBoxItem>
 <ListBoxItem>Hello</ListBoxItem>
 <ListBoxItem>Hello</ListBoxItem>
 </ListBox>
 </Button.Content>
</Button>

For this particular control, things work just as hoped. However, what if you need to pass in complex
content to a template member that does not have a Content property? When you want to define a
generalized content display area in a template, you can use the ContentPresenter class as opposed to a
specific type of control (Label or TextBlock). There is no need to do so for this example; however, here is
some simple markup that illustrates how you could build a custom template that uses ContentPresenter to
show the value of the Content property of the control using the template:

<!-- This button template will display whatever is set
 to the Content of the hosting button. -->
<ControlTemplate x:Key="NewRoundButtonTemplate" TargetType="Button">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
</ControlTemplate>

Incorporating Templates into Styles
Currently, your template simply defines a basic look and feel of the Button control. However, the process of
establishing the basic properties of the control (content, font size, font weight, etc.) is the responsibility of
the Button itself.

<!-- Currently the Button must set basic property values, not the template. -->
<Button x:Name ="myButton" Foreground ="Black" FontSize ="20" FontWeight ="Bold"
 Template ="{StaticResource RoundButtonTemplate}" Click ="myButton_Click"/>

If you want, you could establish these values in the template. By doing so, you can effectively create
a default look and feel. As you might have already realized, this is a job for WPF styles. When you build
a style (to account for basic property settings), you can define a template within the style! Here is your
updated application resource in the application resources in App.xaml, which has been rekeyed as
RoundButtonStyle:

<!-- A style containing a template. -->
<Style x:Key ="RoundButtonStyle" TargetType ="Button">
 <Setter Property ="Foreground" Value ="Black"/>
 <Setter Property ="FontSize" Value ="14"/>
 <Setter Property ="FontWeight" Value ="Bold"/>
 <Setter Property="Width" Value="100"/>
 <Setter Property="Height" Value="100"/>

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1326

 <!-- Here is the template! -->
 <Setter Property ="Template">
 <Setter.Value>
 <ControlTemplate TargetType ="Button">
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill="{TemplateBinding Background}"/>
 <Label x:Name="buttonCaption" Content ="{TemplateBinding Content}"
 HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property = "IsMouseOver" Value = "True">
 <Setter TargetName = "buttonSurface" Property = "Fill" Value = "Blue"/>
 <Setter TargetName = "buttonCaption" Property = "Foreground" Value = "Yellow"/>
 </Trigger>
 <Trigger Property = "IsPressed" Value="True">
 <Setter TargetName="controlLayout"
 Property="RenderTransformOrigin" Value="0.5,0.5"/>
 <Setter TargetName="controlLayout" Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleX="0.8" ScaleY="0.8"/>
 </Setter.Value>
 </Setter>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

With this update, you can now create button controls by setting the Style property as so:

<Button x:Name="myButton" Background="Red" Content="Howdy!"
 Click="myButton_Click" Style="{StaticResource RoundButtonStyle}"/>

While the rendering and behavior of the button are identical, the benefit of nesting templates within
styles is that you are able to provide a canned set of values for common properties. That wraps up your look
at how to use Visual Studio and the trigger framework to build custom templates for a control. While there is
still much more about the Windows Presentation Foundation API than has been examined here, you should
be in a solid position for further study.

 ■ Source Code the Buttontemplate project can be found in the Chapter 29 subdirectory.

Summary
The first part of this chapter examined the resource management system of WPF. You began by looking at
how to work with binary resources, and then you examined the role of object resources. As you learned,
object resources are named blobs of XAML that can be stored at various locations in order to reuse content.

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 29 ■ WpF resourCes, animations, styles, and templates

1327

Next, you learned about WPF’s animation framework. Here you had a chance to create some animations
using C# code, as well as with XAML. You learned that if you define an animation in markup, you use
<Storyboard> elements and triggers to control execution. You then looked at the WPF style mechanism,
which makes heavy use of graphics, object resources, and animations.

You examined the relationship between a logical tree and a visual tree. The logical tree is basically a
one-to-one correspondence of the markup you author to describe a WPF root element. Behind this logical
tree is a much deeper visual tree that contains detailed rendering instructions.

The role of a default template was then examined. Remember, when you are building custom templates,
you are essentially ripping out all (or part) of a control’s visual tree and replacing it with your own custom
implementation.

1329

Chapter 30

Notifications, Commands,
Validation, and MVVM

This chapter will conclude your investigation of the WPF programming model by introducing you to
the Observable pattern and the notification system built into WPF. You’ll also expand your knowledge
of commands and validation. These three items are the foundation for implementing the Model-View-
ViewModel (MVVM) pattern in WPF.

The first section covers observable models and observable collections. When classes and collections
implement INotifyPropertyChanged and INotifyCollectionChanged (respectively), the binding manager
keeps the values in the UI in sync with the bound data. Having the data in the UI accurately portray the
current state of the data automatically improves the user experience significantly and reduces the manual
coding required in older technologies (such as WinForms) to achieve the same result.

Building on the Observable pattern, you will examine the mechanisms to add validation into your
application. Validation is a vital part of any application–not only letting the user know that something is
wrong, but also letting them know what is wrong. To inform the user what the error is, you will also learn
how to incorporate validation into the view markup.

Next, you will take a deeper dive into the WPF command system and create custom commands to
encapsulate program logic, much as you did in Chapter 27 with the built-in commands. There are several
advantages to creating custom commands, including (but not limited to) enabling code reuse, logic
encapsulation, and cleaner code.

Finally, you will learn about the Model-View-ViewModel (MVVM) pattern, and how all of this material
fits together to support the pattern. Figure 30-1 shows the application that you will build throughout this
chapter.

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1330

Introducing Model-View-ViewModel
Before you dive into notifications, validations, and commands in WPF, it would be good to understand the
end goal of this chapter, which is the Mode-View-ViewModel pattern (MVVM).

Derived from Martin Fowler’s Presentation Model pattern, MVVM leverages the XAML-specific
capabilities, discussed in this chapter, to make your WPF development faster and cleaner. The name itself
describes the main components of the pattern: Model, View, ViewModel.

Model
The Model is the object representation of your data. In the samples from this chapter, the Model is the
Inventory class. This doesn’t mean the actual data store (such as SQL Server), but the classes that represent
the data that is stored in the persistence layer.

Models usually have validation built in (as you will see later in this chapter in the Validation section)
and are configured as observables, covered later in this chapter as well.

View
The View is the UI of the application, and it is designed to be very lightweight. Think of the menu board at
a drive-thru restaurant. The board displays menu items and prices, and it has a mechanism so the user can
communicate with the back-end systems. However, there isn’t any intelligence built into the board, unless it
is isolated from the restaurant itself, in which case it might have a light sensor that will turn on the lights if it
gets dark.

MVVM Views should be developed with the same goals in mind. Any intelligence should be built into
the application elsewhere. The only code in the code-behind file (e.g. MainWindow.xaml.cs) should be
directly related to manipulating the UI. It should not be based on business rules or anything that needs to be
persisted for future use. While not the goal of MVVM, very little code in the code-behind (if any) is a pleasant
side effect.

Figure 30-1. Fun with MVVM!

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1331

ViewModel
In WPF and other XAML technologies, the ViewModel serves two purposes:

•	 The ViewModel provides a single stop for all of the data needed by the view. This
doesn’t mean that the ViewModel is responsible for getting the actual data; instead it
calls the relevant code (such as EF repositories) to get all of the data together where
it’s easily accessible. Because of this, there is typically a one-to-one correlation
between Windows and ViewModels in my code, but architectural differences exist,
and your mileage may vary.

•	 The second job is to act as the controller for the View. Just like the menu board, the
ViewModel takes direction from the user, and calls the code to make sure the proper
actions are taken. This code is typically in the form of commands.

Anemic Models or ViewModels
In the early days of WPF, when developers were still working out how best to implement the MVVM pattern,
there were significant (and sometimes heated) discussions about where to implement items like validation
and the observable patterns. One camp (the Anemic Model camp) argued that it all should be in the
ViewModel, since adding those capabilities to the model broke separation of concerns. The other camp
(the Anemic ViewModel camp) argued it should all be in the Models, since that reduced duplication of code.

The real answer is, of course, it depends. When INotifyPropertyChanged, IDataErrorInfo, and
INotifyDataErrorInfo are implemented on the model classes, this ensures that the relevant code is close
to the target of the code (as you will see in this chapter), and is only implemented once for each model.
That being said, there are times when your ViewModel classes will need to be developed as observables
themselves. At the end of the day, you need to determine what makes the most sense, without over-
complicating your code or sacrificing the benefits of MVVM.

 ■ Note there are multiple mVVm frameworks available for Wpf, such as mVVmlite, Caliburn.micro, and
prism (although prism is much more than just an mVVm framework). each framework has its merits and
(to some extent) detractions. this chapter discusses the mVVm pattern and the features in Wpf that support
implementing the pattern. i leave it to you, the reader, to examine the different frameworks and select the one
that best matches your app needs.

The WPF Binding Notification System
A significant shortcoming in the binding system for WinForms is a lack of notifications. If the data in the data
source changes, the UI does not get automatically updated. Instead, the developer needs to call Refresh
on the control before the control will reload the data from the data source. This can lead to more calls to
Refresh than are actually necessary because most developers want to make sure the UI and the data do not
get out of sync. While not a significant performance issue to include too many, if you don’t include enough,
the experience for the user could be affected negatively.

The binding system built into XAML-based applications corrects this problem by enabling you to hook
your data objects into a notification system. Classes and collections that hook into this system are referred to
as observable models and observable collections, or collectively as observables. Whenever a property’s value
changes on an observable model or the collection changes (e.g. items are added, removed, or reordered) on
an observable collection, they raise an event (either NotifyPropertyChanged or NotifyCollectionChanged).

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1332

The binding framework automatically listens for those events to occur, and updates the bound controls
when they fire. Even better, as a developer, you have control over which properties raise the notifications.
Sounds perfect, right? Well, it’s not quite perfect, as you shall soon see. There is a fair amount of code
involved in setting this up for observable models if you are doing it all by hand. Fortunately, there is an open
source framework that makes it much simpler, as you shall soon see.

Observable Models and Collections
In this section, you will create an application that uses observable models and collections. To get started,
create a new WPF application named Notifications. The form will be a Master Detail form, allowing the
user to select a specific car using the ComboBox, and then the details for that car will be displayed in the
TextBoxes below. Update MainWindow.xaml to the following markup:

<Window x:Class="Notifications.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Notifications"
 mc:Ignorable="d"
 Title="Fun with Notifications!" Height="225" Width="325"
 WindowStartupLocation="CenterOwner">
 <Grid IsSharedSizeScope="True" Margin="5,0,5,5">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="CarLabels"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Label Grid.Column="0" Content="Vehicle"/>
 <ComboBox Name="cboCars" Grid.Column="1" DisplayMemberPath="PetName" />
 </Grid>
 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="CarLabels"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.Row="0" Content="Make"/>
 <TextBox Grid.Column="1" Grid.Row="0" />
 <Label Grid.Column="0" Grid.Row="1" Content="Color"/>
 <TextBox Grid.Column="1" Grid.Row="1" />
 <Label Grid.Column="0" Grid.Row="2" Content="Pet Name"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1333

 <TextBox Grid.Column="1" Grid.Row="2" />
 <StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="3"
 HorizontalAlignment="Right" Orientation="Horizontal" Margin="0,5,0,5">
 <Button x:Name="btnAddCar" Content="Add Car" Margin="5,0,5,0" Padding="4, 2" />
 <Button x:Name="btnChangeColor" Content="Change Color" Margin="5,0,5,0"
 Padding="4, 2"/>
 </StackPanel>
 </Grid>
 </Grid>
</Window>

Your window will resemble Figure 30-2.

Figure 30-2. Master Detail window displaying inventory details

Next, right-click the project name in Solution Explorer, select Add ➤ New Folder named Models, and in
this new folder, create a class named Inventory. The initial class is listed here:

public class Inventory
{
 public int CarId { get; set; }
 public string Make { get; set; }
 public string Color { get; set; }
 public string PetName { get; set; }
}

Adding Bindings and Data
The next step is to add the binding statements for the controls. To do this, add a DataContext to the Grid
holding the text boxes and label. Set the DataContext to the SelectedItem property of the ComboBox. Update
the Grid that holds the detail controls to the following:

<Grid Grid.Row="1" DataContext="{Binding ElementName=cboCars, Path=SelectedItem}">

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1334

As a reminder, controls will navigate up the element tree for a DataContext if one isn’t specified.
This enables you to just specify the path for the binding in the TextBoxes. Add the appropriate text attributes
and related bindings to the TextBoxes, like so:

<TextBox Grid.Column="1" Grid.Row="0" Text="{Binding Path=Make}" />
<TextBox Grid.Column="1" Grid.Row="1" Text="{Binding Path=Color}" />
<TextBox Grid.Column="1" Grid.Row="2" Text="{Binding Path=PetName}" />

Finally, add data to the ComboBox. In MainWindow.xaml.cs, create a new list of Inventory records, and
set the ItemsSource for the ComboBox to the list. Also add the using statement for the Notifications.Models
namespace.

using Notifications.Models;
public class MainWindow : Window
{
 readonly IList<Inventory> _cars;
 public MainWindow()
 {
 InitializeComponent();
 _cars = new List<Inventory>
 {
 new Inventory {CarId=1,Color="Blue",Make="Chevy",PetName="Kit" },
 new Inventory {CarId=2,Color="Red",Make="Ford",PetName="Red Rider" },
 };
 cboCars.ItemsSource = _cars;
 }
}

Run the app. You’ll see that the vehicle selector has two cars to choose from. Choose one of them, and
the text boxes will be automatically populated with the vehicle detail, as shown in Figure 30-3. Change the
color of one of the vehicles, select the other vehicle, and then go back to the vehicle you edited. You will see
the new color is indeed still attached to the vehicle. This isn’t anything remarkable; you’ve seen the power of
XAML databinding in previous examples.

Figure 30-3. The window with data

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1335

Programmatically Changing the Vehicle Data
While the previous example works as expected, if the data is changed programmatically, the UI will not
reflect the changes unless you program the app to refresh the data. To demonstrate this, add an event
handler for the btnChangeColor Button, like so:

<Button x:Name="btnAddCar" Content="Add Car" Margin="5,0,5,0" Padding="4, 2"
Click="btnAddCar_Click"/>

Create (or have Visual Studio create it for you) the event handler for the btnChangeColor_Click event,
as follows:

private void btnChangeColor_Click(object sender, RoutedEventArgs e)
{
}

In the event handler, use the SelectedItem property of the ComboBox to locate the selected record from
the cars list. If a match is found, change the color to Pink. The code is listed here:

private void btnChangeColor_Click(object sender, RoutedEventArgs e)
{
 var car = _cars.FirstOrDefault(x => x.CarId == ((Inventory)cboCars.SelectedItem)?.CarId);
 if (car != null)
 {
 car.Color = "Pink";
 }
}

Run the app, select a vehicle, and click the Change Color button. Nothing changes visibly. Select the
other vehicle and go back to your originally selected vehicle. Now you will see the updated value. This is not
a very good experience for the user!

Now add an event handler to the btnAddCar button, like this:

<Button x:Name="btnAddCar" Content="Add Car" Margin="5,0,5,0" Padding="4,2"
Click="btnAddCar_Click"/>

Add the event handler (or let Visual Studio create it for you) for the btnAddCar_Click event handler,
like this:

private void btnAddCar_Click(object sender, RoutedEventArgs e)
{
}

In the btnAddCar_Click event handler, add a new record to the Inventory list.

private void btnAddCar_Click(object sender, RoutedEventArgs e)
{
 var maxCount = _cars?.Max(x => x.CarId) ?? 0;
_cars?.Add(new Inventory { CarId=++maxCount,Color="Yellow",Make="VW",PetName="Birdie"});
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1336

Run the app, click the Add Car button, and examine the contents of the ComboBox. Even though you
know there are three cars in the list, only two are displayed!

To correct both of these problems, you will use observable models and an observable collection. These
changes are covered in the next sections.

Observable Models
The problem of data changing on a property of your model and not being displayed in the UI is
resolved by implementing the INotifyPropertyChanged interface on your Inventory model class.
The INotifyPropertyChanged interface only exposes a single event: the PropertyChangedEvent. The
XAML binding engine listens for this event for each bound property as long as the class implements the
INotifyPropertyChanged interface. The interface is shown here:

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;
}

The PropertyChanged event takes an object reference and a new instance of the
PropertyChangedEventArgs class, like this:

PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Model"));

The first parameter is the object instance that is raising the event. The PropertyChangedEventArgs
constructor takes a string that indicates the property that was changed and needs to be updated. When the
event is raised, the binding engine looks for any controls bound the named property on that instance. If
you pass string.Empty into the PropertyChangedEventArgs, all of the bound properties of the instance are
updated.

You control which properties are enlisted in the automatic updates by raising the PropertyChanged
event in the setter for the properties that you want to have automatically updated. This is usually all of
the properties on your model classes, but you have the option of omitting certain properties based on
your application’s requirements. Instead of raising the event directly in the setter for each of the enlisted
properties, a common pattern is to create a helper method (typically named OnPropertyChanged) that raises
the event on behalf of the properties, usually in a base class for your models.

In versions of .NET prior to 4.5, you had to pass the string name of the property into your helper
method. If the property name of your class changed, you had to remember to update the string passed
into helper method, or the update would not work. Starting in .NET 4.5, you can take advantage of the
[CallerMemberName] attribute. This attribute assigns the name of the method (your property setter) that
calls into your helper method to the propertyName parameter. Add a method to the Inventory class (named
OnPropertyChanged) and raise the PropertyChangedEvent like this:

internal void OnPropertyChanged([CallerMemberName] string propertyName = "")
{
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1337

Next, update each of the automatic properties in the Inventory class to have a full getter and setter with
a backing field. When the value is changed, call the OnPropertyChanged helper method. Here is the CarId
property updated:

private int _carId;
public int CarId
{
 get { return _carId; }
 set
 {
 if (value == _carId) return;
 _carId = value;
 OnPropertyChanged();
 }
}

There have been several changes to the Inventory class, including implementing the
INotifyPropertyChanged event, raising the PropertyChanged event, and converting all of the automatic
properties to explicit properties with backing fields. The updated class is listed here:

using System.ComponentModel;
using System.Runtime.CompilerServices;
namespace Notifications.Models
{
 public class Inventory : INotifyPropertyChanged
 {
 private int _carId;
 public int CarId
 {
 get { return _carId; }
 set
 {
 if (value == _carId) return;
 _carId = value;
 OnPropertyChanged();
 }
 }
 private string _make;
 public string Make
 {
 get { return _make; }
 set
 {
 if (value == _make) return;
 _make = value;
 OnPropertyChanged();
 }
 }

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1338

 private string _color;
 public string Color
 {
 get { return _color; }
 set
 {
 if (value == _color) return;
 _color = value;
 OnPropertyChanged();
 }
 }

 private string _petName;
 public string PetName
 {
 get { return _petName; }
 set
 {
 if (value == _petName) return;
 _petName = value;
 OnPropertyChanged();
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 internal void OnPropertyChanged([CallerMemberName] string propertyName = "")
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

Run the app again. Select a vehicle and click the Change Color button. You will immediately see the
change show up in the UI. First problem solved!

Using nameof
A new feature in C# 6 is the nameof operator, which provides the string name of the item passed into the
nameof method. You can use this in the calls to OnPropertyChanged in your setters, like this:

private string _color;
public string Color
{
 get { return _color; }
 set
 {
 if (value == _color) return;
 _color = value;
 OnPropertyChanged(nameof(Color));
 }
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1339

Note that you don’t have to remove the CallerMemberName attribute from the OnPropertyChanged when
you use the nameof method (although it becomes unnecessary). In the end, whether you use the nameof
method or the CallerMemberName attribute comes down to a matter of personal choice.

Observable Collections
The next problem to resolve is updating the UI when the contents of a collection change. This is done by
implementing the INotifyCollectionChanged interface. Like the INotifyPropertyChanged interface, this
interface exposes one event, the CollectionChanged event. Unlike the INotifyPropertyChanged event,
implementing this interface by hand is more than just calling a method in the setter. You need to create a full
List implementation and raise the CollectionChanged event any time your list changes.

The CollectionChanged event takes one parameter, a new instance of the
CollectionChangedEventArgs. The CollectionChangedEventArgs takes one or more
parameters in its constructor, based on the operation. The first parameter is always one of the
NotifyCollectionChangedAction enum values, which informs the binding engine what changed with the
list. The values for the NotifyCollectionChangedAction enum are shown in Table 30-1.

Table 30-1. NotifyCollectionChangedAction enum Values

Member Meaning in Life

Add One or more times were added to the collection.

Move One or more items moved in the collection.

Remove One or more items were removed from the collection.

Replace One or more items were replaced in the collection.

Reset So much changed that the best option is to start over and rebind everything related to the
collection.

Table 30-2. NotifyCollectionChangedEventArgs Constructor Options

Operation Additional Parameters

Reset None

Add (single) Item to be added, [optional] index of location for add

Add (List) Items to be added, [optional] index of location for add

Remove (single) Item to be removed, [optional] index of item to be removed

Remove (List) Items to be removed, [optional] start index of location for removal

Move (Single) Item to be moved, original index, destination index

Move (List) Items to be moved, start original index, destination index

Replace (single) Item to be added, item to be removed, [optional] index of change

Replace (List) Items to be added, items to be removed, [optional] starting index of change

The options for the constructor of the NotifyCollectionChangedEventArgs vary based on the action
being announced. Table 30-2 lists the operations and the additional parameters sent into the constructor.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1340

There are a lot of variations in play here. The next section shows the options that apply to an IList<T>
in action.

Building Custom IList<Inventory>
To see an example of this, create a new class in your Models directory and name the class InventoryList.
Implement the IList<Inventory> and INotifyCollectionChanged interfaces, which when stubbed out,
result in the following code:

public class InventoryList : IList<Inventory>, INotifyCollectionChanged
{
 public IEnumerator<Inventory> GetEnumerator()
 {
 throw new System.NotImplementedException();
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 public void Add(Inventory item)
 {
 throw new System.NotImplementedException();
 }

 public void Clear()
 {
 throw new System.NotImplementedException();
 }

 public bool Contains(Inventory item)
 {
 throw new System.NotImplementedException();
 }

 public void CopyTo(Inventory[] array, int arrayIndex)
 {
 throw new System.NotImplementedException();
 }

 public bool Remove(Inventory item)
 {
 throw new System.NotImplementedException();
 }

 public int Count { get; }
 public bool IsReadOnly { get; }

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1341

 public int IndexOf(Inventory item)
 {
 throw new System.NotImplementedException();
 }

 public void Insert(int index, Inventory item)
 {
 throw new System.NotImplementedException();
 }

 public void RemoveAt(int index)
 {
 throw new System.NotImplementedException();
 }

 public Inventory this[int index]
 {
 get { throw new System.NotImplementedException(); }
 set { throw new System.NotImplementedException(); }
 }

 public event NotifyCollectionChangedEventHandler CollectionChanged;
}

Start updating this class by adding a helper method named OnCollectionChanged for the
CollectionChanged event. In this method, if the CollectionChanged is not null, invoke it, like this:

public event OnCollectionChangedEventHandler CollectionChanged;
private void OnCollectionChanged(NotifyCollectionChangedEventArgs args)
{
 CollectionChanged?.Invoke(this, args);
}

Next, add a private field named _inventories of type IList<Inventory>, and a new constructor that
takes an IList<Inventory> and initializes the field, like this:

private readonly IList<Inventory> _inventories;
public InventoryList(IList<Inventory> inventories)
{
 _inventories = inventories;
}

Next, add in some of the plumbing methods for list. These methods don’t change the state of the list,
but are necessary for implementing IList<T>, and are shown here:

public IEnumerator<Inventory> GetEnumerator() => _inventories.GetEnumerator();

IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();

public bool Contains(Inventory item) => _inventories.Contains(item);

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1342

public void CopyTo(Inventory[] array, int arrayIndex)
{
 _inventories.CopyTo(array, arrayIndex);
}

public int Count => _inventories.Count;

public bool IsReadOnly => _inventories.IsReadOnly;

public int IndexOf(Inventory item) => _inventories.IndexOf(item);

The first method to flush out is the Add method. Add the item to the _inventories list, and call the
OnCollectionChanged method, passing in the NotificationCollectionChangedAction.Add value and the
new item to be added. The updated code is shown here:

public void Add(Inventory item)
{
 _inventories.Add(item);
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.
Add, item));

}

The Insert method adds a record at a specified index. In the method, insert the item to the
_inventories list at the correct index. Then call the OnCollectionChanged method, passing in the
NotificationCollectionChangedAction.Add value, the new item to be added, and the index of the change.
The updated code is shown here:

public void Insert(int index, Inventory item)
{
 _inventories.Insert(index, item);
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.
Add, item, index));

}

To execute a replace-with-the-indexer method, pass in the NotifyCollectionChangedAction.Replace
value in the OnCollectionChanged call and the updated item:

public Inventory this[int index]
{
 get { return _inventories?[index]; }
 set
 {
 _inventories[index] = value;
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Replace, _inventories[index]));
 }
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1343

Next, update the Remove method. Remove the item from the _inventories list, and call the
OnCollectionChanged method, passing in the NotificationCollectionChangedAction.Remove value and
the item to be removed. The updated code is shown here:

public bool Remove(Inventory item)
{
 var removed = _inventories.Remove(item);
 if (removed)
 {
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Remove, item));
 }
 return removed;
}

Next, update the RemoveAt method. The RemoveAt method on the IList<T> interface only accepts an
index, and there isn’t a version of the NotifyCollectionEventArgs constructor that takes just an index.
Therefore, you need to get a reference to the correct object from the _inventories list first, before removing
it from the list. Next, remove the item from the _inventories list using the supplied index value. Finally, call
the OnCollectionChanged method, passing in the NotificationCollectionChangedAction.Remove value,
the item to be removed, and the index.

 ■ Note if you did not get a reference to the correct object, you have to pass
NotifyCollectionChangedEventArgs.Reset to the event, which could have a performance impact,
since it refreshes everything in the Ui that is bound to this list.

The updated code is shown here:

public void RemoveAt(int index)
{
 var itm = _inventories[index];
 _inventories.RemoveAt(index);
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Remove,itm,index));
}

Finally, update the Clear method. Since this is completely changing the list, you pass in
NotifyCollectionChangedAction.Reset, as shown here:

public void Clear()
{
 _inventories.Clear();
 OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1344

Now that you have created a custom IList<Inventory> that also implements
INotifyCollectionChanged, it’s time to use it in your app. Open up MainForm.xaml.cs, and change the
type of the _cars variable to InventoryList and update the constructor to create a new InventoryList, as
follows:

private readonly InventoryList _cars;
public MainWindow()
{
 InitializeComponent();
 _cars = new InventoryList(new List<Inventory>
 {
 //IsChanged must be last in the list
 new Inventory {CarId=1,Color="Blue",Make="Chevy",PetName="Kit", IsChanged = false},
 new Inventory {CarId=2,Color="Red",Make="Ford",PetName="Red Rider", IsChanged =

false },
 });
 cboCars.ItemsSource = _cars;
}

Run the app, click the Add Car button, and verify that the number of cars in the combo box does indeed
increase. Now test removing records by adding a new button after the Change Color button. Name the new
button btnRemoveCar, set the content to “Remove Car”, and set the Click event to btnRemoveCar_Click,
as follows:

<Button x:Name="btnRemoveCar" Content="Remove Car" Margin="5,0,5,0" Padding="4,2"
Click="btnRemoveCar_Click"/>

Create the event handler (or let Visual Studio create it for you), and add a call to remove the first record
from the _cars list. The code is listed here:

private void btnRemoveCar_Click(object sender, RoutedEventArgs e)
{
 _cars.RemoveAt(0);
}

Run the app, click the Remove Car button, and verify that the number of cars in the combo box does
indeed decrease. The problem of collections changing and not updating the UI is indeed solved, but that was
a fair amount of code to write.

Using ObservableCollections
Fortunately, there is a much easier way than creating your own collections. The ObservableCollection<T> class
implements INotifyCollectionChanged, INotifyPropertyChanged, and Collection<T>, and it is part of the
framework. No extra work! To demonstrate this, add a using statement for System.Collections.ObjectModel,
then update the private field for _cars and the constructor in MainWindow.xaml.cs to the following:

readonly ObservableCollection<Inventory> _cars;
public MainWindow()
{
 InitializeComponent();
 _cars = new ObservableCollection<Inventory>

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1345

 {
 new Inventory {CarId=1,Color="Blue",Make="Chevy",PetName="Kit" },
 new Inventory {CarId=2,Color="Red",Make="Ford",PetName="Red Rider" },
 };
 cboCars.ItemsSource = _cars;
}

Run the app again, and click the Add Car and Remove Car buttons. You will see the new records appear
(and disappear) appropriately.

Implementing a Dirty Flag
Another advantage of observable models is tracking state changes. While some Object Relational Mappers
(ORMS) like Entity Framework provide some rudimentary state tracking, with observable models, dirty
tracking (tracking when one or more of an object’s values have changed) is trivial. Add a bool property
named IsChanged to the Inventory class. Make sure to call OnPropertyChanged just like the other properties
in the Inventory class.

private bool _isChanged;
public bool IsChanged {
 get { return _isChanged;}
 set
 {
 if (value == _isChanged) return;
 _isChanged = value;
 OnPropertyChanged();
 }
}

Open MainWindows.xaml, and add an additional RowDefinition to the Grid that contains the details
TextBoxes. The start of the Grid is shown here:

<Grid Grid.Row="1" DataContext="{Binding ElementName=cboCars, Path=SelectedItem}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="CarLabels"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

At the end of that Grid, add a Label and a CheckBox, and then bind the CheckBox to the IsChanged
property as follows:

<Label Grid.Column="0" Grid.Row="4" Content="Is Changed"/>
<CheckBox Grid.Column="1" Grid.Row="4" VerticalAlignment="Center"
 Margin="10,0,0,0" IsEnabled="False" IsChecked="{Binding Path=IsChanged}" />

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1346

You need to set the IsChanged property to true anytime another property changes. The best place to
do this is in the OnPropertyChanged helper method, since it is called any time a property changes. You also
need to make sure that you aren’t setting IsChanged to true when IsChanged is changed, or you will hit a
stack overflow exception! Open Inventory.cs and update the OnPropertyChanged method to the following
(which uses the nameof method discussed earlier):

protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = "")
{
 if (propertyName != nameof(IsChanged))
 {
 IsChanged = true;
 }
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
}

If you were run the app now, you would see that every single record shows up as changed, even though
you haven’t changed anything! This is because object creation sets property values, and setting any values
calls OnPropertyChanged. This sets the object’s IsChanged property. To correct this, set the IsChanged
property to false as the last property in the object initialization code. Open MainWindow.xaml.cs and
change code to create the list to the following:

_cars = new ObservableCollection<Inventory>
{
 //IsChanged must be last in the list
 new Inventory {CarId=1,Color="Blue",Make="Chevy",PetName="Kit", IsChanged = false},
 new Inventory {CarId=2,Color="Red",Make="Ford",PetName="Red Rider", IsChanged = false },
};

Run the app again, select a vehicle, and click the Change Color button. You will see the check box get
checked along with the new color, as shown in Figure 30-4.

Figure 30-4. Showing the IsDirty flag

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1347

Updating the Source Through UI Interaction
You might notice that if you type text into the UI, the Is Changed check box doesn’t actually get checked until
you tab out of the control being edited. This is due to the UpdateSourceTrigger property on the TextBox
bindings. The UpdateSourceTrigger determines what event (such as changing the value, tabbing out, etc.)
causes the UI to update the underlying data. There are four options, as shown in Table 30-3.

Table 30-3. UpdateSourceTrigger Values

Member Meaning in Life

Default Set to the default for the control (e.g. LostFocus for TextBoxes).

Explicit Updates source object only when the UpdateSource method is called.

LostFocus Updates when the control loses focus. Default for TextBoxes.

PropertyChanged Updates as soon as the property changes. Default for CheckBoxes.

The default for TextBoxes is LostFocus. Change this to PropertyChanged by updating the binding for
the Color TextBox to the following XAML:

<TextBox Grid.Column="1" Grid.Row="1"
 Text="{Binding Path=Color, UpdateSourceTrigger=PropertyChanged}" />

Now, when you run the app and start typing into the Color text box, the Is Changed check box is
immediately checked. You might ask why the default is set to LostFocus for TextBoxes. Any validation
(covered in the next section) for a model fires every time the PropertyChanged event is raised. For a TextBox,
this would then potentially cause errors continually flashing until the user entered in the correct values. For
example, if the validation rules don’t allow less than five characters in a TextBox, the error would show on
each keystroke until the user got five or more entered. In those cases, it’s best to wait for the user to tab out of
the TextBox (after completing the change to the text) to fire the PropertyChanged event.

The Final Word
Using INotifyPropertyChanged and INotifyCollectionChanged improves your app’s user experience
by keeping the data and the UI in sync. While neither interface is complicated, they do require updates
to your code. Fortunately, Microsoft has included the ObservableCollection class to handle all of the
plumbing to create observable collections. Unfortunately, you have to provide all of the plumbing yourself
for observable models. While it’s not a difficult task, it means you need to touch every setter in your model.
This can be problematic if you are creating your models from an existing database, using an ORM (like Entity
Framework), because your models will be overwritten when you regenerate your model classes. Fortunately,
there is a solution to this via an open source library, which you will use later in this chapter.

 ■ Source Code the Notifications project can be found in the Chapter 30 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_30

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1348

Validation
Now that you’ve implemented INotifyPropertyChanged and are using an ObservableCollection, it’s time
to add validations to your application. Applications need to validate user input and provide feedback to the
user when the data entered is incorrect. This section covers the most common validation mechanisms for
modern WPF applications, but these are still just a portion of the capabilities built into WPF.

 ■ Note for a full explanation of all of the validations methods in Wpf, please see matthew mcdonald’s
Pro WPF in C# 4.5, available from apress at www.apress.com/9781430243656.

Validation occurs when a data binding attempts to update the data source. In addition to built-in
validations, such as exceptions in a properties setter, you can create custom validation rules. If any validation
rule (built-in or custom) fails, the Validation class, discussed later, comes into play.

Updating the Sample for the Validation Examples
For the validation examples, you can continue working in the same project. Update the MainWindow.xaml to
add an additional row to contain a Label and TextBox for the CarId property. The best way to do this is to
open the designer for the window, and use the mouse to add another row. Make sure to select the bottom
Grid in the Document Outline, and hover the mouse close to the left side of the it. Click the mouse as close
to the top with the yellow line showing (Figure 30-5).

Figure 30-5. Adding a new Grid row with the designer

www.apress.com/9781430243656

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1349

This will create a new row in the Grid and will increase the row number of each element in higher rows by
one. You will have to clean up the markup and remove the margins and other values inserted by the designer,
but this is the easiest way to add a new row early in the Grid. In the new row, add a Label with the content set to
“Id” and a TextBox bound to the CarId property. The markup for the new controls is shown here:

<Label Grid.Column="0" Grid.Row="0" Content="Id"/>
<TextBox Grid.Column="1" Grid.Row="0" Text="{Binding Path=CarId}" />

When you run the app and select a record, the Id text box is automatically populated with the primary
key value (as expected). The updated window should look like Figure 30-6.

Table 30-4. Key Members of the Validation Class

Member Meaning in Life

HasError Attached property indicating that a validation rule failed somewhere in the process

Errors Collection of all active ValidationError objects

ErrorTemplate Control template that becomes visible and adorns the bound element when HasError is
set to true

Figure 30-6. Updated to show CardId

Now that you have updated the core application, it’s time to explore validations in WPF.

The Validation Class
Before adding validations to your project, it’s important to understand the Validation class. This class
is part of the validation framework, and it provides methods and attached properties that can be used to
display validation results. There are three main properties of the Validation class commonly used when
handling validation errors (shown in Table 30-4). You will use each of these through the rest of this section of
the chapter.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1350

Validation Options
As mentioned, XAML technologies have several mechanisms for incorporating validation logic into your
application. You will examine three of the most commonly used validation choices in the next sections.

Notify on Exceptions
While exceptions should not be used to enforce business logic, exceptions can and do happen, and they
should be handled appropriately. In case they aren’t handled in code, the user should receive visual
feedback of the problem. One change in WPF from WinForms is that binding exceptions are (by default) not
displayed to the user, but instead “swallowed.” You, as the developer, must opt in to show errors.

To test this, run the app, select a record from the ComboBox, and clear out the Id value. Recall from the
definition of the CarId property that you added earlier, that it is defined as an int (not a nullable int), so
a numeric value is required. When you tab out of the Id field, an empty string is sent to the CarId property
by the binding framework, and since an empty string can’t be converted to an int, an exception in thrown
in the setter. However, there isn’t any indication to the user since you haven’t yet opted in to displaying
exceptions.

Doing so is easy; all you need to do is add ValidatesOnExceptions = true to the binding statements.
Update the binding statements in MainWindow.xaml to include ValidatesOnExceptions = true,
as shown here:

<TextBox Grid.Column="1" Grid.Row="0"
 Text="{Binding Path=CarId, ValidatesOnExceptions=True}" />
<TextBox Grid.Column="1" Grid.Row="1"
 Text="{Binding Path=Make, ValidatesOnExceptions=True}" />
<TextBox Grid.Column="1" Grid.Row="2"
 Text="{Binding Path=Color, ValidatesOnExceptions=True}" />
<TextBox Grid.Column="1" Grid.Row="3"
 Text="{Binding Path=PetName, ValidatesOnExceptions=True}" />

Run the app again, select a vehicle, and once more clear out the Id text box. When you tab out from the
Id text box, a red box surrounds it. Since you’ve updated the binding statements to validate on exceptions,
the error is shown by a red box adorning the Id text box (shown in Figure 30-7).

Figure 30-7. The default error template

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1351

The red box is the ErrorTemplate property of the Validation object and acts as an adorner for the
bound control. While the default look and feel shows that there is indeed an error, there isn’t any indication
as to what is wrong. The good news is that the ErrorTemplate is completely customizable, as you will see
later in this chapter.

IDataErrorInfo
The IDataErrorInfo interface provides a mechanism for you to add validation to your model classes. Since
you add the interface directly to your model classes and the validation code is placed inside your model
classes (or in partial classes), this helps to reduce repeating validation code in your project. In WinForms,
for example, validation was typically done in the UI itself, which meant every form that used the Inventory
class (in this example) would have to add the same validation code. If the rules changed, each of these
forms would have to be updated. The fact that the implementation can be in a separate file as a partial class
prevents your code from being overwritten when reverse engineering your models from an existing database
(as shown in Chapter 23).

The IDataErrorInfo interface, shown below, contains two properties, an indexer and a string property
named Error. Note that the WPF binding engine doesn’t use the Error property.

public interface IDataErrorInfo
{
 string this[string columnName] { get; }
 string Error { get; }
}

You will be adding the Inventory partial class shortly, but first you need to update the Inventory.cs
class and mark it as partial. Next, add another class to the Models directory named InventoryPartial.cs.
Rename this class Inventory, make sure the class is marked as partial, and add the IDataErrorInfo
interface. Finally, implement the API for the interface. The initial code is listed here:

public partial class Inventory : IDataErrorInfo
{
 public string this[string columnName]
 {
 get { return string.Empty; }
 }

 public string Error { get; }
}

The indexer gets called each time the PropertyChanged event is raised on the object. The property
name from the event is used as the columnName parameter in the indexer. If the indexer returns string.Empty,
the framework assumes that all validations passed, and no error condition exists. If the indexer returns
anything but string.Empty, an error is presumed to exist on the property for that object instance, and each
control that is bound to this property (and this specific instance of the class) is considered to have an error.
One caveat is that the control will only enlist the Validation class if ValidatesOnDataErrors is set to true
in the binding statement. If it isn’t (just like exceptions in the setter in the previous example), the validation
error is swallowed, and the user is not notified. If ValidatesOnDataErrors is set to true, the HasError
property of the Validation object is set to true, and the ErrorTemplate adorner is activated.

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1352

Next, you will add some simple validation logic to the indexer in InventoryPartial.cs. The validation
rules are simple:

•	 If Make equals ModelT, set the error equal to “Too Old”.

•	 If Make equals Chevy and Color equals Pink, set the error equal to $”{Make}’s don’t
come in {Color}”.

Start by adding a switch statement for each of the properties. To avoid using magic strings in the case
statements, you will again use the nameof method. If the code falls through the switch statement, return
string.Empty. The code is shown here:

public string this[string columnName]
{
 get
 {
 switch (columnName)
 {
 case nameof(CarId):
 break;
 case nameof(Make):
 break;
 case nameof(Color):
 break;
 case nameof(PetName):
 break;
 }
 return string.Empty;
 }
}

Next, add in the validation rules. In the proper case statements, add a check of the property value based
on the rules listed above. In the case statement for the Make property, first check to make sure the value isn’t
ModelT. If it is, return the error. If that passes, the next line will call into a helper method that returns an error
if the second rule is violated, or return string.Empty if it is not. In the case statement for the Color property,
also call the helper method. The code is as follows:

public string this[string columnName]
{
 get
 {
 switch (columnName)
 {
 case nameof(CarId):
 break;
 case nameof(Make):
 if (Make == "ModelT")
 {
 return "Too Old";
 }
 return CheckMakeAndColor();
 case nameof(Color):
 return CheckMakeAndColor();

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1353

 case nameof(PetName):
 break;
 }
 return string.Empty;
 }
}

internal string CheckMakeAndColor()
{
 if (Make == "Chevy" && Color == "Pink")
 {
 return $"{Make}'s don't come in {Color}";
 //AddError(nameof(Color), $"{Make}'s don't come in {Color}");
 //hasError = true;
 }
 return string.Empty;
}

As the final step, update the Binding statements to include ValidatesOnDataErrors = true, as in the
following code:

<TextBox Grid.Column="1" Grid.Row="0"
 Text="{Binding Path=CarId, ValidatesOnExceptions=True, ValidatesOnDataErrors=True}" />
<TextBox Grid.Column="1" Grid.Row="1"
 Text="{Binding Path=Make, ValidatesOnExceptions=True, ValidatesOnDataErrors=True}" />
<TextBox Grid.Column="1" Grid.Row="2"
 Text="{Binding Path=Color, ValidatesOnExceptions=True, ValidatesOnDataErrors=True}" />
<TextBox Grid.Column="1" Grid.Row="3"
 Text="{Binding Path=PetName, ValidatesOnExceptions=True, ValidatesOnDataErrors=True}" />

Run the app, select the Red Rider vehicle (the Ford), and change the Make to ModelT. Once you tab
out of the field, the red error decorator appears. Now select Kit (which is a Chevy) from the drop-down, and
click the Change Color button to change the color to Pink. Immediately the red error adorner appears on the
Color field, but doesn’t appear on the Make text box. Now, change the Make to Ford, tab out of the text box,
and note that the red adorner does not disappear!

This is because the indexer only runs when the PropertyChanged event is fired for a property. As
discussed in the “Notifications” section, the PropertyChanged event fires when the source object’s property
changes, and this happens either through code (such as clicking the Change Color button) or through user
interaction (the timing of this is controlled through the UpdateSourceTrigger). When you changed the color,
the Make property did not change, so the event did not fire for the Make property. Since the event didn’t fire,
the indexer did not get called, so the validation for the Make property didn’t run.

There are two ways to fix this. The first is to change the PropertyChangedEventArgs to update every
bound property by passing in string.Empty instead of a field name. As discussed, this causes the binding
engine to update every property on that instance. Update the OnPropertyChanged method to this:

protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = "")
{
 if (propertyName != nameof(IsChanged))
 {
 IsChanged = true;
 }

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1354

 //PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(string.Empty));
}

Now, when you run the same test, you see that both the Make and the Color text boxes are adorned with
the error template when one of them is updated. So why not always raise the event in this manner? It’s largely
a matter of performance. It’s possible that refreshing every property on an object could hamper performance.
Of course, there’s no way to know without testing, and your mileage may (and probably will) vary.

The other solution is to raise the PropertyChanged event for the other dependent field(s) when one
changes. The downside to using this mechanism is that you (or other developers that support your app)
must know that in the InventoryPartial.cs class, the Make and Color properties are related through the
validation code. To implement the change, add the following calls to the OnPropertyChanged method in the
setters for Make and Color:

private string _make;
public string Make
{
 get { return _make; }
 set
 {
 if (value == _make) return;
 _make = value;
 OnPropertyChanged(nameof(Make);
 OnPropertyChanged(nameof(Color));
 }
}

private string _color;
public string Color
{
 get { return _color; }
 set
 {
 if (value == _color) return;
 _color = value;
 OnPropertyChanged(nameof(Color));
 OnPropertyChanged(nameof(Make));
 }
}

Run the app again, select a Chevy, and click the Change Color button. Now, both Make and Color get
the error adorner. Change the make to something other than a Chevy, and when you tab out of the Make text
box, the adorner is removed for both text boxes.

INotifyDataErrorInfo
The INotifyDataErrorInfo interface introduced in .NET 4.5, builds on the IDataErrorInfo interface,
and adds additional capabilities for validation. Of course, with additional power comes additional
work! In a drastic shift from prior validation techniques that you had to specifically opt into, the
ValidatesOnNotifyDataErrors binding property defaults to true, so adding the property to your binding
statements is optional.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1355

The INotifyDataErrorInfo interface is extremely small, but does take a significant amount of
plumbing code, as you will see shortly. The interface is shown here:

public interface INotifyDataErrorInfo
{
 bool HasErrors { get; }
 event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;
 IEnumerable GetErrors(string propertyName);
}

The HasErrors property is used by the binding engine to determine if there are any errors on any of the
instance’s properties that are binding sources. If the GetErrors method is called with a null or empty string
for the propertyName parameter, it returns all errors that exist in the instance. If a propertyName is passed
into the method, only the errors for that particular property are returned. The ErrorsChanged event (like the
PropertyChanged and CollectionChanged events) notifies the binding engine to update the UI.

Implementing the Supporting Code

To implement this, it takes a fair amount of plumbing code. The good news is that all of this code can be
pushed down into a base model class, and needs only be written once. Start by replacing IDataErrorInfo
with INotifyDataErrorInfo to the InventoryPartial.cs class (you can leave the code from
IDataErrorInfo in the class; it won’t get in the way).

After adding the interface members, add a private variable that will hold any errors. The current status
of the code is shown here:

private readonly Dictionary<string,List<string>> _errors = new Dictionary<string,
List<string>>();
public IEnumerable GetErrors(string propertyName)
{
 throw new NotImplementedException();
}

public bool HasErrors
{
 get
 {
 throw new NotImplementedException();
 }
}
public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

The HasErrors property should return true if there are any errors in the dictionary. This is easily
accomplished like this:

public bool HasErrors => _errors.Count != 0;

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1356

Next, create a helper method to raise the ErrorsChanged event (just like raising the PropertyChanged
event) like this:

private void OnErrorsChanged(string propertyName)
{
 ErrorsChanged?.Invoke(this, new DataErrorsChangedEventArgs(propertyName));
}

The GetErrors method should return any and all errors in the dictionary if the parameter is empty or
null. If a valid propertyName is passed in, it will return any errors found for that property. If the parameter
doesn’t match (or there aren’t any errors for a property), then the method will return null.

public IEnumerable GetErrors(string propertyName)
{
 if (string.IsNullOrEmpty(propertyName))
 {
 return _errors.Values;
 }
 return _errors.ContainsKey(propertyName) ? _errors[propertyName] : null;
}

The final set of helpers will add one or more errors for a property or clear all of the errors for a property.
Any time the dictionary changes, remember to call the OnErrorsChanged helper method:

protected void ClearErrors(string propertyName = "")
{
 _errors.Remove(propertyName);
 OnErrorsChanged(propertyName);
}

private void AddError(string propertyName, string error)
{
 AddErrors(propertyName,new List<string> {error});
}

private void AddErrors(string propertyName, IList<string> errors)
{
 var changed = false;
 if (!_errors.ContainsKey(propertyName))
 {
 _errors.Add(propertyName, new List<string>());
 changed = true;
 }
 errors.ToList().ForEach(x =>
 {
 if (_errors[propertyName].Contains(x)) return;
 _errors[propertyName].Add(x);
 changed = true;
 });

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1357

 if (changed)
 {
 OnErrorsChanged(propertyName);
 }
}

The binding engine listens for the ErrorsChanged event, and will update the UI if there is a change
in the errors collection for a binding statement. This removes the need to call PropertyChanged
or CollectionChanged just to update the UI with error conditions, as you did when implementing
IDataErrorInfo. This means that the extra calls to raise PropertyChanged in the Make and Color setters (to
make sure the errors are displayed when the other property changes) are no longer needed. Of course, you
still need to raise PropertyChanged and CollectionChanged for the UI to respond to data changes, just not
error changes. Remove the additional calls to OnPropertyChanged in the setters for Make and Color, like this:

private string _make;
public string Make
{
 get { return _make; }
 set
 {
 if (value == _make) return;
 _make = value;
 OnPropertyChanged(nameof(Make);
 }
}

private string _color;
public string Color
{
 get { return _color; }
 set
 {
 if (value == _color) return;
 _color = value;
 OnPropertyChanged(nameof(Color));
 }
}

Using INotifyDataErrorInfo for Validations

Now that you have all of the support code in place, it’s time to add the validations back into your app using
INotifyDataErrorInfo. Even though you have implemented the code to support INotifyDataErrorInfo,
you still have to determine where and when to check for errors and add the errors to the errors list. One
place to check for errors is in the property setters, like the following example, simplified to just check for the
ModelT validation:

public string Make
{
 get { return _make; }
 set

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1358

 {
 if (value == _make) return;
 _make = value;
 if (Make == "ModelT")
 {
 AddError(nameof(Make), "Too Old");
 }
 else
 {
 ClearErrors(nameof(Make));
 }
 OnPropertyChanged(nameof(Make));
 //OnPropertyChanged(nameof(Color));
 }
}

One of the issues with this approach is that the class will be overwritten if you update your model
from an existing database, causing you to lose all of you validation code. Even if you are using the code-first
approach to generate and update your database, you have still muddled together model code with validation
code, making your code harder to support.

You saw in the previous section that IDataErrorInfo can be added to a partial class, which means
you don’t have to update your setters. This cleans up your model code, leaving only the call to raise
PropertyChanged in the setters. Combining IDataErrorInfo and INotifyDataErrorInfo provides you with
the additional features for validations from INotifyDataErrorInfo, and the separation from the setters
provided by IDataErrorInfo.

Add the IDataErrorInfo interface back onto the Inventory class that is in InventoryPartial.cs.

public partial class Inventory : IDataErrorInfo, INotifyDataErrorInfo

The purpose of using IDataErrorInfo is not to run validations, but to make sure your validation code
that leverages INOtifyDataErrorInfo gets called every time PropertyChanged is raised on your object. Since
you aren’t using IDataErrorInfo for validation, always return string.Empty because the ErrorsChanged
event is now responsible for notifying the binding engine when there are errors. Update the indexer and the
CheckMakeAndColor helper method to the following code:

public string this[string columnName]
{
 get
 {
 bool hasError = false;
 switch (columnName)
 {
 case nameof(CarId):
 break;
 case nameof(Make):
 hasError = CheckMakeAndColor();
 if (Make == "ModelT")
 {
 AddError(nameof(Make),"Too Old");
 hasError = true;
 }

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1359

 if (!hasError) ClearErrors(nameof(Make));
 break;
 case nameof(Color):
 hasError = CheckMakeAndColor();
 if (!hasError) ClearErrors(nameof(Color));
 break;
 case nameof(PetName):
 break;
 }
 return string.Empty;
 }
}
internal bool CheckMakeAndColor()
{
 if (Make == "Chevy" && Color == "Pink")
 {
 //return $"{Make}'s don't come in {Color}";
 AddError(nameof(Make), $"{Make}'s don't come in {Color}");
 AddError(nameof(Color), $"{Make}'s don't come in {Color}");
 return true;
 }
 return false;
}

Run the app, select the Chevy, and change the color to Pink. In addition to the red adorners around
the Make and Model text boxes, you will also see a red box adorner around the entire grid that holds the
Inventory details fields (shown in Figure 30-8). This is another advantage of using INotifyDataErrorInfo.
As a reminder, the data context is set to the selected item in the ComboBox. This sets the data source for
the Grid and all of its child controls. When PropertyChange is raised, the data context calls the GetErrors
method to check if there are any errors on the object instance, and if so, activates the Validation class.

Figure 30-8. The updated error adorner

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1360

Showing All Errors

The Errors property on the Validation class returns all of the validation errors on a particular object. The
property returns a list of ValidationError objects, and each ValidationError object has an ErrorContent
property that contains the list of error messages for each property. Since the actual error messages you want
to display are in this list within a list, you need to create a DataTemplate on a ListBox that holds a ListBox.
It sounds a bit recursive, but it makes sense once you see it.

Start by adding another row to the Grid and increase the Height of the Window to 300. Add a ListBox in
the last row, and bind the ItemsSource of the ListBox to the Grid, using Validation.Errors for the path,
as follows:

<ListBox Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="2"
 ItemsSource="{Binding ElementName=testGrid, Path=(Validation.Errors)}">
</ListBox>

Add a DataTemplate, and in the DataTemplate, add a ListBox that is bound to the ErrorContent
property. The data context for each ListBoxItem in this case is a ValidationError object, so you don’t need
to set the data context, just the path. Set the binding path to ErrorContent, like this:

<ListBox.ItemTemplate>
 <DataTemplate>
 <ListBox ItemsSource="{Binding Path=ErrorContent}"/>
 </DataTemplate>
</ListBox.ItemTemplate>

The final markup is shown here:

<ListBox Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="2"
 ItemsSource="{Binding ElementName=testGrid, Path=(Validation.Errors)}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <ListBox ItemsSource="{Binding Path=ErrorContent}"/>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Run the app, select the Chevy, and set the color to Pink. You will see the errors displayed in Figure 30-9.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1361

Move the Support Code to a Base Class

As you probably noticed, there is a lot of code now in the InventoryPartial.cs class. Since this example
only has one model class, this isn’t terrible. But, as you add models to a real application, you don’t want to
have to add in all of that plumbing into each partial class for your models. The best thing to do is to push all
of that supporting code down to a base class. You will do that now.

Add a new class file to the Models folder named EntityBase.cs. Add usings for System.Collections
and System.ComponentModel. Make the class public, and add the INotifyDataErrorInfor interface, like this:

using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;

namespace Validations.Models
{
 public class EntityBase : INotifyDataErrorInfo
 }

Move all of the code from InventoryPartial.cs that relates to INofityDataErrorInfo into the new
class. Any private methods need to be made protected. The updated code is shown here:

public class EntityBase : INotifyDataErrorInfo
{

 //INotifyDataErrorInfo
 protected readonly Dictionary<string, List<string>> _errors = new Dictionary<string,
List<string>>();

Figure 30-9. Showing the errors collection

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1362

 protected void ClearErrors(string propertyName = "")
 {
 _errors.Remove(propertyName);
 OnErrorsChanged(propertyName);
 }

 protected void AddError(string propertyName, string error)
 {
 AddErrors(propertyName, new List<string> { error });
 }

 protected void AddErrors(string propertyName, IList<string> errors)
 {
 var changed = false;
 if (!_errors.ContainsKey(propertyName))
 {
 _errors.Add(propertyName, new List<string>());
 changed = true;
 }
 errors.ToList().ForEach(x =>
 {
 if (_errors[propertyName].Contains(x)) return;
 _errors[propertyName].Add(x);
 changed = true;
 });
 if (changed)
 {
 OnErrorsChanged(propertyName);
 }
 }
 public IEnumerable GetErrors(string propertyName)
 {
 if (string.IsNullOrEmpty(propertyName))
 {
 return _errors.Values;
 }
 return _errors.ContainsKey(propertyName) ? _errors[propertyName] : null;
 }
 public bool HasErrors => _errors.Count != 0;
 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 protected void OnErrorsChanged(string propertyName)
 {
 ErrorsChanged?.Invoke(this, new DataErrorsChangedEventArgs(propertyName));
 }
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1363

Next, remove the INotifyDataErrorInfo interface from the InventoryPartial.cs class, and add
EntityBase as a base class, as follows:

public partial class Inventory : EntityBase, IDataErrorInfo
{
 //removed for brevity
}

Now, any additional model classes you create will inherit all of the INotifyDataErrorInfo plumbing
code. There is more that you can push down into the base class, most notably the INotifyPropertyChanged
code, but you will do that later in this chapter.

Using Data Annotations
As you learned in Chapter 23, EF makes heavy use of Data Annotations. WPF can leverage these as well for
UI validation. Let’s add some Data Annotations to the Inventory model.

Adding Data Annotations
Add a project reference to System.ComponentModel.DataAnnotations, and then open up Inventory.cs
and add a using for System.ComponentModel.DataAnnotations. Add the [Required] attribute to the CarId,
Make, and Color properties, and [StringLength(50)] to Make, Color, and PetName. The Required attribute
adds a validation rule that the property must not be null (admittedly, this is redundant for the CarId
property since it is not a nullable int). The StringLength attribute adds a validation rule that the property
cannot be longer than 30 characters. An abbreviated view of the code is shown here:

[Required]
public int CarId

[Required, StringLength(50)]
public string Make

[Required, StringLength(50)]
public string Color

[StringLength(50)]
public string PetName

Checking for Data Annotation-Based Validation Errors
Now that the additional validation rules have been added, they need to be added into the validation
process. Unlike ASP.NET MVC and ASP.NET Web Forms (both of which can automatically check the model
for validation errors based on Data Annotations), in WPF you have to programmatically check for Data
Annotation-based validation errors.

Before you add the code to check for validation errors, there are a couple of objects that need to be
discussed. The first is the ValidationContext. This provides a context for checking a class for validation
errors using the Validator class. The Validator class allows you to check an object for attribute-based
errors within a ValidationContext.

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1364

Open EntityBase.cs, and add a using for System.ComponentModel.DataAnnotations. Next, create a
new method named GetErrorsFromAnnotations. This method is generic, takes a string property name, and
a value of type T as the parameters, and returns a string array. Make sure the method is marked as protected.
The signature is listed here:

protected string[] GetErrorsFromAnnotations<T>(string propertyName, T value)

In the method, create a List<ValidationResult> variable that will hold the results of validation checks.
Next, create a ValidationContext scoped to the property name passed into the method. When you have
those two items in place, call Validate.TryValidateProperty, which returns a bool. If everything passes
(in regards to Data Annotations validations), it returns true. If not, it returns false, and populates the
List<ValidationResult> with the errors. The complete code is shown here:

protected string[] GetErrorsFromAnnotations<T>(string propertyName, T value)
{
 var results = new List<ValidationResult>();
 var vc = new ValidationContext(this, null, null) { MemberName = propertyName };
 var isValid = Validator.TryValidateProperty(value, vc, results);
 return (isValid)?null:Array.ConvertAll(results.ToArray(), o => o.ErrorMessage);
}

Now you can update the indexer method to check for any errors based on Data Annotations. If any
errors are found, add them to the errors collection supporting INotifyDataErrorInfo. The updated indexer
code is shown here:

public string this[string columnName]
{
 get
 {
 string[] errors = null;
 bool hasError = false;
 switch (columnName)
 {
 case nameof(CarId):
 errors = GetErrorsFromAnnotations(nameof(CarId), CarId);
 break;
 case nameof(Make):
 hasError = CheckMakeAndColor();
 if (Make == "ModelT")
 {
 AddError(nameof(Make), "Too Old");
 hasError = true;
 }
 errors = GetErrorsFromAnnotations(nameof(Make), Make);
 break;
 case nameof(Color):
 hasError = CheckMakeAndColor();
 errors = GetErrorsFromAnnotations(nameof(Color), Color);
 break;
 case nameof(PetName):
 errors = GetErrorsFromAnnotations(nameof(PetName), PetName);
 break;
 }

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1365

 if (errors != null && errors.Length != 0)
 {
 AddErrors(columnName, errors);
 hasError = true;
 }
 if (!hasError) ClearErrors(columnName);
 return string.Empty;
 }
}

Run the app, select one of the vehicles, and add text for the model that is longer than 50 characters.
When you tab out, the StringLength Data Annotation reports a validation error via the
GetErrorsFromAnnotations method. These errors are reported by INotifyDataErrorInfo, and cause the
error template adorner to appear, as well as the ListBox to show the message (shown in Figure 30-10).

Figure 30-10. Validating the required Data Annotation

Customizing the ErrorTemplate
The final topic is to update the ErrorTemplate in order for the controls to display more meaningful
information regarding errors with the data. As you learned in Chapter 29, controls are customizable through
their control templates. As you learned earlier in this chapter, the Validation class has an ErrorTemplate
that is used to adorn a control that has a binding error.

Start by adding a new style in the Windows Resources section of MainWindow.xaml with a target type of
TextBox, as follows:

<Window.Resources>
 <Style TargetType="{x:Type TextBox}">
 </Style>
</Window.Resources>

http://dx.doi.org/10.1007/978-1-4842-1332-2_29

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1366

Next, add a trigger on the style that sets properties when Validation.HasError is set to true.
The properties and the values to set are Background (Pink), Foreground (Black), and Tooltip to the
ErrorContent. The Background and Foreground setters are nothing new, but the ToolTip needs some
explanation. The binding points back to the TextBox that this style is executed on as the data source. The
path is the first ErrorContent value of the Validation.Errors collection. The markup is as follows:

<Style TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="Background" Value="Pink" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}"/>
 </Trigger>
 </Style.Triggers>
</Style>

Next, you will update the ErrorTemplate of the Validation class to show a red exclamation mark, and
set the ToolTips for the exclamation mark. Place a setter immediately after the Style.Triggers closing
tag within the style you just created. You will be creating a control template that consists of a TextBlock
(to show the exclamation mark) and a BorderBrush to surround the TextBox that contains the error(s).
There is a special tag in XAML for the control that is being adorned with the ErrorTemplate named
AdornedElementPlaceholder. By adding a name to this control, you can access the errors that are associated
with the control. In this example, you want to access the Validation.Errors property so you can get the
ErrorContent (just like you did in the Style.Trigger). Here is the full markup for the setter:

<Setter Property="Validation.ErrorTemplate">
 <Setter.Value>
 <ControlTemplate>
 <DockPanel LastChildFill="True">
 <TextBlock Foreground="Red" FontSize="20" Text="!"
 ToolTip="{Binding ElementName=controlWithError,
 Path=AdornedElement.(Validation.Errors)[0].ErrorContent}"/>
 <Border BorderBrush="Red" BorderThickness="1">
 <AdornedElementPlaceholder Name="controlWithError" />
 </Border>
 </DockPanel>
 </ControlTemplate>
 </Setter.Value>
</Setter>

Run the app, and create an error condition. The result will be similar to Figure 30-11.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1367

 ■ Source Code the Validations project can be found in the Chapter 30 subdirectory.

Creating Custom Commands
As you learned in Chapter 27, commands are an integral part of WPF. Commands can be hooked up to
WPF controls (such as Buttons and MenuItems) to handle user events, such as the click. Instead of creating
an event handler directly, the Execute method of the command is executed when the event fires. The
CanExecute method is used to enable or disable the control based on your custom code. In addition to the
built-in commands you used in Chapter 27, you can create your own custom commands by implementing
the ICommand interface. By using commands instead of event handlers, you gain the benefit of encapsulating
application code, as well as automatically enabling and disabling controls based on business logic.

Implementing the ICommand Interface
As a quick review from Chapter 27, the ICommand interface is listed here:

public interface ICommand
{
 event EventHandler CanExecuteChanged;
 bool CanExecute(object parameter);
 void Execute(object parameter);
}

Figure 30-11. Showing a custom ErrorTemplate

http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_27
http://dx.doi.org/10.1007/978-1-4842-1332-2_27
http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1368

Now you will create a command that changes the color of an Inventory object. Start by right-clicking
the project name in Solution Explorer and creating a new folder named Cmds. Add a new class named
ChangeColorCommand.cs. Add the ICommand interface to the class, implement the members, and add a using
for Validations.Models. Your code should look like this:

public class ChangeColorCommand : ICommand
{
 public bool CanExecute(object parameter)
 {
 throw new NotImplementedException();
 }
 public void Execute(object parameter)
 {
 throw new NotImplementedException();
 }
 public event EventHandler CanExecuteChanged;
}

The parameter passed into the CanExecute and Execute methods is sent from the UI through the
CommandParameter property set on binding statements. You will make this change later in this section. For
now, you just need to know that, in this example, the object is expected to be of type Inventory. If the object
is null or not an Inventory object, then the CanExecute method must return false, and any controls bound
to the command are disabled. If it is not null, and is an Inventory object, then the method must return true,
and any controls bound to the command are enabled. Update the CanExecute method to the following:

public override bool CanExecute(object parameter) => (parameter as Inventory) != null;

The parameter for the Execute method works exactly the same as the parameter for the CanExecute
method. The Execute method only fires if the user clicks a control bound to the command, and the user can
only click the control if the CanExecute method returns true. The type is of type object, so you still have to
cast the parameter to an Inventory object. After casting the parameter, change the color of the car to Pink.
Update the Execute method to the following:

public override void Execute(object parameter)
{
 ((Inventory)parameter).Color="Pink";
}

Updating MainWindow.xaml.cs
The next change is to create an instance of this class that the Button can access. For now, you will place this
in the code-behind file for the MainWindow (later in this chapter you will move this into a ViewModel). Open
MainWindow.xaml.cs and delete the click event handler for the Change Color button, since you will replace
this functionality with your command implementation.

Next, add a public property named ChangeColorCmd of type ICommand with a backing field. In the
expression body for the property, return the backing property (make sure to instantiate a new instance of the
ChangeColorCommand if the backing field is null).

private ICommand _changeColorCommand = null;
public ICommand ChangeColorCmd => _changeColorCommand ?? (_changeColorCommand = new
ChangeColorCommand());

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1369

Updating MainWindow.xaml
As you saw in Chapter 27, clickable controls in WPF (like Buttons) have a Command property that allows
you to assign a command object to the control. Once the command object is connected to a control, the
CanExecute method determines if the control is enabled, and the click event is attached to the Execute
method.

Start by connecting your command instantiated in the code-behind to the btnChangeColor button.
Since the property for the command is on the MainWindow class, you use the RelativeSourceMode binding
syntax to get to the Window that contains the Button, as follows:

Command="{Binding Path=ChangeColorCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"

The Button still needs to send in an Inventory object as the parameter for the CanExecute and Execute
methods. There is another property on the clickable controls named CommandParameter. You set this to the
SelectedItem of the cboCars ComboBox, as follows:

CommandParameter="{Binding ElementName=cboCars, Path=SelectedItem}"

The complete markup for the button is shown here:

<Button x:Name="btnhangeColor" Content="Change Color" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=ChangeColorCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"
 CommandParameter="{Binding ElementName=cboCars, Path=SelectedItem}"/>

Attaching Command to the CommandManager
If you were to run the app now, you would see that the Change Color button is not enabled when the
Window first loads. This is what we expected because the SelectedItem for the combo box is null. Since this
is the value that gets passed into the CanExectue and Execute methods, the control is disabled. If you select
a record from the combo box, you would expect the button to become enabled since the SelectedItem
property is no longer null. However, you see that the button is still disabled.

This is because the CanExecute method fires when the Window first loads and then when the command
manager instructs it to fire. Each command class has to opt in to the command manager. This is done with the
CanExecuteChanged event, and is as simple as adding the following code to your ChangeColorCommand.cs class:

public event EventHandler CanExecuteChanged
{
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_27

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1370

Creating the CommandBase Class
This code needs to be in every custom command that you build, so it’s best to create an abstract base class to
hold it. Create a new class in the Cmds folder named CommandBase, set the class to abstract, add the ICommand
interface, and implement the interface. Add a using for the System.Windows.Input namespace, and change
the Execute and CanExecute methods to abstract. Finally, add in the CanExecuteChanged you just wrote. The
full implementation is listed here:

public abstract class CommandBase : ICommand
{
 public abstract void Execute(object parameter);
 public abstract bool CanExecute(object parameter);

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }
}

Updating the ChangeColorCommand Class
Open ChangeColorCommand.cs, and add CommandBase as the base class. Delete the CanExecuteChanged code,
and add override to the CanExecute and Execute methods, like this:

internal class ChangeColorCommand : CommandBase
{
 public override void Execute(object parameter)
 {
 ((Inventory)parameter).Color="Pink";
 }

 public override bool CanExecute(object parameter) =>
 (parameter as Inventory) != null;
}

Testing the Application
Run the application. You will see that the Change Color command is not enabled, as shown in Figure 30-12,
since there isn’t a vehicle selected.

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1371

Now, select a vehicle, and the button will become enabled, as shown in Figure 30-13.

Figure 30-12. A window with nothing selected

Figure 30-13. A window with a vehicle selected

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1372

Adding the Remaining Commands
Now that you understand commands, you are going to replace the remaining two button click events with
commands.

Adding the RemoveCarCommand
Just like the ChangeColorCommand, the RemoveCarCommand has a C# component as well as a XAML
component. Start by removing the btnRemoveCar_Click event handler in the MainWindow.xaml.cs class.

Adding the Command Class

Next, add another class to the Cmds folder named RemoveCarCommand, make the class internal, and derive
from CommandBase. This command will be acting on the list of Inventory records in the View, so create a
field for an IList<Inventory> named _cars and a constructor to accept an existing list. The code should
look like this:

internal class RemoveCarCommand : CommandBase
{
 private readonly IList<Inventory> _cars;

 public RemoveCarCommand(IList<Inventory> cars)
 {
 _cars = cars;
 }
}

Just like the Execute method of the ChangeColorCommand, this method receives an Inventory record as
the parameter. Override the Execute method, cast the parameter to an Inventory object, and then remove it
from the list, as follows:

public override void Execute(object parameter)
{
 _cars.Remove((Inventory)parameter);
}

Finally, override the CanExecute method, and add the same code as you did for the
ChangeColorCommand: to return false if the parameters is null or not an inventory object, and return true
otherwise. The code looks like this:

public override bool CanExecute(object parameter) =>
 (parameter as Inventory) != null && _cars != null && _cars.Count != 0;
}

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1373

Updating the XAML

Remove the Click attribute from the btnRemoveCar Button, and add the Command and CommandParameter
properties, as follows:

<Button x:Name="btnRemoveCar" Content="Remove Car" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=RemoveCarCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"
 CommandParameter="{Binding ElementName=cboCars, Path=SelectedItem}"/>

Adding the AddCarCommand
Remove the AddCar_Click event handler in the MainWindow.xaml.cs file.

Adding the Command Class

Start by adding another class to the Cmds folder named AddCarCommand, make the class internal, and derive
from CommandBase. This command will also be acting on the list of Inventory records in the View, so create
a field for an IList<Inventory> named _cars, and a constructor to accept an existing list. The code should
look like this:

internal class AddCarCommand : CommandBase
{
 private readonly IList<Inventory> _cars;

 public RemoveCarCommand(IList<Inventory> cars)
 {
 _cars = cars;
 }
}

Unlike the other commands that you have created, you will not be receiving any values from the View.
This means that you can ignore the parameter in both the CanExecute and Execute methods. In the Execute
method, add another entry into the _cars list.

public override void Execute(object parameter)
{
 var maxCount = _cars?.Max(x => x.CarId) ?? 0;
 _cars?.Add(new Inventory { CarId = ++maxCount, Color = "Yellow", Make = "VW", PetName = "Birdie",
 IsChanged = false });
}

Override the CanExecute method and just return true, like this:

public override bool CanExecute(object parameter) => true;

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1374

Updating the XAML

Finally, update the XAML to remove the Click attribute and add the Command attribute, as follows:

<Button x:Name="btnAddCar" Content="Add Car" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=AddCarCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"/>

 ■ Source Code the Commands project can be found in the Chapter 30 subdirectory.

Fully Implementing MVVM
The final exercise with this sample is to finish converting it to MVVM. You might ask why I chose to say
“finish” converting. The reason is that everything you have done in this chapter is all related to how MVVM
works in WPF, and it is all intertwined in the pattern. Start by adding a new folder called ViewModels. In this
folder, add a class named MainWindowViewModel.

 ■ Note a popular convention is to name the view models after the window they support. however, like any
pattern or convention, this isn’t a rule, and you will find a wide range of opinions on this.

Moving the Data Source Out of the View
If you recall from the explanation of the MVVM pattern, the only code in the code-behind should be directly
related to the UI. Any data needed by the View should be exposed to the View from the ViewModel (and
optimally brought to the ViewModel from a repository). In your current project, the data is hard-coded in the
code-behind, so the first step is to move the Cars collection from the code-behind to the View Model.

Start by adding a public property of type IList<Inventory> named Cars. In the constructor for the
ViewModel, set the Cars property to a new ObservableCollection<Inventory>.

 ■ Note in a real application, this would usually be a call to a repository class or a web service to get the data.

Your class should look like this:

public class MainWindowViewModel
{
 public IList<Inventory> Cars { get; set; }
 public MainWindowViewModel()
 {
 Cars = new ObservableCollection<Inventory>
 {
 new Inventory {CarId=1,Color="Blue",Make="Chevy",PetName="Kit", IsChanged = false},
 new Inventory {CarId=2,Color="Red",Make="Ford",PetName="Red Rider", IsChanged = false },
 };
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_30

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1375

In MainWindow.xaml.cs, delete the old creation of the list (in the constructor), and the line setting the
ItemSource for the ComboBox to the list. Leave the backing field (_cars) for now; you don’t need it, but two
of the commands require it, and deleting it now would make the compile fail. The only code left in your
constructor should be InitializeComponent, like this:

public MainWindow()
{
 InitializeComponent();
}

Recall that if a binding expression doesn’t specify a data context, it walks up the element tree until it
finds a data context. In MVVM, the ViewModel class serves as the data context for the entire Window, so set
the Window’s data context to the ViewModel in the constructor. Add a using for MVVM.ViewModels, like this:
using MVVM.ViewModels;

public partial class MainWindow:Window
{
 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = new MainWindowViewModel();
 }
}

The final change to make to the Window is to add the ItemSource back to the ComboBox. Open
MainWindow.xaml, add the ItemsSource attribute to the ComboBox, and bind it to the Cars property on
the ViewModel. You don’t have to specify the data source since the ViewModel is the data context for the
Window. Your markup should look like this:

<ComboBox Name="cboCars" Grid.Column="1" DisplayMemberPath="PetName"
 ItemsSource="{Binding Path=Cars}"/>

Run the app, and see that indeed the combo box is populated with the initial Cars collection. After
you test the app, delete the _cars field from MainWindow.xaml.cs. Next, you will move the commands and
related code to the ViewModel.

Moving the Commands to the ViewModel
Cut and paste the commands from MainWindow.xaml.cs into MainWindowViewModel.cs. You will have to
update the constructor for AddCarCommand and RemoveCarCommand to use the Cars property instead of the
_cars field. Add a using statement for MVVM.Cmds. Your code in the MainWindowViewModel will look like this:

private ICommand _changeColorCommand = null;
public ICommand ChangeColorCmd =>
 _changeColorCommand ?? (_changeColorCommand = new ChangeColorCommand());

private ICommand _addCarCommand = null;
public ICommand AddCarCmd =>
 _addCarCommand ?? (_addCarCommand = new AddCarCommand(Cars));

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1376

private ICommand _removeCarCommand = null;
public ICommand RemoveCarCmd =>
 _removeCarCommand ?? (_removeCarCommand = new RemoveCarCommand(Cars));
private bool CanAddCar() => Cars != null;

Finally, open MainWindow.xaml, and add DataContext to the Path for each of the Button Command
binding statements.

<Button x:Name="cmdAddCar" Content="Add Car" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=DataContext.AddCarCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"/>
<Button x:Name="cmdChangeColor" Content="Change Color" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=DataContext.ChangeColorCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"
 CommandParameter="{Binding ElementName=cboCars, Path=SelectedItem}"/>
<Button x:Name="btnRemoveCar" Content="Remove Car" Margin="5,0,5,0" Padding="4,2"
 Command="{Binding Path=DataContext.RemoveCarCmd,
 RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type Window}}}"
 CommandParameter="{Binding ElementName=cboCars, Path=SelectedItem}"/>

Run the app, and you will see that the buttons work as expected. The code-behind file now only has two
lines in it, for the InitializeComponent and to set the DataContext.

 ■ Source Code the mVVm project can be found in the Chapter 30 subdirectory.

Updating AutoLotDAL for MVVM
You are probably thinking at this point “Great, if I ever need to build an app with one model and fake data,
I know exactly how to do it!” Well, it’s time to bring real data back into the mix. There are a few optimizations
to make before you plug AutoLotDAL into an MVVM app.

Updating the AutoLotDAL Models
The first thing that you need to do is update all of the models with the validation code that you created to
support IDataErrorInfo and INotifyDataErrorInfo. Since much of this code is already in a base class,
there are only a few changes to make.

Updating the Base Class
You already created a base class in the previous examples. You will add that base class to AutoLotDAL, and
you will make some changes to it. However, first make a copy of the final AutoLotDAL project from Chapter 23
(or from the MVVMFinal project in the Chapter 30 downloads) to your WPF examples. Right-click the
Models folder in Solution Explorer, select Add ➤ Existing item, and pick the EntityBase file from the

http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_23
http://dx.doi.org/10.1007/978-1-4842-1332-2_30

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1377

previous section’s example. Make sure to change the namespace to AutoLotDAL.Models, and add usings for
System.ComponentModel.DataAnnotations and System.ComponentModel.DataAnnotations.Schema. Next,
add the TimeStamp property, like this:

[Timestamp]
public byte[] Timestamp { get; set; }

Next, add the IsChanged property, like this (remember to add the NotMapped attribute since this
property won’t get stored in the database):

[NotMapped]
public bool IsChanged { get; set; }

The final change for the EntityBase.cs class is to add the IDataErrorInfo interface to the class and
implement the interface. Make sure to mark the indexer method as virtual, since the actual implementation
will be in the Model classes:

public virtual string this[string columnName] { get { throw new NotImplementedException(); } }
public string Error { get; }

Next, open each of the model classes (Inventory, Customer, Order, and CreditRisk), delete the
TimeStamp field, and add the EntityBase as the base class for all of them. In a real application, you
usually create partial classes for each model class and add the EntityBase base class there. For the sake of
simplicity, in this example, you are just adding them to the model classes instead of creating partial classes.

Updating the Inventory Partial
Copy the string indexer from the InventoryPartial.cs class from the Commands example into the
InventoryPartial.cs class of AutoLotDAL. It should look like this:

public string this[string columnName]
{
 get
 {
 string[] errors = null;
 bool hasError = false;
 switch (columnName)
 {
 case nameof(CarId):
 errors = GetErrorsFromAnnotations(nameof(CarId), CarId);
 break;
 case nameof(Make):
 hasError = CheckMakeAndColor();
 if (Make == "ModelT")
 {
 AddError(nameof(Make), "Too Old");
 hasError = true;
 }
 errors = GetErrorsFromAnnotations(nameof(Make), Make);
 break;

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1378

 case nameof(Color):
 hasError = CheckMakeAndColor();
 errors = GetErrorsFromAnnotations(nameof(Color), Color);
 break;
 case nameof(PetName):
 errors = GetErrorsFromAnnotations(nameof(PetName), PetName);
 break;
 }
 if (errors != null && errors.Length != 0)
 {
 AddErrors(columnName, errors);
 hasError = true;
 }
 if (!hasError) ClearErrors(columnName);
 return string.Empty;
 }
}

This has (for the most part) brought the features you’ve learned about in this chapter into AutoLotDAL.
The one item that is missing is INotifyPropertyChanged, which you will add next.

Implementing INotifyPropertyChanged
You might have noticed that you didn’t add INotifyPropertyChanged to the EntityBase class or any of your
model classes. If you add INotifyPropertyChanged to the models, you have to update each and every setter
to raise the PropertyChangedEvent (or call into the OnPropertyChanged event). This is not a huge task for a
project as small as this, but it becomes a major pain in projects of any significant size. You also run the risk of
losing all of your work if your model classes are generated from an ORM and they need to be regenerated.

Fortunately, some very smart minds have solved this predicament. There is an open source project
called PropertyChanged.Fody that addresses this very concern. This project is an extension for Fody
(https://github.com/Fody/Fody/), an open source tool for weaving .NET assemblies. Weaving is the
process of manipulating the IL generated during the build process. PropertyChanged.Fody adds in all of the
plumbing code for INotifyPropertyChanged for you, and if you have a property named IsChanged, it will be
updated when another property changes, just as you did manually in the earlier example in this chapter.

 ■ Note You can find more information about the PropertyChanged project at
https://github.com/Fody/PropertyChanged.

To install the necessary packages, right-click your project name, select Manage NuGet packages, and
search for “propertychanged.fody”. You will see something similar to Figure 30-14 (the version might be
different based on when you are reading this).

https://github.com/Fody/Fody/
https://github.com/Fody/PropertyChanged

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1379

Once that is done, open up ModelBase, and add the attribute [ImplementPropertyChanged] at the class
level. That’s all you have to do!

Full MVVM Example
Now that you have updated AutoLotDAL, you will integrate real data into the last example. Copy the project
from the Fully Implementing MVVM section to a new location. Open the project, and add AutoLotDAL by
right-clicking the project name in the Solution Explorer and selecting Add ➤ Existing Project.

Add a reference to the AutoLotDAL from your WPF project. Add EntityFramework to the WPF project
by right-clicking the solution and selecting Manage NuGet Packages for Solution. Select EntityFramework
(by filtering on Installed if necessary), and select the WPF project for install. Update the app.config to add
the ConnectionStrings node and the ConnectString for your database. Your exact string might vary, but it
should look something like this:

<connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=.\SQLEXPRESS2014;initial
catalog=AutoLot;integrated security=True;MultipleActiveResultSets=True;App=EntityFramework"
providerName="System.Data.SqlClient" />
</connectionStrings>

Figure 30-14. Installing PropertyChanged.Fody

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1380

Open the MainWindowViewModel.cs file, and add usings for AutoLotDAL.Models and AutoLotDAL.Repos.
Update the constructor to get all of the Inventory records from the InventoryRepo class, instead of manually
creating the list. The new constructor should look like this:

public MainWindowViewModel()
{
 Cars = new ObservableCollection<Inventory>(new InventoryRepo().GetAll());
}

Open all of the command classes, update the namespaces to use AutoLotDAL.Models, and remove the
MVVM.Models namespace (or whatever the namespace is in your example). Finally, delete all of the classes in
the Models directory of the WPF project.

Run the app, and you will see all of the records in the drop-down, as shown in Figure 30-15.

Figure 30-15. Pulling data from the database

One problem you might notice is that every vehicle has the IsChanged check box checked. This is
because EF materializes each record by setting the properties, which of course triggers the PropertyChanged
code and sets the IsChanged flag. In the next section, you will learn how to handle this gracefully in EF.

Using ObjectMaterialized with Entity Framework
If you recall from Chapter 23, the ObjectMaterialized event fires every time EF is done reconstituting an
object from the database. Open up AutoLotEntities.cs, and in the OnObjectMaterialized event handler,
check to see if the Entity property of the ObjectMaterializedEventArgs is of type EntityBase. If it is, then
set the IsChanged property to false. The code will look like this:

private void OnObjectMaterialized(object sender, ObjectMaterializedEventArgs e)
{
 var model = (e.Entity as EntityBase);
 if (model != null)

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 30 ■ NotifiCatioNs, CommaNds, ValidatioN, aNd mVVm

1381

 {
 model.IsChanged = false;
 }
}

Run the app. Select a record from the drop-down, and you will see that the IsChanged flag is no longer
set when the form first loads. If you edit a field, the IsChanged flag still gets set correctly.

Summary
This chapter examined the WPF topics that support the Model-View-ViewModel (MVVM) pattern. You
started off learning how to tie model classes and collections into the notification system in the binding
manager. You implemented INotifyPropertyChanged, and used ObservableCollections to keep the UI
in sync with the bound data. Later in the chapter, you learned how to use PropertyChanged.Fody to do this
work automatically.

Next, you added validation code to the Model using IDataErrorInfo, INotifyDataErrorInfo, and
checked for Data Annotation errors. You then displayed any validation errors in the UI so the user would
know what the problem is and how to fix it.

Finally, you put it all together by adding a ViewModel, and you cleaned up the UI markup and code-behind
file to increase separation of concerns. You updated AutoLotDAL to add validation and notifications, and
used ObjectMaterialized to clean up the objects as they materialize.

Part VIII

ASP.NET

1385

Chapter 31

Introducing ASP.NET Web Forms

Until now, all of the examples in this book have focused on console-based and desktop graphical user interfaces
created using the WPF platform. The remainder of the text will explore how the .NET platform facilitates the
construction of Internet-based applications using a technology named ASP.NET. This and the next two chapters
cover ASP.NET Web Forms, and Chapter 34 covers ASP.NET MVC and ASP.NET Web API. To begin, you’ll quickly
overview a number of key web development concepts (HTTP, HTML, client-side scripting, postbacks) and
examine the role of Microsoft’s commercial web server (IIS) as well as that of the IIS Express.

 ■ Note This chapter and the next two cover ASP.NET Web Forms, the original web development framework in
.NET. Chapter 34 covers ASP.NET MVC and ASP.NET Web API, two (fairly recent) additions to the ASP.NET family
of framework.

With this brief web primer out of the way, the remainder of this chapter will concentrate on the
structure of the ASP.NET web form programming model (including the single-page and code-behind model)
and examine the functionality of the Page base class. Along the way, you’ll be introduced to the role of
ASP.NET web controls, the directory structure of an ASP.NET web site, and how to use a Web.config file to
control the runtime operation of your web sites.

The Role of HTTP
Web applications are very different animals from graphical desktop applications. The first obvious difference
is that a production-level web application involves at least two networked machines: one hosting the web
site and the other viewing data within a web browser. Of course, during development it is entirely possible to
have a single machine play the role of both the browser-based client and the hosting web server that serves
up content. Given the nature of web applications, the networked machines in question must agree upon
a particular wire protocol to determine how to send and receive data. The wire protocol that connects the
computers in question is the Hypertext Transfer Protocol (HTTP).

The HTTP Request/Response Cycle
When a client machine launches a web browser (such as Google Chrome, Opera, Mozilla Firefox, Apple
Safari, or Microsoft Internet Explorer/Edge), an HTTP request is made to access a particular resource
(typically a web page) on the remote server machine. HTTP is a text-based protocol that is built upon a
standard request/response paradigm. For example, if you navigate to http://www.facebook.com, the browser
software leverages a web technology termed Domain Name Service (DNS) that converts the registered URL

http://dx.doi.org/10.1007/978-1-4842-1332-2_34
http://dx.doi.org/10.1007/978-1-4842-1332-2_34
http://www.facebook.com/

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1386

into a numerical value termed an IP address. At this point, the browser opens a socket connection (typically
via port 80 for a nonsecure connection) and sends the HTTP request for processing to the target site.

The web server receives the incoming HTTP request and may choose to parse out any client-supplied
input values (such as values within a text box, check box, or list box) in order to format a proper HTTP
response. Web programmers may leverage any number of server-side technologies (PHP, ASP.NET, JSP, etc.)
to dynamically generate the content to be emitted into the HTTP response. At this point, the client-side
browser renders the returned HTML sent from the web server. Figure 31-1 illustrates the basic HTTP
request/response cycle.

HTTP Is a Stateless Protocol
Another aspect of web development that is markedly different from traditional desktop programming is the
fact that HTTP is essentially a stateless wire protocol. As soon as the web server sends a response to the client
browser, everything about the previous interaction is forgotten. This is certainly not the case in a traditional
desktop application, where the state of the executable is most often alive and kicking until the user shuts
down the main window of the application.

Given this point, as a web developer, it is up to you take specific steps to “remember” information
(such as items in a shopping cart, credit card numbers, and home addresses) about the users who are
currently logged on to your site. As you will see in Chapter 33, Web Forms provide numerous ways to handle
state, using techniques such as session variables, cookies, and the application cache as well as the Web
Forms profile management API.

Understanding Web Applications and Web Servers
A web application can be understood as a collection of files (e.g., *.html, *.aspx, image files, XML-based file
data) and related components (such as a .NET code library) stored within a particular set of directories on a
web server. As shown in Chapter 33, Web Forms applications have a specific life cycle and provide numerous
events (such as initial startup or final shutdown) that you can hook into in order to perform specialized
processing during your web site’s operation.

A web server is a software product in charge of hosting your web applications; it typically provides a
number of related services such as integrated security, File Transfer Protocol (FTP) support, mail exchange
services, and so forth. Internet Information Services (IIS) is the Microsoft enterprise-level web server
product, and it offers intrinsic support for Web Forms applications.

Assuming you have IIS properly installed on your workstation, you can interact with IIS from the
Administrative Tools folder (located in the Control Panel folder) by double-clicking the Internet Information
Services Manager applet. Figure 31-2 shows the Default Web Site node of IIS where a majority of the
configuration details occur (if you are running earlier versions of IIS, your UI will look different).

Figure 31-1. The HTTP request/response cycle

http://dx.doi.org/10.1007/978-1-4842-1332-2_33
http://dx.doi.org/10.1007/978-1-4842-1332-2_33

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1387

The Role of IIS Virtual Directories
A single IIS installation is able to host numerous web applications, each of which resides in a virtual
directory. Each virtual directory is mapped to a physical directory on the machine’s hard drive. For example,
if you create a new virtual directory named CarsAreUs, the outside world can navigate to this site using a
URL such as http://www.MyDomain.com/CarsAreUs (assuming your site’s IP address has been registered
with a DNS of www.MyDomain.com). Under the hood, this virtual directory maps to a physical root directory
on the web server that contains the content of the CarsAreUs web application.

As you will see later in this chapter, when you create Web Forms applications using Visual Studio, you
have the option of having the IDE generate a new virtual directory for the current web site automatically.
However, if required, you are certainly able to manually create a virtual directory by hand by right-clicking
the Default Web Site node of IIS and selecting Add Virtual Directory from the context menu.

IIS Express
In earlier versions of the .NET platform, ASP.NET developers were required to make use of IIS virtual
directories during the development and testing of their web applications. In many cases, this tight
dependency on IIS made team development more complex than necessary, not to mention that many
network administrators frowned upon installing IIS on every developer’s machine.

Happily, there is the option of a lightweight web server named IIS Express. This utility allows developers
to host a Web Forms application outside the bounds of IIS. Using this tool, you can build and test your
web pages from any folder on your machine. This is quite helpful for team development scenarios and for
building Web Forms applications on versions of Windows that do not support IIS installations.

Figure 31-2. The IIS applet can be used to configure the runtime behavior of Microsoft IIS

http://www.mydomain.com/CarsAreUs
http://www.mydomain.com/

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1388

Most of the examples in this book will make use of IIS Express (via the correct Visual Studio project
option) rather than hosting web content under an IIS virtual directory. While this approach can simplify the
development of your web application, be aware that this web server is not intended to host production-level
web applications. It is intended purely for development and testing purposes. When your web application is
ready for prime time, your site will need to be copied to an IIS virtual directory.

 ■ Note Visual Studio provides a built-in tool to copy a local web application to a production-level web server.
doing so is as simple as the click (or two) of a button. To start the process, you need to select your web project
in the Visual Studio Solution Explorer, right-click, and select Publish. At this point you can select the intended
destination of the deployment, including Microsoft Azure.

The Role of HTML
After you have configured a directory to host your web application and you have chosen a web server to
serve as the host, you need to create the content itself. Recall that a web application is simply a set of files
that constitute the functionality of the site. To be sure, many of these files will contain Hypertext Markup
Language (HTML) statements. HTML is a standard markup language used to describe how literal text,
images, external links, and various HTML controls are to be rendered within the client-side browser.

While it is true that modern IDEs (including Visual Studio) and web development platforms (such as
ASP.NET) generate much of the HTML automatically, you should have a working knowledge of HTML as you
work with ASP.NET.

 ■ Note recall from Chapter 2 that Microsoft has released a number of free IdEs under the Express family of
products as well as Visual Studio Community Edition, which rolls all of the Express editions into one package.
To work through the next chapters on WebForms, MVC, and Web API, you can download Visual Studio Express
for Web or Community Edition.

While this section will most certainly not cover all aspects of HTML, it will touch on some basics. This will
help you better understand the markup generated on your behalf by the Web Forms programming model.

HTML Document Structure
A typical HTML file consists of a set of tags that describe the look and feel of a given web page. The basic
structure of an HTML document tends to remain the same. For example, *.html files open and close with
<html> and </html> tags, typically define a <body> section, and so forth.

To get started, open Visual Studio and select New ➤ Project. Under Other Project Types, select Visual
Studio Solutions, and chose Blank Solution, as in Figure 31-3 (notice that you are not making a web project
at this point, you are just creating a blank solution to hold your files).

http://dx.doi.org/10.1007/978-1-4842-1332-2_2

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1389

Next, add an empty HTML Page file via the Project ➤ Add New Item menu selection, and select Visual
C#/Web in the left rail and HTML Page in the center pane. Name the file HtmlPage1.html. You should see
some initial markup such as the following (the exact HTML may differ based on how you have configured
Visual Studio):

<!DOCTYPE html>

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title> </title>
 <meta charset="utf-8" />
</head>
<body>

</body>
</html>

First, notice that this HTML file opens with a DOCTYPE processing instruction. This, in conjunction
with the opening <html> tag establishes that the contained HTML tags should be validated against the
HTML 5.0 standard. The HTML 5.0 standard is a W3C specification that adds many new features to vanilla-
flavored markup.

Figure 31-3. Select Blank Visual Studio Solution from the New Project dialog

http://www.w3.org/1999/xhtml

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1390

 ■ Note by default, Visual Studio validates all hTML documents against the hTML 5.0 validation scheme to
ensure the markup is in sync with the hTML 5 standard. If you need to specify an alternative validation scheme,
activate the Tools ➤ options dialog box, expand the Text Editor node, expand the hTML (Web Forms) node,
and then select the Validation node. on a related note, if you would rather not see validation warnings, simply
uncheck the Show Errors check box found in the same location.

To spruce things up just a bit, update the title of your page like so:

<head>
 <title>This is my simple web page</title>
</head>

Not surprisingly, the <title> tags are used to specify the text string that should be placed in the title bar
of the hosting web browser.

The Role of an HTML Form
An HTML form is simply a named group of related UI elements, typically used to gather user input. Do not
confuse an HTML form with the entire display area shown by a given browser. In reality, an HTML form is
more of a logical grouping of widgets placed in the <form> and </form> tag set, such as

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>
 <title>This is my simple web page</title>
</head>
<body>
 <form id="defaultPage">
 <!-- Insert web UI content here -->
 </form>
</body>
</html>

This form has been assigned the id of "defaultPage". Typically, the opening <form> tag supplies an
action attribute that specifies the URL to use to submit the form data, as well as the method of transmitting
that data itself (POST or GET). You will learn more about this in the next section. For the time being, let’s
look at the sorts of items that can be placed in an HTML form (beyond simple literal text).

The Visual Studio HTML Designer Tools
Visual Studio provides an HTML tab on the Toolbox (accessible through the View ➤ Toolbox menu option)
that allows you to select an HTML control that you may place on your HTML designer (see Figure 31-4).
Similar to the process of building a WPF application, these HTML controls can be dragged onto the designer
surface or directly into the markup of the page.

http://www.w3.org/1999/xhtml

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1391

 ■ Note When you are building Web Forms pages using the web form programming model, you will typically
not be using these hTML controls to create the user interface. rather, you will use the Web Forms controls,
which will render back the correct hTML on your behalf. You’ll learn about the role of web controls a bit later in
this chapter.

The HTML editor doesn’t have a designer surface. In order to use a designer (or Split Mode), you need
to use the Web Forms HTML Editor. To do this, close the editor for HtmlPage1.html, and in the Solution,
right-click the file, select Open With, and you will see a dialog that allows you to choose which editor (shown
in Figure 31-5). If you click Set as Default, then you would not need to create a solution like we did here
because the Web Forms HTML Editor will always be used.

Figure 31-4. The HTML tab of the Toolbox

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1392

If you click the Split button on the bottom of the HTML editor, the bottom pane of the HTML editor will
display the HTML visual layout and the upper pane will show the related markup. Another benefit of this
editor is that as you select markup or an HTML UI element, the corresponding representation is highlighted.
Figure 31-6 shows an example of the split view in action.

Figure 31-5. Selecting the WebForms Editor

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1393

Visual Studio also allows you to edit the overall look and feel of the *.html file or a given HTML control
in the <form> using the Properties window. For example, if you select DOCUMENT from the drop-down list
of the Properties window, you can configure various aspects of the HTML page (see Figure 31-7).

Figure 31-6. The Visual Studio Web Forms HTML designer

Figure 31-7. The Visual Studio Properties window can be used to configure the HTML markup

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1394

As you use the Properties window to configure an aspect of your web page, the IDE will update the
HTML accordingly. Feel free to use the IDE to help edit your HTML pages as you read over the remaining
chapters of the book.

Building an HTML Form
Update the <body> of the initial file to display some literal text that prompts the user to enter a message. Be
aware that you can enter and format literal textual content by typing directly in the HTML designer. Here,
you are using the <h1> tag to set a header weight, <p> for a paragraph block, and <i> for italic text:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>This is my simple web page</title>
</head>
<body>
 <!-- Prompt for user input. -->
 <h1>Simple HTML Page</h1>
 <p>

 <i>Please enter a message</i>.
 </p>

 <form id="defaultPage">
 </form>

</body>
</html>

Now let’s build the form’s input area. In general, each HTML control is described using an id attribute
(used to identify the item programmatically) and a type attribute (used to specify which input control you
are interested in placing in the <form> declaration).

The UI you will build here will contain one text field and two button types. The first button will be used
to run a client-side script and the other to reset the form input fields to the default values. Update your
HTML form like so:

<!-- Build a form to get user info. -->
<form id="defaultPage">
 <p>
 Your Message:
 <input id="txtUserMessage" type="text"/></p>
 <p>
 <input id="btnShow" type="button" value="Show!"/>
 <input id="btnReset" type="reset" value="Reset"/>
 </p>
</form>

http://www.w3.org/1999/xhtml

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1395

Notice that you have assigned relevant ids to each control (txtUserMessage, btnShow, and btnReset). Also
notice that each input item has an extra attribute named type that marks these input controls as UI items that
automatically clear all fields to their initial values (type="reset"), receive text input (type="text"), or function
as a simple client-side button that does not post back to the web server (type="button").

Save your file, then right-click on the designer, and select the View in Browser menu option. Figure 31-8
shows the current page with the new Microsoft Edge web browser.

Figure 31-8. Your simple HTML page

 ■ Note When you select the View in browser option for an hTML file, Visual Studio will automatically launch
the IIS Express to host your content.

The Role of Client-Side Scripting
In addition to GUI elements, a given *.html file may contain blocks of script code that will be processed by
the requesting browser. The following are two major reasons why client-side scripting is used:

•	 To validate user input in the browser before posting back to the web server

•	 To interact with the Document Object Model (DOM) of the browser

Regarding the first point, understand that the inherent evil of a web application is the need to make
frequent round-trips (termed postbacks) to the server machine to update the HTML to be rendered into the
browser. While postbacks are unavoidable, you should always be mindful of ways to minimize travel across
the wire. One technique that saves postbacks is to use client-side scripting to validate user input before
submitting the form data to the web server. If an error is found, such as not supplying data within a required
field, you can alert the user to the error without incurring the cost of posting back to the web server. (After
all, nothing is more annoying to users than posting back on a slow connection, only to receive instructions to
address input errors!)

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1396

 ■ Note be aware that even when performing client-side validation (for improved response time), validation
should also occur on the web server itself. This will ensure that the data has not been tampered with while
it was sent across the wire. The ASP.NET validation controls automatically perform client and server-side
validation (more on this in Chapter 32).

Client-side scripts can also be used to interact with the underlying object model (the Document Object
Model, or DOM) of the web browser itself. Most commercial browsers expose a set of objects that can be
leveraged to control how the browser should behave.

When a browser parses an HTML page, it builds an object tree in memory, representing all the contents
of the web page (forms, input controls, etc.). Browsers provide an API called DOM that exposes the object
tree and allows you to modify its contents programmatically. For example, you can write JavaScript that
executes in the browser to get the values from specific controls, change the color of a control, add new
controls to the page dynamically, and so forth.

One major annoyance is the fact that different browsers tend to expose similar, but not identical, object
models. Thus, if you emit a block of client-side script code that interacts with the DOM, it might not work
identically on all browsers (thus, testing is always a must!).

ASP.NET provides the HttpRequest.Browser property, which allows you to determine at runtime the
capacities of the browser and the device that sent the current request. You can use this information to stylize
how to emit back the HTTP response in the most optimal manner. But you rarely need to worry about this,
unless you are implementing custom controls, because all the standard web controls in ASP.NET automatically
know how to render themselves appropriately based on the browser type. This remarkable capability is known
as adaptive rendering, and it’s implemented out-of-the-box for all standard ASP.NET controls.

There are various scripting languages that can be used to author client-side script code, but the most
popular by far is JavaScript. It’s important to note that JavaScript is in no way, shape, or form the same as
the Java language. While JavaScript and Java have a somewhat similar syntax, JavaScript is less powerful
than Java. The good news is that all modern-day web browsers support JavaScript, which makes it a natural
candidate for client-side scripting logic.

A Client-Side Scripting Example
To illustrate the role of client-side scripting, let’s first examine how to intercept events sent from client-side
GUI widgets. To capture the click event for the Show button, update the definition of the btnShow widget to
support an onclick attribute, which is assigned to a JavaScript method named btnShow_onclick().

<input id="btnShow" type="button" value="Show!"
 onclick="return btnShow_onclick()" />

Now, add the following JavaScript function directly after the opening <head> element, which is called
when the user clicks the button. Use the alert() method to display a client-side message box containing the
value in the text box via the value property.

<script type="text/javascript">
// <![CDATA[
 function btnShow_onclick() {
 alert(window.txtUserMessage.value);
 }
//]]>
</script>

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1397

Note that the scripting block has been wrapped within a CDATA section. The reason for this is simple:
if your page ends up on a browser that does not support JavaScript, the code will be treated as a comment
block and ignored. Of course, your page may be less functional, but the upside is that your page will not blow
up when rendered by the browser. In any case, if you view your page in a browser once again, you should be
able to type a message and see it pop up in a client-side message box (see Figure 31-9).

As well, when you click the Reset button, you should find that the text area is cleared of data because
this particular button was created by specifying type="reset".

Posting Back to the Web Server
This simple HTML page is executing all functionality within the hosting browser. A real web page needs to
post back to a resource on the web server, passing all of the input data at the same time. Once the server-side
resource receives this data, it can use it to build a proper, dynamically generated, HTTP response.

The action attribute on the opening <form> tag specifies the recipient of the incoming form data.
Possible receivers include mail servers, other HTML files on the web server, RESTful web services, a Web
Forms page, and so forth.

Beyond the action attribute, you will also likely have a submit button, which when clicked, will transmit
the form data to the web application via an HTTP request. There is no need to do so for this example;
however, here is an update to the file, specifying the following attribute in the opening <form> tag:

<form id="defaultPage"
 action="http://localhost/Cars/MyAspNetPage.aspx" method="GET">
 <input id="btnPostBack" type="submit" value="Post to Server!"/>
...
</form>

Figure 31-9. Invoking a client-side JavaScript function

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1398

When the submit button for this form is clicked, the form data is sent to the MyAspNetPage.aspx at the
specified URL. When you specify method="GET" as the mode of transmission, the form data is appended to
the query string as a set of name/value pairs separated by ampersands. You might have seen this sort of data
in your browser before; it looks like the following:

http://www.google.com/search?hl=en&source=hp&q=vikings&cts=1264370773666&aq=f&aql=&aqi=
g1g-z1g1g-z1g1g-z1g4&oq=

The other method of transmitting form data to the web server is to specify method="POST", like so:

<form id="defaultPage"
 action="http://localhost/Cars/MyAspNetPage.aspx" method = "POST">
...
</form>

In this case, the form data is not appended to the query string. Using POST, the form data is not directly
visible to the outside world. More important, POST data does not have a character-length limitation; many
browsers have a limit for GET queries.

Postbacks Under Web Forms
When you are building Web Forms-based web sites, the framework will take care of the posting mechanics
on your behalf. One of the many benefits of building a web site using ASP.NET Web Forms is that the
programming model layers on top of the standard HTTP request/response protocol of an event driven
system. Thus, rather than manually setting an action attribute and defining an HTML submit button, you
can simply handle events on the Web Forms controls using standard C# syntax.

Using this event-driven model, you can very easily post back to the web server using a large number of
controls. If you require, you can post back to the web server if the user clicks on a radio button, an item in a
list box, a day on a calendar control, and so on. In each case, you simply handle the correct event, and the
ASP.NET runtime will automatically emit back the correct HTML posting data.

 ■ Source Code The SimpleWebPage web site is included in the Chapter 31 subdirectory.

An Overview of the Web Forms API
At this point, your whirlwind review of classic web application development is complete, and you are ready
to dive into Web Forms. As you would expect, each edition of the .NET platform adds more functionality to
the web programming APIs, and this is certainly true under .NET 4.6. Regardless of which version of .NET you
happen to be targeting, the following features are commonplace for ASP.NET Web Forms-based applications:

•	 ASP.NET provides a model termed code-behind, which allows you to separate
presentation logic (HTML) from business logic (C# code).

•	 ASP.NET pages are coded using .NET programming languages, rather than
server-side scripting languages. The code files are compiled into valid .NET *.dll
assemblies (which translates into much faster execution).

•	 Web Forms controls can be used to build a web UI in a model similar to that of
building a desktop windows application.

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1399

•	 Web Forms applications can make use of any of the assemblies within the .NET base
class libraries and are constructed using the object-oriented techniques examined in
this book (classes, interfaces, structures, enums, and delegates).

•	 Web Forms applications can be easily configured via a web application configuration
file (Web.config).

The first point I want to elaborate on here is the fact that the UI of a Web Forms web page can be
constructed using various web controls. Unlike a typical HTML control, web controls are executed on the
web server and will emit back to the HTTP response their correct HTML tags. This alone is a huge benefit of
Web Forms in that the amount of HTML you must manually author by hand diminishes greatly. By way of
a quick example, assume you have defined the following Web Forms web control in a Web Forms page (I’ll
cover creating the details of how to do this shortly):

<asp:Button ID="btnMyButton" runat="server" Text="Button" BorderColor="Blue"
 BorderStyle="Solid" BorderWidth="5px" />

You’ll learn the details of declaring Web Forms controls soon enough, but for right now, notice that
many attributes of the <asp:Button> control look very similar to the properties you encountered in the WPF
examples. The same is true for all Web Forms controls because when Microsoft built the web control toolkit,
these widgets were purposely designed to look and feel like their desktop counterparts.

Now, if a browser makes a call to the *.aspx file containing this control, the control responds by
emitting into the output stream the following HTML declaration:

<input type="submit" name="btnMyButton" value="Button" id="btnMyButton"
 style="border-color:Blue;border-width:5px;border-style:Solid;" />

Notice how the web control emits back standard HTML that can be rendered in any browser. Given this,
understand that using Web Forms controls in no way ties you to the Microsoft family of operating systems or
to Microsoft Internet Explorer. Any operating system or browser (including those on handheld devices such
as the Apple iPhone, Android, or Windows Phone devices) can view a Web Forms page.

Next, note from the previous list of features that a Web Forms application will be compiled into a .NET
assembly. Thus, your web projects are no different than any .NET *.dll built during this book. The compiled
web application will be composed of CIL code, an assembly manifest, and type metadata. This has a number
of huge benefits, most notably performance gains, strong typing, and the ability to be micromanaged by the
CLR (e.g., garbage collection, etc.).

Finally, Web Forms applications provide a programming model whereby you can partition your page’s
markup from its related C# code base using code files. Using code files, the markup you type will map to a
full-blown object model that is merged with your C# code file via partial class declarations.

Major Features of Web Forms 2.0 and Higher
ASP.NET 1.0 was a major step in the right direction, and ASP.NET 2.0 provided many additional bells and
whistles that helped ASP.NET move from a way to build dynamic web pages to a way to build feature-rich
web sites. Consider this partial list of key features:

•	 Introduction of the ASP.NET Development Web Server (which means developers no
longer need to have the full version of IIS installed on their development computers).
This is now replaced by IIS Express.

•	 A large number of new web controls that handle many complex situations
(navigation controls, security controls, new data-binding controls, etc.).

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1400

•	 The introduction of master pages, which allow developers to attach a common UI
frame to a set of related pages.

•	 Support for themes, which offer a declarative manner to change the look and feel of
the entire web application on the web server.

•	 Support for Web Parts, which allow end users to customize the look and feel of a web
page and store their settings for later use (à la portals).

•	 Introduction of a web-based configuration and management utility that maintains
the various Web.config files.

Beyond the ASP.NET Development Web Server, one of the biggest additions brought forth with ASP.
NET 2.0 was the introduction of master pages. As you are aware, most web sites have a look and feel that is
common to all pages on the site. Consider a commercial web site such as www.amazon.com. Every page has
the same elements, such as a common header, common footer, common navigation menus, and so on.

Using a master page, you can model this common functionality and define placeholders that other
*.aspx files can plug into. This makes it very easy to quickly reshape the overall look and feel of your site
(reposition the navigation bar, change the header logo, and so on) by simply changing the master page,
leaving the other *.aspx files unmodified.

 ■ Note Master pages are so useful that as of Visual Studio 2010, all new Web Forms web projects include a
master page by default.

ASP.NET 2.0 also added many new web controls into the mix, including controls that automatically
incorporate common security features (log in controls, password recovery controls, etc.), controls that
allow you to layer a navigational structure on top of a set of related *.aspx files, and even more controls for
performing complex data-binding operations, where the necessary SQL queries can be generated using a set
of Web Forms controls.

Major Features of Web Forms 3.5 (and .NET 3.5 SP1) and Higher
Note that .NET 3.5 added the ability for Web Forms applications to make use of the LINQ programming
model (also introduced in .NET 3.5) and the following web-centric features:

•	 Support for data binding against ADO.NET Entity Framework classes (see Chapter 23).

•	 Support for ASP.NET Dynamic Data. This is a Ruby on Rails–inspired web framework
that can be used to build data-driven web applications. It exposes tables in a
database by encoding them in the URI of the ASP.NET web service, and the data in
the table is automatically rendered to HTML.

•	 Integrated support for Ajax-style development, which essentially allows for micro
postbacks to refresh part of a web page as quickly as possible.

The ASP.NET Dynamic Data project templates, introduced with the .NET 3.5 Service Pack 1, provide
a new model to build sites that are driven heavily by a relational database. Of course, most web sites will
need to communicate with databases to some extent, but the ASP.NET Dynamic Data projects are tightly
connected to the ADO.NET Entity Framework and are squarely focused on the rapid development of
data-driven sites (similar to what one might build when using Ruby).

http://www.amazon.com/
http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1401

Major Features of Web Forms 4.0
.NET 4.0 added even more features to the Microsoft web development platform. Here is a hit list of some of
the key web-centric features:

•	 The ability to compress “view state” data using the GZIP standard.

•	 JQuery is included with Web Forms and MVC.

•	 Updated browser definitions to ensure that ASP.NET pages render correctly on new
browsers and devices (Google Chrome, Apple iPhone, Windows Phone, Android
devices, etc.).

•	 The ability to customize the output of validation controls using a cascading style
sheet (CSS).

•	 The inclusion of the ASP.NET Chart control, which allows for building ASP.NET
pages that include intuitive charts for complex statistical or financial analysis.

•	 Support for ASP.NET Model View Controller project templates, which decrease the
dependency among application layers by using the Model-View-Controller (MVC)
pattern. This is a completely different approach to web site development and has
little resemblance to the web form programming model examined in this edition of
the text.

While this list is certainly impressive (and it’s only a subset of the new features), the work that Microsoft
put into Web Forms for ASP.NET 4.5 brought many developers back to Web Forms from ASP.NET MVC
(covered in Chapter 34).

Major Features of Web Forms 4.5 and 4.6
Two major focus areas of .NET 4.5 were performance improvements and porting many ASP.NET MVC
features back into Web Forms. Here is just a partial list of all that was new in Web Forms 4.5 and Web
Forms 4.6.

Features Added in Web Forms 4.5
•	 Numerous updates to support HTML 5.0.

•	 Integration with the new asynchronous language features of C# and VB.

•	 You can declare what type of data a control is going to be bound to by using a
new ItemType property, allowing for strongly typed controls, IntelliSense support,
and more.

•	 Model binding, which means you can map data from the page directly into method
type parameters.

•	 Client-side validation is now integrated with JQuery, allowing for cleaner
validation code.

•	 Additional validations available through Data Annotations, which are attributes on
your model classes.

•	 Additional security from cross-site scripting attacks with the inclusion (by default) of
the AntiXSS library.

http://dx.doi.org/10.1007/978-1-4842-1332-2_34

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1402

•	 Reduced file sizes (for JavaScript and CSS) with minification (reducing files size by
compressing the text of the files).

•	 Reduced number of browser calls by combining files into a single with bundling.

•	 You can defer request validation, allowing for posting of potentially unsafe content
(use with caution).

•	 Applications can use more than one server code when compiling Web Forms
applications.

Features Added in Web Forms 4.6
•	 Support for the new high speed HTTP2 protocol (currently only available for secure

applications on IIS)

•	 Enabling new C# 6 features using the Roslyn Code DOM Compilers

•	 Ability to use async/await on model binding functions

As you might agree, the feature set of Web Forms is quite deep (and this API has many more features
than I have briefly enumerated here). Truth be told, if I were to cover every possible feature of Web Forms,
this book would easily double in size (triple, perhaps). Since this is not realistic, the goal for the remainder of
the text is to examine the core features of Web Form that you will likely use on a day-to-day basis. Check out
the .NET Framework 4.6 SDK documentation for features not covered here.

 ■ Note If you require a comprehensive treatment of building web applications using ASP.NET, I suggest
picking up a copy of Pro ASP.NET 4.5 in C#, Fifth Edition by Adam Freeman and Matthew Macdonald (Apress).

Building a Single-File Web Forms Web App
A Web Forms page can be constructed using one of two primary approaches, the first of which is to build
a single *.aspx file that contains a blend of server-side code and HTML. Using this single-file page model
approach, the server-side code is placed within a <script> scope, but the code itself is not script code
proper (e.g., VBScript/JavaScript). Rather, the code within a <script> block is written in your .NET language
of choice (C#, Visual Basic, etc.).

If you are building a web page that contains very little code (but a good deal of static HTML), a single-
file page model may be easier to work with because you can see the code and the markup in one unified
*.aspx file. In addition, placing your procedural code and HTML markup into a single *.aspx file provides a
few other advantages:

•	 Pages written using the single-file model are slightly easier to deploy or to send to
another developer.

•	 Because there is no dependency between multiple files, a single-file page is easier to
rename.

•	 Managing files in a source code control system is slightly easier because all the action
takes place in a single file.

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1403

On the downside, the single-file page model can lead to some complex files because the UI markup
and programming logic is isolated to one location. Nevertheless, you’ll begin your journey of Web Forms by
examining the single-file page model.

Your goal is to build an *.aspx file that displays the Inventory table of the AutoLot database (created in
Chapter 21) using Entity Framework. To begin, launch Visual Studio and create a new empty ASP.NET web
application named SinglePageModel. Select File ➤ New Project, then select Visual C#/Web from the left rail,
and ASP.NET Web Application in the center pane, and enter SinglePageModel for the name, as in Figure 31-10.

Figure 31-10. Select ASP.NET Web Application from the New Project dialog

After you click OK, you will see the updated New ASP.NET Project dialog. Make sure you select ASP.NET
4.6 templates, and the Empty project template. Leave the check boxes for Web Forms, MVC, and Web API
under the “Add folders and core references for:” unchecked; leave the “Add unit tests” check box unchecked;
and uncheck the Host in the cloud option (if it’s checked) under Microsoft Azure, as in Figure 31-11.

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1404

 ■ Note The .NET 4.6 Framework (which this book covers) is the current full version of the .NET Framework.
ASP.NET 5 is built on .NET core, which is a subset of .NET 4.6. Note that .NET Core is for cross-platform web
sites and only supports ASP.NET MVC and the Web API from a web development standpoint.

Next, add a new Web Form to the project by selecting Project ➤ Add New Item. Be sure to select Web ➤
Web Forms in the left rail. Name this file Default.aspx.

Referencing AutoLotDAL.dll
Next, use Windows Explorer to copy the AutoLotDAL directory from Chapter 23 (or from the download
directory for this chapter). Add the project into the solution by right-clicking the solution and selecting Add ➤
Existing Project and choosing the AutoLotDAL project. Next, add a reference to the AutoLotDAL project
by right-clicking the references node in the SinglePageModel project and selecting AutoLotDAL from the
Projects/Solution option.

Figure 31-11. Choosing the empty project template

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1405

You will need to make a slight change to the AutoLotDAL project. First, add a reference to System.Web.
The constructor for the DatabaseLogger doesn’t specify a directory, which will cause the code to fail in a web
site because of a lack of permissions. This has to be updated to point to the physical directory of the web site.
In the System.Web namespace is a server variable called HttPRuntime.AppDomainAppPath that contains the
physical directory of the web site. In the EF folder, open AutoLotEntities.cs, add a using for System.Web,
and change the DatabaseLogger initializer to this:

static readonly DatabaseLogger DatabaseLogger =
 new DatabaseLogger($"{HttpRuntime.AppDomainAppPath}/sqllog.txt");

This change makes sure that the logging file is created in the same directory as the web site, resolving
the permission issue.

Next, add Entity Framework to the web project by right-clicking the solution in Solution Explorer,
selecting Manage NuGet Packages for Solution, and adding Entity Framework. You will also need to update
the web.config file (this is analogous to the App.config files you have already been working with in previous
chapters) to match the following (you might have to change your connection string based on the instance
name for your SQL Server install):

<configuration>
 <configSections>
 <!-- For more information on Entity Framework configuration, visit

http://go.microsoft.com/fwlink/?LinkID=237468 -->
 <section name="entityFramework"
 type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework,

Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 requirePermission="false"/>
 </configSections>
 <system.web>
 <compilation debug="true" targetFramework="4.6"/>
 <httpRuntime targetFramework="4.6"/>
 </system.web>
 <entityFramework>
 < defaultConnectionFactory type="System.Data.Entity.Infrastructure.

LocalDbConnectionFactory, EntityFramework">
 <parameters>
 <parameter value="mssqllocaldb"/>
 </parameters>
 </defaultConnectionFactory>
 <providers>
 < provider invariantName="System.Data.SqlClient" type="System.Data.Entity.SqlServer.

SqlProviderServices, EntityFramework.SqlServer"/>
 </providers>
 </entityFramework>
 <connectionStrings>
 <add name="AutoLotConnection"
 connectionString="data source=.\SQLEXPRESS2014;initial catalog=AutoLot;integrated

security=True;MultipleActiveResultSets=True;App=EntityFramework"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
</configuration>

http://go.microsoft.com/fwlink/?LinkID=237468

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1406

Designing the UI
Now, open Default.aspx, click the Design tab, and using the Visual Studio Toolbox, select the Standard tab
and drag and drop a GridView control (the GridView widget can be found under the Data tab of the Toolbox)
onto the page designer between the opening and closing form elements. Notice that the designer fills in
random data into the GridView to give you a sense of how your page will look. Feel free to make use of the
Properties window to set various visual property settings as you choose. Now, locate the <form> section of
your page. Notice how the web control has been defined using an <asp> tag. After this tag prefix, you will find
the name of a Web Forms control (GridView). Before the closing tag of a given element, you will find a series
of name/value pairs that correspond to the settings available in the Properties window, like so:

<form id="form1" runat="server">
<div>
 <asp:GridView ID="carsGridView" runat="server">
 </asp:GridView>
</div>
</form>

You will dig into the full details of Web Forms controls (including runat="server") later in Chapter 32.
Until then, recall that web controls are objects processed on the web server that emit back their HTML
representation into the outgoing HTTP response automatically. Beyond this major benefit, Web Forms
controls mimic a desktop-like programming model in that the names of the properties, methods, and events
typically mimic an equivalent Windows Forms/WPF counterpart.

Adding the Data Access Logic
Now, switch to the source, and add an ItemType attribute to the asp:GridView tag with the value
"AutoLotDAL.Models.Inventory". This new feature, introduced in .NET 4.5, provides for strongly typed list
controls in ASP.NET Web Forms, and is supported by IntelliSense to recognize the classes available in the
solution.

Next, add a SelectMethod attribute with the value "GetData". The SelectMethod attribute was also
introduced in .NET 4.5, and sets the method that will be executed when the control is rendered to get the
data that will populate the list control. The updated markup is shown here:

<asp:GridView ID="carsGridView" runat="server"
 ItemType="AutoLotDAL.Models.Inventory"
 SelectMethod="GetData" >
</asp:GridView>

Create the GetData method in a <script> tag within the page. In the method, call the
InventoryRepo.GetAll method. Use the <%@ Import ... %> to import AutoLotDAL.Models and
AutoLotDAL.Repos. You code should be similar to this:

<!--At the top of the file, after the Page directive -->
<%@ Import Namespace="AutoLotDAL.Models" %>
<%@ Import Namespace="AutoLotDAL.Repos" %>

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1407

<!--Anywhere in the file, before the GridView control -->
<script runat="server">
 public IEnumerable<Inventory> GetData()
 {
 return new InventoryRepo().GetAll();
 }
</script>

 ■ Note You only need to use the <%@ Import %> directive if you are building a page with the single-file code
model. If you are using the default code file approach, use the using keyword of C# to include namespaces in
your code file. The same is true for the <%@ Assembly %> directive, described next.

Before you dive into the details behind the format of this *.aspx file, let’s try a test run. First, save your
*.aspx file. Click Run or press F5, which will launch IIS Express, which hosts your page.

When the page is served, the Select method is executed, loading the data into the GridView. Figure 31-12
shows the output.

Given, the current UI is quite bland. To spice up the current example, select the GridView control on the
Visual Studio designer, and using the context menu (that tiny arrow on the upper right of the control), select
the Auto Format option (see Figure 31-13).

Figure 31-12. ASP.NET provides a declarative data-binding model

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1408

From the resulting dialog box, pick a template that suits your fancy (I picked “Slate”). After you click OK,
view the generated control declaration, which is quite a bit richer than before.

<asp:GridView ID="carsGridView" runat="server"
 ItemType="AutoLotDAL.Models.Inventory"
 SelectMethod="GetData" BackColor="White" BorderColor="#E7E7FF"
 BorderStyle="None" BorderWidth="1px" CellPadding="3" GridLines="Horizontal" >
 <AlternatingRowStyle BackColor="#F7F7F7" />
 <FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />
 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#F7F7F7" />
 <PagerStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" HorizontalAlign="Right" />
 <RowStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="#F7F7F7" />
 <SortedAscendingCellStyle BackColor="#F4F4FD" />
 <SortedAscendingHeaderStyle BackColor="#5A4C9D" />
 <SortedDescendingCellStyle BackColor="#D8D8F0" />
 <SortedDescendingHeaderStyle BackColor="#3E3277" />
</asp:GridView>

If you view your application again and click your button, you will now see a more interesting UI
(see Figure 31-14).

Figure 31-13. Configuring the ASP.NET GridView control

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1409

That was fairly simple, yes? Of course, as they say, the devil is in the details, so let’s dig a bit deeper into
the composition of this *.aspx file, beginning with examining the role of the <%@Page... %> directive. Do
be aware that the topics you examine will apply directly to the more preferred code file model examined next.

The Role of ASP.NET Directives
A given *.aspx file will typically open with a set of directives. ASP.NET directives are always denoted with
<%@ ... %> markers and may be qualified with various attributes to inform the ASP.NET runtime how to
process the attribute in question.

Every *.aspx file will have at minimum a <%@Page%> directive that is used to define the managed
language used within the page (via the language attribute). Also, the <%@Page%> directive may define the
name of the related code-behind file (examined soon), and so on. Table 31-1 documents some of the more
interesting <%@Page%>-centric attributes.

Table 31-1. Select Attributes of the <%@Page%> Directive

Attribute Meaning in Life

CodePage Specifies the name of the related code-behind file

EnableTheming Establishes whether the controls on the *.aspx page support ASP.NET themes

EnableViewState Indicates whether view state is maintained across page requests (more details on
this property in Chapter 33)

Inherits Defines a class in the code-behind page the *.aspx file derives from, which can be
any class derived from System.Web.UI.Page

MasterPageFile Sets the master page used in conjunction with the current *.aspx page

Trace Indicates whether tracing is enabled

Figure 31-14. A richer display for your test page

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1410

In addition to the <%@Page%> directive, a given *.aspx file may specify various <%@Import%> directives
to explicitly state the namespaces required by the current page and <%@Assembly%> directives to specify the
external code libraries used by the site (typically placed in the \bin folder of the web site).

In this example, you specified the types within the Models and Repos namespaces within the
AutoLotDAL.dll assembly. If you need to make use of additional .NET namespaces, you simply specify
multiple <%@Import%>/<%@Assembly%> directives.

To be sure, ASP.NET does define a number of other directives that may appear in an *.aspx file above
and beyond <%@Page%>, <%@Import%>, and <%@Assembly%>; however, I’ll reserve commenting on those for the
time being. You’ll see examples of other directives as you progress through the remaining chapters.

Analyzing the “Script” Block
Under the single-file page model, an *.aspx file may contain server-side scripting logic that executes on
the web server. In this case, it is critical that all of your server-side code blocks are defined to execute at the
server, using the runat="server" attribute. If the runat="server" attribute is not supplied, the runtime
assumes you have authored a block of client-side script to be emitted into the outgoing HTTP response, and
it will throw an exception. That being said, here is a proper server-side <script> block:

<script runat="server">
 public IEnumerable<Inventory> GetData()
 {
 return new InventoryRepo().GetAll();
 }
</script>

 ■ Note All Web Forms controls need to have the runat="server" attribute in their opening declaration. If not,
they will not render their hTML into the outbound hTTP response.

Analyzing the ASP.NET Control Declarations
The final point of interest in this first example is the declaration of the GridView web control. Like classic ASP
and raw HTML, Web Forms widgets are scoped within <form> elements. This time, however, the opening
<form> element is marked with the runat="server" attribute. As well, the controls are qualified with the asp:
tag prefix. Any control that takes this prefix is a member of the ASP.NET control library and has a corresponding
C# class representation in a given .NET namespace of the .NET base class libraries. Here you find

<form id="form1" runat="server">
 <div>
 <asp:GridView ID="carsGridView" runat="server"
 ItemType="AutoLotDAL.Models.Inventory"
 SelectMethod="GetData" >
 </asp:GridView>
 </div>
</form>

The System.Web.UI.WebControls namespace of the System.Web.dll assembly contains a majority of
the Web Forms controls. If you were to open the Visual Studio Object Browser, you could, for example,
locate the DataGrid control (see Figure 31-15).

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1411

As you can see, a Web Forms control has an inheritance chain with System.Object at the very top. The
WebControl parent class is a common base to all ASP.NET controls and defines all the common UI properties
you would expect (BackColor, Height, etc.). The Control class is also very common within the framework;
however, it defines more infrastructure-centric members (data binding, view state, etc.) rather than a child’s
graphical look and feel. You’ll learn more about these classes in Chapter 33.

 ■ Source Code The SinglePageModel web site is included in the Chapter 31 subdirectory.

Building an ASP.NET Web Page Using Code Files
While the single-file code model can be helpful at times, the default approach taken by Visual Studio (when
creating a new web project) is to make use of a technique known as code-behind, which allows you to separate
your server-side programming code from your HTML presentation logic using two distinct files. This model
works quite well when your pages contain a significant amount of code or when multiple developers are
working on the same web site. The code-behind model offers other benefits as well, such as the following:

•	 Because code-behind pages offer a clean separation of HTML markup and code,
it is possible to have designers working on the markup while programmers author
the C# code.

•	 Code is not exposed to page designers or others who are working only with the page
markup (as you might guess, HTML folks are not always interested in viewing reams
of C# code).

•	 Code files can be used across multiple *.aspx files.

Figure 31-15. All ASP.NET control declarations map to a .NET class type

http://dx.doi.org/10.1007/978-1-4842-1332-2_33
http://dx.doi.org/10.1007/978-1-4842-1332-2_31

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1412

Regardless of which approach you take, there is no difference in terms of performance. In fact, many
Web Forms applications benefit from building sites that make use of both approaches. To illustrate the
code-behind page model, let’s recreate the previous example once again using a blank Visual Studio web site
template. Activate the File ➤ New ➤ Project menu option, then select ASP.NET Web Application and then
the Empty ASP.NET 4.6 Template.

Now, using the Project ➤ Add New Item menu option, insert a new Web Form item named Default.aspx.
Once again, make use of the designer to build a UI consisting of a single GridView, and make use of the Properties
window to build a UI of your liking. If you like you can copy the previous ASP.NET control declarations from the
SinglePageModel example directly into your new *.aspx file. Given that this is the exact same markup, I won’t
bother to relist it here (just be sure to paste the control declarations between the <form> and </form> tags).

Now, notice that the <%@Page%> directive used within the code file model has a few attributes:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="CodeBehindPageModel.Default" %>

The CodeFile attribute is used to specify the related external file that contains this page’s coding
logic. By default, these code-behind files are named by adding the suffix .cs to the name of the *.aspx file
(Default.aspx.cs, in this example). If you examine Solution Explorer, you will see this code-behind file is
visible via a subnode on the Web Form icon (see Figure 31-16).

Figure 31-16. The associated code-behind file for a given *.aspx file

If you were to open your code-behind file, you would find a partial class deriving from
System.Web.UI.Page with support for handling the Load event. Notice that the fully qualified name of this
class (CodeBehindPageModel.Default) is identical to the Inherits attribute within the <%@Page%> directive.

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1413

Reference the AutoLotDAL Project
You will need the updated AutoLotDAL project (or the compiled AutoLotDAL.dll) from the previous
exercise. If you add the AutoLotDAL project to your solution, you will need to add a reference from your web
project to AutoLotDAL. If you are going to reference the compiled AutoLotDAL.dll assembly, you need to
add the file to the \bin folder within Solution Explorer, as shown in Figure 31-17 (you might need to toggle
the Show All Files button).

Just like in the previous example, add the Entity Framework to the web project by right-clicking the
project, selecting Manage NuGet Packages, and installing EF. Finally, copy the <connectionStrings> node
into the Web.config file.

Updating the Code File
If you examine the Default.aspx file in the previous example, you’ll see that each Web Forms page is
composed of three files: the *.aspx file (for markup), the *.designer.cs file (for designer-generated C# code),
and the primary C# code file (for your event handlers, custom methods, and whatnot). See Figure 31-18.

Figure 31-17. Visual Studio web projects make use of special ASP.NET folders

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1414

If you copied the markup from the previous example, all you need to do now is create the GetData
method in the Default.aspx.cs code-behind file. Start by adding using statements for AutoLotDAL.Models
and AutoLotDAL.Repos. Then, add the GetData method as follows:

using AutoLotDAL.Models;
using AutoLotDAL.Repos;

namespace CodeBehindPageModel
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 public IEnumerable<Inventory> GetData()
 {
 return new InventoryRepo().GetAll();
 }
 }
}

At this point, you can run your web application by pressing the Ctrl+F5 (or F5) key combination. Once
again, IIS Express will fire up, serving your page into your hosting browser.

Figure 31-18. Under the Web Application model, each web page is composed of three files

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1415

Debugging and Tracing ASP.NET Pages
To debug your Web Forms applications, your site must contain a properly configured Web.config file.
When you start a debugging session, if the IDE asks if you would like to modify the Web.config file to
enable debugging, answer yes. It means that your Web.config was missing the following markup (the most
important being the debug="true" attribute):

<compilation debug="true" targetFramework="4.6"/>

On a related note, you can enable tracing support for an *.aspx file by setting the Trace attribute to
true within the <%@Page%> directive (it is also possible to enable tracing for your entire site by modifying the
Web.config file).

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="CodeBehindPageModel.Default"
 Trace="true" %>

 ■ Note Web application pages inherit from the fully qualified name of the class, in this case
CodeBehindPageModel.Default. Web site pages inherit from the name of the page preceded with an
underscore, such as _Default.

Once you do so, the emitted HTML contains numerous details regarding the previous HTTP request/
response (server variables, session and application variables, request/response, etc.). To insert your own
trace messages into the mix, you can use the Trace property inherited from System.Web.UI.Page. Anytime
you would like to log a custom message (from a script block or C# source code file), simply call the static
Trace.Write() method. The first argument represents the name of your custom category; the second
argument specifies the trace message. To illustrate, update the GetData method with the following code
statement:

public IEnumerable<Inventory> GetData()
{
 Trace.Write("Default.aspx","Getting Data");
 return new InventoryRepo().GetAll();
}

Run your project once again. You will find your custom category and custom message are present and
accounted for. In Figure 31-19, take note of the highlighted message that displays the trace information.

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1416

You now know how to build a single Web Forms page using the single-file and code file approach. The
rest of this chapter will take a deeper look into the composition of a Web Forms project, as well as ways to
interact with the HTTP request/response and the life cycle of a Page-derived class.

 ■ Source Code The CodebehindPageModel web site is included in the Chapter 31 subdirectory.

ASP.NET Web Sites vs. ASP.NET Web Applications
When you are about to build a new Web Forms project, you need to make a choice regarding which of the
two project formats you will make use of, an ASP.NET web site or an ASP.NET web application. Your choice
of web project will control the way in which Visual Studio organizes and processes your web application
starter files, the type of initial project files that are created, and how much control you have over the resulting
composition of the compiled .NET assembly.

When ASP.NET was first released with .NET 1.0, the only option was to build what is now termed
a web application. Under this model, you have direct control over the name and location of the compiled
output assembly.

Figure 31-19. Logging custom trace messages

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1417

Web applications are useful when you are migrating older .NET 1.1 web sites into .NET 2.0 and higher
projects. Web applications are also helpful when you want to build a single Visual Studio Solution that
can contain multiple projects (for example, the web application and any related .NET code libraries). The
previous two examples used ASP.NET web applications as the starting point.

 ■ Note because the Visual Studio ASP.NET project templates can generate a great deal of starter code
(master pages, content pages, script libraries, a login page, etc.), this book will opt to use the blank web site
template. however, after you have read the ASP.NET chapters of this text, make sure you create a new ASP.NET
web site project and examine this starter code first hand.

In stark contrast, the Visual Studio ASP.NET web site project templates (found under the File ➤ New
Web Site menu option) hide the *.designer.cs file in favor of an in-memory partial class. Moreover, ASP.
NET web site projects support a number of specially named folders, such as App_Code. Within this folder,
you can place any C# (or VB) code files that are not directly mapped to your web pages, and the runtime
compiler will dynamically compile them as required. This is a great simplification to the normal act of
building a dedicated .NET code library and referencing it in new projects.

On a related note, a web site project can be pushed as-is to a production web server without the need to
precompile the site, as you would need to do with an ASP.NET web application.

In this book, we’ll make use of ASP.NET web site project types because they do offer some
simplifications to the process of building web applications under the .NET platform. However, regardless of
which approach you take, you will have access to the same overall programming model.

Enabling C# 6 For ASP.NET Web Sites
By default, ASP.NET web sites don’t have C# 6 enabled (Web Forms projects have C# enabled in the default
project template). To enable the new C# 6 language features, you have to install the CodeDom Providers
NuGet package. To install this for web sites, right-click the web site name in Solution Explorer, select
Manage NuGet Packages, and search for CodeDom. This will bring up Microsoft.CodeDom.Providers.
DotNetCompilerPlatform. Click Install.

The ASP.NET Web Site Directory Structure
When you create a new ASP.NET web site project, your project may contain any number of specifically
named subdirectories, each of which has a special meaning to the ASP.NET runtime. Table 31-2 documents
these special subdirectories.

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1418

If you are interested in adding any of these known subfolders to your current web application, you may
do so explicitly using the Website ➤ Add ASP.NET Folder menu option. However, in many cases, the IDE
will automatically do so as you naturally insert related files into your site. For example, inserting a new class
file into your project will automatically add an App_Code folder to your directory structure if one does not
currently exist.

Referencing Assemblies
Although the web site templates do generate an *.sln file to load your *.aspx files into the IDE, there is no
longer a related *.csproj file. However, an ASP.NET web application project records all external assemblies
within *.csproj. So where are the external assemblies recorded under ASP.NET?

As you have seen, when you reference a private assembly, Visual Studio will automatically create a \bin
directory within your directory structure to store a local copy of the binary. When your code base makes use
of types within these code libraries, they are automatically loaded on demand.

If you reference a shared assembly located in the Global Assembly Cache, Visual Studio will automatically
insert a Web.config file into your current web solution (if one is not currently in place) and record the external
reference within the <assemblies> element. For example, if you again activate the Website ➤ Add Reference
menu option and this time select a shared assembly (such as System.Security.dll), you will find that your
Web.config file has been updated as follows:

<assemblies>
 <add assembly="System.Security, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/>
</assemblies>

Table 31-2. Special ASP.NET Subdirectories

Subfolder Meaning in Life

App_Browsers Folder for browser definition files that are used to identify individual browsers
and determine their capabilities.

App_Code Folder for source code for components or classes that you want to compile as
part of your application. ASP.NET compiles the code in this folder when pages
are requested. Code in the App_Code folder is automatically accessible by your
application.

App_Data Folder for storing Access *.mdb files, SQL Express *.mdf files, XML files, or
other data stores.

App_GlobalResources Folder for *.resx files that are accessed programmatically from application
code.

App_LocalResources Folder for *.resx files that are bound to a specific page.

App_Themes Folder that contains a collection of files that define the appearance of Web
Forms pages and controls.

App_WebReferences Folder for proxy classes, schemas, and other files associated with using a web
service in your application.

Bin Folder for compiled private assemblies (*.dll files). Assemblies in the Bin
folder are automatically referenced by your application.

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1419

As you can see, each assembly is described using the same information required for a dynamic load via
the Assembly.Load() method (see Chapter 15).

The Role of the App_Code Folder
The App_Code folder is used to store source code files that are not directly tied to a specific web page (such as
a code-behind file) but are to be compiled for use by your web site. Code within the App_Code folder will be
automatically compiled on the fly on an as-needed basis. After this point, the assembly is accessible to any
other code in the web site. To this end, the App_Code folder is much like the Bin folder, except that you can
store source code in it instead of compiled code. The major benefit of this approach is that it is possible to
define custom types for your web application without having to compile them independently.

A single App_Code folder can contain code files from multiple languages. At runtime, the appropriate
compiler kicks in to generate the assembly in question. If you would rather partition your code, however, you
can define multiple subdirectories that are used to hold any number of managed code files (*.vb, *.cs, etc.).

For example, assume you have added an App_Code folder to the root directory of a web site
application that has two subfolders, MyCSharpCode and MyVbNetCode, which contain language-specific
files. After you have done so, you can update your Web.config file to specify these subdirectories using a
<codeSubDirectories> element nested within the <configuration> element, like so:

<compilation debug="true" strict="false" explicit="true">
 <codeSubDirectories>
 <add directoryName="MyCSharpCode" />
 <add directoryName="MyVbNetCode" />
 </codeSubDirectories>
</compilation>

 ■ Note The App_Code directory will also be used to contain files that are not language files but are useful
nonetheless (*.xsd files, *.wsdl files, etc.).

Beyond Bin and App_Code, the App_Data and App_Themes folders are two additional special
subdirectories that you should be familiar with, both of which will be detailed in the next several chapters.
As always, consult the .NET Framework 4.6 SDK documentation for full details on the remaining ASP.NET
subdirectories if you require further information.

The Inheritance Chain of the Page Type
All .NET web pages eventually derive from System.Web.UI.Page. Like any base class, this type provides
a polymorphic interface to all derived types. However, the Page type is not the only member in your
inheritance hierarchy. If you were to locate the System.Web.UI.Page class (within the System.Web.dll
assembly) using the Visual Studio object browser, you would find that Page is-a TemplateControl which is-a
Control, which is-an Object (see Figure 31-20).

http://dx.doi.org/10.1007/978-1-4842-1332-2_15

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1420

Each of these base classes brings a good deal of functionality to each and every *.aspx file. For the
majority of your projects, you will make use of the members defined within the Page and Control parent
classes. The functionality gained from the System. Web.UI.TemplateControl class is only of interest if you
are building custom Web Form controls or interacting with the rendering process.

The first parent class of interest is Page itself. Here you will find numerous properties that enable you to
interact with various web primitives such as application and session variables, the HTTP request/response
support, and so forth. Table 31-3 describes some (but by no means all) of the core properties.

Figure 31-20. The inheritance chain of Page

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1421

Interacting with the Incoming HTTP Request
As you saw earlier in this chapter, the basic flow of a web application begins with a client requesting a web
page, possibly filling in user information, and clicking a “Submit button” to post back the HTML form data
to a given web page for processing. In most cases, the opening tag of the form statement specifies an action
attribute and a method attribute that indicates the file on the web server that will be sent the data in the
various HTML widgets, as well as the method of sending this data (GET or POST).

<form name="defaultPage" id="defaultPage"
 action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">
...
</form>

All ASP.NET pages support the System.Web.UI.Page.Request property, which provides access to an
instance of the HttpRequest class type (see Table 31-4 for some common members of this class).

Table 31-3. Select Properties of the Page Type

Property Meaning in Life

Application Allows you to interact with data that can be accessed across the entire web site for
all users

Cache Allows you to interact with the cache object for the current web site

ClientTarget Allows you to specify how this page should render itself based on the requesting
browser

IsPostBack Gets a value indicating whether the page is being loaded in response to a client
postback or whether it is being loaded and accessed for the first time

MasterPageFile Establishes the master page for the current page

Request Provides access to the current HTTP request

Response Allows you to interact with the outgoing HTTP response

Server Provides access to the HttpServerUtility object, which contains various server-
side helper functions

Session Allows you to interact with the session data for the current caller

Theme Gets or sets the name of the theme used for the current page

Trace Provides access to a TraceContext object, which allows you to log custom
messages during debugging sessions

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1422

In addition to these properties, the HttpRequest type has a number of useful methods, including the
following:

•	 MapPath(): Maps the virtual path in the requested URL to a physical path on the
server for the current request.

•	 SaveAs: Saves details of the current HTTP request to a file on the web server, which
can prove helpful for debugging purposes.

•	 ValidateInput(): If the validation feature is enabled via the Validate attribute of
the Page directive, this method can be called to check all user input data (including
cookie data) against a predefined list of potentially dangerous input data.

Obtaining Browser Statistics
The first interesting aspect of the HttpRequest type is the Browser property, which provides access to an
underlying HttpBrowserCapabilities object. HttpBrowserCapabilities, in turn, exposes numerous
members that allow you to programmatically investigate statistics regarding the browser that sent the
incoming HTTP request.

Create a new ASP.NET empty web site (named FunWithPageMembers) by selecting the File ➤ New Web
Site menu option. You will see a screen similar to Figure 31-21.

Table 31-4. Members of the HttpRequest Class

Member Meaning in Life

ApplicationPath Gets the ASP.NET application’s virtual application root path on the server

Browser Provides information about the capabilities of the client browser

Cookies Gets a collection of cookies sent by the client browser

FilePath Indicates the virtual path of the current request

Form Gets a collection of HTTP form variables

Headers Gets a collection of HTTP headers

HttpMethod Indicates the HTTP data transfer method used by the client (GET, POST)

IsSecureConnection Indicates whether the HTTP connection is secure (i.e., HTTPS)

QueryString Gets the collection of HTTP query string variables

RawUrl Gets the current request’s raw URL

RequestType Indicates the HTTP data transfer method used by the client (GET, POST)

ServerVariables Gets a collection of web server variables

UserHostAddress Gets the IP host address of the remote client

UserHostName Gets the DNS name of the remote client

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1423

Notice in Figure 31-21 that you are able to select the location of your new site. If you select File System,
your content files will be placed within a local directory and pages will be served via IIS Express. If you select
FTP or HTTP, your site will be hosted within a new virtual directory maintained by IIS. For this example, it
makes no difference which option you select, but for simplicity I suggest selecting the File System option.

If you select a directory that already has a web site in it (or any files, for that matter), you will be
prompted to enter a new name (which creates a new directory) via the dialog shown in Figure 31-22.

Figure 31-21. Creating a new, blank web site

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1424

Once you have your site set up, insert a new Web Forms file into your project using the Website ➤ Add
New Item menu option. Select Visual C# in the left rail, and name the file Default.aspx. Your first task is
to build a UI that allows users to click a Button web control (named btnGetBrowserStats) to view various
statistics about the calling browser. These statistics will be generated dynamically and attached to a Label
type (named lblOutput). Add these two controls to the web page designer anywhere to your liking. Next,
handle the Click event for the button by adding the OnClick attribute in the source view, and naming the
method btnGetBrowserStats. Your markup should look like this:

<strong style="font-weight: 700">Basic Request / Response Info

<asp:Button ID="btnGetBrowserStats" runat="server"
 OnClick="btnGetBrowserStats_Click" Text="Get Stats" />

<asp:Label ID="lblOutput" runat="server"></asp:Label>

In the code-behind for the Web Forms page, implement the handler as shown here (note the use of
string interpolation, which you learned earlier in this book):

protected void btnGetBrowserStats_Click(object sender, EventArgs e)
{
 string theInfo = "";
 theInfo += $"Is the client AOL? {Request.Browser.AOL}";
 theInfo += $"Does the client support ActiveX? {Request.Browser.ActiveXControls}";
 theInfo += $"Is the client a Beta? {Request.Browser.Beta}";
 theInfo += $"Does the client support Java Applets? {Request.Browser.JavaApplets}";
 theInfo += $"Does the client support Cookies? {Request.Browser.Cookies}";
 theInfo += $"Does the client support VBScript? {Request.Browser.VBScript}";
 lblOutput.Text = theInfo;
}

Figure 31-22. Specifying the name for the new, blank web site

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1425

Here you are testing for a number of browser capabilities. As you would guess, it is (very) helpful to
discover a browser’s support for ActiveX controls, Java applets, and client-side VBScript code. If the calling
browser does not support a given web technology, your *.aspx page will be able to take an alternative
course of action.

Access to Incoming Form Data
Other aspects of the HttpRequest type are the Form and QueryString properties. These two properties
allow you to examine the incoming form data using name/value pairs. While you could make use of the
HttpRequest.Form and HttpRequest.QueryString properties to access client-supplied form data on the
web server, ASP.NET provides a more elegant, object-oriented approach. Given that ASP.NET supplies you
with server-side web controls, you are able to treat HTML UI elements as true objects. Therefore, rather than
obtaining the value within a text box, as in

protected void btnGetFormData_Click(object sender, System.EventArgs e)
{
 // Get value for a widget with ID txtFirstName.
 string firstName = Request.Form("txtFirstName");
 // Use this value in your page...
}

you can simply ask the server-side widget directly via the Text property for use in your program, like so:

protected void btnGetFormData_Click(object sender, System.EventArgs e)
{
 // Get value for a widget with ID txtFirstName.
 string firstName = txtFirstName.Text;
 // Use this value in your page...
}

To show this, add a TextBox and Button to your form. Set the Id for the TextBox to txtFirstName
and the Id for the Button to btnGetFormData. Add the OnClick attribute, and set the value to
btnGetFormData_OnClick, as follows:

<label>First Name</label>
<asp:TextBox runat="server" Id="txtFirstName"/>
<asp:Button runat="server" Id="btnGetFormData"
 OnClick="btnGetFormData_Click" Text="Get First Name"/>

Implement the btnGetFormData_Click event hander as shown above. Run the app, enter your name in
the TextBox, and click the Get First Name button. You will see the name you entered in the Label.

Not only does this approach lend itself to solid OO principles, but also you do not need to concern
yourself with how the form data was submitted (GET or POST) before obtaining the values. Furthermore,
working with the widget directly is much more type safe, given that typing errors are discovered at compile
time rather than runtime. Of course, this is not to say that you will never need to make use of the Form or
QueryString property in ASP.NET; rather, the need to do so has greatly diminished and is usually optional.

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1426

The IsPostBack Property
Another very important member of Page is the IsPostBack property. Recall that “postback” refers to a web
page posting back to the same URL at the web server. Given this definition, understand that the IsPostBack
property will return true if the current HTTP request has been sent by a user currently in session, and false
if this is the user’s first interaction with the page.

Typically, the need to determine whether the current HTTP request is indeed a postback is most helpful
when you need to execute a block of code only when the user first accesses a given page. For example,
you might want to populate an ADO.NET DataSet when the user first accesses an *.aspx file and cache
the object for later use. When the caller returns to the page, you can avoid the need to hit the database
unnecessarily (of course, some pages might require that the DataSet always be updated upon each request,
but that is another issue). Assuming your *.aspx file has handled the page’s Load event (described in detail
later in this chapter), you could programmatically test for postback conditions as follows:

protected void Page_Load(object sender, EventArgs e)
{
 // Fill Data only the very first time
 // the user comes to this page.
 if (!IsPostBack)
 {
 // Populate Data and cache it!
 }
 // Use cached Data.
}

Interacting with the Outgoing HTTP Response
Now that you have a better understanding of how the Page type allows you to interact with the incoming
HTTP request, the next step is to see how to interact with the outgoing HTTP response. In ASP.NET, the
Response property of the Page class provides access to an instance of the HttpResponse type. This type
defines a number of properties that allow you to format the HTTP response sent back to the client browser.
Table 31-5 lists some core properties.

Table 31-5. Properties of the HttpResponse Type

Property Meaning in Life

Cache Returns the caching semantics of the web page (see Chapter 34)

ContentEncoding Gets or sets the HTTP character set of the output stream

ContentType Gets or sets the HTTP MIME type of the output stream

Cookies Gets the HttpCookie collection that will be returned to the browser

Output Enables text output to the outgoing HTTP content body

OutputStream Enables binary output to the outgoing HTTP content body

StatusCode Gets or sets the HTTP status code of output returned to the client

StatusDescription Gets or sets the HTTP status string of output returned to the client

SuppressContent Gets or sets a value indicating that HTTP content will not be sent to the client

http://dx.doi.org/10.1007/978-1-4842-1332-2_34

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1427

Also, consider the partial list of methods supported by the HttpResponse type, described in Table 31-6.

Emitting HTML Content
Perhaps the most well-known aspect of the HttpResponse type is the ability to write content directly to the
HTTP output stream. The HttpResponse.Write() method allows you to pass in any HTML tags and/or
text literals. The HttpResponse.WriteFile() method takes this functionality one step further, in that you
can specify the name of a physical file on the web server whose contents should be rendered to the output
stream (this is quite helpful to quickly emit the contents of an existing *.htm file).

To illustrate, add another Button to your current *.aspx file like this:

<asp:Button runat="server" Id="btnHttpResponse"
 OnClick="btnHttpResponse_Click" Text="Get First Name"/>

Now implement the server-side Click event handler, like so:

protected void btnHttpResponse_Click(object sender, EventArgs e)
{
 Response.Write("My name is:
");
 Response.Write(this.ToString());
}

The role of this helper function (which you can assume is called by some server-side event handler) is
quite simple. Again, while you can always take this old-school approach and render HTML tags and content
using the Write() method, this approach is far less common under ASP.NET than with classic ASP. The
reason is (once again) due to the advent of server-side web controls. Thus, if you want to render a block of
textual data to the browser, your task is as simple as assigning a string to the Text property of a Label widget.

Redirecting Users
Another aspect of the HttpResponse type is the ability to redirect the user to a new URL, like so:

protected void btnWasteTime_Click(object sender, EventArgs e)
{
 Response.Redirect("http://www.facebook.com");
}

Table 31-6. Methods of the HttpResponse Type

Method Meaning in Life

Clear() Clears all headers and content output from the buffer stream

End() Sends all currently buffered output to the client and then closes the socket
connection

Flush() Sends all currently buffered output to the client

Redirect() Redirects a client to a new URL

Write() Writes values to an HTTP output content stream

WriteFile() Writes a file directly to an HTTP content output stream

http://www.facebook.com/

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1428

If this event handler is invoked via a client-side postback, the user will automatically be redirected to the
specified URL.

 ■ Note The HttpResponse.Redirect() method will always entail a trip back to the client browser.
If you simply want to transfer control to an *.aspx file in the same virtual directory, the HttpServerUtility.
Transfer() method, accessed via the inherited Server property, is more efficient.

So much for investigating the functionality of System.Web.UI.Page. You will examine the role of the
System.Web.UI.Control base class in the next chapter. Next up, let’s examine the life and times of a Page-
derived object.

 ■ Source Code The FunWithPageMembers web site is included in the Chapter 31 subdirectory.

The Life Cycle of an ASP.NET Web Page
Every Web Forms page has a fixed life cycle. When the ASP.NET runtime receives an incoming request for a
given *.aspx file, the associated System.Web.UI.Page-derived type is allocated into memory using the type’s
default constructor. After this point, the framework will automatically fire a series of events. By default, the
Load event is automatically accounted for, where you can add your custom code.

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write("Load event fired!");
 }
}

Beyond the Load event, a given Page is able to intercept any of the core events in Table 31-7, which are
listed in the order in which they are encountered (consult the .NET Framework 4.6 SDK documentation for
details on all possible events that may fire during a page’s lifetime).

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1429

When a C# programmer needs to handle events beyond Load, you might be surprised to find that there
is no IDE support to do so! Rather, you must manually author a method in your code file, taking the name
Page_NameOfEvent. For example, here is how you can handle the Unload event:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write("Load event fired!");
 }

 protected void Page_Unload(object sender, EventArgs e)
 {
 // No longer possible to emit data to the HTTP
 // response, so we will write to a local file.
 System.IO.File.WriteAllText(@"C:\MyLog.txt", "Page unloading!");
 }
}

 ■ Note Each event of the Page type works in conjunction with the System.EventHandler delegate; therefore,
the subroutines that handle these events always take an Object as the first parameter and an EventArgs as
the second parameter.

Table 31-7. Select Events of the Page Type

Event Meaning in Life

PreInit The framework uses this event to allocate any web controls, apply themes,
establish the master page, and set user profiles. You may intercept this event to
customize the process.

Init The framework uses this event to set the properties of web controls to their
previous values via postback or view state data.

Load When this event fires, the page and its controls are fully initialized, and their
previous values are restored. At this point, it is safe to interact with each web widget.

“Event that triggered
the postback”

There is, of course, no event of this name. This “event” simply refers to whichever
event caused the browser to perform the postback to the web server (such as a
Button click).

PreRender All control data binding and UI configuration has occurred and the controls are
ready to render their data into the outbound HTTP response.

Unload The page and its controls have finished the rendering process, and the page
object is about to be destroyed. At this point, it is a runtime error to interact with
the outgoing HTTP response. You may, however, capture this event to perform
any page-level cleanup (close file or database connections, perform any form of
logging activity, dispose of objects, etc.).

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1430

The Role of the AutoEventWireup Attribute
When you want to handle events for your page, you need to update your <script> block or code-behind
file with an appropriate event handler. However, if you examine the <%@Page%> directive, you will notice a
specific attribute named AutoEventWireUp, which, by default, is set to true.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default" %>

With this default behavior, each page-level event handler will automatically be handled if you enter
the appropriately named method. However, if you disable AutoPageWireUp by setting this attribute to
false, as in

<%@ Page Language="C#" AutoEventWireup="false"
 CodeFile="Default.aspx.cs" Inherits="_Default" %>

the page-level events will no longer be captured. As its name suggests, this attribute (when enabled) will
generate the necessary event riggings within the autogenerated partial class described earlier in this chapter.
Even if you disable AutoEventWireup, you can still process page-level events by making use of C# event-
handling logic, like so:

public _Default()
{
 // Explicitly hook into the Load and Unload events.
 this.Load += Page_Load;
 this.Unload += Page_Unload;
}

As you might suspect, you will usually leave AutoEventWireup enabled.

The Error Event
Another event that may occur during your page’s life cycle is Error. This event will be fired if a method on
the Page-derived type triggered an exception that was not explicitly handled. Assume that you have handled
the Click event for a given Button on your page, and within the event handler (named btnGetFile_Click),
you attempt to write out the contents of a local file to the HTTP response.

Also assume you have failed to test for the presence of this file via standard structured exception
handling. If you have rigged up the page’s Error event in the default constructor, you have one final chance
to deal with the problem on this page before the end user finds an ugly error. Consider the following code:

public partial class _Default : System.Web.UI.Page
{
 void Page_Error(object sender, EventArgs e)
 {
 Response.Clear();
 Response.Write("I am sorry...I can't find a required file.
");
 Response.Write($"The error was: { Server.GetLastError().Message }");
 Server.ClearError();
 }

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1431

 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write("Load event fired!");
 }

 protected void Page_Unload(object sender, EventArgs e)
 {
 // No longer possible to emit data to the HTTP
 // response at this point, so we will write to a local file.
 System.IO.File.WriteAllText(@"C:\MyLog.txt", "Page unloading!");
 }

 protected void btnPostback_Click(object sender, EventArgs e)
 {
 // Nothing happens here. This is just to ensure a
 // postback to the page.
 }

 protected void btnTriggerError_Click(object sender, EventArgs e)
 {
 System.IO.File.ReadAllText(@"C:\IDontExist.txt");
 }
}

Notice that your Error event handler begins by clearing out any content currently within the HTTP response
and emits a generic error message. If you want to gain access to the specific System.Exception object, you may do
so using the HttpServerUtility.GetLastError() method exposed by the inherited Server property.

Exception e = Server.GetLastError();

Finally, note that before exiting this generic error handler, you are explicitly calling the
HttpServerUtility.ClearError() method via the Server property. This is required because it informs the
runtime that you have dealt with the issue at hand and require no further processing. If you forget to do so,
the end user will be presented with the runtime’s error page.

At this point, you should feel confident with the composition of an ASP.NET Page type. Now that you
have such a foundation, you can turn your attention to the role of Web Forms controls, themes, and master
pages, all of which are the subject of remaining chapters. To wrap up this chapter, however, let’s examine the
role of the Web.config file.

 ■ Source Code The PageLifeCycle web site is included in the Chapter 31 subdirectory.

The Role of the Web.config File
By default, all C# Web Forms applications created with Visual Studio are automatically provided with a
Web.config file. However, if you ever need to manually insert a Web.config file into your site (e.g., when
you are working with the single-page model and have not created a web solution), you may do so using the
Website ➤ Add New Item menu option. In either case, within this scope of a Web.config file you are able to
add settings that control how your web application will function at runtime.

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1432

During your examination of .NET assemblies (in Chapter 14) you learned that client applications
can leverage an XML-based configuration file to instruct the CLR how it should handle binding requests,
assembly probing, and other runtime details. The same holds true for Web Forms applications, with
the notable exception that web-centric configuration files are always named Web.config (unlike *.exe
configuration files, which are named based on the related client executable).

The full structure of a Web.config file is rather verbose. However, Table 31-8 outlines some of the more
interesting subelements that can be found within a Web.config file.

A Web.config file may contain additional subelements above and beyond the set presented in Table 31-8.
The vast majority of these items are security related, while the remaining items are useful only during advanced
ASP.NET scenarios, such as creating custom HTTP headers or custom HTTP modules (topics that are not
covered here).

The ASP.NET Web Site Administration Utility
Although you are always free to modify the content of a Web.config file directly using Visual Studio, Web
Forms projects can make use of a handy web-based editor that will allow you to graphically edit numerous
elements and attributes of your project’s Web.config file. To launch this tool, activate the Website ➤ ASP.
NET Configuration menu option.

If you click the tabs located on the top of the page, you will quickly notice that most of this tool’s
functionality is used to establish security settings for your web site. However, this tool also makes it possible
to add settings to your <appSettings> element, define debugging and tracing settings, and establish a
default error page.

Table 31-8. Select Elements of a Web.config File

Element Meaning in Life

<appSettings> This element is used to establish custom name/value pairs that can
be programmatically read in memory for use by your pages using the
ConfigurationManager type.

<authentication> This security-related element is used to define the authentication mode for this
web application.

<authorization> This is another security-centric element used to define which users can access
which resources on the web server.

<connectionStrings> This element is used to hold external connection strings used within this web site.

<customErrors> This element is used to tell the runtime exactly how to display errors that occur
during the functioning of the web application.

<globalization> This element is used to configure the globalization settings for this web
application.

<namespaces> This element documents all of the namespaces to include if your web application
has been precompiled using the new aspnet_compiler.exe command-line tool.

<sessionState> This element is used to control how and where session state data will be stored by
the .NET runtime.

<trace> This element is used to enable (or disable) tracing support for this web
application.

http://dx.doi.org/10.1007/978-1-4842-1332-2_14

ChAPTEr 31 ■ INTroduCINg ASP.NET WEb ForMS

1433

You’ll see more of this tool in action where necessary; however, do be aware that this utility will not
allow you to add all possible settings to a Web.config file. There will most certainly be times when you will
need to manually update this file using your text editor of choice.

Summary
Building web applications requires a different frame of mind than that used to assemble traditional desktop
applications. In this chapter, you began with a quick and painless review of some core web topics, including
HTML, HTTP, the role of client-side scripting, and server-side scripts using classic ASP. The bulk of this
chapter was spent examining the architecture of an ASP.NET page. As you have seen, each *.aspx file in your
project has an associated System.Web.UI.Page-derived class. Using this OO approach, ASP.NET allows you
to build more reusable and OO-aware systems.

After examining some of the core functionality of a page’s inheritance chain, this chapter then discussed
how your pages are ultimately compiled into a valid .NET assembly. You wrapped up this chapter by
exploring the role of the Web.config file and overviewed the ASP.NET Web Site Administration tool.

1435

Chapter 32

ASP.NET Web Controls, Master
Pages, and Themes

The previous chapter concentrated on the general composition of an Web Forms page and the role of the
Page class. This chapter will dive into the details of the web controls that make up a page’s user interface.
After examining the overall nature of an Web Forms control, you will learn how to use several UI elements,
including validation controls and various data-binding techniques.

The good portion of this chapter will examine the role of master pages and show how they provide a
simplified way to establish a common UI skeleton that will be replicated across the pages in your web site.
Closely related to the topic of master pages is the use of site navigation controls (and a related *.sitemap
file) in order to define the navigational structure of a multipage site via a server-side XML file.

To wrap things up, you will learn about the role of Web Forms themes. Conceptually, themes serve the
same purpose as a cascading style sheet (CSS); however, Web Forms themes are applied on the web server
(as opposed to within the client-side browser) and, therefore, have access to server-side resources.

Understanding the Nature of Web Controls
A major benefit of Web Forms is the ability to assemble the UI of your pages using the types defined in the
System.Web.UI.WebControls namespace. As you have seen, these controls (which go by the names server
controls, web controls, or Web Form controls) are extremely helpful in that they automatically generate
the necessary HTML for the requesting browser and expose a set of events that may be processed on the
web server. Furthermore, because each Web Forms control has a corresponding class in the System.Web.
UI.WebControls namespace, it can be manipulated in an object-oriented manner.

When you configure the properties of a web control using the Visual Studio Properties window, your
edits are recorded in the opening control tag of a given element in the *.aspx file as a series of name/value
pairs. Thus, if you add a new TextBox to the designer of a given *.aspx file and change the ID, BorderStyle,
BorderWidth, BackColor, and Text properties, the opening <asp:TextBox> tag is modified accordingly
(however, note that the Text value becomes the inner text of the TextBox scope).

<asp:TextBox ID="txtNameTextBox" runat="server" BackColor="#C0FFC0"
 BorderStyle="Dotted" BorderWidth="3px">Enter Your Name</asp:TextBox>

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1436

Given that the declaration of a web control eventually becomes a member variable from the System.
Web.UI.WebControls namespace (via the dynamic compilation cycle mentioned in Chapter 31), you can
interact with the members of this type within a server-side <script> block or more commonly via the page’s
code-behind file. Thus, if you were to add a new Button control to an*.aspx file, you could handle the Click
event and write a server-side handler that changes the background color of the TextBox, like so:

partial class _Default : System.Web.UI.Page
{
 protected void btnChangeTextBoxColor_Click(object sender, EventArgs e)
 {
 // Change color of text box object in code.
 this.txtNameTextBox.BackColor = System.Drawing.Color.DarkBlue;
 }
}

All Web Forms controls ultimately derive from a common base class named System.Web.
UI.WebControls.WebControl. In turn, WebControl derives from System.Web.UI.Control (which derives
from System.Object). Control and WebControl each define a number of properties common to all server-
side controls. Before you examine the inherited functionality, let’s formalize what it means to handle a
server-side event.

Understanding Server-Side Event Handling
Given the current state of the World Wide Web, it is impossible to avoid the fundamental nature of
browser/web server interaction. Whenever these two entities communicate, there is always an underlying,
stateless HTTP request-and-response cycle. While Web Forms server controls do a great deal to shield you
from the details of the raw HTTP protocol, always remember that treating the Web as an event-driven entity
is just a magnificent smoke-and-mirrors show provided by the .NET platform, and it is not identical to the
event-driven model of a Windows-based desktop GUI framework such as WPF.

For example, although the WPF-centric System.Windows.Controls namespace and the Web Forms
System.Web.UI.WebControls namespace both define classes with the same simple names (Button, TextBox,
Label, and so on) they do not expose an identical set of properties, methods, or events. For example, there
is no way to handle a server-side MouseMove event when the user moves the cursor over a Web Form Button
control.

The bottom line is that a given Web Forms control will expose a limited set of events, all of which
ultimately result in a postback to the web server. Any necessary client-side event processing will require you
to author blurbs of client-side JavaScript/VBScript script code to be processed by the requesting browser’s
scripting engine. Given that Web Forms is primarily a server-side technology, I will not be addressing the
topic of authoring client-side scripts.

 ■ Note handling an event for a given web control using Visual Studio can be done in an identical manner as
doing so for a Windows gUI control. Simply select the widget from the designer and click the lightning bolt icon
on the properties window.

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1437

The AutoPostBack Property
It is also worth pointing out that many of the Web Forms controls support a property named AutoPostBack
(most notably, the CheckBox, RadioButton, and TextBox controls, as well as any widget that derives from the
abstract ListControl type). By default, this property is set to false, which disables an immediate postback
to the server (even if you have indeed rigged up the event in the code-behind file). In most cases, this is the
exact behavior you require, given that UI elements, such as check boxes, typically don’t require postback
functionality. In other words, you don’t want to post back to the server immediately after the user checks
or unchecks a check box, as the page object can obtain the state of the widget within a more natural Button
Click event handler.

However, if you want to cause any of these widgets to post back to a server-side event handler
immediately, simply set the value of AutoPostBack to true. This technique can be helpful if you want to
have the state of one widget automatically populate another value within another widget on the same page.
To illustrate, assume you have a web page that contains a single TextBox (named txtAutoPostback) and a
single ListBox control (named lstTextBoxData). Here is the relevant markup:

<form id="form1" runat="server">
 <asp:TextBox ID="txtAutoPostback" runat="server"></asp:TextBox>

 <asp:ListBox ID="lstTextBoxData" runat="server"></asp:ListBox>
</form>

Now, if you were to handle the TextChanged event of the TextBox, the server-side event handler could
attempt to populate the ListBox with the current value in the TextBox, like so:

partial class _Default : System.Web.UI.Page
{
 protected void txtAutoPostback_TextChanged(object sender, EventArgs e)
 {
 lstTextBoxData.Items.Add(txtAutoPostback.Text);
 }
}

If you run the application as is, you will find that as you type in the TextBox, nothing happens.
Furthermore, if you type in the TextBox and tab to the next control, nothing happens. The reason is that

the AutoPostBack property of the TextBox is set to false by default. However, if you set this property to true,
as in

<asp:TextBox ID="txtAutoPostback" runat="server"
 AutoPostBack="true" ... >
</asp:TextBox>

you will find that when you tab away from the TextBox (or press the Enter key), the ListBox is automatically
populated with the current value in the TextBox. To be sure, beyond the need to populate the items of
one widget based on the value of another widget, you won’t typically need to alter the state of a widget’s
AutoPostBack property (and even then, sometimes this can be accomplished purely in client script,
removing the need for server interaction at all).

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1438

The Control and WebControl Base Classes
The System.Web.UI.Control base class defines various properties, methods, and events that provide the
ability to interact with core (typically non-GUI) aspects of a web control. Table 32-1 documents some, but
not all, members of interest.

Table 32-1. Select Members of System.Web.UI.Control

Member Meaning in Life

Controls This property gets a ControlCollection object that represents the child controls within
the current control.

DataBind() This method binds a data source to the invoked server control and all of its child
controls.

EnableTheming This property establishes whether the control supports theme functionality
(the default is true).

HasControls() This method determines whether the server control contains any child controls.

ID This property gets or sets the programmatic identifier assigned to the server control.

Page This property gets a reference to the Page instance that contains the server control.

Parent This property gets a reference to the server control’s parent control in the page control
hierarchy.

SkinID This property gets or sets the skin to apply to the control, which allows you to set the
look and feel using server-side resources.

Visible This property gets or sets a value that indicates whether a server control is rendered as
a UI element on the page.

Enumerating Contained Controls
The first aspect of System.Web.UI.Control that you will examine is the fact that all web controls (including
Page itself) inherit a custom controls collection (accessed via the Controls property). Much like in a
Windows Forms application, the Controls property provides access to a strongly typed collection of
WebControl-derived types. Like any .NET collection, you have the ability to add, insert, and remove items
dynamically at runtime.

While it is technically possible to add web controls directly to a Page-derived type, it is easier (and more
robust) to make use of a Panel control. The Panel class represents a container of widgets that may or may
not be visible to the end user (based on the value of its Visible and BorderStyle properties).

To illustrate, create a new empty web site named DynamicCtrls and add a new Web Forms to your
project. Using the Visual Studio page designer, add a Panel control (named myPanel) that contains a
TextBox, Button, and HyperLink widget named whatever you choose (be aware that the designer requires
that you drag internal items within the UI of the Panel type). Next, place a Label widget outside the scope of
the Panel (named lblControlInfo) to hold the rendered output. Here is one possible HTML description:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Dynamic Control Test</title>
</head>

http://www.w3.org/1999/xhtml

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1439

<body>
 <form id="form1" runat="server">
 <div>
 <hr />
 <h1>Dynamic Controls</h1>
 <asp:Label ID="lblTextBoxText" runat="server"></asp:Label>
 <hr />
 </div>
 <!-- The Panel has three contained controls -->
 <asp:Panel ID="myPanel" runat="server" Width="200px"
 BorderColor="Black" BorderStyle="Solid" >
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Button"/>

 <asp:HyperLink ID="HyperLink1" runat="server">HyperLink
 </asp:HyperLink>
 </asp:Panel>

 <asp:Label ID="lblControlInfo" runat="server"></asp:Label>
 </form>
</body>
</html>

With this markup, your page designer will look something like Figure 32-1.

Figure 32-1. The UI of the Dynamic Controls web page

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1440

Assume in the Page_Load() event that you want to obtain details regarding the controls contained
within the Panel and assign this information to the Label control (named lblControlInfo). Consider the
following C# code:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, System.EventArgs e)
 {
 ListControlsInPanel();
 }

 private void ListControlsInPanel()
 {
 var theInfo = "";
 theInfo = $"Does the panel have controls? {myPanel.HasControls()}
";
 // Get all controls in the panel.
 foreach (Control c in myPanel.Controls)
 {
 if (!object.ReferenceEquals(c.GetType(), typeof(System.Web.UI.LiteralControl)))
 {
 theInfo += "***************************
";
 theInfo += $"Control Name? {c}
";
 theInfo += $"ID? {c.ID}
";
 theInfo += $"Control Visible? {c.Visible}
";
 theInfo += $"ViewState? {c.EnableViewState}
";
 }
 }
 lblControlInfo.Text = theInfo;
 }
}

Here, you iterate over each WebControl maintained on the Panel and perform a check to see whether
the current type is of type System.Web.UI.LiteralControl, and if so, you skip over it. This class is used to
represent literal HTML tags and content (such as
, text literals, etc.). If you do not do this sanity check,
you might be surprised to find many more controls in the scope of the Panel (given the *.aspx declaration
seen previously). Assuming the control is not literal HTML content, you then print out some various
statistics about the widget. Figure 32-2 shows the output.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1441

Figure 32-2. Enumerating controls at runtime

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1442

Dynamically Adding and Removing Controls
Now, what if you want to modify the contents of a Panel at runtime? Let’s update the current page to support
an additional Button (named btnAddWidgets) that dynamically adds three new TextBox controls to the
Panel and another Button (named btnClearPanel) that clears the Panel widget of all controls. The Click
event handlers for each are shown here:

protected void btnClearPanel_Click(object sender, System.EventArgs e)
{
 // Clear all content from the panel, then relist items.
 myPanel.Controls.Clear();
 ListControlsInPanel();
}
protected void btnAddWidgets_Click(object sender, System.EventArgs e)
{
 for (int i = 0; i < 3; i++)
 {
 // Assign an ID so we can get
 // the text value out later
 // using the incoming form data.
 TextBox t = new TextBox {ID = $"newTextBox{i}"};
 myPanel.Controls.Add(t);
 ListControlsInPanel();
 }
}

Notice that you assign a unique ID to each TextBox (e.g., newTextBox0, newTextBox1, and so on). If you
run your page, you should be able to add new items to the Panel control and clear the Panel of all content.

Interacting with Dynamically Created Controls
Now, if you want to obtain the values within these dynamically generated TextBoxes, you can do so in a
variety of ways. First, update your UI with one additional Button (named btnGetTextData), a final Label
control named lblTextBoxData, and handle the Click event for the Button.

To get access to the data within the dynamically created text boxes, you have a few options. One
approach is to loop over each item contained within the incoming HTML form data (accessed via
HttpRequest.Form) and concatenate the textual information to a locally scoped System.String. Once you
have exhausted the collection, assign this string to the Text property of the new Label control, like so:

protected void btnGetTextData_Click(object sender, System.EventArgs e)
{
 string textBoxValues = "";
 for (int i = 0; i < Request.Form.Count; i++)
 {
 textBoxValues += $"{ Request.Form[i]}
";
 }
 lblTextBoxData.Text = textBoxValues;
}

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1443

When you run the application, you will find that you are able to view the content of each text box,
including some rather long (unreadable) string data. This string contains the view state for each control on
the page. You’ll learn about the role of the view state in Chapter 33.

To clean up the output, you could instead pluck out the textual data for your uniquely named items
(newTextBox0, newTextBox1, and newTextBox2). Consider the following update:

protected void btnGetTextData_Click(object sender, System.EventArgs e)
{
 // Get each text box by name.
 string lableData = $"{Request.Form.Get("newTextBox0")}
";
 lableData += $"{Request.Form.Get("newTextBox1")}
";
 lableData += $"{Request.Form.Get("newTextBox2")}
";
 lblTextBoxData.Text = lableData;
}

Using either approach, you will notice that once the request has been processed, the text boxes
disappear. Again, the reason has to do with the stateless nature of HTTP. If you want to maintain these
dynamically created TextBoxes between postbacks, you need to persist these objects using Web Forms state
programming techniques (again, see Chapter 33).

 ■ Source Code the dynamicCtrls web site is included in the Chapter 32 subdirectory.

Functionality of the WebControl Base Class
As you can tell, the Control type provides a number of non–GUI-related behaviors (the controls collection,
autopostback support, etc.). On the other hand, the WebControl base class provides a graphical polymorphic
interface to all web widgets, as suggested in Table 32-2.

Table 32-2. Select Properties of the WebControl Base Class

Property Meaning in Life

BackColor Gets or sets the background color of the web control

BorderColor Gets or sets the border color of the web control

BorderStyle Gets or sets the border style of the web control

BorderWidth Gets or sets the border width of the web control

Enabled Gets or sets a value indicating whether the web control is enabled

CssClass Allows you to assign a class defined within a Cascading Style Sheet to a web widget

Font Gets font information for the web control

ForeColor Gets or sets the foreground color (typically the color of the text) of the web control

Height, Width Get or set the height and width of the web control

TabIndex Gets or sets the tab index of the web control

ToolTip Gets or sets the tool tip for the web control to be displayed when the cursor is over
the control

http://dx.doi.org/10.1007/978-1-4842-1332-2_33
http://dx.doi.org/10.1007/978-1-4842-1332-2_33
http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1444

Almost all of these properties are self-explanatory, so rather than drill through the use of them one by
one, let’s instead check out a number of ASP.NET Web Forms controls in action.

Major Categories of Web Forms Controls
The Web Forms control library can be broken down into several broad categories, all of which can be viewed
within the Visual Studio Toolbox (provided you have an *.aspx page open for design) (see Figure 32-3).

Under the Standard area of the Toolbox, you will find the most frequently used controls, including
Button, Label, TextBox, and ListBox. In addition to these vanilla-flavored UI elements, the Standard area
also lists more exotic web controls, such as Calendar, Wizard, and AdRotator (see Figure 32-4).

Figure 32-3. The categories of Web Forms controls

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1445

Figure 32-4. The standard Web Forms controls

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1446

The Data section is where you can find a set of controls used for data-binding operations, including
the Web Forms Chart control, which allows you to render out graphical chart data (pie charts, line charts)
typically as the result of a data-binding operation (see Figure 32-5).

Figure 32-5. Data-centric Web Forms controls

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1447

The Web Forms validation controls (found in the Validation area of the Toolbox) are very interesting
in that they can be configured to emit back blocks of client-side JavaScript that will test input fields for valid
data. If a validation error occurs, the user will see an error message and will not be allowed to post back to
the web server until the error is corrected.

The Navigation node of the Toolbox is where you will find a small set of controls (Menu, SiteMapPath,
and TreeView), which typically work in conjunction with a *.sitemap file. As briefly mentioned earlier in
this chapter, these navigation controls allow you to describe the structure of a multipage site using XML
descriptions.

The most exotic set of Web Forms controls would have to be the Login controls (see Figure 32-6).

Figure 32-6. Security Web Forms controls

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1448

These controls can radically simplify how to incorporate basic security features (password recovery,
login screens, etc.) into your web applications. In fact, these controls are so powerful, they will even
dynamically create a dedicated database to store credentials (saved under the App_Data folder of your web site)
if you do not already have a specific security database.

 ■ Note the remaining categories of web controls shown in the Visual Studio toolbox (such as Webparts, aJaX
extensions, and dynamic data) are for more specialized programming needs and will not be examined here.

A Brief Word Regarding System.Web.UI.HtmlControls
Truth be told, there are two distinct web control toolkits that ship with Web Forms. In addition to the Web
Forms controls (within the System.Web.UI.WebControls namespace), the base class libraries also provide
the System.Web.UI.HtmlControls control library.

The HTML controls are a collection of types that allow you to make use of traditional HTML controls on
a Web Forms page. However, unlike simple HTML tags, HTML controls are object-oriented entities that can
be configured to run on the server and thus support server-side event handling. Unlike Web Forms controls,
HTML controls are quite simplistic in nature and offer little functionality beyond standard HTML tags
(HtmlButton, HtmlInputControl, HtmlTable, etc.).

The HTML controls can be useful if your team has a clear division between those who build HTML UIs
and .NET developers. HTML folks can make use of their web editor of choice using familiar markup tags
and pass the HTML files to the development team. At this point, the developers can configure these HTML
controls to run as server controls (by right-clicking an HTML widget within Visual Studio). This will allow the
developers to handle server-side events and work with the HTML widget programmatically.

The HTML controls provide a public interface that mimics standard HTML attributes. For example,
to obtain the information within an input area, you make use of the Value property rather than the web
control–centric Text property. Given that the HTML controls are not as feature-rich as the Web Forms
controls, I won’t make further mention of them in this text.

Web Control Documentation
You will get a chance to work with a number of Web Forms controls during the remainder of this book;
however, you should certainly take a moment to search the .NET Framework 4.6 SDK documentation for
the System.Web.UI.WebControls namespace. Here, you will find explanations and code examples for each
member of the namespace (see Figure 32-7).

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1449

Building the Web Forms Cars Web Site
Given that many of the “simple” controls look and feel so close to their Windows GUI counterparts, I won’t
bother to enumerate the details of the basic widgets (Buttons, Labels, TextBoxes, etc.). Rather, let’s build
a new web site that illustrates working with several of the more exotic controls, as well as the Web Forms
master page model and aspects of the data-binding engine. Specifically, this next example will illustrate the
following techniques:

•	 Working with master pages

•	 Working with site map navigation

•	 Working with the GridView control

•	 Working with the Wizard control

To begin, create an empty web site project named AspNetCarsSite. Note that you are not yet creating
a new full ASP.NET web site project because this will add a number of starter files to the mix that we have not
yet examined. For this project, you will add what you need manually.

Working with Web Forms Master Pages
Many web sites provide a consistent look and feel across multiple pages (a common menu navigation
system, common header and footer content, company logo, etc.). A master page is little more than an
Web Forms page that takes a *.master file extension. On their own, master pages are not viewable from a
client-side browser (in fact, the ASP.NET runtime will not serve this flavor of web content). Rather, master
pages define a common UI layout shared by all pages (or a subset of pages) in your site.

Figure 32-7. All Web Forms controls are documented in the .NET Framework 4.6 SDK documentation

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1450

As well, a *.master page will define various content placeholder areas that establish a region of UI real
estate that other *.aspx files may plug into. As you will see, *.aspx files that plug their content into a master
file look and feel a bit different from the *.aspx files you have been examining. Specifically, this flavor of
an *.aspx file is termed a content page. Content pages are *.aspx files that do not define an HTML <form>
element (that is the job of the master page).

However, as far as the end user is concerned, a request is made to a given *.aspx file. On the web server,
the related *.master file and any related *.aspx content pages are blended into a single unified HTML page
declaration.

To illustrate the use of master pages and content pages, begin by inserting a new master page into your
web site via the Website Add New Item menu selection (Figure 32-8 shows the resulting dialog box).

Figure 32-8. Inserting a new *.master file

The initial markup of the MasterPage.master file looks like the following:

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="MasterPage.master.cs"
Inherits="MasterPage" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">

http://www.w3.org/1999/xhtml

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1451

 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

The first point of interest is the new <%@Master%> directive. For the most part, this directive supports the
same attributes as the <%@Page%> directive described in Chapter 31. Like Page types, a master page derives
from a specific base class, which in this case is MasterPage. If you were to open up your related code file, you
would find the following class definition:

public partial class MasterPage : System.Web.UI.MasterPage
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
}

The other point of interest within the markup of the master is the <asp:ContentPlaceHolder>
definition. This region of a master page represents the area of the master that the UI widgets of the related
*.aspx content file may plug into, not the content defined by the master page itself.

If you do intend to plug in an *.aspx file within this region, the scope within the
<asp:ContentPlaceHolder> and </asp:ContentPlaceHolder> tags will typically remain empty. However,
you can populate this area with various web controls that function as a default UI to use in the event that a
given *.aspx file in the site does not supply specific content. For this example, assume that each *.aspx page
in your site will indeed supply custom content and, therefore, your <asp:ContentPlaceHolder> elements
will be empty.

 ■ Note a *.master page may define as many content placeholders as necessary. as well, a single *.master
page may nest additional *.master pages.

You can build a common UI of a *.master file using the same Visual Studio designers used to build
*.aspx files. For this site, you will add a descriptive Label (to serve as a common welcome message), an
AdRotator control (which will randomly display one of two image files), and a TreeView control (to allow the
user to navigate to other areas of the site). Here is my markup after designing my master page via the IDE:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title> </title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>

http://dx.doi.org/10.1007/978-1-4842-1332-2_31
http://www.w3.org/1999/xhtml

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1452

 <form id="form1" runat="server">
 <div>
 <hr />
 <asp:Label ID="Label1" runat="server" Font-Size="XX-Large"
 Text="Welcome to the ASP.NET Cars Super Site!"></asp:Label>
 <asp:AdRotator ID="myAdRotator" runat="server"/>

 <asp:TreeView ID="navigationTree" runat="server">
 </asp:TreeView>
 <hr />
 </div>
 <div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Figure 32-9 shows the design-time view of the current master page (note the display area of your
AdRotator control will be empty for the time being).

Figure 32-9. The *.master file’s shared UI

Feel free to enhance the look of your TreeView control by using the inline editor of the control and
selecting the Auto Format link. As well, feel free to spice up the display of the remaining controls using the
Properties editor. When you are happy with your results, move to the next section.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1453

Configuring the TreeView Control Site Navigation Logic
Web Forms ships with several web controls that allow you to handle site navigation: SiteMapPath, TreeView,
and Menu. As you would expect, these web widgets can be configured in multiple ways. For example, each of
these controls can dynamically generate its nodes via an external XML file (or an XML-based *.sitemap file),
programmatically generate nodes in code, or through markup using the designers of Visual Studio.

Your navigation system will be dynamically populated using a *.sitemap file. The benefit of this approach
is that you can define the overall structure of your web site in an external file and then bind it to a TreeView
(or Menu) control on the fly. This way, if the navigational structure of your web site changes, you simply need to
modify the *.sitemap file and reload the page. To begin, insert a new Web.sitemap file into your project using
the Website ➤ Add New Item menu option to bring up the dialog box shown in Figure 32-10.

Figure 32-10. Inserting a new Web.sitemap file

As you can see, the initial Web.sitemap file defines a topmost item with two subnodes, as follows:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="" description="">
 <siteMapNode url="" title="" description="" />
 <siteMapNode url="" title="" description="" />
 </siteMapNode>
</siteMap>

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1454

If you were to bind this structure to a Menu control, you would find a topmost item with two subitems.
Therefore, when you want to define subitems, simply define new <siteMapNode> elements within the scope
of an existing <siteMapNode>. In any case, the goal is to define the overall structure of your web site within a
Web.sitemap file using various <siteMapNode> elements. Each one of these elements can define a title and
URL attribute. The URL attribute represents which *.aspx file to navigate to when the user clicks a given
menu item (or node of a TreeView). Your site map will contain three site map nodes (underneath the
top-level site map node), as follows:

•	 Home: Default.aspx

•	 Build a Car: BuildCar.aspx

•	 View Inventory: Inventory.aspx

You will add these three new Web Forms pages to your project in the pages to come. For the time being,
you will simply configure the site map file.

Your navigation system has a single topmost Welcome item with three subelements. Therefore, you
can update the Web.sitemap file as follows, but be aware that each url value must be unique (if not, you will
receive a runtime error):

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="Welcome!" description="">
 <siteMapNode url="~/Default.aspx" title="Home"
 description="The Home Page" />
 <siteMapNode url="~/BuildCar.aspx" title="Build a car"
 description="Create your dream car" />
 <siteMapNode url="~/Inventory.aspx" title="View Inventory"
 description="See what is in stock" />
 </siteMapNode>
</siteMap>

 ■ Note the ~/ prefix before each page in the url attribute is a notation that represents the root of the web site.

Now, despite what you might be thinking, you do not associate a Web.sitemap file directly to a Menu
or TreeView control using a given property. Rather, the *.master or *.aspx file that contains the UI widget
that will display the Web.sitemap file must contain a SiteMapDataSource component. This component will
automatically load the Web.sitemap file into its object model when the page is requested. The Menu and
TreeView types then set their DataSourceID property to point to the SiteMapDataSource instance.

To add a new SiteMapDataSource to your *.master file and automatically set the DataSourceID
property, you can make use of the Visual Studio designer. Activate the inline editor of the TreeView control
(i.e., click the tiny arrow in the top-right corner of the TreeView), expand the Choose Data Source drop-down
list, and select New Data Source, as shown in Figure 32-11.

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1455

From the resulting dialog box, select the SiteMap icon. This will set the DataSourceID property of the
Menu or TreeView control, as well as add a new SiteMapDataSource component to your page. This is all you
need to do to configure your TreeView control to navigate to the additional pages on your site. If you would
like to perform additional processing when the user selects a given menu item, you may do so by handling
the SelectedNodeChanged event on the TreeView control. There is no need to do so for this example, but be
aware that you can determine which menu item was selected using the incoming event arguments.

Establishing Breadcrumbs with the SiteMapPath Type
Before moving on to the AdRotator control, add a SiteMapPath type (located in the Navigation tab in the
Toolbox) onto your *.master file. This widget will automatically adjust its content based on the current
selection of the menu system. As you might know, this can provide a helpful visual cue for the end user
(formally, this UI technique is termed breadcrumbs). Once you complete this example, you will notice
that when you select the Welcome Build a Car menu item, the SiteMapPath widget updates accordingly
automatically.

Configuring the AdRotator Control
The role of the Web Forms AdRotator widget is to randomly display a given image at some position in the
browser. At this point, the AdRotator is displaying an empty placeholder. This control cannot do its magic
until you assign the AdvertisementFile property to point to the source file that describes each image. For
this example, the data source will be a simple XML file named Ads.xml.

To add the XML file to the web site, go to the Website Add New Item menu option and select XML file.
Name the file Ads.xml and specify a unique <Ad> element for each image you want to display. At minimum,
each <Ad> element specifies the image to display (ImageUrl), the URL to navigate to if the image is selected
(TargetUrl), mouseover text (AlternateText), and the weight of the ad (Impressions).

Figure 32-11. Adding a new SiteMapDataSource

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1456

<Advertisements>
 <Ad>
 <ImageUrl>SlugBug.jpg</ImageUrl>
 <TargetUrl>http://www.Cars.com</TargetUrl>
 <AlternateText>Your new Car?</AlternateText>
 <Impressions>80</Impressions>
 </Ad>
 <Ad>
 <ImageUrl>car.gif</ImageUrl>
 <TargetUrl>http://www.CarSuperSite.com</TargetUrl>
 <AlternateText>Like this Car?</AlternateText>
 <Impressions>80</Impressions>
 </Ad>
</Advertisements>

Here, you have specified two image files (slugbug.jpg and car.gif). As a result, you need to ensure
that these files are in the root of your web site (these files have been included with this book’s code
download). To add them to your current project, select the Website Add Existing Item menu option. At this
point, you can associate your XML file to the AdRotator control via the AdvertisementFile property (in the
Properties window), like so:

<asp:AdRotator ID="myAdRotator" runat="server"
 AdvertisementFile="~/Ads.xml"/>

Later, when you run this application and post back to the page, you will be randomly presented with
one of two image files.

Defining the Default Content Page
Now that you have a master page established, you can begin designing the individual *.aspx pages that will
define the UI content to merge within the <asp:ContentPlaceHolder> tag of the master page. The *.aspx
files that are merged within a master page are called content pages and have a few key differences from a
normal, stand-alone Web Forms page.

In a nutshell, the *.master file defines the <form> section of the final HTML page. Therefore, the
existing <form> area within the *.aspx file will need to be replaced with an <asp:Content> scope. While
you could update the markup of your initial *.aspx file by hand, you can insert a new content page to your
project. First, delete the existing Default.aspx file, then right-click anywhere on the designer surface of the
*.master file and select the Add Content Page menu option (see Figure 32-12).

http://www.Cars.com</TargetUrl
http://www.CarSuperSite.com</TargetUrl

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1457

This will generate a new *.aspx file with the following initial markup:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master"
 AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" Title="" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
</asp:Content>

First, notice that the <%@Page%> directive has been updated with a new MasterPageFile attribute
that is assigned to your *.master file. Also note that rather than having a <form> element, you have an
<asp:Content> scope (currently empty) that has set the ContentPlaceHolderID value identical to the
<asp:ContentPlaceHolder> component in the master file.

Given these associations, the content page understands where to plug in its content, while the master’s
content is displayed in a read-only nature on the content page. There is no need to build a complex UI for
your Default.aspx content area. For this example, simply add some literal text that provides some basic site
instructions, as you see in Figure 32-13 (also notice on the upper right of the content page in the designer
that there is a link to switch to the related master file).

Figure 32-12. Adding a new content page to the master page

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1458

Now, if you run your project, you will find that the UI content of the *.master and Default.aspx files
has been merged into a single stream of HTML. As you can see from Figure 32-14, the browser (or end user)
is unaware that the master page even exists (note the browser is simply showing the HTML from Default.
aspx). Also, as you refresh the page (via the F5 key), you should see the AdRotator randomly displaying one
of two images.

Figure 32-13. Authoring the first content page

Figure 32-14. At runtime, master files and content pages render back a single form

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1459

Designing the Inventory Content Page
To insert the Inventory.aspx content page into your current project, open the *.master page in the IDE,
select Website Add Content Page, and use the Solution Explorer to rename this file to Inventory.aspx. The
role of the Inventory content page is to display the contents of the Inventory table of the AutoLot database
within a GridView control. However, unlike the previous chapter, this GridView will be configured to interact
with the AutoLot database using some built-in data-binding support and the updated AutoLotDAL assembly
from Chapter 30.

While the Web Forms GridView control has the ability to represent connection string data and SQL
Select, Update, and Delete statements (or alternatively stored procedures) in markup, the preferred
method is to use a Data Access Layer (DAL). This promotes separation of concerns and it isolates changes to
the data store from the front-end code.

With a few simple attributes and minimal code (presuming you have already built a DAL), you can
configure the GridView to automatically select, update, and delete records of the underlying data store. This
greatly simplifies the amount of boilerplate code and is enabled by the SelectMethod, DeleteMethod, and
UpdateMethod properties (as well as additional features for list view controls) introduced in ASP.NET 4.5.

Adding AutoLotDAL and Entity Framework to AspNetCarsSite
Use Windows Explorer to copy the AutoLotDAL assembly from Chapter 31 (or from the download directory
for this chapter). Add a reference to the AutoLotDAL assembly by right-clicking the references node in the
AspNetCarsSite project, clicking Browse in the Add References Dialog, and navigating to and selecting
AutoLotDAL.dll.

Next, add Entity Framework to the web project by right-clicking the project and selecting Manage
NuGet Packages for Solution. You will also need to update the Web.config file to add the connection string.
The change to the Web.config file will resemble the following (your connection string might be different
based on how you installed SQL Server Express):

 <connectionStrings>
 <add name="AutoLotConnection"
 connectionString="data source=.\SQLEXPRESS2014;initial catalog=AutoLot;integrated

security=True;MultipleActiveResultSets=True;App=EntityFramework"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1460

Filling the GridView with Data
To illustrate how to work with the GridView in a declarative manner, begin by updating the Inventory.aspx
content page with a GridView control. Table 32-3 lists the attributes that you will be adding over the next few
sections and what each is used for.

Table 32-3. Select Attributes of List Controls

Attribute Meaning in Life

DataKeyNames Specifies the primary key of the table.

ItemType Enables strong typing for list controls.

SelectMethod Indicates the method in the code-behind that is used to fill the table. It is called each
time the list control is rendered.

DeleteMethod Indicates the method that will be used to delete a record from the data source for the table.

UpdateMethod Indicates the method that will be used to update a record when the edit is posted back
to the server.

You will start by just using the ItemType and SelectMethod attributes (as you did in Chapter 31). Update
the GridView declaration (in the second <asp:Content> element) to the following:

<asp:GridView ID="GridView2" runat="server" CellPadding="4" AutoGenerateColumns="False"
 ItemType="AutoLotDAL.Models.Inventory" SelectMethod="GetData"
 EmptyDataText="There are no data records to display." ForeColor="#333333"
 GridLines="None">

Next, add the following Columns entries (don’t mind the SortExpressions for now):

<Columns>
 <asp:BoundField DataField="CarID" HeaderText="CarID" ReadOnly="True"
 SortExpression="CarID" />
 <asp:BoundField DataField="Make" HeaderText="Make" SortExpression="Make" />
 <asp:BoundField DataField="Color" HeaderText="Color" SortExpression="Color" />
 <asp:BoundField DataField="PetName" HeaderText="PetName" SortExpression="PetName" />
</Columns>

Make sure the closing GridView tag is after the closing Columns tag:

</asp:GridView>

Open Inventory.aspx.cs and add the GetData method. The GetData method doesn’t take any
parameters and needs to return an IEnumerable<Inventory>. Because you created your DAL already, this
becomes trivial. Make sure to add using statements for AutoLotDAL.Models and AutoLotDAL.Repos and
update the GetData method as follows:

public IEnumerable<Inventory> GetData() => new InventoryRepo().GetAll();

At this point, you can run your web program. Click the View Inventory menu item and view your data,
as shown in Figure 32-15. (Note that I updated my GridView with a unique look and feel using the inline
designer.)

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1461

Enabling In-Place Editing
The next order of business is to enable the GridView control’s support for in-place activation. You will start
by using the DataKeyNames, DeleteMethod, and UpdateMethod attributes. Update the GridView declaration
markup to the following:

<asp:GridView ID="GridView2" runat="server" CellPadding="4" AutoGenerateColumns=”False”
 DataKeyNames="CarID, Timestamp" ItemType="AutoLotDAL.Models.Inventory"
 SelectMethod="GetData" DeleteMethod="Delete" UpdateMethod="Update"
 EmptyDataText="There are no data records to display." ForeColor="#333333"
 GridLines="None">

Figure 32-15. The Inventory page with data

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1462

The CarId is the primary key, so it makes sense to be in the DataKeyNames attribute. The Timestamp field
is added as a DataKeyName so that it will be passed into the Update and Delete methods. Add the following
CommandField entry to the Columns entries. This will add Edit and Delete links into each row. The updated
markup looks like this:

<Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
 <asp:BoundField DataField="CarID" HeaderText="CarID" ReadOnly="True"
 SortExpression="CarID" />
 <asp:BoundField DataField="Make" HeaderText="Make" SortExpression="Make" />
 <asp:BoundField DataField="Color" HeaderText="Color" SortExpression="Color" />
 <asp:BoundField DataField="PetName" HeaderText="PetName" SortExpression="PetName" />
</Columns>

Open Inventory.aspx.cs, and add the Delete and Update methods. The Delete method is void, and
takes an int carId and byte[] timeStamp as parameters. Both of those values come into the method as
parameters because they are specified as DataKeyNames in the markup.

public void Delete(int carId, byte[] timeStamp)
{
 new InventoryRepo().Delete(carId, timeStamp);
}

The Update method is void and uses model binding so it can take an Inventory type as the parameter.
Model binding is a feature of ASP.NET MVC that was ported to ASP.NET WebForms 4.5. It takes all of the
form/querystring/etc. name value pairs and attempts to reconstitute a specified type using reflection. There is
explicit model binding and implicit model binding. In each case, the Model Binding engine attempts to assign
the values from the name value pairs (from the submitted form) to matching properties on the desired type. If it
can’t assign one or more values (due to data type conversion issues or validation errors) it will set ModelState.
IsValid = false. If all matched properties are successfully assigned, it sets ModelState.IsValid = true.

For explicit model binding, you call TryUpdateModel, passing in an instance of the type. If the model
binding fails, the TryUpdateModel returns false. For example, you could write the Update method this way:

public async void Update(int carID)
{
 var inv = new Inventory() {CarID = carID};
 if (TryUpdateModel(inv))
 {
 await new InventoryRepo().SaveAsync(inventory);
 }
}

For implicit model binding, you pass the desired type in as the parameter for the method. Do this for the
Update method. In the method body, first check to ensure the model state is valid (more on validation later
in this chapter), then call SaveAsync on the InventoryRepo. Since you are awaiting the SaveAsync method,
add the async modifier to the Update method, like this:

public async void Update(Inventory inventory)
{
 if (ModelState.IsValid)
 {
 await new InventoryRepo().SaveAsync(inventory);
 }
}

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1463

When you add the async modifier to the Update method you will get an error when the Update method
gets called because the Page is not marked as async. Fortunately, that is as easy as adding Async=”true” to
the Page directive, like this:

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage.master"
 AutoEventWireup="true" CodeFile="Inventory.aspx.cs" Inherits="InventoryPage"
 Async="true" %>

Now, when you run the app, you will see Edit and Delete links. Clicking the Edit link enables in-place
editing, as shown in Figure 32-16. When in edit mode, the links change to Update or Cancel.

Figure 32-16. In-place editing and deleting

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1464

Enabling Sorting and Paging
The GridView control can easily be configured for sorting (via column name hyperlinks) and paging
(via numeric or next/previous hyperlinks). To do so, update the markup for the GridView, adding in the
AllowPaging, PageSize, and AllowSorting attributes as follows:

<asp:GridView ID="carsGrid" runat="server"
 AllowPaging="True" PageSize="2"
 AllowSorting="True" AutoGenerateColumns="False" CellPadding="4"
 DataKeyNames="CarID" ItemType="AutoLotDAL.Models.Inventory"
 SelectMethod="GetData" DeleteMethod="Delete" UpdateMethod="Update"
 EmptyDataText="There are no data records to display." ForeColor="#333333"
 GridLines="None">

If you run the app now, you will get the following error:

When the DataBoundControl has paging enabled, either the SelectMethod should return an
IQueryable<ItemType> or should have all these mandatory parameters: int startRowIndex, int
maximumRows, out int totalRowCount

This is easily fixed by adding AsQueryable() after the GetAll call on the InventoryRepo, and changing
the signature for the method to IQueryable, as follows:

public IQueryable<Inventory> GetData() => new InventoryRepo().GetAll().AsQueryable();

 ■ Note While adding AsQueryable() solved the problem in this example, it would be better to expose an
IQueryable version of GetAll on the repository itself.

When you run your page again, you will be able to sort your data by clicking the column names and
scrolling through your data via the paging links (provided you have enough records in the Inventory table!),
as shown in Figure 32-17.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1465

Enabling Filtering
The next step is to add filtering to the Inventory list. Again, with the additional features added in ASP.NET
Web Forms 4.5, this is fairly trivial. Start by adding a DropDownList box that will be bound to the distinct list
of Makes in the AutoLot database. The DataTextField (what is displayed) and the DataValueField
(the value of the dropdown list based on the selected item) are both set to Make. The SelectMethod
should be set to a method named GetMakes. The key is that the control must have the runat=server setting.
Also see the <asp:ListItem> tag. This adds the "(All)" selection if nothing from the databound list is
selected. The markup is as follows:

<asp:DropDownList ID="cboMake" SelectMethod="GetMakes"
 AppendDataBoundItems="true" AutoPostBack="true"
 DataTextField="Make" DataValueField="Make" runat="server">
 <asp:ListItem Value="" Text="(All)" />
</asp:DropDownList>

Next, open Inventory.aspx.cs and create the GetMakes method. In this method, return a list of new
anonymous objects that hold the distinct makes from the data. The method is as follows:

public IEnumerable GetMakes() =>
 new InventoryRepo().GetAll().Select(x => new {x.Make}).Distinct();

Figure 32-17. Enabling sorting and paging

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1466

The GetData method also has to be updated to filter the data if a Make is passed in. The parameter is
marked with the [Control(“cboMake”)] attribute, specifying the name of the control. The name of the
control isn’t necessary if the control name matches the parameter name, but since they don’t match in this
example, you need to specify the control name. This parameter will take the value of the control when the
form data is posted back (hence the runat=”server” requirement) and will be an empty string if nothing is
selected. This is done as follows:

public IQueryable<Inventory> GetData([Control("cboMake")]string make="")
{
 return string.IsNullOrEmpty(make) ?
 new InventoryRepo().GetAll().AsQueryable() :
 new InventoryRepo().GetAll().Where(x => x.Make == make).AsQueryable();
}

Now, when you run the app, you can select a car make, and it will filter the result set based on the
selected value, as in Figure 32-18.

Figure 32-18. Filtering data based on the value of a control on the page

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1467

Designing the Build-a-Car Content Page
The final task for this example is to design the BuildCar.aspx content page. To do so, make sure you have
your *.master file open for editing, then insert this file into the current project (via the Website Add Content
Page menu option; this is an alternative to right-clicking the project’s master page). Rename this new file to
BuildCar.aspx using the Solution Explorer.

This new page will make use of the Web Forms Wizard web control, which provides a simple way
to walk the end user through a series of related steps. Here, the steps in question will simulate the act of
building an automobile for purchase.

Place a descriptive Label and Wizard control onto the content area. Next, activate the inline editor for
the Wizard and click the Add/Remove WizardSteps link. Add a total of four steps, as shown in Figure 32-19.

Figure 32-19. Configuring your wizard

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1468

After you define these steps, you will notice that the Wizard defines an empty content area where you
can now drag and drop controls for the currently selected step. For this example, update each step with the
following UI elements (be sure to provide a fitting ID value for each item using the Properties window):

•	 Pick Your Model: A TextBox control

•	 Pick Your Color: A ListBox control

•	 Name Your Car: A TextBox control

•	 Delivery Date: A Calendar control

The ListBox control is the only UI element of the Wizard that requires additional steps. Select this item
on the designer (making sure you first select the Pick Your Color link) and fill this widget with a set of colors
using the Items property of the Properties window. After you do so, you will find markup much like the
following within the scope of the Wizard definition:

<asp:ListBox ID="ListBoxColors" runat="server" Width="237px">
 <asp:ListItem>Purple</asp:ListItem>
 <asp:ListItem>Green</asp:ListItem>
 <asp:ListItem>Red</asp:ListItem>
 <asp:ListItem>Yellow</asp:ListItem>
 <asp:ListItem>Pea Soup Green</asp:ListItem>
 <asp:ListItem>Black</asp:ListItem>
 <asp:ListItem>Lime Green</asp:ListItem>
</asp:ListBox>

Now that you have defined each of the steps, you can handle the FinishButtonClick event for the
autogenerated Finish button. Be aware, however, that you won’t see this Finish button until you select the
final step of the wizard on the designer. Once you have selected the final step, simply double-click the Finish
button to generate the event handler. Within the server-side event handler, obtain the selections from each
UI element and build a description string that is assigned to the Text property of an additional Label type
named lblOrder, like so:

public partial class BuildCarPage : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

protected void carWizard_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 // Get each value.
 string order = $"{txtCarPetName.Text}, your { ListBoxColors.SelectedValue } {
txtCarModel.Text } will arrive on { carCalendar.SelectedDate.ToShortDateString()}";
 // Assign to label.
 lblOrder.Text = order;
 }
}

At this point, your AspNetCarsSite web application is complete! Figure 32-20 shows the wizard in action.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1469

That wraps up your first look of various Web Forms web controls, master pages, content pages, and site
map navigation. Next up, let’s look at the functionality of the Web Forms validation controls. To keep the
topics in this chapter somewhat isolated and atomic, you will build a new web site to illustrate validation
techniques; however, you can most certainly add validation controls to your current project.

Figure 32-20. The Wizard control in action

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1470

 ■ Source Code the aspNetCarsSite web site is included in the Chapter 32 subdirectory.

The Role of the Validation Controls
The next set of Web Form controls you will examine are known collectively as validation controls. Unlike
the other Web Form controls you’ve examined, validation controls are not used to emit HTML for rendering
purposes, but are used to emit client-side JavaScript for the purpose of form validation. As illustrated at the
beginning of this chapter, client-side form validation is quite useful because you can ensure that various
constraints are in place before posting back to the web server, thereby avoiding expensive round trips.
Table 32-4 gives a rundown of the Web Forms validation controls.

Table 32-4. Web Forms Validation Controls

Control Meaning in Life

CompareValidator Validates that the value of an input control is equal to a given value of
another input control or a fixed constant.

CustomValidator Allows you to build a custom validation function that validates a given
control.

RangeValidator Determines that a given value is in a predetermined range.

RegularExpressionValidator Checks whether the value of the associated input control matches the
pattern of a regular expression.

RequiredFieldValidator Ensures that a given input control contains a value (i.e., is not empty).

ValidationSummary Displays a summary of all validation errors of a page in a list, bulleted
list, or single-paragraph format. The errors can be displayed inline
and/or in a pop-up message box.

Table 32-5. Common Properties of the Web Forms Validators

Member Meaning in Life

ControlToValidate Gets or sets the input control to validate

Display Gets or sets the display behavior of the error message in a validation control

EnableClientScript Gets or sets a value indicating whether client-side validation is enabled

ErrorMessage Gets or sets the text for the error message

ForeColor Gets or sets the color of the message displayed when validation fails

All of the validation controls (minus ValidationSummary) ultimately derive from a common base class
named System.Web.UI.WebControls.BaseValidator and, therefore, they have a set of common features.
Table 32-5 documents the key members.

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1471

To illustrate working with these validation controls, create a new empty web site project named
ValidatorCtrls and insert a new Web Forms named Default.aspx. To begin, place four (well-named)
TextBox controls (with four corresponding and descriptive Labels) onto your page. Next, place a
RequiredFieldValidator, RangeValidator, RegularExpressionValidator, and CompareValidator control
adjacent to each respective input field. Finally, add a single Button and a final Label. Figure 32-21 shows one
possible layout.

Figure 32-21. Web Forms validation controls will ensure your form data is correct before allowing postback

Now that you have an initial UI to experiment with, let’s walk through the process of configuring each
validator control and see the end result of doing so. However, first you need to modify the current web.config
file to allow client-side processing of your validation controls.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1472

Enabling Client-Side JavaScript Validation Support
Beginning with ASP.NET 4.5, Microsoft introduced a new setting to control how validation controls respond
at runtime. When you create an ASP.NET web application and open the web.config file, you will find the
following setting:

<appSettings>
 <add key="ValidationSettings:UnobtrusiveValidationMode" value="WebForms" />
</appSettings>

When this setting is in your web configuration file, the web site will process validation using various
HTML 5 data attributes, rather than sending back blurbs of client-side JavaScript code to be processed by the
web browser. Given that this edition of the text does not dive into the details of HTML 5, if you create a Web
Forms application (instead of a web site), you need to comment out (or remove) this line in order for the
current validation example to work correctly.

The RequiredFieldValidator
Configuring the RequiredFieldValidator is straightforward. Simply set the ErrorMessage and
ControlToValidate properties accordingly using the Visual Studio Properties window. Here is the resulting
markup that ensures the txtRequiredField text box is not empty:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
 runat="server" ControlToValidate="txtRequiredField"
 ErrorMessage="Oops! Need to enter data.">
</asp:RequiredFieldValidator>

The RequiredFieldValidator supports an InitialValue property. You can use this property to ensure
that the user enters any value other than the initial value in the related TextBox. For example, when the user
first posts to a page, you might want to configure a TextBox to contain the value “Please enter your name”.
Now, if you did not set the InitialValue property of the RequiredFieldValidator, the runtime would
assume that the string “Please enter your name” is valid. Thus, to ensure a required TextBox is valid only
when the user enters anything other than “Please enter your name”, configure your widgets as follows:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
 runat="server" ControlToValidate="txtRequiredField"
 ErrorMessage="Oops! Need to enter data."
 InitialValue="Please enter your name">
</asp:RequiredFieldValidator>

The RegularExpressionValidator
The RegularExpressionValidator can be used when you want to apply a pattern against the characters
entered within a given input field. To ensure that a given TextBox contains a valid U.S. Social Security
number, you could define the widget as follows:

<asp:RegularExpressionValidator ID="RegularExpressionValidator1"
 runat="server" ControlToValidate="txtRegExp"
 ErrorMessage="Please enter a valid US SSN."
 ValidationExpression="\d{3}-\d{2}-\d{4}">
</asp:RegularExpressionValidator>

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1473

Notice how the RegularExpressionValidator defines a ValidationExpression property. If you have
never worked with regular expressions before, all you need to be aware of for this example is that they are
used to match a given string pattern. Here, the expression "\d{3}-\d{2}-\d{4}" is capturing a standard U.S.
Social Security number of the form xxx-xx-xxxx (where x is any digit).

This particular regular expression is fairly self-explanatory; however, assume you want to test for a
valid Japanese phone number. The correct expression now becomes much more complex: "(0\d{1,4}-
|\(0\d{1,4}\)?)?\d{1,4}-\d{4}". The good news is that when you select the ValidationExpression
property using the Properties window, you can pick from a predefined set of common regular expressions by
clicking the ellipse button.

 ■ Note If you are interested in regular expressions, you will be happy to know that the .Net platform
supplies two namespaces (System.Text.RegularExpressions and System.Web.RegularExpressions)
devoted to the programmatic manipulation of such patterns.

The RangeValidator
In addition to a MinimumValue and MaximumValue property, RangeValidators have a property named Type.
Because you are interested in testing the user-supplied input against a range of whole numbers, you need to
specify Integer (which is not the default!), like so:

<asp:RangeValidator ID="RangeValidator1"
 runat="server" ControlToValidate="txtRange"
 ErrorMessage="Please enter value between 0 and 100."

 MaximumValue="100" MinimumValue="0" Type="Integer">
</asp:RangeValidator>

The RangeValidator can also be used to test whether a given value is between a currency value, date,
floating-point number, or string data (the default setting).

The CompareValidator
Finally, notice that the CompareValidator supports the following Operator property:

<asp:CompareValidator ID="CompareValidator1" runat="server"
 ControlToValidate="txtComparison"
 ErrorMessage="Enter a value less than 20." Operator="LessThan"
 ValueToCompare="20" Type="Integer">
</asp:CompareValidator>

Given that the role of this validator is to compare the value in the text box against another value using a
binary operator, it should be no surprise that the Operator property may be set to values such as LessThan,
GreaterThan, Equal, and NotEqual. Also note that the ValueToCompare is used to establish a value to
compare against. Note that the Type attribute is set to Integer. By default, the CompareValidator will be
testing against string values!

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1474

 ■ Note the CompareValidator can also be configured to compare a value within another Web Forms control
(rather than a hard-coded value) using the ControlToCompare property.

To finish up the code for this page, handle the Click event for the Button control and inform the user
that he or she has succeeded in the validation logic, like so:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 protected void btnPostback_Click(object sender, EventArgs e)
 {
 lblValidationComplete.Text = "You passed validation!";
 }
}

Now, navigate to this page using your browser of choice. At this point, you should not see any noticeable
changes. However, when you attempt to click the Submit button after entering bogus data, your error
message is suddenly visible. When you enter valid data, the error messages are removed and postback
occurs. If you look at the HTML rendered by the browser, you can see that the validation controls generate a
client-side JavaScript function that makes use of a specific library of JavaScript functions that is automatically
downloaded to the user’s machine. After the validation has occurred, the form data is posted back to the
server, where the ASP.NET runtime will perform the same validation tests on the web server (just to ensure
that no along-the-wire tampering has taken place).

On a related note, if the HTTP request was sent by a browser that does not support client-side
JavaScript, all validation will occur on the server. In this way, you can program against the validation controls
without being concerned with the target browser; the returned HTML page redirects the error processing
back to the web server.

Creating Validation Summaries
The next validation-centric topic you will examine is the use of the ValidationSummary widget. Currently,
each of your validators displays its error message at the exact place in which it was positioned at design time.
In many cases, this might be exactly what you are looking for. However, on a complex form with numerous
input widgets, you might not want to have random blobs of red text pop up. Using the ValidationSummary
type, you can instruct all of your validation types to display their error messages at a specific location on the
page.

The first step is to simply place a ValidationSummary on your *.aspx file. You may optionally set the
HeaderText property of this type as well as the DisplayMode, which by default will list all error messages as a
bulleted list.

<asp:ValidationSummary id="ValidationSummary1"
 runat="server" Width="353px"
 HeaderText="Here are the things you must correct.">
</asp:ValidationSummary>

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1475

Next, you need to set the Display property to None for each of the individual validators
(e.g., RequiredFieldValidator, RangeValidator) on the page. This will ensure that you do not see duplicate
error messages for a given validation failure (one in the summary pane and another at the validator’s location).
Figure 32-22 shows the summary pane in action.

Figure 32-22. Using a validation summary

Last but not least, if you would rather have the error messages displayed using a client-side
MessageBox, set the ValidationSummary control’s ShowMessageBox property to true and the ShowSummary
property to false.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1476

Defining Validation Groups
It is also possible to define groups for validators to belong to. This can be very helpful when you have regions
of a page that work as a collective whole. For example, you could have one group of controls in a Panel
object to allow the user to enter his or her mailing address and another Panel containing UI elements to
gather credit card information. Using groups, you can configure each group of controls to be validated
independently.

Insert a new page into your current project named ValidationGroups.aspx that defines two Panels.
The first Panel object expects a TextBox to contain some form of user input (via a RequiredFieldValidator)
and the second Panel expects a U.S. SSN value (via a RegularExpressionValidator). Figure 32-23 shows
one possible UI.

Figure 32-23. These Panel objects will independently configure their input areas

To ensure that the validators function independently, simply assign each validator and the control
being validated to a uniquely named group using the ValidationGroup property. In the following possible
markup, note that the Click event handlers used here are essentially empty stubs in the code file:

<form id="form1" runat="server">
 <asp:Panel ID="Panel1" runat="server" Height="83px" Width="296px">
 <asp:TextBox ID="txtRequiredData" runat="server"
 ValidationGroup="FirstGroup">
 </asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"
 ErrorMessage="*Required field!" ControlToValidate="txtRequiredData"
 ValidationGroup="FirstGroup">
 </asp:RequiredFieldValidator>
 <asp:Button ID="bntValidateRequired" runat="server"
 OnClick="bntValidateRequired_Click"
 Text="Validate" ValidationGroup="FirstGroup" />
 </asp:Panel>

 <asp:Panel ID="Panel2" runat="server" Height="119px" Width="295px">
 <asp:TextBox ID="txtSSN" runat="server"
 ValidationGroup="SecondGroup">
 </asp:TextBox>

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1477

 <asp:RegularExpressionValidator ID="RegularExpressionValidator1"
 runat="server" ControlToValidate="txtSSN"
 ErrorMessage="*Need SSN" ValidationExpression="\d{3}-\d{2}-\d{4}"
 ValidationGroup="SecondGroup">
 </asp:RegularExpressionValidator>
 <asp:Button ID="btnValidateSSN" runat="server"
 OnClick="btnValidateSSN_Click" Text="Validate"
 ValidationGroup="SecondGroup" />
 </asp:Panel>
</form>

Now, right-click this page’s designer and select the View In Browser menu option to verify that each
panel’s widgets operate in a mutually exclusive manner.

Validation with Data Annotations
In addition to the validation controls, ASP.NET Web Forms supports validation using Data Annotations.
Recall from Chapter 23 that you can mark model classes with attributes that define business requirements
for the model (such as Required). Using the new ModelErrorMessage control and an additional property on
the ValidationSummary control, you can present errors resulting from Data Annotation violations with very
little code.

Creating the Model
While you could certainly use the AutoLotDAL library from Chapter 31, to keep things simple, create a new
Inventory class. Start by adding a new App_Code directory by right-clicking the project and selecting Add ➤
Add ASP.NET Folder ➤ App_Code. In this folder, add a new class named Inventory.cs. In this class, add the
following code (make sure to add a using for System.ComponentModel.DataAnnotations):

public class Inventory
{
 [Key,Required]
 public int CarID { get; set; }

 [Required(ErrorMessage="Make is required.")]
 [StringLength(30,ErrorMessage="Make can only be 30 charaters or less")]
 public string Make { get; set; }

 [Required, StringLength(30)]
 public string Color { get; set; }

 [StringLength(30, ErrorMessage = "Pet Name can only be 30 charaters or less")]
 public string PetName { get; set; }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_23
http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1478

Building the User Interface
Next, add a new Web Form named Annotations.aspx. In this page, add an asp:FormView control inside the
Form tag. The FormView control can switch from display, edit, to insert mode very simply. First, update the
header attributes as follows (the DefaultMode=Insert loads the FormView in Insert mode):

<asp:FormView runat="server" ID="fvDataBinding" DataKeyNames="CarID"
 ItemType="Inventory" DefaultMode="Insert" InsertMethod="SaveCar"
 UpdateMethod="UpdateCar" SelectMethod="GetCar">

Next, create the ItemTemplate. This is the content that will be displayed in read only mode.
The ItemType strongly types the FormView, and allows for the <%# Item.FieldName %> syntax. Add the
following markup:

<ItemTemplate>
 <table style="width:100%">
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="make">Make:</asp:Label></td>
 <td><asp:Label runat="server" ID="make" Text='<%# Item.Make %>' /></td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="color">Color:</asp:Label></td>
 <td><asp:Label runat="server" ID="color" Text='<%#: Item.Color %>' /></td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="petname">Pet Name:</asp:Label></td>
 <td><asp:Label runat="server" ID="customerAge" Text='<%#: Item.PetName %>' /></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="EditButton" runat="server" CommandName="Edit" Text="Edit" />
 </td>
 </tr>
 </table>
</ItemTemplate>

The CommandName=”Edit” indicates that clicking the button will put the FormView into Edit mode. Once
in Edit mode, the EditItemTemplate is displayed, which you will add next. There are some differences
between the syntax for Edit and Display templates. First of all, in Edit templates, instead of using the <%#
Item.FieldName %> syntax, use <%# BindItem.FieldName %>. Using BindItem sets up the control for
two-way binding. The next difference is the ModelErrorMessage control that follows the edit controls. The
ModelErrorMessage will display any model binding errors for the property identified by the ModelStateKey.
Note that this is dependent on making the FormView strongly typed.

<EditItemTemplate>
 <table style="width:100%">
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="make">Make: </asp:Label></td>
 <td>
 <asp:TextBox runat="server" ID="make" Text='<%# BindItem.Make %>' />
 <asp:ModelErrorMessage ModelStateKey="make" runat="server" ForeColor="Red" />

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1479

 </td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="color">Color: </asp:Label></td>
 <td>
 <asp:TextBox runat="server" ID="color" Text='<%#: BindItem.Color %>' />
 <asp:ModelErrorMessage ModelStateKey="color" runat="server" ForeColor="Red" />
 </td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="petname">Pet Name: </asp:Label></td>
 <td>
 <asp:TextBox ID="petname" runat="server" Text='<%#: BindItem.PetName %>' />
 <asp:ModelErrorMessage ModelStateKey="petname" runat="server" ForeColor="Red" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button runat="server" CommandName="Update" Text="Save" />
 <asp:Button runat="server" CommandName="Cancel" Text="Cancel"
 CausesValidation="false" />
 </td>
 </tr>
 </table>
</EditItemTemplate>

The InsertItemTemplate is virtually the same as the EditItemTemplate, the only difference (other than
the name of the tag) is that the CommandName for the Button is Insert.

<InsertItemTemplate>
 <table style="width:100%">
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="make">Make: </asp:Label></td>
 <td>
 <asp:TextBox runat="server" ID="make" Text='<%#: BindItem.Make %>' />
 <asp:ModelErrorMessage ModelStateKey="make" runat="server" ForeColor="Red" />
 </td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="color">Color: </asp:Label></td>
 <td>
 <asp:TextBox runat="server" ID="color" Text='<%#: BindItem.Color %>' />
 <asp:ModelErrorMessage ModelStateKey="color" runat="server" ForeColor="Red" />
 </td>
 </tr>
 <tr>
 <td><asp:Label runat="server" AssociatedControlID="petname">Pet Name: </asp:Label></td>
 <td>

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1480

 <asp:TextBox ID="petname" runat="server" Text='<%#: BindItem.PetName %>' />
 <asp:ModelErrorMessage ModelStateKey="petname" runat="server" ForeColor="Red" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button runat="server" CommandName="Insert" Text="Save" />
 </td>
 </tr>
 </table>
</InsertItemTemplate>

Finally, close out the FormView:

<asp:FormView>

Finally, add the ValidationSummary control. The difference here from the earlier examples is setting the
ShowModelStateErrors property to true. This instructs the control to show any Model Binding errors. After
the closing tag for the FormView, add the following markup:

<asp:ValidationSummary runat="server" ShowModelStateErrors="true"
 ForeColor="Red" HeaderText="Please check the following errors:" />

Adding the Code
You are going to add just enough code to show the validation. In a real application, your methods to support
the FormView would involve calling out to a DAL, and not just tinkering with a local variable. But to keep
the example focused, add the following code in Annotations.aspx.cs. You will need to add the Microsoft.
CodeDom.Providers.DotNetCompilerPlatform NuGet package to enable the C# 6 features. Note the implicit
model binding on the SaveCar method and the explicit model binding on the UpdateCar method.

private Inventory _model = null;
public void SaveCar(Inventory car)
{
 if (ModelState.IsValid)
 {
 _model = car;
 //Add new record here
 }
}

public void UpdateCar(int carID)
{
 Inventory car = new Inventory();
 if (TryUpdateModel(car))
 {
 _model = car;
 //Update record here
 }
}

public Inventory GetCar() => _model;

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1481

Test the App
Now, run the app, and you will see a page similar to Figure 32-24.

Figure 32-24. The FormView control in Insert mode

Leave the Make and Color blank, and add a Pet Name longer than 30 characters, and click Save. You
should see the same errors as in Figure 32-25.

Figure 32-25. The FormView control with errors showing

As with the other Web Forms controls, both the ModelErrorMessage and ValidationSummary controls
can be styled much better than what I have done here.

 ■ Source Code the ValidatorCtrls web site is included in the Chapter 32 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1482

Working with Themes
At this point, you have worked with numerous Web Forms web controls. As you have seen, each control
exposes a set of properties (many of which are inherited by System.Web.UI.WebControls.WebControl) that
allow you to establish a given UI look and feel (background color, font size, border style, and whatnot). Of
course, on a multipage web site, it is quite common for the site as a whole to define a common look and
feel for various types of widgets. For example, all TextBoxes could be configured to support a given font, all
Buttons to have a custom image, and all Calendars to have a light blue border.

Obviously, it would be very labor intensive (and error prone) to establish the same property settings for
every widget on every page within your web site. Even if you were able to manually update the properties of
each UI widget on each page, imagine how painful it would be when you needed to change the background
color for each TextBox yet again. Clearly, there must be a better way to apply site-wide UI settings.

One approach to simplifying the application of a common UI look and feel is to define style sheets. If you
have a background in web development, you are aware that style sheets define a common set of UI-centric
settings that are applied on the browser. As you would hope, Web Forms web controls can be assigned a
given style by assigning the CssStyle property.

However, Web Forms ships with a complementary technology to define a common UI termed themes.
Unlike a style sheet, themes are applied on the web server (rather than the browser) and can be done
programmatically or declaratively. Given that a theme is applied on the web server, it has access to all the
server-side resources on the web site. Furthermore, themes are defined by authoring the same markup you
would find within any *.aspx file (as you might agree, the syntax of a style sheet is a bit on the terse side).

Recall from Chapter 31 that ASP.NET web applications may define any number of special
subdirectories, one of which is App_Themes. This single subdirectory may be further partitioned with
additional subdirectories, each of which represents a possible theme on your site. For example, consider
Figure 32-26, which illustrates a single App_Themes folder containing three subdirectories, each of which has
a set of files that make up the theme itself.

Figure 32-26. A single App_Theme folder may define numerous themes

Understanding *.skin Files
The one file that every theme subdirectory is sure to have is a *.skin file. These files define the look and feel
for various web controls. To illustrate, create a new empty web site named FunWithThemes, and insert a new
Default.aspx Web Form. On this new page, add a Calendar, TextBox, and Button control. You don’t need
to configure these controls in any special way, and the names of these controls are irrelevant for the current
example. As you will see, these controls will be the targets for your custom skins.

Next, insert a new *.skin file (using the Website Add New Item menu option) named BasicGreen.skin,
as shown in Figure 32-27.

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1483

Visual Studio will prompt you to confirm that this file can be added into an App_Themes folder (which
is exactly what you want). If you look in your Solution Explorer, you will indeed find that your App_Themes
folder has a subfolder named BasicGreen containing your new BasicGreen.skin file.

A *.skin file is where you can define the look and feel of various widgets using Web Forms control
declaration syntax. Sadly, the IDE does not provide designer support for *.skin files. One way to reduce the
amount of typing time is to insert a temporary *.aspx file into your program (temp.aspx, for example) that
can be used to build up the UI of the widgets using the Visual Studio page designer.

The resulting markup can then be copied and pasted into your *.skin file. When you do so, however,
you must delete the ID attribute for each web control! This should make sense, given that you are not trying
to define a UI look and feel for a particular Button (for example), but rather all Buttons.

This being said, here is the markup for BasicGreen.skin that defines a default look and feel for the
Button, TextBox, and Calendar types:

<asp:Button runat="server" BackColor="#80FF80"/>
<asp:TextBox runat="server" BackColor="#80FF80"/>
<asp:Calendar runat="server" BackColor="#80FF80"/>

Notice that each widget still has the runat="server" attribute (which is mandatory), and none of the
widgets have been assigned an ID attribute.

Now, let’s define a second theme named CrazyOrange. Using the Solution Explorer, right-click your
App_Themes folder and add a new theme named CrazyOrange. This will create a new subdirectory under
your site’s App_Themes folder.

Figure 32-27. Inserting *.skin files

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1484

Next, right-click the new CrazyOrange folder within the Solution Explorer and select Add New Item.
From the resulting dialog box, add a new *.skin file. Update the CrazyOrange.skin file to define a unique
UI look and feel for the same web controls, like so:

<asp:Button runat="server" BackColor="#FF8000"/>
<asp:TextBox runat="server" BackColor="#FF8000"/>
<asp:Calendar BackColor="White" BorderColor="Black"
 BorderStyle="Solid" CellSpacing="1"
 Font-Names="Verdana" Font-Size="9pt" ForeColor="Black" Height="250px"
 NextPrevFormat="ShortMonth" Width="330px" runat="server">
 <SelectedDayStyle BackColor="#333399" ForeColor="White" />
 <OtherMonthDayStyle ForeColor="#999999" />
 <TodayDayStyle BackColor="#999999" ForeColor="White" />
 <DayStyle BackColor="#CCCCCC" />
 <NextPrevStyle Font-Bold="True" Font-Size="8pt" ForeColor="White" />
 <DayHeaderStyle Font-Bold="True" Font-Size="8pt"
 ForeColor="#333333" Height="8pt" />
 <TitleStyle BackColor="#333399" BorderStyle="Solid"
 Font-Bold="True" Font-Size="12pt"
 ForeColor="White" Height="12pt" />
</asp:Calendar>

At this point, your Solution Explorer should like Figure 32-28.

Figure 32-28. A single web site with multiple themes

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1485

Now that your site has a few themes defined, the next logical step is to apply them to your pages. As you
might guess, there are many ways to do so.

 ■ Note these example themes are quite bland by design (in order to reduce the amount of markup on the
printed page). Feel free to spruce things up to your liking.

Applying Site-Wide Themes
If you want to make sure that every page in your site adheres to the same theme, the simplest way to do so
is to update your web.config file. Open your current web.config file and define a <pages> element within
the scope of your <system.web> root element. If you add a theme attribute to the <pages> element, this will
ensure that every page in your web site is assigned the selected theme (which is, of course, the name of one
of the subdirectories under App_Theme). Here is the critical update:

<configuration>
 <system.web>
 ...
 <pages controlRenderingCompatibilityVersion="4.5"
 theme="BasicGreen">
 </pages>
 </system.web>
</configuration>

If you run this page, you will find that each widget has the UI of BasicGreen. If you update the theme
attribute to CrazyOrange and run the page again, you will find the UI defined by this theme is used instead.

Applying Themes at the Page Level
It is also possible to assign themes on a page-by-page level. This can be helpful in a variety of circumstances.
For example, perhaps your web.config file defines a site-wide theme (as described in the previous section)
but you want to assign a different theme to a specific page. To do so, you can simply update the <%@Page%>
directive. If you are using Visual Studio to do so, you will be happy to find that IntelliSense will display each
defined theme within your App_Theme folder.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default" Theme ="CrazyOrange" %>

Because you assigned the CrazyOrange theme to this page, but the web.config file specified the
BasicGreen theme, all pages but this page will be rendered using BasicGreen.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1486

The SkinID Property
Sometimes you might need to define a set of possible UI look-and-feel scenarios for a single widget. For
example, assume you want to define two possible UIs for the Button type within the CrazyOrange theme.
You may differentiate each look and feel using the SkinID property of a control within the *.skin file:

<asp:Button runat="server" BackColor="#FF8000"/>
<asp:Button runat="server" SkinID = "BigFontButton"
 Font-Size="30pt" BackColor="#FF8000"/>

Now, if you have a page that makes use of the CrazyOrange theme, each Button will, by default, be
assigned the unnamed Button skin. If you want to have various buttons within the *.aspx file make use of
the BigFontButton skin, simply specify the SkinID property within the markup, like so:

<asp:Button ID="Button2" runat="server"
 SkinID="BigFontButton" Text="Button" />

Assigning Themes Programmatically
Last but not least, it is possible to assign a theme in code. This can be helpful when you want to provide a
way for end users to select a theme for their current session. Of course, I have not yet shown you how to
build stateful web applications, so the current theme selection will be forgotten between postbacks. In a
production-level site, you might want to store the user’s current theme selection within a session variable, or
persist the theme selection to a database.

To illustrate how to assign a theme programmatically, update the UI of your Default.aspx file with
three new Button controls, as shown in Figure 32-29. After you have done so, handle the Click event for
each Button.

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1487

Now, be aware that you can only assign a theme programmatically during specific phases of your page’s
life cycle. Typically, this will be done within the Page_PreInit event. This being said, update your code file
as follows:

partial class _Default : System.Web.UI.Page
{
 protected void btnNoTheme_Click(object sender, System.EventArgs e)
 {
 // Empty strings result in no theme being applied.
 Session["UserTheme"] = "";

Figure 32-29. The updated UI of the themes example

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1488

 // Triggers the PreInit event again.
 Server.Transfer(Request.FilePath);
 }

 protected void btnGreenTheme_Click(object sender, System.EventArgs e)
 {
 Session["UserTheme"] = "BasicGreen";

 // Triggers the PreInit event again.
 Server.Transfer(Request.FilePath);
}

protected void btnOrangeTheme_Click(object sender, System.EventArgs e)
{
 Session["UserTheme"] = "CrazyOrange";

 // Triggers the PreInit event again.
 Server.Transfer(Request.FilePath);
}

protected void Page_PreInit(object sender, System.EventArgs e)
{
 try
 {
 Theme = Session["UserTheme"].ToString();
 }
 catch
 {
 Theme = "";
 }
 }
}

Notice that you are storing the selected theme within a session variable (see Chapter 33 for details)
named UserTheme, which is formally assigned within the Page_PreInit() event handler. Also note that
when the user clicks a given Button, you programmatically force the PreInit event to fire by calling Server.
Transfer() and requesting the current page once again. If you run this page, you will find that you can
establish your theme via various Button clicks.

 ■ Source Code the FunWiththemes web site is included in the Chapter 32 subdirectory.

http://dx.doi.org/10.1007/978-1-4842-1332-2_33
http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 32 ■ aSp.Net Web CoNtrolS, MaSter pageS, aNd theMeS

1489

Summary
This chapter examined how to make use of various Web Forms web controls. You began by examining the
role of the Control and WebControl base classes, and you learned how to dynamically interact with a panel’s
internal controls collection. Along the way, you were exposed to the new site navigation model (*.sitemap
files and the SiteMapDataSource component), the new data-binding engine, and various validation controls.

The latter half of this chapter examined the role of master pages and themes. Recall that master pages
can be used to define a common layout for a set of pages on your site. Also recall that the *.master file
defines any number of content placeholders into which content pages plug their custom UI content. Finally,
as you were shown, the Web Forms theme engine allows you to declaratively or programmatically apply a
common UI look and feel to your widgets on the web server.

1491

Chapter 33

ASP.NET State Management
Techniques

The previous two chapters concentrated on the composition and behavior of ASP.NET pages and the web
controls they contain. This chapter builds on that information by examining the role of the Global.asax file
and the underlying HttpApplication type. As you will see, the functionality of HttpApplication allows you
to intercept numerous events that enable you to treat your web application as a cohesive unit, rather than a
set of stand-alone *.aspx files driven by a master page.

In addition to investigating the HttpApplication type, this chapter also addresses the all-important
topic of state management. Here you will learn the role of the view state, session, and application variables
(including the application cache), cookie data, and the ASP.NET Profile API.

The Issue of State
At the beginning of Chapter 31, I pointed out that HTTP on the Web results in a stateless wire protocol. This
very fact makes web development extremely different from the process of building an executable assembly.
For example, when you are building a Windows desktop UI application, you can rest assured that any
member variables defined in the Form-derived class will typically exist in memory until the user explicitly
shuts down the executable.

public partial class MainWindow : Window
{
 // State data!
 private string userFavoriteCar = "Yugo";
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1492

In the World Wide Web environment, however, you are not afforded the same luxurious assumption.
To prove the point, create a new Empty Web Site project named SimpleStateExample and insert a
new Web Form. In the code-behind file of your *.aspx file, define a page-level string variable named
userFavoriteCar, as follows:

public partial class _Default : System.Web.UI.Page
{
 // State data?
 private string userFavoriteCar = "Yugo";

 protected void Page_Load(object sender, EventArgs e)
 {
 }
}

Next, construct a very simple web UI, as shown in Figure 33-1.

Figure 33-1. The UI for the simple state page

The server-side Click event handler for the Set button (named btnSetCar) allows the user to assign the
string member variable to the value within the TextBox (named txtFavCar), like so:

protected void btnSetCar_Click(object sender, EventArgs e)
{
 // Store favorite car in member variable.
 userFavoriteCar = txtFavCar.Text;
}

The Click event handler for the Get button (btnGetCar) displays the current value of the member
variable within the page’s Label widget (lblFavCar), as follows:

protected void btnGetCar_Click(object sender, EventArgs e)
{
 // Show value of member variable.
 lblFavCar.Text = userFavoriteCar;
}

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1493

If you were building a Windows GUI application, you would be right to assume that once the user sets
the initial value, it will be remembered throughout the life of the desktop application. Sadly, when you run
this web application, you will find that each time you post back to the web server (by clicking either button),
the value of the userFavoriteCar string variable is set back to the initial value of “Yugo.” Therefore, the
Label’s text is continuously fixed.

Again, given that HTTP has no clue how to automatically remember data once the HTTP response
has been sent, it stands to reason that the Page object is destroyed almost instantly. As a result, when the
client posts back to the *.aspx file, a new Page object is constructed that will reset any page-level member
variables. This is clearly a major issue. Imagine how useless online shopping would be if every time you
posted back to the web server, any and all information you previously entered (such as the items you wished
to purchase) were discarded. When you want to remember information regarding the users who are logged
on to your site, you need to make use of various state management techniques.

 ■ Note this issue is in no way limited to aSp.Net. Java web applications, Cgi applications, classic aSp
applications, and php applications all must contend with the thorny issue of state management.

To remember the value of the userFavoriteCar string type between postbacks, one approach is to store
the value of this string type in a session variable. You will examine the details of session state in the pages
that follow. For the sake of completion, however, here are the necessary updates for the current page (note
that you are no longer using the private string member variable, so feel free to comment out or remove the
definition altogether):

public partial class _Default : System.Web.UI.Page
{
 // State data?
 // private string userFavoriteCar = "Yugo";

 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void btnSetCar_Click(object sender, EventArgs e)
 {
 // Store value to be remembered in session variable.
 Session["UserFavCar"] = txtFavCar.Text;
 }

 protected void btnGetCar_Click(object sender, EventArgs e)
 {
 // Get session variable value.
 lblFavCar.Text = (string)Session["UserFavCar"];
 }
}

If you now run the application, the value of your favorite automobile will be preserved across postbacks,
thanks to the HttpSessionState object manipulated indirectly by the inherited Session property.
Session data (which will be examined in greater detail later in this chapter) is just one way to “remember”
information in your web sites. Over the next several pages, you will examine each of the major options
supported by ASP.NET.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1494

 ■ Source Code the SimpleStateexample web site is included in the Chapter 33 subdirectory.

ASP.NET State Management Techniques
ASP.NET provides several mechanisms you can use to maintain stateful information in your web
applications. Here are some common options:

•	 Use ASP.NET view state.

•	 Use ASP.NET control state.

•	 Define application-level data.

•	 Use the cache object.

•	 Define session-level data.

•	 Define cookie data.

In addition to these techniques, if you want to persist user data in a permanent manner, ASP.NET
provides an out-of-the-box Profile API. You’ll examine the details of each approach in turn, beginning with
the topic of ASP.NET view state.

Understanding the Role of ASP.NET View State
The term view state has been thrown out a few times here and in the previous chapters without a formal
definition, so let’s demystify this term. Without framework support, web developers are required to manually
repopulate the values of the incoming form widgets during the process of constructing the outgoing HTTP
response.

Using ASP.NET, we no longer have to manually scrape out and repopulate the values in the HTML
widgets because the ASP.NET runtime automatically embeds a hidden form field (named __VIEWSTATE),
which will flow between the browser and a specific page. The data assigned to this field is a Base64-
encoded string that contains a set of name/value pairs representing the values of each GUI widget on the
page at hand.

The System.Web.UI.Page base class’s Init event handler is the entity in charge of reading the incoming
values in the __VIEWSTATE field to populate the appropriate member variables in the derived class. (This is
why it is risky at best to access the state of a web widget within the scope of a page’s Init event handler.)

Also, just before the outgoing response is emitted back to the requesting browser, the __VIEWSTATE data
is used to repopulate the form’s widgets. Clearly, the best thing about this aspect of ASP.NET is that it just
happens without any work on your part. Of course, you are always able to interact with, alter, or disable this
default functionality if you so choose. To understand how to do this, let’s see a concrete view state example.

Demonstrating View State
First, create a new Empty Web Site called ViewStateApp and insert a new Web Form named Default.aspx.
Right-click the project name, and select Manage NuGet Packages. Add the Microsoft.CodeDom.Providers.
DotNetCompilerPlatform NuGet package, which provides C# 6 features for your web site. On your *.aspx
page, add a single ASP.NET ListBox web control named myListBox and a single Button control named
btnPostback.

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1495

 ■ Note For all of the examples in this chapter, you will need to add the Microsoft.CodeDom.Providers.
DotNetCompilerPlatform Nuget package to support the C# 6 features.

Now, using the Visual Studio Properties window, access the Items property and add four ListItems to
the ListBox using the associated dialog box. The resulting markup should look something like this:

<asp:ListBox ID="myListBox" runat="server">
 <asp:ListItem>Item One</asp:ListItem>
 <asp:ListItem>Item Two</asp:ListItem>
 <asp:ListItem>Item Three</asp:ListItem>
 <asp:ListItem>Item Four</asp:ListItem>
</asp:ListBox>

Note that you are hard-coding the items in the ListBox directly within the *.aspx file. As you
already know, all <asp:> definitions in an ASP.NET Web Form will automatically render back their HTML
representation before the final HTTP response (provided they have the runat="server" attribute).

The <%@Page%> directive has an optional attribute called EnableViewState that by default is set to true.
To disable this behavior, simply update the <%@Page%> directive as follows:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default"
 EnableViewState ="false" %>

So, what exactly does it mean to disable view state? The answer is, it depends. Given the previous
definition of the term, you would think that if you disable view state for an *.aspx file, the values in your
ListBox would not be remembered between postbacks to the web server. However, if you were to run this
application as is, you might be surprised to find that the information in the ListBox is retained regardless of
how many times you post back to the page.

In fact, if you examine the source HTML returned to the browser (by right-clicking the page within the
browser and selecting View Source), you might be further surprised to see that the hidden __VIEWSTATE field
is still present.

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwUKLTM4MTM2MDM4NGRkqGC6gjEV25JnddkJiRmoIc10SIA=" />

However, assume that your ListBox is dynamically populated within the code-behind file rather
than within the HTML <form> definition. First, remove the <asp:ListItem> declarations from the current
*.aspx file.

<asp:ListBox ID="myListBox" runat="server">
</asp:ListBox>

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1496

Next, fill the list items within the Load event handler in your code-behind file, like so:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Fill ListBox dynamically!
 myListBox.Items.Add("Item One");
 myListBox.Items.Add("Item Two");
 myListBox.Items.Add("Item Three");
 myListBox.Items.Add("Item Four");
 }
}

If you post to this updated page, you’ll find that the first time the browser requests the page, the values
in the ListBox are present and accounted for. However, on postback, the ListBox is suddenly empty. The
first rule of the ASP.NET view state is that its effect is only realized when you have widgets whose values are
dynamically generated through code. If you hard-code values within the *.aspx file’s <form> tags, the state
of these items is always remembered across postbacks (even when you set EnableViewState to false for a
given page).

If the idea of disabling view state for the entire *.aspx file seems a bit too aggressive, know that every
descendant of the System.Web.UI.Control base class inherits the EnableViewState property, which makes
it very simple to disable view state on a control-by-control basis.

<asp:GridView id="myHugeDynamicallyFilledGridOfData" runat="server"
 EnableViewState="false">
</asp:GridView>

 ■ Note Beginning with .Net 4.0, large view state data values are automatically compressed to help reduce
the size of this hidden form field.

Adding Custom View State Data
In addition to the EnableViewState property, the System.Web.UI.Control base class provides a protected
property named ViewState. Under the hood, this property provides access to a System.Web.UI.StateBag
type, which represents all the data contained within the __VIEWSTATE field. Using the indexer of the
StateBag type, you can embed custom information within the hidden VIEWSTATE form field using a set of
name/value pairs. Here’s a simple example:

protected void btnAddToVS_Click(object sender, EventArgs e)
{
 ViewState["CustomViewStateItem"] = "Some user data";
 lblVSValue.Text = (string)ViewState["CustomViewStateItem"];
}

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1497

Because the System.Web.UI.StateBag type has been designed to operate on System.Object types,
when you want to access the value of a given key, you should explicitly cast it into the correct underlying
data type (in this case, a System.String). Be aware, however, that values placed within the __VIEWSTATE field
cannot be just any object. Specifically, the only valid types are Strings, Integers, Booleans, ArrayLists,
Hashtables, or an array of these types.

So, given that *.aspx pages can insert custom bits of information into the __VIEWSTATE string, the next
logical step is to figure out when you would want to do so. Most of the time, custom view-state data is best
suited for user-specific preferences. For example, you could establish view-state data that specifies how a
user wants to view the UI of a GridView (such as a sort order). However, view-state data is not well-suited
for full-blown user data, such as items in a shopping cart or cached DataSets. When you need to store this
sort of complex information, you must work with session or application data. Before you get to that point,
though, you need to understand the role of the Global.asax file.

 ■ Source Code the ViewStateapp web site is included in the Chapter 33 subdirectory.

The Role of the Global.asax File
At this point, an ASP.NET application might seem little more than a set of .aspx files and their respective
web controls. While you could build a web application by simply linking a set of related web pages, you will
most likely need a way to interact with the web application as a whole. To this end, an ASP.NET application
may choose to include an optional Global.asax file via the WebSite ➤ Add New Item menu option, shown
in Figure 33-2. (Notice you are selecting the Global Application Class icon.)

Figure 33-2. The Global.asax file

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1498

Simply put, Global.asax is just about as close to a traditional double-clickable *.exe as you can get in
the world of ASP.NET, meaning this type represents the runtime behavior of the web site itself. When you
insert a Global.asax file into a web project, you’ll see that it’s little more than a <script> block containing a
set of event handlers, like this:

<%@ Application Language="C#" %>

<script runat="server">
 void Application_Start(object sender, EventArgs e)
 {
 // Code that runs on application startup.
 }

 void Application_End(object sender, EventArgs e)
 {
 // Code that runs on application shutdown.
 }

 void Application_Error(object sender, EventArgs e)
 {
 // Code that runs when an unhandled error occurs.
 }
 void Session_Start(object sender, EventArgs e)
 {
 // Code that runs when a new session is started.
 }
 void Session_End(object sender, EventArgs e)
 {
 // Code that runs when a session ends.
 // Note: The Session_End event is raised only when the sessionstate mode
 // is set to InProc in the web.config file. If session mode is set to
 // StateServer or SQLServer, the event is not raised.
 }
</script>

Looks can be deceiving, however. At runtime, the code within this <script> block is assembled into
a class type deriving from System.Web.HttpApplication. Therefore, within any of the provided event
handlers, you can access parent class members via the this or base keywords.

As mentioned, the members defined inside Global.asax are event handlers that allow you to interact
with application-level (and session-level) events. Table 33-1 documents the role of each member.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1499

The Global Last-Chance Exception Event Handler
First, let’s talk about the role of the Application_Error() event handler. Recall that a specific page may
handle the Error event to process any unhandled exception that occurred within the scope of the page itself.
In a similar light, the Application_Error() event handler is the final place to handle an exception that was
not handled by a given page. As with the page-level Error event, you are able to access the specific
System.Exception using the inherited Server property, like so:

void Application_Error(object sender, EventArgs e)
{
 // Obtain the unhandled error.
 Exception ex = Server.GetLastError();

 // Process error here...

 // Clear error when finished.
 Server.ClearError();
}

Given that the Application_Error() event handler is the last-chance exception handler for your web
application, it is quite common to implement this method in such a way that the user is transferred to a
predefined error page on the server. Other common duties could include sending an e-mail to the web
administrator or writing to an external error log.

Table 33-1. Core Types of the System.Web Namespace

Event Handler Meaning in Life

Application_Start() This event handler is called the very first time the web application is launched.
Thus, this event will fire exactly once over the lifetime of a web application. It
is an ideal place to define the application-level data used throughout your web
application.

Application_End() This event handler is called when the application is shutting down. This will
occur when the last user times out or if you manually shut down the application
via IIS.

Session_Start() This event handler is fired when a new user reaches your application. Here
you can establish any user-specific data points you want to preserve across
postbacks.

Session_End() This event handler is fired when a user’s session has terminated (typically
through a predefined timeout).

Application_Error() This is a global error handler that will be called when an unhandled exception is
thrown by the web application.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1500

The HttpApplication Base Class
As mentioned, the Global.asax script is dynamically generated as a class deriving from the System.Web.
HttpApplication base class, which supplies some of the same sort of functionality as the System.Web.
UI.Page type (without a visible user interface). Table 33-2 documents the key members of interest.

Table 33-2. Key Members Defined by the System.Web.HttpApplication Type

Property Meaning in Life

Application This property allows you to interact with application-level data, using the exposed
HttpApplicationState type.

Request This property allows you to interact with the incoming HTTP request, using the
underlying HttpRequest object.

Response This property allows you to interact with the incoming HTTP response, using the
underlying HttpResponse object.

Server This property gets the intrinsic server object for the current request, using the
underlying HttpServerUtility object.

Session This property allows you to interact with session-level data, using the underlying
HttpSessionState object.

Again, given that the Global.asax file does not explicitly document that HttpApplication is the
underlying base class, it is important to remember that all of the rules of the “is-a” relationship do indeed
apply.

Understanding the Application/Session Distinction
Under ASP.NET, application state is maintained by an instance of the HttpApplicationState type. This class
enables you to share global information across all users (and all pages) using your ASP.NET application. Not
only can application data be shared by all users on your site, but also if the value of an application-level data
point changes, the new value is seen by all users on their next postback.

On the other hand, session state is used to remember information for a specific user (again, such as
items in a shopping cart). Physically, a user’s session state is represented by the HttpSessionState class
type. When a new user reaches an ASP.NET web application, the runtime will automatically assign that user
a new session ID, which by default will expire after 20 minutes of inactivity. Thus, if 20,000 users are logged
on to your site, you have 20,000 distinct HttpSessionState objects, each of which is automatically assigned a
unique session ID. The relationship between a web application and web sessions is shown in Figure 33-3.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1501

Maintaining Application-Level State Data
The HttpApplicationState type enables developers to share global information across multiple users in an
ASP.NET application. Table 33-3 describes some core members of this type.

Figure 33-3. The application/session state distinction

Table 33-3. Members of the HttpApplicationState Type

Members Meaning in Life

Add() This method allows you to add a new name/value pair to the
HttpApplicationState object. Note that this method is typically not used in
favor of the indexer of the HttpApplicationState class.

AllKeys This property returns an array of string objects that represent all the names in
the HttpApplicationState type.

Clear() This method deletes all items in the HttpApplicationState object. This is
functionally equivalent to the RemoveAll() method.

Count This property gets the number of item objects in the HttpApplicationState
type.

Lock(), UnLock() These two methods are used when you want to alter a set of application variables
in a thread-safe manner.

RemoveAll(), Remove(),
RemoveAt()

These methods remove a specific item (by string name) within the
HttpApplicationState object. RemoveAt() removes the item via a numerical
indexer.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1502

To illustrate working with application state, create a new Empty Web Site project named AppState (and
insert a new Web Form). Next, insert a new Global.asax file. When you create data members that can be
shared among all users, you need to establish a set of name/value pairs. In most cases, the most natural
place to do so is within the Application_Start() event handler in Global.asax.cs, like so:

void Application_Start(Object sender, EventArgs e)
{
 // Set up some application variables.
 Application["SalesPersonOfTheMonth"] = "Chucky";
 Application["CurrentCarOnSale"] = "Colt";
 Application["MostPopularColorOnLot"] = "Black";
}

During the lifetime of your web application (which is to say, until the web application is manually shut
down or until the final user times out), any user on any page may access these values as necessary. Assume
you have a page that will display the current discount car within a Label via a button Click event handler,
like so:

protected void btnShowCarOnSale_Click(object sender, EventArgs arg)
{
 lblCurrCarOnSale.Text = string.Format("Sale on {0}'s today!",
 (string)Application["CurrentCarOnSale"]);
}

As with the ViewState property, notice how you should cast the value returned from the
HttpApplicationState object into the correct underlying type because the Application property operates
on general System.Object types.

Now, given that the Application property can hold any type, it should stand to reason that you can
place custom types (or any .NET object) within your site’s application state. Assume you’d rather maintain
the three current application variables within a strongly typed class named CarLotInfo, as follows:

public class CarLotInfo
{
 public CarLotInfo(string salesPerson, string currentCar, string mostPopular)
 {
 SalesPersonOfTheMonth = salesPerson;
 CurrentCarOnSale = currentCar;
 MostPopularColorOnLot = mostPopular;
 }
 public string SalesPersonOfTheMonth { get; set; }
 public string CurrentCarOnSale { get; set; }
 public string MostPopularColorOnLot { get; set; }
}

With this helper class in place, you could modify the Application_Start() event handler as follows:

void Application_Start(Object sender, EventArgs e)
{
 // Place a custom object in the application data sector.
 Application["CarSiteInfo"] =
 new CarLotInfo("Chucky", "Colt", "Black");
}

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1503

You could then access the information using the public field data within a server-side Click event
handler for a Button control named btnShowAppVariables, as follows:

protected void btnShowAppVariables_Click(object sender, EventArgs e)
{
 CarLotInfo appVars =
 ((CarLotInfo)Application["CarSiteInfo"]);
 string appState = $"Car on sale: { appVars.CurrentCarOnSale }"
 appState += $"Most popular color: { appVars.MostPopularColorOnLot }";
 appState += $"Big shot SalesPerson: { appVars.SalesPersonOfTheMonth }"
 lblAppVariables.Text = appState;
}

Given that the current car-on-sale data is now exposed from a custom class type, your
btnShowCarOnSale Click event handler would also need to be updated, like so:

protected void btnShowCarOnSale_Click(object sender, EventArgs e)
{
 lblCurrCarOnSale.Text =
 $"Sale on {((CarLotInfo)Application["CarSiteInfo"]).CurrentCarOnSale }'s today!";
}

Modifying Application Data
You may programmatically update or delete any or all application-wide data items using members of the
HttpApplicationState type during the execution of your web application. For example, to delete a specific
item, simply call the Remove() method. If you want to destroy all application-level data, call RemoveAll().

private void CleanAppData()
{
 // Remove a single item via string name.
 Application.Remove("SomeItemIDontNeed");

 // Destroy all application data!
 Application.RemoveAll();
}

If you want to change the value of an existing application-level data item, you need only make a new
assignment to the data item in question. Assume your page now has a Button that allows your user to
change the current hotshot salesperson by reading in a value from a TextBox named txtNewSP. The Click
event handler here is as you’d expect:

protected void btnSetNewSP_Click(object sender, EventArgs e)
{
 // Set the new Salesperson.
 ((CarLotInfo)Application["CarSiteInfo"]).SalesPersonOfTheMonth
 = txtNewSP.Text;
}

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1504

If you run the web application, you’ll find that the application-level data item has been updated.
Furthermore, given that application variables are accessible by any user on any page in the web application,
if you launched three or four instances of your web browser, you’d find that if one instance changes the
current salesperson, each of the other browsers displays the new value on postback. Figure 33-4 shows some
possible output.

Understand that if you have a situation where a set of application-level variables must be updated as
a unit, you risk the possibility of data corruption since it is technically possible that an application-level
data point may be changed while another user is attempting to access it! You could take the long road and
manually lock down the logic using threading primitives of the System.Threading namespace, but the
HttpApplicationState type has two methods, Lock() and Unlock(), that automatically ensure thread
safety:

// Safely access related application data.
Application.Lock();
Application["SalesPersonOfTheMonth"] = "Maxine";
Application["CurrentBonusedEmployee"] = Application["SalesPersonOfTheMonth"];
Application.UnLock();

Handling Web Application Shutdown
The HttpApplicationState type is designed to maintain the values of the items it contains until one of two
situations occurs: the last user on your site times out (or manually logs out) or someone manually shuts
down the web site via IIS. In either case, the Application_End() method of the HttpApplication- derived
type will automatically be called. Within this event handler, you are able to perform whatever sort of cleanup
is necessary.

Figure 33-4. Displaying application data

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1505

void Application_End(Object sender, EventArgs e)
{
 // Write current application variables
 // to a database or whatever else you need to do.
}

 ■ Source Code the appState web site is included in the Chapter 33 subdirectory.

Working with the Application Cache
ASP.NET provides a second and more flexible way to handle application-wide data. As you recall, the values
within the HttpApplicationState object remain in memory as long as your web application is alive and
kicking. Sometimes, however, you might want to maintain a piece of application data only for a specific
period of time. For example, you might want to obtain an ADO.NET DataSet that is valid for only five
minutes. After that time, you might want to obtain a fresh DataSet to account for possible database updates.
While it’s technically possible to build this infrastructure using HttpApplicationState and some sort of
handcrafted monitor, the ASP.NET application cache greatly simplifies your task.

As its name suggests, the ASP.NET System.Web.Caching.Cache object (which is accessible via the
Context.Cache property) allows you to define objects that are accessible by all users from all pages for a
fixed amount of time. In its simplest form, interacting with the cache looks identical to interacting with the
HttpApplicationState type.

// Add an item to the cache.
// This item will *not* expire.
Context.Cache["SomeStringItem"] = "This is the string item";
// Get item from the cache.
string s = (string)Context.Cache["SomeStringItem"];

 ■ Note if you want to access the cache from within Global.asax, you need to use the Context property.
however, if you are within the scope of a System.Web.UI.Page-derived type, you can access the Cache object
directly via the page’s Cache property.

The System.Web.Caching.Cache class defines only a small number of members beyond the type’s
indexer. You can use the Add() method to insert a new item into the cache that is not currently defined (if
the specified item is already present, Add() effectively does nothing). The Insert() method will also place
a member into the cache. If the item is currently defined, however, Insert() will replace the current item
with the new object. Since this is generally the behavior you’ll desire, I’ll focus on the Insert() method
exclusively.

Fun with Data Caching
Let’s see an example. To begin, create a new Empty Web Site named CacheState and insert a Web Form and
a Global.asax file. Like any application-level data item maintained by the HttpApplicationState type, the
cache may hold any System.Object-derived type and is often populated within the Application_Start()

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1506

event handler. For this example, the goal is to automatically update the contents of a DataSet every
15 seconds. The DataSet in question will contain the current set of records from the Inventory table of the
AutoLot database created during our discussion of ADO.NET.

Given these design notes, set a reference to AutoLotDAL.dll (see Chapter 31; it’s also included in the
code download for this chapter), add Entity Framework (EF) to your site (using the Manage NuGet Packages
context menu on the project name), and add the correct ConnectionString to your web.config like this (your
connection string might differ based on your installation of SQL Server Express):

<connectionStrings>
<add name="AutoLotConnection" connectionString="data source=(local)\SQLEXPRESS2014;initial
catalog=AutoLot;integrated security=True;MultipleActiveResultSets=True;App=EntityFramework"
providerName="System.Data.SqlClient" />
</connectionStrings>

Once you have configured your site for EF and added the reference to AutoLotDAL.dll, update your
Global.asax like so (code analysis to follow):

<%@ Application Language="C#" %>
<%@ Import Namespace = "AutoLotDAL.Repos" %>

<script runat="server">
 // Define a static-level Cache member variable.
 static Cache _theCache;

 void Application_Start(Object sender, EventArgs e)
 {
 // First assign the static "theCache" variable.
 _theCache = Context.Cache;

 // When the application starts up,
 // read the current records in the
 // Inventory table of the AutoLot DB.
 var theCars = new InventoryRepo().GetAll();

 // Now store DataTable in the cache.
 _theCache.Insert("CarList",
 theCars,
 null,
 DateTime.Now.AddSeconds(15),
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default,
 UpdateCarInventory);
 }

 // The target for the CacheItemRemovedCallback delegate.
 static void UpdateCarInventory(string key, object item,
 CacheItemRemovedReason reason)
 {
 var theCars = new InventoryRepo().GetAll();
 // Now store in the cache.
 _theCache.Insert("CarList",
 theCars,

http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1507

 null,
 DateTime.Now.AddSeconds(15),
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default,
 UpdateCarInventory);
 }
</script>

First, notice you've defined a static Cache member variable. The reason is that you’ve defined two static
members that need to access the Cache object. Recall that static methods do not have access to inherited
members, so you can’t use the Context property!

Inside the Application_Start() event handler, you get the list of Inventory items and insert it into
the application cache. As you would guess, the Context.Cache.Insert() method has been overloaded a
number of times. Here, you supply a value for each possible parameter. Consider the following commented
call to Insert():

_theCache.Insert("CarList", // Name used to identify item in the cache.
 theCars, // Object to put in the cache.
 null, // Any dependencies for this object?
 DateTime.Now.AddSeconds(15), // Absolute timeout value.
 Cache.NoSlidingExpiration, // Don't use sliding expiration (see below).
 CacheItemPriority.Default, // Priority level of cache item.
 // Delegate for CacheItemRemove event.
 UpdateCarInventory);

The first two parameters simply make up the name/value pair of the item. The third parameter allows
you to define a CacheDependency object (which is null in this case because the IList<Inventory> does not
depend on anything).

The DateTime.Now.AddSeconds(15) parameter specifies an absolute expiration time. It means the
cache item will definitely be evicted from the cache after 15 seconds. Absolute expiration is useful for data
items that need to be constantly refreshed (such as a stock ticker).

The Cache.NoSlidingExpiration parameter specifies that the cache item doesn’t use sliding
expiration. Sliding expiration is a way of keeping an item in the cache for at least a certain amount of time.
For example, if you set a sliding expiration of 60 seconds for a cache item, it will live in the cache for at least
60 seconds. If any web page accesses the cache item within that time, the clock is reset and the cache item
has a fresh 60 seconds to live. If no web page accesses the cache item in 60 seconds, the item is removed
from the cache. Sliding expiration is useful for data that might be expensive (time-wise) to generate, but
which might not be used very frequently by web pages.

Note that you can’t specify both an absolute expiration and a sliding expiration for a given cache item.
You set either an absolute expiration (and use Cache.NoSlidingExpiration) or a sliding expiration (and use
Cache.NoAbsoluteExpiration).

Finally, as you can see from the signature of the UpdateCarInventory() method, the
CacheItemRemovedCallback delegate can only call methods that match the following signature:

void UpdateCarInventory(string key, object item, CacheItemRemovedReason reason)
{
}

So, when the application starts up, the DataTable is populated and cached. Every 15 seconds, the
DataTable is purged, updated, and reinserted into the cache. To see the effects of doing this, you need to
create a page that allows for some degree of user interaction.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1508

Modifying the *.aspx File
Figure 33-5 shows a UI that allows the user to enter the necessary data to insert a new record into the database
(via three different TextBox controls). The Click event for the single Button control will be coded (in just a bit)
to handle the database manipulation. Finally, minus a number of descriptive Label controls, the GridView on
the bottom of the page will be used to display the set of current records in the Inventory table.

Figure 33-5. The cache application GUI

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1509

In the page’s Load event handler, configure your GridView to display the current contents of the cached
data the first time the user posts to the page (be sure to import the AutoLotDAL.Models and AutoLotDAL.Repos
namespaces within your code file).

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 carsGridView.DataSource = (IList<Inventory>)Cache["AppDataTable"];
 carsGridView.DataBind();
 }
}

In the Click event handler of the Add This Car button, insert the new record into the AutoLot
database using the InventoryRepo type. After the record has been inserted, call a helper function named
RefreshGrid(), which will update the UI.

protected void btnAddCar_Click(object sender, EventArgs e)
{
 // Update the Inventory table
 // and call RefreshGrid().
 new InventoryRepo().Add(new Inventory()
 {
 Color = txtCarColor.Text,
 Make = txtCarMake.Text,
 PetName = txtCarPetName.Text
 });
 RefreshGrid();
}

private void RefreshGrid()
{
 carsGridView.DataSource = new InventoryRepo().GetAll();
 carsGridView.DataBind();
}

Now, to test the use of the cache, begin by running the current program (Ctrl+F5) and copy the URL
appearing in the browser to your clipboard. Next, launch a second instance of your browser (using the
Start button) and paste the URL into this instance. At this point, you should have two instances of your web
browser, both viewing Default.aspx and showing identical data.

In one instance of the browser, add a new automobile entry. Obviously, this results in an updated
GridView viewable from the browser that initiated the postback.

In the second browser instance, click the Refresh button (F5). You should not see the new item, since
the Page_Load event handler is reading directly from the cache. (If you did see the value, the 15 seconds had
already expired. Either type faster or increase the amount of time the data will remain in the cache.) Wait a
few seconds and click the Refresh button from the second browser instance one more time. Now you should
see the new item, given that the data in the cache has expired and the CacheItemRemovedCallback delegate
target method has automatically updated the cached data.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1510

As you can see, the major benefit of the Cache type is that you can ensure that when an item is removed,
you have a chance to respond. In this example, you certainly could avoid using the Cache and simply have
the Page_Load() event handler always read directly from the AutoLot database (but this would potentially
be much slower than the caching approach). Nevertheless, the point should be clear: the cache allows you to
automatically refresh data using the cache mechanism.

 ■ Source Code the CacheState web site is included in the Chapter 33 subdirectory.

Maintaining Session Data
So much for our examination of application-level and cached data. Next, let’s check out the role of per-user
data. As mentioned, a session is little more than a given user’s ongoing interaction with a web application,
which is represented via a unique HttpSessionState object. To maintain stateful information for a
particular user, you can use the Session property in your web page class or in Global.asax. The classic
example of the need to maintain per-user data is an online shopping cart. Again, if 10 people all log on to
an online store, each individual will have a unique set of items that she (might) intend to purchase, and that
data needs to be maintained.

When a new user joins to your web application, the .NET runtime automatically assigns the user
a unique session ID, which is used to identify that user. Each session ID identifies a custom instance of
the HttpSessionState type to hold user-specific data. Inserting or retrieving session data is syntactically
identical to manipulating application data. For example,

// Add/retrieve session data for current user.
Session["DesiredCarColor"] = "Green";
string color = (string) Session["DesiredCarColor"];

In Global.asax, you can intercept the beginning and end of a session via the Session_Start() and
Session_End() event handlers. Within Session_Start(), you can freely create any per-user data items,
while Session_End() allows you to perform any work you might need to do when the user’s session has
terminated.

<%@ Application Language="C#" %>
...
void Session_Start(Object sender, EventArgs e)
{
 // New session! Prep if required.
}

void Session_End(Object sender, EventArgs e)
{
 // User logged off/timed out. Tear down if needed.
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1511

Like application state, session state may hold any System.Object-derived type, including your custom
classes. For example, assume you have a new Empty Web Site project (named SessionState) that defines a
class named UserShoppingCart, as follows:

public class UserShoppingCart
{
 public string DesiredCar {get; set;}
 public string DesiredCarColor {get; set;}
 public float DownPayment {get; set;}
 public bool IsLeasing {get; set;}
 public DateTime DateOfPickUp {get; set;}

 public override string ToString() =>
 $"Car: {DesiredCar}
Color: {DesiredCarColor}
$ Down: {DownPayment}" +
 $"
Lease: {IsLeasing}
Pick-up Date: {DateOfPickUp.ToShortDateString()}";
}

Now, insert a Global.asax file. Within the Session_Start() event handler, you can now assign each
user a new instance of the UserShoppingCart class, like so:

void Session_Start(Object sender, EventArgs e)
{
 Session["UserShoppingCartInfo"] = new UserShoppingCart();
}

As the user traverses your web pages, you are able to pluck out the UserShoppingCart instance and fill
the fields with user-specific data. For example, assume you have a simple *.aspx page that defines a set of
input controls that correspond to each field of the UserShoppingCart type, a Button for setting the values,
and two Labels that will be used to display the user’s session ID and session information (see Figure 33-6).

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1512

The server-side Click event handler for the Button control is straightforward (scrape out values from
TextBoxes and display the shopping cart data on a Label control).

protected void btnSubmit_Click(object sender, EventArgs e)
{
 // Set current user prefs.
 var cart = (UserShoppingCart)Session["UserShoppingCartInfo"];
 cart.DateOfPickUp = myCalendar.SelectedDate;
 cart.DesiredCar = txtCarMake.Text;
 cart.DesiredCarColor = txtCarColor.Text;
 cart.DownPayment = float.Parse(txtDownPayment.Text);
 cart.IsLeasing = chkIsLeasing.Checked;
 lblUserInfo.Text = cart.ToString();
 Session["UserShoppingCartInfo"] = cart;
}

Figure 33-6. The session application GUI

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1513

Within Session_End(), you might elect to persist the fields of the UserShoppingCart to a database
or whatnot (however, as you will see at the conclusion of this chapter, the ASP.NET Profile API will do so
automatically). As well, you might want to implement Session_Error() to trap any faulty input (or perhaps
make use of various validation controls on the Default.aspx page to account for such user errors).

In any case, if you were to launch two or three instances of your browser of choice all posting to the
same URL (via a copy/paste operation as you did for the data cache example), you would find that each user
is able to build a custom shopping cart that maps to his unique instance of HttpSessionState.

Additional Members of HttpSessionState
The HttpSessionState class defines a number of other members of interest beyond the type indexer. First,
the SessionID property will return the current user’s unique ID. If you would like to view the automatically
assigned session ID for this example, handle the Load event of your page as follows:

protected void Page_Load(object sender, EventArgs e)
{
 lblUserID.Text = $"Here is your ID: { Session.SessionID }";
}

The Remove() and RemoveAll() methods may be used to clear items out of the user’s instance of
HttpSessionState, like so:

Session.Remove("SomeItemWeDontNeedAnymore");

The HttpSessionState type also defines a set of members that control the expiration policy of the
current session. Again, by default each user has 20 minutes of inactivity before the HttpSessionState object
is destroyed. Thus, if a user enters your web application (and therefore obtains a unique session ID), but
then does not return to the site within 20 minutes, the runtime assumes the user is no longer interested and
destroys all session data for that user. You are free to change this default 20-minute expiration value on a
user-by-user basis using the Timeout property. The most common place to do so is within the scope of your
Session_Start() method, like so:

void Session_Start(Object sender, EventArgs e)
{
 // Each user has 5 minutes of inactivity.
 Session.Timeout = 5;
 Session["UserShoppingCartInfo"]
 = new UserShoppingCart();
}

 ■ Note if you do not need to tweak each user’s Timeout value, you can alter the 20-minute default for all
users via the timeout attribute of the <sessionState> element within the web.config file (examined at the
end of this chapter).

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1514

The benefit of the Timeout property is that you have the ability to assign specific timeout values
separately for each user. For example, imagine you have created a web application that allows users to pay
cash for a given membership level. You could specify that Gold members should time out within one hour,
while Wood members should get only 30 seconds. This possibility begs the question, how can you remember
user-specific information (such as the current membership level) if users close the browser and come back
at a later time? One possible answer is through the use of the HttpCookie type. (And speaking of cookies . . .)

 ■ Source Code the SessionState web site is included in the Chapter 32 subdirectory.

Understanding Cookies
The next state management technique you’ll examine is the persisting of data within a cookie, which is often
realized as a text file (or set of files) on the user’s machine. When a user joins a given site, the browser checks
to see whether the user’s machine has a cookie file for the URL in question and, if so, appends this data to
the HTTP request.

The receiving server-side web page can then read the cookie data to create a GUI based on the current
user preferences. I’m sure you’ve noticed that when you visit certain of your favorite web sites, they
somehow “just know” the sort of content you would like to see. The reason (in part) may have to do with a
cookie stored on your computer that contains information relevant to a given web site.

 ■ Note the exact location of your cookie files depends on which browser and operating system you happen
to be using.

The contents of a given cookie file will obviously vary among web sites, but keep in mind that they are
ultimately text files. Thus, cookies are a horrible choice for maintaining sensitive information about the
current user (such as a credit card number, password, and the like). Even if you take the time to encrypt
the data, a crafty hacker could decrypt the value and use it for evil purposes. In any case, cookies do play a
role in the development of web applications, so let’s check out how ASP.NET handles this particular state
management technique.

Creating Cookies
First of all, understand that ASP.NET cookies can be configured to be either persistent or temporary. A
persistent cookie is typically regarded as the classic definition of cookie data, in that the set of name/value
pairs is physically saved to the user’s hard drive. A temporary cookie (also termed a session cookie) contains
the same data as a persistent cookie, but the name/value pairs are never saved to the user’s hard drive;
rather, they exist only while the browser is open. When the user shuts down the browser, all data contained
in the session cookie is destroyed.

The System.Web.HttpCookie type is the class that represents the server side of the cookie data
(persistent or temporary). When you want to create a new cookie in your web page code, you access the
Response.Cookies property. Once the new HttpCookie is inserted into the internal collection, the name/
value pairs flow back to the browser within the HTTP header.

To check out cookie behavior firsthand, create a new Empty Web Site (named CookieStateApp) and
create the UI of the first Web Form (which you will need to insert) displayed in Figure 33-7.

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1515

Within the first button’s Click event handler, build a new HttpCookie and insert it into the Cookie
collection exposed from the HttpRequest.Cookies property. Be very aware that the data will not persist itself
to the user’s hard drive unless you explicitly set an expiration date using the HttpCookie.Expires property.
Thus, the following implementation will create a temporary cookie that is destroyed when the user shuts
down the browser:

protected void btnCookie_Click(object sender, EventArgs e)
{
 // Make a temp cookie.
 HttpCookie theCookie = new HttpCookie(txtCookieName.Text,txtCookieValue.Text);
 Response.Cookies.Add(theCookie);
}

However, the following generates a persistent cookie that will expire three months from today:

protected void btnCookie_Click(object sender, EventArgs e)
{
 HttpCookie theCookie = new HttpCookie(txtCookieName.Text,txtCookieValue.Text);
 theCookie.Expires = DateTime.Now.AddMonths(3);
 Response.Cookies.Add(theCookie);
}

Figure 33-7. The UI of CookieStateApp

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1516

Reading Incoming Cookie Data
Recall that the browser is the entity in charge of accessing persisted cookies when navigating to a previously
visited page. If a browser decides to send a cookie to the server, you can access the incoming data in your
*.aspx page via the HttpRequest.Cookies property. To illustrate, implement the Click event handler for the
second button like so:

protected void btnShowCookie_Click(object sender, EventArgs e)
{
 string cookieData = "";
 foreach (string s in Request.Cookies)
 {
 cookieData +=
 $"Name: {s}, Value: { Request.Cookies[s]?.Value }";
 }
 lblCookieData.Text = cookieData;
}

If you now run the application and click your new button, you will find that the cookie data has
indeed been sent by your browser and accessed successfully in your *.aspx code at the server, as shown in
Figure 33-8.

Figure 33-8. Running the CookieStateApp

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1517

 ■ Source Code the CookieStateapp web site is included in the Chapter 33 subdirectory.

The Role of the <sessionState> Element
At this point, you have examined numerous ways to remember information about your users. As you have
seen, view state and application, cache, session, and cookie data are manipulated programmatically in more
or less the same way (via a class indexer). As you have also seen, Global.asax has methods that allow you to
intercept and respond to events that occur during your web application’s lifetime.

By default, ASP.NET will store session state in-process. The plus side is that access to the information
is as fast as possible. However, the downside is that if this AppDomain crashes (for whatever reason), all of
the user’s state data is destroyed. Furthermore, when you store state data as an in-process *.dll, you cannot
interact with a networked web farm. This default mode of storage works just fine if your web application is
hosted by a single web server. As you might guess, however, this model is not ideal for a farm of web servers,
given that session state is “trapped” within a given AppDomain.

Storing Session Data in the ASP.NET Session State Server
Under ASP.NET, you can instruct the runtime to host the session state *.dll in a surrogate process named
the ASP.NET session state server (aspnet_state.exe). When you do so, you are able to offload the *.dll
from aspnet_wp.exe into a unique *.exe, which can be located on any machine within the web farm. Even
if you intend to run the aspnet_state.exe process on the same machine as the web server, you gain the
benefit of partitioning the state data in a unique process (as it is more durable).

To make use of the session state server, the first step is to start the aspnet_state.exe Windows service
on the target machine by typing the following in a Developer Command Prompt window (note that you will
need admin privileges to do so):

net start aspnet_state

Alternatively, you can start aspnet_state.exe using the Services applet accessed from the
Administrative Tools folder of the Control Panel, as shown in Figure 33-9.

Figure 33-9. Starting aspnet_state.exe using the Services applet

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1518

The key benefit of this approach is that you can use the Properties window to configure aspnet_state.
exe to start automatically when the machine boots up. In any case, once the session state server is running,
add the following <sessionState> element of your web.config file:

<system.web>
 <sessionState
 mode="StateServer"
 stateConnectionString="tcpip=127.0.0.1:42626"
 sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
 cookieless="false"
 timeout="20"
 />
...
</system.web>

That’s it! At this point, the CLR will host session-centric data within aspnet_state.exe. In this way, if
the AppDomain hosting the web application crashes, the session data is preserved. Moreover, note that the
<sessionState> element can also support a stateConnectionString attribute. The default TCP/IP address
value (127.0.0.1) points to the local machine. If you would rather have the .NET runtime use the aspnet_
state.exe service located on another networked machine (again, think web farms), you are free to update
this value.

Storing Session Data in a Dedicated Database
Finally, if you require the highest degree of isolation and durability for your web application, you may choose
to have the runtime store all your session state data within Microsoft SQL Server. The following appropriate
update to the web.config file is simple:

<sessionState
 mode="SQLServer"
 stateConnectionString="tcpip=127.0.0.1:42626"
 sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
 cookieless="false"
 timeout="20"
/>

However, before you attempt to run the associated web application, you need to ensure that the target
machine (specified by the sqlConnectionString attribute) has been properly configured. When you
install the .NET Framework 4.6 SDK (or Visual Studio proper), you will be provided with two files named
InstallSqlState.sql and UninstallSqlState.sql, located by default under C:\Windows\Microsoft.NET\
Framework\<version>. On the target machine, you must run the InstallSqlState.sql file using a tool such
as the Microsoft SQL Server Management Studio (which ships with Microsoft SQL Server).

After you have run InstallSqlState.sql, you will find a new SQL Server database has been created
(ASPState), which contains a number of stored procedures called by the ASP.NET runtime, as well as a set of
tables used to store the session data itself. (Also, the tempdb database has been updated with a set of tables
for swapping purposes.) As you’d guess, configuring your web application to store session data within SQL
Server is the slowest of all possible options. The benefit is that user data is as durable as possible (even if the
web server is rebooted).

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1519

 ■ Note if you use the aSp.Net session state server or SqL Server to store your session data, you must
make sure that any custom types placed in the HttpSessionState object have been marked with the
[Serializable] attribute.

Introducing the ASP.NET Profile API
So far you have examined numerous techniques that allow you to remember user-level and application-
level bits of data. However, many web sites require the ability to persist user information across sessions.
For example, perhaps you need to give users the ability to build an account on your site. Maybe you need to
persist instances of a ShoppingCart class across sessions (for an online shopping site). Or perhaps you need
to persist basic user preferences (themes, etc.).

While you could build a custom database (with several stored procedures) to hold such information,
you would then need to build a custom code library to interact with these database objects. This is not
necessarily a complex task, but the bottom line is that you are the individual in charge of building this sort of
infrastructure.

To help simplify matters, ASP.NET ships with an out-of-the-box user profile management API and
database system for this very purpose. In addition to providing the necessary infrastructure, the Profile
API allows you to define the data to be persisted directly within your web.config file (for purposes of
simplification); however, you are also able to persist any [Serializable] type. Before we get too far ahead of
ourselves, let’s check out where the Profile API will be storing the specified data.

The ASPNETDB.mdf Database
Every ASP.NET web site built with Visual Studio can support an App_Data subdirectory. By default, the
Profile API (as well as other services, such as the ASP.NET role membership API, which is not examined in
this text) is configured to make use of a local SQL Server database named ASPNETDB.mdf, located within the
App_Data folder. This default behavior is due to settings within the machine.config file for the current .NET
installation on your machine. In fact, when your code base makes use of any ASP.NET service requiring
the App_Data folder, the ASPNETDB.mdf data file will be automatically created on the fly if a copy does not
currently exist.

If you’d rather have the ASP.NET runtime communicate with an ASPNETDB.mdf file located on another
networked machine, or you’d prefer to install this database on an instance of SQL Server 7.0 (or higher), you
will need to manually build ASPNETDB.mdf using the aspnet_regsql.exe command-line utility. Like any
good command-line tool, aspnet_regsql.exe provides numerous options; however, if you run the tool with
no arguments (from a Developer Command Prompt window), like

aspnet_regsql

you will launch a GUI-based wizard that will walk you through the process of creating and installing
ASPNETDB.mdf on your machine (and version of SQL Server) of choice.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1520

Now, assuming your site is not using a local copy of the database under the App_Data folder, the final
step is to update your web.config file to point to the unique location of your ASPNETDB.mdf. Assume you
have installed ASPNETDB.mdf on a machine named ProductionServer. The following (partial) machine.
config file would instruct the Profile API where to find the necessary database items in their default location
(you could add a custom web.config to change these defaults):

<configuration>
 <connectionStrings>
 <add name="LocalSqlServer"
 connectionString ="Data Source=ProductionServer;Integrated
 Security=SSPI;Initial Catalog=aspnetdb;"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
 <system.web>
 <profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 connectionStringName="LocalSqlServer"
 applicationName="/"
 type="System.Web.Profile.SqlProfileProvider, System.Web,
 Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </profile>
 </system.web>
</configuration>

Like most *.config files, this looks much worse than it is. Basically you are defining a <connectionString>
element with the necessary data, followed by a named instance of the SqlProfileProvider (this is the
default provider used regardless of physical location of the ASPNETDB.mdf).

 ■ Note For simplicity, i will assume that you’ll use the autogenerated ASPNETDB.mdf database located in
your web application’s App_Data subdirectory.

Defining a User Profile Within web.config
As mentioned, a user profile is defined within a web.config file. The really nifty aspect of this approach is
that you can interact with this profile in a strongly typed manner using the inherited Profile property in
your code files. To illustrate this, create a new Empty Web Site named FunWithProfiles, add a new *.aspx
file, and open your web.config file for editing.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1521

The goal is to make a profile that models the home address of the users who are in session, as well
as the total number of times they have posted to this site. Not surprisingly, profile data is defined within
a <profile> element using a set of name/data type pairs. Consider the following profile, which is created
within the scope of the <system.web> element:

<profile>
 <properties>
 <add name="StreetAddress" type="System.String" />
 <add name="City" type="System.String" />
 <add name="State" type="System.String" />
 <add name="TotalPost" type="System.Int32" />
 </properties>
</profile>

Here, you have specified a name and CLR data type for each item in the profile (of course, you could
add additional items for ZIP code, name, and so forth, but I am sure you get the idea). Strictly speaking, the
type attribute is optional; however, the default is a System.String. There are many other attributes that can
be specified in a profile entry to further qualify how this information should be persisted in ASPNETDB.mdf.
Table 33-4 illustrates some of the core attributes.

Table 33-4. Select Attributes of Profile Data

Attribute Example Values Meaning in Life

allowAnonymous True | False Restricts or allows anonymous access to this value.
If it is set to false, anonymous users won’t have
access to this profile value.

defaultValue String The value to return if the property has not been
explicitly set.

Name String A unique identifier for this property.

Provider String The provider used to manage this value. It overrides
the defaultProvider setting in web.config or
machine.config.

readOnly True | False Restricts or allows write access. The default is false
(i.e., it’s not read-only).

serializeAs String | XML | Binary The format of a value when persisting in the data
store.

type Primitive | User- defined type A .NET primitive type or class. Class names must be
fully qualified (e.g., MyApp.UserData.ColorPrefs).

You will see some of these attributes in action as you modify the current profile. For now, let’s see how
to access this data programmatically from within our pages.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1522

Accessing Profile Data Programmatically
Recall that the whole purpose of the ASP.NET Profile API is to automate the process of writing data to (and
reading data from) a dedicated database. To test this out for yourself, update the UI of your Default.aspx
file with a set of TextBoxes (and descriptive Labels) to gather the street address, city, and state of the user. As
well, add a Button (named btnSubmit) and a final Label (named lblUserData) to display the persisted data,
as shown in Figure 33-10.

Now, within the Click event handler of the button, use the inherited Profile property to persist each
point of profile data based on what the user has entered in the related TextBox. After you have persisted each
piece of data within ASPNETDB.mdf, read each piece of data out of the database and format it into a string
that is displayed on the lblUserData Label type. Finally, handle the page’s Load event, and display the same
information on the Label type. In this way, when users come to the page, they can see their current settings.
Here is the complete code file:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 GetUserAddress();
 }

Figure 33-10. The UI of the FunWithProfiles Default.aspx page

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1523

 protected void btnSubmit_Click(object sender, EventArgs e)
 {
 // Database writes happening here!
 Profile.StreetAddress = txtStreetAddress.Text;
 Profile.City = txtCity.Text;
 Profile.State = txtState.Text;

 // Get settings from database.
 GetUserAddress();
 }

 private void GetUserAddress()
 {
 // Database reads happening here!
lblUserData.Text =
 $"You live here: {Profile. StreetAddress }, {Profile.City}, {Profile.State}";
 }
}

Now if you run this page, you will notice a lengthy delay the first time Default.aspx is requested. The
reason is that the ASPNETDB.mdf file is being created on the fly and placed within your App_Data folder (you
can verify this for yourself by refreshing the Solution Explorer window and looking in the App_Data folder).

You will also find that the first time you come to this page, the lblUserData Label does not display
any profile data because you have not yet entered your data into the correct table of ASPNETDB.mdf. After
you enter values in the TextBox controls and post back to the server, this Label will be formatted with the
persisted data.

Now for the really interesting aspect of this technology: if you shut down your browser and rerun your
web site, you will find that your previously entered profile data has indeed been persisted because the Label
displays the correct information. This begs the obvious question, how were you remembered?

For this example, the Profile API used your Windows network identity, which was obtained via your
current machine credentials. However, when you are building public web sites (where the users are not part
of a given domain), rest assured that the Profile API integrates with the Forms-based authentication model
of ASP.NET and also supports the notion of “anonymous profiles,” which allow you to persist profile data for
users who do not currently have an active identity on your site.

 ■ Note this edition of the text does not address aSp.Net security topics (such as Forms-based
authentication or anonymous profiles). Consult the .Net Framework 4.6 SDK documentation for details.

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1524

Grouping Profile Data and Persisting Custom Objects
Finally, let’s look at how profile data may be defined within a web.config file. The current profile simply
defined four pieces of data that were exposed directly from the profile type. When you build more complex
profiles, it can be helpful to group related pieces of data under a unique name. Consider the following update:

<profile>
 <properties>
 <group name ="Address">
 <add name="StreetAddress" type="String" />
 <add name="City" type="String" />
 <add name="State" type="String" />
 </group>
 <add name="TotalPost" type="Integer" />
 </properties>
</profile>

This time, you have defined a custom group named Address to expose the street address, city, and state
of your user. To access this data in your pages would now require you to update your code base by specifying
Profile.Address to get each subitem. For example, here is the updated GetUserAddress() method (the
Click event handler for the Button would need to be updated in a similar manner):

private void GetUserAddress()
{
 // Database reads happening here!
 lblUserData.Text =
 $"You live here: {Profile.Address.StreetAddress}, {Profile.Address.City}, " +
 $"{Profile.Address.State}";
}

Before you run this example, you need to delete ASPNETDB.mdf from your App_Data folder to ensure
the database schema is refreshed. After you have done so, you should be able to run your web site example
without error.

 ■ Note a profile can contain as many groups as you feel are necessary. Simply define multiple <group>
elements within your <properties> scope.

Finally, it is worth pointing out that a profile may also persist (and obtain) custom objects to and from
ASPNETDB.mdf. To illustrate, assume you want to build a custom class (or structure) that will represent the
user’s address data. The only requirement expected by the Profile API is that the type be marked with the
[Serializable] attribute, like so:

[Serializable]
public class UserAddress
{
 public string Street = string.Empty;
 public string City = string.Empty;
 public string State = string.Empty;
}

Chapter 33 ■ aSp.Net State MaNageMeNt teChNiqueS

1525

With this class in place, your profile definition can now be updated as follows (notice I removed the
custom group, although this is not mandatory):

<profile>
 <properties>
 <add name="AddressInfo" type="UserAddress" serializeAs ="Binary"/>
 <add name="TotalPost" type="Integer" />
 </properties>
</profile>

Note that when you are adding [Serializable] types to a profile, the type attribute is the fully qualified
name of the type being persisted. As you will see from the Visual Studio IntelliSense, your core choices are
binary, XML, or string data. Now that you are capturing street address information as a custom class type,
you (once again) need to update your code base as follows:

private void GetUserAddress()
{
 // Database reads happening here!
 lblUserData.Text =
 $"You live here: {Profile.AddressInfo.Street}, {Profile.AddressInfo.City}, " +
 $"{Profile.AddressInfo.State}";
}

To be sure, there is much more to the Profile API than I’ve had space to cover here. For example,
the Profile property actually encapsulates a type named ProfileCommon. Using this type, you can
programmatically obtain all information for a given user, delete (or add) profiles to ASPNETDB.mdf, update
aspects of a profile, and so forth.

Moreover, the Profile API has numerous points of extensibility that can allow you to optimize how the
profile manager accesses the tables of the ASPNETDB.mdf database. As you would expect, there are many
ways to decrease the number of “hits” this database takes. Interested readers are encouraged to consult the
.NET Framework 4.6 SDK documentation for further details.

 ■ Source Code the FunWithprofiles web site is included in the Chapter 33 subdirectory.

Summary
In this chapter, you rounded out your knowledge of ASP.NET by examining how to leverage the
HttpApplication type. As you have seen, this type provides a number of default event handlers that allow
you to intercept various application- and session-level events. The bulk of this chapter was spent exploring
a number of state management techniques. Recall that view state is used to automatically repopulate the
values of HTML widgets between postbacks to a specific page. Next, you checked out the distinction of
application- and session-level data, cookie management, and the ASP.NET application cache.

Finally, this chapter exposed you to the ASP.NET Profile API. As you have seen, this technology
provides an out-of-the-box solution for the issue of persisting user data across sessions. Using your
web site’s web.config file, you can define any number of profile items (including groups of items and
[Serializable] types) that will automatically be persisted into ASPNETDB.mdf.

http://dx.doi.org/10.1007/978-1-4842-1332-2_33

1527

Chapter 34

ASP.NET MVC and Web API

The last three chapters covered ASP.NET Web Forms as well as web-related concepts such as HTTP and
HTML. This chapter introduces two newcomers to the ASP.NET ecosystem: ASP.NET MVC and Web API.
MVC grew out of the user community (specifically the ALT.NET movement) asking for a framework that
more closely adhered to the tenants of HTTP, was more testable, and adhered to separation of concerns.
While Web Forms still controls the market share of the .NET web development ecosystem, MVC is rapidly
growing its adoption rate.

This chapter begins with a brief explanation of the MVC pattern and then dives right into creating an
MVC project. There is a lot of scaffolding that comes with the default project template, and the next sections
cover the parts that are created for you. After getting a solid understanding of MVC, you will build the
inventory pages for CarLotMVC, an MVC-based subset of the web site you built in the last three chapters.

The next section introduces you to Web API, a service framework built largely on the chassis of MVC,
and shares many of the concepts, including routing, controllers, and actions. ASP.NET Web API allows you
to leverage your MVC knowledge to build RESTful services without the configuration and plumbing that
WCF (Chapter 25) requires. You will create a RESTful service called CarLotWebAPI that exposes all of the
create, read, update, delete (CRUD) functionality on the inventory records. Finally, you finish the chapter
by updating CarLotMVC to use CarLotWebAPI as the data source, instead of using Entity Framework and
AutoLotDAL.

Introducing the MVC Pattern
The Model-View-Controller (MVC) pattern has been around since the 1970s (created as a pattern used in
Smalltalk) but has exploded in popularity fairly recently. Many languages have MVC frameworks, including
Java (most notably in the Spring Framework), Ruby (Ruby on Rails), .NET (with the introduction of ASP.NET
MVC in 2007), and many JavaScript client frameworks such as Angular and EmberJS.

If the description of the pattern that follows reminds you of the Model-View-ViewModel pattern
(covered in Chapter 30), you are correct. MVVM leverages many components of MVC (along with the
Presentation Model pattern). Enough history. Let’s get into the pattern!

The Model
Just like in MVVM, the model is the data of your application. The data is typically represented by plain old
CLR objects (POCOs), as you built in the AutoLotDAL library (Chapter 23) and used in the MVVM examples
(Chapter 30). The model classes can (and often do) have validation built in and, depending on the client-side
JavaScript framework used (such as knockout.js), can be configured as observables.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25
http://dx.doi.org/10.1007/978-1-4842-1332-2_30
http://dx.doi.org/10.1007/978-1-4842-1332-2_23
http://dx.doi.org/10.1007/978-1-4842-1332-2_30

Chapter 34 ■ aSp.Net MVC aNd Web apI

1528

The View
The view is the UI of the application and renders the output to the user. The view should be as lightweight as
is practical.

The Controller
The controller is the brains of the operation. Controllers have two responsibilities; the first is taking
commands/requests from the user (referred to as actions) and correctly marshaling them appropriately
(such as to a repository), and the second is to send any changes to the view. Controllers (as well as models
and views) should be lightweight and leverage other components to maintain separation of concerns. This all
sounds simple, doesn’t it? Before you dive into building an MVC application, there is that age-old question…

Why MVC?
By the time ASP.NET MVC was released in 2007, ASP.NET Web Forms had been in production for six years.
Thousands of sites built on Web Forms were in production, with more and more coming online every day.
So, why would Microsoft make a new framework from scratch? Before we answer that, a short look backward
in time is appropriate.

When Microsoft first released ASP.NET Web Forms, web development wasn’t as prolific as it is today.
The stateless paradigm was a difficult one to grasp, especially for smart client developers (such as those
making desktop apps with Visual Basic 6, MFC, and PowerBuilder). To bridge the knowledge gap and make
it easier for developers to build web sites, Web Forms enabled many of the desktop concepts, such as state
(through viewstate) and prebuilt controls.

The plan worked. Web Forms was generally well received, and many developers made the jump to web
developers. The number of web sites based on Web Forms continued to grow, and the story of .NET evolved.
A thriving third-party ecosystem suppling Web Forms controls (and many other .NET controls) grew up in
lockstep with Web Forms and .NET. Everything was coming up roses!

At the same time, developers were learning more about (and becoming comfortable with) the
statelessness of programming for the Web, the HTTP protocol, HMTL, and JavaScript. These developers
needed the bridging technologies less and less and wanted more and more control of the rendered views.

With each new version of Web Forms, additional features and capabilities were added into the
framework, each adding to the weight of the applications. The increasing complexity of web sites being
developed meant items such as viewstate were growing seemingly out of control. Even worse, some early
decisions made in the creation of Web Forms (such as where viewstate was placed in the rendered page)
were causing issues such as performance degradation to rear their ugly heads. This was causing some
high-profile “defections” from .NET to other languages, like Ruby (using Ruby on Rails).

But Microsoft couldn’t (and wisely wouldn’t) remove those bridging technologies and other code from
the ASP.NET core without risking millions of lines of code. Something had to be done, and retooling Web
Forms wasn’t an option (although as you learned in the previous chapters, significant work was put into
ASP.NET Web Forms 4.5 to resolve a whole host of issues). Microsoft had some hard decisions to make: how
to keep the existing web developers (and the control ecosystem that grew up with Web Forms) happy and
productive, while providing a platform for those developers who wanted to be closer to the metal of the Web.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1529

Enter ASP.NET MVC
Thus, for all of those reasons, a new framework was born. ASP.NET MVC was created to be an alternative
to ASP.NET Web Forms. There are some noticeable differences between ASP.NET Web Forms and ASP.NET
MVC, including the following:

•	 Removing:

•	 Code-behind files for views

•	 Server-side control support

•	 Viewstate

•	 Adding:

•	 Model binding

•	 Routing

•	 The Razor View Engine (starting with MVC 3)

The result is a lightweight framework built on the speed of rendering and designed for testability
and separation of concerns, but also requiring a deeper knowledge of HTML and JavaScript and the way
HTTP actually works. Since the versions up to and including MVC5 are still built on the same core .NET
libraries as Web Forms and Web API, combining Web Forms, MVC, and/or Web API becomes a viable
deployment pattern. Each has strengths and weaknesses, and you should pick the right tool for the right job.

Convention over Configuration
One of the tenants of ASP.NET MVC is convention over configuration. This means that there are specific
conventions (such as naming conventions and directory structure) for MVC projects that enable a lot of
“magic” to be done for you by Visual Studio and .NET. This reduces the amount of manual or templated
configuration necessary, but it also means you need to know the conventions. As you progress through this
chapter, you will see several of the conventions in action.

Building Your First ASP.NET MVC Application
Enough theory. It’s time for code. Visual Studio ships with a rather complete project template for building
ASP.NET MVC apps, and you will take full advantage of that when you build CarLotMVC.

The New Project Wizard
Start by launching Visual Studio, selecting File ➤New ➤ Project. In the left sidebar, select Web under
Visual C#, select ASP.NET Web Application, and change Name to CarLotMVC, as shown in Figure 34-1.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1530

If you’ve been following along with the previous chapters on ASP.NET, you will notice that this is
the same way you started building an ASP.NET Web Forms application. All ASP.NET application types
(Web Forms, MVC, Web API) start with a single selection in the New Project Wizard, instead of having to
choose a specific framework. Known as One ASP.NET, this change was introduced in .NET 4.5.

On the next screen, select MVC under ASP.NET 4.6 Templates. Notice that the MVC check box is
selected under “Add folders and core references for:” and the others are not. If you wanted to create a
hybrid application that supported MVC and Web Forms, you could select the Web Forms check box as well.
For this example, just select MVC app, as shown in Figure 34-2. Also notice the “Add unit tests” check box.
If you select this option, another project will be created for you that provides a basic framework for unit
testing your ASP.NET application. Don’t click OK yet, as you’ll examine the authentication mechanisms for
your project.

Figure 34-1. Creating a new ASP.NET web application

Chapter 34 ■ aSp.Net MVC aNd Web apI

1531

Click the Change Authentication button, and you will see the dialog shown in Figure 34-3. Leave the
default set to Individual User Accounts (the default), click OK, and click OK in the Select a Template dialog.

Figure 34-2. Selecting MVC

Figure 34-3. Authentication options for the project

Chapter 34 ■ aSp.Net MVC aNd Web apI

1532

Table 34-1 discusses the four authentication options available to MVC applications.

Table 34-1. Authentication Choices

Option Meaning in Life

No Authentication No mechanism for logging in, entity classes for membership, or a
membership database.

Individual User Accounts Uses ASP.NET Identity (formerly known as ASP.NET Membership) for user
authentication.

Work and School Accounts For applications that authenticate with Active Directory, Azure Active
Directory, or Office 365.

Windows Authentication Uses Windows Authentication. Intended for intranet web sites.

 ■ Note I don’t cover authentication in this book because of space limitations. For more information on
authentication in MVC, please see adam Freeman’s book Pro ASP.NET MVC5.

Once that’s completed, you will see a lot of generated files and folders, as in Figure 34-4. You’ll be
examining these in the next section.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1533

The Components of a Base MVC Project
Some of the folders and files should look familiar to you because they are named the same as the files and
folders available to ASP.NET Web Forms projects.

Project Root Files
Most of the files in MVC projects have specific locations where they should be placed. However, there are a
few files that are in the root of the project, and not all of them get deployed with the web site. Table 34-2 lists
the files in the root of the MVC site and whether or not they are deployed.

Figure 34-4. The generated files and folders for an MVC app

Chapter 34 ■ aSp.Net MVC aNd Web apI

1534

Global.asax.cs

The Global.asax.cs file is where you hook into the ASP.NET pipeline. The events are the same events available to
ASP.NET Web Forms. The default project template uses only the Application_Start event handler, but there are
many more events that can be hooked into if you need them. Table 34-3 lists the most commonly used events.

Table 34-3. Commonly Used Global.asax.cs Events

Event Meaning in Life

Application_Start Raised on first request for the application

Application_End Raised when the application ends

Application_Error Raised when an unhandled error occurs

Session_Start Raised when a first request for a new session

Session_End Raised when a session ends (or times out)

Application_BeginRequest Raised when a request is made to the server

Application_EndRequest Raised as the last event in the HTTP pipeline chain of execution when
ASP.NET responds to a request

Table 34-2. Files in the Project Root

File Meaning in Life Deployed?

favicon.ico The icon that is displayed by browsers in the address bar
next to the page name. Not having this can cause performance
issues, as browser will continually look for this.

Yes

Global.asax/
Global.asax.cs

The entry point into the application
(like ASP.NET Web Forms).

Yes

packages.config Configuration information for NuGet packages used
in the project.

Yes

Project_Readme.html Visual Studio–specific file that provides
useful links and other information about ASP.MVC.

No

Startup.cs Startup class for OWIN (ASP.NET Identity). Yes (Compiled)

Web.config Project configuration file. Yes

The Models Folder
This is exactly what it sounds like; it’s the place to put model classes. In larger applications, you should
use a data access library to hold your data access models. The Models folder is most commonly used for
view-specific models, such as the model classes generated by Visual Studio for ASP.NET Identity.

The Controllers Folder
Again, just as the name implies, the Controllers folder is where the controllers in your application live.
I will cover controllers in great detail later in this chapter.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1535

Figure 34-5. Adding new ASP.NET folders

The Views Folder
The Views folder is where the MVC views are stored (as the name suggests), but unlike the Models and
Controllers folders, there is a convention for the directory structure contained in the Views folder.

In the root of the Views folder there is a Web.config file and a file named _ViewStart.cshtml.
The Web.config file is specific for the views in this folder hierarchy, defines the base page type
(e.g., System.Web.Mvc.WebViewPage), and, in Razor-based projects, adds all the references and using
statements for Razor. The _ViewStart.cshtml file specifies the default layout view to use if one is not
specifically assigned for a view. This will be discussed in greater detail with layouts. The layout view is
analogous to the master page in Web Forms and will be covered in more detail later in this chapter.

 ■ Note Why the leading underscore for _ViewStart.html (and _Layout.cshtml)? the razor View engine
was originally created for WebMatrix, which would allow any file that did not start with an underscore to be
rendered, so core files (such as layout and configuration) all have names that began with an underscore.
You will also see this naming convention used for partial views. however, this is not a convention that MVC
cares about since MVC doesn’t have the same issue as WebMatrix, but the underscore legacy lives on anyway.

Each controller gets its own folder under the Views folder. This folder structure is part of the MVC
convention; controllers look for their views in a folder of the same name as the controller (minus the word
Controller). For example, the Views/Home folder holds all the views for the HomeController controller class.

The Shared Folder

A special folder under Views is named Shared. This folder is accessible to all views.

The ASP.NET Folders
There are also folders reserved for ASP.NET. An example of this is the App_Data ASP.NET folder that is included in
the default MVC template. This folder is a special folder designed to store any file-based data needed by the site.
There are also folders for storing code, resources, and themes. The ASP.NET folders can be added by right-clicking
the project, selecting Add ➤ Add New ASP.NET Web Folder, and selecting one from the dialog shown in
Figure 34-5. The ASP.NET folders are not viewable from the web site, even if folder navigation is enabled.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1536

The App_Start Folder
Early versions of MVC contained all the site configuration code (such as routing and security) in the
Global.asax.cs class. As the amount of configuration grew, the developers on the MVC team wisely split
the code into separate classes to better follow single responsibility. Out of this refactoring, the App_Start
folder and its contained classes were born (details in Table 34-5). Any code in the App_Start folder gets
automatically compiled into the site.

Table 34-4 lists the available ASP.NET web folders.

Table 34-5. Files in App_Start

File Meaning in Life

BundleConfig.cs Creates the files bundles for JavaScript and CSS files. Additional bundles can
(and should) be created in this class.

FilterConfig.cs Registers action filters (such as authentication or authorization) at a global scope.

IdentityConfig.cs Contains support classes for ASP.NET Identity.

RouteConfig.cs Class where the routing table is configured.

Startup.Auth.cs Entry point for configuration of ASP.NET Identity.

Table 34-4. ASP.NET Web Folders

Folder Meaning in Life

App_Code Code files contained in this folder are dynamically compiled.

App_GlobalResources Holds resource files available to the entire application. Typically used for
localization.

App_LocalResources Contains resources available to a specific page. Typically used for localization.

App_Data Contains file-based data used by the application.

App_Browsers Place to hold browser capability files.

App_Themes Holds themes for the site.

BundleConfig

This class sets up the bundles for CSS and JavaScript files. By default, when using ScriptBundle, all included
files are bundled and minified (see the next section for an explanation of bundling and minification) for
production and not bundled or minified for debug mode. This can be controlled through Web.config or in
the class itself. To turn off bundling and minification, enter the following into the system.web section of your
top-level Web.config (if it doesn’t already exist):

<system.web>
 <compilation debug="true" targetFramework="4.6" />
 </system.web>

Chapter 34 ■ aSp.Net MVC aNd Web apI

1537

Table 34-6. Filters in ASP.NET MVC

Filter Type Meaning in Life

Authorization These implement IAuthorizationFilter and run before any other filter. Two examples are
Authorize and AllowAnonymous. For example, the AccountController class is annotated with
the [Authorize] attribute to require an authenticated user through Identity, and the Login
action is marked with the [AllowAnonymous] attribute to allow any user.

Action Implement IActionFilter and allow for interception of action execution with
OnActionExecuting and OnActionExecuted.

Result Implement IResultFilter and intercept the result of an action with OnResultExecuting
and OnResultExecuted.

Exception Implement IExceptionFilter and execute if an unhandled exception is thrown during the
execution of the ASP.NET pipeline. By default, the HandleError filter is configured at the global
level. This filter displays the error view page Error.cshtml located in the Shared\Error folder.

Or add BundleTable.EnableOptimizations = false in the RegisterBundles method in
BundleConfig.cs, as follows:

public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new ScriptBundle("~/bundles/jquery").Include("~/Scripts/jquery-{version}.js"));
 // Code removed for clarity.
 BundleTable.EnableOptimizations = false;
}

Bundling
Bundling is the process of combining multiple files into one. This is done for a couple of reasons; the main
reason is to speed up your site. Browsers have a limit of how many files they will download concurrently
from a single server. If your site contains a lot of small files (which is usually a good idea in support of
separation of concerns and single responsibility), this can slow down your users’ experience. Bundling and
using content delivery networks (CDNs) can help resolve this. Of course, you need to temper your actions
with wisdom since having one gigantic file probably isn’t going to be any better than a million little ones.

Minification
Like bundling, minification is designed to speed up load time for web pages. For CSS and JavaScript files
to be readable, they are typically written with meaningful variable and function names, comments, and
other formatting (at least they should be). The problem is that every bit getting sent over the wire counts,
especially when dealing with mobile clients.

Minification is a process of replacing long names with short (sometimes just one-character) names,
removing extra spaces, as well as other formatting. Most modern frameworks ship with two versions of their
CSS and JavaScript files. Bootstrap is no different, shipping with bootstrap.css for use while developing
your application and bootstrap.min.css for production.

FilterConfig

Filters are custom classes that provide a mechanism to intercept actions and requests. They can be applied
at the action, controller, or global level. There are four types of filters in MVC, as listed in Table 34-6.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1538

Identity

Identity.config.cs and Startup.Auth.cs are both used to support ASP.NET Identity. Identity is too
big of a topic to be covered as part of this chapter. In fact, one could write a book on all the details around
security and identity. As mentioned early, ASP.NET Identity is based on OWIN, separating Identity from its
dependency on IIS. While this separation doesn’t come into play for MVC using the .NET 4.6 framework,
it can be significant in ASP.NET Web API if you are self-hosting your service.

RouteConfig

Early versions of ASP.NET Web Forms defined the URLs of the site based on the physical folder structure of
the project. This could be changed with HttpModules and HttpHandlers, but that was far from ideal. MVC
from the start included routing, which enables you to shape the URLs to better suit your users. This will be
covered in greater detail later in this chapter.

The Content Folder
The Content folder is designed to hold your site’s CSS files. This is also commonly used to hold images and
other non-programmatic content. Unlike many of the folders listed here, there isn’t a dependency on this
folder name; it’s just a convention of convenience.

ASP.NET MVC ships with Bootstrap, one of the most popular HTML, CSS, and JavaScript frameworks in
use today. Two of the default CSS files (bootstrap.css and bootstrap.min.css) are part of Bootstrap, and
site.css is where you would put your site-specific CSS.

Bootstrap
Bootstrap is an open source HTML, CSS, and JavaScript framework for developing responsive, Mobile First
web sites. Microsoft started including Bootstrap with MVC4 and continues to ship it with MVC5, and the
default project template for MVC5 uses Bootstrap to style the scaffolded pages. While there isn’t space to
cover Bootstrap in depth in this book, you will use some of the features in Bootstrap in this chapter to add
additional styling to your site.

The Fonts Folder
Bootstrap ships with GlyphIcons-Halflings font sets, which you will use later in this chapter to enhance
your application UI. The version of Bootstrap that ships with the MVC project template requires that the
fonts are located in the Fonts folder.

The Scripts Folder
The Scripts folder is where JavaScript files are placed. Table 34-7 lists the files that ship with the default
template and their use.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1539

Updating NuGet Packages to Current Versions
As you can see, there are a lot of files and packages that comprise the core MVC project template, and many
of them are open source frameworks. Open source projects get updated at a much more rapid pace than
Microsoft can (or should) release updates to Visual Studio. It’s almost a guarantee that as soon as you create
a new project, the packages are already out-of-date.

Fortunately, updating them is as simple as running the NuGet GUI. Right-click your project and select
Manage NuGet Packages from the context menu. Once the NuGet Package Manage loads, change Filter to
Installed, which will then show only the packages that are installed. Packages with a blue arrow pointing up
have an upgrade available, as shown in Figure 34-6. Go ahead and update all your packages.

Table 34-7. JavaScript Files in the ASP.NET MVC Project Template

JavaScript File Meaning in Life

_references.js The _references.js file is for Visual Studio IntelliSense. You can
add additional references into this file pointing to your custom
JavaScript files.

bootstrap.js
bootstrap.min.js

These are the JavaScript files for Bootstrap. The .min file is the
pre-minified version.

jquery-1.x.intellisense.js
jquery-1.x.js
jquery-1.x.min.js
jquery-1.x.min.map

jQuery is the dominant JavaScript framework for web developers.
In addition to DOM manipulation capabilities, there are a host of
frameworks that depend on jQuery, including the validation plug-in
used in the MVC project template. The MVC project template ships
with older versions of jQuery. In the next section, you will update
them to the current version.

jquery.validate-vsdoc.js
jquery.validate.js
jquery.validate.min.js

The jQuery Validate plug-in makes client-side validation much
simpler. The vsdoc file is for Visual Studio IntelliSense, and the .min
file is the pre-minified version.

jquery.validate.unobtrusive.js
jquery.validate.
unobtrusive.min.js

The Unobtrusive jQuery Validation plug-in works with jQuery
Validation, leveraging HTML5 attributes for client-side validation.

modernizr-2.x.js Modernizr contains a series of fast tests (“detects” in Modernizr
parlance) to determine browser capabilities. This works directly
against the browser instead of relying on browser caps files that may
or may not be out of date.

respond.js
respond.min.js

Respond.js is an experimental jQuery plug-in for building web sites
with responsive content.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1540

Figure 34-6. Updating NuGet packages

Test-Drive Your Site
Before you go any further into the chapter, run the project and click around to see what is included with the
default project template. You will find that there is quite a lot already built for you. The template has a menu,
several screens, and login capabilities (complete with a registration screen). Figure 34-7 shows the home page.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1541

As mentioned, Bootstrap is a responsive framework, which means it is capable of adapting the UI based
on the viewport. Shrink the size of your browser, and you will see the home page alter to be more mobile
friendly, as shown in Figure 34-8. The menu becomes the standard “cheeseburger” glyph, and the horizontal
layout of the three “Learn more” sections change to vertical.

Figure 34-7. Default home page

Chapter 34 ■ aSp.Net MVC aNd Web apI

1542

Routing
Routing is the way MVC matches URL requests to controllers and actions in your application, instead
of the old Web Forms process of matching URLS to file structure. Run the CarLotMVC project again, and
notice the URL is essentially blank. On my machine, the URL is http://localhost:14264 (on your machine,
the port number will most likely be different). Now click the Contact link, and the URL changes to
http://localhost:14264/Home/Contact. Examining your solution, there isn’t a folder path of Home/Contact.
This is because the Route table mapped the URL request of Home/Contact to execute the Contact() action
method on the HomeController.cs class. (You’ll learn more about controllers and actions later in this chapter.)

URL Patterns
Routing entries are composed of URL patterns comprised of variable placeholders and literals placed into
a collection known as the route table, with each entry defining a different URL pattern to match. Variable
placeholders can be custom variables or from a list of predefined variables. For example, {controller} and
{action} direct to a controller and action. The placeholder {id} is custom and is translated into a parameter
for the action. When a URL is checked against the route table, the process is serial and ordered. It checks
the URL against the entries in the collection in the order that they were added. The process stops when the

Figure 34-8. The responsive view of the home page

Chapter 34 ■ aSp.Net MVC aNd Web apI

1543

first match is found; it doesn’t matter if a better match occurs later in the route table. This is an important
consideration to keep in mind when adding route table entries.

Open RouteConfig.cs (located in the App_Start folder) and examine the contents, as shown here:

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);
 }
}

The first line directs the routing engine to ignore requests that have an .axd extension, which denotes
an HttpHandler. The IgnoreRoute() method passes the request back to the web server, in this case IIS.
The {*pathinfo} pattern handles a variable number of parameters, extending the matches to any URL that
includes an HttpHandler.

The MapRoute() method adds a new entry into the route table. The call specifies a name, URL pattern,
and default values for the variables in the URL pattern. The URL pattern in the preceding example is the
same as discussed earlier, calling the specified action on the specified controller and passing the {id}
entry into the action method as a parameter. An example URL that would be serviced by this route is
Inventory/Add/5. This invokes the Add() action method on the InventoryController, passing 5 to the
id parameter.

The defaults specify how to fill in the blanks for partial URLs. In the previous code, if nothing was
specified in the URL (such as http://localhost:14264), then the routing engine would call the Index()
action method of the HomeController class, without any id parameter. The defaults are progressive,
meaning that they can be excluded from right to left. Entering a URL like http://localhost14264/Add/5 will
fail the {controller}/{action}/{id} pattern.

Creating Routes for the Contact and About Pages
Of course, when your site is deployed, the URL won’t be localhost:14264 but something meaningful like
http://skimedic.com. One of the advantages of routing is the ability to shape URLs to the benefit of your
users. This means creating URLs that are easy to remember and find on search engines. For example, instead
of http://skimedic.com/Home/Contact and http://skimedic.com/Home/About, it would be better to also
be able to reach them with http://skimedic.com/Contact and http://skimedic.com/About (of course
without losing the longer mapping). With routing, this is easy to accomplish.

Open RouteConfig.cs, and add the following line of code after the IgnoreRoutes call and before the
default route:

routes.MapRoute("Contact", "Contact", new { controller = "Home", action = "Contact" });

This line adds a new entry named Contact into the route table that contains only one literal value,
Contact. It maps to Home/Contact, not as defaults, but as hard-coded values. To test this, run the app, and
click the Contact link. The URL changes to http://localhost:14264/Contact, which is exactly what you
wanted—an easy-to-remember URL for your customers.

http://skimedic.com/Home/Contact
http://skimedic.com/Home/About
http://skimedic.com/Contact
http://skimedic.com/About

Chapter 34 ■ aSp.Net MVC aNd Web apI

1544

Now update the URL to http://localhost:14264/Home/Contact/Foo. It still works! This is because
the URL failed to match the first entry in the route table and fell through to the second route entry, which it
matched. Now update the URL in the browser to http://localhost:14264/Home/Contact/Foo/Bar. This
time it fails, since it doesn’t match any of the routes. Fix this by adding {*pathinfo} to the pattern. This
allows any number of additional URL parameters. Update the Contact route entry to the following:

routes.MapRoute("Contact", "Contact/{*pathinfo}", new { controller = "Home",
action = "Contact" });

Now when you enter the URL http://localhost:14264/Home/Contact/Foo/Bar, it still shows the
Contact page. Mission accomplished. This is an easy-to-remember URL for your users, and even if they mess
it up by adding a bunch of additional garbage on the end, they can still find your page.

To complete the exercise, add the following line immediately after the Contact entry to create a route
for the About page:

routes.MapRoute("About", "About/{*pathinfo}", new { controller = "Home", action = "About" });

Redirecting Users Using Routing
Another advantage of routing is that you no longer have to hard-code URLs for other pages in your site. The
routing entries are used bi-directionally, not only to match incoming requests but also to build URLs for your
site. For example, open the _Layout.cshtml file in the Views/Shared folder. Notice this line (don’t worry
about the syntax for now; you’ll learn about it shortly):

@Html.ActionLink("Contact", "Contact", "Home")

The ActionLink() HTML helper creates a hyperlink with the display text Contact for the Contact action
in the Home controller. Just like incoming requests, the routing engine starts at the top and works down until
it finds a match. This line matches the Contact route you added earlier in the chapter and is used to create
the following link:

Contact

If you hadn’t added the Contact route, the routing engine would have been created this:

Contact

 ■ Note this section introduced several new items that I haven’t covered yet, such as the @ syntax, the Html
object, and the _Layout.cshtml file. these are all covered soon enough. the main takeaway is that the routing
table is used not only to parse incoming requests and send them to the appropriate resource for handling but
also to create UrLs based on the resources specified.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1545

Adding AutoLotDAL
Applications need data, and CarLotMVC is no different. Start by copying the AutoLotDAL project from
Chapter 31 and all of its files into the CarLotMVC folder (at the same level as the CarLotMVC solution file).
You can also copy the project from the Chapter 34 subfolder of the source download. You will be updating
the data access library from what you built in Chapter 31, so you can’t just reference the DLL.

Add the project into your solution by right-clicking the CarLotMVC solution, selecting Add ➤
Existing Project, navigating to the AutoLotDAL folder, and selecting AutoLotDAL.csproj. Add a reference
to AutoLotDAL by right-clicking the CarLotMVC project and selecting Add ➤ Reference from the context
menu. In the Reference Manager dialog, select Projects ➤ Solution in the left sidebar, check the box next to
AutoLotDAL (as shown in Figure 34-9), and click OK.

Figure 34-9. Adding the project reference for AutoLotDAL

The next step is to add the connection string to the AutoLot database into the CarLotMVC Web.config
file. Since ASP.NET Identity uses Entity Framework (EF), you don’t need to install the EF package like you did
when building the Web Forms sites. You just need to add another connection string. Open the Web.config
file and locate the <connectionStrings> element. Either copy the AutoLotConnection value from the
App.config file in the AutoLotDAL project or manually add the AutoLotConnection value as shown here
(your value might be slightly different than shown here based on how you installed SQL Server Express):

<connectionStrings>
 <!-- default connection omitted for brevity -->
 <add name="AutoLotConnection" connectionString="data source=localhost\

SQLEXPRESS2014;initial catalog=AutoLot;integrated security=True;MultipleActive
ResultSets=True;App=EntityFramework" providerName="System.Data.SqlClient" />

 </connectionStrings>

http://dx.doi.org/10.1007/978-1-4842-1332-2_31
http://dx.doi.org/10.1007/978-1-4842-1332-2_34
http://dx.doi.org/10.1007/978-1-4842-1332-2_31

Chapter 34 ■ aSp.Net MVC aNd Web apI

1546

 ■ Note You probably noticed that aSp.Net Identity uses Localdb (a lightweight version of SQL Server that
doesn’t require administration) for the data source, and you can certainly use Localdb with aSp.Net MVC
projects (many developers do). Since this book uses the same database since Chapter 21 for all the data-driven
examples, I decided to create a SQL express database instead of using Localdb. does it make a difference in
how you would build this site? No, it does not. the end result is the same, and I wanted to focus on C# and keep
the SQL Server aspect simple and unobtrusive.

Controllers and Actions
As discussed earlier, when a request comes in from the browser, it (typically) gets mapped to an action
method for a specific controller class. While that sounds fancy, it’s pretty straightforward. A controller is a
class that inherits from one of two abstract classes, Controller or AsyncController. Note that you can also
create a controller from scratch by implementing IController, but that is beyond the scope of this book.
An action method is a method of the controller class.

Adding the Inventory Controller
The best way to understand this is to add a new controller with actions using the built-in helpers in
Visual Studio. Right-click the Controllers folder in your project, and select Add ➤ Controller, as shown
in Figure 34-10.

Figure 34-10. Launching the Add Scaffold dialog for a new controller

http://dx.doi.org/10.1007/978-1-4842-1332-2_21

Chapter 34 ■ aSp.Net MVC aNd Web apI

1547

This brings up the Add Scaffold dialog, as shown in Figure 34-11. There are several options available,
and you want to choose the “MVC5 Controller with views, using Entity Framework.”

Figure 34-11. The Add Scaffold dialog

This will bring up an additional dialog (shown in Figure 34-12) that allows you to specify the types
for your controller and action methods. The first question is to specify the model class, which determines
the type for the controllers and action methods. Select the Inventory class from the drop-down. The next
question asks you to specify the context class. If you don’t select one, the wizard will create one for you.
For the data context, select AutoLotEntities. The next option is to use async action methods. Select the
option that best meets your project needs. For this example, select the “Use async controller actions” check
box. The Generate Views option (on by default) instructs the wizard to create a related view for each of the
action methods. The “Reference script libraries” option instructs include the render for jQuery validation.
The “Use a layout page” option will be discussed later in this chapter. Leave those three (Generate Views,
Reference script libraries, and Use a layout page) checked, and change the name to InventoryController
(from InventoriesController).

Chapter 34 ■ aSp.Net MVC aNd Web apI

1548

 ■ Note there are a lot of MVC tooling aides in Visual Studio. You just saw how you can invoke the New
Controller Wizard, which uses scaffolding to create a controller and a series of views (based on your answers in
the wizard). If you right-click the Views folder, there is a menu item to add a new view, and the New View Wizard
invokes the view scaffolding. If you right-click an action, you can add a new view (which will be placed in the
Views/Controller folder with the same name as the action), or you can navigate to the proper view. all of
these features depend on the conventions discussed earlier, so if you follow the rules, life will be good!

This does several things for you. First, it created an InventoryController class in the Controllers
folder. It also created an Inventory folder in the Views folder and added five views under that folder. We will
examine each of these in detail now.

Examine the Scaffolded Views
To access the new views without hacking the URL, you need to create a menu item for them. Open
_Layout.cshtml (under Views/Shared), and locate the line containing @Html.ActionLink(" Home",
"Index","Home"). Make a copy of that line and paste it in just below. Update the line to the following:

@Html.ActionLink("Inventory", "Index", "Inventory")

Before you run the program, you need to change the startup settings for the project. Select the
CarLotMVC project in Solution Explorer, right-click, and select Properties. Navigate to Web in the left
sidebar, and select “Specific page” (leaving the value blank) under Start Action, as in Figure 34-13. This will
cause Visual Studio to launch your site at the root (e.g., http://localhost:14264).

Figure 34-12. Selecting the model, context, and other options

Chapter 34 ■ aSp.Net MVC aNd Web apI

1549

Now run the program, click the Inventory link, and play around with viewing, editing, creating, and
deleting cars. The views aren’t going to win any design awards, but they are functional. You will upgrade the
UI in the next section, but for now, let’s examine the controller and actions in more detail.

MVC Controllers
Open the InventoryController.cs class. Notice that it follows the convention of ending in the word
Controller. It also derives from the abstract class Controller. There are a series of methods (actions) such as
Index(), Edit(), and so on. You will examine each of these in turn, as well as the attributes decorating them.
Finally, there is a Dispose() override that you can use to forcefully garbage collect any expensive resources
used by the controller.

Action Results
Actions typically return an ActionResult (or Task<ActionResult> for async operations). There are several
types that derive from ActionResult, and some of the more common ones are listed in Table 34-8.

Figure 34-13. Updating the Web start action

Chapter 34 ■ aSp.Net MVC aNd Web apI

1550

Using the Inventory Repository
The first line in the InventoryController class creates a new instance of AutoLotEntities, which is
exactly what you told the wizard to use. You need to change this to use the InventoryRepo class. Add an
InventoryRepo instance variable at the top of the class like this:

private readonly InventoryRepo _repo = new InventoryRepo();

Next, dispose the instance in the Dispose override:

protected override void Dispose(bool disposing)
{
 if (disposing)
 {
 db.Dispose();
 _repo.Dispose();
 }
 base.Dispose(disposing);
}

The Index Action
The Index action gets all the Inventory records and returns the data to the view (more on views in the
next section). Update the call to use the InventoryRepo class instead of calling into the AutoLotEntities
class directly.

public async Task<ActionResult> Index()
{
 return View(await _repo.GetAllAsync());
}

Table 34-8. Typical ActionResult-Derived Classes

Action Result Meaning in Life

ViewResult
PartialViewResult

Returns a view (or a partial view) as a web page

RedirectResult
RedirectToRouteResult

Redirects to another action

JsonResult Returns a serialized JSON result to the client

FileResult Returns binary file content to the client

ContentResult Returns a user-defined content type to the client

HttpStatusCodeResult Returns a specific HTTP status code

Chapter 34 ■ aSp.Net MVC aNd Web apI

1551

The View() call in the previous code snippet is an overloaded method in the Controller base class and
returns a new ViewResult. When a view name is not passed in (as in the version you just saw), convention
dictates that the view will be named after the action method and located in the folder named after the
controller, in this case, Views/Inventory/Index.cshtml. You can also change the name of the view and pass
the new name into the View() method. For example, if you named your view Foo.cshtml, you would call the
View() method as follows:

return View("Foo",await _repo.GetAllAsync());

The Details Action
The Details() action method returns all the details for one Inventory record. A URL in the format
http://mysite.com/Inventory/Details/5 will get mapped to the InventoryController, Details() action
method, with a parameter named id and a value of 5. Update this method to call _repo.GetOneAsync(id)
instead of the call to AutoLotEntities directly, like this:

// GET: Inventory/Details/5
public async Task<ActionResult> Details(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 var inventory = await _repo.GetOneAsync(id);
 if (inventory == null)
 {
 return HttpNotFound();
 }
 return View(inventory);
}

There are a couple of interesting items in this simple-looking method. Remember from the route discussion
that the id parameter is optional, so the URL /Inventory/Details will correctly map to this method. However,
you can’t get an Inventory record if there isn’t an id value passed in to the method, so the method returns an
HttpStatusCode 400 (Bad Request). Try this by running the app and entering Inventory/Details (leaving off
the id part of the URL), and you should see an error screen similar to Figure 34-14.

http://mysite.com/Inventory/Details/5
http://mysite.com/Inventory/Details/5

Chapter 34 ■ aSp.Net MVC aNd Web apI

1552

Likewise, if an inventory record cannot be found, the action method returns the HttpNotFound (404)
status code.

Finally, if everything is good with the format of the URL and an Inventory record is found, then the
Views/Inventory/Details.cshtml page is returned to the client.

The Create Action
Next, examine the Create() action method, and you will see two Create() methods; one takes no
parameters, and the second takes an Inventory object as a parameter.

HttpGet

The Create() method without any parameters handles an HttpGet request, does not call into the
database (which makes sense since the user is not creating a new record but retrieving one), and returns
the ~/Views/Inventory/Create.cshtml view.

// GET: Inventory/Create
public ActionResult Create()
{
 return View();
}

Don’t worry about the view details yet; I will cover this soon.

Figure 34-14. Returning the HttpStatusCode (Bad Request)

Chapter 34 ■ aSp.Net MVC aNd Web apI

1553

HttpPost

The Create() overload that takes an Inventory object as its parameter (instantiated using implicit model
binding) has two method-level attributes, [HttpPost] and [ValidateAntiForgeryToken], and one
parameter-level attribute, [Bind]. This version is executed when a user has clicked the submit button of the
Create form (presuming all client-side validations pass).

Model Binding
As a refresher from Chapter 32, model binding takes all the form, query string, and so on, name-value pairs and
attempts to reconstitute a specified type using reflection. There is explicit model binding and implicit model
binding. In each case, the model binding engine attempts to assign the values (from the name-value pairs in
the submitted form values) to the matching properties on the desired type. If it can’t assign one or more values
(e.g., because of data type conversion issues or validation errors), it will set ModelState.IsValid = false. If all
matched properties are successfully assigned, it sets ModelState.IsValid = true. In addition to the IsValid
property, the ModelState is a ModelStateDictionary and contains error information for every property that
failed, as well as model-level error information. If you want to add a specific error for a property, you would
write code like this:

ModelState.AddModelError("Name","Name is required");

If you want to add an error for the entire model, use string.Empty for the property name, like this:

ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");

For explicit model binding, you call TryUpdateModel(), passing in an instance of the type. If the model
binding fails, the TryUpdateModel() call returns false. For example, you could write the Create() method
this way:

public async Task<ActionResult> Create()
{
 var inv = new Inventory();
 if (TryUpdateModel(inv))
 {
 //Save the data
 }
}

For implicit model binding, you use the desired type as the parameter for the method. The model binding
engine does the same operation with the parameter as it did with TryUpdateModel() in the previous example.

public async Task<ActionResult> Create(Inventory inventory)
{
 if (ModelState.IsValid)
 {
 //Save the data;
 }
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_32

Chapter 34 ■ aSp.Net MVC aNd Web apI

1554

HttpPost vs. HttpGet
While ASP.NET Web Forms largely ignored the difference between HttpGet and HttpPost, MVC uses the
HTTP verbs appropriately. The Hypertext Transfer Protocol (HTTP) defines an HttpGet call as requesting
data from the server and an HttpPost call as one that submits data to be processed to a specific resource.

In MVC, any action without an HTTP attribute (such as HttpPost) will be executed as an HttpGet
operation. To specify an HttpPost (an action where data will be submitted and potentially updated), you
must decorate your action with the [HttpPost] attribute.

AntiForgery Tokens
One of a number of weapons to fight hacking, AntiForgeryToken is a form value that is added
into your views. When an HttpPost request comes in, the token is validated as long as the
[ValidateAntiForgeryToken] attribute is present. While not a one-stop shop for security (web security is
beyond the scope of this book), every form should add an AntiForgeryToken, and every HttpPost action
should validate it.

The Bind Attribute
The Bind attribute in the Create() and Edit() action methods allows you to white list or black list or add a
prefix for properties (not covered in this chapter). When fields are white listed, they are the only fields that
will be assigned through model binding, helping to protect your data from a user over-posting data. Black
listing excludes properties from model binding. In the Create() method, all the fields are white listed, but
you want only Make, Color, and PetName to be submitted. Remove the CarId and Timestamp fields from the
Include portion, as follows:

public async Task<ActionResult> Create([Bind(Include = "Make,Color,PetName”)] Inventory inventory)

And Now the Code…
If the model state isn’t valid, the method sends the Create view back to the user with the current data,
giving them an opportunity to correct any erroneous data. If the model state is indeed valid and the values
are successfully saved by the repository, the action method returns a RedirectToAction, which redirects
the user to the Index action method of the inventory controller. The redirection to the Index view after a
successful save prevents the user from clicking the Create button again, which would cause a double post.
If there is an error thrown during the save process, a new ModelError is added to the ModelState, and the
user is sent back to the Create page to try again. Note: I like to flip the initial if statement around to make
the method more readable. The final change is to use the AddAsync() method of the repo. The updated code
should look like this:

[HttpPost][ValidateAntiForgeryToken]
public async Task<ActionResult> Create([Bind(Include = " Make,Color,PetName")] Inventory
inventory)
{
 if (!ModelState.IsValid) { return View(inventory); }
 try
 {
 await _repo.AddAsync(inventory);
 return RedirectToAction("Index");
 }

Chapter 34 ■ aSp.Net MVC aNd Web apI

1555

 catch (Exception ex)
 {
 ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");
 return View(inventory);
 }
}

The Edit Action
Just like the Create() action method, the Edit() action method has two methods: one that handles an
HttpGet request and one that handles an HttpPost request.

HttpGet

The first Edit() method takes an id and is identical to the Details() HttpGet method. Make sure to change
the method to use the Inventory repository instead of AutoLotEntities.

public async Task<ActionResult> Edit(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Inventory inventory = await _repo.GetOneAsync(id);
 if (inventory == null)
 {
 return HttpNotFound();
 }
 return View(inventory);
}

HttpPost

Just like the Create() action method, this version is executed when a user has clicked the submit button
of the Edit form (presuming all client-side validations pass). If the model state isn’t valid, the method once
again returns the Edit view, sending the current values for the Inventory object. If the model state is valid,
the Inventory object is sent to the repository for an attempted save. In addition to the general error handling
(like you used in the Create() method), you also need to add a check for DbUpdateConcurrencyException,
which will occur if another user has updated the record since the user originally loaded it into the web page.
If all is successful, the action method returns a RedirectToAction result, sending the user to the Index()
action method of the InventoryController.

The Bind attribute can stay the same since all the values need to come from the form, but change the
method to use the AddAsync() method of the repo, as follows:

[HttpPost][ValidateAntiForgeryToken]
public async Task<ActionResult> Edit(
 [Bind(Include = "CarId,Make,Color,PetName,Timestamp")] Inventory inventory)
{
 if (!ModelState.IsValid) { return View(inventory); }

Chapter 34 ■ aSp.Net MVC aNd Web apI

1556

 try
 {
 await _repo.SaveAsync(inventory);
 return RedirectToAction("Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 ModelState.AddModelError(string.Empty, "Unable to save record. Another user updated

the record.");
 }
 catch (Exception ex)
 {
 ModelState.AddModelError(string.Empty, $"Unable to save record: {ex.Message}");
 }
 return View(inventory);
}

 ■ Note as you saw in Chapter 23, DbUpdateConcurrencyException provides a lot of information to you, the
developer. because of space constraints, leveraging that capability in this chapter won’t be demonstrated.

The Delete Action
The Delete() action method also has two methods: one that handles an HttpGet request and one that
handles an HttpPost request.

HttpGet

The first Delete() method takes an id and is identical to the Details() and Edit() HttpGet methods.
Make sure to change the HttpGet version to use the Inventory repository instead of AutoLotEntities.

public async Task<ActionResult> Delete(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Inventory inventory = await _repo.GetOneAsync(id);
 if (inventory == null)
 {
 return HttpNotFound();
 }
 return View(inventory);
}

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 34 ■ aSp.Net MVC aNd Web apI

1557

HttpPost

This version is executed when a user has clicked the submit button of the Delete form. The autogenerated
version of this method takes only the id as a parameter, meaning it has the same signature as the HttpGet
version of the method. Since you can’t have two methods of the same name with the same signature,
the wizard named this method DeleteConfirmed() and added the [ActionName("Delete")] attribute.
AutoLotDAL checks for concurrency conflicts and requires the Timestamp property in addition to the
CarId in order to delete a record. You also want an Inventory instance to show any model errors. To
accommodate these needs, simply change the int id parameter to Inventory inventory. This change will
use implicit model binding to get the Inventory record values from the request.

To delete a record, you only need the CarId and Timestamp properties. Add a [Bind] attribute with
the Include value of “CarId,Timestamp” to pull those values into the Inventory instance and ignore
the rest of the values. Now that the method signature has changed from the HttpGet version, you can
rename the method Delete() and remove the ActionName attribute. Finally, update the method to use the
DeleteAsync() method of the Inventory repository and add the error handling (the same as you did for the
HttpPost version of the Edit() method). The final version of the code is as follows:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Delete([Bind(Include="CarId,Timestamp")]Inventory inventory)
{
 try
 {
 await _repo.DeleteAsync(inventory);
 return RedirectToAction("Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 ModelState.AddModelError(string.Empty, "Unable to delete record. Another user updated

the record.");
 }
 catch (Exception ex)
 {
 ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");
 }
 return View(inventory);
}

If you ran your project now and tried to delete an Inventory record, it wouldn’t work, because the view
is not sending the Timestamp property, just the CarId. You will fix that shortly.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1558

The Dispose Method
Finally, in the Dispose() method, delete the disposal of the AutoLotEntities variable (db) and then delete
the class-level variable for AutoLotEntities. Your cleaned up Dispose() method should look like this:

protected override void Dispose(bool disposing)
{
 if (disposing)
 {
 _repo.Dispose();
 }
 base.Dispose(disposing);
}

The Final Word on Controllers
This was a lot of information to cover, and (like with routing) we’ve only scratched the surface of everything
that you can do in MVC controllers and action methods. However, to distill it all down, controllers are
merely C# classes. They should follow the <Name>Controller.cs naming convention (the Controller part
of the name gets stripped away by the framework). Actions are methods in a controller class that return an
ActionResult. Action methods can be decorated with an attribute that indicates if it’s an HttpPost or an
HttpGet (the default), and all HttpPost methods should validate the AntiForgery token. Now, let’s move
onto views.

MVC Views
Views in MVC represent the UI in MVC sites. Initially, MVC views were built using the Web Forms View
Engine. Now, you have the choice of using the Razor View Engine or the Web Forms View Engine, although
the majority of MVC sites are built using Razor. MVC views are meant to be very lightweight, passing
server-side processing to the controllers and client-side processing to JavaScript.

The Razor View Engine
The Razor View Engine was designed as an improvement over the Web Forms View Engine and uses Razor
as the core language. Razor is template markup syntax that is interpreted to C# (or VB.NET code) on the
server side. Using Razor in your views with HTML and CSS results in cleaner and easier-to-read markup.
While there are many improvements with using Razor in your views, views based on Razor still support
everything you would expect from a web form.

Razor Syntax
The first difference between the Web Forms View Engine and the Razor View Engine is that you add code
with the @ symbol. There is also intelligence built into Razor that removes the need add closing @ symbols,
unlike Web Forms, which required opening and closing “nuggets” (<% %>).

Chapter 34 ■ aSp.Net MVC aNd Web apI

1559

Statement blocks open with an @ and are enclosed in braces, like this (notice how there isn’t an @ used
as a statement terminator):

@foreach (var item in Model)
{
}

Code blocks can intermix markup and code. Lines that begin with a markup tag are interpreted as HTML,
while lines that begin with code are interpreted as code, like this:

@foreach (var item in Model)
{
 int x = 0;
 <tr></tr>
}

Lines can also intermix markup and code, like this:

<h1>Hello, @username</h1>

The <text> tag denotes text that should be rendered as part of the markup, like this:

@item<text>-<text>

The @ sign in front of a variable is equivalent to Response.Write(), and by default HTML encodes
all values. If you want to output unencoded data (i.e., potentially unsafe data), you have to use the
@Html.Raw(username) syntax.

Helpers, Functions, and Delegates
Razor enables encapsulation of code to enhance your productivity and reduce the amount of repetitive code.
You can place these inline, in the App_Code folder, or as statics.

HTML Helpers

Razor HTML helpers render markup. There are many built-in helpers that you will use extensively, such as
@Html.ActionLink() that you used earlier for the inventory screens. You can also build your own HTML
helpers to reduce (or eliminate repetitive code). For example, you can write a helper that outputs the details
for an Inventory record. To do this, put the following HTML helper code at the top of the Index.cshtml view
file (after the @model line), like this:

@using AutoLotDAL.Models
@helper ShowInventory(Inventory item)
{
 @item.Make<text>-</text>@item.Color<text>(</text>@item.PetName<text>)</text>
}

Chapter 34 ■ aSp.Net MVC aNd Web apI

1560

After the @foreach, add a call to ShowInventory(), like this:

@foreach (var item in Model)
{
 @ShowInventory(item)
 <!-- rest removed for brevity -->
}

Run the app, navigate to the Inventory index page, and you will see the details for each record as one
lone string. In a real HTML helper, you would add formatting and markup to be consistent with the look and
feel of your site. Since this is just an example of how to create an HTML helper and not something you want
to use in your site, comment out the line using Razor comments, which are @* … *@, like this:

@*@ShowInventory(item)*@

Razor Functions

Razor functions do not return markup but instead are used to encapsulate code for reuse. To see this in action,
add the following SortCars() function after the HTML helper in the Index.cshtml view page. The function
takes a list of Inventory items and sorts them by PetName:

@functions
{
 public IList<Inventory> SortCars(IList<Inventory> cars)
 {
 var list = from s in cars orderby s.PetName select s;
 return list.ToList();
 }
}

Update the @foreach to call the function. The Model variable represents an IEnumerable<Inventory>,
so you must add the ToList() method in that call, as follows:

@foreach (var item in SortCars(Model.ToList()))
{
 <!-- rest removed for brevity -->
}

Razor Delegates

The final example shows Razor delegates, which work just like C# delegates. For example, add the following
delegate code immediately after the SortCars() function in the Index.cshtml view file. This delegate makes
the marked characters bold.

@{
 Func<dynamic, object> b = @@item;
}

Chapter 34 ■ aSp.Net MVC aNd Web apI

1561

To see this in action, add the following line of code immediately after the code block that defines
the delegate:

This will be bold: @b("Foo")

Of course, this example is trivial, but more involved code that is repeated can benefit by being wrapped
in a delegate. Essentially, all the same procs and cons for C# delegates apply. After running the app and
navigating to the Inventory index page, you will see the word Foo in bold. Go ahead and comment out the
call to the delegate since you don’t need it for the rest or the samples.

The Final Word on Razor
Once again, you have to move on to a new subject because there just isn’t enough space in this book to detail
everything that you can do with Razor. You will see more examples of Razor as you work through the rest of
this chapter. This section gave you the foundation you need to expand your knowledge.

Layouts
Similar to Web Forms master pages, MVC supports layouts. MVC views can be based on a master layout
to give the site a universal look and feel. Recall from Figure 34-12, there is a check box that says “Use a
layout page.” Leave the text box empty if it’s specified in the _ViewStart.cshtml file. Also recall, from the
information in the Views folder, there is a file named _ViewStart.cshtml. Open this file now to examine the
contents, shown here:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

This file just has one Razor code block that sets the layout to a specific file. This is the fallback value; if a
layout is not specified in a view, this is the file that will be used by default for the view.

Navigate to the Views/Shared folder and open the _Layout.cshtml file. It is a full-fledged HTML file,
complete with <head> and <body> tags and a mix of HTML markup and Razor HTML helpers. Just like Web
Forms master pages, the _Layout.cshtml page is the core of what will be presented to the user when views
(that use the _Layout.cshtml page) are rendered.

There are two key items to keep in mind when working with layouts: body and sections. The body is
where the view code will be inserted when the view and layout are combined. Where the view page content
is placed in the layout is controlled by the following line of Razor code:

@RenderBody()

Sections are areas of the layout page that layouts can fill in at runtime. They can be required or
optional and are introduced into the layout page with RenderSection(). The first parameter names the
section, and the second parameter indicates whether the section is required to be implemented by the view.
In _Layout.cshtml, the following line of code creates a section named scripts, which is optional for the view:

@RenderSection("scripts", required: false)

Sections can also be marked as required by passing in true as the second parameter. For example, if you
wanted to create a new section named Header that is required, you would code it like this:

@RenderSection("Header",required: true)

Chapter 34 ■ aSp.Net MVC aNd Web apI

1562

To render a section in from your view, you use the @section Razor block. For example, in the Edit.cshtml
page under Views/Inventory, the following lines add the jQuery validation bundle to the rendered page:

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

Using a Specific Layout Page
In addition to relying on the default layout page, you can specify your views to use a specific page. To show
this, copy _Layout.cshtml into a new file called _LayoutNew.cshtml. Open this new file, and just after the
<body> tag, add the following line:

<div class="jumbotron">
 <h1>My MVC Application</h1>
</div>

Now, open Index.cshml under Views/Inventory, and add Layout="~/Views/Shared/_LayoutNew.cshtml",
just after the ViewBag line. The updated code block should look like this:

@{
 ViewBag.Title = "Index";
 Layout = "~/Views/Shared/_LayoutNew.cshtml";
}

This line directs the view to use the new file as the layout file. Run the app and click the Inventory menu,
and you will see the screen shown in Figure 34-15.

Figure 34-15. The Index view with the new layout

Chapter 34 ■ aSp.Net MVC aNd Web apI

1563

Partial Views
Partial views are useful for encapsulating UI, which reduces (or eliminates) repeating code. Since Razor
views do not inherit System.Web.Page (and there’s no Page directive), the only technical difference between
a partial view and a regular view is how it’s rendered from the action method. A full view (returned from a
controller with the View() method) will use a layout page if one is specified, either as the default through
_ViewStart.cshtml or through the Layout Razor statement. A view when rendered with the PartialView()
method (or the Partial() HTML helper) does not use the default layout, but will still use a layout if specified
with a Layout Razor statement.

To demonstrate this, open the InventoryController.cs class and change the Index() action method
to return a partial view instead of a view, as follows:

public async Task<ActionResult> Index()
{
 return PartialView(await _repo.GetAllAsync());
}

Now open the Index.cshtml page and either remove the Layout= line that you added above or
comment it out, like this:

@{
 ViewBag.Title = "Index";
 //Layout = "~/Views/Shared/_LayoutNew.cshtml";
}

Run the app and click the Inventory menu link. You will then see the same data as you did before, minus
any layout, as in Figure 34-16.

Figure 34-16. The inventory Index page rendered as a partial view

Chapter 34 ■ aSp.Net MVC aNd Web apI

1564

Make sure to change the Index action method back to calling View() instead of PartialView().
You can leave the //Layout = "~/Views/Shared/_LayoutNew.cshtml" line commented out so the Index
view returns to using the default layout.

In addition to rendering a view from an action method with the PartialView() method, you can pull
in a partial view into another view using an HTML Helper, similar to loading a user control in Web Forms.
In the _Layout.cshtml page, the following Razor block creates the login UI shown in every page.

@Html.Partial("_LoginPartial")

Sending Data to the View
As discussed earlier in the chapter, the MVC pattern relies on a certain level of separation of concerns. The
controller sends data to the view, the view requests actions, and the models get passed around as the data
for the application. I’ve already covered how views request actions, but I haven’t yet discussed how to get
data (the models) into the views.

ViewBag, ViewData, and TempData
The ViewBag, ViewData, and TempData objects are mechanisms for sending small amounts of data into a
view. An example of this is in the top of each of the Inventory views with a line setting the ViewBag.Title
property, like the following in the Index.cshtml view:

@{
 ViewBag.Title = "Index";
}

The ViewBag.Title is used to send the title of a view to the layout to be used in the following line in
_Layout.cshtml:

<title>@ViewBag.Title - My ASP.NET Application</title>

Table 34-9 lists the three mechanisms to pass data from a controller to a view (besides the Model
property, described in the next section) or from a view to a view.

Table 34-9. Ways to Send Data to a View

Data Transport Object Meaning in Life

TempData This is a short-lived object that works during the current request and next
request only.

ViewData A dictionary that allows storing values in name-value pairs. Here’s an example:
ViewData["Title"] = "Foo".

ViewBag Dynamic wrapper for the ViewData dictionary. Here’s an example: ViewBag.
Title = "Foo".

Chapter 34 ■ aSp.Net MVC aNd Web apI

1565

Strongly Type Views and View Models
For larger amounts of data (such as all Inventory records used by the Index.cshtml view), you use the
Model property. Examine the first line of the Index.cshtml file, and you will see this line, which indicates the
view is strongly typed, with the type set to IEnumerable<Inventory>:

@model IEnumerable<AutoLotDAL.Models.Inventory>

The @model attribute represents the view’s type. To access this in the rest of the view, you use the Model
property. Note the uppercase M in the Model property and the lowercase m in the initial attribute. When
referring to the data contained in the view, you use Model (capital M), as in the following line, which iterates
through each of the Inventory records:

@foreach (var item in Model)
{
 //Do something interesting here
}

The Index View
Now it’s time to start digging into the actual views. Open Index.cshtml, and examine the following code:

@Html.DisplayNameFor(model => model.Make)

This uses the DisplayNameFor() HTML helper to show the display name (as plain text) for the model
field referenced in the lambda. In this example, the code gets the display name for the Make property of the
Inventory object.

This works fine for Make and Color, but PetName is displayed as “PetName.” You would rather have it
display as “Pet Name.” You could change the code and hard-code the words Pet Name, but this fixes the
problem only for this particular view. Any other view that needs to display the PetName field would also have
to have this label hard-coded. A better method is to use data annotations on the model to set the display
name. You will do this shortly.

Since the users don’t want to see the timestamp values, delete the header for the timestamp, including
the markup and the Razor code. Also delete the timestamp code in the for-loop.

Inside the for-loop, the values for each item are displayed using another HTML helper, DisplayFor().
This HTML helper looks at the data type and presents the value based on the default template for that
datatype. In this example, the data fields are strings, so the HTML helper just displays the values.

MVC Display Data Annotations
In addition to the data annotations used to define the model so Entity Framework can create the database
(as used in Chapter 23), there are additional data annotations that you can use to define display properties.
While you can add these to the model classes themselves, if you used EF to create your model classes from
an existing database, any changes you make would be overwritten if you needed to regenerate your models.
To prevent this, you can put your data annotations into another file.

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 34 ■ aSp.Net MVC aNd Web apI

1566

Start by navigating to the Models folder in the AutoLotDAL project and add a new folder named
MetaData. In this folder, add a new class named InventoryMetaData.cs. Make the class public, and add a
property of type string named PetName. To this property, add the [Display(Name="Pet Name")] attribute.
Your class should look like this:

public class InventoryMetaData
{
 [Display(Name="Pet Name")]
 public string PetName;
}

This is not a full class definition file; it will be used only to load attributes that you have assigned.
Therefore, you do not need to add the get/set syntax to this property, and in fact, you shouldn’t. You might
be asking how the framework knows that this class is supplying attributes to the Inventory class. Currently,
it doesn’t. You need to add a class-level attribute to the Inventory.cs class so the framework knows this
class holds additional attributes for it. You’ll make that change next.

Open the InventoryPartial.cs class in the Models/Partials folder, and add the [MetadataType]
attribute to the class, as follows:

[MetadataType(typeof(InventoryMetaData))]
public partial class Inventory
{
 public override string ToString() =>
 $"{this.PetName ?? "**No Name**"} is a {this.Color} {this.Make} with ID {this.CarId}.";
}

Run the app now, click the Inventory link, and you will see that the PetName label is displayed as “Pet
Name,” without changing any code in the view.

Updating the View with Bootstrap
The next step is to jazz up the Index.cshtml view a bit using Bootstrap.

Update the Header

The first thing to do is update the page header. The generated view has the header of “Index,” which isn’t
very meaningful. Delete the <h2>Index</h2> line, and replace it with the following, which creates a small
shaded area housing the page header. The markup looks like this:

<div class="well well-sm"><h1>Available Inventory</h1></div>

Chapter 34 ■ aSp.Net MVC aNd Web apI

1567

Figure 34-17 shows the result.

Update the Table

Next, you will update the table. The default table class in Bootstrap adds some rudimentary design elements,
including separator lines. There are additional built-in styles that you can add, as shown in Table 34-10.

Figure 34-17. Placing a header into a well

Table 34-10. Table-Style Options

Style Meaning in Life

.table This is the base table style. It adds divider lines and light padding.

.table-striped This adds striping to the table (think a green bar). Not available in Internet
Explorer 8.

.table-bordered This adds borders around every cell in the table.

.table-hover This adds hover highlighting to the table.

.table-condensed This cuts cell padding in half.

.table-responsive Makes the table more responsive on mobile devices.

Add all of them to the <table> class attribute except for table-condensed, and on the next line add a
<caption> tag with the text “Vehicle List” as follows:

<table class="table table-striped table-responsive table-hover table-bordered">
 <caption>Vehicle List</caption>

Chapter 34 ■ aSp.Net MVC aNd Web apI

1568

Using GlyphIcons

The GlyphIcons are a set of icons that ship with Bootstrap and are useful to add visuals to links and buttons.
You are going to add icons to all the links on the Index view, but first it helps to explore another HTML helper:
@Url.Action(). The @Url.Action() helper returns just the URL portion, whereas Html.ActionLink() creates
the entire markup for an anchor tag.

Update the @Html.ActionLink("Create") line to this:

Create a new Car

This creates the same URL as the ActionLink, but now you have complete control of the markup.
Next, add the “plus” GlyphIcon to the content of the anchor tag, like this:

 Create
 a new Car

Figure 34-18. The updated table UI

Figure 34-18 shows the resulting UI.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1569

Figure 34-19 shows the updated link.

Next, update the Edit, Details, and Delete links in the table to use the Edit, List-Alt, and Trash
GlyphIcons, respectively. This is shown in the following code listing:

 Edit

 |

 Details

 |

 Delete

Figure 34-19. The Create a new Car link with the plus GlyphIcon

Chapter 34 ■ aSp.Net MVC aNd Web apI

1570

Figure 34-20. The final Index view

The Details View
There aren’t a lot of changes to be made to the Details.cshtml view. Just like the Index.cshtml view, the
Details.cshtml view uses the DisplayNameFor() and DisplayFor() HTML helpers. Since you updated the
AutoLotDAL, the “Pet Name” change carried through to this view as well. So, the only thing you need to do on
this page is delete the TimeStamp rows.

Updating the View with Bootstrap
Start by deleting the <h2>Details</h2> and <h4>Inventory</h4> lines and replace them at the top with
the following:

<div class="well well-sm"><h1>Inventory Details</h1></div>

Figure 34-20 shows the final page.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1571

Figure 34-21. The updated details view

Next, update the Edit and Back To List links to use the GlyphIcons and add a Delete link. The updated
markup is listed here, and the updated page is shown in Figure 34-21:

 Edit

 |

 Delete

 |

 Back to List

The Create View
Examining the code in this view, you see two more HTML helpers in use: Html.LabelFor() and Html.
EditorFor(). The EditorFor() HTML helper creates an input field based on the data type of the property
referenced in the lambda. For example, the following line:

@Html.EditorFor(model => model.Make, new { htmlAttributes = new { @class = "form-control" } })

creates this:

<input name="Make" class="form-control text-box single-line" id="Make" type="text" value=""
data-val-length-max="50" data-val-length="The field Make must be a string with a maximum
length of 50." data-val="true">

Chapter 34 ■ aSp.Net MVC aNd Web apI

1572

Let’s examine this before moving on. The name and the id of the HTML element comes from the name
of the property, the type comes from the data type of the property, and the class assignment comes from a
combination of the HTML helper and the additional HTML attributes added through the helper. The value
of the control is set to the property’s value. In this case, the value is set to the empty string since it’s a new
instance of Inventory.

The LabelFor helper creates a Label control. For example, examine the following line:

@Html.LabelFor(model => model.Make, htmlAttributes: new { @class = "control-label col-md-2" })

This creates the following markup, including the for attribute that is automatically added (using the
name of the property):

<label class="control-label col-md-2" for="Make">Make</label>

The BeginForm() HTML Helper
The BeginForm() HTML helper creates a <form> tag in the HTML output. By default, the form’s action
property is the current URL, and the form’s method property is post (each is customizable through different
overloads of the BeginForm() method). The using block in Razor will encapsulate everything between the
opening and closing braces in between the opening and closing HTML tags. For example, if you entered this
Razor block into a view:

@using (Html.BeginForm())
{
 <input name="foo" id="foo" type="text"/>
}

It would create a form tag in HTML with the action set to the same URL as the URL that brought
your user to this view. For example, if the URL for the HttpGet request was Inventory/Create, the
Html.BeginForm() helper would create the following markup:

<form action="/Inventory/Create" method="post">
 <input name="foo" id="foo" type="text"/>
</form>

The AntiForgery Token
If you recall, the [ValidateAntiForgeryToken] attribute is added to all of the HttpPost versions of the
action methods. This attribute checks for an antiforgery token submitted as part of the form values, so you
need to add an antiforgery token into the BeginForm() Razor code block. The HTML helper to do this is aptly
named AntiForgeryToken(), and it’s already added into the scaffolded forms that require it. If you need to
add it yourself to a form block, the syntax is simple.

@Html.AntiForgeryToken()

Chapter 34 ■ aSp.Net MVC aNd Web apI

1573

Updating the View with Bootstrap
Finalize your changes to Create.cshtml by deleting the <h2>Create</h2> and <h4>Inventory</h4> lines,
and replace them at the top with the following:

<div class="well well-sm"><h1>Add Inventory</h1></div>

Next, update Create button to include the plus icon, like this:

<button type="submit" class="btn btn-default">
 Create
</button>

The final change is to move the Back To List link next to the Create button (instead of in a lower <div> as
created by the scaffolding) and to use the list GlyphIcon. The updated markup is shown here:

 |

 Back to list

The complete markup for the <div> section looks like this:

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <button type="submit" class="btn btn-default">
 Create
 </button>
 |

 Back to list
 </div>
</div>

Chapter 34 ■ aSp.Net MVC aNd Web apI

1574

The Delete View
The scaffolded Delete view displays the Timestamp field, which is meaningless (and potentially confusing)
to the user. Delete the <dt> and <dd> tags for the Timestamp field (you will add the Timestamp field back in
as a hidden value next).

Hidden Values
In addition to the CarId value, the Delete()/DeleteAsync() methods on the InventoryRepo object require
the Timestamp value to be sent with the CarId, or an Inventory object with the CarId and TimeStamp fields
populated. The URL is set up to send the CarId (e.g., /Inventory/Delete/46), but the best way to send these
values is through form values in the HTTP request body and not as query string values in the URL.

To do this, you will use another HTML helper inside the BeginForm() Razor block: the HiddenFor()
helper. This creates a hidden form value for the property referred to in the lambda. Add in the hidden form
values (within the BeginForm() Razor block), like this:

@Html.HiddenFor(x => x.CarId)
@Html.HiddenFor(x => x.Timestamp)

This creates the following HTML:

<input name="CarId" id="CarId" type="hidden" value="46" data-val-required="The CarId field
is required." data-val-number="The field CarId must be a number." data-val="true">
<input name="Timestamp" id="Timestamp" type="hidden" value="AAAAAAABAdE=">

Figure 34-22. The Add Inventory view

Figure 34-22 shows the final look for the view.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1575

Validation Summary
Even though I haven’t covered validation yet, add another HTML helper, ValidationSummary(), inside the
BeginForm() Razor block.

@Html.ValidationSummary(true, "", new { @class = "text-danger" })

Updating the View with Bootstrap
Start by deleting the <h2>Delete</h2> and <h4>Inventory</h4> lines and replacing them at the top with
the following:

<div class="well well-sm"><h1>Delete</h1></div>

Next, update the Delete button to include the Trash icon, like this:

<button type="submit" class="btn btn-default">
 Delete
</button>

The final change is to update the Back To List link to use the list GlyphIcon. The updated markup is
shown here:

 |

 Back to list

The complete markup for the <div> section looks like this:

<div class="form-actions no-color">
 <button type="submit" class="btn btn-default">
 Delete
 </button>
 |

 Back to list
</div>

Chapter 34 ■ aSp.Net MVC aNd Web apI

1576

The Edit View
The scaffolded Edit.schtml view displays the Timestamp field, which is meaningless (and potentially
confusing) to the user. Delete the <div class="form-group"> for the Timestamp field, and add a
HiddenFor() immediately after the HiddenFor(model=>model.CarId) line like this:

@Html.HiddenFor(model => model.Timestamp)

Updating the View with Bootstrap
Start by deleting the <h2>Edit</h2> and <h4>Inventory</h4> lines and replace them at the top with
the following:

<div class="well well-sm"><h1>Edit</h1></div>

Next, update the Save button to include the Save icon, like this:

<button type="submit" class="btn btn-default">
 Save
</button>

Figure 34-23. The updated Delete view

Figure 34-23 shows the updated view.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1577

The final change is to update the Back To List link to use the list GlyphIcon, and move it next to the
Save button. The updated markup is shown here:

 |

 Back to list

The complete markup for the <div> section looks like this:

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <button type="submit" class="btn btn-default">
 Save
 </button>
 |

 Back to list
 </div>
</div>

Figure 34-24 shows the final UI.

Figure 34-24. The Edit view

Chapter 34 ■ aSp.Net MVC aNd Web apI

1578

Validation
MVC applications have two layers of validation: server side and client side. You saw server-side validation
earlier in the chapter, when you added errors to the ModelState, in addition to the errors that came from
model binding failures (because of datatype conversion, data annotation failures, or some other reason).
Client-side checking happens with JavaScript, and you’ll look at that soon enough.

Displaying Errors
The ModelState errors get displayed in the UI by the HTML helpers ValidationMessageFor() and
ValidationSummary(). The ValidationSummary() will show ModelState errors that are not attached to a
property as well as property errors (as long as the ExcludePropertyErrors is set to false). Typically, you
will display property errors alongside the properties and show only non-property-specific errors in the
ValidationSummary(). For example, the following line (in the Create, Update, and Delete views) will show
all the model errors and none of the property errors in a red font:

@Html.ValidationSummary(true, "", new { @class = "text-danger" })

To show individual property errors, use the ValidationMessageFor() helper adjacent to a particular
property in the view page, like this:

@Html.ValidationMessageFor(model => model.Make, "", new { @class = "text-danger" })

This produces the following markup:

<span class="field-validation-valid text-danger" data-valmsg-replace="true"
data-valmsg-for="Make">

To see this in action, you first have to disable client-side validation, which was added to the page as part
of the default scaffolding. To do this, open Create.cshtml and comment out the rendering of the jQuery
validation bundle at the end of the code.

@section Scripts {
 @*@Scripts.Render("~/bundles/jqueryval")*@
}

Next, open InventoryController.cs and update the first part of the Create HttpPost action method
to the following:

if (!ModelState.IsValid)
{
 ModelState.AddModelError(string.Empty,
 "An error occurred in the data. Please check all values and try again.");
 return View(inventory);
}

Now run the project, navigate to the Inventory ➤ Create page, and type something into the Make
field that is longer than 50 characters. When you click Save, the form values are posted back to the
Create method. The model is validated during model binding and fails since the Make property has the
[StringLength(50)] attribute. The result should look something like Figure 34-25.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1579

Client-Side Validation
Client-side validation is handled through the jQuery (jquery-2.1.4.min.js), jQuery validation (jquery.validate.
min.js), and jQuery validation unobtrusive (jquery.validate.unobtrusive.min.js) libraries. The jQuery
validation libraries add HTML5 data attributes used for the validation of user input. The MVC framework
works with jQuery by examining the attributes on the model to determine which validations to add. The
results are then generated by the EditorFor HTML helper into the following markup for the Make property:

<input name="Make" class="form-control text-box single-line input-validation-error" id="Make"
aria-invalid="true" aria-describedby="Make-error" type="text" value="" data-val-length-max="50"
data-val-length="The field Make must be a string with a maximum length of 50." data-val="true">

The data attributes also support custom error messages. Open the Inventory.cs class in the
AutoLotDAL project, and update the StringLength attribute on the Make property to include an
ErrorMessage assignment, like this:

[StringLength(50,ErrorMessage="Please enter a value less than 50 characters long.")]
public string Make { get; set; }

Now run the app, repeat the test, and the error message displays like Figure 34-26.

Figure 34-25. Displaying server-side validation

Chapter 34 ■ aSp.Net MVC aNd Web apI

1580

Finishing the UI
You’re going to finish off the MVC section of this chapter by cleaning up the remaining items on the UI.

Updating the Layout View
Start by opening _Layout.cshtml under Views/Shared. At the top of the page, add a Razor code block to
declare a string variable and assign the value of Car Lot MVC. This is to replace all the hard-coded instances
of the application name. The code is listed here:

@{
 var appName = "Car Lot MVC";
}

Next, replace the hard-coded strings "My ASP.NET Application" and "Application Name" with
@appName. You will find three places to make the change in the <title> HTML tag, in the nav-bar
ActionLink() helper, and in the footer. The updated code is shown here:

<!-- In the <head> section -->
<title>@ViewBag.Title - @appName</title>
<head>
 <title>@ViewBag.Title - @appName</title>
 <!-- rest ommitted for brevity -->
</head>

Figure 34-26. Updated error message from the data annotations

Chapter 34 ■ aSp.Net MVC aNd Web apI

1581

<!-- In the nav-bar header <div> -->
<div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse"

data-target=".navbar-collapse">
 <!-- ommitted for brevity -->
 </button>
 @Html.ActionLink(@appName, "Index", "Home", new { area = "" }, new { @class = "navbar-brand" })
 </div>
 <!-- ommitted for brevity -->
 </div>
</div>

<!-- In the <footer> section -->
<footer>
 <p>© @DateTime.Now.Year - @appName</p>
</footer>

For the final change, place the image of the slug bug in the menu bar. This probably isn’t where you
want to place an advertisement in a real web site; however, this example shows that you can place anything
in the menu bar, and when the viewport size changes, the responsive features of Bootstrap hide those items.
Create a folder named Images under the Content folder in CarLotMVC. Next, add an image to the folder;
you can find the example image in the Chapter 34 downloads. Now add the image to the navigation bar, just
before the call to load the _LoginPartial partial view.

@Html.Partial("_LoginPartial")

When you run the app, you’ll see the image in the menu bar, as in Figure 34-27. When you shrink the
viewport of your browser, you’ll see that the image disappears along with the menus.

Figure 34-27. Adding an image to the menu bar

Update the Home Page
The final change is to update the home page, which is (as you already know) the Index view of the Home
controller. Start by updating the JumboTron to the following:

<div class="jumbotron">
 <h1>Car Lot MVC</h1>
 <p class="lead">A site for viewing and updating vehicles in the dealership.</p>
</div>

http://dx.doi.org/10.1007/978-1-4842-1332-2_34

Chapter 34 ■ aSp.Net MVC aNd Web apI

1582

Next, delete all the content after the JumboTron block, and add the following:

<h2>View the Inventory</h2>
<p>
 Autolot has the car you are looking for! Check out our expansive inventory on the
@Html.ActionLink("Inventory", "Index", "Inventory") page.

</p>

Figure 34-28 shows the final result.

Figure 34-28. Final version of the home page

The Final Word on ASP.NET MVC
The question I am often asked is this: “Web Forms or MVC?” The answer not that simple. If your dev team
is more comfortable with the drag-and-drop nature of UI creation or they struggle with the stateless nature
of HTTP, Web Forms is probably the better choice. If your team is more comfortable with having complete
control of the UI (which also means less “magic” being done for you) and developing stateless applications
that leverage the HTTP verbs (such as HttpGet and HttpPost), then MVC is probably a better choice.
Of course, there are a lot more factors to consider in your decision. These are just a few of them.

The good news is that you don’t have to choose between MVC and Web Forms. As mentioned at the
beginning of this chapter, both are based on System.Web (up to and including MVC5), and they have always
been able to be used together. When Microsoft introduced One ASP.NET in Visual Studio 2013, blending the
two frameworks into a single project became much easier.

Admittedly, this chapter only scratches the surface of ASP.NET MVC. There is just too much to cover
in one chapter. For a deeper look into all that MVC has to offer, Pro ASP.NET MVC 5 by Adam Freemen
(available on Apress at www.apress.com/9781430265290?gtmf=s) is an excellent book on the subject.

 ■ Source Code the CarLotMVC solution can be found in the Chapter 34 subfolder.

http://www.apress.com/9781430265290?gtmf=s
http://dx.doi.org/10.1007/978-1-4842-1332-2_34

Chapter 34 ■ aSp.Net MVC aNd Web apI

1583

Introducing ASP.NET Web API
As you learned in Chapter 25, Windows Communication Foundation (WCF) is a full-fledged framework for
creating .NET-based services that can communicate with a wide range of clients. While WCF is extremely
powerful, if all you need are simple HTTP-based services, creating WCF-based services may be more
involved than you want or need. Enter ASP.NET Web API, another framework for building web APIs in .NET
that can be accessed from any HTTP-aware client. As an MVC developer, Web API is a logical addition to
your .NET toolbox. Web API is built on MVC and leverages many of the same concepts such as models,
controllers, and routing. Web API was first released with Visual Studio 2012 as part of MVC 4 and updated to
version 2.2 with Visual Studio 2013 Update 1.

Adding the Web API Project
Start by adding a Web API project to your solution. Right-click your solution, select Add ➤ New Project, and
select ASP.NET Web Application (shown in Figure 34-29). Name the project CarLotWebAPI.

Figure 34-29. Adding a new ASP.NET web application

By now you should be familiar with the next screen. This time, select the Empty template and check
the “Add folders and core references for:” Web API (as shown in Figure 34-30). If you select the Web API
template, a lot of boilerplate and sample code (including MVC controllers and views) is added to the project,
and all you need is the base Web API plumbing. The next screen presents the same choices you saw when
creating a Web Forms or MVC app, and the options are collectively referred to as One ASP.NET.

http://dx.doi.org/10.1007/978-1-4842-1332-2_25

Chapter 34 ■ aSp.Net MVC aNd Web apI

1584

Click OK, and the project is added to the solution. As with the Web Forms and MVC projects, many
of the included NuGet packages are out-of-date when you create a new project. Right-click the project in
Solution Explorer, select Manage NuGet Packages, and change the filter to Upgrade Available. Upgrade all
the packages that can be upgraded. Change the filter back to All and install Entity Framework (as you have
done previously). You need to install one additional package: AutoMapper (which you will use later in the
chapter). To find this package, enter AutoMapper in the search box (as in Figure 34-31).

Figure 34-30. Adding the Empty project template with Web API support

Figure 34-31. Installing AutoMapper from NuGet

Chapter 34 ■ aSp.Net MVC aNd Web apI

1585

Finally, add a reference to the AutoLotDAL project (by right-clicking the References node in Solution
Explorer for CarLotWebAPI and selecting AutoLotDAL from Projects/Solution). Add the connection string to
the Web.config file (your connection string may differ based on your installation path).

<connectionStrings>
 <add name="AutoLotConnection" connectionString="data source=localhost\
SQLEXPRESS2014;initial catalog=AutoLot;integrated security=True;MultipleActive
ResultSets=True;App=EntityFramework" providerName="System.Data.SqlClient" />

</connectionStrings>

Examining the Web API Project
This project is a lot more barren than the MVC project you created at the beginning of this chapter. Let’s
examine the files that were created. Start by opening the WebApiConfig.cs file in the App_Start folder.
The code (listed next) should look familiar to you. The first line enables attribute routing (not covered in this
book). The second line defines the default route with the default values. The default route is a little different
from what you saw in MVC. The first major difference is the lack of an action in the route. This is because
(as you will see later in this chapter) routing beyond the controller is based on the HTTP verb used in the
request. Finally, the id is set to RouteParameter.Optional, just like MVC.

public static void Register(HttpConfiguration config)
{
 // Web API configuration and services

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
}

Next, open the Global.asax.cs file (listed next). This is a stripped-down version of what you saw in
MVC. There is only one line in the file, and it adds the routing for the web route(s).

protected void Application_Start()
{
 GlobalConfiguration.Configure(WebApiConfig.Register);
}

Configuring the Project
Since the CarLotWebAPI project is a headless service (i.e., without any UI), it needs to be configured to
run on start and wait for a call to one of the configured routes. To do this, open the project properties by
right-clicking the project name in Solution Explorer and selecting Properties. Click the Web item in the left
sidebar and then select “Don’t open a page. Wait for a request from an external application.” Also, make note
of the project URL (in my example, it’s http://localhost:46024/). This is shown in Figure 34-32.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1586

Finally, set CarLotWebAPI as the startup project in your solution by right-clicking the project name in
Solution Explorer and clicking Set as StartUp Project.

A Note About JSON
JavaScript Object Notation (JSON) is one way to transport data between services. It is a simple key-value
text representation of objects and classes. For example, consider the following JSON representation of an
Inventory item:

{"CarId":1,"Make":"VW","Color":"Black","PetName":"Zippy","Timestamp":"AAAAAAAAB9o=","Orders":[]}

Each JSON object starts and ends with braces, and property name and string values are quoted. JSON
objects can also be nested. If the Make property wasn’t a string but an object (with the properties Builder
and Year), the JSON could resemble something like this:

{"CarId":1,"Make":{"Builder":"VW","Year":2015},"Color":"Black","PetName":"Zippy","Timestamp":
"AAAAAAAAB9o=","Orders":[]}

As you can see from the Orders property, lists are indicated by brackets ([). If the service was sending a
list of Inventory objects, the JSON might resemble this:

[{"CarId":1,"Make":"VW","Color":"Black","PetName":"Zippy","Timestamp":"AAAAAAAAB9o=",
"Orders":[]},{"CarId":2,"Make":"Ford","Color":"Rust","PetName":"Rusty","Timestamp":"AAAAAAAAB9s=",
"Orders":[]}]

Figure 34-32. Configuring the project startup for CarLotWebAPI

Chapter 34 ■ aSp.Net MVC aNd Web apI

1587

 ■ Note the Web apI project template includes a free open source utility called JSON.Net. It is a robust utility
for creating JSON from objects, as well as creating objects from JSON. You will use JSON.Net later in this chapter,
and you can find more information (including documentation and examples) at www.newtonsoft.com/json.

Adding a Controller
Just like MVC, Web API code is centered on controllers and actions. Right-click the Controllers folder and
select Add ➤ Controller. Next, select Web API 2 Controller with actions, using Entity Framework (shown in
Figure 34-33), and click Add.

Figure 34-33. Adding a new Web API 2 Controller

On the Add Controller screen, select the Inventory class for the model and select AutoLotEntities
for the data context. Check the box that asks to use async controller actions, change the name to
InventoryController (shown in Figure 34-34), and click Add.

http://www.newtonsoft.com/json

Chapter 34 ■ aSp.Net MVC aNd Web apI

1588

Examining the Controller Methods
Open the newly created InventoryController.cs class, add a class-level variable for the InventoryRepo
class, and instantiate it. Also, dispose of the repo in the controller Dispose() method. Both code snippets are
listed here:

private readonly InventoryRepo _repo = new InventoryRepo();
protected override void Dispose(bool disposing)
{
 if (disposing)
 {
 db.Dispose();
 _repo.Dispose();
 }
 base.Dispose(disposing);
}

Next, look at the action method signatures. While they resemble the actions from the MVC
InventoryController.cs class, there are some glaring differences. Instead of routing the request based on
the content of the URL, many of the actions take the same URL! Recall that in MVC, there are two methods
each for Add(), Update(), and Delete() actions, and MVC decides which one to use based on the HTTP
verb in the request (either HttpGet or Httpost). Web API follows the same pattern but uses additional HTTP
verbs to distinguish between calls. In addition to the HttpGet and HttpPost verbs used in MVC, Web API
also uses HttpPut and HttpDelete. Another glaring difference is the lack of HTTP verb attributes decorating
the actions! This is more convention over configuration. Web API looks for the case-insensitive match of
the start of the action name with the HTTP verb. For example, an action named DeleteInventory() would
handle the HttpDelete request. You can certainly call the method anything you want, but then you would
have to remember to decorate the method with the correct attribute. In the next sections, you will examine
the actions in more detail as you update them to use the InventoryRepo from the AutoLotDAL library.

Figure 34-34. Adding the Model and Context classes for the controller

Chapter 34 ■ aSp.Net MVC aNd Web apI

1589

Getting All Inventory Records

There are two HttpGet methods, GetInventory() and GetInventory(int id). The first gets all the inventory
records (recall that the id parameter is optional in the route). It’s a pretty standard method just like what you
saw in your MVC controller, except that this action method doesn’t return an ActionResult; it appears to just
return data. In actuality, in addition to the data, the Web API framework wraps the data in an HttpOk (200)
HttpResponseMessage, adding the data as the message body. The only change to this method is to update the
InventoryRepo.GetAll() method and change the return type to IEnumerable<Inventory>, as follows:

// GET: api/Inventory
public IEnumerable<Inventory> GetInventory()
{
 return _repo.GetAll();
}

Now it’s time to test the app. When you run the solution, it appears that nothing happened except the
Run icon in Visual Studio changed to the traditional Pause/Stop icon. This is because you set the project
to run headless and just wait for an external call. When everything is loaded (and the debug icons have
changed), open a new web browser. Enter the URL for the service (you saw this when you changed the
project web properties), plus the route, which is api/Inventory. On my machine, this equates to this (your
port number will most likely be different):

http://localhost:46024/api/Inventory

When you enter this into the browser, you will get the following error as plain text (actually the error is
much longer, but it’s shortened here to show the key part of the message). There isn’t any “yellow screen of
death” like you are used to seeing in Web Forms and MVC!

"Message":"An error has occurred.","ExceptionMessage":"Self referencing loop detected for
property 'Car' with type 'System.Data.Entity.DynamicProxies.Inventory_4F2216023579E149E169D5
86253289F35987B42694292AD3BF08836508A419F5'. Path '[0].Orders[0]'"

The lack of the traditional error page that you get in MVC (or Web Forms) is because Web API returns
everything as JSON, unless specified otherwise. Therefore, the calling application (in this case the browser)
doesn’t know an error occurred; it just displays the returned text. Note that Web API can also return any of
the standard HTTP error codes (as you will see later). When Web API returns an error, the calling application
is responsible for interpreting it and handling it accordingly. To see this, open the developer tools for your
browser (F12 for most browsers), navigate to the Network tab, and then refresh your browser. The developer
tools will show you great details about the call, the returned HttpMessage, and any errors (shown in
Figure 34-35).

Chapter 34 ■ aSp.Net MVC aNd Web apI

1590

The error itself is because EF (by default) lazy loads entities. If you recall from Chapter 23, lazy loading
means that EF will call for the data from the database when properties are requested. Serialization of .NET
objects traverses every property, so in this case, it walks down the list of Orders, and the Order class has a
reference back to its Inventory class. This circular reference causes the serialization to fail. To resolve this,
you either need to turn lazy loading off or copy all the relevant properties into a new class, ignoring the ones
that cause problems for serialization. You will do that next with AutoMapper.

Creating View Models with AutoMapper
AutoMapper (which you installed earlier in this section) is a free, open source utility for creating a new
instance of a type from an instance of another type. It can also be used to create a new instance of the same
type, which you will do here. Add a new constructor into InventoryController.cs, and in that constructor
add the following code:

public InventoryController()
{
 Mapper.Initialize(
 cfg =>
 {
 cfg.CreateMap<Inventory, Inventory>()
 .ForMember(x => x.Orders, opt => opt.Ignore());
 });
}

This code creates a mapping between the Inventory type and itself, ignoring the Orders property.
AutoMapper uses reflection to determine what properties match between the two types and will copy all the
values from the original instance into a new instance of the target type, with the exception of any ignored
properties (in this example, the Orders navigation property). It also works on collections, as you will see next.

Figure 34-35. Showing HTTP errors in Microsoft Edge browser

http://dx.doi.org/10.1007/978-1-4842-1332-2_23

Chapter 34 ■ aSp.Net MVC aNd Web apI

1591

Next, update the Inventory() method to convert the list of Inventory records into a new list of Inventory
records that don’t contain any Orders, like this:

// GET: api/Inventory
public IEnumerable<Inventory> GetInventory()
{
 var inventories = _repo.GetAll();
 return Mapper.Map<List<Inventory>, List<Inventory>>(inventories);
}

 ■ Note there isn’t enough space in this chapter to go any deeper with autoMapper, but it is an active and
widely used utility for .Net developers. You should consider adding it to your standard toolbox. You can find more
information, including documentation and examples, at the project home page at http://automapper.org.

Run the app again and, using Internet Explorer or Microsoft Edge (both Chrome and Firefox return XML
by default), enter the Inventory URI (http://localhost:46024/api/Inventory). You will see the following
JSON output (your actual data might vary):

[{"CarId":1,"Make":"VW","Color":"Black","PetName":"Zippy","Timestamp":"AAAAAAAAB9o=","Orders":
[]},{"CarId":2,"Make":"Ford","Color":"Rust","PetName":"Rusty","Timestamp":"AAAAAAAAB9s=",
"Orders":[]},{"CarId":3,"Make":"Saab","Color":"Black","PetName":"Mel","Timestamp":"AAAAAAAAB9w=",
"Orders":[]},{"CarId":4,"Make":"Yugo","Color":"Yellow","PetName":"Clunker","Timestamp":
"AAAAAAAAB90=","Orders":[]},{"CarId":5,"Make":"BMW","Color":"Black","PetName":"Bimmer","Time
stamp":"AAAAAAAAB94=","Orders":[]},{"CarId":6,"Make":"BMW","Color":"Green","PetName":"Hank",
"Timestamp":"AAAAAAAAB98=","Orders":[]},{"CarId":7,"Make":"BMW","Color":"Pink","PetName":
"Pinky","Timestamp":"AAAAAAAAB+A=","Orders":[]},{"CarId":13,"Make":"Pinto","Color":"Black",
"PetName":"Pete","Timestamp":"AAAAAAAAB+E=","Orders":[]},{"CarId":54,"Make":"Yugo","Color":
"Brown","PetName":"Brownie","Timestamp":"AAAAAAABX5E=","Orders":[]},{"CarId":55,"Make":"Yugo",
"Color":"Brown","PetName":"Brownie","Timestamp":"AAAAAAABbzE=","Orders":[]},{"CarId":56,
"Make":"Yugo","Color":"Brown","PetName":"Brownie","Timestamp":"AAAAAAABftE=","Orders":[]},
{"CarId":57,"Make":"Yugo","Color":"Brown","PetName":"Brownie","Timestamp":"AAAAAAABjnE=",
"Orders":[]},{"CarId":58,"Make":"Yugo","Color":"Brown","PetName":"Brownie","Timestamp":
"AAAAAAABnhE=","Orders":[]},{"CarId":59,"Make":"Yugo","Color":"Brown","PetName":"Brownie",
"Timestamp":"AAAAAAABrbE=","Orders":[]},{"CarId":60,"Make":"Yugo","Color":"Brown","PetName":
"Brownie","Timestamp":"AAAAAAABvVE=","Orders":[]},{"CarId":61,"Make":"Yugo","Color":"Brown",
"PetName":"Brownie","Timestamp":"AAAAAAABzPE=","Orders":[]},{"CarId":62,"Make":"Yugo","Color
":"Brown","PetName":"Brownie","Timestamp":"AAAAAAAB3JE=","Orders":[]},{"CarId":63,"Make":
"Yugo","Color":"Brown","PetName":"Brownie","Timestamp":"AAAAAAAB7DE=","Orders":[]},{"CarId":64,
"Make":"Yugo","Color":"Brown","PetName":"Brownie","Timestamp":"AAAAAAAB+9E=","Orders":[]}]

You see the Orders property is still there, but all the records are empty, avoiding the circular reference
issue. Problem solved!

http://automapper.org/

Chapter 34 ■ aSp.Net MVC aNd Web apI

1592

Getting One Inventory Record

The second HttpGet method, GetInventory(int id), returns a single inventory record based on the ID
passed in. Update the method to call the GetOneAsync() method from the repo, and use AutoMapper to
create a new instance of an Inventory class, as follows:

// GET: api/Inventory/5
[ResponseType(typeof(Inventory))]
public async Task<IHttpActionResult> GetInventory(int id)
{
 Inventory inventory = await _repo.GetOneAsync(id);
 if (inventory == null)
 {
 return NotFound();
 }
 return Ok(Mapper.Map<Inventory,Inventory>(inventory));
 }

There are four new items/methods in this action method: the ResponseType attribute,
IHttpActionResult, and the NotFound() and Ok() methods. The ResponseType attribute is used to specify
the entity type returned in the body of the HttpResponseMessage. In this, it’s priming the pump to serialize an
Inventory record for the HttpActionResult (which is the Web API version of MVC’s ActionResult). NotFound()
returns a NotFoundResult, which translates to a 404 error message. Ok() returns an HttpOk (200) and adds the
object(s) passed into the method (as JSON or XML, depending on your browser) into the message body.

To test this, entry the following into Internet Explorer/Edge (your port and CarId might be different):

http://localhost:46024/api/Inventory/5

Updating an Inventory Record

Updating a record in HTTP language is achieved with an HttpPut call and passing in the id of the record to
be updated and an instance of the object being updated. This method uses model binding (just like Web
Forms and MVC) to create an instance of the Inventory class with the values sent from the client in the body
of the message. Update the PutInventory() method to use the InventoryRepo. The code is shown here and
will be discussed after the listing:

// PUT: api/Inventory/5
[ResponseType(typeof(void))]
public async Task<IHttpActionResult> PutInventory(int id, Inventory inventory)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 if (id != inventory.CarId)
 {
 return BadRequest();
 }
 try
 {
 await _repo.SaveAsync(inventory);
 }

Chapter 34 ■ aSp.Net MVC aNd Web apI

1593

 catch (Exception ex)
 {
 //Production app should do more here
 throw;
 }
 return StatusCode(HttpStatusCode.NoContent);
 }

In the body of the action method (as with model binding in MVC and Web Forms), the first check is to
make sure the ModelState is valid. If not, then it returns an HttpBadRequest (400). If it is valid, the method
then checks that the id passed in through the URL matches the CarId of the Inventory record (from the
message body). This helps cut down (but doesn’t eliminate) URL hacking by an unscrupulous user. The
code then attempts to save the record and, if successful, returns an HTTP 204 (No content). If there is an
exception, this example merely throws it out to the client. In a production app, you would want to handle
any and all exceptions accordingly.

Adding Inventory Records

Adding a record in HTTP language is achieved with an HttpPost call and passing the object being updated
in the message body. In MVC, you used only Httpost for anything other than HttpGet requests, but Web API
is better at using the HTTP verbs correctly. The PostInventory() method also uses model binding to create
an instance of the Inventory class with the values sent from the client in the body of the message. Update
the method to use the InventoryRepo. The code is shown here and will be discussed after the listing:

// POST: api/Inventory
[ResponseType(typeof(Inventory))]
public async Task<IHttpActionResult> PostInventory(Inventory inventory)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 try
 {
 await _repo.AddAsync(inventory);
 }
 catch (Exception ex)
 {
 //Production app should do more here
 throw;
 }
 return CreatedAtRoute("DefaultApi", new { id = inventory.CarId }, inventory);
}

The PostInventory() action returns the added Inventory record, complete with the server-generated
values, so the ResponseType is of type Inventory. This action method also uses model binding to get the
values from the message body, checks ModelState, and returns an HttpBadRequest (400) if there are issues
in the model binding. If model binding is successful, the method then attempts to add the new record. If the
add is successful, then the action returns an HttpCreated (201) with the new Inventory record in the body of
the message.

Chapter 34 ■ aSp.Net MVC aNd Web apI

1594

Deleting Inventory Records

The final action method to update is DeleteInventory. The controller template creates a method that takes
an id, pulls up the record, and, if found, deletes them. The problem with this (as you discovered with the
MVC Delete action) is that the AutoLotDAL library uses concurrency checking to make sure no one else
changed the record before this current user sent the delete request. So, you need to update the signature to
accept an id and an Inventory object, which will get populated from the message body. Update the method
to the following:

// DELETE: api/Inventory/5
[ResponseType(typeof(void))]
public async Task<IHttpActionResult> DeleteInventory(int id, Inventory inventory)
{
 if (id != inventory.CarId)
 {
 return BadRequest();
 }
 try
 {
 await _repo.DeleteAsync(inventory);
 }
 catch (Exception ex)
 {
 //Production app should do more here
 throw;
 }
 return Ok();
}

The first change is to update the ResponeType to void. Next, update the signature to accept an
Inventory type in addition to the id parameter. In the method body, you also check to make sure the id
parameter matches the CarId of the Inventory record from the message body. If it matches, attempt to
delete the Inventory record. If the deletion succeeds, return an HttpOk (200).

Remove the AutoLotEntities Variable
The final cleanup for the InventoryController is to remove the AutoLotEntities variable from the top of the
class and dispose of the repo in the controller’s Dispose method. The updated Dispose method is shown here:

protected override void Dispose(bool disposing)
{
 if (disposing)
 {
 _repo.Dispose();
 }
 base.Dispose(disposing);
}

Chapter 34 ■ aSp.Net MVC aNd Web apI

1595

Updating CarLotMVC to Use CarLotWebAPI
Currently, CarLotMVC uses the AutoLotDAL library for all of its CRUD operations. In this section, you will
use the CarLotWebAPI for all the data access operations.

Updating the Index Action
Next, open the InventoryController.cs file in CarLotMVC and navigate to the Index() action method.
Instead of using the InventoryRepo from the AutoLotDAL library, you are going to use the services in
CarLotWebAPI. To do this, create a new HttpClient and call GetAsync(), passing in the URL of the
GetInventory() action method. This Web API method returns an IHTTPActionResult. This result
has two properties that you care about for this method: IsSuccessStatusCode and Content. The
IsSuccessStatusCode returns true if the call worked. This prevents you from having to check every possible
code that could get returned, since there are many that are considered successful. The Content property
provides access to the message body. In the case of the Index() action method, if the Inventory records
were returned, the Web API returns an HttpOk (200).

If everything works, all the Inventory records are contained in the Content property as JSON. This is where
JSON.NET comes into play (as mentioned earlier in the chapter). The JsonConvert.DeserializeObject<T>()
method is called using either a single type (Inventory) or IEnumerable of a type (List<Inventory>) as the
generic parameter. You then pass in the JSON string, and it attempts to convert the JSON string into the type
specified. If the method successfully converts the text into objects, then it returns the Index view. Note that
your port for the Web API call will probably be different.

// GET: Inventory
public async Task<ActionResult> Index()
{
 var client = new HttpClient();
 var response = await client.GetAsync("http://localhost:46024/api/Inventory");
 if (response.IsSuccessStatusCode)
 {
 var items = JsonConvert.DeserializeObject<List<Inventory>>(
 await response.Content.ReadAsStringAsync());
 return View(items);
 }
 return HttpNotFound();
}

 ■ Note None of these examples has the level of error handling needed for a production application. that
decision was made to make sure the examples are clear and concise. You would want to take what you learned
earlier in Chapter 7 to handle any and all exceptions gracefully.

Make sure the CarLotMVC app is set as the startup project by right-clicking the CarLotMVC project
name in Solution Explorer. Run the app and click Set as StartUp Project. Run the app and click the Inventory
link in the menu, and you will see the same page as when the Index() method was calling directly into the
AutoLotDAL library. It is literally that simple!

http://dx.doi.org/10.1007/978-1-4842-1332-2_7

Chapter 34 ■ aSp.Net MVC aNd Web apI

1596

 ■ Note You might be wondering if you still need the reference to autoLotdaL in CarLotMVC. the answer
is Yes, at least for how this solution is structured. autoLotdaL contains the model definitions, and CarLotMVC
needs access to the model classes. a common pattern (not shown here for simplicity) is to place the model
definitions into a separate assembly and reference that library from any project that need the type definitions
for the models.

Updating the Details Action
The next step is to update the Details() action method. Update the code to the following (changing your
port as necessary):

// GET: Inventory/Details/5
public async Task<ActionResult> Details(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 var client = new HttpClient();
 var response = await client.GetAsync($"http://localhost:46024/api/Inventory/{id.Value}");
 if (response.IsSuccessStatusCode)
 {
 var inventory = JsonConvert.DeserializeObject<Inventory>(
 await response.Content.ReadAsStringAsync());
 return View(inventory);
 }
 return HttpNotFound();
}

The main change here (just like in the Index action) is to change the call to get the record to CarLotMVC
using a new HttpClient. Check whether the response was a successful call, and if so, use JSON.NET to
deserialize the content of the message to an Inventory object. Finally, return the view.

Updating the Add Action
There are two Create() action methods, but the HttpGet version doesn’t need to be updated since it loads
a view without any database interaction. The HttpPost version does need to be updated. Fortunately, the
HttpClient takes care of a lot of the work for you (just like in the Index() action method). However, before
you update the method, you need to add a using statement for System.Net.Http and a reference to
System.Net.Http.Formatting. The System.Net.Http.Formatting class has extension methods that you
will use throughout this project, such as PostAsJsonAsync(), shown in the following code. The entire action
method is listed here, and the changes will be discussed after the listing:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Create([Bind(Include = "Make,Color,PetName"] Inventory inventory)

Chapter 34 ■ aSp.Net MVC aNd Web apI

1597

{
 if (!ModelState.IsValid)
 {
 ModelState.AddModelError(string.Empty,
 "An error occurred in the data. Please check all values and try again.");
 return View(inventory);
 }
 try
 {
 var client = new HttpClient();
 var response = await client.PostAsJsonAsync("http://localhost:46024/api/Inventory", inventory);
 if (response.IsSuccessStatusCode)
 {
 return RedirectToAction("Index");
 }
 }
 catch (Exception ex)
 {
 ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");
 }
 return View(inventory);
}

The main change is that after creating an HttpClient instance, you call the PostAsJsonAsync() extension
method. This method takes two parameters: the service URI (for example, http:/localhost/46024/api/
Inventory) and the data to post (inventory). The method takes care of creating the JSON for you, creating
an HttpPost method, and inserting your data into the message body.
If the request was successful, the IsSuccessStatusCode will be set to true.

Updating the Edit Action
Both of the Edit() action methods need to be updated. The HttpGet version must call CarLotWebAPI to get
the record to display, and the changes are the same that you made to the Details() action method to get the
data from the web service.

// GET: Inventory/Edit/5
public async Task<ActionResult> Edit(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 var client = new HttpClient();
 var response = await client.GetAsync($"http://localhost:46024/api/Inventory/{id.Value}");
 if (response.IsSuccessStatusCode)
 {
 var inventory = JsonConvert.DeserializeObject<Inventory>(
 await response.Content.ReadAsStringAsync());
 return View(inventory);
 }
 return new HttpNotFoundResult();
}

Chapter 34 ■ aSp.Net MVC aNd Web apI

1598

The HttpPost version uses a similar extension method as the Add() action method. PutAsJsonAsync()
creates an HttpPut message at the specified URL and adds the objects into the body of the message as JSON.
The updated code is listed here:

// POST: Inventory/Edit/5
 [HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Edit(
 [Bind(Include = "CarId,Make,Color,PetName,Timestamp")] Inventory inventory)
{
 if (!ModelState.IsValid) { return View(inventory); }
 var client = new HttpClient();
 var response = await client.PutAsJsonAsync($"http://localhost:46024/api/Inventory/
{inventory.CarId}", inventory);

 if (response.IsSuccessStatusCode)
 {
 return RedirectToAction("Index");
 }
 return View(inventory);
}

 ■ Note You might be wondering why the action method in the MVC controller is marked with the HttpPost
attribute but the call to the web service is an HttpPut. the important takeaway is that the http verb used to call MVC
actions does not have to match the http verb used to call Web apI action methods. they are separate operations.

Updating the Delete Action
There are two Delete() action methods, and like the Edit() HttpGet version, the only change is to call the
web service to get the data. The change is done the same way as you did for the Delete() and Details()
action methods.

// GET: Inventory/Delete/5
public async Task<ActionResult> Delete(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 var client = new HttpClient();
 var response = await client.GetAsync($"http://localhost:46024/api/Inventory/{id.Value}");
 if (response.IsSuccessStatusCode)
 {
 var inventory = JsonConvert.DeserializeObject<Inventory>(
 await response.Content.ReadAsStringAsync());
 return View(inventory);
 }
 return new HttpNotFoundResult();
}

Chapter 34 ■ aSp.Net MVC aNd Web apI

1599

The HttpGet Delete() action method requires more work. As you might suspect, there is indeed a
DeleteAsync() extension method on the HttpClient, but it doesn’t accept any parameters for content in the
message body. Using this method will cause the delete to fail since the timestamp value must be passed in as
part of the concurrency check. Instead, you have to create the HttpRequestMessage by hand. The constructor
for the HttpRequestMessage takes the HttpMethod as the first parameter and the URL as the second. Create a
new instance passing in HttpDelete as the verb, and the URL of the Delete() action method, as follows:

HttpRequestMessage request = new HttpRequestMessage(
 HttpMethod.Delete,
 $"http://localhost:46024/api/Inventory/{inventory.CarId}");

Next, use JSON.NET to serialize the inventory object and then add it to the content. The serialization
call is straightforward:

JsonConvert.SerializeObject(inventory)

When assigning content to the HttpRequestMessage, you have to set the encoding and the type, which
is application.json, like this:

Content = new StringContent(JsonConvert.SerializeObject(inventory), Encoding.UTF8,
"application/json")

Putting it all together using object initialization, you should have this:

HttpRequestMessage request = new HttpRequestMessage(
 HttpMethod.Delete,
 $"http://localhost:46024/api/Inventory/{inventory.CarId}")
 {
 Content =
 new StringContent(JsonConvert.SerializeObject(inventory), Encoding.UTF8,

"application/json")
 };

Finally, send the message by calling SendAsync() on an instance of HttpClient, thus sending the
request you just created. The full Delete() method is shown here:

// POST: Inventory/Delete/5
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Delete([Bind(Include = "CarId,Timestamp")]Inventory inventory)
{
 try
 {
 var client = new HttpClient();
 HttpRequestMessage request = new HttpRequestMessage(
 HttpMethod.Delete,
 $"http://localhost:46024/api/Inventory/{inventory.CarId}")
 {
 Content =
 new StringContent(JsonConvert.SerializeObject(inventory), Encoding.UTF8,

"application/json")
 };

Chapter 34 ■ aSp.Net MVC aNd Web apI

1600

 var response = await client.SendAsync(request);
 return RedirectToAction("Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 ModelState.AddModelError(string.Empty, "Unable to delete record. Another user updated

the record.");
 }
 catch (Exception ex)
 {
 ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");
 }
 return View(inventory);
}

Testing the Applications
To run the application, you need to set both CarLotMVC and CarLotWebAPI to start when you begin
debugging. Do this by right-clicking the solution in Solution Explorer and selecting Set StartUp Projects.
In the dialog that opens, select “Multiple startup projects” and set both CarLotMVC and CarLotWebAPI to
Start (shown in Figure 34-36).

Figure 34-36. Setting multiple startup projects

Chapter 34 ■ aSp.Net MVC aNd Web apI

1601

Now, when you press F5 to run the solution, the CarLotMVC project will load a browser to the home
page, and CarLotWebAPI will be running as a headless application, waiting for a call. Run the application,
click the Inventory menu, and click around the pages. The app works the same as it did from a user
perspective.

 ■ Source Code the CarLotMVC_Web apI solution can be found in the Chapter 34 subfolder.

Summary
This chapter examined many aspects of ASP.NET MVC and Web API. You began by examining the Model-
View-Controller pattern and then building your first MVC site. You learned about the convention over
configuration for the MVC framework and about all the files scaffolded for you as part of the new project
template, as well as the folders that were created and their purpose. You examined each of the classes
created in the App_Start folder and how they help you create MVC applications. You also learned about
bundling and minification and how to turn it off if needed.

The next section went into routing and how requests are directed to your controllers and actions. You
created new routes for the About and Contact pages and learned about redirecting users to other resources
in your site using routing instead of hard-coded URLs.

Next, you created a controller for the Inventory pages and learned how the scaffolding built into Visual
Studio creates base action methods and views. You learned about HttpGet and HttpPost requests and how
they work with routing for even finer control of what action method gets called. You then updated the action
methods to use AutoLotDAL, as well as updating the signatures and code to fit your business requirements.

Then you learned about the Razor View Engine, the syntax, and Razor helpers, functions, and delegates.
You also learned more about strongly typed views, partial views, and layouts. You also learned to send data
to the view using ViewBag, ViewData, and TempData.

After that, you modified each scaffolded view, updated the InventoryController actions, added
validation, and used Bootstrap to dress up the UI.

In the major next section, you learned about Web API. You created a new Web API project and
examined the scaffolded files and folders and their purpose. You then used the Visual Studio scaffolding to
add a controller and its action methods. You learned about additional HTTP verbs and how they are applied
in Web API routing. You updated each of the action methods to use AutoLotDAL and Entity Framework and
used AutoMapper to avoid the circular reference issue with EF lazy loading and serialization.

After updating all the InventoryController actions in CarLotWebAPI, you updated CarLotMVC to call
into the CarLotWebAPI service’s URLs, using JSON.NET to deserialize and deserialize records. You also
learned how to make calls using the additional HTTP verbs used by the Web API.

http://dx.doi.org/10.1007/978-1-4842-1332-2_34

1603

��������� A
Abstract stream members, 765
Accelerate() method, 365, 376, 383
Activator.CreateInstance() method, 607
Active Data Objects (ADO). see ADO.NET
Adaptive rendering, 1396
Add() method, 362
AddAsync() method, 1554–1555
AddComplete() method, 705–706
add_Exploded() method, 377
Add() method, 698, 702, 1588
AddOne() method, 723
AddPerson(), 401
AddWithThreads, 745
ADO.NET

AutoLot database creation
adding test records, 818
Customers and Orders tables, 820
GetPetName() stored procedure, 819
Inventory table creation, 815
table relationships, in Visual Studio, 822

connected layer of, 801
AutoLotDataReader, 830
command objects, 834
connection objects, 830
ConnectionStringBuilder objects, 833
data reader object, 829

Console UI–based front end
AutoLotCUIClient, 846
<connectionStrings> element, 847
DeleteCar() method, 850
InsertNewCar() method, 850
ListInventory() method, 849
LookUpPetName(), 851
Main() method implementation, 847
ShowInstructions() method, 849
statements, 846
UpdateCarPetName() method, 851

database transaction, 852
APIs, 853
Connection property, 854

CreditRisks tables, 854
DBTransaction, 853
IDbTransaction interface, 853
ProcessCreditRisk(), 855
Rollback(), 854
save points, 854
test, 857

data providers
application configuration files, 813
benefit, 802
C# Console Application project, 812
centric namespaces, 806
core objects, 802
DBMS, 803
factory pattern (see Data provider

factory model)
IDbConnection parameter, 811
Microsoft, 804
Microsoft SQL Server, 813
System.Data.OracleClient.dll, 805
third-party, 805

data readers
DbDataReader type, 835
ExecuteReader(), 835
multiple result sets, 836
Read() method, 835
string/int, 835

DataSets, 800
DataTable, 403
disconnected layer, 802
EF, 802
reusable data access library

AutoLotDAL, 838
CloseConnection() method, 838
DbParameter type, 843
deletion logic, 840
insertion logic, 839
InventoryDAL.cs, 838
OpenConnection() method, 838
parameterized command

objects, 842
selection logic, 841

Index

■ index

1604

stored procedure, 844
update logic, 841

System.Data namespaces
core members, 807
database primitives, 806
IDataReader and IDataRecord interfaces, 810
IDbConnection interface, 807
IDbDataParameter and IDataParameter

interfaces, 809
IDbTransaction interface, 808

System.Data.dll, 801
Application_Error() method, 1499
Application programming interface (API)

COM+, 1023
DCOM, 1022
MSMQ, 1023
.NET remoting, 1024
web service standards, 1025
XML web services, 1025

AsDataView<T>() extension method, 927
AsParallel() extension method, 739
AspNetCarsSite website

AdRotator control, 1455
AutoLotDAL assembly, 1459
BuildCar.aspx content page, 1467
default content page, 1456
filtering, 1465
GridView control, 1460
In-Place edition and deletion, 1461
inventory content page, 1459
master pages, 1449
SiteMapPath type, 1455
sorting and paging, 1464
TreeView control site navigation logic, 1453

ASP.NET state management
addition custom data, 1496
Application_End() method, 1504
application/session state distinction, 1501
Application_Start() method, 1502
ASPNETDB.mdf file, 1519
assignment data item, 1503
btnGetCar handler, 1492
CacheDependency object, 1507
Cache.NoSlidingExpiration parameter, 1507
Context.Cache property, 1505
cookie (see Cookie)
DateTime.Now.AddSeconds parameter, 1507
Default.aspx page, 1509, 1522
EnableViewState, 1495
Event Handler, 1499
GetUserAddress data, 1525
Global.asax file, 1497
HttpApplicationState Type, 1501
lblUserData Label, 1523

ListItems, 1495
Lock() method, 1504
machine.config file, 1520
Page_Load event handler, 1509
Profile property, 1522
profile data, 1521, 1524
Remove() method, 1503
RemoveAll() method, 1503
Session data (see Session data)
session variable, 1493
simple web UI, 1492
store session data, 1517

aspnet_state.exe, 1517
InstallSqlState.sql, 1518
session state server, 1517
web.config file, 1518

System.Web.Caching.Cache class, 1505
System.Web.HttpApplication Type, 1500
Unlock() method, 1504
UserAddress data, 1524
view state, 1494
web.config file, 1520

ASP.NET web forms
AutoEventWireup attribute, 1430
client-side scripting, 1395
code-behind model

advantages, 1411
AutoLotDAL project, 1413
C# code file, 1413
CodeFile attribute, 1412
debugging and tracing, 1415
Default.aspx.cs, 1412
*.designer.cs file, 1413
example, 1412
GetData method, 1414

code files, 1399
core events, 1428
directory structure

App_Code folder, 1419
referencing assemblies, 1419
subdirectories, 1418

Error event, 1430
features, 1398
HTML (see HTML)
HTTP (see HTTP)
IIS (see Internet Information Services (IIS))
life cycle, 1428
Load event, 1428
page type

inheritance chain, 1420
properties, 1421

postback to web server, 1397
single-file page model

application, 1403
*.aspx file, 1402

ADO.NET (cont.)

■ Index

1605

AutoLotDAL directory, 1404
control declarations, 1410
data access logic, 1406
directives, 1409
script block, 1410
templates, 1403–1404
UI designing, 1406

Unload event, 1429
Web.config file, 1431
web controls, 1399
Web Forms 2.0, 1399
Web Forms 3.5, 1400
Web Forms 4.0, 1401
Web Forms 4.5, 1401
Web Forms 4.6, 1402
web site vs. web application, 1416

Assembly-level attribute, 585
Asynchronous method invocation

Add() method, 701
AsyncCallback delegate, 703
AsyncResult Class, 706
AsyncState, 707
BeginInvoke() method, 700
EndInvoke() method, 700
IAsyncResult interface, 700
Main() method, 701
thread synchronization, 702

Asynchronous programming
AddWithThreads, 745
C# async, 741
multiple awaits, 744
naming conventions, 743
void returning, 744

Attribute-based programming
custom attribute

AssemblyInfo.cs, 586
assembly-level attribute, 585, 587
AttributeTargets enumeration, 584
AttributeUsage, 585
class definitions, 583
creation, 582
module-level attribute, 585
named property, 583

dynamic loading
Assembly class, 569
Assembly.Load() method, 571–572
AssemblyName type, 572
ExternalAssemblyReflector class, 570
LINQ, 573

extendable application
building process, 591
CommonSnappableTypes.dll, 591
CSharpSnapIn, 592
DisplayCompanyData() method, 596
external assemblies, 597

GUI, 595
LoadExternalModule() method, 596
VbSnapIn, 593
Windows Forms application, 593–594

late binding
CreateUsingLateBinding() method, 576
Invoke Methods, 577
System.Activator class, 574
TurboBoost() method, 576–577
VehicleDescriptionAttributeReader, 587
VehicleDescriptionAttribute

ReaderLateBinding, 588
metadata

Assembly token, 559
AssemblyRef #n token, 559
CarLibrary.EngineState enumeration, 556
get_PetName() method, 558
ildasm.exe, 556
set_PetName() method, 558
string literal, 560
TypeRef, 559

.NET attributes
CLS-compliant constructs, 579
constructor parameter, 581
ildasm.exe, 580
notserialized token, 580
obsolete type, 581–582
predefined attributes, 578
serializable token, 580
shorthand attribute, 581

reflection
GetInterfaces() method, 565
late binding, and custom attributes, 590
ListFields() method, 565
ListInterfaces() method, 565
Main() method implementation, 566
parameter types, 568
return types, 569
System.Collections.Generic.List, 568
System.Object.GetType() class, 562
System.Reflection Namespace, 561
System.Type class, 561–562
System.Type.GetType() operator, 563
Type.GetMethods() method, 564
typeof() operator, 563

Autoincrementing ability, 865
AutoLotDAL Version 4

AutoLotTestDrive (see AutoLotTestDrive)
BaseRepo addition

Add() and AddRange() methods, 970
DbSet<T> property, 968
Delete()/DeleteAsync() methods, 972
IDisposable interface, 971
initial class definition, 967
retrieving records, 970

■ index

1606

SaveChanges() helper methods, 968
Save()/SaveAsync() methods, 972

CreditRisk class, 963
CreditRiskRepo, 974
customer model class, 961
CustomerRepo, 973–974
data annotations, 957
DataInitialize, 975
DbContext addition, 964
DropCreateDatabaseAlways class, 975
DropCreateDatabaseAlways

<AutoLotEntities> class, 975
DropCreateDatabaseIfModelChanges

<TContext> class, 975
inventory model class, 959
Inventory repository, 973
IRepo interface addition, 966
NuGet packages, 956–957
order model class, 961
OrderRepo, 973
Seed() method, 975

AutoLot database, 932
AutoLot database, 932

adding test records, 818
Customers and Orders tables, 820
GetPetName() stored procedure, 819
Inventory table creation, 815
table relationships, in Visual Studio, 822

AutoLotTestDrive
connectionStrings updation, 976
inventory records

Add() or AddRange() method, 977
editing, 978
printing, 977

Main() method, 977
MakeCustomerARisk() method, 980
navigation properties

eager loading, 980
output window, 979
ShowAllOrders() method, 979

PrintAllCustomersAndCreditRisks()
method, 981

��������� B
BasicStringFunctionality() method, 84
BeginInvoke() method, 357–358, 700, 706, 726
Binary Application Markup Language (BAML), 1116
BinaryFormatter type, 781

BinaryFormatter.Serialize() method, 784
Deserialize() method, 785
network stream, 784
SaveAsBinaryFormat() method, 784

Binary operators, 405
Binding notification system

adding bindings and data, 1333
observable models

nameof method, 1338
PropertyChanged event, 1336

observable models (see Observable models)
vehicle data, 1335

BuildTableRelationship() helper function, 899
BundleConfig, 1536

��������� C
C# access modifiers, 179
Callback functions, 355
CallMeHere() method, 370
Cancel() method, 740
CanExecute method, 1368
CanHelpExecute() method, 1179
CarLotMVC project. see Model-View-Controller

(MVC) pattern
C# constructs

arrays
ArrayOfObjects() method, 123
creation, 121
GetStringArray() method, 125
implicitly typed local arrays, 122
initialization syntax, 121
JaggedMultidimensionalArray(), 125
PrintArray() method, 125
RectMultidimensionalArray(), 125
Reverse()/Clear() methods, 126
SimpleArrays() method, 121
System.Array class, 126
System.Object.GetType() method, 123

enum type
definition, 128
enumeration value, 131
Enum.GetUnderlyingType() method, 131
magic numbers, 129
name-value pair, 132
storage value, 129
System.Enum type, 130
underlying type, 129
variable declaration, 129

methods, parameter modifiers, 109
CalculateAverage() method, 114
DisplayFancyMessage()

method, 117
logical parameter, 114
method overloading, 118
named arguments, 117
optional parameters, 115
out modifier, 111

AutoLotDAL Version 4 (cont.)

■ Index

1607

output parameters, 113
positional args, 117
reference parameters, 113
by value, 110
by variable, 111

nullable types
assignment operator, 138
conditional operator, 147
data type, 144
equality operator, 146
GetBoolFromDatabase() method, 145
if/else condition, 147
null coalescing operator, 146
PointRef type, 138
rectangle type, 139
SendAPersonByReference() method, 142
SendAPersonByValue() method, 141
value types vs. reference types, 139, 143

structure
custom constructor, 135
default constructor, 135
definition, 133
types, 133
variable creation, 135

C# dynamic keyword
dynamic data variable, 601
limitations, 604
practical uses, 605
scope, 603

C# extension methods, 442
Common intermediate language (CIL),

dynamic assemblies
C# Iteration Constructs

foreach loop, 102
for Loop, 101
while and do/while loop, 103

Class libraries
Configuration File Schema, 552–553
custom namespace

BinaryFormatter class, 507
Circle.class, 504
class definition, 503
compile-time errors, 506
custom alias, 507
default namespace, 509
fully qualified name, 505
My3DShapes namespace, 508
MyShapes namespace, 504
name clashes, 506–507
root namespace, 509
ShapesLib.cs, 503

.NET assemblies
abstract base class, 515
Add Reference dialog box, 517
.assembly extern token, 518

assembly’s metadata, 521
CarLibrary.dll, 521
C# class library, 514–515
C# client application, 522
CIL code, metadata, and assembly

manifest, 514
CLR header, 513
code library, 510
code reuse, 510
cross-language inheritance, 525
DerivedCars.cs, 516
embedded resources, 514
Exploring the CIL, 520
GUI editor, 519
GUI Properties editor, 520
ildasm.exe, 518
manifest data, 518
self-describing, 511
unique types, 510
versionable units, 511
visual basic console application, 523–524
Windows file header, 512
XML configuration files, 511

Private assemblies
App.Config File, 529–530
Configuration files, 527
CSharpCarClient.exe, 528
MyLibraries subdirectory, 528
privatePath attribute, 529
probing process, 526
version number, 526

publisher policy assemblies
disable policy, 548
input parameters, 548
<codeBase> element, 549
publickeytoken value, 550

Shared Assemblies
AssemblyInfo.cs file, 535
assembly-level attributes, 534
assembly manifest, 542
bindingRedirect, 546
CarLibrary 2.0.0.0, 544–545
command prompt, 535
configuration files, 542
Console window, 540
current version, 543
digital signature, 534
gacutil.exe, 539
higher libraries, 533
historical GAC, 532
MyTestKeyPair.snk, 535
referenced library, 540
SharedCarLibClient, 541
SharedCarLibClient.exe, 547
*.snk file, 538

■ index

1608

strong name, 533
Visual Studio, 537

System.Configuration namespace, 550
ClearErrors() method, 867
Client-side scripting, 1395
CloneMe()method, 277
CloseConnection() method, 838
Collection Classes

arrays, 315
generic collections (see Generic collections)
nongeneric collections (see Nongeneric

collections)
System.Collections

ArrayList, 318
Classes, 319
key interfaces, 317
types, 317

types, 316
ColorChanged() method, 1198
Commit() method, 854
Common Intermediate Language (CIL), 520

AppDomain.DefineDynamicAssembly()
method, 688

AppDomain.DefineDynamicModule()
method, 688

attributes, 653
benefits, 12
Calc class, 10
CILCarClient.exe, 681
CILCars.dll, 678
C# keywords, 669
CreateMyAsm() method, 691
create MyAssembly.dll, 685
custom constructor, 690
data type mapping, 669
define constructor, 671
DefineDefaultConstructor() method, 690
define field data, 670
directives and attributes, 653

assembly declaration, 663
CILTypes assembly, 664
CILTypes.il file, 668
.class Directive, 666
common assembly-level directives, 664
CTS structure, 667
define class type, 665
enum attribute, 667
external assemblies, 663
generic member, 668
implementing interface, 666
MyBaseClass namespace, 665
.namespace directive, 664
type parameter, 668

Emit() method, 690
.field directive, 670
HelloWorld class type, 689
member parameter, 672
mnemonic distinction, 654
ModuleBuilder Type, 688
Module Set, 688
motivations, 652
.NET application, 652
.NET class library, 669
opcodes, 653–654

iteration constructs, 677
local variable declaration, 675
mapping parameters, 676
.maxstack directive, 675
member implementation, 673
nonstatic method, 677
Pop-Centric, 674
Primary Stack-Centric, 674
this reference, 677

OpCodes.Call method, 690
platform-specific instructions, 12
properties and methods, 671
pushing and popping, 654
round-trip engineering

branching/looping constructs, 659
C# console app., 656
code labels, 659
common ilasm.exe, 661
default constructor, 658
HelloProgram.il file, 657, 662
*.il file, 660
load-centric, 659
MessageBox.Show() method, 661
mscorlib, 660
peverify.exe, 662

SayHello() method, 691
string member variable, 689
System.AppDomain type, 686
System.Reflection.Emit.ILGenerator, 684
System.Reflection.Emit namespace, 683
TypeAttributes enumeration, 689

Common Language Runtime (CLR), 4
definition, 20
key difference, 20
mscoree.dll, 21

Common Language Specification (CLS), 4
compliance, 20
programming constructs, 18
rules, 19

Common Type System (CTS), 4, 1024
class types, 15
delegate types, 17
enumeration types, 16

Class libraries (cont.)

■ Index

1609

interface types, 15
intrinsic data types, 18
structure types, 16
type members, 17

Comparison operators, 410
Component Object Model (COM), 3
ConfigureGrid() function, 1216
Console.WriteLine() method, 395
Contact() action method, 1542
ControlTemplate class, 1316
Convert() method, 1214
ConvertBack() method, 1214
Cookie

CookieStateApp, 1514–1516
definition, 1514
HttpCookie.Expires property, 1515
HttpRequest.Cookies property, 1515–1516

C# parameter modifiers, 110
C# programming

BigInteger data type, 82
class hierarchy, 78
conditional operators, 105
data type conversion

checked keyword, 94
class Program, 91
implicit widening, 92
narrowing operation, 92
project-wide overflow/underflow data

checking, 96
unchecked keyword, 96

if/else statement, 104
implicitly typed local variables

DeclareExplicitVars() method, 97
restrictions, 98
strongly typed data, 99
uses, 100

intrinsic data types, 74, 77
iteration constructs (see C# Iteration Constructs)
Main() method (see Main() method)
numerical system type, 79
parsing values, 81
Relational/Equality Operators, 104
SimpleCSharpApp, 61
switch statement, 105
System.Boolean data type, 80
System.Char type, 80
System.Console Class (see System.Console Class)
System.DateTime, 81
System.Environment Class (see System.

Environment Class)
System.String

basic string manipulation, 84
concatenation, 85
escape characters, 86
immutability, 88

members, 84
StringBuilder, 89
string equality, 88
string interpolation, 90
verbatim string, 87

System.TimeSpan, 81
variable declaration, 75

C# programming language
anonymous types

definition, 424
equality, 427
internal representation, 425
ToString() and GetHashCode()

implementation, 427
custom type conversions

class types, 412
custom conversion routines, 413
explicit conversions, Square type, 416
implicit conversion routines, 417
numerical conversions, 412

extension methods
definition, 419
importing, 421
IntelliSense of, 422
interfaces, 422
invoking of, 420

indexer definition, on interface types, 404
indexer methods, 399

multiple dimensions, 403
overloading, 402
string index values, 401

operator overloading
binary operators, 405
equality operators, 409
MiniVan class, 411
+= and –+ operators, 408
unary operators, 408

pointer types
field access, 435
keywords, 430
pinning reference, 436
sizeof Keyword, 437
stackalloc Keyword, 435
unsafe (and safe) swap function, 434
unsafe keyword, 431

Create() action method, 1552, 1596
CreateDataReader() method, 922
CurrentNumberChanged() method, 1226
Custom commands

AddCarCommand
command class, 1373
XAML, 1374

CommandManager
creating CommandBase class, 1370
updating ChangeColorCommand Class, 1370

■ index

1610

ICommand interface, 1367
RemoveCarCommand

command class, 1372
XAML, 1373

testing application, 1370
updating MainWindow.xaml, 1369
updating MainWindow.xaml.cs, 1368

CustomDepPropApp, 1222
Custom Generic

default keyword, 349
DisplayBaseClass<T> method, 346
Point<T> types, 347
Swap<T> method, 344, 346
type parameters, 346

Custom method, 385
C# Windows OS

.NET Framework documentation system, 50
Visual Studio 2015 Professional IDE, 50
Visual Studio Community, IDE

Class Designer Toolbox, 48
Class Details window, 47–48
class diagram file, 46
Class Diagram viewer, 47
class visualization, 49
project types, 45

Visual Studio Express, IDEs
Add Reference, 42
Express for Web, 44
members, 36
new project creation, 37
Object Browser, 41
Project Properties window, 43
setting breakpoints, 39
Solution Explorer, 40
tools, 36

��������� D
Data adapters

filling DataSet with single table, 888–890
mapping database names to friendly

names, 890–891
members, DbDataAdapter class, 888
multitabled DataSet objects and data

relationships, 897–898
properties, 888
strongly typed, 913–914

Data annotations
ErrorTemplate, 1365
System.ComponentModel.DataAnnotations, 1363
validation errors, 1363

DataColumn
adding objects, 866
autoincrementing fields, 865

development, 864
properties, 863–864

Data provider factory model
<connectionStrings> element, 828
DbProviderFactory, 823
drawback, 827
Main() method, 825
System.Configuration.dll, 824
System.Data.Common namespace, 823
System.Data.OleDb, 826

DataRowExtensions.Field<T>() extension method, 926
DataRows

DataRowVersion property, 869
DataTable.NewRow() method, 867
key members, 866–867
RowState property, 868

DataSet
anatomy, 861
development, 863
ExtendedProperties property, 861
LINQ (see LINQ programming)
methods, 862
properties, 861–862
Tables property, 861

DataSet Extensions Library, 923–924
DataTable.NewRow() method, 867
DataTableReader objects, 873–874
DataTables

binding Windows Forms GUI
DataView type, 885–887
deleting rows, 881–882
hydrating from generic List, 878–880
initial GUI, 878
selecting rows, 882–884
updating rows, 885

inserting into DataSets, 871
key members, 871
LINQ programming, 927
obtaining data in DataSet, 872
processing using DataTableReader

objects, 873–874
serializing in binary format, 876–877
serializing as XML, 874–876

DbDataAdapter class, 888
Default application domain

AssemblyLoad event, 640
loaded assemblies, 639

Default constructor, 157
Delegate.Combine() method, 367
Delegate type

BeginInvoke() method, 357
BinaryOp class, 357, 362
C# anonymous methods

AboutToBlow event, 386
accessing local variables, 387

Custom commands (cont.)

■ Index

1611

Car class, 385
pseudocode, 386

C# events
Accelerate() method, 376
add_Exploded() method, 377
boilerplate code, 374
CarDelegate, 374
CarEngineHandler objects, 375
CarEvents, 376
cleaning up event invocation, 381
custom event arguments creation, 382
custom method, 385
event registration, 380
Generic EventHandler<T> Delegate, 384
incoming events, 378
registration and unregistration methods, 376
remove_Exploded() method, 377

definition, 356
delegate object, 361–362
EndInvoke() method, 357
GenericDelegate, 371

generic Action<> and Func<> delegates, 372
MyGenericDelegate<T>, 371
StringTarget() method, 372

Invoke() method, 357
Main() method, 361
MyDelegate, 358
MyOtherDelegate, 358
object state notifications

Accelerate() method, 365
CarDelegate, 364
CarEngineHandler, 364
listOfHandlers, 364
Main() method, 366
method group conversion syntax, 369
multicast enable, 366
OnCarEngineEvent() method, 366
Program class, 365
RegisterWithCarEngine() helper method, 365
RegisterWithCarEngine() method, 364
Remove() method, 368
updates, 364

pseudocode, 358
SimpleDelegate, 360
SimpleMath, 361
SquareNumber() method, 361
System.Delegate base classes, 359
System.MulticastDelegate, 356, 359

Delete() action methods, 1556, 1598
DeleteAsync() extension method, 1599
DeleteCar() method, 850
Delete()/DeleteAsync() methods, 1574
DependencyProperty.Register() method, 1219–1220
Dequeue() method, 338
Details() action method, 1551, 1596

Disconnected functionality
configuring the data adapter, 892–893
defining Initial Class Type, 892
implementing GetAllInventory(), 894
implementing UpdateInventory(), 894
setting version number, 894
testing, 894–896

Disconnected layer. see DataSet
DisplayDefiningAssembly(), 420
DisplayDelegateInfo() method, 362
DisplayMessage() method, 373
DisplayTable() helper method, 849
Dispose() method, 1549, 1558, 1588
Distributed Component Object Model (DCOM), 1022
Distributed system, 1021
Download cache, 549
DownloadStringAsync() method, 735
DoWork() method, 742, 744
Dynamic data

COM interop pain points, 614
COM interop using C#, 615
COM interop without C#, 619
interop metadata, 613
primary interop assemblies, 612

Dynamic Language Runtime (DLR)
expression trees, 606–607
System.Dynamic Namespace, 606

��������� E
Edit() action methods, 1549, 1554, 1555, 1597
Enable() method, 1206
EnableAnnotations() method, 1206
Encapsulation

automatic properties
default values, 192
DisplayStats() method, 192
expected property syntax, 192
initialization of, 194
read-only automatic property, 191
syntax, 191
write-only property, 191

C# access modifiers, 179
C# class type

Car variable, 154
insertion, 152
member variables, 151
objects allocation, 154
PrintState(), 153
SpeedUp(), 153

class definition, 181
constant field data, 199
constructors

custom constructors, 156
default constructor, 155

■ index

1612

keyword
constructor chaining, 161
constructor flow, 163
IntelliSense, 160
Main() method, 160
optional arguments, 165
SetDriverName(), 159

.NET properties, 184
object initialization syntax

custom constructors, 197
initializing data, 198
objectInitializers, 196
point objects, 196

OOP
Draw() method, 178
encapsulation, role of, 175
“has-a” relationship, 176
inheritance, role of, 175
“is-a” relationship, 176
polymorphism, 177

partial classes, 202
properties, 187
read-only property, 189
static keyword

importing static members, 174
static classes, 173
static constructors, 170
static field data, 167
static methods, 169
utility classes, 166
WriteLine() method, 166

static properties, 190
traditional accessors and mutators, 182
write-only property, 189

EndInvoke() method, 357–358, 700
Enqueue() method, 338
EnterLogData() method, 115
Entity data model (EDM), 932
Entity data model XML (EDMX) file, 929
Entity framework

AddRecords() method, 930
AutoLotConsoleApp

ADO.NET EDM project item
insertion, 939

AutoLotConnection, 940
configSection, 944
Customer and Orders relationship, 944
data annotations, 942–943
database selection, 940–942
DbSet<TEntity> property, 944
default mappings, 945
designer-generated classes, 946
EDM generation, 940

entity names, 942
FluentAPI, 944
Key attribute, 943
Order class, 943
Orders and Inventory relationship, 944
StringLength attribute, 943
SuppressMessage attributes, 943
table attribute, 943

AutoLotDAL Version 4 (see AutoLotDAL
Version 4)

AutoLot database, Inventory table, 932
building blocks

DbContext class, 935–936
DbSet<T>, 936
empty code first model, 937
Entity State, 937
System.Data.Entity.dll assembly, 934
transaction support, 937

concurrency, 991
connected layer, 930–931
convention and configuration, 932
DataSet class, 930
disconnected layer, 930–931
EDM, 932
EDMX file, 929
goal, 929
in-house application, 931
interception

ConsoleWriterInterceptor, 994
DatabaseLogger interceptor, 995
IDbCommandInterceptor interface, 993
registering, 995
WriteInfo() method, 994

LINQ queries, 929–930
LINQ to SQL, 931
migrations

baseline migration, 985
concurrency checking, 982
Credit Risk class, 984
Customer class, 983
Inventory class, 982
__MigrationHistory table, 985
Order class, 983
Seed() method, 989
System.InvalidOperationException, 984
Timestamp property, 982

model classes (see Model classes)
ObjectContext class

accessing, 996
ObjectMaterialized event, 996
SavingChanges event, 997

POCO classes, 932
runtime, 931
SQL Server Express, 998

Encapsulation (cont.)

■ Index

1613

table adapter supports methods, 930
transaction test, 990

Entity Framework (EF), 802
ExecuteNonQuery() method, 837
ExecuteReader() method, 837

��������� F
File I/O

BinaryReader object, 772
BinaryWriter object, 772
Directory.GetLogicalDrives() method, 756
DirectoryInfo.CreateSubdirectory()

method, 754–755
DirectoryInfo Type, 752
DriveInfo.GetDrives() method, 757
File types, 762
FileAccess enumeration, 760
file-centric members, 763
FileInfo.AppendText() method, 762
FileInfo class, 758
FileInfo.Create() method, 759
FileInfo.CreateText() method, 762
FileInfo.Open() method, 759, 761
FileInfo.OpenText() method, 761
FileInfo types, 762
FileMode enumeration, 760
FileShare enumeration, 760
FileStream object, 759
FileSystemEventHandler, 774
FileSystemInfo type, 750
FileSystemInfo Base Class, 751
FileSystemWatcher type, 774
GetFiles() method, 754
GetStringBuilder() method, 771
MemoryStream object, 773
MyFolder directory, 774
Stream class

CreateText() method, 768
File.CreateText() method, 768
FileStreams type, 765
StreamReader types, 770
StreamWriter type, 767, 770
StringReader type, 767
TextReader class, 769
TextWriter class, 767

StringReader object, 770
StringWriter object, 770
System.IO namespace, 749
System.IO.NotifyFilters enumeration, 774

Fill() method, 810
FilterConfig, 1537
FormatNumericalData() function, 72

��������� G
Generic collections

benefits, 327
type parameters

constraints, 350
generic class/structure, 328
generic interfaces, 330
generic items, 327
generic members, 330
operator constraints, 352
where clause, 351

GetAllInventory(), 894
GetAllInventoryAsList() method, 850
GetChildren() method, 1313
GetCoffee() funtion, 338
GetCommandLineArgs() method, 66
GetErrors method, 1359
GetInventory() method, 1077, 1589
GetInventory(int id) method, 1589, 1592
GetOneAsync() method, 970, 1592
GetOne() method, 970
GetPerson(), 401
GetValue() method, 1219
Global.asax.cs file, 1534
Global assembly cache (GAC), 532
Globally unique identifier (GUID), 534, 863
Graphical rendering, WPF

adding rectangles, ellipses, and
lines, 1233–1236

brushes and pens
Brush-derived types, 1243
configuring in code, 1247–1248
configuring pens, 1248
configuring using visual

studio, 1243, 1245, 1247
drawings and geometries

building DrawingBrush using
geometries, 1259–1260

containing drawing types in
DrawingImage, 1261–1262

Drawing class, 1258
Drawing-derived types, 1258–1259
DrawingImage, 1259
Drawing vs. Shape types, 1259
painting with DrawingBrush, 1260–1261

graphical transformations (see Graphical
transformations)

options, 1230
path

Geometry-derived classes, 1239–1240
key members, 1239
mini-language, 1241–1242

■ index

1614

polylines and polygons, 1238
removing rectangles, ellipses,

and lines, 1236–1238
Shape base class, 1231–1233
vector images (see Vector images)
visual layer (see Visual layer)
Visual Studio transform editor (see Visual

Studio transform editor)
Graphical transformations

adding a final <ToggleButton>, 1251
adding final Boolean member

variable, 1252–1253
Button with skew transformation, 1250
Click event handler, 1251
Ellipse scaled by 20%, 1250
Rectangle with rotate transformation, 1250
rendering entire <DockPanel>, 1251
TextBox responsive to keyboard input, 1250
TextBox rotated and skewed, 1250
Transform-derived classes, 1249
undefined clipping region, 1252

��������� H
HasErrors property, 867
HelpExecuted() method, 1179
HTML

definition, 1388
document structure, 1388
form, 1390, 1394
Visual Studio, 1390

HTTP
browser statistics, 1422
btnGetFormData_OnClick value, 1425
HttpRequest class type, 1421
HttpRequest.Form property, 1425
HttpRequest.QueryString property, 1425
HTTPResponse type

HttpResponse.Write() method, 1427
HttpResponse.WriteFile() method, 1427
methods, 1427
properties, 1426
users redirection, 1427

IsPostBack property, 1426
MapPath() method, 1422
request/response cycle, 1385
SaveAs method, 1422
stateless protocol, 1386
Text property, 1425
ValidateInput() method, 1422

HttpRequest.Browser property, 1396

��������� I
IAsyncResult interface, 700
IDbCommand interface, 808
IDbDataAdapter and IDataAdapter

interfaces, 809
IgnoreRoute() method, 1543
ImageMagick tool, 1263
Immediate-mode graphical systems, 1229
Index() action method, 1543, 1549, 1555, 1595
Indexer methods, 399
Inheritance and polymorphism

abstract classes, 225
base/derived class, 234
basic mechanics, 205
Car class, 206
containment/delegation

GetBenefitCost(), 217
“has-a” relationship, 217
Main() method, 218
nested type definitions, 218

controlling base class, 213
Employee.cs and Employee.Core.cs files, 212
GiveBonus(), 220
“is-a” relationship, 205, 217
Manager class, 212
master parent class

Main() method, 240
ObjectOverrides, 239
person class, 243
static members, 244
System.Object, 238, 240
System.Object.Equals(), 241
System.Object.GetHashCode(), 242
System.Object.ToString(), 240

multiple base classes, 208
parent class, 206
polymorphic interface

abstract methods, 230
Draw() method, 229–230
Main() method, 230–231
shadowing, 232
shapes hierarchy, 228
virtual and abstract methods, 228

protected keyword, 215
SalesPerson class, 212
sealed class, 216
sealed keyword, 208
sealing virtual members, 225
virtual and override keywords, 221
Visual Studio class diagrams, 210–211
Visual Studio IDE, 223

Graphical rendering, WPF (cont.)

■ Index

1615

InitializeComponent() method, 1178
INotifyPropertyChanged interface, 1336
InsertAuto() method, 843, 850, 1079
InsertCar() method, 1077
InsertNewElement() method, 1016
Interfaces

abstract base classes, 278
abstract members, 275
arrays, 288–289
CloneMe() method, 285
cloning process

class named Point, 302–304
ICloneable interface, 303
MemberwiseClone() method, 304
PointDescription type, 304–307

custom interfaces
access modifier, 279
class/structure, 280
compiler errors, 280
IPointy, 279
namespace, 279
read-only property, 280

explicit interface implementation
Draw() method, 291, 293
InterfaceNameClash, 291
Octagon type, 292

Hexagon type, 283
IComparable interface

Car class, 307–308
custom static property, 311–312
definition, 307
int data type, 309
internal CarID, 308
return values, 309
sort order, 310–311
System.Array class, 308

IDbConnection, 275
IDraw3D interface, 286–287
IEnumerable and IEnumerator

array type, 297
Garage, 297–298
GetEnumerator() method, 298
iterator method, 300
named iterators, 301–302
System.Collections namespace, 299

implementation, 281–282
InterfaceHierarchy

BitmapImage, 294
drawing behavior, 294
IAdvancedDraw, 294
MIInterfaceHierarchy, 295–296
rendering-centric interfaces, 293

InvalidCastException, 283
Main() method, 283–285
method return values, 287–288

null reference, 284
ThreeDCircle and Hexagon, 285
types, 276–278
Visual Studio class diagram, 286
Visual Studio support, 289–290

Interlocked.Exchange() method, 723
Internet Information Services (IIS)

Default Web Site node, 1386
Express, 1387
virtual directories, 1387

Inventory() method, 1591
InventoryList

Clear method, 1343
NotificationCollectionChangedAction.Add

value, 1342
NotificationCollectionChangedAction.Remove

value, 1343
OnCollectionChanged method, 1341
RemoveAt method, 1343

Invoke() method, 357–358, 361, 698
IsEvenNumber() method, 389

��������� J, K
JavaScript Object Notation (JSON), 1586, 1591

��������� L
Lambda expressions

dissection, 391
lambdas and single statement member

implementations, 395
multiple/zero parameters, 393
processing arguments, multiple statements, 392
retrofitting CarEvents, 395
SimpleLambdaExpressions, 388

LambdaExpressionSyntax() method, 392
Language Integrated Query (LINQ), 5
LayoutTransform property, 1249
LinqOverDataTable() method, 923
LINQ programming

DataRowExtensions.Field<T>() extension
method, 926

DataSet Extensions Library, 923–924
hydrating new DataTables, 927
LINQ-compatible DataTable, 924–926

LINQ programming model
aggregation operations, 465
anonymous types, 443
C# LINQ query operators, 457, 459

Count() extension method, Enumerable
class, 462

data types, 460
removing duplicate, 465
Reverse<>() extension method, 462

■ index

1616

selection syntax, 459
sorting expression, 463
subsets of data, 460

Core LINQ assemblies, 444
data, API uses, 443
DataSet, 444
entities, 444
expressions, 444
extension methods, 442
Lambda expressions, 441
local variables, 440
object and collection initialization syntax, 440
queries, 444

and extension methods, 449
and local variables, 448
contained subobjects, 455
deferred execution, 450
enumerable type and anonymous

methods, 469
enumerable type and lambda

expressions, 467
enumerable type and raw delegates, 469
filtering data, OfType<T>(), 457
immediate execution, role of, 451, 453
nongeneric collections, 456
query expression, 446
query operators, 467
QueryOverStrings() method, 445, 447
result set, 447

Venn Diagramming Tool, 463
XML, 444

LINQ technology, 429
LINQ to SQL, 931
LINQ to XML

In-Memory XML document
GUI, 1014
Helper class, 1016
Inventory.xml file, 1015
Windows Forms application, 1014

Inventory.xml file, 1002
LinqToXmlFirstLook project, 1001
System.Xml.dll assembly, 1001
System.Xml.Linq namespace, 1003

axis methods, 1008
class hierarchy, 1007
members, 1007
XNamespace, 1009

top-down code, 1003
VB literal syntax, 1004
XElement and XDocument

arrays and containers, 1012
example, 1010
hypothetical style sheet, 1012
inventory items, 1011

Load() and Parse() methods, 1014
SimpleInventory.xml file, 1011
UTF-8 encoding, 1011

XmlDocument and XmlElement classes, 1002
XML document creation, 1002

ListInventory() method, 849
Load() method, 842
LogicalTreeHelper class, 1313
LookUpColorsForMake() method, 1017

��������� M
MagicEightBallServiceLib., 1038
Main() method, 361–362, 366, 394, 699, 702, 717,

825, 833, 847
application error code, 64
command-line arguments, 65
Program class, 62
refactored, 378
variations, 63

MapPath() method, 1422
MapRoute() method, 1543
Metadata exchange (MEX), 1047
Method overloading

Add() method, 119
class definition, 119
IntelliSense list, 120

Microsoft Message Queuing (MSMQ), 1023
Microsoft .NET platform

assembly manifest, 14
assembly/namespace/type distinction, 22
base class libraries, 5
CIL (see Common Intermediate Language

(CIL))
CLI Partitions, 31
CLR (see Common Language Runtime (CLR))
CLS (see Common Language Specification (CLS))
Common Language Runtime, 4
Common Language Specification, 4
Common Type System, 4
COM programming model, 3
C# programming language, 6
features, 4
ildasm.exe, 28

CIL code, 29
manifest data, 30
metadata, 30

IL instructions, 9
managed vs. unmanaged code, 7
metadata, 9
Mono project, 32
multilanguage applications, 8
namespace programming, 25
.NET Core framework, 32
.NET Distributions, 32

LINQ programming model (cont.)

■ Index

1617

.NET metadata, 13

.NET Namespaces, 24
root namespace, 23
Windows\Assembly\GAC, 26

Microsoft Transaction Server (MTS), 1023
Model classes

DbSet<Car> collection, 948
LINQ queries, 949
Main() method, 948
navigation properties

eager loading, 952
explicit loading, 953
JOIN operations, 951
lazy loading, 952
virtual ICollection<Order>, 951

PrintAllInventory() method, 948
record deletion

EntityState, 954
Find() method, 954

record insertion, 947
record updation, 955
SqlQuery, 949

Model-View-Controller (MVC) pattern
adding, 1529
ASP.NET Web Forms, 1528
AutoLotDAL project, 1545
components

App_Start folder, 1536
ASP.NET folders, 1535
Bootstrap, 1538
Content folder, 1538
Controllers folder, 1534
Fonts folder, 1538
Models folder, 1534
project root files, 1533
Scripts folder, 1538
Views folder, 1535

controllers and actions, 1528
ActionResult-Derived classes, 1550
Create() action method, 1552
Delete() action methods, 1556
Details() action method, 1551
Dispose() method, 1549, 1558
Edit() action method, 1549, 1555
inventory repository, 1550
Index() method, 1549–1550
inventory controller, 1546
InventoryController.cs class, 1549
Web start action updation, 1549

convention over configuration, 1529
Create view

add inventory view, 1574
AntiForgery token, 1572
BeginForm() HTML helper, 1572
Bootstrap, 1573

EditorFor() HTML helper, 1571
LabelFor helper, 1572

Delete view, 1574
Details view, 1570
Edit view, 1576
home page updation, 1581
Index view

data annotations, 1565
DisplayFor(), 1565
DisplayNameFor() HTML helper, 1565
GlyphIcons, 1568
header update, 1566
updated table, 1567

layouts, 1561
Layout view updation, 1580
model, 1527
MVC5, 1529
MVVM, 1527
NuGet Packages updation, 1539
partial views, 1563
project creation

authentication options, 1531
generated files and folders, 1533
new ASP.NET web application, 1530
selection, 1531

Razor View Engine, 1558
HTML helpers, 1559
Razor delegates, 1560
Razor functions, 1560
Razor syntax, 1558

removing, 1529
routing

ActionLink() HTML helper, 1544
Contact() action method, 1542
creation, 1543
_Layout.cshtml file, 1544
URL patterns, 1542

strongly type views, 1565
TempData, 1564
test-drive, 1540
validation

client-side, 1579
server-side, 1578

ViewBag, 1564
ViewData, 1564
view models, 1565

Model-View-ViewModel (MVVM) pattern, 1527
anemic models, 1331
application, 1329–1330
AutoLotDAL

base class, 1376–1377
INotifyPropertyChanged, 1378–1379
inventory partial, 1377–1378

ConnectionStrings node, 1379
definition, 1330

■ index

1618

implementation
Button Command binding

statements, 1376
data source, 1374

ObjectMaterialized event, 1380
Module-level attributes, 585
Monitor.Enter() method, 722
Multitabled DataSet objects and data relationships

building table relationships, 899
displaying data, 896–897
navigating between related tables, 900

Button’s Click event handler, 900–901
output when specifying customer ID, 901
UI for customer order information, 900

preparation, 897
preparing data, 897–898
updating database tables, 899

Multithreaded application
AutoResetEvent class, 715
background threads, 716
foreground threads, 716–717
OS/CLR, 697
ParameterizedThreadStart delegate, 714
synchronization, 697

attribute, 724
C# lock keyword, 719
System.Threading.Interlocked Type, 723
System.Threading.Monitor class, 722

synchronizing threads, 718
System.Threading namespace, 696
ThreadStart Delegate, 712

MyLocalVariables() method, 675

��������� N
nameof method, 1338
NarrowingAttempt() method, 94
.NET delegate, 697
.NET platform

context-agile and context-bound
types, 646

context-bound object, 647
new application domains

custom application domains, 643
programmatically unloading

AppDomains, 644
object’s context inspection, 647
process’s module set, 632
process’s thread set, 630
programmatically launch and terminate

process, 633
running processes, 628
Start() method, 634

static Process.GetProcessById() method, 629
System.AppDomain Class, 636
System.Diagnostics namespace, 626
system.diagnostics.process, 627

Nongeneric collections
issue of performance, 320
issue of type safety, 323

��������� O
Object generations, 479
Object lifetime

application roots, 477
CIL newobj instruction, 475
classes, objects, and references, 473
concurrent background garbage

collection, 480
concurrent garbage collection, 480
disposable objects, 488
finalizable and disposable types, 492
finalizable objects

finalization process, 488
Overriding System.Object.Finalize(), 486

lazy object instantiation, 495
MakeACar() method, 475
object generations, 479
setting object references to null, 477
System.GC Type

garbage collection, 482
member selection, 481

Object-oriented programming (OOP), 175
Draw() method, 178
encapsulation, role of, 175
“has-a” relationship, 176
inheritance

controlling base class, 213
Employee.cs and Employee.Core.cs

files, 212
Manager class, 212
protected keyword, 215
SalesPerson class, 212
sealed class, 216

inheritance, role of, 175
“is-a” relationship, 175
polymorphic

abstract classes, 225
abstract methods, 230
Draw() method, 230
GiveBonus(), 220
Main() method, 231
sealing virtual members, 225
shadowing, 232
shapes hierarchy, 228
virtual and abstract methods, 228

Model-View-ViewModel (MVVM) pattern (cont.)

■ Index

1619

virtual and override keywords, 221
Visual Studio IDE, 223

polymorphism, 177
ObjectResourcesApp, 1295
Object Serialization

customize serialization process, 796
Formatter

BinaryFormatter type, 781, 783
Deserialize() method, 782
IFormatter type, 781
IRemotingFormatter interfaces, 781
Person type, 783
Serialize() method, 782
SoapFormatter type, 781, 786
type fidelity, 782
XmlSerializer type, 781, 787

GetObjectData() method, 793
ISerializable interface, 793–794
ISerializable object, 793
MyStringData, 795
object graph, 778
Object set, 790
private fields, 780
public fields, 780
public properties, 780
Serializable Types, 779
SerializationInfo parameter, 793
StreamingContextStates enumeration, 794
string data, 794
System.Object, 790
System.Runtime.Serialization namespace, 792
UserPrefs class, 776

Observable models
collections

dirty flag, 1345
IList<Inventory> (see InventoryList)
Inventory class, 1333
MainWindow.xaml.cs, 1344
Notifications, 1332
NotifyCollectionChangedAction enum

Values, 1339
NotifyCollectionChangedEventArgs

Constructor Options, 1339
UpdateSourceTrigger values, 1347

INotifyPropertyChanged event, 1337
INotifyPropertyChanged interface, 1336
OnPropertyChanged helper method, 1337
PropertyChangedEventArgs constructor, 1336

Ok() method, 1592
OnCarEngineEvent() method, 366
OnPropertyChanged helper method, 1337
OnStart() method, 1067
OnStop() method, 1067
OnTransformDirty() method, 1220
OpenConnection() method, 838

��������� P
Parallel.ForEach() method, 728
Parallel.For() method, 728
Parallel.Invoke() method, 738
Parallel LINQ Queries (PLINQ), 695

AsParallel() extension method, 739
cancellation, 740
nonparallel version, 739
ParallelEnumerable Class, 738

Parallel programming
CancellationTokenSource class, 733
data parallelism, 729
System.Threading.Tasks

namespace, 728
System.Threading.Tasks.Parallel class, 728
Task class, 732
task parallelism, 735
Task Parallel Library (TPL), 727
thread affinity, 731

ParseFromStrings()method, 81
PartialView() method, 1563–1564
plain old CLR objects (POCOs), 1527
Polymorphism, 177
PopulateDocument() method, 1203
PostAsJsonAsync() extension method, 1597
PostInventory() method, 1593
Pre-WPF solutions, 1086
PrintDataSet() method, 872
PrintNumbers() method, 717–718
PrintTime() method, 725
ProcessCreditRisk() method, 855
ProcessFiles() method, 731, 733
ProcessIntData() method, 740
PutInventory() method, 1592

��������� Q
Queued Components (QC), 1023
Queuing data, 1023

��������� R
Read() method, 835, 841
RegisterWithCarEngine() method, 365–366
Remove() method, 368
RemoveAt method, 1343
remove_Exploded() method, 377
RenderTransform property, 1249
ResetPoint() method, 349
Retained-mode graphics, 1229
ReverseDigits(), 419
Rollback() method, 854
RouteConfig, 1538
RowState property, 868

■ index

1620

��������� S
SaveAs method, 1422
Select() method, 883
Serviced component, 1023
Service-oriented architecture (SOA), 1027
Session data

HttpSessionState class, 1513
session application GUI, 1512
Session_End(), 1510
Session_Start(), 1510
UserShoppingCart, 1511

SetBinding() method, 1218
SetBindings() function, 1215
SetF1CommandBinding() method, 1178
SetValue() method, 1219
ShowDialog() method, 1149
ShowEnvironmentDetails()method, 67
ShowInstructions() method, 849
SimpleBoxUnboxOperation() method, 320
Simple Object Access Protocol (SOAP), 786
SoapFormatter type, 781

ref tokens, 786
System.Runtime.Serialization.Formatters.

Soap.dll, 786
SortCars() function, 1560
SqlCommandBuilder, 892–893
SquareNumber() method, 361
Static method, 362
static Thread.GetDomain() method, 696
static Thread.Sleep() method, 699
StringConcatenation() function, 85
String.Format() method, 73
StringTarget() method, 372
Strongly typed Data Adapter, 913–914
Strongly typed DataRow, 912
Strongly typed DataSet, 909–910

custom aspects of AutoLot, 916
deleting data with generated code, 920
inserting data with generated code, 919–920
inserting into new folder, 915
invoking stored procedure, 921
selecting data with generated code, 918–919
viewing generated code, 916–917

Strongly typed DataTable, 911
Structured exception handling

Accelerate() method, 253
application-level exceptions, 261

attributes/object serialization, 264
CarIsDeadException, 262–263
code snippet template, 264–265
custom exception, 261
prim-and-proper custom exception class, 264

ArgumentOutOfRangeException, 265
catch logic, 266

catch statements, 268
compile-time errors, 267
constructors, 251–252
containment/delegation, 251
data property, 258–260
debugging, 272–273
definitions, 247
filters, 271
HelpLink property, 257–258
inner exceptions, 269–270
Main() method, 252–253
.NET

building blocks, 249
C code, 248
E_FILENOTFOUND constant, 248
System.Exception base class, 249–250
WCF service, 249

Radio type, 251
rethrowing exceptions, 268–269
StackTrace property, 257
system exceptions, 260
TargetSite property, 256
try/catch block, 254–255, 270–271
verbose error dump, 254

Subtract() methods, 362
*.svc file, 1079
svcutil.exe, 1050
System.Collections.Generic

Classes, 332
Dictionary<TKey,TValue> type, 340
initialization syntax, 333
Key Interfaces, 332
List<T> class, 334
Queue<T> Type, 337
SortedSet<T> class, 338
Stack<T> class, 336

System.Collections.ObjectModel
members, 341
ObservableCollection<T> class, 341

System.Console Class
formatting

Console.WriteLine(), 71
numerical data, 71
string.Format() method, 73

input and output, 69
members, 69

System.EnterpriseServices, 1023
System.Environment Class

properties, 68
ShowEnvironmentDetails()method, 67

System.IO.Stream class, 764
System.Messaging, 1023
System.Reflection, 1317
System.Runtime.Remoting, 1024
System.Threading Namespace

■ Index

1621

CLR thread pool, 726
core types, 708
current thread execution, 709
Name property, 710
Priority property, 711
Thread Type

Instance-Level Members, 709
Static Members, 708

TimerCallback delegate, 725
System.Web Namespace, 1499
System.Windows.Markup, 1317
System.Xml, 1317
System.Xml.dll assembly, 1001

��������� T
Task Parallel Library (TPL), 695, 697, 727
Themes

App_Theme folder, 1482
assigning, 1486
CssStyle property, 1482
page-by-page level, 1485
property settings, 1482
selection, 1486
site-wide themes, 1485
*.skin files, 1482
SkinID property, 1486
style sheets, 1482

ThreadPool.QueueUserWorkItem()
method, 726

Thread.Sleep() method, 698
Thread.Start() method, 716
TimerCallback delegate, 725
ToArray() extension method, 461
ToolsSpellingHints_Click() method, 1175
TreesAndTemplatesApp, 1313
TryFindResource() method, 1311
TryUpdateModel, 1462

��������� U
Update() methods, 810
UpdateCarPetName() method, 851
UpdateInventory(), 894
Update() method, 1588

��������� V
ValidateCurrentNumber method, 1225
ValidateInput() method, 1422
Validation

CardId, 1349
class, 1349
ErrorTemplate property, 1351
IDataErrorInfo interface, 1351

INotifyDataErrorInfo interface
additional features, 1358
CheckMakeAndColor helper

method, 1358
code implementation, 1355
errors collection, 1361
GetErrors method, 1359
InventoryPartial.cs class, 1361, 1363
ModelT validation, 1357
System.Collections and System.

ComponentModel, 1361
ValidationError object, 1360

Label and TextBox, 1348
Validation controls, 1470

client-side form validation, 1470
client-side JavaScript validation support, 1472
CompareValidator, 1473
data annotations

app testing, 1481
code, 1480
EditItemTemplate, 1478–1479
FormView control, 1478
InsertItemTemplate, 1479
Inventory class, 1477
Inventory.cs class, 1477
ItemTemplate, 1478
ModelErrorMessage control, 1477

layout, 1471
properties, 1470
RangeValidator, 1473
RegularExpressionValidator, 1472
RequiredFieldValidator, 1472
ValidationGroups.aspx, 1476
ValidationSummary widget, 1474
ValidatorCtrls web site, 1471

ValueAndReferenceTypes() method, 137
Vector images

importing graphical data, 1265–1266
interacting with sign, 1266–1267
sample vector graphic file to XAML conversion

folder hierarchy, 1264
printing, 1263–1264
rendered image, 1265
using Inkscape, 1262–1263

Verbatim string, 87
View() method, 1551
Virtual execution stack, 655
Virtual member, 177
Visual layer

DrawingVisual Class, 1269–1270
rendering to custom layout manager, 1271–1273
responding to hit-test operations, 1273–1274
Visual Base class and derived Child

classes, 1268
Visual Studio, 1388, 1390

■ index

1622

Visual Studio transform editor
applying transformations at design

time, 1256–1257
building initial layout, 1254–1255
transforming Canvas in code, 1257

��������� W
WCFWindows Communication Foundation (WCF)
WcfTestClient.exe, 1030
Web API project

AutoLotDAL project, 1585
AutoLotEntities variable remove, 1594
AutoMapper, 1584
CarLotWebAPI

Add action, 1596
Delete() action methods, 1598
Details() action method, 1596
Edit() action methods, 1597
Index() action method, 1595
multiple startup projects, 1600

configuration, 1585
default route, 1585
empty project template, 1584
enables attribute routing, 1585
Global.asax.cs file, 1585
InventoryController.cs class, 1588
inventory record

addition, 1593
AutoMapper, 1590
deletion, 1594
error, Microsoft Edge browser, 1589
GetInventory(), 1589
GetInventory(int id), 1589, 1592
GetOneAsync() method, 1592
HttpActionResult, 1592
HttpResponseMessage, 1589
NotFound(), 1592
Ok() method, 1592
ResponseType attribute, 1592
updatation, 1592

JSON, 1586
model and context classes, for controller, 1588
new ASP.NET web application, 1583
new Web API 2 Controller, 1587
NuGet packages, 1584
RouteParameter.Optional, 1585

web application, 1386
web.config file, 1079
Web controls

AutoPostBack property, 1437
btnAddWidgets button, 1442
btnClearPanel button, 1442
Button control, 1436
categories, 1444

C# code, 1440
data-centric controls, 1446
documentation, 1448
dynamic controls

btnGetTextData button, 1442
enumeration, 1441
lblTextBoxData, 1442
text boxes, 1442–1443
WebControl base class, 1443
web page, 1439

HTML description, 1438
Label control, 1440
<asp\:TextBox> tag, 1435
server-side <script> block, 1436
Page_Load() event, 1440
Panel control, 1438
security, 1447
server-side event handling, 1436
standard, 1445
System.Web.UI.Control

members, 1438
property, 1438

System.Web.UI.HtmlControls, 1448
System.Web.UI.LiteralControl, 1440
System.Web.UI.WebControls, 1435
validation controls (see Validation controls)
Visual Studio Properties, 1435

Web forms cars web site. see AspNetCarsSite website
Web server, 1386
Windows Communication

Foundation (WCF), 249, 555, 1583
address, 1032, 1037
API (see Application programming interface (API))
AutoLotService.cs., 1078
binding, 1032

characteristics, 1034
HTTP-Centric, 1035
MSMQ-Centric, 1036
TCP-Centric, 1036

client, 1031–1032
client-side proxy configuration, 1074
configuration settings

bindingConfiguration attribute, 1058
client proxy refreshment, 1061
default endpoints, 1055
MEX service behavior, 1059
multiple endpoints, 1056

contract, 1032–1033
distributed applications, 1028
features, 1026
hosting

base addresses specification, 1043
coding, 1043
configuration, 1042
definition, 1041

■ Index

1623

metadata exchange (MEX), 1047
proxy files, Visual Studio, 1052
ServiceHost Type, 1045
service.serviceModel, 1047
svcutil.exe, 1050
TCP based binding, 1053

MathService, 1073
namespaces, 1029
.NET assemblies, 1028
Service assembly, 1031
Service host, 1031
service interfaces

[OperationContract] attribute, 1040
[ServiceContract] attribute, 1039

Service Library project
MathServiceLibrary, 1063
SvcConfigEditor.exe, 1064
WcfTestClient.exe, 1064

service-oriented architecture, 1027
.svc file, 1079
testing, 1080
Visual Studio, 1030–1031
web-centric service, 1076
web.config file, 1079
Windows service hosting

ABCs specification, 1067
installation, 1071
MathWindowsServiceHost, 1067
metadata exchange, 1069
Windows service installer, 1069

Windows Forms database designer tools
completion, 914
generated App.config file, 909
strongly typed Data Adapter

examination, 913–914
strongly typed DataRow examination, 912
strongly typed DataSet examination, 909–910
strongly typed DataTable examination, 911
visual design

database selection, 905
data database model selection, 904
DataGridView editor, 903
data source type selection, 903
inventory table selection, 907
output, 908
saving connection string, 906

Windows Forms GUI
DataView type, 885–887
deleting rows, 881–882
hydrating from generic List, 878–880
selecting rows, 882–884
updating rows, 885

Windows Presentation Foundation (WPF), 1001
advantage, 1086
animation (see WPF Animation)

Application Class, 1095
Application.Windows collection, 1096
assemblies, 1093
ButtonTemplate, 1320
code-file approach, 1109

MainWindow Class, 1127
msbuild.exe, 1129
MyApp class, 1128

ContentPresenter, 1325
controls, 1087
default template, 1316
desired Functionalities, 1086
desktop applications, 1088
logical tree, 1314
namespaces, 1094
navigation applications, 1090
rendering model, 1087
Resource system (see WPF Resource system)
Silverlight, 1093
styles (see WPF Styles)
System.Windows.Controls.ContentControl, 1097
System.Windows.Controls.Control, 1098
System.Windows.DependencyObject, 1100
System.Windows.FrameworkElement, 1099
System.Windows.Media.Visual, 1100
System.Windows.Threading.

DispatcherObject, 1100
template bindings, 1324
template resource, 1321
3D functionality, 1086
UI programming, 1088
visual cues, 1322
Visual Studio

Button and Calendar control, 1134
Document Outline window, 1137
drag-and-drop operation, 1134
project templates, 1130
Properties window, 1134
Solution Explorer window, 1138
toolbox, 1133
Window designer, 1134
XAML editor (see XAML editor)

visual tree, 1315
Window class, 1096
without XAML

AppExit() method, 1102
Application and Window classes, 1100
Application-Level Data, 1104
AppStartUp() method, 1102
C# file, 1100
keyboard events, 1108
mouse events, 1107
Program class, 1101
simple user interface, 1103
Startup and Exit events, 1101

■ index

1624

StartupEventArgs, 1101
StartupEventHandler delegate, 1101
window closing event, 1105
Window object, 1102

XAML
Application Object, 1111
Application XAML Markup, 1116
attached properties, 1124
BAML, 1115
child element, 1122
ClassModifier and FieldModifier

keywords, 1122
compile-time process, 1117
definition, 1109
elements, 1122
implementation logic, 1109
Kaxaml, 1118
Keywords, 1121
layout managers, 1122
markup extensions, 1125
markup/procedural code, 1109
msbuild.exe, 1112, 1114
property-element syntax, 1123
type converter classes, 1123
Window Object, 1110
Window XAML Markup, 1114
XAML-based grammar, 1087
XML namespaces, 1119, 1121
x:Name and x:Class, 1122

XBAP applications, 1091
Windows process

threads, role of, 624
unique process identifier, 623

WithCancellation() extension method, 740
WPF. see Windows Presentation Foundation (WPF)
WPF Animation

AutoReverse property, 1300
By property, 1297
C# Code, 1298
class types, 1296
definition, 1296
Duration property, 1300
From property, 1297
RepeatBehavior property, 1301
Timeline Base Class, 1298
To property, 1297

WPF commands
CanExecute event handlers, 1181
CanHelpExecute() method, 1179
CommandBindings, 1179–1180
custom help system, 1180
Intrinsic Command Objects, 1176
Open command, 1180

properties, 1177
Save command, 1180

WPF controls, 1148
commands (see WPF commands)
content positioning

Canvas panels, 1155
DockPanel, 1163
Grid panel, 1161
Grid splitters, 1162
ScrollViewer class, 1164
StackPanel, 1158
WrapPanel, 1158

data binding
CheckBox control, 1208
DataContext property, 1213
DataGrid control, 1215
DataGrid objects, 1208
initial layout, 1209
IValueConverter interface, 1213
Label, 1208
SetBindings() function, 1215
Visual Studio, 1209

documentation, 1149
document controls, 1148
Documents tab

AnnotationService class, 1206
document reader control, 1205
FlowDocument, 1203, 1207
Sticky notes!, 1207
TabItem control, 1202

Ink API Tab
ComboBox control, 1198
handling events, 1194
InkCanvas control, 1195
layout manager, 1189
RadioButton controls, 1193
save/load/clear data, 1200
ToolBar control, 1190

Ink controls, 1148
OpenFileDialog box, 1149
Panel Controls, 1154
routed events (see WPF Routed events)
SaveFileDialog box, 1149
TabControl, 1186
Visual Studio, 1150

Button control, 1151
ContentControl, 1151
data binding, 1209
Document Outline window, 1152
panel configuration, 1164

WPF dependency properties
benefits, 1217
CLR wrapper, 1221
custom control, 1218

Windows Presentation Foundation (WPF) (cont.)

■ Index

1625

CurrentNumber property, 1224
data validation, 1225
.NET property, 1223
property change, 1226
UserControl, 1222

definition, 1217
Height property, 1218
implementation, 1217
SetBinding() method, 1218

WPF Documents API
block elements, 1201
inline elements, 1201
XPS Control Layout Managers, 1202

WPF Resource system
binary resources

BinaryResourcesApp, 1277
embedded resources, 1283
image loading, 1282
loose resources, 1279
simple picture viewer, 1284

logical resouces
application-level resources, 1292
DynamicResource, 1289
merged resource

dictionary, 1292
MyBrushes.xaml file, 1295
ObjectResourcesApp, 1295
resource-only library, 1294
Resources property, 1285
StaticResource, 1289
window-wide resources, 1285

WPF routed events
bubbling events, 1183
tunneling events, 1184

WPF styles
animated styles, 1310
App.xaml file, 1305
BasedOn property, 1305, 1308
DynamicResource, 1305
multiple triggers, 1309

override settings, 1306
StaticResource, 1305
style assignment, 1310
TargetType, 1305, 1307
templates, 1325
Triggers, 1305, 1308

WPF window
menu system, 1170
MouseEnter handler, 1174
MouseExit handler, 1174
MouseLeave handler, 1174
nested panels, 1169
spell checker, 1175
StatusBar, 1173
ToolBar, 1172
UI design, 1173

��������� X, Y, Z
Xamarin Studio, 53
XamlAnimations

discrete key frame, 1303
event triggers, 1303
GrowLabelFont.xaml file, 1302
storyboards, 1302

XAML editor
application testing, 1144
Button’s Click event, 1143
Closed event, 1144
events handling, 1137
GUI designing, 1140
Loaded event, 1142
WPF documentation, 1146

XML-based grammar (XAML), 1001
XML Paper Specification (XPS), 1201
XmlSerializer type, 780–781

System.Xml.Serialization namespace, 789
System.Xml.Serialization.XmlSerializer, 787
XML attributes, 789
XML file, 788

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Introducing C# and the .NET Platform
	Chapter 1: The Philosophy of .NET
	 An Initial Look at the .NET Platform
	 Some Key Benefits of the .NET Platform

	 Introducing the Building Blocks of the .NET Platform (the CLR, CTS, and CLS)
	 The Role of the Base Class Libraries
	 What C# Brings to the Table
	 Managed vs. Unmanaged Code

	 Additional .NET-Aware Programming Languages
	 Life in a Multilanguage World

	 An Overview of .NET Assemblies
	 The Role of the Common Intermediate Language
	 Benefits of CIL
	 Compiling CIL to Platform-Specific Instructions
	 The Role of .NET Type Metadata
	 The Role of the Assembly Manifest

	 Understanding the Common Type System
	 CTS Class Types
	 CTS Interface Types
	 CTS Structure Types
	 CTS Enumeration Types
	 CTS Delegate Types
	 CTS Type Members
	 Intrinsic CTS Data Types

	 Understanding the Common Language Specification
	 Ensuring CLS Compliance

	 Understanding the Common Language Runtime
	 The Assembly/Namespace/Type Distinction
	 The Role of the Microsoft Root Namespace
	 Accessing a Namespace Programmatically
	 Referencing External Assemblies

	 Exploring an Assembly Using ildasm.exe
	 Viewing CIL Code
	 Viewing Type Metadata
	 Viewing Assembly Metadata (aka the Manifest)

	 The Platform-Independent Nature of .NET
	 The Mono Project
	 Microsoft .NET Core

	 Summary

	Chapter 2: Building C# Applications
	 Building C# Applications on the Windows OS
	 The Visual Studio Express Family of IDEs
	A Brief Overview of Express for Windows Desktop
	The New Project Dialog Box and C# Code Editor
	Running and Debugging your Project
	The Solution Explorer
	 The Object Browser
	 Referencing Additional Assemblies
	Viewing Project Properties

	 A Brief Overview of Express for Web

	 The Visual Studio Community Edition IDE
	The Visual Class Designer

	 The Visual Studio 2015 Professional IDE
	 The .NET Framework Documentation System

	 Building .NET Applications Beyond the Windows OS
	 The Role of Xamarin Studio

	 Summary

	Part II: Core C# Programming
	Chapter 3: Core C# Programming Constructs, Part I
	 The Anatomy of a Simple C# Program
	 Variations on the Main() Method
	 Specifying an Application Error Code
	 Processing Command-Line Arguments
	 Specifying Command-Line Arguments with Visual Studio

	 An Interesting Aside: Some Additional Members of the System.Environment Class
	 The System.Console Class
	 Basic Input and Output with the Console Class
	 Formatting Console Output
	 Formatting Numerical Data
	 Formatting Numerical Data Beyond Console Applications

	 System Data Types and Corresponding C# Keywords
	 Variable Declaration and Initialization
	 Intrinsic Data Types and the new Operator
	 The Data Type Class Hierarchy
	 Members of Numerical Data Types
	 Members of System.Boolean
	 Members of System.Char
	 Parsing Values from String Data
	 System.DateTime and System.TimeSpan
	 The System.Numerics.dll Assembly

	 Working with String Data
	 Basic String Manipulation
	 String Concatenation
	 Escape Characters
	 Defining Verbatim Strings
	 Strings and Equality
	 Strings Are Immutable
	 The System.Text.StringBuilder Type
	 String Interpolation

	 Narrowing and Widening Data Type Conversions
	 The checked Keyword
	 Setting Project-wide Overflow Checking
	 The unchecked Keyword

	 Understanding Implicitly Typed Local Variables
	 Restrictions on Implicitly Typed Variables
	 Implicit Typed Data Is Strongly Typed Data
	 Usefulness of Implicitly Typed Local Variables

	 C# Iteration Constructs
	 The for Loop
	 The foreach Loop
	 Use of Implicit Typing Within foreach Constructs
	 The while and do/while Looping Constructs

	 Decision Constructs and the Relational/Equality Operators
	 The if/else Statement
	 Equality and Relational Operators
	 Conditional Operators
	 The switch Statement

	 Summary

	Chapter 4: Core C# Programming Constructs, Part II
	 Methods and Parameter Modifiers
	 The Default by Value Parameter-Passing Behavior
	 The out Modifier
	 The ref Modifier
	 The params Modifier
	 Defining Optional Parameters
	 Invoking Methods Using Named Parameters
	 Understanding Method Overloading

	 Understanding C# Arrays
	 C# Array Initialization Syntax
	 Implicitly Typed Local Arrays
	 Defining an Array of Objects
	 Working with Multidimensional Arrays
	 Arrays As Arguments or Return Values
	 The System.Array Base Class

	 Understanding the enum Type
	 Controlling the Underlying Storage for an enum
	 Declaring enum Variables
	 The System.Enum Type
	 Dynamically Discovering an enum’s Name/Value Pairs

	 Understanding the Structure (aka Value Type)
	 Creating Structure Variables

	 Understanding Value Types and Reference Types
	 Value Types, References Types, and the Assignment Operator
	 Value Types Containing Reference Types
	 Passing Reference Types by Value
	 Passing Reference Types by Reference
	 Final Details Regarding Value Types and Reference Types

	 Understanding C# Nullable Types
	 Working with Nullable Types
	 The Null Coalescing Operator
	 The Null Conditional Operator

	 Summary

	Part III: Object-Oriented Programming with C#
	Chapter 5: Understanding Encapsulation
	 Introducing the C# Class Type
	 Allocating Objects with the new Keyword

	 Understanding Constructors
	 The Role of the Default Constructor
	 Defining Custom Constructors
	 The Default Constructor Revisited

	 The Role of the this Keyword
	 Chaining Constructor Calls Using this
	 Observing Constructor Flow
	 Revisiting Optional Arguments

	 Understanding the static Keyword
	 Defining Static Field Data
	 Defining Static Methods
	 Defining Static Constructors
	 Defining Static Classes
	 Importing Static Members via the C# using Keyword

	 Defining the Pillars of OOP
	 The Role of Encapsulation
	 The Role of Inheritance
	 The Role of Polymorphism

	 C# Access Modifiers
	 The Default Access Modifiers
	 Access Modifiers and Nested Types

	 The First Pillar: C#’s Encapsulation Services
	 Encapsulation Using Traditional Accessors and Mutators
	 Encapsulation Using .NET Properties
	 Using Properties Within a Class Definition
	 Read-Only and Write-Only Properties
	 Revisiting the static Keyword: Defining Static Properties

	 Understanding Automatic Properties
	 Interacting with Automatic Properties
	 Automatic Properties and Default Values
	 Initialization of Automatic Properties

	 Understanding Object Initialization Syntax
	 Calling Custom Constructors with Initialization Syntax
	 Initializing Data with Initialization Syntax

	 Working with Constant Field Data
	 Understanding Read-Only Fields
	 Static Read-Only Fields

	 Understanding Partial Classes
	 Use Cases for Partial Classes?

	 Summary

	Chapter 6: Understanding Inheritance and Polymorphism
	 The Basic Mechanics of Inheritance
	 Specifying the Parent Class of an Existing Class
	 Regarding Multiple Base Classes
	 The sealed Keyword

	 Revising Visual Studio Class Diagrams
	 The Second Pillar of OOP: The Details of Inheritance
	 Controlling Base Class Creation with the base Keyword
	 Keeping Family Secrets: The protected Keyword
	 Adding a Sealed Class

	 Programming for Containment/Delegation
	 Understanding Nested Type Definitions

	 The Third Pillar of OOP: C#’s Polymorphic Support
	 The virtual and override Keywords
	 Overriding Virtual Members Using the Visual Studio IDE
	 Sealing Virtual Members
	 Understanding Abstract Classes
	 Understanding the Polymorphic Interface
	 Understanding Member Shadowing

	 Understanding Base Class/Derived Class Casting Rules
	 The C# as Keyword
	 The C# is Keyword

	 The Master Parent Class: System.Object
	 Overriding System.Object.ToString()
	 Overriding System.Object.Equals()
	 Overriding System.Object.GetHashCode()
	 Testing Your Modified Person Class
	 The Static Members of System.Object

	 Summary

	Chapter 7: Understanding Structured Exception Handling
	 Ode to Errors, Bugs, and Exceptions
	 The Role of .NET Exception Handling
	 The Building Blocks of .NET Exception Handling
	 The System.Exception Base Class

	 The Simplest Possible Example
	 Throwing a General Exception
	 Catching Exceptions

	 Configuring the State of an Exception
	 The TargetSite Property
	 The StackTrace Property
	 The HelpLink Property
	 The Data Property

	 System-Level Exceptions (System.SystemException)
	 Application-Level Exceptions (System.ApplicationException)
	 Building Custom Exceptions, Take 1
	 Building Custom Exceptions, Take 2
	 Building Custom Exceptions, Take 3

	 Processing Multiple Exceptions
	 General catch Statements
	 Rethrowing Exceptions
	 Inner Exceptions
	 The finally Block
	 Exception Filters

	 Debugging Unhandled Exceptions Using Visual Studio
	 Summary

	Chapter 8: Working with Interfaces
	 Understanding Interface Types
	 Interface Types vs. Abstract Base Classes

	 Defining Custom Interfaces
	 Implementing an Interface
	 Invoking Interface Members at the Object Level
	 Obtaining Interface References: The as Keyword
	 Obtaining Interface References: The is Keyword

	 Interfaces As Parameters
	 Interfaces As Return Values
	 Arrays of Interface Types
	 Implementing Interfaces Using Visual Studio
	 Explicit Interface Implementation
	 Designing Interface Hierarchies
	 Multiple Inheritance with Interface Types

	 The IEnumerable and IEnumerator Interfaces
	 Building Iterator Methods with the yield Keyword
	 Building a Named Iterator

	 The ICloneable Interface
	 A More Elaborate Cloning Example

	 The IComparable Interface
	 Specifying Multiple Sort Orders with IComparer
	 Custom Properties and Custom Sort Types

	 Summary

	Part IV: Advanced C# Programming
	Chapter 9: Collections and Generics
	 The Motivation for Collection Classes
	 The System.Collections Namespace
	An Illustrative Example: Working with the ArrayList

	 A Survey of System.Collections.Specialized Namespace

	 The Problems of Nongeneric Collections
	 The Issue of Performance
	 The Issue of Type Safety
	 A First Look at Generic Collections

	 The Role of Generic Type Parameters
	 Specifying Type Parameters for Generic Classes/Structures
	 Specifying Type Parameters for Generic Members
	 Specifying Type Parameters for Generic Interfaces

	 The System.Collections.Generic Namespace
	 Understanding Collection Initialization Syntax
	 Working with the List<T> Class
	 Working with the Stack<T> Class
	 Working with the Queue<T> Class
	 Working with the SortedSet<T> Class
	 Working with the Dictionary<TKey, TValue> Class

	 The System.Collections.ObjectModel Namespace
	 Working with ObservableCollection<T>

	 Creating Custom Generic Methods
	 Inference of Type Parameters

	 Creating Custom Generic Structures and Classes
	 The default Keyword in Generic Code

	 Constraining Type Parameters
	 Examples Using the where Keyword
	 The Lack of Operator Constraints

	 Summary

	Chapter 10: Delegates, Events, and Lambda Expressions
	 Understanding the .NET Delegate Type
	 Defining a Delegate Type in C#
	 The System.MulticastDelegate and System.Delegate Base Classes

	 The Simplest Possible Delegate Example
	 Investigating a Delegate Object

	 Sending Object State Notifications Using Delegates
	 Enabling Multicasting
	 Removing Targets from a Delegate’s Invocation List
	 Method Group Conversion Syntax

	 Understanding Generic Delegates
	 The Generic Action<> and Func<> Delegates

	 Understanding C# Events
	 The C# event Keyword
	 Events Under the Hood
	 Listening to Incoming Events
	 Simplifying Event Registration Using Visual Studio
	 Cleaning Up Event Invocation Using the C# 6.0 Null-Conditional Operator
	 Creating Custom Event Arguments
	 The Generic EventHandler<T> Delegate

	 Understanding C# Anonymous Methods
	 Accessing Local Variables

	 Understanding Lambda Expressions
	 Dissecting a Lambda Expression
	 Processing Arguments Within Multiple Statements
	 Lambda Expressions with Multiple (or Zero) Parameters
	 Retrofitting the CarEvents Example Using Lambda Expressions
	 Lambdas and Single Statement Member Implementations

	 Summary

	Chapter 11: Advanced C# Language Features
	 Understanding Indexer Methods
	 Indexing Data Using String Values
	 Overloading Indexer Methods
	 Indexers with Multiple Dimensions
	 Indexer Definitions on Interface Types

	 Understanding Operator Overloading
	 Overloading Binary Operators
	 And What of the += and –+ Operators?
	 Overloading Unary Operators
	 Overloading Equality Operators
	 Overloading Comparison Operators
	 Final Thoughts Regarding Operator Overloading

	 Understanding Custom Type Conversions
	 Recall: Numerical Conversions
	 Recall: Conversions Among Related Class Types
	 Creating Custom Conversion Routines
	 Additional Explicit Conversions for the Square Type
	 Defining Implicit Conversion Routines

	 Understanding Extension Methods
	 Defining Extension Methods
	 Invoking Extension Methods
	 Importing Extension Methods
	 The IntelliSense of Extension Methods
	 Extending Types Implementing Specific Interfaces

	 Understanding Anonymous Types
	 Defining an Anonymous Type
	 The Internal Representation of Anonymous Types
	 The Implementation of ToString() and GetHashCode()
	 The Semantics of Equality for Anonymous Types
	 Anonymous Types Containing Anonymous Types

	 Working with Pointer Types
	 The unsafe Keyword
	 Working with the * and & Operators
	 An Unsafe (and Safe) Swap Function
	 Field Access via Pointers (the -> Operator)
	 The stackalloc Keyword
	 Pinning a Type via the fixed Keyword
	 The sizeof Keyword

	 Summary

	Chapter 12: LINQ to Objects
	 LINQ-Specific Programming Constructs
	 Implicit Typing of Local Variables
	 Object and Collection Initialization Syntax
	 Lambda Expressions
	 Extension Methods
	 Anonymous Types

	 Understanding the Role of LINQ
	 LINQ Expressions Are Strongly Typed
	 The Core LINQ Assemblies

	 Applying LINQ Queries to Primitive Arrays
	 Once Again, Without LINQ
	 Reflecting over a LINQ Result Set
	 LINQ and Implicitly Typed Local Variables
	 LINQ and Extension Methods
	 The Role of Deferred Execution
	 The Role of Immediate Execution

	 Returning the Result of a LINQ Query
	 Returning LINQ Results via Immediate Execution

	 Applying LINQ Queries to Collection Objects
	 Accessing Contained Subobjects
	 Applying LINQ Queries to Nongeneric Collections
	 Filtering Data Using OfType<T>()

	 Investigating the C# LINQ Query Operators
	 Basic Selection Syntax
	 Obtaining Subsets of Data
	 Projecting New Data Types
	 Obtaining Counts Using Enumerable
	 Reversing Result Sets
	 Sorting Expressions
	 LINQ As a Better Venn Diagramming Tool
	 Removing Duplicates
	 LINQ Aggregation Operations

	 The Internal Representation of LINQ Query Statements
	 Building Query Expressions with Query Operators (Revisited)
	 Building Query Expressions Using the Enumerable Type and Lambda Expressions
	 Building Query Expressions Using the Enumerable Type and Anonymous Methods
	 Building Query Expressions Using the Enumerable Type and Raw Delegates

	 Summary

	Chapter 13: Understanding Object Lifetime
	 Classes, Objects, and References
	 The Basics of Object Lifetime
	 The CIL of new
	 Setting Object References to null

	 The Role of Application Roots
	 Understanding Object Generations
	 Concurrent Garbage Collection Prior to .NET 4.0
	 Background Garbage Collection Under .NET 4.0 and Beyond
	 The System.GC Type
	 Forcing a Garbage Collection

	 Building Finalizable Objects
	 Overriding System.Object.Finalize()
	 Detailing the Finalization Process

	 Building Disposable Objects
	 Reusing the C# using Keyword

	 Building Finalizable and Disposable Types
	 A Formalized Disposal Pattern

	 Understanding Lazy Object Instantiation
	 Customizing the Creation of the Lazy Data

	 Summary

	Part V: Programming with .NET Assemblies
	Chapter 14: Building and Configuring Class Libraries
	 Defining Custom Namespaces
	 Resolving Name Clashes with Fully Qualified Names
	 Resolving Name Clashes with Aliases
	 Creating Nested Namespaces
	 The Default Namespace of Visual Studio

	 The Role of .NET Assemblies
	 Assemblies Promote Code Reuse
	 Assemblies Establish a Type Boundary
	 Assemblies are Versionable Units
	 Assemblies are Self-Describing
	 Assemblies are Configurable

	 Understanding the Format of a .NET Assembly
	 The Windows File Header
	 The CLR File Header
	 CIL Code, Type Metadata, and the Assembly Manifest
	 Optional Assembly Resources

	 Building and Consuming Custom Class Library
	 Exploring the Manifest
	 Exploring the CIL
	 Exploring the Type Metadata
	 Building a C# Client Application
	 Building a Visual Basic Client Application
	 Cross-Language Inheritance in Action

	 Understanding Private Assemblies
	 The Identity of a Private Assembly
	 Understanding the Probing Process
	 Configuring Private Assemblies
	 The Role of the App.Config File

	 Understanding Shared Assemblies
	 The Global Assembly Cache
	 Understanding Strong Names
	 Generating Strong Names at the Command Line
	 Generating Strong Names Using Visual Studio
	 Installing Strongly Named Assemblies to the GAC

	 Consuming a Shared Assembly
	 Exploring the Manifest of SharedCarLibClient

	 Configuring Shared Assemblies
	 Freezing the Current Shared Assembly
	 Building a Shared Assembly Version 2.0.0.0
	 Dynamically Redirecting to Specific Versions of a Shared Assembly

	 Understanding Publisher Policy Assemblies
	 Disabling Publisher Policy

	 Understanding the <codeBase> Element
	 The System.Configuration Namespace
	 The Configuration File Schema Documentation
	 Summary

	Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming
	 The Necessity of Type Metadata
	 Viewing (Partial) Metadata for the EngineState Enumeration
	 Viewing (Partial) Metadata for the Car Type
	 Examining a TypeRef
	 Documenting the Defining Assembly
	 Documenting Referenced Assemblies
	 Documenting String Literals

	 Understanding Reflection
	 The System.Type Class
	 Obtaining a Type Reference Using System.Object.GetType()
	 Obtaining a Type Reference Using typeof()
	 Obtaining a Type Reference Using System.Type.GetType()

	 Building a Custom Metadata Viewer
	 Reflecting on Methods
	 Reflecting on Fields and Properties
	 Reflecting on Implemented Interfaces
	 Displaying Various Odds and Ends
	 Implementing Main()
	 Reflecting on Generic Types
	 Reflecting on Method Parameters and Return Values

	 Dynamically Loading Assemblies
	 Reflecting on Shared Assemblies
	 Understanding Late Binding
	 The System.Activator Class
	 Invoking Methods with No Parameters
	 Invoking Methods with Parameters

	 Understanding the Role of .NET Attributes
	 Attribute Consumers
	 Applying Attributes in C#
	 C# Attribute Shorthand Notation
	 Specifying Constructor Parameters for Attributes
	 The Obsolete Attribute in Action

	 Building Custom Attributes
	 Applying Custom Attributes
	 Named Property Syntax
	 Restricting Attribute Usage

	 Assembly-Level Attributes
	 The Visual Studio AssemblyInfo.cs File

	 Reflecting on Attributes Using Early Binding
	 Reflecting on Attributes Using Late Binding
	 Putting Reflection, Late Binding, and Custom Attributes in Perspective
	 Building an Extendable Application
	 Building CommonSnappableTypes.dll
	 Building the C# Snap- In
	 Building the Visual Basic Snap-In
	 Building an Extendable Windows Forms Application

	 Summary

	Chapter 16: Dynamic Types and the Dynamic Language Runtime
	 The Role of the C# dynamic Keyword
	 Calling Members on Dynamically Declared Data
	 The Role of the Microsoft.CSharp.dll Assembly
	 The Scope of the dynamic Keyword
	 Limitations of the dynamic Keyword
	 Practical Uses of the dynamic Keyword

	 The Role of the Dynamic Language Runtime
	 The Role of Expression Trees
	 The Role of the System.Dynamic Namespace
	 Dynamic Runtime Lookup of Expression Trees

	 Simplifying Late-Bound Calls Using Dynamic Types
	 Leveraging the dynamic Keyword to Pass Arguments

	 Simplifying COM Interoperability Using Dynamic Data
	 The Role of Primary Interop Assemblies
	 Embedding Interop Metadata
	 Common COM Interop Pain Points

	 COM Interop Using C# Dynamic Data
	 COM interop Without C# Dynamic Data

	 Summary

	Chapter 17: Processes, AppDomains, and Object Contexts
	 The Role of a Windows Process
	 The Role of Threads

	 Interacting with Processes Under the .NET Platform
	 Enumerating Running Processes
	 Investigating a Specific Process
	 Investigating a Process’s Thread Set
	 Investigating a Process’s Module Set
	 Starting and Stopping Processes Programmatically
	 Controlling Process Startup Using the ProcessStartInfo Class

	 Understanding .NET Application Domains
	 The System.AppDomain Class

	 Interacting with the Default Application Domain
	 Enumerating Loaded Assemblies
	 Receiving Assembly Load Notifications

	 Creating New Application Domains
	 Loading Assemblies into Custom Application Domains
	 Programmatically Unloading AppDomains

	 Understanding Object Context Boundaries
	 Context-Agile and Context-Bound Types
	 Defining a Context-Bound Object
	 Inspecting an Object’s Context

	 Summarizing Processes, AppDomains, and Context
	 Summary

	Chapter 18: Understanding CIL and the Role of Dynamic Assemblies
	 Motivations for Learning the Grammar of CIL
	 Examining CIL Directives, Attributes, and Opcodes
	 The Role of CIL Directives
	 The Role of CIL Attributes
	 The Role of CIL Opcodes
	 The CIL Opcode/CIL Mnemonic Distinction

	 Pushing and Popping: The Stack-Based Nature of CIL
	 Understanding Round-Trip Engineering
	 The Role of CIL Code Labels
	 Interacting with CIL: Modifying an *.il File
	 Compiling CIL Code Using ilasm.exe
	 The Role of peverify.exe

	 Understanding CIL Directives and Attributes
	 Specifying Externally Referenced Assemblies in CIL
	 Defining the Current Assembly in CIL
	 Defining Namespaces in CIL
	 Defining Class Types in CIL
	 Defining and Implementing Interfaces in CIL
	 Defining Structures in CIL
	 Defining Enums in CIL
	 Defining Generics in CIL
	 Compiling the CILTypes.il file

	 .NET Base Class Library, C#, and CIL Data Type Mappings
	 Defining Type Members in CIL
	 Defining Field Data in CIL
	 Defining Type Constructors in CIL
	 Defining Properties in CIL
	 Defining Member Parameters

	 Examining CIL Opcodes
	 The .maxstack Directive
	 Declaring Local Variables in CIL
	 Mapping Parameters to Local Variables in CIL
	 The Hidden this Reference
	 Representing Iteration Constructs in CIL

	 Building a .NET Assembly with CIL
	 Building CILCars.dll
	 Building CILCarClient.exe

	 Understanding Dynamic Assemblies
	 Exploring the System.Reflection.Emit Namespace
	 The Role of the System.Reflection.Emit.ILGenerator
	 Emitting a Dynamic Assembly
	 Emitting the Assembly and Module Set
	 The Role of the ModuleBuilder Type
	 Emitting the HelloClass Type and the String Member Variable
	 Emitting the Constructors
	 Emitting the SayHello() Method
	 Using the Dynamically Generated Assembly

	 Summary

	Part VI: Introducing the .NET Base Class Libraries
	Chapter 19: Multithreaded, Parallel, and Async Programming
	The Process/AppDomain/Context/Thread Relationship
	The Problem of Concurrency
	The Role of Thread Synchronization

	 A Brief Review of the .NET Delegate
	The Asynchronous Nature of Delegates
	The BeginInvoke() and EndInvoke() Methods
	The System.IAsyncResult Interface

	Invoking a Method Asynchronously
	Synchronizing the Calling Thread
	 The Role of the AsyncCallback Delegate
	The Role of the AsyncResult Class
	Passing and Receiving Custom State Data

	The System.Threading Namespace
	The System.Threading.Thread Class
	Obtaining Statistics About the Current Thread of Execution
	The Name Property
	The Priority Property

	Manually Creating Secondary Threads
	Working with the ThreadStart Delegate
	 Working with the ParameterizedThreadStart Delegate
	 The AutoResetEvent Class
	Foreground Threads and Background Threads

	The Issue of Concurrency
	Synchronization Using the C# lock Keyword
	 Synchronization Using the System.Threading.Monitor Type
	 Synchronization Using the System.Threading.Interlocked Type
	 Synchronization Using the [Synchronization] Attribute

	 Programming with Timer Callbacks
	 Understanding the CLR ThreadPool
	Parallel Programming Using the Task Parallel Library
	The System.Threading.Tasks Namespace
	The Role of the Parallel Class
	 Data Parallelism with the Parallel Class
	 Accessing UI Elements on Secondary Threads
	The Task Class
	 Handling Cancellation Request
	 Task Parallelism Using the Parallel Class

	Parallel LINQ Queries (PLINQ)
	Opting in to a PLINQ Query
	Cancelling a PLINQ Query

	Asynchronous Calls with the async Keyword
	A First Look at the C# async and await Keywords
	 Naming Conventions for Async Methods
	Async Methods Returning Void
	 Async Methods with Multiple Awaits
	 Retrofitting the AddWithThreads Example Using Asycn/Await

	Summary

	Chapter 20: File I/O and Object Serialization
	 Exploring the System.IO Namespace
	 The Directory(Info) and File(Info) Types
	 The Abstract FileSystemInfo Base Class

	 Working with the DirectoryInfo Type
	 Enumerating Files with the DirectoryInfo Type
	 Creating Subdirectories with the DirectoryInfo Type

	 Working with the Directory Type
	 Working with the DriveInfo Class Type
	 Working with the FileInfo Class
	 The FileInfo.Create() Method
	 The FileInfo.Open() Method
	 The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
	 The FileInfo.OpenText() Method
	 The FileInfo.CreateText() and FileInfo.AppendText() Methods

	 Working with the File Type
	 Additional File-Centric Members

	 The Abstract Stream Class
	 Working with FileStreams

	 Working with StreamWriters and StreamReaders
	 Writing to a Text File
	 Reading from a Text File
	 Directly Creating StreamWriter/StreamReader Types

	 Working with StringWriters and StringReaders
	 Working with BinaryWriters and BinaryReaders
	 Watching Files Programmatically
	 Understanding Object Serialization
	 The Role of Object Graphs

	 Configuring Objects for Serialization
	 Defining Serializable Types
	 Public Fields, Private Fields, and Public Properties

	 Choosing a Serialization Formatter
	 The IFormatter and IRemotingFormatter Interfaces
	 Type Fidelity Among the Formatters

	 Serializing Objects Using the BinaryFormatter
	 Deserializing Objects Using the BinaryFormatter

	 Serializing Objects Using the SoapFormatter
	 Serializing Objects Using the XmlSerializer
	 Controlling the Generated XML Data

	 Serializing Collections of Objects
	 Customizing the Soap/Binary Serialization Process
	 A Deeper Look at Object Serialization
	 Customizing Serialization Using ISerializable
	 Customizing Serialization Using Attributes

	 Summary

	Chapter 21: ADO.NET Part I: The Connected Layer
	 A High-Level Definition of ADO.NET
	 The Three Faces of ADO.NET

	 Understanding ADO.NET Data Providers
	 The Microsoft-Supplied ADO.NET Data Providers
	 A Word Regarding System.Data.OracleClient.dll
	 Obtaining Third-Party ADO.NET Data Providers

	 Additional ADO.NET Namespaces
	 The Types of the System.Data Namespace
	 The Role of the IDbConnection Interface
	 The Role of the IDbTransaction Interface
	 The Role of the IDbCommand Interface
	 The Role of the IDbDataParameter and IDataParameter Interfaces
	 The Role of the IDbDataAdapter and IDataAdapter Interfaces
	 The Role of the IDataReader and IDataRecord Interfaces

	 Abstracting Data Providers Using Interfaces
	 Increasing Flexibility Using Application Configuration Files

	 Creating the AutoLot Database
	 Creating the Inventory Table
	 Adding Test Records to the Inventory Table
	 Authoring the GetPetName() Stored Procedure
	 Creating the Customers and Orders Tables
	 Creating Table Relationships in Visual Studio

	 The ADO.NET Data Provider Factory Model
	 A Complete Data Provider Factory Example
	 A Potential Drawback with the Data Provider Factory Model
	 The <connectionStrings> Element

	 Understanding the Connected Layer of ADO.NET
	 Working with Connection Objects
	 Working with ConnectionStringBuilder Objects
	 Working with Command Objects

	 Working with Data Readers
	 Obtaining Multiple Result Sets Using a Data Reader

	 Building a Reusable Data Access Library
	 Adding the Connection Logic
	 Adding the Insertion Logic
	 Adding the Deletion Logic
	 Adding the Update Logic
	 Adding the Selection Logic
	 Working with Parameterized Command Objects
	 Specifying Parameters Using the DbParameter Type
	 Executing a Stored Procedure

	 Creating a Console UI–Based Front End
	 Implementing the Main() Method
	 Implementing the ShowInstructions() Method
	 Implementing the ListInventory() Method
	 Implementing the DeleteCar() Method
	 Implementing the InsertNewCar() Method
	 Implementing the UpdateCarPetName() Method
	 Implementing LookUpPetName()

	 Understanding Database Transactions
	 Key Members of an ADO.NET Transaction Object
	 Adding a CreditRisks Table to the AutoLot Database
	 Adding a Transaction Method to InventoryDAL
	 Testing Your Database Transaction

	 Summary

	Chapter 22: ADO.NET Part II: The Disconnected Layer
	 Understanding the Disconnected Layer of ADO.NET
	 Understanding the Role of the DataSet
	 Key Properties of the DataSet
	 Key Methods of the DataSet
	 Building a DataSet

	 Working with DataColumns
	 Building a DataColumn
	 Enabling Autoincrementing Fields
	 Adding DataColumn Objects to a DataTable

	 Working with DataRows
	 Understanding the RowState Property
	 Understanding the DataRowVersion Property

	 Working with DataTables
	 Inserting DataTables into DataSets
	 Obtaining Data in a DataSet
	 Processing DataTable Data Using DataTableReader Objects
	 Serializing DataTable/DataSet Objects As XML
	 Serializing DataTable/DataSet Objects in a Binary Format

	 Binding DataTable Objects to Windows Forms GUIs
	 Hydrating a DataTable from a Generic List<T>
	 Deleting Rows from a DataTable
	 Selecting Rows Based on Filter Criteria
	 Updating Rows Within a DataTable
	 Working with the DataView Type

	 Working with Data Adapters
	 A Simple Data Adapter Example
	 Mapping Database Names to Friendly Names

	 Adding Disconnected Functionality to AutoLotDAL.dll
	 Defining the Initial Class Type
	 Configuring the Data Adapter Using the SqlCommandBuilder
	 Implementing GetAllInventory()
	 Implementing UpdateInventory()
	 Setting Your Version Number
	 Testing the Disconnected Functionality

	 Multitabled DataSet Objects and Data Relationships
	 Prepping the Data Adapters
	 Building the Table Relationships
	 Updating the Database Tables
	 Navigating Between Related Tables

	 The Windows Forms Database Designer Tools
	 Visually Designing the DataGridView
	 The Generated App.config File
	 Examining the Strongly Typed DataSet
	 Examining the Strongly Typed DataTable
	 Examining the Strongly Typed DataRow
	 Examining the Strongly Typed Data Adapter
	 Completing the Windows Forms Application

	 Isolating Strongly Typed Database Code into a Class Library
	 Viewing the Generated Code
	 Selecting Data with the Generated Code
	 Inserting Data with the Generated Code
	 Deleting Data with the Generated Code
	 Invoking a Stored Procedure Using the Generated Code

	 Programming with LINQ to DataSet
	 The Role of the DataSet Extensions Library
	 Obtaining a LINQ-Compatible DataTable
	 The Role of the DataRowExtensions.Field<T>() Extension Method
	 Hydrating New DataTables from LINQ Queries

	 Summary

	Chapter 23: ADO.NET Part III: Entity Framework
	Understanding the Role of the Entity Framework
	The Role of Entities
	The Building Blocks of the Entity Framework
	The Role of the DbContext Class
	The Role of the Derived Context Class
	 The Role of DbSet<T>
	 Empty Code First Model or Code First from Database
	 Transaction Support
	 Entity State

	Code First from an Existing Database
	Generating the Model
	What Did That Do?
	 Changing the Default Mappings
	Adding to the Generated Model Classes

	Using the Model Classes in Code
	Inserting a Record
	Selecting Records
	Querying with SQL
	 Querying with LINQ

	The Role of Navigation Properties
	Lazy, Eager, and Explicit Loading
	Lazy Loading
	 Eager Loading
	Explicit Loading

	Deleting a Record
	Deleting a Record Using EntityState

	 Updating a Record

	Handling Database Changes
	 AutoLotDAL Version 4
	Entity Framework Data Annotations
	Adding or Updating the Model Classes
	Creating the Inventory Model Class
	Configuring the Model with Data Annotations
	Adding the Navigation Property to Inventory
	Adding the InventoryPartial Class

	 Creating the Customer Model Class
	 Creating the Order Model Class
	 Creating the CreditRisk Class

	 Adding the DbContext
	Updates to the *.config File and the EF Connection String
	Update the Context

	Adding the Repositories
	Adding the IRepo Interface
	Adding the BaseRepo
	Implementing the SaveChanges() Helper Methods
	 Retrieving Records
	Retrieving Records with SQL
	Adding Records
	Updating Records
	Deleting Records

	Adding the Inventory Repository
	Deleting Records by Id

	Adding the Remaining Repositories

	Initializing the Database

	Test-Driving AutoLotDAL
	Printing All Inventory Records
	 Adding Inventory Records
	 Editing Records
	Using Navigation Properties
	 Eager Loading

	Multitable Actions/Implicit Transactions

	Entity Framework Migrations
	Updating the Model
	 Inventory Class
	Customer Class
	Order Class
	 Credit Risk Class

	Testing the App
	Entering EF Migrations
	Creating the Baseline Migration
	 Seeding the Database

	 Revisiting the Transaction Test
	 Concurrency
	Correcting the Repositories
	Testing Concurrency

	Interception
	The IDbCommandInterceptor Interface
	Adding Interception to AutoLotDAL
	Registering the Interceptor
	 Adding the DatabaseLogger Interceptor

	ObjectMaterialized and SavingChanges Events
	 Accessing the Object Context
	ObjectMaterialized
	 SavingChanges

	 Deploying to SQL Server
	Summary

	Chapter 24: Introducing LINQ to XML
	A Tale of Two XML APIs
	LINQ to XML As a Better DOM
	 VB Literal Syntax As a Better LINQ to XML

	Members of the System.Xml.Linq Namespace
	The LINQ to XML Axis Methods
	 The Oddness of XName (and XNamespace)

	Working with XElement and XDocument
	Generating Documents from Arrays and Containers
	 Loading and Parsing XML Content

	Manipulating an In-Memory XML Document
	Building the UI of the LINQ to XML App
	Import the Inventory.xml File
	 Defining a LINQ to XML Helper Class
	Attaching the UI to Your Helper Class

	Summary

	Chapter 25: Introducing Windows Communication Foundation
	 A Potpourri of Distributed Computing APIs
	 The Role of DCOM
	 The Role of COM+/Enterprise Services
	 The Role of MSMQ
	 The Role of .NET Remoting
	 The Role of XML Web Services
	 Web Service Standards

	 The Role of WCF
	 An Overview of WCF Features
	 An Overview of Service-Oriented Architecture
	 Tenet 1: Boundaries are Explicit
	 Tenet 2: Services are Autonomous
	 Tenet 3: Services Communicate via Contract, Not Implementation
	 Tenet 4: Service Compatibility is Based on Policy
	 WCF: The Bottom Line

	 Investigating the Core WCF Assemblies
	 The Visual Studio WCF Project Templates
	 The WCF Service Web Site Project Template

	 The Basic Composition of a WCF Application
	 The ABCs of WCF
	 Understanding WCF Contracts
	 Understanding WCF Bindings
	 HTTP-Based Bindings
	 TCP-Based Bindings
	 MSMQ-Based Bindings
	 Understanding WCF Addresses

	 Building a WCF Service
	 The [ServiceContract] Attribute
	 The [OperationContract] Attribute
	 Service Types As Operational Contracts

	 Hosting the WCF Service
	 Establishing the ABCs Within an App.config File
	 Coding Against the ServiceHost Type
	 Specifying Base Addresses
	 Details of the ServiceHost Type
	 Details of the <system.serviceModel> Element
	 Enabling Metadata Exchange

	 Building the WCF Client Application
	 Generating Proxy Code Using svcutil.exe
	 Generating Proxy Code Using Visual Studio
	 Configuring a TCP-Based Binding

	 Simplifying Configuration Settings
	 Leveraging Default Endpoints
	 Exposing a Single WCF Service Using Multiple Bindings
	 Changing Settings for a WCF Binding
	 Leveraging the Default MEX Behavior Configuration
	 Refreshing the Client Proxy and Selecting the Binding

	 Using the WCF Service Library Project Template
	 Building a Simple Math Service
	 Testing the WCF Service with WcfTestClient.exe
	 Altering Configuration Files Using SvcConfigEditor.exe

	 Hosting the WCF Service Within a Windows Service
	 Specifying the ABCs in Code
	 Enabling MEX
	 Creating a Windows Service Installer
	 Installing the Windows Service

	 Invoking a Service Asynchronously from the Client
	 Designing WCF Data Contracts
	 Using the Web-centric WCF Service Project Template
	 Implementing the Service Contract
	 The Role of the *.svc File
	 Examining the Web.config File
	 Testing the Service

	 Summary

	Part VII: Windows Presentation Foundation
	Chapter 26: Introducing Windows Presentation Foundation and XAML
	The Motivation Behind WPF
	Unifying Diverse APIs
	Providing a Separation of Concerns via XAML
	 Providing an Optimized Rendering Model
	 Simplifying Complex UI Programming

	The Various Flavors of WPF
	Traditional Desktop Applications
	 Navigation -Based WPF Applications
	 XBAP Applications
	 The WPF/Silverlight Relationship

	 Investigating the WPF Assemblies
	The Role of the Application Class
	Constructing an Application Class
	Enumerating the Windows Collection
	 The Role of the Window Class
	The Role of System.Windows.Controls.ContentControl
	 The Role of System.Windows.Controls.Control
	 The Role of System.Windows.FrameworkElement
	The Role of System.Windows.UIElement
	The Role of System.Windows.Media.Visual
	The Role of System.Windows.DependencyObject
	The Role of System.Windows.Threading.DispatcherObject

	Building a WPF Application Without XAML
	 Creating a Strongly Typed Window
	 Creating a Simple User Interface
	 Interacting with Application-Level Data
	 Handling the Closing of a Window Object
	 Intercepting Mouse Events
	 Intercepting Keyboard Events

	Building a WPF Application Using Only XAML
	Defining a Window Object in XAML
	 Defining the Application Object in XAML
	 Processing the XAML Files Using msbuild.exe

	Transforming Markup into a .NET Assembly
	Mapping the Window XAML Markup to C# Code
	The Role of BAML
	 Mapping the Application XAML Markup to C# Code
	 XAML-to-Assembly Process Summary

	Understanding the Syntax of WPF XAML
	Introducing Kaxaml
	 XAML XML Namespaces and XAML “Keywords”
	Controlling Class and Member Variable Visibility
	XAML Elements, XAML Attributes, and Type Converters
	 Understanding XAML Property-Element Syntax
	 Understanding XAML Attached Properties
	 Understanding XAML Markup Extensions

	Building a WPF Application Using Code-Behind Files
	Adding a Code File for the MainWindow Class
	 Adding a Code File for the MyApp Class
	 Processing the Code Files with msbuild.exe

	Building WPF Applications Using Visual Studio
	The WPF Project Templates
	The Toolbox and XAML Designer/Editor
	 Setting Properties Using the Properties Window
	Handling Events Using the Properties Window
	 Handling Events in the XAML Editor
	 The Document Outline Window
	 Viewing the Autogenerated Code Files

	Building a Custom XAML Editor with Visual Studio
	Designing the GUI of Your Window
	 Implementing the Loaded Event
	 Implementing the Button’s Click Event
	 Implementing the Closed Event
	 Testing Your Application
	 Exploring the WPF Documentation

	Summary

	Chapter 27: Programming with WPF Controls
	A Survey of the Core WPF Controls
	The WPF Ink Controls
	 The WPF Document Controls
	WPF Common Dialog Boxes
	 The Details Are in the Documentation

	A Brief Review of the Visual Studio WPF Designer
	Working with WPF Controls Using Visual Studio
	 Working with the Document Outline Editor

	Controlling Content Layout Using Panels
	Positioning Content Within Canvas Panels
	Positioning Content Within WrapPanel Panels
	 Positioning Content Within StackPanel Panels
	 Positioning Content Within Grid Panels
	 Grids with GridSplitter Types
	 Positioning Content Within DockPanel Panels
	 Enabling Scrolling for Panel Types
	 Configuring Panels Using the Visual Studio Designers

	Building a Window’s Frame Using Nested Panels
	Building the Menu System
	Building Menus Visually
	 Building the ToolBar
	Building the StatusBar
	 Finalizing the UI Design
	Implementing the MouseEnter/MouseLeave Event Handlers
	Implementing the Spell Checking Logic

	Understanding WPF Commands
	The Intrinsic Command Objects
	 Connecting Commands to the Command Property
	Connecting Commands to Arbitrary Actions
	Working with the Open and Save Commands

	Understanding Routed Events
	The Role of Routed Bubbling Events
	Continuing or Halting Bubbling
	 The Role of Routed Tunneling Events

	A Deeper Look at WPF APIs and Controls
	Working with the TabControl

	Building the Ink API Tab
	Designing the ToolBar
	 The RadioButton Control
	Handling Events for the Ink API Tab
	 The InkCanvas Control
	 The ComboBox Control
	 Saving, Loading, and Clearing InkCanvas Data

	Introducing the Documents API
	Block Elements and Inline Elements
	Document Layout Managers

	Building the Documents Tab
	Populating a FlowDocument Using Code
	Enabling Annotations and Sticky Notes
	Saving and Loading a Flow Document

	Introducing the WPF Data-Binding Model
	Building the Data Binding Tab
	 Establishing Data Bindings Using Visual Studio
	 The DataContext Property
	 Data Conversion Using IValueConverter
	Establishing Data Bindings in Code
	 Building the DataGrid Tab

	Understanding the Role of Dependency Properties
	Examining an Existing Dependency Property
	 Important Notes Regarding CLR Property Wrappers

	Building a Custom Dependency Property
	Adding a Data Validation Routine
	 Responding to the Property Change

	Summary

	Chapter 28: WPF Graphics Rendering Services
	 Understanding WPF’s Graphical Rendering Services
	 WPF Graphical Rendering Options

	 Rendering Graphical Data Using Shapes
	 Adding Rectangles, Ellipses, and Lines to a Canvas
	 Removing Rectangles, Ellipses, and Lines from a Canvas
	 Working with Polylines and Polygons
	 Working with Paths
	The Path Modeling “Mini-Language”

	 WPF Brushes and Pens
	 Configuring Brushes Using Visual Studio
	 Configuring Brushes in Code
	 Configuring Pens

	 Applying Graphical Transformations
	 A First Look at Transformations
	 Transforming Your Canvas Data

	 Working with the Visual Studio Transform Editor
	 Building the Initial Layout
	 Applying Transformations at Design Time
	 Transforming the Canvas in Code

	 Rendering Graphical Data Using Drawings and Geometries
	 Building a DrawingBrush Using Geometries
	 Painting with the DrawingBrush
	 Containing Drawing Types in a DrawingImage

	 Working with Vector Images
	 Converting a Sample Vector Graphic File into XAML
	 Importing the Graphical Data into a WPF Project
	 Interacting with the Sign

	 Rendering Graphical Data Using the Visual Layer
	 The Visual Base Class and Derived Child Classes
	 A First Look at Using the DrawingVisual Class
	 Rendering Visual Data to a Custom Layout Manager
	 Responding to Hit-Test Operations

	 Summary

	Chapter 29: WPF Resources, Animations, Styles, and Templates
	Understanding the WPF Resource System
	Working with Binary Resources
	Including Loose Resource Files in a Project
	Configuring the Loose Resources
	 Programmatically Loading an Image
	Embedding Application Resources

	Working with Object (Logical) Resources
	The Role of the Resources Property
	 Defining Window-Wide Resources
	The {StaticResource} Markup Extension
	 The {DynamicResource} Markup Extension
	 Application-Level Resources
	 Defining Merged Resource Dictionaries
	Defining a Resource-Only Assembly

	Understanding WPF’s Animation Services
	The Role of the Animation Class Types
	The To, From, and By Properties
	The Role of the Timeline Base Class
	 Authoring an Animation in C# Code
	Controlling the Pace of an Animation
	Reversing and Looping an Animation

	Authoring Animations in XAML
	The Role of Storyboards
	The Role of Event Triggers
	 Animation Using Discrete Key Frames

	Understanding the Role of WPF Styles
	Defining and Applying a Style
	Overriding Style Settings
	 Limiting Application of a Style with TargetType
	Automatically Applying a Style with TargetType
	Subclassing Existing Styles
	Defining Styles with Triggers
	Defining Styles with Multiple Triggers
	 Animated Styles
	 Assigning Styles Programmatically

	Logical Trees, Visual Trees, and Default Templates
	Programmatically Inspecting a Logical Tree
	Programmatically Inspecting a Visual Tree
	 Programmatically Inspecting a Control’s Default Template

	Building a Control Template with the Trigger Framework
	Templates as Resources
	 Incorporating Visual Cues Using Triggers
	 The Role of the {TemplateBinding} Markup Extension
	 The Role of ContentPresenter
	 Incorporating Templates into Styles

	Summary

	Chapter 30: Notifications, Commands, Validation, and MVVM
	Introducing Model-View-ViewModel
	 Model
	View
	ViewModel
	Anemic Models or ViewModels

	The WPF Binding Notification System
	Observable Models and Collections
	 Adding Bindings and Data
	Programmatically Changing the Vehicle Data
	Observable Models
	Using nameof

	Observable Collections
	Building Custom IList<Inventory>
	Using ObservableCollections
	 Implementing a Dirty Flag
	Updating the Source Through UI Interaction
	The Final Word

	Validation
	Updating the Sample for the Validation Examples
	The Validation Class
	Validation Options
	Notify on Exceptions
	 IDataErrorInfo
	INotifyDataErrorInfo
	Implementing the Supporting Code
	Using INotifyDataErrorInfo for Validations
	Showing All Errors
	Move the Support Code to a Base Class

	Using Data Annotations
	Adding Data Annotations
	 Checking for Data Annotation-Based Validation Errors
	 Customizing the ErrorTemplate

	Creating Custom Commands
	Implementing the ICommand Interface
	 Updating MainWindow.xaml.cs
	 Updating MainWindow.xaml
	Attaching Command to the CommandManager
	Creating the CommandBase Class
	Updating the ChangeColorCommand Class

	 Testing the Application
	Adding the Remaining Commands
	Adding the RemoveCarCommand
	Adding the Command Class
	Updating the XAML

	Adding the AddCarCommand
	Adding the Command Class
	Updating the XAML

	Fully Implementing MVVM
	Moving the Data Source Out of the View
	Moving the Commands to the ViewModel

	Updating AutoLotDAL for MVVM
	Updating the AutoLotDAL Models
	Updating the Base Class
	Updating the Inventory Partial
	Implementing INotifyPropertyChanged

	Full MVVM Example
	Using ObjectMaterialized with Entity Framework

	Summary

	Part VIII: ASP.NET
	Chapter 31: Introducing ASP.NET Web Forms
	 The Role of HTTP
	 The HTTP Request/Response Cycle
	 HTTP Is a Stateless Protocol

	 Understanding Web Applications and Web Servers
	 The Role of IIS Virtual Directories
	 IIS Express

	 The Role of HTML
	 HTML Document Structure
	 The Role of an HTML Form
	 T he Visual Studio HTML Designer Tools
	 Building an HTML Form

	 The Role of Client-Side Scripting
	 A Client-Side Scripting Example

	 Posting Back to the Web Server
	 Postbacks Under Web Forms

	 An Overview of the Web Forms API
	 Major Features of Web Forms 2.0 and Higher
	 Major Features of Web Forms 3.5 (and .NET 3.5 SP1) and Higher
	 Major Features of Web Forms 4.0
	 Major Features of Web Forms 4.5 and 4.6
	Features Added in Web Forms 4.5
	Features Added in Web Forms 4.6

	 Building a Single-File Web Forms Web App
	 Referencing AutoLotDAL.dll
	 Designing the UI
	 Adding the Data Access Logic
	 The Role of ASP.NET Directives
	 Analyzing the “Script” Block
	 Analyzing the ASP.NET Control Declarations

	 Building an ASP.NET Web Page Using Code Files
	 Reference the AutoLotDAL Project
	 Updating the Code File
	 Debugging and Tracing ASP.NET Pages

	 ASP.NET Web Sites vs. ASP.NET Web Applications
	 Enabling C# 6 For ASP.NET Web Sites

	 The ASP.NET Web Site Directory Structure
	 Referencing Assemblies
	 The Role of the App_Code Folder

	 The Inheritance Chain of the Page Type
	 Interacting with the Incoming HTTP Request
	 Obtaining Browser Statistics
	 Access to Incoming Form Data
	 The IsPostBack Property

	 Interacting with the Outgoing HTTP Response
	 Emitting HTML Content
	 Redirecting Users

	 The Life Cycle of an ASP.NET Web Page
	 The Role of the AutoEventWireup Attribute
	 The Error Event

	 The Role of the Web.config File
	 The ASP.NET Web Site Administration Utility

	 Summary

	Chapter 32: ASP.NET Web Controls, Master Pages, and Themes
	 Understanding the Nature of Web Controls
	 Understanding Server-Side Event Handling
	 The AutoPostBack Property

	 The Control and WebControl Base Classes
	 Enumerating Contained Controls
	 Dynamically Adding and Removing Controls
	 Interacting with Dynamically Created Controls
	 Functionality of the WebControl Base Class

	 Major Categories of Web Forms Controls
	 A Brief Word Regarding System.Web.UI.HtmlControls
	 Web Control Documentation

	 Building the Web Forms Cars Web Site
	 Working with Web Forms Master Pages
	 Configuring the TreeView Control Site Navigation Logic
	 Establishing Breadcrumbs with the SiteMapPath Type
	 Configuring the AdRotator Control
	 Defining the Default Content Page
	 Designing the Inventory Content Page
	 Adding AutoLotDAL and Entity Framework to AspNetCarsSite
	 Filling the GridView with Data
	 Enabling In-Place Editing
	 Enabling Sorting and Paging
	 Enabling Filtering
	 Designing the Build-a-Car Content Page

	 The Role of the Validation Controls
	 Enabling Client-Side JavaScript Validation Support
	 The RequiredFieldValidator
	 The RegularExpressionValidator
	 The RangeValidator
	 The CompareValidator
	 Creating Validation Summaries
	 Defining Validation Groups
	 Validation with Data Annotations
	Creating the Model
	Building the User Interface
	 Adding the Code
	 Test the App

	 Working with Themes
	 Understanding *.skin Files
	 Applying Site-Wide Themes
	 Applying Themes at the Page Level
	 The SkinID Property
	 Assigning Themes Programmatically

	 Summary

	Chapter 33: ASP.NET State Management Techniques
	 The Issue of State
	 ASP.NET State Management Techniques
	 Understanding the Role of ASP.NET View State
	 Demonstrating View State
	 Adding Custom View State Data

	 The Role of the Global.asax File
	 The Global Last-Chance Exception Event Handler
	 The HttpApplication Base Class

	 Understanding the Application/Session Distinction
	 Maintaining Application-Level State Data
	 Modifying Application Data
	 Handling Web Application Shutdown

	 Working with the Application Cache
	 Fun with Data Caching
	 Modifying the *.aspx File

	 Maintaining Session Data
	 Additional Members of HttpSessionState

	 Understanding Cookies
	 Creating Cookies
	 Reading Incoming Cookie Data

	 The Role of the <sessionState> Element
	 Storing Session Data in the ASP.NET Session State Server
	 Storing Session Data in a Dedicated Database

	 Introducing the ASP.NET Profile API
	 The ASPNETDB.mdf Database
	 Defining a User Profile Within web.config
	 Accessing Profile Data Programmatically
	 Grouping Profile Data and Persisting Custom Objects

	 Summary

	Chapter 34: ASP.NET MVC and Web API
	 Introducing the MVC Pattern
	 The Model
	 The View
	 The Controller
	 Why MVC?
	 Enter ASP.NET MVC
	Convention over Configuration

	 Building Your First ASP.NET MVC Application
	 The New Project Wizard
	 The Components of a Base MVC Project
	 Project Root Files
	Global.asax.cs

	The Models Folder
	The Controllers Folder
	 The Views Folder
	The Shared Folder

	 The ASP.NET Folders
	 The App_Start Folder
	BundleConfig
	Bundling
	Minification

	 FilterConfig
	Identity
	 RouteConfig

	The Content Folder
	Bootstrap
	The Fonts Folder
	 The Scripts Folder

	 Updating NuGet Packages to Current Versions
	 Test-Drive Your Site

	 Routing
	 URL Patterns
	 Creating Routes for the Contact and About Pages
	 Redirecting Users Using Routing

	 Adding AutoLotDAL
	 Controllers and Actions
	 Adding the Inventory Controller
	 Examine the Scaffolded Views
	 MVC Controllers
	Action Results
	Using the Inventory Repository
	The Index Action
	 The Details Action
	 The Create Action
	HttpGet
	HttpPost
	Model Binding
	HttpPost vs. HttpGet
	AntiForgery Tokens
	The Bind Attribute
	And Now the Code…

	 The Edit Action
	HttpGet
	HttpPost

	 The Delete Action
	HttpGet
	HttpPost

	The Dispose Method
	The Final Word on Controllers

	 MVC Views
	 The Razor View Engine
	 Razor Syntax
	Helpers, Functions, and Delegates
	HTML Helpers
	Razor Functions
	Razor Delegates

	The Final Word on Razor

	 Layouts
	Using a Specific Layout Page

	 Partial Views
	 Sending Data to the View
	ViewBag, ViewData, and TempData
	 Strongly Type Views and View Models

	 The Index View
	MVC Display Data Annotations
	Updating the View with Bootstrap
	Update the Header
	 Update the Table
	 Using GlyphIcons

	 The Details View
	Updating the View with Bootstrap

	 The Create View
	The BeginForm( ) HTML Helper
	The AntiForgery Token
	Updating the View with Bootstrap

	 The Delete View
	Hidden Values
	Validation Summary
	Updating the View with Bootstrap

	 The Edit View
	Updating the View with Bootstrap

	 Validation
	Displaying Errors
	 Client-Side Validation

	 Finishing the UI
	Updating the Layout View
	Update the Home Page

	 The Final Word on ASP.NET MVC

	 Introducing ASP.NET Web API
	 Adding the Web API Project
	 Examining the Web API Project
	 Configuring the Project
	 A Note About JSON
	 Adding a Controller
	Examining the Controller Methods
	Getting All Inventory Records
	Creating View Models with AutoMapper

	Getting One Inventory Record
	Updating an Inventory Record
	Adding Inventory Records
	 Deleting Inventory Records

	Remove the AutoLotEntities Variable

	 Updating CarLotMVC to Use CarLotWebAPI
	 Updating the Index Action
	Updating the Details Action
	 Updating the Add Action
	 Updating the Edit Action
	 Updating the Delete Action
	Testing the Applications

	 Summary

	Index

