
www.apress.com

Fam
iliar

M
icroservices, IoT, and Azure

Microservices,
IoT, and Azure

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Microservices, IoT, and Azure

This book provides practical guidance for adopting a high velocity, continuous
 delivery process to create reliable, scalable, So� ware-as-a-Service (SaaS) solutions
that are designed and built using a microservice architecture, deployed to the
Azure cloud, and managed through automation. Microservices, IoT, and Azure
off ers so� ware developers, architects, and operations engineers’ step-by-step
directions for building SaaS applications—applications that are available 24x7,
work on any device, scale elastically, and are resilient to change—through code,
script, exercises, and a working reference implementation.

The book provides a working de� nition of microservices and contrasts this approach
with traditional, monolithic, layered architecture. A � ctitious, home-biomedical
 startup is used to demonstrate microservice architecture and automation capabilities
for cross-cutting and business services as well as connected device scenarios for
Internet of Things (IoT). Several Azure PaaS services are detailed including Storage, SQL
Database, DocumentDb, Redis Cache, Cloud Services, Web API’s, API Management,
IoT Hub, IoT Suite, Event Hub, and Stream Analytics. Finally the book looks to the
future and examines Service Fabric to see how microservices are becoming the de
facto approach to building reliable so� ware in the cloud.

In this book, you’ll learn:

• What microservices are and why are they’re a compelling architecture pattern
for SaaS applications

• How to design, develop, and deploy microservices using Visual Studio,
PowerShell, and Azure

• Microservice patterns for cross-cutting concerns and business capabilities

• Microservice patterns for Internet of Things and big data analytics solutions
using IoT Hub, Event Hub, and Stream Analytics

• Techniques for automating microservice provisioning, building, and deployment

• What Service Fabric is and how it’s the future direction for microservices on
Microsoft Azure

Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions
—
Bob Familiar

Shelve in:
.NET

9 781484 212769

53999
ISBN 978-1-4842-1276-9

SOURCE CODE ONLINE

Microservices, IoT,
and Azure

Leveraging DevOps and
Microservice Architecture
to Deliver SaaS Solutions

Bob Familiar

Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to
Deliver SaaS Solutions

Copyright © 2015 by Bob Familiar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1276-9

ISBN-13 (electronic): 978-1-4842-1275-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Jeff Barnes
Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc. (SSBM Finance Inc.).
SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

I dedicate this book to my incredible wife, Mandy, who is a continuous
stream of inspiration and to my children, Ariana and Bobby, who never

cease to amaze me with their talent, insight, and intelligence.

v

Contents at a Glance

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: From Monolithic to Microservice����������������������������������� 1

■■Chapter 2: What Is a Microservice?�� 9

■■Chapter 3: Microservice Architecture��� 21

■■Chapter 4: Azure, A Microservice Platform����������������������������������� 33

■■Chapter 5: Automation�� 67

■■Chapter 6: Microservice Reference Implementation������������������� 109

■■Chapter 7: IoT and Microservices�� 133

■■Chapter 8: Service Fabric�� 165

Index��� 183

vii

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: From Monolithic to Microservice����������������������������������� 1

Software as a Service�� 2

Continuous Delivery��� 2

Agile and Scrum�� 2

Lean Engineering��� 3

DevOps�� 4

Cloud��� 4

Microservices�� 6

Summary�� 7

■■Chapter 2: What Is a Microservice?�� 9

Microservices Are…�� 9

Autonomous and Isolated�� 10

Elastic, Resilient, and Responsive��� 11

Message-Oriented and Programmable�� 11

Configurable�� 12

Automated��� 12

■ Contents

viii

The Benefits of Microservices�� 13

Evolutionary��� 13

Open�� 14

High Velocity�� 14

Reusable and Composable�� 14

Flexible�� 14

Versionable and Replaceable�� 15

Owned by One Team�� 15

The Challenges of Microservices��� 15

[re]Organization��� 15

Platform��� 16

Identification�� 16

Testing��� 18

Discoverability��� 19

Summary�� 19

■■Chapter 3: Microservice Architecture��� 21

Layered Architecture�� 22

A Microservice Approach��� 23

Microservice Logical Architecture�� 25

Models��� 25

SDK Layer�� 26

API Gateway Layer��� 26

Protocol Layer�� 27

Service Layer��� 27

Data Access Layer��� 28

Store�� 30

Automation�� 30

Summary�� 31

 ■ Contents

ix

■■Chapter 4: Azure, A Microservice Platform����������������������������������� 33

Data and Storage�� 34

Azure Storage�� 34

SQL Database�� 39

DocumentDb�� 41

Redis Cache��� 48

Service Bus�� 50

Queue�� 52

API Management�� 55

API Proxies��� 56

API Subscriptions�� 58

Policy Injection�� 62

Containers�� 62

Cloud Services and App Services�� 63

Summary�� 64

■■Chapter 5: Automation�� 67

Azure PowerShell��� 69

PowerShell Consoles��� 70

Provisioning�� 71

Azure Resource Groups��� 72

The Home Biomedical Git Repository�� 73

Provisioning Azure Resources��� 75

Console Application Integration��� 76

Provisioning Shared Services�� 78

Collecting Connection Strings��� 79

Provisioning Microservices�� 81

Provisioning the Biometrics Microservice��� 84

■ Contents

x

Build��� 86

NuGet Packaging��� 86

Build Scripts�� 88

Deployment�� 91

Deploy Data��� 91

Generate Packages�� 92

Deploy Packages��� 93

Deploy Biometrics Microservice�� 96

Verifying Data Deployment�� 98

Verifying Microservice Deployment��� 100

Verifying the Biometrics Microservice��� 103

Summary�� 108

■■Chapter 6: Microservice Reference Implementation������������������� 109

The Product�� 109

The Epic��� 109

The Business Capabilities�� 110

The Technical Capabilities��� 111

The Azure Resources��� 111

The Custom Microservices�� 112

Microservice Reference Implementation��� 112

One Microservice, Two APIs��� 113

Common�� 113

ConfigM - Configuration and Discoverability��� 121

Summary�� 131

 ■ Contents

xi

■■Chapter 7: IoT and Microservices�� 133

IoT Capabilities��� 133

Azure IoT Services�� 134

Custom Development�� 134

Scripted Scenario�� 138

The Reference Implementation IoT Capabilities����������������������������������� 140

Device Management�� 141

Telemetry Ingestion��� 143

Telemetry Transformation and Storage��� 147

Real-Time Notifications��� 153

Real-Time Data Visualization��� 161

Summary�� 163

■■Chapter 8: Service Fabric�� 165

Concepts�� 165

Platform Architecture��� 166

Application Model��� 168

Partitioning�� 169

Programming Models��� 171

Reliable Service��� 171

Reliable Actor�� 172

Service Fabric Example: Stateless Web API - RefM����������������������������� 172

Getting Started�� 172

Service Fabric Hosting Model�� 174

Implement RefM Public Web API�� 177

Testing the Service�� 180

Summary�� 182

Index��� 183

xiii

About the Author

Bob Familiar is the Practice Director for Cloud &
Services at BlueMetal. BlueMetal is a Modern Application
company and the Cloud & Services team is a practitioner
of lean engineering, a high velocity product development
process that applies lean methodology, service-oriented
patterns and practices, automation, and cloud platform
capabilities for the design and development of modern
applications.

Bob Familiar has been in the software industry
for 30 years, having worked for both ISVs such as
Dunn & Bradstreet Software and ON Technology
and for Microsoft as a Principal Consultant, Architect
Evangelist, and Director of Technology Evangelism.
Bob holds a Masters in Computer Science from

Northeastern and a patent for Object Relational Database and Distributed Computing.

xv

About the Technical
Reviewer

Jeff A. Barnes is a Cloud Solution Architect (CSA)
on the Microsoft Partner Enterprise Architecture
Team (PEAT), where he engages with leading cloud
architects to present Microsoft’s cloud vision.
A 17+ year Microsoft veteran, Jeff brings over 30 years
of deep technical experience to the CSA role.
He typically works with key ISVs and global partners to
demonstrate how Microsoft Azure technologies can be
best leveraged to meet the current and future demands
of an organization transitioning to the cloud. Jeff has
deep practical experience in the retail, financial, and
manufacturing industries and is a frequent speaker at

Microsoft and third-party events. Jeff resides in Miami, Florida with his family, where his
definition of “offshore development” usually equates to “fishing offshore.”

xvii

Acknowledgments

I would like to thank Liam Spaeth, who has dedicated his life to both inspiring me with
his creativity and keeping me employed for the past 20 years, and the leadership team at
BlueMetal, Scott Jamison and Matt Jackson, for their support and encouragement.

 A big thank you to my dear friend Jeff Barnes for his technical expertise and
guidance throughout the process and to Vaclav Turecek and Mike Fussell from the Azure
Service Fabric team for their input.

I would like to thank David McIntyre for his contribution to the sample code base,
the Home Biomedical Dashboard.

Finally, I would like to thank Ron Bokleman, my PowerShell Sensei, who was
instrumental in the creation of the automation scripts for the reference implementation.

xix

Introduction

Microservices, IoT, and Azure make the case for adopting a high velocity, continuous
delivery process to create reliable, scalable Software as a Service solutions that are
designed and built using a microservice architecture, deployed to the Azure cloud, and
managed through automation. SaaS applications are software products that are available
24x7, work on any device, scale elastically, and are resilient to change. This book provides
software developers, architects, and operations engineers with practical guidance on
this approach to software development through code, script, exercises, and a working
reference implementation.

A working definition of microservices will be presented, and the approach will be
contrasted with traditional, monolithic, layered architecture. A reference implementation
for a fictitious home-biomedical startup will be used to demonstrate microservice
architecture and automation capabilities for cross-cutting and business services as well as
connected device scenarios for Internet of Things (IoT). Several Azure PaaS services will be
detailed including storage, SQL Database, DocumentDb, Redis Cache, Cloud Services, Web
APIs, API management, IoT Hub, IoT Suite, Event Hub, Stream Analytics. Finally, we will
look to the future and examine Service Fabric to see how microservices are becoming the
de facto approach to building reliable software in the cloud.

The Reference Implementation
The Reference Implementation provides automation scripts and source code for several
microservices along with several client applications that play various roles in the
context of the solution. The PowerShell scripts automate the provisioning, build, and
deployment tasks that get the Home Biomedical solution up and running in Azure. In
order to control costs of running the reference implementation, deprovisioning scripts
are also provided.

The reference implementation consists of several independent microservices
built using C#, ASP.NET Web API, DocumentDb, and Redis Cache and deployed as
Azure websites. In addition, there is an IoT subsystem that is built using Event Hub,
Stream Analytics, Cloud Services, and SQL Database. There is a sample real-time data
visualization client that demonstrates how to orchestrate the microservices into a
complete solution.

Viewed as a whole, the Reference Implementation demonstrates how to use several
Azure PaaS services along with custom code and automation scripts to create a complete,
modern application.

■ Introduction

xx

You will learn…
The combination of the book and the reference implementation provide a resource to
learn the following:

•	 What microservices are and why they are a compelling
architecture pattern for SaaS applications

•	 How to design, develop, and deploy microservices using Visual
Studio, PowerShell, and Azure

•	 Microservice patterns for cross-cutting concerns and business
capabilities

•	 Microservice patterns for Internet of Things and big data analytics
solutions using IoT Hub, Event Hub, and Stream Analytics

•	 Techniques for automating microservice provisioning, build, and
deployment

•	 What Service Fabric is and why it is the future direction for
microservices on Microsoft Azure

Chapter 1: From Monolithic to Microservice - Shifting demographics and
competitive pressure on business to drive impact at velocity is requiring us to evolve our
approach to how we develop, deploy, and support our software products. This chapter
lays out a roadmap to evolve not only application architecture but also process and
organization.

Chapter 2: What Is a Microservice? - This chapter provides a working definition
of microservices and details the benefits as well as the challenges to evolving to this
architecture pattern.

Chapter 3: Microservice Architecture - Traditionally, we have used separation of
concerns, a design principle for separating implementation into distinct layers in order
to define horizontal seams in our application architecture. Microservice architecture
applies separation of concern to identify vertical seams that define their isolation and
autonomous nature. This chapter will compare and contrast microservice architecture
with traditional layered architecture.

Chapter 4: Azure – A Microservice Platform - The Azure platform exudes
characteristics of microservices. This chapter examines several Azure services to identify
common patterns of services that are designed and implemented using microservices.
Storage, SQL Database, DocumentDb, Redis Cache, Service Bus, API management, and
app containers are reviewed.

Chapter 5: Automation - Automation is the key to being able to evolve to a
continuous delivery approach and realize the benefits of SaaS. This chapter outlines a
framework for defining and organizing your automation process and takes you through
10 exercises that will provision, build, and deploy the reference implementation using
PowerShell.

 ■ Introduction

xxi

Chapter 6: Microservice Reference Implementation - The epic story of Home
Biomedical, a wholly owned subsidiary of LooksFamiliar, Inc., is detailed, and the
implementation details of the reference microservices are revealed. The common
libraries for ReST calls and DocumentDb and Redis Cache for data access are
reviewed. Designing for both public and management APIs is discussed along with
the implementation details for the model, interface, service, API, SDK, and console
components.

Chapter 7: IoT and Microservices - IoT is becoming a more common solution
pattern as we learn to incorporate streaming data into our solutions. This chapter outlines
the capabilities needed to realize an IoT solution and maps them to the Azure IoT stack.
IoT Hub, IoT Suite, Event Hub, and Stream Analytics are detailed, as is how to use Event
Hub, Cloud Services, and Notification Hub to support mobile alerts. A working example
of data visualization using a JavaScript client along with SignalR, ReST, and SQL Database
is reviewed.

Chapter 8: Service Fabric - Service Fabric is the microservice management,
runtime, and infrastructure that Microsoft uses to build, deploy, and manage their
own first-class cloud services such as SQL Database, DocumentDb, Bing Cortana, Halo
Online, Skype for Business, In Tune, Event Hubs, and many others. This chapter provides
a primer and demonstrates Service Fabric by migrating one of the Web API microservices
to Service Fabric.

1

Chapter 1

From Monolithic to
Microservice

The days of paper-based transactions have passed and the days of small-scale web
solutions for Intranet or online customer interaction are nearly forgotten. The monolithic
software systems that were designed to function in those worlds are now struggling to
keep pace with the expectations of both customers and the business. It is now imperative
for companies to provide a modern digital experience for their customers and a platform
for the business that can be used to drive impact and derive insight at velocity.

In order to meet the demands of a modern customer base, all companies, regardless
of their stated business, must come to the realization that they are also in the software
business. That may not be their primary persona but it has become the primary way that
their customers expect to interact with them. Demographics are continually shifting, and
the expectation of these new customers is that they will engage the companies they choose
to do business with digitally. They expect that the experience is beautiful, feature-rich, and
fast. They also expect that the experience is reachable and fully functional 24 hours a day,
7 days a week from any device.

It has fallen to us as the software developers, architects, and operations engineers to
deliver new, scalable solutions that meet the expectations of customers and the business.
We are being asked to deliver more features and functions and to do it with less: less time,
less resources. And if you are like most software professionals, you are also responsible
for a portfolio of aging, legacy systems that house the ever important business logic
somewhere within impenetrable brambles of code and data.

There does exist a software product model that both meets the expectations of
customers and provides a platform to drive business outcomes at velocity. That model is
called Software as a Service (SaaS). Let’s examine the characteristics of a SaaS solution
to see how it may provide a means by which we can extricate ourselves from the thorns,
spines, and prickles of monolithic legacy applications.

Chapter 1 ■ From Monolithic to Microservice

2

Software as a Service
The Software as a Service model implies that your software product is available 24/7,
scales elastically, is highly available and fault tolerant, provides a responsive user
experience on all popular devices, and does not require the user to install a client or
perform updates or patches. The software product is always the most recent and up-to-
date version and is deployed and maintained using a process called Continuous Delivery.

Continuous Delivery
The Continuous Delivery process is defined by the following capabilities:

•	 The software is developed in a high-velocity, iterative approach
and is deployable throughout its lifecycle.

•	 Deployment to dev, test, staging, and production is managed
using an on-demand automated process.

•	 If there is ever any issue with the deployment process, fixing it
takes higher priority over delivering new features.

Continuous Delivery requires a product-oriented software development process that
is guided by a set of unwavering principles that prioritizes the frequent release of high-
quality working software.

Agile and Scrum
Agile and Scrum have become the prevalent methodology and process for high-velocity
software development with teams organized into small cross-functional groups and
whose goal is to deliver working, running software at the close of every sprint. Agile
defines a set of core principles that are known as the Agile Manifesto:

•	 We value individuals and interactions over processes and tools.

•	 We value working software over comprehensive documentation.

•	 We value customer collaboration over contract negotiation.

•	 We value responding to change over following a plan.

•	 That is, while there is value in the items on the right, we value the
items on the left more.

In order to apply these principles in the context of an actual project, Ken Schwaber
and Jeff Sutherland introduced Scrum, an evolutionary, adaptive, and self-correcting
approach to the software development process. Scrum is lightweight, simple to
understand, but difficult to master. As with any endeavor, discipline is required in order to
achieve a high-quality result.

Scrum is based on an empirical process control theory that asserts that knowledge
comes from experience and decisions should be based on what is known. Scrum uses an
iterative, incremental approach in order to forecast and reduce risk.

Chapter 1 ■ From Monolithic to Microservice

3

There are three pillars to the Scrum Process:

•	 Transparency: A common language is used to describe the
process and is used by all members of the team.

•	 Inspection: Scrum artifacts are frequently inspected in order to
detect variances in progress toward a goal.

•	 Adaptation: If it is determined that an aspect of the process will
produce an undesirable outcome, the process must be adjusted
as soon as possible to minimize damage.

The Scrum Team works together through the well-defined Scrum Process to develop
a product backlog, identifying a set of backlog items that will be developed during a two-
to four-week sprint called the Sprint Backlog. The Scrum Master and Development Team
meet daily in the Daily Scrum to identify what was accomplished the previous day, what
will be done today, and if there are any blocking items. This process is monitored closely
to determine if the sprint is on track or not. At the close of the sprint, running software is
delivered and a Sprint Retrospective meeting is held to review progress and provide input
into the next phase of sprint planning.

Scrum, when combined with Agile Principles, provides a process that is more in
harmony with the way that software developers work individually and as teams, and has
resulted in increased velocity and quality over the traditional gated waterfall process.
Software development techniques have emerged from this new way of teaming, such as
the use of immutable interfaces and mock objects to support independent workstreams
and early testing.

In addition to the need for a high-velocity, high-quality development process,
Software as a Service requires a set of principles and processes related to bringing
software products to market. Lean engineering is a methodology and process that looks
to increase product quality and customer satisfaction by including the customer in the
process and providing access to the product early and often. Customers can provide
critical feedback that is used to guide product design.

Lean Engineering
Lean engineering has risen out of the startup space and defines a high-velocity product
development approach that builds on Agile and Scrum to include deployment into
production so as to gather telemetry from the product as well as from the customers
using the product. This learning is then folded into the next development iteration
(see Figure 1-1).

Chapter 1 ■ From Monolithic to Microservice

4

The Lean engineering cycle is called Build-Measure-Learn and promotes
Continuous Delivery, Continuous Analytics, and Continuous Feedback. The creation of
dashboards, either developed or provided by third-party tools, are instituted to provide
the real-time and historical analytics from which you can derive insights quickly and steer
the product development effort in the direction that meets your customer’s needs.

DevOps
In order to support a Lean Engineering, Continuous Delivery product development
lifecycle, you must automate the development process, called DevOps. DevOps is both a
culture and a set of technologies and tools used for automation.

The cultural aspect of DevOps can be the most challenging to organizations.
DevOps implies the reorganization of teams combining developers, architects, and
quality assurance together with operations. It also requires the adoption of new
methodologies, processes, platforms, and tools. It is something that does not happen
overnight and should be approached in a phased manner using small teams that adopt
the new methods and then transition to become subject matter experts, transferring their
knowledge to the rest of the staff.

Cloud
SaaS solutions require an infrastructure and software platform that can provide high
availability, fault tolerance, elastic scale, and on-demand storage and compute. In
other words, SaaS is a software model designed for the cloud. Cloud platforms such as
Amazon’s AWS and Microsoft’s Azure are themselves Software as a Service platforms that
provide all the building blocks needed for the creation of SaaS solutions.

Cloud computing introduced the concept of a managed virtual environment
that offers levels of choice with respect to how much of the platform you want to be
responsible for maintaining. The terms Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS) were introduced to define these choices
(see Figure 1-2). 

Figure 1-1.  Lean engineering’s Build-Measure-Learn cycle

Chapter 1 ■ From Monolithic to Microservice

5

•	 Infrastructure as a Service: A cloud provider offers the network,
virtual machines, and storage on demand. Users of this model
are responsible for all the layers above the VM level including OS
configuration and patching.

•	 Platform as a Service: A cloud provider offers to maintain
the operating system, provide middleware such as databases,
enterprise messaging, and runtime containers for application
code. Users of this model can focus on the capabilities of their
application and automating deployment.

•	 Software as a Service: A business model where the entire
software and hardware stack of a solution is managed by the
cloud provider and often offered through a subscription model.

Cloud platforms are feature-rich, technically sophisticated platforms that provide
a wide expanse of capability that can be provisioned on demand and in many locations
around the globe, providing a global footprint for your solutions if necessary. At a high
level, cloud platforms provide infrastructure, storage, compute, and application services
on demand through automation via ReST APIs and a pay-as-you-go model (where you
only pay for what you use). The ability to support a high-velocity product lifecycle that
moves a software product through a dev, test, stage, and production environment is now
possible without making huge investments in on-premises infrastructure.

In the past, when we designed software for a specific platform, there were best
practices and architecture patterns that were optimal for that platform. You would
typically map your software architecture to the underlying architecture in order to be
compliant and take full advantage of system services. Cloud platforms are no different.
The underlying architecture of cloud platforms is called microservice architecture. As you
look to adopt cloud platforms for your solution, the recommended architecture pattern is
microservice architecture. Using this architecture pattern you can take full advantage of
underlying services that cloud platforms provide.

Figure 1-2.  Cloud Hosting Models

Chapter 1 ■ From Monolithic to Microservice

6

Microservices
A microservice is a software building block that does one thing and does it well. It can
be provisioned on demand, elastically scaled, provides fault tolerance and fail over,
and when it is no longer needed can be de-provisioned. All the capabilities provided
by commercial cloud platforms are themselves microservices that can be automated
through scripting languages providing the on-demand control that DevOps requires.

When designing your own Software as a Service solution, the recommended
platform is the cloud and the recommended architecture is microservices. Each business
capability of your solution is designed, developed, tested, and deployed as an isolated,
autonomous microservice that receives its elastic scale, fault tolerance, and automation
from the cloud platform. Each business capability is separate and distinct from the others
and can be maintained and enhanced without impacting any other part of the system.
This provides the business the platform it needs to deliver enhancements, updates, and
new features at velocity, without impacting the stability of the system.

With both client/server and n-tier architectures, we have been slicing our
architectures horizontally in order to take advantage of the advancements in hardware
during those eras and distributing the layers of code across ever larger server farms. We
have been providing communication between these layers using a service-oriented,
loosely coupled approach (see Figure 1-3).

Figure 1-3.  Architecture by the slice

These were the right decisions for their time, but as we move into the era of the
cloud, we want to take advantage of the automation, elasticity, and resilience of the IaaS
and PaaS features of cloud platforms. The approach of distributing monolithic blocks of
code across server instances, while still viable in the cloud, is not the best approach to
take advantage of the on-demand and elastic scale nature of cloud platforms. It prevents
us from being able to provide the high-velocity, reliable releases required by new business
models. Monolithic product releases are slowed down as small changes cause full system
builds and test cycles.

Chapter 1 ■ From Monolithic to Microservice

7

Summary
In this chapter, you learned that in order to meet the expectations of customers and
provide the business with a platform for driving impact at velocity, a new approach is
required in the design, development, and deployment of our software products. The
desired model is Software as a Service which implies the application of Continuous
Delivery, Automation through DevOps, adoption of an automatable, scalable, elastic,
highly resilient cloud platform and a microservice architecture.

Next we will define microservice architecture and learn how it contrasts with
traditional monolithic layered architecture. You will learn how Microsoft Azure provides
foundational services for storage, compute, messaging, telemetry, and much more, and
you will learn how to leverage those services in the creation of your own microservice
catalog. You will use a reference implementation that demonstrates these capabilities for
both traditional applications as well as connected device scenarios for Internet of Things.
Finally, you will look to the future, to where Azure is headed, to see how microservices are
becoming the de facto approach to building in the cloud.

9

Chapter 2

What Is a Microservice?

Architecture is a result of a process of asking questions and testing them
and re-interrogating and changing in a repetitive way.

—Thom Mayne

Software as a Service has emerged as a model for modern software products that provide
customers a great experience and the business a dynamic platform for campaigns,
communication, and the release of new features at a frequent pace. You learned in the
last chapter that Agile and Scrum, Lean Engineering, and DevOps provide a methodology
and process framework for high-velocity product development. You learned that cloud
platforms provide an excellent foundation for SaaS solutions with their on-demand
infrastructure and application services. Finally, you identified microservice architecture
as the optimal architecture for cloud-hosted solutions. In this chapter, we will define
microservices and discuss both the benefits and the challenges of this new approach.

Microservices Are…
The term microservice can be a bit misleading. The prefix “micro” implies that
microservices are either tiny little entities that run around doing tasks on our behalf,
like vacuuming the floor or fixing a flat tire, or that form a vast swarm of microscopic
insect-like devices that self-replicate through the consumption of matter and energy, and
are capable of disintegrating any substance they touch. Microservices do work on our
behalf but they are not always tiny.

The “micro” in microservices is actually in reference to the scope of functionality that
the service provides. A microservice provides a business or platform capability through
a well-defined API, data contract, and configuration. It provides this function and only
this function. It does one thing and it does it well. This simple concept provides the
foundation for a framework that will guide the design, development, and deployment of
your microservices.

Within the context of doing one thing and doing it well, microservices also exhibit
a number of other properties and behaviors; it is these elements that differentiate
microservices from previous incarnations of service-oriented approaches. These elements
affect every aspect of how we develop software today, from team structure, source code
organization, and control to continuous integration, packaging, and deployment.

http://www.brainyquote.com/quotes/quotes/t/thommayne675882.html#view%20quote
http://www.brainyquote.com/quotes/quotes/t/thommayne675882.html#view%20quote
http://www.brainyquote.com/quotes/authors/t/thom_mayne.html#view%20author
http://en.wikipedia.org/wiki/Nanorobotics#Nanorobotics
http://en.wikipedia.org/wiki/Nanorobotics#Nanorobotics

Chapter 2 ■ What Is a Microservice?

10

You will examine these properties and behaviors; you will also look at both the
benefits and the challenges of this microservice approach. Along with this examination,
you will learn how to identify microservices and how to determine where the seams and
boundaries are within the domains you are working in.

Autonomous and Isolated
•	 Autonomous: Existing or capable of existing independently;

responding, reacting, or developing independently of the whole.

•	 Isolated: Separate from others, happening in different places and
at different times.

Microservices are autonomous and isolated. That means that microservices are
self-contained units of functionally with loosely coupled dependencies on other services
and are designed, developed, tested, and released independently.

Implications
For the past several years, we have been developing standards and practices for team
development of large, complex systems using a layered, monolithic architecture. This is
reflected in how we organize into teams, structure our solutions and source code control
systems, and package and release our software.

Monolithic solutions are built, tested, and deployed as one large body of code,
typically across set of server or VM instances, in order to provide scale and performance.
If a bug is fixed or a feature added or content updated, the entire solution is built,
tested, and deployed across the server farm as one large entity. The process of building,
deploying, and regression testing the monolith is costly and time-consuming. Over
time, these monoliths turn into large, complex, tightly coupled systems that are nearly
impossible to maintain and evolve in new directions.

If you want to adopt a microservices architecture, your standards and practices
will need to adapt to this new pattern. Teams will need to be organized in such a way
as to support the development of microservices as distinct, independent products. The
development, test, and production environments will need to be organized to support
these teams, developing and deploying their microservice products separate of one
another. When changes are made, only the microservice affected needs to go through the
deployment pipeline, thus simplifying the process of updating the system and delivering
new features and functions.

By dividing the solution up into its microservice component parts and treating them
as separate development efforts, the speed of development will increase and the cost of
making changes will go down.

Chapter 2 ■ What Is a Microservice?

11

Elastic, Resilient, and Responsive
•	 Elastic: Capable of returning to its original length, shape, etc.,

after being stretched, deformed, compressed, or expanded.

•	 Resilient: Able to become strong, healthy, or successful again
after something bad happens.

•	 Responsive: Quick to respond or react.

Microservices are reused across many different solutions and therefore must be able to
scale appropriately depending on the usage scenario. They must be fault-tolerant and
provide a reasonable timeframe for recovery if something does go awry. Finally, they
need to be responsive, providing reasonable performance given the execution scenario.

Implications
The environment in which you deploy your microservices must provide dynamic scale
and high availability configurations for both stateful and stateless services. This is
achieved by leveraging a modern cloud platform such as Microsoft Azure.

Azure provides all the necessary capabilities to support elastic scale, fault tolerance,
and high availability as well as configuration options that allow you the right size for
performance. You will delve into how Azure is a microservices platform in greater detail
in Chapter 4.

Message-Oriented and Programmable
Message-Oriented: Software that connects separate systems in
a network by carrying and distributing messages between them.

Programmable: A plan of tasks that are done in order to
achieve a specific result.

Microservices rely on APIs and data contracts to define how interaction with the service
is achieved. The API defines a set of network-visible endpoints, and the data contract
defines the structure of the message that is either sent or returned.

Implications
Defining service end points and data contracts is not new. Microservice architecture
builds on the evolution of industry standards to define the interaction semantics. If these
standards evolve or new ones are introduced, a microservice architecture will evolve to
adopt these new standards.

At the time of this writing, the industry has generally settled on Representational
State Transfer (ReST) over HTTP for defining API endpoints and JavaScript Object
Notation (JSON) for the definition of data contracts. In addition, service bus capabilities
such as store and forward message queues are used to provide loose coupling between
components and an asynchronous programming model.

http://www.merriam-webster.com/dictionary/respond
http://dx.doi.org/10.1007/978-1-4842-1275-2_4

Chapter 2 ■ What Is a Microservice?

12

APIs and data contracts are the outermost edge of a microservice and define how a
client of the service can invoke a function. Behind this API may be a very sophisticated
set of software components, storage mediums, and multiple VM instances that provide
the function. To the consumer of the service this is all a black box, meaning they know the
published inputs and outputs but nothing else about the inner workings. As a consumer of
that service, they have knowledge of the published inputs and outputs, and nothing more.
What is expected is that a message is constructed, the API is invoked, and a response is
returned. The interaction between the consumer and the service is finite and distinct.

Configurable
Configurable: To design or adapt to form a specific
configuration or for some specific purpose.

Microservices must provide more than just an API and a data contract. They must also
be configurable. Each microservice will have different levels of configuration, and the
act of configuring may take different forms. The key point, in order to be reusable and be
able to address the needs of each system that chooses to employ its capabilities, is that a
microservice must provide a means by which it can be appropriately molded to the usage
scenario.

Implications
As you begin the design process for a microservice, you will soon discover that multiple
APIs will emerge. Along with the public-facing API that you want to expose to the world,
other endpoints will surface that are more of an administrative function and will be
used to define how to bootstrap, monitor, manage, scale, configure, and perform other
perfunctory operations on the service.

Like any good software product, a microservice should provide an easy-to-use
interface or console for administrative functions to configure and manage running
instances. Behind the console is, of course, a set of private to semi-private APIs that
provides access to the underlying data and configuration settings driving the service.

A microservice, then, is more than just its public-facing ReST API and consists of
multiple APIs with varying levels of access, supporting administrative consoles and a
runtime infrastructure to support all of the above. It is a software product with all the
trimmings.

Automated
Automated: Having controls that allow something to work or
happen without being directly controlled by a person.

The lifecycle of a microservice should be fully automated, from design all the way through
deployment.

Chapter 2 ■ What Is a Microservice?

13

Implications
As you ponder this new world of software product development made up of
microservices, it may occur to you that this whole effort could be quite complex with a
proliferation of independent microservice products and all the complexity that entails,
and you would not be wrong.

This approach should not be undertaken without first having complete automated
control over the software development lifecycle. This is about having the right set of tools
to support a fully automated development pipeline, but more importantly it is about
evolving to a DevOps culture.

A DevOps culture is one that promotes collaboration and integration of the
development and operations teams. When you form a team that is responsible for the
design, implementation, and deployment of a microservice, that team should be cross
functional, consisting of all the skills necessary to carry the process from design through
deployment. That means that traditional development teams consisting of architects,
developers, and testers should be expanded to include operations.

While developers are traditionally responsible for the automation from build through
test, called continuous integration, the operations group is traditionally responsible
for deployment across test, staging, and production. Combining these teams offers the
opportunity to make automation of the entire product development pipeline as well as
the monitoring, diagnostics, and recovery operations a first class activity of the product
team. This process is called automation, and the entire team takes responsibility for
smooth operation of product releases.

The Benefits of Microservices
Now that you have a working definition of microservices, let’s examine the benefits of this
approach to distributed computing.

Evolutionary
The days of big bang software product development are over. It is no longer possible to go
on a multi-month or multi-year development cycle before releasing a product because
by the time you release, the window of opportunity has passed and your competition has
already been there, done that.

You may find yourself responsible for the ongoing maintenance and development of
an existing, complex, monolithic system made up of millions of lines of code. There will
be no stomach for the complete re-implementation of such a system; the business could
not sustain it.

One of the benefits of microservice architecture is that you can evolve towards this
approach one service at a time, identifying a business capability, implementing it as a
microservice, and integrating using a loose coupling pattern, with the existing monolith
providing a bridge to the new architecture.

Over time, more and more capabilities can be migrated, shrinking the scope of the
monolith until it is just a husk of its original form. The move to microservices will open
the door to new user experiences and new business opportunities.

Chapter 2 ■ What Is a Microservice?

14

Open
Microservices are designed to expose their functionality through industry standards for
network-addressable APIs and data contracts, and are hosted on highly scalable, elastic,
resilient cloud platforms. This allows a microservice team to choose the programming
language, operating system, and data store that best fits the needs of their service and
their skill set without worrying about interoperability.

It is possible to have some microservice teams developing in Node.JS, others in
Java, and still others in C#. All those microservices can be used together in one solution
because the composition is happening at the ReST API level.

This can be a tremendous improvement for teams that are distributed around the world
and currently trying to work together on a monolithic solution. By creating cross-functional
teams in each geography and giving them complete responsibility over specific microservices,
the need to coordinate around the clock goes away and is replaced with coordination at the
API layer, which is not time-bound.

High Velocity
Individual microservices have a small surface area of functionality. With one team
responsible for the development lifecycle and all the various components, technology,
and automation that make up its implementation, the velocity at which a microservice
can be designed, developed, deployed, and updated is magnitudes faster than trying to
perform the same operations across a monolithic solution.

Reusable and Composable
Microservices by their very nature are reusable. They are not beholden to any one
solution. They are independent entities providing a business or platform capability and
exposing that functionality through open internet standards.

In order to create a useful solution for an end user, multiple microservices can be
composed together. These user experiences can be implemented as web and mobile
applications or targeting new devices such as wearables that may become popular in
the future.

Flexible
The deployment of a microservice is defined through its automation. By defining
deployment and scale scenarios through automation tools, the Microservice team can
exert a great deal of control. There is a tremendous amount of flexibility in how the service
moves through development, test, staging, and production and, when in production,
how they can be modified to fit different usage scenarios through configuration.

Automation of deployment and scale configurations will provide the necessary
control of defining the runtime environment from the container in which the service runs,
the instances onto which those containers are deployed, the geographical regions into
which those instances are instantiated, and the elastic configurations that define scale.

Chapter 2 ■ What Is a Microservice?

15

Versionable and Replaceable
Since there is complete control over the deployment scenarios for a microservice, it
becomes possible to have multiple versions of a service running side by side, providing
backward compatibility and easy migration.

Versioning is typically handled at the API level where version numbers are integrated
into the URL. A new version of the microservice API can be released without impacting
clients that are using previous versions of the API. It is also possible to provide ongoing
updates and enhancements to existing services while in production.

Using this approach, services can be fully replaced while maintaining the current API
or new implementations can be released under a new version.

Owned by One Team
As mentioned, a microservice architecture approach requires organizing cross-functional
teams for the purpose of owning the microservice product lifecycle from design through
deployment. If you are down the path of adopting Agile Principles and the Scrum Process,
you are well suited to adopt this architecture pattern.

The Challenges of Microservices
Just as in the past when you made changes in the way you designed and developed
software, a move to Microservices will not be without its challenges. Go in with both your
eyes and your mind wide open.

[re]Organization
Organizing to support a microservice architecture approach is one of the most difficult
challenges you will have. If you are part of a command-and-control organization using a
waterfall software project management approach, you will struggle because you are not
oriented to high-velocity product development. If you lack a DevOps culture and there
is no collaboration between development and operations to automate the deployment
pipeline, you will struggle.

If you are looking for an opportunity to adopt this approach, it is recommended that
you not try to make large, sweeping changes to your organization. Instead, look for an
opportunity within the context of a business initiative to test out this new formula and
then follow these steps:

•	 Form a small cross-functional team.

•	 Provide training and guidance on adopting Agile, Scrum, Azure,
and microservice architecture.

•	 Provide a separate physical location for this team to work so that they
are not adversely effected by internal politics and old habits.

Chapter 2 ■ What Is a Microservice?

16

•	 Take a minimal-viable-product approach and begin to deliver
small incremental releases of one microservice, taking the process
all the way through the lifecycle.

•	 Integrate this service with the existing systems using a loosely
coupled approach.

•	 Go through the lifecycle on this microservice several times until
you feel comfortable with the process.

•	 Put the core team into leadership positions as you form new
cross-functional teams to disseminate the knowledge.

Platform
Creating the runtime environment for microservices requires a significant investment in
dynamic infrastructure across regionally disperse data centers. If your current on-premises
application platform does not support automation, dynamic infrastructure, elastic scale,
and high availability, then it makes sense to consider a cloud platform.

Microsoft Azure is a microservice platform, and it provides a fully automated
dynamic infrastructure, SDKs, and runtime containers along with a large portfolio of
existing microservices that you can leverage, such as DocumentDb, Redis In-Memory
Cache, and Service Bus, to build your own microservices catalog.

Identification
Domain-driven design was introduced by Eric Evans in his book by the same title. Eric
outlined an approach to describing domain models made up of entities; their attributes,
roles, and relationships; and the bounded contexts, the areas of business capability where
these models are applied.

From a well-articulated, domain-driven design, you can formulate a layered
architecture that will provide the framework for a monolithic solution (see Figure 2-1).

Chapter 2 ■ What Is a Microservice?

17

Domain-driven design has served us well and survived the test of time. Domain
modeling is still a relevant technique we can use in the age of microservices. Instead of
mapping our models and bounded contexts to a layered architecture, we can instead find
the seams and separate each bounded context along with its model and use that as the
starting point for a microservice architecture.

If you are currently working with a complex layered architecture and have a
reasonable domain model defined, the domain model will provide a roadmap to an
evolutionary approach to migrating to a microservice architecture.

If a domain model does not exist, you can apply domain-driven design in reverse
to identify the bounded contexts, the capabilities within the system. Look for areas of
the system where the language changes; this is a design seam. These seams define the
boundaries of possible candidates for microservices.

You can also look for areas of the system that are changing rapidly, a lot of refactoring
is going on, or the rate of change is very slow and system components are solid. These
areas may make a good candidates for microservices.

Finally, those areas of the system that are causing the most pain may be good
candidates as well a therapeutic exercise as you cleave off the affected appendage and
replace it with a bright, shiny, new microservice.

Figure 2-1.  Layered Architecture

Chapter 2 ■ What Is a Microservice?

18

Testing
Microservices do not alter much about the way we write and test code. Test-driven
development, mocking, unit testing, functional testing, and regression testing are all in
play. We are doing object-oriented development of service-oriented components, and
all the best practices, techniques, and tools we used in the past still apply. In addition
to these traditional testing mechanisms, we need to test the microservice as it moves
through the deployment pipeline.

Internals Testing: Test the internal functions of the service
including use of data access, caching, and other cross-cutting
concerns.

Service Testing: Test the service implementation of the API.
This is a private internal implementation of the API and its
associated models.

Protocol Testing: Test the service at the protocol level, calling
the API over the specified wire protocol, usually HTTP(s).

Composition Testing: Test the service in collaboration with
other services within the context of a solution.

Scalability/Throughput Testing: Test the scalability and
elasticity of the deployed microservice.

Failover/Fault Tolerance Testing: Test the ability of the
microservice to recover after a failure.

PEN Testing: Work with a third-party software security
firm to perform penetration testing. NOTE: This will
requires cooperation with Microsoft if you are pen testing
microservices deployed to Azure.

Like automation, testing of a microservice through each phase of the deployment
pipeline is critical to delivering quality software at velocity. Careful planning, discipline, and
a team approach to testing will make this aspect of adopting microservices run smoothly.

Chapter 2 ■ What Is a Microservice?

19

Discoverability
Locating services in a distributed environment can be handled in three ways:

•	 Hardcode the locations of the microservices and deal with all
the issues that will arise when services move or fail with or
without notice: This is akin to hardcoding a database connection
string or user id and password. It’s not a good idea.

•	 Leverage file-based or runtime environment-based
configuration mechanisms to store and retrieve the
microservice locations: This is a good choice if combined with
an automated process to update when locations change.

•	 Provide a dynamic location microservice for microservices so
that applications and services can look up the current location
at runtime: This lookup service may also provide health checks
and notices if services are failing or performing poorly.

In order to provide discoverability as a service, it may require either acquiring a
third-party product, integrating an open source solution, or building it yourself. You
will examine a custom discoverability microservice called ConfigM that provides
dynamic location and metadata services for microservices running in your deployment
environments including test, staging, and production.

Summary
Microservices do one thing and they do it well.

They represent business capabilities defined using domain-driven design,
implemented using object-oriented best practices, tested at each step in the deployment
pipeline, and deployed through automation as autonomous, isolated, highly scalable,
resilient services in a distributed cloud infrastructure. They are owned by a single team
that approaches the development of a microservice as a product, delivering high-quality
software in an iterative, high-velocity process with customer involvement and satisfaction
as the key metrics of success.

In the next chapter, we will compare layered and microservice architectures, and delve
into the internal structure of a microservice.

21

Chapter 3

Microservice Architecture

Separation of Concerns, even if not perfectly possible, is yet the only
available technique for effective ordering of one’s thoughts that I know of.

—Edsger W. Dijkstra

Separation of Concerns (SoC) is a design principle for separating implementation into
distinct layers such that each layer addresses a separate concern. Separation of Concerns
is achieved through the combination of information encapsulation and well-defined
interfaces for accessing that information. We have been applying separation of concerns
since the earliest days of programming. Functional programming was born out of this
approach and we have been reapplying this principle as we have evolved the tools,
languages, and architectures ever since.

Layered architecture applies SoC to identify the horizontal seams between
presentation, application, and data tiers. This process is then continued within each
tier of the architecture. The presentation tier can use the Model-View-Controller (MVC)
pattern to define a separation of concerns for the user interface implementation. MVC
defines three cooperating components: the model, the view, and the controller. The
model defines the behavior, rules, and business logic, and manages the data of an
application. A view is the component that is responsible for displaying the model. There
can be multiple views in an application because the data can be displayed in various
forms such as tables, charts, lists, etc. The controller accepts user input and converts it to
commands for the model or view. This is a great example of Separation of Concerns.

Microservices architecture uses SoC to find the seams in a domain-driven
design, identifying business capabilities and cross-cutting concerns, each designed
implemented, tested, and deployed as autonomous, isolated services. This chapter
compares layered and microservices architecture, and looks at how the Separation of
Concerns principle is used to create a logical architecture for a microservices solution as
well as the internal architecture of an individual microservice.

http://en.wikipedia.org/wiki/Concern_(computer_science)#Concern%20(computer%20science)

Chapter 3 ■ Microservice Architecture

22

Layered Architecture
A layered architecture uses a separation of concerns to provide a roadmap for the
implementation of both simple and complex applications. Consider the 3-tier
architecture, a logical separation between user experience (presentation layer), business
capabilities (application layer), and persistence (data layer), as shown in Figure 3-1.

Figure 3-1.  3-Tier Architecture

When you apply this simple model to real world scenarios, the layers increase in
complexity and responsibility. Domain-driven design was introduced, presenting an
extensive set of best practices, techniques, and core principles that facilitate system design.

The solutions need to support an evolving client landscape of desktops, browsers,
mobile phones, and tablets. Service-oriented architecture was introduced to provide
discipline and governance as web services and open standards were adopted to connect
these various user experiences to the application layer (see Figure 3-2).

Chapter 3 ■ Microservice Architecture

23

The application layer, accessed using SOAP or ReST, exposed the services and
contracts that defined the business capabilities. The domain model layer was added
to capture the business rules and the data models, and to encapsulate the in-memory
caching, persistence, and transactional nature of the operations provided by the data layer.

When implemented and deployed, all of the server-side functionality was built over
one large relational store, and was typically replicated across a farm of load-balanced
servers to provide scale and throughput.

As discussed, this approach has some difficulty translating to cloud platforms such
as Azure. While it is possible to perform a “lift and shift” of the on-premises workloads
to Azure’s Infrastructure as a Service environment, we are not able to take full advantage
of what the platform has to offer with respect to ease of deployment, elastic scale, and
adoption of other platform services. In order to take full advantage of the cloud, we need
to take what we have learned and evolve to a new model.

A Microservice Approach
A microservices architecture maintains the logical separation of presentation, business,
and data layers. Where microservices architecture departs is from a monolithic
application and data layer to a collection of distinct, isolated services. The business
and data layers are vertically sliced along functional seams, each with its own domain
model and API.

Figure 3-2.  Layered Architecture

Chapter 3 ■ Microservice Architecture

24

The data services layer is a collection of microservices providing various types of
persistence services from caching, document stores, relational databases, and cloud
storage in the form of blobs, tables, queues, and disks. These services are instantiated
on-demand and provide secure end points that are accessed using an API invoked over a
network protocol.

Traditional cross-cutting concerns such as logging, configuration, reference data,
and discoverability also exist within this architecture as microservices. You may leverage
third-party products for these capabilities or build them yourself (see Figure 3-3).

The business capabilities of the solution are each implemented and deployed as
isolated microservices that, in turn, leverage the cross-cutting and data layer microservices.

Desktops, browsers, mobile phones, tablets, wrist watches, and any device we
connect to the cloud, such as vending machines, robots, street lamps, industrial
machinery, etc. (what we call the Internet of Things), can create user experiences from
the provided APIs.

To create a consistent and secure view of the APIs, an API gateway microservice
can be employed. Gateways provides registration, subscription, policy injection,
documentation, and analytics for your microservice APIs.

Finally, all the microservices that are required for a solution are instantiated,
configured, and managed using automation tools and languages. For example, a
microservice implemented using Azure may instantiate SQL Database for relational
database capabilities, a Service Bus Queue for store and forward capabilities, and an
Azure Web site container to host the ReST API. The promise of Continuous Delivery is
now possible: the ability to provide ongoing updates and new feature releases at a rapid
pace without affecting the entire deployed application.

Figure 3-3.  Microservices Architecture

Chapter 3 ■ Microservice Architecture

25

Microservice Logical Architecture
Fractals are a curved or geometric figure where each part has many characteristics as the
whole object. Not unlike fractals, if we peer inside a microservice we will see something
that looks very familiar: a layered architecture that is providing a separation of concerns
from the client to the data store. Microservices follow the same best practices and
approaches to their design as we have applied to large scale monolithic applications, but
at a much smaller scale. The difference is that the scope of this architecture is focused on
doing one thing and doing that one thing well (see Figure 3-4).

Figure 3-4.  Microservice Logical Architecture

Models
Models define the structure of data as it moves in and out of a microservice. Data moves
in and out of a microservice through the data access and the protocol layers. In both
cases, serialization and deserialization is performed. Within the service layer of the
microservice, the model takes an in-memory form such as an object model.

Chapter 3 ■ Microservice Architecture

26

For example,

class UserProfile
{
 string id { get; set; }
 string first { get; set; }
 string last { get; set; }
}
...
UserProfile user = new UserProfile();
 
user.id = "99999";
user.first = "Bob";
user.last = "Familiar";

defines a simple model for a user profile and instantiates an in-memory instance.
An example of this model de-serialized to JSON would look like this:

{ "id" : "99999", "first" : "Bob", "last" : "Familiar" }

SDK Layer
In order to facilitate easy adoption of an API, it may be desirable to create language-specific
SDKs. The SDKs can be made available through package managers such as NuGet to make
discoverability and installation relatively painless. NuGet is the package manager for
the Microsoft development platform. The NuGet client tools allow you to create and use
NuGet packages created from class library solutions. Chapter 5 will cover how to use
NuGet to create reusable packages for your class libraries and host them locally in your
own build environment.

Note that there is the added overhead of maintaining the SDKs for each supported
language. Also with the advancements in API gateway technology, auto-generated
sample code and IntelliSense can easily fill the gap of providing documentation and
instruction if you opt not to provide SDKs.

API Gateway Layer
API gateways provide a proxy for your API. You register your API with the gateway service
and turn features of the gateway on and off through configuration. These features include
additional layers of security, subscription services for developers to provide unique keys
required on each API invocation, performance metrics and analytics, throttling, policy
injection such as XML to JSON or JSON to XML transformations, redirection, and other
filtering operations. The API Management Service provides these services in Azure.

http://dx.doi.org/10.1007/978-1-4842-1275-2_5

Chapter 3 ■ Microservice Architecture

27

Protocol Layer
The protocol layer defines the network protocol and communication mechanism that
will be used by the microservice, such as HTTP or TCP for the network protocol and
SOAP/WSDL or ReST for the communication mechanism.

As discussed, the predominant protocol and communication style today is ReST
over HTTP with JSON as the preferred message format. JSON has replaced XML due to its
more compact format and object-oriented notation.

ReST APIs are defined as a collection of URLs and corresponding HTTP VERBS
along with input and output parameters and messages. Each URL consists of the network
protocol (HTTP), a base URL (myapi.looksfamilar.com), and the route to the resource
along with any parameters.

There are two ways to specify parameters on a URL. The first way uses the resource
path format to return the user profile with the user id 99999 in JSON format.

GetProfilesById

GET http://myapi.looksfamiliar.com/profiles/user/id/99999

The second technique uses the query parameters URL format to return all user
profiles whose location is set to Massachusetts as a list formatted as a JSON array.

GetProfilesByLocation

GET http://myapi.looksfamiliar.com/profiles?location=Massachusetts

POST and PUT operations will typically require a JSON message as input. The format
of the JSON is based on the model for that microservice. For example, if you defined an
API for the creation of a user profile, the URL would be defined as

POST http://myapi.looksfamiliar.com/profiles/user

and the message would be passed as content with the format of

{ "id" : "99999", "first" : "Bob", "last" : "Familiar" }

The protocol layer performs the routing of these incoming HTTP requests to the
appropriate function provided by the service layer.

Service Layer
The service layer is where the actual work happens. This part of the architecture
defines the business rules, workflows, calculations, and any other operation required to
provide the implementation of the microservice. This layer leverages the data access layer
for persistence, caching, and other data-oriented operations.

http://myapi.looksfamiliar.com/profiles/user/id/99999
http://myapi.looksfamiliar.com/profiles?location=Massachusetts%20
http://myapi.looksfamiliar.com/profiles/user

Chapter 3 ■ Microservice Architecture

28

Taking the simple example introduced above, an implementation of the protocol
layer for GetProfileById using ASP.NET Web API would look like this:

[Route("profile/users/id/{id}")]
[HttpGet]
public UserProfile GetById(string id)
{
 UserProfileService profileService = new UserProfileService();
 return profileService.GetById(id);
}

The Route attribute defines the expected resource path and parameters and the
HttpGet attribute defines the supported HTTP Verb. The method defined at the protocol
layer uses a class that implements the service called UserProfileService. The protocol
layer in this example is very thin so as to offer an easy path to adopting new protocols in
the future.

The service implementation sans error handling would look like this:

public UserProfile GetById(string id)
{
 UserProfile user = null;
 DataAccess dac = new DataAccess();
 dac.Connect(_connectionString);
 return dac.SelectById<UserProfile>(id);
}

An instance of the DataAccess class is instantiated and initialized with a connection
string. This class contains a SelectById() method that takes the user Id and returns the
UserProfile model for that user.

Data Access Layer
The data access layer encapsulates the use of data layer microservices such as caching,
relational, document, and blob stores as well as message queues and other store and
forward services.

A common pattern provided by a data access layer is to hide the details of the
relationship between the caching services and the persistence store (see Figure 3-5).

Chapter 3 ■ Microservice Architecture

29

The service requests a model from the data access layer (DAL). The DAL first checks
the cache and, if found, returns the model. The call to the cache is done through a cache
client that manages the protocol invocation of the cache API. If the model is not found in
the cache, the model is retrieved from the store. The call to the store is also done through
a store client that manages the protocol invocation of the store API. The model is placed
into the cache and returned to the service.

Similarly, when the service wants to save a model, it passes the model to the DAL,
which saves to the store using the store client, and then either puts or updates the model
in the cache using the cache client (see Figure 3-6).

Figure 3-5.  Data Access Layer Get Activity Diagram

Chapter 3 ■ Microservice Architecture

30

Figure 3-6.  Data Access Layer Save Activity Diagram

Store
There are many storage options when leveraging a cloud platform such as Microsoft
Azure. Each one is offered as a microservice that can be instantiated, configured, scaled,
secured, and automated to meet your needs. Later in this book, you will take a close
look at SQL Database, DocumentDb, Redis Cache, Service Bus Queues and Event Hubs,
Stream Analytics, and Azure Blobs and Tables.

Automation
The automation component of the microservice architecture is the recognition that
the approach outlined in this book is not possible without the ability to automate the
development lifecycle of a microservices-based solution. There is a level of complexity
that is introduced with this approach because the entire solution involves many moving
parts and components. Trying to manually manage change in this world is impossible.
Tools such as PowerShell, Chef, and Puppet need to be considered along with the
addition of operations expertise to the team.

Chapter 3 ■ Microservice Architecture

31

A DevOps culture is one where teams are made up of cross-functional skillsets; they
contain all the skills necessary to design, implement, test, deploy, and maintain software.
This means that developers and operations engineers work together, side by side,
throughout the entire product lifecycle. The smooth operation of the practice of software
development becomes everyone’s responsibility. Like the workers on an assembly line in
a lean manufacturing shop, a breakdown in the flow from one station to another stops the
entire line. It is everyone’s job to determine what the problem is and how to fix it before
the line starts up again.

The roles, responsibilities, tools, and languages used to implement automation are
choices left up to the team. No single tool or language can solve this issue. Each step in
the process may be implemented using a different tool or scripting language, selected
and maintained by the team as a whole. Automation is never 100%. The goal should be to
automate the process as much as possible to guarantee consistency, quality, stability,
and data collection for measuring progress and success.

Summary
The progression from layered monolithic to microservices is not such a leap. It is simply
the evolution of the concept of Separation of Concerns, a design principle for separating
implementation into distinct layers, such that each layer addresses a separate concern.
SoC is achieved through the combination of encapsulation and well-defined interfaces.

Microservices architecture uses SoC to find the seams in a domain-driven design in
order to identify business capabilities and cross-cutting concerns. Each capability and
concern is then designed, implemented, tested, and deployed as an autonomous,
isolated service.

Now that you have the definition of what you want to build, the next chapter will
take a deeper look at the platform, Microsoft Azure, and its capabilities, providing the
foundation for your own microservices.

http://en.wikipedia.org/wiki/Concern_(computer_science)#Concern%20(computer%20science)

33

Chapter 4

Azure, A Microservice
Platform

Let’s examine Azure with respect to our definition of microservices:

•	 Azure Services are isolated and autonomous: Yes

•	 Azure Services are configurable: Yes

•	 Azure Services provide elastic scale: Yes

•	 Azure Services are programmable through secure endpoints: Yes

•	 Azure Services are automatable through a ReST API such that the
creation, management, monitoring, and teardown is controlled
completely through software: Yes

•	 Azure Services are composable in that they can be combined in
uncountable ways to formulate solutions that address business
and technical goals: Yes

Azure’s finished services such as SQL Database, Service Bus, or DocumentDB,
exhibit characteristics of microservices because they themselves are designed and
implemented using a Microservice Architecture. Each finished service consists of several
microservices each providing a distinct capability. If you approach Azure as a platform
optimized for microservices, you will be able to extract the most value from the platform
for your solutions.

At the time of this writing, Azure has 11 service categories, each with multiple
finished services providing a plethora of capability:

•	 Compute: Virtual Machines, Cloud Services, Remote App, and
Batch

•	 Web and Mobile: Web, Mobile, API and Logic Apps, API
Management, Notification Hubs, Mobile Services

•	 Data and Storage: SQL Database, DocumentDb, Redis Cache,
Storage, StorSimple, Search

•	 Analytics and IoT: HDInsight, Machine Learning, Stream
Analytics, Data Factory, Event Hubs, SQL Data Warehouse

Chapter 4 ■ Azure, A Microservice Platform

34

•	 Networking: Virtual Network, Express Route, Traffic Manager,
Load Balancer, DNS, VPN Gateway

•	 Media and CDN: Media Services, Encoding, Media Player,
Media Intelligence, Content Protection, Live and On-Demand
Streaming, Content Delivery Network (CDN)

•	 Hybrid Integration: Service Bus, BizTalk Services, Backup, Site
Recovery

•	 Identify and Access Management: Active Directory, Multi-Factor
Authentication

•	 Developer Services and Management: Visual Studio Online
(VSO), Application Insights

•	 Management: Key Vault, Scheduler, Automation, Operational
Insights

The Microsoft Azure team has adopted a lean engineering, Agile approach to how
they develop their microservices and they use a Continuous Delivery deployment
process to provide early access to new services (Preview) and updates to existing services
at a rapid pace. If you think Azure is missing some capability, like the weather in New
England, just wait 15 minutes.

In this chapter, you will look at several Azure finished services, and learn how to
instantiate, configure, and develop code to use these services. You will look at storage
services such as Azure Storage, SQL Database, DocumentDb, and Redis Cache;
messaging services provided by Service Bus; the API gateway service API Management;
and deployment containers Cloud Services and App Services.

What will emerge is a pattern that you will want to carry forward in the development
of your own microservices; the ability to automate the creation of your services, the
ability to expose both a programmable API as well as a management API using ReST, and
architecting your services so that they can scale elastically. By examining these Azure
services, you will be able to leverage this approach for your own microservices and take
full advantage of Azure for your Software as a Service solutions.

Data and Storage
Data and storage services give you options on how you persist, transact, and cache your
data. Each service has its own characteristics and use cases.

Azure Storage
Azure Storage is a service that provides storage and retrieval of petabytes of highly
available unstructured data. There are four types of Azure Storage:

•	 Blobs: Binary Large Objects, such as documents and media,
useful for storage of any kind of file.

•	 Tables: NoSQL-like data, useful for scaling up without having to
shard (creating horizontal partitions in the data store).

Chapter 4 ■ Azure, A Microservice Platform

35

•	 Queues: Reliable messaging, useful for loose coupling of
applications.

•	 Files: Managed file share, useful for simulating a disk drive.

You can program these storage services using ReST or leverage a client SDK. The
architecture of Azure storage, depicted in Figure 4-1, provides a common scale out, load
balancing, and indexing capability which manages partitioning. That layer is in turn built
on a distributed replication layer which provides both Locally Redundant Storage (LRS),
which creates three copies of the data, and Geographically Redundant Storage (GRS),
which creates six copies of the data.

To get started, first you create a storage account in Azure.

	 1.	 In the preview portal, click the New button in the upper left
corner (see Figure 4-2).

	 2.	 Select Data + Storage from the menu.

	 3.	 Select Storage.

	 4.	 Fill out the form supplying a unique name, pricing tier,
resource group, subscription, and location, and then click
Create.

Figure 4-1.  Azure Storage Architecture

Chapter 4 ■ Azure, A Microservice Platform

36

Once the storage account is created, navigate to the storage account screen and click
the key icon to access the connection string (see Figure 4-3).

Figure 4-2.  Creating an Azure storage account

Chapter 4 ■ Azure, A Microservice Platform

37

Now you are ready to programmatically access the new storage account. Place the
connection string in the app.config or web.config of your solution and install the Azure
Storage Client SDK using the NuGet Package Manager (see Figure 4-4).

Add references to the Azure Storage namespaces as appropriate to be able to use the
Blob, Table, Queue, or File clients.

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Blob;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Queue;
using Microsoft.WindowsAzure.Storage.File;

Figure 4-3.  Managing keys for an Azure storage account

Figure 4-4.  Installing Azure Storage NuGet package

Chapter 4 ■ Azure, A Microservice Platform

38

Here is an example of how to use the Blob Client to upload a file to storage:

// connect to the storage account
CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
 ConfigurationManager.ConnectionStrings["StorageConnStr"]);
 
// create the blob client.
CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
 
// retrieve a reference to a container.
CloudBlobContainer container = blobClient.GetContainerReference("mynewcontainer");
 
// create the container if it doesn't already exist.
container.CreateIfNotExists();
 
// Create a blob "mynewblob" with contents from a local file.
using (var fileStream = System.IO.File.OpenRead(@"path\myfile"))
{
 blockBlob.UploadFromStream(fileStream);
}

As you incorporate storage into your solutions, you will want an easy way to navigate,
check status, and add and remove content. There are many tools available, some of which are
free of charge, and others cost a nominal fee. Visual Studio provides Azure Storage Explorer as
part of the Server Explorer. Azure Storage Explorer is a standalone app and is offered as a free
download from CodePlex at http://azurestorageexplorer.codeplex.com/.

Azure Explorer is from Cerebrata and is also standalone and free. Go to
www.cerebrata.com/.

Azure Management Studio is a feature-rich tool from Cerebrata (see Figure 4-5). It
includes a 30-day trial for you to check out its advanced capabilities.

http://azurestorageexplorer.codeplex.com/
http://www.cerebrata.com/

Chapter 4 ■ Azure, A Microservice Platform

39

SQL Database
SQL Database provides a relational database as a managed service. It is based on the
Microsoft SQL Server engine and supports existing tools, libraries, and APIs, which is
great if you are looking to leverage existing data access code.

SQL Database is configurable to provide both scale up as well as scale out
configurations. It also provides auditing, restore, geo-replication, and point-in-time
restore from any transaction up to 35 days.

To provision an instance of SQL Database, go to the Azure Portal
(https://portal.azure.com), log in, and click New ➤ Data + Storage ➤ SQL Database
(see Figure 4-6). Fill out the form, providing a name for the server, login credentials, and
optionally the name of a default database.

Figure 4-5.  Azure Management Studio from Cerebrata

https://portal.azure.com/

Chapter 4 ■ Azure, A Microservice Platform

40

Once the SQL Database is instantiated, visit the “classic” portal at
http://manage.azure.com, configure the firewall rules and your IP address, and retrieve
the database connection strings (see Figure 4-7).

Figure 4-6.  Provisioning SQL Database

Figure 4-7.  SQL Database Firewall and Connection Settings

http://manage.azure.com/

Chapter 4 ■ Azure, A Microservice Platform

41

You can use the same tools you use today for on-premises SQL Server instances
to access, manage, and develop, including SQL Server Management Studio and Visual
Studio.

DocumentDb
NoSQL has emerged as an alternative to relational databases to provide a more agile
data store that maps nicely to the high-velocity development processes in use today.
It eliminates the impedance mismatch between application object models and
the database because JSON serialization is used to produce both the on-the-wire
communication and the storage format.

DocumentDb provides tunable consistency with the ability to choose from four
levels:

•	 Strong: Guarantees that a write is only visible after the group of
replica DocumentDb services all agree that the write has been
committed; this provides the best guarantee on data consistency,
but offers the lowest level of performance.

•	 Bounded-staleness: Guarantees success of all writes but does not
guarantee that reads will keep pace with these updates; provides
predictable behavior for read operations while offering lowest
latency writes.

•	 Session: Guarantees individual reads and writes, and the ability
to read your own writes; provides predictable read operations
while offering low latency writes.

•	 Eventual: The weakest form of consistency wherein a client may
get values that are older than the ones it had seen before; provides
the weakest read consistency but offers the lowest latency for both
reads and writes.

These well-defined, granular consistency levels allow you to make sound trade-
offs between consistency, availability, and latency. You instantiate an instance of
the DocumentDb by visiting the portal and clicking New ➤ Data + Storage ➤ Azure
DocumentDb (see Figure 4-8).

Chapter 4 ■ Azure, A Microservice Platform

42

You can define one or more databases within the context of the DocumentDb
instance. Each database can have one or more collections. Collections can contain
documents in JSON format, and stored procedures, triggers, and user-defined functions
(UDF) written in JavaScript (see Figure 4-9).

Figure 4-9.  DocumentDb Internal Structure

Figure 4-8.  Provisioning DocumentDb

Chapter 4 ■ Azure, A Microservice Platform

43

DocumentDb is a schema-free database system. It does not require any schema for
the JSON documents. As you add documents to a collection, DocumentDb automatically
indexes them and they are available to query. As with all Azure Services, you can program
DocumentDb using its ReST API or leverage one of the many language SDKs.

Once DocumentDb is instantiated, you can retrieve the URI and security key values
from the Key blade on the Azure Preview Portal. These values are used to connect to
DocumentDb (see Figure 4-10).

Querying DocumentDb is done using Structured Query Language (SQL) over the
hierarchical JSON documents. Say you have a reference data collection in DocumentDb
with JSON documents that are formatted like this:

{
 "id": "dfe49be8-5bd2-4eb0-8bb7-ef1c4b361936",
 "cachettl": 1,
 "domain": "States",
 "code": "AL",
 "codevalue": "Alabama",
 "link": "US",
 "sequence": 0,
 "attributes": [
 {
 "key": "Capitol",
 "val": "Montgomery"
 },

Figure 4-10.  DocumentDb Keys

Chapter 4 ■ Azure, A Microservice Platform

44

 {
 "key": "Population",
 "val": "4779736"
 },
 {
 "key": "Square Miles",
 "val": "52419"
 }
],
}

Creating a query that retrieves all states in a reference data collection would look like this:

SELECT * FROM Entity e where e.domain='States'

You could also get the same result knowing that the first element in the attributes
array has a key value of ‘Capitol’:

SELECT * FROM Entity e where e.attributes[0].key='Capitol'

If you want to look up the reference entity for the United States, the query would look
like this:

SELECT * FROM Entity e where e.code='US'

And the JSON returned would be as follows:

{
 "id": "6fa6150d-5a83-44e6-95eb-5e299b29e89a",
 "cachettl": 1,
 "domain": "CountryCodes",
 "code": "US",
 "codevalue": "UNITED STATES",
 "link": "",
 "sequence": 0,
 "attributes": [
 {
 "key": "ICO",
 "val": "USA"
 }
],
 }

To leverage DocumentDb from .NET, you need to reference the Azure DocumentDb
Client using NuGet in Visual Studio (see Figure 4-11).

Chapter 4 ■ Azure, A Microservice Platform

45

Here is an example of how to connect and query DocumentDb using the client SDK.
First, you create a class that encapsulates connecting to DocumentDb and provides a
generic select by id method. You will call this class DocDb.

using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;
using Microsoft.Azure.Documents.Linq;
 
namespace LooksFamiliar.Microservice.Store
{
 public class Dbase : IDbase
 {
 private string _docdburi;
 private string _docdbkey;
 private DocumentClient _client;
 private Database _database;
 private DocumentCollection _collection;
 
 public Dbase(string docdburi, string docdbkey)
 {
 _docdburi = docdburi;
 _docdbkey = docdbkey;
 }
 
 public void Connect(string databaseId, string collectionId)
 {
 try
 {
 _client = new DocumentClient(new Uri(_docdburi), _docdbkey);
 GetOrCreateDatabaseAsync(databaseId).Wait();
 �GetOrCreateCollectionAsync(_database.SelfLink,

 collectionId).Wait();
 }

Figure 4-11.  Installing the DocumentDb NuGet package

Chapter 4 ■ Azure, A Microservice Platform

46

 catch (Exception err)
 {
 throw new Exception(Errors.ERR_DBASE_DOCUMENTDB_CONN, err);
 ;
 }
 }
 
 private async Task<Database> GetOrCreateDatabaseAsync(string id)
 {
 _database = _client.CreateDatabaseQuery()
 .Where(db => db.Id == id).ToArray().FirstOrDefault();
 if (_database != null) return _database;
 _database = await _client.CreateDatabaseAsync(new Database {Id = id});
 return _database;
 }
 
 private async Task<DocumentCollection> GetOrCreateCollectionAsync
 (string dbLink, string id)
 {
 _collection = _client.CreateDocumentCollectionQuery(dbLink)
 .Where(c => c.Id == id).ToArray().FirstOrDefault();
 if (_collection != null) return _collection;
 _collection = await _client.CreateDocumentCollectionAsync(
 dbLink, new DocumentCollection {Id = id});
 return _collection;
 }
  
 public List<T> SelectByQuery<T>(string query)
 {
 �var modelList = _client.CreateDocumentQuery<T>(_collection.

SelfLink, query);
 return modelList.ToList().Select(item => (T) item).ToList();
 }
 }
}

Now that you have a class that will handle data access to DocumentDb, you just need
to define a class that you want to save and restore as a JSON document. For your reference
data, you will define a class called Entity.

■■ Note  The Entity class defines an id property that is initialized with a GUID formatted
as a string. The id field gives you the ability to query specific instances of objects from
DocumentDb. In addition, the class defines a cachettl (cache time-to-live) field that is used
in conjunction with Redis Cache to define how long the object lives in cache before being
automatically removed.

Chapter 4 ■ Azure, A Microservice Platform

47

 public class Entity
 {
 public Entity()
 {
 id = Guid.NewGuid().ToString();
 cachettl = 1;
 }
 [JsonProperty(PropertyName = "id")]
 public string id { get; set; }
 public int cachettl { get; set; }
 public string domain { get; set; }
 public string code { get; set; }
 public string codevalue { get; set; }
 public string link { get; set; }
 public SEQUENCETYPE sequence { get; set; }
 public List<Attribute> attributes { get; set; }
 }
 
 public class Attribute
 {
 public Attribute()
 {
 key = string.Empty;
 val = string.Empty;
 }
 
 public Attribute(string _key, string _val)
 {
 key = _key;
 val = _val;
 }
 
 public string key { get; set; }
 public string val { get; set; }
 }
}

Now that you have your data access class, DocDb, and your model, Entity, assuming
you have a DocumentDb collection of reference data, you can query a list of State entities
from the reference collection database:

// connect to documentdb
var dac = new DocDb();
dac.Connect("MyDocumentDb", "RefCollection");
 
// initialize the query to select the
// 50 reference entities for the US states
var query = "SELECT * FROM Entity e where e.domain='States'";
 

Chapter 4 ■ Azure, A Microservice Platform

48

// retrieve a list of states from the reference store
var states = dac.SelectByQuery<Entity>(query);
foreach (Entity state in states)
{
 // do amazing stuff here
}

Redis Cache
Microsoft Azure Redis Cache is based on the popular open source Redis Cache. Microsoft
Azure Redis Cache provides an in-memory cache service that is accessible using its ReST
API or a client SDK (see Figure 4-12).

To use Azure Redis Cache from .NET, you reference the StackExchange.Redis client
library using NuGet within Visual Studio (see Figure 4-13).

Figure 4-12.  Provision Microsost Azure Redis Cache

Chapter 4 ■ Azure, A Microservice Platform

49

Once you have created your Redis Cache instance in Azure, you can retrieve the
connection information, which is a combination of the URI and the security key. These
values together form the connection string:

string redisConn = "[your-account].redis.cache.windows.net,
ssl=true,password=[your-key]";

Redis is used by applications to store serialized instances of object models in
memory in order to improve access and avoid disk I/O. Since you are standardizing on
JSON, the objects you place in cache are first serialized to JSON format and then stored.
When they are retrieved, they are de-serialized from JSON to an in-memory object. Each
object is referenced in cache using a unique id. It is recommended that you incorporate a
unique id in your object models.

■■ Note  Examples in this book reference the Newtonsoft JSON.NET NuGet package for
serialization and deserialization of JSON.

Here is an example of looking up an entity from a reference data store and caching
the result using the Redis client SDK:

using StackExchange.Redis;
using Newtonsoft.Json;
 
// connect to documentdb
var dac = new DocDb();
dac.Connect("MyDocumentDb", "RefCollection");
 
// initialize the query to get the
// reference entity for the United States
var query = "SELECT * FROM Entity e where e.code='US'";
 
// retrieve the US country entity from the reference store
var countries = dac.SelectByQuery<Entity>(query);
 

Figure 4-13.  Install StackExchange.Redis NuGet Package

Chapter 4 ■ Azure, A Microservice Platform

50

// connect to redis cache
ConnectionMultiplexer redisConnection = ConnectionMultiplexer.
Connect(redisConn);
IDatabase redisCache = redisConnection.GetDatabase();
 
// serialize the object to JSON
var json = JsonConvert.SerializeObject(countries[0]);
 
// cache the object passing in unique id, json string and time to live
redisCache.StringSet(countries[0].id, json, TimeSpan.
FromMinutes(countries[0].cachettl));

Within the cache time-to-live period, if another operation wants to check the cache
for a particular entity, the application can perform that operation using the Redis Cache
StringGet() method. The method will return null if the object is not found.

// look up a reference entity in the cache by id
Entity getFromCache(string id)
{
 var json = cache.StringGet(id);
 var entity = JsonConvert.Deserialize<Entity>(json);
 return entity;
}

Service Bus
Service Bus provides several technologies for implementing message-oriented
patterns and application integration. The first step in using Service Bus is to define a
namespace. Within a namespace you can create one or more instances of four types of
communication mechanisms:

•	 Queues: Provide one-directional communication, acting as a
message broker between a sender and a receiver.

•	 Topics: Provide one-directional communication with multiple
subscribers; subscribers can use filters to limit the topics.

•	 Relays: Provide bi-directional communication in a pass-through
mode; there is no storage of the message.

•	 Event Hubs: Provide high volume telemetry ingress at massive
scale, with low latency and high reliability.

Each queue, topic, relay, and event hub is given a name, and that name combined
with the namespace creates a unique end point identifier. You can program queues,
topics, relays, and event hubs using ReST APIs or client SDKs. Applications that use these
Service Bus communication mechanisms do not need to be hosted in Azure; they can run
anywhere.

Chapter 4 ■ Azure, A Microservice Platform

51

Each Service Bus endpoint is secured using shared access policies. A Shared
Access Policy key is sent as part of a ReST invocation for a Service Bus endpoint. The
Share Access Policy key specifies a permission level for that endpoint. There are three
permissions that you can specify for a key:

•	 Send: The application can send messages to the endpoint.

•	 Listen: The application can listen to the endpoint (i.e. receive
messages).

•	 Manage: The application can send, listen, and manage the endpoint.

You can access the Shared Access Policy configuration settings on the Azure Portal
by selecting the Configuration tab for a namespace (see Figure 4-14).

Figure 4-14.  Shared Access Policy Definitions

Figure 4-15.  Connection Information

Using the Shared Access Policy configuration screen, you can created named policies
with permissions that allow Send, Listen, or Manage capabilities. Once you configure
the shared access policies, you can get the full Service Bus connection string information
from the Azure Portal. To view the connection information for Service Bus, click the
Connection Information button on the command bar at the bottom of the Azure Portal
(see Figure 4-15).

Chapter 4 ■ Azure, A Microservice Platform

52

The Access Connection Information screen will be displayed (see Figure 4-16). You can
copy the connection strings from this dialog and use them in your applications and services.

Queue
Using Service Bus from .NET requires that the endpoint connection string be present
in the configuration section of the settings file of the solution. When using Azure Cloud
Services, you can store the connection string in the Azure service configuration files
(.CSCFG files). For websites or virtual machines, you store your connection string using the
app.config or web.config file.

<appSettings>
 �<add key="Microsoft.ServiceBus.ConnectionString"
value="Endpoint=sb://[your-namespace].servicebus.windows.net;
SharedAccessKeyName=Send;SharedAccessKey=[your secret]" />
</appSettings>

In order to write code that uses Service Bus, you add a reference to the Service Bus
Client SDK (see Figure 4-17).

Figure 4-17.  Installing the Service Bus NuGet package

Figure 4-16.  Service Bus Connection Information

Chapter 4 ■ Azure, A Microservice Platform

53

To send a message to a queue, follow these steps.

	 1.	 Define the message you want to send as a class.

	 2.	 Create a class that encapsulates connecting, reading, and
writing messages.

	 3.	 Write the code that uses these classes to send a message to a
queue.

This example demonstrates the process outlined above:

using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using Newtonsoft.Json;
 
namespace LooksFamiliar.Microservice.Store
{
 // entity class that represents the message you want to send
 public class Message
 {
 [JsonProperty(PropertyName = "id")]
 public string id { get; set; }
 public int cachettl { get; set; }
 public string sender { get; set; }
 public DateTime timestamp { get; set; }
 public string body { get; set; }
 }
 
 // the class that encapsulates a Service Bus Queue
 public class Queue
 {
 private static QueueClient _queueClient;
 
 public void Connect(string queueName)
 {
 // connect to the queue
 var namespaceManager = NamespaceManager.Create();
 var queueDesc = namespaceManager.GetQueue(queueName);
 _queueClient = QueueClient.Create(queueDesc.Path);
 }
 
 public string Read()
 {
 string messageBody = null;
 BrokeredMessage brokeredMessage = null;
 �brokeredMessage = _queueClient.Receive(TimeSpan.

FromSeconds(5));

Chapter 4 ■ Azure, A Microservice Platform

54

 if (brokeredMessage == null) return null;
 messageBody = brokeredMessage.GetBody<string>();
 brokeredMessage.Complete();
 return messageBody;
 }
 
 public void Write(string message)
 {
 var brokeredMessage = new BrokeredMessage(message)
 {
 MessageId = Guid.NewGuid().ToString()
 };
 _queueClient.Send(brokeredMessage);
 }
 }
 
 // class that queues a message
 public class Log
 {
 public void Message(string sender, string body)
 {
 var queue = new Queue();
 
 // connect to a queue named 'log'
 queue.Connect("log");
 
 // create a message and deserialize to json
 var message = new Message
 {
 id = Guid.NewGuid().ToString(),
 cachettl = 5,
 sender = sender,
 timestamp = DateTime.Now,
 body = body
 };
 
 var json = JsonConvert.SerializeObject(message);
 
 // send the message
 queue.Write(json);
 }
 }
}

Chapter 4 ■ Azure, A Microservice Platform

55

API Management
API management provides API gateway services such as creating API proxies, configuring
SSL and authentication, developer subscription key management, policy injection such
as rate throttling or message transformations from JSON to XML or XML to JSON, and
performance and health analytics.

The basic concept is that you place your API under management so that direct calls
are never made by clients to your API. Incoming calls first arrive at the API proxy, policies
are applied, and then the call is forwarded on. When the call returns to the API proxy, it
applies any outgoing policies and the output is returned to the caller.

A developer key must be included in the API call in order for the call to pass
through to the actual API. That means that anyone who wants to invoke your API must
first register on the Developer Portal and request to subscribe to the API. Once they are
approved, they receive a key. The developer key is the element that allows the service to
gather statistics on who is calling, how often, and what performance those invocations are
receiving.

Once you create an instance of API Management using the Azure Portal, both an
Administrator Dashboard and a Developer Portal are provided (see Figures 4-18 and 4-19).
The Administrator Dashboard provides the tools necessary to define API products and
developer groups, and access the Analytics reports. Once a developer is registered on the
Developer Portal, he or she will be able to gain access to API documentation and consoles
for accessing sample code, making test calls, and examining return messages.

Figure 4-18.  API Management Administrator Dashboard

Chapter 4 ■ Azure, A Microservice Platform

56

API Proxies
Using the Administrator Dashboard, you can define an API Proxy by providing the
location of service you are registering and a new suffix that will be used to append to the
API Management instance URL. For example, let’s say the endpoint for your Reference
Data API is hosted at https://refmpublic.azurewebsites.net/ref.

Once configured in an API Management instance called myapi, the new base URL
would be https://myapi.azure-api.net.

You then define a suffix that is appended to the end of the base URL. A best practice
is to use this proxy naming feature to add versioning to your APIs.

https://myapi.azure-api.net/v1/ref

You can also provide a friendly name and description producing documentation for
the API (see Figure 4-20).

Figure 4-19.  API Management Developer Portal

https://refmpublic.azurewebsites.net/ref
https://myapi.azure-api.net/
https://myapi.azure-api.net/v1/ref

Chapter 4 ■ Azure, A Microservice Platform

57

Next, define the ReST operations exposed by the underlying API, adding
documentation for each call and its parameters (see Figure 4-21 and Figure 4-22).

Figure 4-20.  API Proxy Definition

Figure 4-21.  RefM API Operations

Chapter 4 ■ Azure, A Microservice Platform

58

API Subscriptions
The first time a developer visits the Developer Portal, they are presented with a login
screen. Authentication to the Developer Portal can be done using a user name/password,
Azure Active Directory credentials, or Microsoft, Facebook, Twitter, or Google accounts
(see Figure 4-23).

Figure 4-22.  RefM Get Entities by Domain API Operation Details

Figure 4-23.  API Developer Portal Authentication

Chapter 4 ■ Azure, A Microservice Platform

59

Once authenticated, a developer will request access to APIs through API products.
API products are collections of APIs with specific developer group access defined by the
administrator (see Figure 4-24).

After a developer has successfully subscribed to an API product, their developer key
will be generated and available for access on their profile page in the Developer Portal
(see Figure 4-25).

Figure 4-25.  Developer profile page for accessing developer keys

Figure 4-24.  API Products

Chapter 4 ■ Azure, A Microservice Platform

60

The developer can visit the API page of the Developer Portal to access the API
consoles. Each API has a generated console page that displays documentation created
through the Administrators Dashboard, the location of the service endpoint and format of
the parameters, code samples in several languages, and the ability to invoke the API (see
Figure 4-26).

Figure 4-26.  API Console

Chapter 4 ■ Azure, A Microservice Platform

61

If the developer clicks the Try It button, they are presented a page where they can
enter any parameters required by the API and then send the request. Upon return, they
will see the response code, response time, and the message that was returned, usually
either XML or JSON (see Figure 4-27).

Figure 4-27.  API Console Try It Results

Chapter 4 ■ Azure, A Microservice Platform

62

Policy Injection
Policies allow you to set incoming and outgoing rules at the product, API, and operation
levels. API Management provides a built-in library of injection policies covering cross-
domain calls, authentication, JSON and XML conversion, rate limiting, usage quotas,
rewriting URLs, and much more. The Policy Definition Editor allows you to inject polices
into a configuration file, specifying them as input or output rules (see Figure 4-28).

Containers
Containers are the environments in which you deploy and execute your code. In Azure,
there are several choices for deploying and executing code. Deciding which one to
use is usually driven by the technology stack chosen for implementation and security
configuration considerations.

If you are leveraging Windows Communication Foundation (WCF) to create a SOAP
or ReST API or a worker role that listens on a Service Bus queue, you will use the Azure
Cloud Service container for deployment. If you are using ASP.NET Web API, you will use
Azure App Services.

Figure 4-28.  Policy Injection

Chapter 4 ■ Azure, A Microservice Platform

63

Cloud Services and App Services
There is an enormous amount of documentation on the development of Cloud Services
and ASP.NET Web API so I will not cover those details here. Instead let’s focus on the
configuration aspects of these containers. Both Cloud Services and App Services allow
you to configure elasticity.

Figure 4-29 shows an example of setting the elasticity rules for a Cloud Service
worker role that is associated with a Service Bus queue. The minimum number of
instances is set to 2 and the maximum is set to 5. The rule to bring another instance
online is based on the number of messages in the queue.

Figure 4-29.  Worker Role Elasticity Configuration

Chapter 4 ■ Azure, A Microservice Platform

64

In Figure 4-30, the App Service elasticity settings are based on the CPU and with
separate settings for work day, work night, and weekends.

Summary
This chapter provided a primer on several of the Azure finished services that provide the
foundation for modern applications and microservices. Each service follows a predictable
pattern of create, configure, and program using a language-specific SDK or going directly
to the ReST APIs. As you move forward, you will be looking at custom microservices that
follow this pattern of providing a programmable API and a management API, and that
take advantage of the elastic containers that Azure provides. You will also look at how to
automate provisioning, build, and deployment of Azure services and custom code.

The Reference Implementation that that you will use to perform this analysis is
called The Home Biomedical Solution. It demonstrates how to implement, build, and
deploy custom microservices that leverage DocumentDb, Redis Cache, SQL Database,
and Service Bus. Each microservice provides both a public API and a management
API, and provides client SDKs for invoking those APIs. Both Azure web sites and Cloud
Services are demonstrated. Service Bus is used to provide high volume telemetry
ingestion for Internet of Things devices as well as notification hubs for real-time mobile
alerts. Stream Analytics is leverage for telemetry transformation and routing to storage as
well as another Event Hub which is used to collect alarm events (see Figure 4-31).

Figure 4-30.  App Service Elasticity Configuration

Chapter 4 ■ Azure, A Microservice Platform

65

Before you dive into the code, though, it is important to understand how you can
automate the provisioning, build, and deployment of this solution. As you have learned,
Software as a Service is a business model that is built on the ability to automate the
software product development process. In the next chapter, you will look at how to
provision Azure services, build software assets, and deploy to Azure using PowerShell.

Figure 4-31.  The Home Biomedical Solution

67

Chapter 5

Automation

Automation is defined as the controlled operation of an apparatus, process, or system
by mechanical or electronic devices that take the place of human labor. Automation is
desirable because when we attempt to manually implement complex processes, we make
mistakes, and these mistakes have a ripple effect that, many times, takes a vigorous root
cause analysis to correct. Automation can seem like an expense when you are at the start
of a project but investing in automation will pay dividends as systems grow and become
more sophisticated. Common tasks become repeatable and measurable, and the code
that implements these tasks is placed under source code control and is maintained in
sync with the software and systems that are being automated. Automation synchronizes
the infrastructure with the application code.

In order to realize the technical benefits of a microservice architecture and the
business value of a Continuous Delivery Software as a Service solution, you will want
to automate as much of the product development lifecycle as you can. There is no
expectation that you will achieve 100% automation. Humans, whether we like it or
not, are still involved in the process of providing oversight and quality assurance. It is,
however, always possible that errors will be introduced. The goal is to minimize that effect
by making automation a first-class citizen in the software development lifecycle.

DevOps is a term that is applied to the cultural approach to automation as well as one
that describes the process and the tools. From a cultural perspective, DevOps promotes
integration and collaboration of development and operations teams. The teams work
together to design and develop the process and the tools that will automate the product
development lifecycle. You will want to encourage cross-functional teams that combine
architecture, development, testing, and operations. A cross-functional team will have all the
skills necessary to carry the product development lifecycle from design through deployment.

Automation can be applied in the following four primary areas (also depicted in
Figure 5-1):

•	 Provisioning: Provisioning involves planning the cloud
resources that will be required, manually creating the
resources, documenting the initial configurations, and creating
the automation scripts that will be used to create the cloud
environment on demand.

•	 Build/Test: Building software and automated testing has been
around for some time now. Continuous Integration is the practice
of using software tools to merge code updates, compile and
integrate software assets, and run automated unit tests.

Chapter 5 ■ Automation

68

•	 Deployment: Deployment automates the packaging of
the software assets and data, deploying them to a staging
environment for acceptance testing, and then automating the
move from staging to production.

•	 Management: Management is the automation of the cloud
resource configuration, providing control over scale up, scale
down, spin up, spin down, sizing, monitoring, and lifetime.

Figure 5-1.  Automating the product lifecycle

There are many tools and technologies that you can leverage to provide automation
in each of these areas. PowerShell has emerged as the primary tool for automating
provisioning and deployment for Azure. In addition, you can leverage Azure Resource
Manager templates, Azure’s ReST API, and .NET Client SDKs to perform various provisioning
and deployment tasks. There are also third-party tools such as Puppet and Chef that have
emerged as enterprise class products that support product lifecycle automation.

The goal of this chapter is to introduce you to the process of automating Azure. You
will use scripts provided as part of the Home Biomedical Reference Implementation to
provision, build, and deploy of the solution. You will do the following:

•	 Use PowerShell to provision the shared resources DocumentDb,
Redis Cache, and Azure Storage.

•	 Use PowerShell and C# to provision isolated runtime
environments for each of the microservices that make up the
reference implementation.

•	 Use PowerShell to build the software assets that define the solution.

Chapter 5 ■ Automation

69

•	 Use PowerShell and C# to deploy data and software assets to
Azure.

•	 Use a combination of management consoles, Postman, and SQL
Server Management Studio to validate the deployment.

Azure PowerShell
Azure PowerShell is installed using the Microsoft Web Platform Installer. The Web
Installer installs the Azure PowerShell cmdlets and their dependencies. Azure cmdlets
are PowerShell modules that automate Azure tasks. Once installed, you can get to the
PowerShell console by typing 'power' from the start screen.

Microsoft Web Platform Installer
http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409

Next, you want to connect to your subscription. If you don’t have a subscription, you
can visit http://azure.net and follow the instructions to set up a trial subscription.

Get Started with Azure
http://go.microsoft.com/fwlink/p/?linkid=320795&clcid=0x409

Before you begin, you want to make sure you have the rights to execute scripts in
your environment. Use the Set-ExecutionPolicy command to configure the execution
policy. Run the PowerShell console with administrative rights and execute this command:

> Set-ExecutionPolicy
 -ExecutionPolicy Unrestricted
 -Scope CurrentUser
 -Force

At the console, type the following command to add your subscription. You will be
prompted to enter your Azure account credentials.

> Add-AzureAccount

You can configure multiple Azure accounts and subscriptions. To see a list of the
available accounts and subscriptions, you can use these commands:

> Get-AzureAccount
> Get-AzureSubscription

To select a specific Azure subscription, use this command:

> Select-AzureSubscription <subscription-name>

http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409
http://azure.net/
http://go.microsoft.com/fwlink/p/?linkid=320795&clcid=0x409

Chapter 5 ■ Automation

70

To get help, you can type the following commands to get various levels of assistance:

> Get-Help
> Get-Help Azure
> Get-Help <azure-cmdlet-name>
> Get-Help <azure-cmdlet-name> -examples
> Get-Help <azure-cmdlet-name> -full

PowerShell Consoles
There are two applications that you will find most useful: the Windows PowerShell ISE
(see Figure 5-2) and the Windows PowerShell console. The PowerShell ISE provides an
editor with multiple tabs and line numbers as well as a console where you can type in
commands directly. When developing scripts, you can run the entire script or highlight a
portion and execute only that section.

Figure 5-2.  PowerShell ISE

The PowerShell console is a command line utility that you can use to type in
PowerShell commands directly and to run scripts. It is recommended that you run both of
these applications with administrator privileges.

Chapter 5 ■ Automation

71

Provisioning
The first step in automating the provisioning process is to build the environment
manually using the Azure Management Console and the Preview portal (see Figure 5-3).

Figure 5-3.  Azure Preview Portal

■■ Note A t the time of this writing, you will need to use both the Classic console and the
Preview portal because some resources are managed in the Classic portal and others in the
Preview portal.

The creation of resources by hand is typically done at the start of the project as the
architecture emerges from initial minimum viable product development efforts. When
the environment has reached a point of minimal functionality, you examine what has
been manually instantiated and document the configuration settings. Using Azure
PowerShell cmdlets, you then script the creation of each cloud resource. In order to
provide organization across all the autonomous, independently deployed services, Azure
provides a construct called Azure resource groups.

Chapter 5 ■ Automation

72

Azure Resource Groups
Azure resource groups are useful logical constructs into which you provision resources
and deploy software. Resource groups provide lifecycle boundaries. You can use resource
groups to collect and manage a set of application resources such as all the various
components of a microservice. The Azure Preview portal allows you to view, monitor, and
track your usage and billing for all the resources within a resource group (see Figure 5-4).

Figure 5-4.  Azure Resource Groups

Figure 5-5.  Adding a resource manually to a resource group

You can manually create Azure resources within Azure resource groups by first
selecting the group in the Preview portal and then clicking the Add button. A list of
resources is displayed (see Figure 5-5).

Chapter 5 ■ Automation

73

As part of preparing the environment for the Home Biomedical Reference
Implementation, you will automate the creation of several resource groups, one for
each microservice that makes up the solution. By defining resources within specific
resource groups, you will have control over the lifetime of those resources as a single
entity. This approach fulfills the “isolation” and “autonomous” requirements of the
microservices approach.

The Home Biomedical Git Repository
The code repository for the Home Biomedical Reference Implementation is available
online. As we move through the various scripts and solutions, I will refer to code and
scripts located within this repository.

■■ Note T he repository is located at https://microservices.codeplex.com/.

The Git repository can be cloned using this command:

git clone https://git01.codeplex.com/microservices

The reference implementation was developed using Visual Studio 2015, .NET 4.5.2,
Azure SDK for .NET 2.7.1, and Azure PowerShell 0.9.8. Refer to the ReadMe for additional
details on the development environment requirements.

At the root of the repository are common automation scripts, sample client
applications, utilities, and a folder containing NuGet packages for each of the
assemblies that make up the microservices. The source code, projects, and solutions
for the microservices are organized into a set of hierarchical folders underneath the
Microservices folder. The structure of the repository is depicted in Figure 5-6.

https://microservices.codeplex.com/
https://git01.codeplex.com/microservices

Chapter 5 ■ Automation

74

The namespaces for the reference implementation also follow this folder format. For
example, the namespace definitions for the Config microservice are as follows:

LooksFamiliar.Microservices.Config.Models
LooksFamiliar.Microservices.Config.Admin.Interface
LooksFamiliar.Microservices.Config.Admin.Service
LooksFamiliar.Microservices.Config.Admin.SDK
LooksFamiliar.Microservices.Config.Public.Interface
LooksFamiliar.Microservices.Config.Public.Service
LooksFamiliar.Microservices.Config.Public.SDK

The source code for each component assembly is found in its own Visual Studio
solution. There is no monolithic solution that combines all the projects; this may be
different from how you usually work. I have instead deconstructed the code organization
to further emphasize the architecture. I leveraged NuGet as a means to manage assembly
references. I used PowerShell automation scripts to pull everything together for build,
test, and deploy.

Figure 5-6.  Git Repo Folder Structure

Chapter 5 ■ Automation

75

Your approach to how you organize and manage source code, solutions, and
projects will very likely differ. The point of this book is not to promote a single approach,
but instead to outline a pattern. How you choose to realize that pattern is left to your
creativity.

Provisioning Azure Resources
To provision Azure resources, you create PowerShell scripts that leverage the Azure
cmdlets. Each step of the provisioning process should have its own script to perform a
particular task, such as the creation of an Azure storage account or an Azure resource
group. Each script should take as input the set of parameters it requires so as to make the
script as reusable as possible. For example, the Create-ResourceGroup.Ps1 script takes
three parameters:

•	 Subscription: The name of your Azure subscription

•	 ResourceGroupName: The name of the resource group to create

•	 AzureLocation: The region in which you want to create the
resource group, such as East US, West US, East US 2, etc.

The script uses CmdletBinding to define the input parameters:

[CmdletBinding()]
Param
(
 [Parameter(Mandatory=$True,
 Position=0,
 HelpMessage="The subscription name.")]
 [string]$Subscription,
 [Parameter(Mandatory=$True,
 Position=1,
 HelpMessage="The resource group name.")]
 [string]$ResourceGroupName,
 [Parameter(Mandatory=$True,
 Position=2,
 HelpMessage="The name of the Azure Region")]
 [string]$AzureLocation
)

The script executes two Azure PowerShell commands to select a subscription and
create a resource group:

> Select-Subscription $Subscription
> New-AzureResourceGroup
 -Name $ResourceGroupName
 -Location $AzureLocation

Chapter 5 ■ Automation

76

When you run this script using the PowerShell console, you are prompted to enter
each parameter. The script outputs the status at each step so you can track its progress
(see Figure 5-7).

Figure 5-7.  Create-ResourceGroup Script Execution

■■ Note  You can try this out by starting the PowerShell console and navigating to the
automation\common folder in the repository. Type the following commands and follow the
script prompts:

> add-azureaccount
> switch-azuremode AzureResourceManager
> .\create-resourcegroup

Console Application Integration
You may discover that some steps in the automation process are best implemented using
code. There are a couple of approaches when using code to implement an automation
task. You can create PowerShell cmdlets in C# and then integrate those assemblies into
your environment using the Import-Module command. Another approach is to create
a console application and then wrap the call to the console application in a PowerShell
script that invokes an executable. For the Home Biomedical Reference Implementation,
I have opted to use the later approach. An example of this can be found in the code that
provisions Service Bus Event Hubs.

Chapter 5 ■ Automation

77

The SBUpdate console application takes as input the Service Bus connection string
and the name of the Event Hub to be created. It uses the NamespaceManager client to
create the Event Hub.

var client = NamespaceManager.CreateFromConnectionString(
 ConnectionString);
client.CreateEventHub(EventHubName);

■■ Note T o review the code that implements this console application, see
tools\SBUpdate\SBUpdate.sln.

You can call a console application from PowerShell using the & symbol followed
by the path to the executable. You can encapsulate that call and provide support for the
command line arguments by creating a PowerShell module. A PowerShell module
defines and exports a PowerShell function. An example of this can be found in the
Create-EventHub.psm1 module.

function Create-EventHub
{
 param ($Repo, $ConnStr, $EventHubName)
 
 $sbupdate = $Repo + "\Automation\Tools\sbupdate\SBUpdate.exe"
 $sbparams = "-connstr", $ConnStr, "-eventhub", $EventHubName
 & $sbupdate $sbparams
}
Export-ModuleMember -Function Create-EventHub

To invoke this module in another script, use the Import-Module command to reference
the module file. You can see an example of this in the Create-ServiceBus.ps1 script.

$CreateEH = $Repo + "\Automation\Common\Create-EventHub.psm1"
Import-Module -Name $CreateEH

Once imported, the function can be called directly in the script, like so:
Create-EventHub $Repo $ConnStr $EHBiometrics

■■ Note T here are several PowerShell modules used by the Reference Implementation’s
automation scripts. You will find them in automation\common.

The console application executables are found in automation\tools and the source code
for those tools can be found in the top-level Tools folder in the repo (repository).

If you modify one of the console utilities, drop the new executable into the appropriate folder
in automation\tools.

Chapter 5 ■ Automation

78

Provisioning Shared Services
The first step in the provisioning process is to build out the shared services that will be
used by the microservices. These include Storage, DocumentDb, and Redis Cache. The
provisioning script to set up these common services is located in \automation\provision
and is called Provision.ps1. The script takes five parameters:

•	 Repo: The path to the Git repo on your machine

•	 Subscription: The name of your Azure subscription

•	 AzureLocation: The name of the region you are deploying to,
such as East US, East US 2, West US, etc.

•	 Prefix: A value that will appended to the front of the core name
of the Azure resources to make them unique

•	 Suffix: A value that will specify if the deployment is dev, test, or
prod.

The Prefix is necessary as many Azure resources need to have a unique name
within the Azure global namespace. The Prefix will be appended to a base name that is
defined in the Provision script and the Suffix will be added to the end. This combination
should make the resources unique within Azure as well as within your environments.

EXERCISE 1

The first exercise is to provision the shared resources for the Home Biomedical
Reference Implementation.

1.	 Navigate to the \automation\provision folder. If you have not
yet added your Azure account information, type

> add-azureaccount

2.	 Enter your credentials to initialize your environment. To run the
shared services provisioning script, type

> .\provision

You will be promoted for the input arguments. When complete, you should see a list
of Azure resources that look something like what is depicted in Figure 5-8.

Chapter 5 ■ Automation

79

Collecting Connection Strings
In order to deploy data to DocumentDb and for the microservices to connect to
DocumentDb and Redis Cache, the connections strings for both need to be collected
from the portal. A file called Include-ConnectionStrings.ps1 is located in the
automation folder off the root of the Git repo. Open this file for editing and follow the
directions below to collect the connection strings and place them in this file. The settings
you are looking for are the DocumentDb URL, the DocumentDb Key, the DocumentDb
Connection String, and the Redis URL.

EXERCISE 2

In this exercise, you will gather the connections strings for DocumentDb and Redis
Cache and place them in a common script file.

1.	 Using the Preview portal, navigate to your DocumentDb
instance and select Settings ➤ Keys. The Keys blade will
appear (see Figure 5-9).

Figure 5-8.  Azure environment after provisioning shared resources

Chapter 5 ■ Automation

80

2.	 Copy the URI, Primary Key, and Primary Connection String values
and paste them into the Include-ConnectionStrings.ps1 file.

$docdbconnstr = "<docdb-connection-string>"
$docdburi = "<docdb-uri>"
$docdbkey = "<docdb-key>" 

3.	 Navigate to the Redis Cache Settings blade. The Redis URI is
constructed using two values from the Redis settings page, the
host name and the primary key (see Figure 5-10).

Figure 5-9.  DocumentDb Keys Blade

Chapter 5 ■ Automation

81

4.	 Copy the host name and primary key values from the Redis
Cache blade and put them together to form the Redis URL using
the following format in the Include-ConnectionStrings.ps1:

$redisuri = "<hostname>,ssl=true,password=<primary-key>"

Provisioning Microservices
Now that the shared services are provisioned, you can move onto the microservices
themselves. There are four microservices that provide the cross-cutting and business
capabilities for your solution.

•	 ConfigM provides discoverability and configuration services.

•	 RefM provides reference data services.

•	 ProfileM provides user profile services.

•	 DeviceM provides device registration and provisioning services.

Each microservice has its own automation folder with four scripts. For example, if
you navigate to the microservices\ref\automation folder you will see the files shown in
Figure 5-11.

Figure 5-10.  Redis Keys

Chapter 5 ■ Automation

82

The scripts in the microservice automation folders have been numbered to
emphasize the order in which they are run. Here is a description of each script:

•	 01-Provision-[Microservice Name].ps1: This script provisions
the resources needed for this microservice.

•	 02-Build-[Microservice Name].ps1: This script automates the
build of all the microservice assemblies, NuGet packages, and
deployable solutions.

•	 03-Deploy-[Microservice Name].ps1: This script deploys data,
packages, and publishes the microservice solutions.

•	 Package-[Microservice Name].ps1: This script is used by the
Deploy script to package the microservice in preparation for
deployment to Azure. You do not run this script directly.

Just like the shared services provisioning script, the individual microservice
provisioning scripts take the same five parameters: Repo, Subscription, AzureLocation,
Prefix, and Suffix (see Figure 5-12).

Figure 5-11.  RefM Microservice Automation Scripts

Figure 5-12.  Invoking the ConfigM provisioning script

Chapter 5 ■ Automation

83

EXERCISE 3

In this exercise, you will provision each of the microservices in the Home Biomedical
Reference Implementation.

1.	 Navigate to the \microservices\config\automation folder.

2.	 Type the following at the command prompt:

> .\provision-configm

3.	 Enter the parameters when prompted.

When it is complete, the ConfigM resource group will be created
and will contain an App Service Plan and two Azure website
containers, as shown in Figure 5-13.

Figure 5-13.  State of Azure after ConfigM provisioning

If you examine the ConfigM provisioning script, you will see that it is leveraging
scripts in the Automation\Common folder to create a resource group and then
creating an application service and two Azure website containers in that
resource group.

Create Resource Group
.\..\..\..\Automation\Common\Create-ResourceGroup.ps1
 $Subscription $ConfigM_RG $AzureLocation
 
create app service plans
.\..\..\..\Automation\Common\Create-AppServicePlan
 $Subscription $ConfigM_RG $ConfigM_SP $AzureLocation
 

Chapter 5 ■ Automation

84

create web site containers
.\..\..\..\Automation\Common\Create-WebSite.ps1 $Subscription
 �$ConfigAdminAPI $ConfigM_RG $ConfigM_SP $AzureLocation
.\..\..\..\Automation\Common\Create-WebSite.ps1 $Subscription
 �$ConfigPublicAPI $ConfigM_RG $ConfigM_SP $AzureLocation

Because these resources all exist in the same resource group, it is very
straightforward to deprovision them with a single command, like so:

> remove-azureresourcegroup -Name $ConfigM_RG -force –Verbose

Repeat the provioning step for the remaining three microservices (RefM, ProfileM,
and DeviceM).

4.	 Navigate to the microservices\device\automation folder and
execute 01-provision-devicem.ps1.

5.	 Navigate to the microservices\profile\automation folder
and execute 01-provision-profilem.ps1.

6.	 Navigate to the microservices\ref\automation folder and
execute 01-provision-refm.ps1.

Provisioning the Biometrics Microservice
Biometrics is a microservice that consists of Service Bus Event Hubs, Notification
Hubs, Stream Analytics jobs, and a SQL Database along with a custom cloud service
for handling alarm conditions, an API over the SQL Database, and a data visualization
website that leverages SignalR to invoke the API. All together they provide the IoT
capabilities of the Home Biomedical solution. Therefore, the Biometrics provisioning
script performs some additional steps.

In addition to the resource groups, service plans, and website containers for the API
and website, the provisioning script will create the following:

•	 A Cloud Service container for hosting the Alarm Notification
service

•	 A Service Bus namespace, two Event Hubs called biometrics and
alarms, and a Notification Hub called alarms

Chapter 5 ■ Automation

85

•	 Five Stream Analytics jobs that will stream and transform
incoming telemetry from the biometrics Event Hub and redirect
to SQL Database or in the case of alarms, to the Alarm Event Hub

•	 A SQL Database instance with a database called BiometricsDb
that will be used to capture the real-time biometric telemetry

EXERCISE 4

In this exercise, you will provision the Biometrics microservice resources.

1.	 Navigate to the microservices\biometrics\automation
and run the provisioning script, providing the same five input
arguments as before:

> .\01-provision-biometrics

When you are finished provisioning, your Azure environment should look similar to
what is depicted in Figure 5-14.

Figure 5-14.  Provisioning the Azure environment

Chapter 5 ■ Automation

86

The provisioning scripts have prepared your Azure subscription environment for the
eventual deployment of the microservices and the Biometrics subsystem, but before
you can deploy, you must build.

Build
The Home Biomedical Reference Implementation provides a set of build scripts that
demonstrate the use of PowerShell to automate a build process in order to prepare
the software assets for deployment. Each solution is built in a specific order to update
dependencies dynamically. The software provided makes heavy use of NuGet packages
with versioning. The build automation provides the mechanism to make sure all the
software assets reference the latest version of each NuGet package.

NuGet Packaging
When dealing with many solutions that are referencing common assemblies, it
can become burdensome to manage all the assembly references. NuGet provides a
mechanism to create versioned packages for your assemblies that you can use within
the context of your development team or, if you so choose to, share with the developer
community online.

All of the supporting assemblies that make up the microservices are built as
NuGet packages and dropped into the Packages folder off the root of the Git repo. Each
microservice is constructed out of a set of assemblies that follow a consistent naming
pattern. Each of those assemblies follows a consistent referencing pattern, depicted
in Figure 5-15. Each microservice follows this pattern, so if you understand one, you
understand them all.

Figure 5-15.  NuGet Package Reference Model

Chapter 5 ■ Automation

87

•	 A Client application references the SDK NuGet package, which
provides a proxy class for calling the microservice API.

•	 The microservice API provides the protocol implementation and
references the Service NuGet package.

•	 The SDK and the Service reference common Interface and Model
NuGet packages, providing harmony between client and server.

•	 The SDK references the Wire NuGet package to make ReST calls.

•	 The Service references the Store NuGet package for persistence.

•	 The Store assembly references the Azure SDKs for DocumentDb,
Redis Cache, and Service Bus.

To successfully build the Reference Implementation, you will need to modify the
NuGet Package Manager settings in Visual Studio to reference the local NuGet package
folder in the Git repo. Follow this menu path in Visual Studio: Tools Menu ➤ NuGet
Package Manager ➤ Manage NuGet Packages for this solution. The NuGet Package
Manager will display (see Figure 5-16).

Figure 5-16.  NuGet Package Manager

Click the Options button in the upper right corner of the manager window to
bring up the options dialog (see Figure 5-17).

Chapter 5 ■ Automation

88

To add the NuGet Packages location for this repo, click the + icon to add an additional
package location. Change the name to something meaningful (Local Packages, for
example). Use the … button to navigate to the Packages folder at the top level of the repo.
Select the folder, click Update, and then OK. Now you can switch between the online NuGet
catalogs and this local NuGet catalog when making NuGet package references. Referencing
shared NuGet packages is now fully integrated into your development environment.

■■ Note  For more information on creating and publishing NuGet Packages, visit
http://docs.nuget.org/create/creating-and-publishing-a-package.

Build Scripts
There are two common modules that are used by all the build scripts:

•	 Invoke-MsBuild.psm1: A PowerShell module to make building
projects with MsBuild. It provides many features like fire-and-
forget, or build-and-wait to check if build succeeded. This module
was created by Daniel Schroeder and is available on CodePlex at
https://invokemsbuild.codeplex.com/.

Figure 5-17.  NuGet Package Manager Options

http://docs.nuget.org/create/creating-and-publishing-a-package
https://invokemsbuild.codeplex.com/

Chapter 5 ■ Automation

89

•	 Invoke-UpdateNuGet.psm1: A PowerShell module that
encapsulates the call to the NuGetUpdate console application
that updates local NuGet package references.

The NuGetUpdate console application makes sure that a solution references the
latest version of the NuGet package by updating the packages.config XML file, deleting
the associated assembly folder from the packages folder, and updating the .csproj XML
file’s ItemGroup section that references the assembly by version number.

■■ Note T o review the code that implements this utility, see
tools\NuGetUpdate\NuGetUpdate.sln.

EXERCISE 5

In this exercise, you will build the shared libraries and each of the microservices.
There are two common assemblies used by all the microservices called Wire
and Store.

1.	 To build the shared assemblies, navigate to microservices\
common\automation and run the build scripts for Wire and
Store. You will be promoted for two parameters: the path to
the top level folder of the Git repo and the build configuration,
debug, or release.

> .\01-build-wire

> .\02-build-store

2.	 To build the ConfigM microservice, navigate to the
microservices\config\automation folder and type this
command:

> .\02-build-configm

Each assembly is built, and a new version of its NuGet package is dropped into the
Packages folder off the root of the repo (see Figure 5-18). This automated build
process makes sure that the dependencies across all assemblies are synchronized.

Chapter 5 ■ Automation

90

Repeat the build process for each of the remaining microservices (DeviceM,
ProfileM, RefM, and Biometrics).

1.	 Navigate to the microservices\device\automation folder and
execute the 02-build-devicem script.

2.	 Navigate to the microservices\profile\automation folder
and execute the 02-build-profilem script.

3.	 Navigate to the microservices\ref\automation folder and
execute the 02-build-refm script.

4.	 Navigate to the microservices\biometrics\automation
folder and execute the 02-build-biometrics script.

Figure 5-18.  Running the build script

Chapter 5 ■ Automation

91

Deployment
Once you have provisioned the Azure resources and successfully built the software, you
are ready for deployment. The deployment scripts for the ConfigM, DeviceM, ProfileM,
and RefM microservices perform these operations:

	 1.	 If requested, deploy data to DocumentDb.

	 2.	 Package the software for deployment.

	 3.	 Deploy the software.

The microservice deployment scripts take the same five parameters as the
provisioning scripts. It is key that you use the same values you entered for provisioning
to keep the deployments in sync with the provisioning. In addition to these five
parameters, the microservices deployment scripts take an additional optional parameter
called -DeployData.

Deploy Data
The deployment of the data is optional, since you may not want to do that every time. The
deployment scripts utilize a PowerShell feature called a Switch parameter.

[switch]$DeployData

If the parameter is present (i.e. –DeployData is present on the command line), the
value will be true. If it is not present, the value will be false. It is also possible to pass the
value on the command as follows:

-DeployData:$true

or

-DeployData:$false

To run this command and have it load DocumentDb with the sample data, add the
–DeployData parameter on the command line as follows:

> .\03-deploy-configm –DeployData:$true

The script evaluates this parameter, and if true, invokes the Load-DocDb.ps1 script.
This script imports a module that invokes the DocumentDB Data Migration Tool utility.
The DocumentDB Data Migration Tool is an open source solution to import data to
DocumentDB from a variety of sources including JSON files, MongoDB, SQL Server, CSV
files, Azure Table storage, and DocumentDB collections.

Chapter 5 ■ Automation

92

Load-DocDb.ps1
 -Repo $Repo
 -Subscription $Subscription
 -DocDbConnStr $connStr
 -CollectionName ManifestCollection

■■ Note  You can download the latest version of the DocumentDb Data Migration Tool from
www.microsoft.com/en-us/download/details.aspx?id=46436.

The data that will be used to initialize DocumentDb has been staged in
automation\deploy\data. The data is in the form of JSON documents. Each JSON
document represents a deserialized model for its associated microservice. They are used
to initialize the ConfigM, ProfileM, RefM and DeviceM DocumentDb databases.

■■ Note T here are console apps that can be used to regenerate the same JSON data if
necessary. The data generation utilities are located in the tools\DbInit folder.

Generate Packages
Once the data is deployed, the next step in the script is to package the solution in
preparation for deployment. In the case of an Azure website, MSBuild generates a ZIP file
and associated files that define the application manifest (see Figure 5-19).

Figure 5-19.  Azure Website Package Files

Figure 5-20.  Azure Cloud Service Package Files

For Cloud Services, the MSBuild packaging process creates two files, a CSCFG
(configuration) file and a .CSPKG (package) file (see Figure 5-20).

http://www.microsoft.com/en-us/download/details.aspx?id=46436

Chapter 5 ■ Automation

93

The MSBuild command line parameters to generate the package files for an Azure
website are

MSbuild /t:Package /P:PackageLocation=<drop-path>

The MSBuild command line parameters to generate the package files for an Azure
Cloud Service are

MSbuild /t:Publish /p:PublishDir=<drop-path>

The deployment scripts drop the packages into the automation\deploy\packages
folder, where they are picked up by the next step in the process, which is to deploy to Azure.

Deploy Packages
The next step in the script is to take the packages and deploy them to the appropriate
containers in Azure. The automation\common\Publish-WebSite.ps1 script is invoked to
perform the operation. First, that script uploads the package files to blob storage.

$containerName = 'msdeploypackages'
$blobName = (Get-Date -Format 'ssmmhhddMMyyyy') + '-'
 + $ResourceGroupName + '-' + $DeploymentName
 + '-WebDeployPackage.zip'
 
if (!(Get-AzureStorageContainer
 $containerName -ErrorAction SilentlyContinue))
{
 New-AzureStorageContainer
 -Name $containerName
 -Permission Off
}
  
Set-AzureStorageBlobContent
 -Blob $blobName
 -Container $containerName
 -File $WebDeployPackage
 
Create a SAS token, add it to the blob's URI
$webDeployPackageUri = New-AzureStorageBlobSASToken
 -Container $containerName
 -Blob $blobName
 -Permission r
 -FullUri

Chapter 5 ■ Automation

94

■■ Note  Shared access signatures (SAS tokens) allow secure, granular access to tables,
queues, blob containers, and blobs. A SAS token can be configured to provide specific access
rights, such as read, write, update, delete to a specific table, key range within a table, queue,
blob, or blob container and do that for a specified time period or without any limit.

Next, the script generates a JSON file that contains the necessary input parameters
and calls New-AzureResourceGroup. This command will create a new resource group if
it does not exist or use the existing one. It will then deploy the package referenced in the
generated JSON parameter file.

generate the paramteres file for New-AzureResourceGroup
$ParametersFile = $Repo +
 "\Automation\Deploy\Scripts\Templates\" +
 $SiteName +
 ".json"
$JSON = @"
{
 "parameterValues": {
 "siteName": "$SiteName",
 "hostingPlanName": "$ServicePlan",
 "siteLocation": "$Location",
 "msdeployPackageUri":"$WebDeployPackageUri"
 }
}
"@
$JSON | Set-Content -Path $ParametersFile
 
Read the values from the parameters file, create a hashtable
$parameters = New-Object -TypeName hashtable
$jsonContent = Get-Content $ParametersFile
 -Raw | ConvertFrom-Json
$jsonContent.parameterValues | Get-Member
 -Type NoteProperty | ForEach-Object {
 $parameters.Add($_.Name,
 $jsonContent.parameterValues.($_.Name))
 }
 
deploy
New-AzureResourceGroup
 -Name $ResourceGroupName
 -DeploymentName $DeploymentName
 -Location $Location
 -TemplateFile $TemplateFile
 -TemplateParameterObject $parameters
 -Force

Chapter 5 ■ Automation

95

The final step is to update the website deployment with the App Settings to access
DocumentDb and Redis Cache. The script generates a JSON file with the settings and
then calls the Set-WebsiteConfiguration function.

generate the appsettigs config file
$JSON = @"
{
 "environmentSettings": {
 "webSite": {
 "name": "$SiteName",
 "location": "$AzureLocation",
 "appSettings": [
 {
 "docdburi": "$DocDbURI",
 "docdbkey": "$DocDbKEY",
 "redisuri": "$RedisURI"
 }
]
 }
 }
}
"@

$AppSettingsFile = $Repo
 + "\Automation\Deploy\Scripts\Templates\" + $SiteName
 + "-appsettings.json" $JSON | Set-Content
 -Path $AppSettingsFile
 
#Update the application settings with values from the JSON file
Set-WebsiteConfiguration $AppSettingsFile

■■ Note  Sample code from Tom Hollander was used to provide this feature of the script.
See Tom’s post at http://bit.ly/1NisNsy.

EXERCISE 6

In this exercise, you will deploy the ConfigM, DeviceM, ProfileM, and RefM
microservices.

1.	 Navigate to the microservices\config\automation folder
and execute the 03-deploy-configm script, passing in the
-DeployData:$true parameter on the command line.

> .\03-deploy-configm –DeployData:$true

http://bit.ly/1NisNsy

Chapter 5 ■ Automation

96

2.	 Navigate to the microservices\device\automation folder
and execute the 03-deploy-devicem script, passing in the
-DeployData:$true parameter on the command line.

> .\03-deploy-devicem –DeployData:$true

3.	 Navigate to the microservices\profile\automation folder
and execute the 03-deploy-profilem script passing in the
-DeployData:$true parameter on the command line.

> .\03-deploy-profilem –DeployData:$true

4.	 Navigate to the microservices\ref\automation folder
and execute the 03-deploy-refm script passing in the
-DeployData:$true parameter on the command line.

> .\03-deploy-refm –DeployData:$true

Deploy Biometrics Microservice
The process for deploying the Biometrics microservices is a bit more sophisticated.
After packaging, you need to update the Alarm Notification Cloud Service-generated
configuration file (.CSCFG) with the connection string information for the Storage
Account, Service Bus, and Notification Hub as well as inject the URL for the ConfigM
microservice as a configuration setting.

The first step is to dynamically get the connection string information for your storage
account.

$storagename = $Prefix + "storage" + $Suffix
$storagekey = (Get-AzureStorageKey
 –StorageAccountName $storagename).Primary
 
$storageconnstr = "DefaultEndpointsProtocol=https;AccountName=$storagename;
AccountKey=$storagekey"

Next, you collect the connection string information for Service Bus and
Notification Hub.

$SBNamespace = $Prefix + "sb" + $Suffix
$NHNamespace = $Prefix + "nh" + $Suffix
$servicebus = Get-AzureSBNamespace
 -Name $SBNamespace -ErrorAction Stop -Verbose
$notificationhub = Get-AzureSBNamespace
 -Name $NHNamespace -ErrorAction Stop -Verbose
$servicebusconnstr = $servicebus.ConnectionString
$notificationhubconnstr = $notificationhub.ConnectionString

Chapter 5 ■ Automation

97

The Alarm Notification Cloud Service uses both the DeviceM and ProfileM
microservices as well as the Biometrics Telemetry API. The service uses the ConfigM
microservice to look up the locations of these endpoints at runtime. The one piece of
information that the service needs then is the URL to the ConfigM Public API that was
provisioned and deployed ealier in the process. This bit of code prepares the URL format
so that it can be added as a setting in the configuration file.

$ConfigPublicAPI = $Prefix + "ConfigPublicAPI" + $Suffix
$configurl = "https://" + $ConfigPublicAPI +
 ".azurewebsites.net/config"

A console application called UpdateCSCFG is provided to update the settings in the
Cloud Service configuration files.

path to the config file
$AlarmConfig = $Repo + "\Automation\Deploy\Packages\BiometricAlarmsWorker\
ServiceConfiguration.Cloud.cscfg"
 
update the storage connection string setting
Update-CSCFG $repo $AlarmConfig
 "Azure.Storage.ConnectionString"
 $storageconnstr

The remaining configuration file updates are omitted for brevity. Once the
configuration file is updated, the Cloud Service can be deployed. The script checks to see
if there is an existing deployment. If one is not found, the New-AzureDeployment cmdlet is
invoked; otherwise the Set-AzureDeployment cmdlet is called. Note the use of the –Slot
parameter. You can specify ‘Production¢ or ‘Staging¢ and then manually or through a
script flip the deployments when appropriate (i.e. staging to production and production
to staging). By default, the scripts deploy to production but you can modify these scripts
to provide staging and production support if you need it.

$BiometricsAlarmPackage = $Repo + "\Automation\Deploy\Packages\
BiometricAlarmsWorker\AlarmsWorker.cspkg"
 
deploy alarm worker cloud service
$deployment = Get-AzureDeployment
 -ServiceName $AlarmServiceName
 -Slot Production
 -ErrorAction silentlycontinue
 
if ($deployment.Name -eq $null)
{
 New-AzureDeployment -ServiceName $AlarmServiceName
 -Slot Production
 -Package $BiometricsAlarmPackage
 -Configuration $BiometricsAlarmConfig
 -Label $AlarmServiceName
}

Chapter 5 ■ Automation

98

else
{
 Set-AzureDeployment -Upgrade $AlarmServiceName
 -Slot Production
 -Package $BiometricsAlarmPackage
 -Configuration $BiometricsAlarmConfig
 -Label $AlarmServiceName
}

EXERCISE 7

In this exercise, you will deploy the Biometrics microservice.

1.	 Navigate to the microservices\biometrics\automation
folder and type the following command:

> .\03-deploy-biometrics

Verifying Data Deployment
You can validate the success of the data upload by using the Azure Preview Portal to view
the contents of the DocumentDb databases.

EXERCISE 8

In this exercise, you will validate the deployment of the DocumentDb database
collections.

1.	 Navigate to your DocumentDb instance and select the ConfigM
database, and then the Manifest Collection.

2.	 Click the Document Explorer (see Figure 5-21).

Chapter 5 ■ Automation

99

3.	 Click one of the documents in the list. You will see a JSON
display for the selected document (see Figure 5-22).

Figure 5-21.  DocumentDb Document Explorer

Figure 5-22.  Testing data deployment using the Azure portal

4.	 Repeat these steps with the other databases (DeviceM,
ProfileM, and RefM).

Chapter 5 ■ Automation

100

Verifying Microservice Deployment
The next step in the validation process is to test the functionality of the microservice APIs.

EXERCISE 9

In this exercise, you will validate that each of the microservices is functioning and
returning data from DocumentDb.

1.	 To validate the deployment of the microservices, navigate to
an API site such as the RefM Public API. The first page you will
see will be the default home page for the service. It provides a
simple overview (see Figure 5-23).

Figure 5-23.  Default page for deployed site

2.	 Click the API menu option. You will be shown the generated API
documentation that is provided by ASP.NET Web API solutions
(see Figure 5-24).

Chapter 5 ■ Automation

101

3.	 You can test a call to the RefM microservice using your browser
by typing in the route with appropriate parameters. Another
approach is to use a tool like Postman. Postman is a very useful
tool in the development and debugging of APIs. You provide the
URL of the ReST API you want to call, enter any required header
values if necessary, and click Send. The tool will display the
response from the API, JSON if successful or the error that was
encountered. Figure 5-25 depicts a call to the RefM Public API,
which returns the list of 50 states in the United States.

http://[prefix]refpublicapi[suffix]/ref/entities/
domain/States

Figure 5-24.  ASP.NET Web API Autodocumentation

Chapter 5 ■ Automation

102

■■ Note N ote You can install Postman by visiting www.getpostman.com/.

4.	 Here is a list of additional endpoints that you can use to validate
the microservice deployments:

•	 http://[prefix]configadminapi[suffix].azurewebsites.
net/config/manifests - return a list of all manifests

•	 http://[prefix]configpublicapi[suffix].
azurewebsites.net/config/manifests/name/DeviceM -
return the DeviceM manifest

•	 http://[prefix]deviceadminapi[suffix].azurewebsites.net/
device/registrations - return all the device registrations

•	 http://[prefix]devicepublicapi[suffix].azurewebsites.
net/device/registrations/model/BIOMAX-HOME - return
all device registrations for BioMax Home units

Figure 5-25.  RefM Public API test results using Postman

http://www.getpostman.com/

Chapter 5 ■ Automation

103

•	 http://[prefix]profileadminapi[suffix].azurewebsites.
net/profile/users - return a list of all user profiles

•	 http://[prefix]profilepublicapi[suffix].azurewebsites.
net/profile/users/state/MA - return a list of user
profiles in Massachusetts

■■ Note  Prefix and suffix are the parameters that you provided to the provisioning and
deployment scripts.

Verifying the Biometrics Microservice
In order to verify the Biometrics microservice, which consists of Event Hub, Stream
Analytics, SQL Database, Alarm Notification, and Data Visualization services, there are a
few preliminary steps to finalizing the configuration of the reference implementation.

•	 Use ConfigM Console to update the locations of the microservice
APIs to provide runtime discovery.

•	 Start the Stream Analytics Jobs.

•	 Use the BioMax Simulator to simulate BioMax devices firing
events to Event Hub.

•	 Connect to SQL Database using SQL Management Studio or an
equivalent database query tool to validate that data is flowing into
the Biometrics database.

EXERCISE 10

The ConfigM microservice provides a management console for creating and
modifying the manifests that document the services running in the environment.

1.	 Navigate to the microservices\config\consoles and
open the ConfigMConsole solution in Visual Studio. Start the
application.

The ConfigM Management console is a WPF application that lists the manifests that
are currently defined in the ConfigM database (See Figure 5-26).

Chapter 5 ■ Automation

104

The microservices ConfigM, DeviceM, ProfileM, and RefM have two attributes that
you will want to update: PublicAPI and AdminAPI.

2.	 Update the PublicAPI and AdminAPI properties in the ConfigM,
DeviceM, ProfileM, and RefM manifests using the newly minted
URLs that were created by the provisioning process.

■■ Note  You can locate those URLs using the Azure portal. Browse the Web Apps and
select a Web App to view its details blade (see Figure 5-27). The API is listed under the
Essentials sections.

Figure 5-26.  ConfigM Management Console

Chapter 5 ■ Automation

105

3.	 Update the PublicAPI property in the Biometrics manifest using
the ConfigM console.

4.	 Navigate to the Azure Classic portal and start the biometrics-
store Stream Analytics job (see Figure 5-28).

Figure 5-27.  Web App Blade

Figure 5-28.  Starting the Stream Analytics job

In order to test the end-to-end IoT capabilities of the Home Biomedical application,
you will need to generate sample device events.

5.	 Navigate to 6\biometrics\simulator and open the
BioMaxSimultor solution in Visual Studio.

6.	 Start the console application and press Enter to start the
process of generating device events (see Figure 5-29).

Chapter 5 ■ Automation

106

Figure 5-30.  SQL Database Connection Strings

Figure 5-29.  BioMax Event Simulator Console

7.	 Use SQL Management Studio or an equivalent tool to connect
to SQL Database and execute a ‘select * from biometrics’
query in the BiometricsDb database.

■■ Note  You can get the connection string information for SQL Database from the Azure
portal (see Figure 5-30)

Chapter 5 ■ Automation

107

■■ Note T he username and password for the BiometricsDb database are

Username: BioMaxUser001

Password: BioMaxPass001

Using SQL Management Studio, you can connect to the SQL Database instance
and set up a ‘select * from biometrics’ query on the Biometrics table
(see Figure 5-31).

Figure 5-31.  Events flowing into SQL Database

You should see data flowing into the biometrics table. Each run of the query should
show that there are more rows coming into the table.

8.	 The deployment is now validated. You can stop the BioMax
Simulator console app.

■■ Note A dditional details on Event Hubs, Stream Analytics, Data Visualization, and Alarm
Notifications will be covered in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-1275-2_7

Chapter 5 ■ Automation

108

Summary
In this chapter, you looked at the process of automating the provisioning of Azure
resources, building software assets and deploying those software assets to Azure.
You examined how this automation could be accomplished using a combination of
PowerShell and C#. You completed the process by validating the deployment. The steps
you used to learn about the process of automation could themselves be automated.
That is left as an exercise for the reader.

Automation is a core tenant of Continuous Delivery. Through automation, you
eliminate manual processes, reduce errors and risk, and increase confidence in the
quality of your releases. You are also able to provide a consistent, repeatable process that
can execute at velocity. SaaS solutions that are built on Azure and leverage a microservice
architecture can take advantage of Azure’s automation capabilities to provide Continuous
Delivery.

109

Chapter 6

Microservice Reference
Implementation

Now that the Home Biomedical Reference Implementation has been provisioned, built,
and deployed, you can go another level deeper and examine how the individual custom
microservices are implemented. To provide some context for the solution, let’s review the
back story for this product.

The Product
Home Biomedical, a wholly owned subsidiary of LooksFamiliar, Inc., is a leader
in commercial grade chemical and blood biometric measurement devices. Home
Biomedical is creating a new product for the home health care market that combines
blood glucose, heart rate, temperature, and blood oxygen sensors in a handsome,
consumer friendly package. The new product will be part of their BioMax product line
and will be called the BioMax-Home Edition.

The Epic
The BioMax-Home device will be used by individuals who are under the care of a
physician and are participating in a new drug trial. The devices will be provisioned and
assigned to each individual. There will be 300 BioMax devices used for the initial trial
run. The participants will be based in Boston, New York, and Chicago. The provisioning
process will assign the device to each participant by their participant id and log their
geo-location.

The device will cloud connect and allow doctors and caregivers to monitor
patients/participants in real time while at home. The devices will use biometric sensors
to take blood glucose, blood oxygen, temperature, and heart rate readings multiple
times per second and send the data to the BioMax-Home cloud application using the
participant’s home wireless network. The biometric data will be staged for real-time data
visualization, stored for archival purposes, and analyzed for alarms that will be logged and
will trigger real-time alerts to physician’s mobile devices. The real-time data visualization
will provide the ability to map the device locations and provide both individual as well as
aggregate readings.

Chapter 6 ■ Microservice Reference Implementation

110

The Business Capabilities
From this epic the product team was able to identify these business capabilities
for a minimal-viable product (MVP) to be built and tested with a group of patients
participating in a pharmaceutical trial (see Figure 6-1):

•	 Device Management: The ability to define a device, its serial
number, SKU, and firmware revision, and capture the id of the
patient or participant to whom it is assigned.

•	 Profile Management: The ability to capture the profile of a
patient/participant including name, address, email, phone, and
social network affiliations.

•	 Telemetry Ingestion, Transformation, and Routing: The
ability to ingest device messages containing sensor geo-location
readings, perform data transformation if needed, and route to
various storage mediums for downstream processing.

•	 Real-Time Data Visualization: The ability to project in visual
form the data that is streaming in real time from the devices.

Figure 6-1.  Home Biomedical Microservice Architecture

Chapter 6 ■ Microservice Reference Implementation

111

The Technical Capabilities
In order to support the features identified for each of the business capabilities, the
product team used domain-drive design to identify the bounded contexts of the domain
to identify the technical capabilities needed to support the MVP.

•	 Device Management Service

•	 User Profile Management Service

•	 Telemetry Ingestion and Storage Services

•	 Data Visualization Service

In addition to these business domain services, a set of cross-cutting concerns
were identified:

•	 Discoverability and Configuration

•	 Reference Data

•	 Authentication and Authorization

The Azure Resources
Finally, the team mapped these services to Azure Platform Resources. In some cases the
entire technical capability is provided by Azure, and in other cases a portion of what is
required is provided by the platform. The remaining capabilities will be custom built.

•	 Event Hub: Telemetry Ingestion

•	 Stream Analytics: Telemetry Transformation and Routing

•	 Notification Hub: Real-Time Alerts

•	 Blob Storage: Telemetry Archival

•	 SQL Database: Telemetry Staging

•	 DocumentDb: Storage for Microservice Models

•	 Redis Cache: In-Memory Cache

•	 Web Sites: Containers for Custom ReST APIs and Data
Visualization Portal

•	 Cloud Services: Containers for Custom Worker Roles for
Instrumentation and Notification

Chapter 6 ■ Microservice Reference Implementation

112

The Custom Microservices
A set of microservice capabilities were also identified:

•	 Device Management

•	 Profile Management

•	 Discoverability and Configuration

•	 Reference Data

■■ Note T he Internet of Things (IoT) components of the solution will be covered in detail in
Chapter 7, specifically Event Hub, Notification Hub, and Stream Analytics.

Microservice Reference Implementation
Each microservice uses the same logical architecture introduced in Chapter 3. You will
review the application of this architecture pattern through a code review of the ConfigM
microservice (see Figure 6-2).

Figure 6-2.  Microservice Logical Architecture

http://dx.doi.org/10.1007/978-1-4842-1275-2_7
http://dx.doi.org/10.1007/978-1-4842-1275-2_3

Chapter 6 ■ Microservice Reference Implementation

113

A review of the implementation of the ConfigM microservice provides a pattern
by which all the microservices in the reference implementation are based. Once you
understand how ConfigM is implemented, you will understand them all.

One Microservice, Two APIs
One of the first steps in designing a microservice is the definition of the endpoints or
API. When defining APIs for microservices, you will discover endpoints that you want to
expose for public consumption. You’ll also find endpoints that you need but do not want
to expose publicly; these are usually administrative operations. You may choose to keep
them private or provide them to only a certain class of application.

Reference data is a good example. Reference data, such as the list of states,
country codes, or language codes, is read-only data. You do not want to allow just any
application to modify this data and corrupt the lookup lists. A public API for reference
data could provide read-only access for these lookup lists. A private API would provide
maintenance operations such as create, update, and delete. So the end result of defining
an API for reference data produces two distinct APIs: one for public consumption that
is read-only and one for administrative consumption that provides the complete set
of CRUD operations. The APIs together define the entire programmable surface area
of the microservice and share the same data model and repository. They are deployed
independently, though, to allow for different scale profiles and security concerns.

You may also determine that you want to provide client SDKs for the public and
admin APIs as well as monitoring dashboards and management consoles. A microservice,
in other words, is more than just a ReST API; it is a software product and as such may
provide several APIs, consoles, utilities, etc., to deliver the complete set of capabilities that
make up its domain.

■■ Note T he terms public API and admin API are used throughout the Reference
Implementation to distinguish these two API types. The source code for both APIs is placed
side by side within the folder structure of Git Repo, and consistent naming standards are
used within the build and automation scripts to provide continuity.

Common
As with any development effort, there will always be some common code shared by
every component. Your Reference Implementation is no different and provides two
common libraries:

•	 Wire: ReST calls, and XML and JSON serialization helper classes
that leverage Newtonsoft.JSON

•	 Store: DocumentDb, Redis Cache, and Service Bus helper classes

Chapter 6 ■ Microservice Reference Implementation

114

Wire
The Wire Assembly is a utility class library that provides classes for making ReST calls and
for managing serialization to and from JSON and XML.

ModelManager

The ModelManager class is a static class that provides Generics-typed serialization and
deserialization methods for both JSON and XML. It uses Newtonsoft’s JSON.Net for
JSON serialization and the .Net Framework for XML serialization. The methods of the
ModelManager class are as follows:

// convert JSON to type T
public static T JsonToModel<T>(string objString)
 
//convert type T to JSON
public static string ModelToJson<T>(T obj)
 
// convert XMLto type T
public static T XmlToModel<T>(string objString)
 
// convert type T to XML
public static string ModelToXml<T>(T obj)

Rest

The Rest class is a static class that provides Get, Put, Post, and Delete methods given
a URL and, where appropriate, a payload.

A typical use of both the ModelManager and Rest classes is to prepare and make a
ReST call, and then deal with the JSON payload that is returned.

// setup call to retrieve a customer by id
var uri = new Uri("https://api.myapi.com/customers/id/12345");
 
// make the GET call
var json = Rest.Get(uri);
 
// convert JSON payload to customer type
var customer = ModelManager.JsonToModel<Customer>(json);

■■ Note T o review both the ModelManager and Rest class implementations, refer to the
Wire solution at

microservices\common\wire\wire.sln.

https://api.myapi.com/customers/id/12345

Chapter 6 ■ Microservice Reference Implementation

115

Store
The Store assembly provides a set of interfaces and classes for persistence of JSON models
using DocumentDb, Redis Cache, and Service Bus queue. There is an interface and
implementation class for each type of store as well as a Persist interface and implementation
that combines DocumentDb and Redis Cache to provide optimized persistence.

Optimized Persistence

Optimizing persistence is not always warranted, but when it is, adding caching can
provide the necessary boost in performance. A simple example of this is found in the
Persist implementation where the following operations are optimized by leveraging the
cache in conjunction with the Dbase class:

•	 Insert operations are optimized by storing results in the database
as well as in cache.

•	 Select operations are optimized by selecting first from cache and,
if not found, then selecting from the database, and then inserting
into cache.

•	 Update operations are optimized by deleting from cache,
updating the database, and then inserting into cache.

•	 Delete operations delete from both cache and the database.

Interfaces

The following are the interfaces:

•	 IQueue: The interface for sending and receiving messages via a
store and forward queue

public interface IQueue
{
 // connect to a queue
 void Connect(string queueName);
  
 // read from the queue
 string Read();
  
 // write to the queue
 void Write(string message);
}

Chapter 6 ■ Microservice Reference Implementation

116

•	 ICache: The interface that defines in-memory cache operations

public interface ICache
{
 // conncet to the cache
 void Connect();
 
 // insert into the cache
 void Insert(string key, string value, int ttl);
 
 // check to see if item is in the cache
 bool Exists(string key);
 
 // update the item in the cache
 void Update(string key, string value, int ttl);
 
 // get the item from the cache
 string Select(string key);
 
 // delete the item from the cache
 void Delete(string key);
 
 // clear the cache
 void Clear();
}

•	 IDbase: The interface that defines NoSQL store operations

public interface IDbase
{
 // connect to the database
 void Connect(string databaseId, string collectionId);
 
 // select all type T from the database
 List<T> SelectAll<T>();
 
 // select T using query
 List<T> SelectByQuery<T>(string query);
 
 // select T using model id
 List<T> SelectByModelId<T>(string modelid);
 
 // select T using database id
 T SelectById<T>(string id);
 
 // select T by name
 T SelectByName<T>(string name);
 

Chapter 6 ■ Microservice Reference Implementation

117

 // insert T
 void Insert<T>(T model);
 
 // update T
 void Update<T>(T model);
 
 // delete item with key from database
 void Delete(string key);
}

•	 IPersist: The interface for optimized persistent store operations

public interface IPersist : IDbase
{
 // for caching lists
 void InsertCache<T>(T model);
}

Implementation

The following section provides examples of using the Queue, Cache, Dbase, and Persist classes.

Queue
The Queue class encapsulates read and write calls to the Service Bus queue. In order
to use the Queue class, your Service Bus connection string must be present in the
app.config or web.config file of the client applications.

<appSettings>
 �<add key="Microsoft.ServiceBus.ConnectionString" value="Endpoint=

sb://[your-namespace].servicebus.windows.net;SharedAccessKeyName=
[shared-policy-name];SharedAccessKey=[your-secret]" />

</appSettings>

The Queue class can be used to provide loosely coupled messaging between solution
components. Here is an example of how to use the Queue class:

using LooksFamiliar.Microservices.Common.Wire;
using LooksFamiliar.Microservices.Common.Store;
 
// create a queue
IQueue queue; = new Queue();
 
// connect to a queue named 'log'
queue.Connect("log");
 
// create a message to send – note definition of message class is implied
message = new Message

Chapter 6 ■ Microservice Reference Implementation

118

{
 subject = "Log Message",
 body = "Customer Registration Complete"
};
 
// convert message to JSON
var json = ModelManager.ModelToJson<Message>(message);
 
// write the message to the queue
queue.Write(json);

Cache
The Cache class implements insert, update, and delete operations for serialized object
models in Redis Cache. Here is an example of how you can use the Cache class to store
an object in the Redis Cache. Note that the Customer class has both a unique id and a
Cache-Time-To-Live (cachettl) property. The Cache-Time-To-Live tells Redis how long
the object will remain available in memory.

using LooksFamiliar.Microservices.Common.Wire;
using LooksFamiliar.Microservices.Common.Store;
 
public class Customer
{
 public Customer()
 {
 id = Guid.NewGuid().ToString();
 cachettl = 5;
 }
 
 public string id { get; set; }
 public int cachettl { get; set; }
 public string firstname { get; set; }
 public string lastname { get; set; }
}
 
void InsertCustomerIntoCache(string redisuri, Customer customer)
{
 // create the cache and connect
 ICache cache = new Cache(redisuri);
 cache.Connect();
 
 // convert the object to json
 var json = ModelManager.ModelToJson<Customer>(customer);
 
 // customer object will be cached in memory for 5 minutes
 cache.Insert(customer.id, json, customer.cachettl);
}

Chapter 6 ■ Microservice Reference Implementation

119

The reverse of this operation is to look up the Customer in the cache by its unique id.
If found, Redis returns the JSON for that object. If not found, Redis returns null. Here is an
example of how to retrieve a Customer object from the cache:

Customer SelectCustomerFromCache(string redisuri, string id)
{
 // create and connect to the cache
 ICache cache = new Cache(redisuri);
 cache.Connect();
 
 // lookup object in cache
 var json = cache.Select(id);
 
 // if found return object, otherwise return null
 return json == null ? null : ModelManager.JsonToModel<Customer>(json);
}

Dbase
The Dbase class implements the IDbase interface, providing insert, update, delete, and
select operations for JSON serialized object models using DocumentDb. In order to
uniquely identify your documents in the database, it is recommended that you add a
unique identifier to your object model. Combined with the Cache-Time-To-Live, you have
the necessary metadata to manage the storage and retrieval of unique objects from both
DocumentDb and Redis Cache.

Here is an example of how to store a Customer object in DocumentDb using the
Dbase class:

void InsertCustomer(string docdburi, string docdbkey, Customer customer)
 {
 IDbase dbase = new Dbase(docdburi, docdbkey);
 dbase.Connect("MyDatabase", "MyCollection");
 dbase.Insert<Customer>(customer);
 }

And here is an example of looking up a Customer by id:

Customer SelectCustomer(string docdburi, string docdbkey, string id)
{
 IDbase dbase = new Dbase(docdburi, docdbkey);
 dbase.Connect("MyDatabase", "MyCollection");
 return dbase.SelectById<Customer>(id);
}

Chapter 6 ■ Microservice Reference Implementation

120

Persist
The Persist class exposes the same interface as Dbase but combines the functionality of
Dbase and Cache to provide optimized storage operations.

To provide a simple example of how the optimization logic works, here is the
previous Customer example expressed using both Dbase and Cache:

void InsertCustomer(string docdburi, string docdbkey, string redisuri,
Customer customer)
{
 // create and connect to the database and the cache
 IDbase dbase = new Dbase(docdburi, docdbkey);
 ICache cache = new Cache(redisuri);
 
 dbase.Connect("MyDatabase", "MyCollection");
 cache.Connect();
 
 // store the customer in the database
 dbase.Insert<Customer>(customer);
 
 // store the customer in the cache
 var json = ModelManager.ModelToJson<Customer>(customer);
 cache.Insert(customer.id, json, customer.cachettl);
}
 
Customer SelectCustomer(string docdburi, string docdbkey, string redisuri,
string id)
{
 // create and connect to the database and the cache
 IDbase dbase = new Dbase(docdburi, docdbkey);
 ICache cache = new Cache(redisuri);
 
 dbase.Connect("MyDatabase", "MyCollection");
 cache.Connect();
 
 // lookup the customer in the cache
 var json = cache.Select(id);
 
 return json == null ? dbase.SelectById<Customer>(id) :
 ModelManager.JsonToModel<Customer>(json);
}

The sample above rewritten to use the Persist class would be as follows:

void InsertCustomer(string docdburi, string docdbkey, string redisuri,
Customer customer)
{
 �IPersist persist = new Persist(new Dbase(docdburi, docdbkey),

new Cache(redisuri));

Chapter 6 ■ Microservice Reference Implementation

121

 persist.Connect("MyDatabase", "MyCollection");
 persist.Insert(customer);
}
 
Customer SelectCustomer(string docdburi, string docdbkey, string redisuri,
string id)
{
 �IPersist persist = new Persist(new Dbase(docdburi, docdbkey),

new Cache(redisuri));
 persist.Connect("MyDatabase", "MyCollection");
 return persist.SelectById<Customer>(id);
}

The Persist class demonstrates the use of dependency injection, using interfaces to
decouple the Persist class from the Dbase and Cache implementations. Any instances of
classes that implement IDbase and ICache are passed in on the call to the constructor.

IPersist persist = new Persist(new Dbase(docdburi, docdbkey), new
Cache(redisuri));

This technique of creating a loose coupling between a class and its dependencies
allows you to easily introduce new implementations of Dbase and Cache without breaking
the code. This can be helpful during development where you may have mocked versions
of these classes before you have concrete implementations. It also provides you a path to
evolve the capabilities of the system with no impact on the classes using those interfaces.

■■ Note T o review the Store classes and interfaces, refer to the Store solution at
microservices\common\store\store.sln.

ConfigM - Configuration and Discoverability
In order to provide loose coupling between applications and microservices, there needs
to be a mechanism by which the location of services can be determined dynamically
at runtime. ConfigM is a microservice that provides configuration and dynamic
discoverability of microservices. Applications or microservices that use ConfigM can
dynamically look up information about a microservice and use that information to
construct a call. This can be useful as microservices move through their deployment
pipeline from dev to test to staging and on to production. This data can be managed
by the ConfigM microservice and retrieved dynamically at runtime by any service or
application that wants to invoke any other service.

Chapter 6 ■ Microservice Reference Implementation

122

ConfigM Model
The ConfigM data model, called Manifest, defines an extensible structure, allowing each
registered microservice to store name, description, version number, and last modified
date along with any number of configuration line items (see Figure 6-3).

Figure 6-3.  ConfigM Model Manifest

The line items collection is a list of name-value pairs. Using this collection, you can
store all the necessary configuration information that a client of the service may require.
If the configuration data needs to be updated, the ConfigM admin API provides an
endpoint to update a manifest (see Figure 6-3).

■■ Note T he ConfigM model solution is located here:

microservices\config\models\ConfigModels.sln.

ConfigM Interfaces
ConfigM provides two interfaces, one that defines the public interface and another that
defines the admin interface. These interfaces are eventually used to define the APIs that
will be exposed over HTTP. Both interfaces reference the same ConfigM models package
that defines the ConfigM manifest model. The public interface defines methods for
getting a manifest by id and getting a manifest by name.

Chapter 6 ■ Microservice Reference Implementation

123

using LooksFamiliar.Microservices.Config.Models;
 
namespace LooksFamiliar.Microservices.Config.Public.Interface
{
 public interface IConfig
 {
 Manifest GetById(string id);
 Manifest GetByName(string name);
 }
}

The admin interface defines methods for creating, updating, deleting, and getting all
manifests from the repository.

using LooksFamiliar.Microservices.Config.Models;
 
namespace LooksFamiliar.Microservices.Config.Admin.Interface
{
 public interface IConfigAdmin
 {
 Manifests GetAll();
 Manifest Create(Manifest model);
 Manifest Update(Manifest model);
 void Delete(string id);
 }
}

■■ Note T he ConfigM public and admin interface solutions are located here:

microservices\config\public\interface

microservices\config\admin\interface

ConfigM Services
The ConfigM services are the implementation of the ConfigM interfaces. This is where
the heavy lifting of the microservice is done. If there are any business rules, calculations,
or integrations with other services to provide support, it is done here. In the case of
ConfigM, the rules are pretty simple; where appropriate, check that the model is valid
before committing and return an exception if something goes wrong.

Chapter 6 ■ Microservice Reference Implementation

124

The following code is an example of how the ConfigM service might be used at
runtime to look up the location of the ProfileM public API. The rest of the example
uses that information to make a ReST call to the ProfileM microservice to get the list of
employees in Massachusetts.

// instantiate the ConfigM Service
ConfigM configM = new ConfigM(docdburi, docdbkey, redisuri);
 
// lookup the manifest for the ProfileM Microservice
var manifest = configM.GetByName("ProfileM");
 
// get the location of the Public API from the manifest and create a uri
new uri = new Uri(manifest.lineitems[LineitemsKey.PublicAPI] + "/users/state/MA");
 
// call the API to get all the user profiles of employees in MA
var json = Rest.Get(uri);
 
// conert the json
UserProfiles userProfiles = ModelManager.JsonToModel<UserProfiles>(json);

■■ Note T he ConfigM public and admin service solutions are located here:

microservices\config\public\service

microservices\config\admin\service

ConfigM APIs
There have been many technology stacks on the Microsoft platform over the years for
implementing a service: ASMX, WCF, and Web API, to name but a few. Azure API Apps
are the newest option and are currently in preview. They build on the ASP.NET Web API,
and introduce new and wonderful ways to define, implement, and deploy APIs. I have
standardized on ASP.NET Web API for all the API solutions in the Reference Implementation.

■■ Note T o learn about Azure API Apps, visit http://bit.ly/1i2utKY. For a primer on
ASP.Net Web API, see http://bit.ly/1qLbqSx.

To define the ConfigM public API, a controller class is added to an ASP.NET Web
API project. The ConfigPublicService NuGet package is referenced. Referencing this
NuGet package automatically pulls in all the NuGet packages that this library has
dependencies on. The constructor instantiates the ConfigM Service class and uses the
.NET AppSettings class to retrieve the connection string information for DocumentDb
and Redis Cache.

http://bit.ly/1i2utKY
http://bit.ly/1qLbqSx

Chapter 6 ■ Microservice Reference Implementation

125

When deploying to Azure, web sites have a feature whereby you can store key-value
string pairs as part of the configuration information (see Figure 6-4). Azure will retrieve
these values for you and make them available through AppSettings at runtime. From
a security perspective, this is a nice benefit since sensitive information will never show
up as clear text in the web.config file. These settings are automatically applied by the
deployment scripts covered in Chapter 5.

Figure 6-4.  Connection Strings Stored in Azure

using System.Web.Http;
using LooksFamiliar.Microservices.Config.Models;
using LooksFamiliar.Microservices.Config.Public.Interface;
using LooksFamiliar.Microservices.Config.Public.Service;
 
namespace ConfigAPI.Controllers
{
 public class ConfigMController : ApiController
 {
 private readonly IConfig _configM;
 
 public ConfigMController()
 {
 // the configuration is read from Web.Config when
 // running locally and from the Azure Portal at runt time
 
 var docdburi = ConfigurationManager.AppSettings["docdburi"];
 var docdbkey = ConfigurationManager.AppSettings["docdbkey"];
 var redisuri = ConfigurationManager.AppSettings["redisuri"];
 
 this._configM = new ConfigM(docdburi, docdbkey, redisuri);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1275-2_5

Chapter 6 ■ Microservice Reference Implementation

126

The ConfigMController class is updated to define the ReST endpoint routes and
then maps them to the matching methods on the ConfigM Service classes. The public
API routes are defined in Figure 6-5.

Figure 6-5.  ConfigM Public API Routes

The implementation of these routes is

[Route("config/manifests/id/{id}")]
[HttpGet]
public Manifest GetById(string id)
{
 return _configM.GetById(id);
}
 
 [Route("config/manifests/name/{name}")]
 [HttpGet]
 public Manifest GetByName(string name)
 {
 return _configM.GetByName(name);
 }

Just like the public API, the ConfigM admin API is implemented by adding a
controller class to the solution and by referencing the ConfigAdminService package.

The ConfigMController class is updated to define the ReST endpoint routes and
then maps them to the matching methods on the ConfigM Service class.

using System.Web.Http;
using LooksFamiliar.Microservices.Config.Admin.Interface;
using LooksFamiliar.Microservices.Config.Admin.Service;
using LooksFamiliar.Microservices.Config.Models;
 
namespace ConfigAdminAPI.Controllers
{
 public ConfigMController()
 {
 // the configuration is read from Web.Config when
 // running locally and from the Azure Portal at runt time
 

Chapter 6 ■ Microservice Reference Implementation

127

 var docdburi = ConfigurationManager.AppSettings["docdburi"];
 var docdbkey = ConfigurationManager.AppSettings["docdbkey"];
 var redisuri = ConfigurationManager.AppSettings["redisuri"];
 
 this._configM = new ConfigM(docdburi, docdbkey, redisuri);
 }

The admin API endpoints are listed in Figure 6-6.

Figure 6-6.  ConfigM Admin API Routes

The implementation of the endpoints is

[Route("config/manifests")]
[HttpPost]
public Manifest Create([FromBody] Manifest manifest)
{
 return _configM.Create(manifest);
}
 
[Route("config/manifests")]
[HttpPut]
public Manifest Update([FromBody] Manifest manifests)
{
 return _configM.Update(manifests);
}
 
[Route("config/manifests")]
[HttpGet]
public Manifests GetAll()
{
 return _configM.GetAll();
}
 

Chapter 6 ■ Microservice Reference Implementation

128

[Route("config/manifests/id/{id}")]
[HttpGet]
public Manifests GetAll(string id)
{
 return _configM.GetAll(id);
}

[Route("config/models/id/{id}")]
[HttpDelete]
public void Delete(string id)
{
 _configM.Delete(id);
}

One thing to note is how thin this implementation tier is. This code serves two
purposes: it maps the ReST endpoints to the appropriate calls to your service class, and it
provides the connection to the cloud-based container for running the microservice.

There is now great flexibility for when another protocol or technology stack enters
the picture. If, in the future, you decide to migrate to another technology stack such as
API Apps or Service Fabric, or provide a WCF implementation, or choose some other
container mechanism, the amount of effort to get there has been minimized.

■■ Note T he ConfigM public and admin API solutions are located here:

microservices\config\public\api

microservices\config\admin\api

ConfigM SDKs
Once the APIs are deployed it is possible to claim mission accomplished. Any developer
who knows how to craft a ReST call and has access to your API can get the job done.

Optionally, you can develop an SDK to create a developer experience that is akin
to instantiating a class and calling a method. Understand that once you go down this
path, you will be responsible for this code: you will need to keep it in sync with your API,
and keep the users of your SDKs informed of new releases. This responsibility is further
magnified by the number of programming languages and platforms you choose to
support. The upside is you have created an easy-to-use package for adopting your API.

The Reference Implementation SDKs are built for .NET C# clients and are usable
from either desktop apps or ASP.NET server-side code.

The ConfigM Public SDK references the same IConfig interface as the ConfigM
Public Service, allowing both the ConfigM class in the server solution and the ConfigM
class in the SDK solution to remain in sync.

Chapter 6 ■ Microservice Reference Implementation

129

using System;
using LooksFamiliar.Microservices.Config.Models;
using LooksFamiliar.Microservices.Common.Wire;
using LooksFamiliar.Microservices.Config.Public.Interface;
 
namespace LooksFamiliar.Microservices.Config.Public.SDK
{
 public class ConfigM : IConfig
 ...
}

The ConfigM SDK class also exposes two public string properties, DevKey and ApiUrl.

public string DevKey { get; set; }
public string ApiUrl { get; set; }

ApiUrl is a required property and, if not set, the ConfigM class will throw an
exception. Use this property to set the base URL of the microservice. The base URL is the
part of the address up to but not including the route. For example,

http://api.myapi.com/config

is the base URL, while

/manifests/id/12345

is the route.
The following code is an example of using the ConfigM SDK to look up the manifest

for a Customer microservice. Once the manifest is in hand, a call to the Customer
microservice can be dynamically constructed and invoked.

// create the ConfigM SDK class
ConfigM configM = new ConfigM();
 
// set the Api base Url
configM.ApiUrl = "http://api.myapi.com/config";
 
// invoke the API to get a manifest by name
Manifest customerManifest = configM.GetByName("CustomerM");
 
// use manifest to construct a call to the customer API
var approot = customerManifest.lineitems[LineitemsKey.PublicAPI];
var approute = approot + "/id/12345";
var uri = new Uri(approute);
 

http://api.myapi.com/config
http://api.myapi.com/config

Chapter 6 ■ Microservice Reference Implementation

130

// invoke the API
var json = Rest.Get(uri);
 
// instantiate the customer from the JSON payload
var customer = ModelManager.JsonToModel<Customer>(json);

The DevKey is an optional property. If you are using Azure API Management to
access the API Proxy for a microservice, you will be assigned a developer key. You use this
property to provide the developer key to the SDK.

The ConfigM Admin SDK is implemented exactly the same as the Public SDK except
that it is based on the ConfigM admin interface.

■■ Note  ConfigM Public and Admin SDK solutions are located here:

microservices\config\public\sdk

microservices\config\admin\sdk

The ConfigM Administrator Console
Configurability is one of the key elements that we identified in our definition of
microservices. In Chapter 2, configurability was defined as follows:

. . . to be reusable and be able to address the needs of each system that
chooses to employ its capabilities, a microservice must provide a means
by which it can be appropriately molded to the usage scenario.

You can see examples of this throughout the Azure platform. Every Azure Service has
an accompanying dashboard that provides web-based monitoring and configuration user
interfaces as well as accompanying ReST APIs for programmability and management.

To demonstrate how to approach creating a dashboard for a microservice, an
administrative console for ConfigM is provided. The ConfigM Management Console is
a WPF application that uses the ConfigM Admin SDK to implement the administrative
operations on ConfigM manifests. In the context of the Reference Implementation, the
manifests are used to look up the locations of microservices at runtime.

The app provides a listing of all the manifests in the database and the ability to create
new manifests as well as update existing ones. The attributes are configurable, allowing
you to add, modify, or delete the information that is used by applications at runtime to
dynamically discover and invoke the microservice (see Figure 6-7).

http://dx.doi.org/10.1007/978-1-4842-1275-2_2

Chapter 6 ■ Microservice Reference Implementation

131

Figure 6-7.  ConfigM Management Console

■■ Note T he solution for the ConfigM Management Console is located at
Microservices\Config\ConfigMConsole.

Summary
In this chapter, the Home Biomedical Reference Implementation was introduced along
with the architecture and the approach to defining the microservices that provide cross-
cutting and business services. The minimal-viable product (MVP) epic was documented
along with a minimal set of requirements and the Azure services needed to implement
the MVP. You reviewed the implementation of the ConfigM microservice as a pattern
for custom microservices. In the next chapter, you will focus on the IoT aspects of the
Reference Implementation that leverage Event Hub, Stream Analytics, SQL Database,
Cloud Services, and Web APIs to provide telemetry ingestion, transformation, and data
visualization.

133

Chapter 7

IoT and Microservices

There are 2 billion PCs in use today across the globe. There are over 10 billion mobile
phones. By 2020, it is predicted that there will be over 250 billion devices connected to the
Internet. Some of these devices will be new products, but most will be existing things we use
every day that will be enhanced with sensors, such as thermostats, cars, eyeglasses, wrist
watches, clothing, street lamps, cars, buildings…you name it, it will likely become connected.

Each of these devices will be gathering data through sensors and sending data to the
cloud. The amount of data that will be collected will be measured in petabytes, exabytes,
and zettabytes. In other words, IoT is not just about devices but also about data, a lot of
data. The reason that we want to collect all this data is to extract knowledge, to provide
real-time visualization and data feeds, and to perform historical and predictive analytics
that will drive business decisions at velocity and provide real-time notification and status.

IoT Capabilities
To fully realize an IoT solution, several capabilities will be required. These capabilities
include the following:

Device Management: The device, upon initialization, will
want to establish a relationship with the cloud environment,
usually through its unique identifier, such as a serial number,
so that the business is notified that the device is active. The
business will also want the ability to send commands to the
device for the purposes of providing software updates or
updating local data caches.

Telemetry Ingestion: Devices may be sending multiple
messages a second, and there may be hundreds to thousands
of devices or more, which would result in 10’s of thousands to
possibly millions of messages a day. The cloud platform provides
high-volume message ingestion using a single logical endpoint.

Transformation and Storage: Once the messages arrive, the
cloud provides a mechanism to select, transform, and route
messages to various storage mediums for the purpose of
archival and staging for downstream processing.

Chapter 7 ■ IoT and Microservices

134

Status and Notifications: The cloud solution will want to
provide the ability to visualize the status of the message pool
in real time through tabular or graphical UI components. In
addition, some messages may contain information of an alert
status so the IoT solution must provide a mechanism for real-
time notifications.

Analytics and Data Visualization: The value of collecting so
much data in a continuous fashion is to build up an historical
record for the purpose of performing analytics to glean
business insight. Traditional data warehouse techniques
or more modern map-reduce and predictive analytics
mechanisms can be employed.

Azure IoT Services
Microsoft provides you two approaches to realizing your IoT solutions:

•	 Custom Development – build from scratch using a combination of
IoT Hub, Stream Analytics and Event Hub along with other Azure
resources, custom configuration and code to deliver a complete
product

•	 Scripted Scenarios – leverage pre-scripted starter configurations
for business scenarios such as remote monitoring and predictive
maintenance and combine with custom configuration and code
to create a finished product

Custom Development
The custom development approach will leverage Azure IoT Hub, Azure Stream Analytics
and Azure Event Hub for device management, telemetry ingestion, transformation
and routing. The Home Biomedical Reference Implementation is an example of this
custom development approach. Its use of Event Hub for telemetry ingestion from the
home biomedical devices and Stream Analytics for message transformation, alarm state
identification and routing is detailed later in this chapter. First let’s take a look at the
newest service available from Microsoft for IoT called IoT Hub.

IoT Hub
In October 2015, Microsoft announced the general availability of IoT Hub. IoT Hub is a
fully managed service that enables:

•	 Reliable device-to-cloud and cloud-to-device hyper-scale messaging

•	 Secure communications using per-device security credentials and
access control

•	 Device libraries for popular languages and platforms

Chapter 7 ■ IoT and Microservices

135

IoT Hub provides device registration, command and control and symmetric key
management for secure authentication on a per-device basis. To provision IoT Hub, from
the Azure Portal click New (+), Internet of Things, Azure IoT Hub. The IoT Hub creation
blade appears. The default configuration uses the S1 pricing and scale tier and defines
1 unit of scale. Scaling is done by entering a number of units where each unit supports up
to 500 devices. You can have up to 200 units for a maximum of 100K devices per IoT Hub
and the ability to ingest 50K messages per day. The S2 pricing tier provides up to
1.5 million messages per day (see Figure 7-1).

Once the IoT Hub is provisioned, you can register devices with the hub so that they
can authenticate and send and receive messages. The device provisioning process will
be unique to your business and may involve integration with existing systems to align
serial numbers, customer information, etc. For demonstration purposes, a sample device
registration console application is provided that leverages the ConfigM and DeviceM
microservices to register the existing 300 Home Biomedical devices with IoT Hub.

■■ Note T o use this console app, you will need to provision an IoT Hub and update the
sample with the connection string information. The sample solution can be found in IoTHub\
IoTHubDeviceRegistration.

The IoT Hub connections string information can be found by clicking Settings,
Shared Access Policies and selecting the policy of interest (see Figure 7-2). The sample
application uses the ‘iothubowner’ policy.

Figure 7-1.  IoT Hub Creation Blade

Chapter 7 ■ IoT and Microservices

136

To connect to IoT Hub and register a device, you need to reference the Micrososft
Azure Devices NuGet package. In Visual Studio, select the Tools menu, NuGet Package
Manager, Package Manager Console and type in this command:

> Install-Package Microsoft.Azure.Devices -Pre

In code, create an IoT Hub RegistryManager object passing in the connection string
from the App.Config file and call the AddDeviceAsync() method passing in a unique id for
the device.

// initialize the IoT Hub registration manager
RegistryManager registryManager;
registryManager = RegistryManager.CreateFromConnectionString(
 ConfigurationManager.AppSettings["IoTHubConnStr"]);
 
// register a device
Device device;
device = await registryManager.AddDeviceAsync(new Device("MyDeviceId"));

Once the devices have been registered, you can see the number of devices in the IoT
Hub registry on the IoT Hub management blade (see Figure 7-3).

Figure 7-2.  IoT Hub Connection String Blade

Chapter 7 ■ IoT and Microservices

137

Once devices are registered, they can make secure connections to IoT Hub and
send and receive messages. IoT device SDKs are available and supported for a variety of
languages and platforms including C for Linux distributions, Windows, and RTOS and
managed languages such as C#, Java, and JavaScript.

If your solution cannot use the device SDKs, IoT Hub exposes a public protocol
that enables devices to use the HTTP 1.1 and AMQP 1.0 protocols. Using the Azure IoT
Protocol Gateway component, you can also extend IoT Hub to provide support for MQTT
v3.1.1. You can run the Azure IoT Protocol Gateway in the cloud or on premises, and
extend it to support custom protocols.

■■ Note T he Azure IoT Protocol Gateway can be found on GitHub: https://github.com/
Azure/azure-iot-protocol-gateway.

In order to connect to IoT Hub and send messages, you need to reference the
Micrososft Azure Devices Client NuGet package. In Visual Studio, select the Tools menu,
NuGet Package Manager, Package Manager Console and type in this command:

> Install-Package Microsoft.Azure.Devices.Client –Pre

Figure 7-3.  IoT Hub Blade showing 300 registered devices

https://github.com/Azure/azure-iot-protocol-gateway
https://github.com/Azure/azure-iot-protocol-gateway

Chapter 7 ■ IoT and Microservices

138

The client SDK will use the IoT Hub Uri along with the symmetric key assigned the
device to make the secure connection. The Uri can be found on the IoT Hub Blade and
has the format [iot-hub-name].azure-devices.net.

// get the device from the registry
device = await _registryManager.GetDeviceAsync("MyDeviceId");
 
// create a connection to the IoT Hub using the Uri and the symmetric key
DeviceClient client= DeviceClient.Create(
 ConfigurationManager.AppSettings["IoTHubUri"],
 new DeviceAuthenticationWithRegistrySymmetricKey(
 "MyDeviceId",
 device.Authentication.SymmetricKey.PrimaryKey));

Sending a message to IoT Hub is now straight forward. You collect the sensor
readings of interest and call the SendEventAsync() method of the DeviceClient class:

Client.SendEventAsync(new Message(Encoding.ASCII.GetBytes(json))).Wait();

■■ Note T here is a version of the BioMax Simulator that demonstrates connecting and
sending messages to IoT Hub located in IoTHub\BioMaxSimulator-IoTHub.

Scripted Scenario
IoT Suite is a solution-focused offering from Microsoft that provides a point and click
approach to provisioning a starter kit for various IoT scenarios. Microsoft provides two
scripted scenarios at the time of this writing:

•	 Remote Monitoring Solution – Provides device management,
alerting and notification, telemetry ingestion, data visualization
and device geolocation.

•	 Predictive Maintenance – Using Azure IoT capabilities along
with Azure Machine Leaning, provides failure prediction, failure
detection, failure type classification, and recommendation of
mitigation or maintenance actions after failure.

IoT Suite
To provision an IoT Suite solution, you will need an Azure subscription and then visit
https://www.azureiotsuite.com/. From this page you can provision a new solution.
As you can see in Figure 7-4, I have already provisioned a Remote Monitoring solution.
If I click on the tile, I can get links to the GitHub repository from which the solution was
provisioned and guidance on how to customize. I can also de-provision the solution
right from this page.

https://www.azureiotsuite.com/

Chapter 7 ■ IoT and Microservices

139

If I click the ‘Launch’ button, I am brought to the Dashboard. From here I can see a
list of simulated provisioned devices, data streaming from those devices, a map depicting
where they are physically located and a menu on the right that provides access to forms
for updating the ingestion rules for alerts. In addition there is an add device button (+) in
the lower left hand corner to provision additional devices (see Figure 7-5).

Figure 7-4.  Azure IoT Suite Landing Page

Figure 7-5.  Azure IoT Suite Dashboard

Chapter 7 ■ IoT and Microservices

140

In the Azure Portal (see Figure 7-6), you will find a new resource group has been
created and all of the Azure resources associated with this solution are listed there
including an IoT Hub, a DocumentDb database, an Event Hub and three Stream Anlatyics
Jobs which you can edit at will. Also, as noted before, you have complete access to the
source code and PowerShell scripts for the generated solution on GitHub so that you can
configure, customize and extend as needed.

The Home Biomedical Reference Implementation, in its current form, demonstrates
a custom development approach using Event Hub and Stream Analytics. In the next
section of the book, we delve into the details of the reference implementation’s IoT
capabilities.

The Reference Implementation IoT Capabilities
The Home Biomedical Reference Implementation provides an example of how one
can incorporate IoT capabilities into a larger solution. The Reference Implementation
uses Microsoft’s IoT stack, consisting of Event Hub and Stream Analytics for telemetry
ingestion, data transformation, and routing to SQL Database. Real-Time notifications
are provided using Event Hub, a custom Event Hub Consumer Cloud Service called
Biometrics Alarm Worker, and Notification Hub. Real-time data visualization is provided
through a custom API combined with SignalR, which uses Web Sockets to push updates
to a web front end (see Figure 7-7).

Figure 7-6.  Resource Group listing provisoned services

Chapter 7 ■ IoT and Microservices

141

Device Management
The DeviceM provides a device registry for provisioning and associating devices with
patients and/or participants in pharmaceutical trials. The administrative API provides
create, update, and delete operations as well as a get all, which returns all registrations in
the store. The public API defines get by id, which is the serial number of the device, get
by participant id, which is the person the device is assigned to, and get by model,
which returns all registrations for a device of a particular model (see Figure 7-8).

Figure 7-7.  Home Biomedical Microservice Architecture

Figure 7-8.  DeviceM API

Chapter 7 ■ IoT and Microservices

142

The DeviceM model is called Registration. A device registration contains the device
serial number (id), product line, model, and version and firmware revision. In addition,
the id of the patient or participant is stored at the time the device is provisioned
(see Figure 7-9).

Figure 7-9.  DeviceM Model Registration

■■ Note T he solutions related to the DeviceM microservice can be found in
Microservices\Device.

Chapter 7 ■ IoT and Microservices

143

Telemetry Ingestion
Event Hubs is a highly scalable publish-subscribe event ingestor that can intake millions
of events per second so that you can process and analyze the massive amounts of data
produced by connected devices and applications. Event Hub is configured with some
number of partitions, each partition being able to ingest up to 1MB of data per second.
By default, Event Hub is configured with 4 partitions. You can only specify the number of
partitions at create time. The value can be set to as low as 2 or as high as 32.

Event Hub partitions are able to ingest up to 1MB of data or 1,000 events per second,
whichever state is arrived at first. In high-volume telemetry ingestion scenarios,
1,000 messages usually come first because most messages are small. An Event Hub is
created with 4 partitions by default. That value can be set to as low as 2 and as high as
32 but only at Event Hub creation. You can’t change the number of partitions after the
fact. Event Hub is available in basic and standard modes. Both modes provide the same
throughput capabilities. Standard mode supports more consumer groups, brokered
connections, and additional storage.

A partition is an ordered sequence of events that is held in a repository (see Figure 7-10).
As newer events arrive, they are added to the end of this sequence. Events are kept in
the repository for a length of time that is configurable. The default is 1 day but it can be
set up to 7 days; 1 to 3 days is customary. Once a message’s time-to-live has expired, it is
removed from the Event Hub repository.

The BioMax-Home Device Simulator
In order to test IoT services, it is necessary to develop an event simulator. Event
simulators allow the team responsible for the cloud services to move forward with
their development when the devices themselves are not available or do not yet exist.
The simulators generate sample telemetry and exercise device provisioning, firmware
downloads, and other command and control operations.

Developing device simulators with Event Hub is very straightforward. You use the
Service Bus client SDK and add the connection information supplied in the Azure portal
to define configuration settings for the endpoint and the name of the Event Hub. You
create an object that represents the message you want to send, like sensor readings for a
device, fill the object with simulated sensor-reading data, serialize the message to JSON,
and send it to the endpoint using the client SDK.

Figure 7-10.  Event Hub Partition Model

Chapter 7 ■ IoT and Microservices

144

The BioMaxSimulator solution uses the ConfigM Public SDK to look up the locations
of the ProfileM Public API and the DeviceM Admin API. The DeviceM Admin SDK is
initialized with the endpoint for that service and is used to retrieve the entire device
registry. It does this so it can simulate readings coming from the 300 participants in the
pharma trial.

// instantiate the SDK clients
_config = new ConfigM();
_registry = new DeviceM();
_profiles = new ProfileM();
 
// get the URL to ConfigM service from the config file
_config.ApiUrl = ConfigurationManager.AppSettings["ConfigM"];
 
// lookup the manifests for the
// DeviceM and ProfileM microservices
var deviceManifest = _config.GetByName("DeviceM");
var profileManifest = _config.GetByName("ProfileM");
 
// retrieve their API locations
_registry.ApiUrl = deviceManifest.lineitems[LineitemsKey.AdminAPI];
_profiles.ApiUrl = profileManifest.lineitems[LineitemsKey.PublicAPI];
 
// get the device registry from the device microservice
_devices = _registry.GetAll();

The configuration settings for Service Bus and Event Hub are read from
configuration and the Event Hub client is initialized:

var bus = ConfigurationManager.AppSettings["servicebus"];
var hubname = ConfigurationManager.AppSettings["eventhub"];
var hub = EventHubClient.CreateFromConnectionString(bus, hubname);

The DeviceMessage class is used to construct the JSON messages that will be sent
to the Event Hub (see Figure 7-11). The class contains the id of the device, the id of
the participant that is using the device, the longitude and latitude of where the device
is located, a timestamp of when the sensor readings were taken, and a list of sensor
readings. The device will take four readings: Glucose, Heart Rate, Temperature, and Blood
Oxygen levels as defined by the SensorType enum. This simulator will generate sample
readings for these four biometrics.

Chapter 7 ■ IoT and Microservices

145

This data model will serialize to JSON as follows:

{
 "deviceid": "03015126-aef7-49a3-9a01-1946d98e1383",
 "participantid": "cd57ce66-2065-4bdc-b4d3-ecfb0a5a704f",
 "location": { "longitude": -71.063562, "latitude": 42.290349 },
 "sensors": [
 { "type": 0, "value": 182.0 },
 { "type": 1, "value": 97.0 },
 { "type": 2, "value": 103.0 },
 { "type": 3, "value": 84.0 }
],
 "timestamp":"2015-07-13T16:42:16.6125201-04:00"
}

Figure 7-11.  The DeviceMessage Class

Chapter 7 ■ IoT and Microservices

146

The device simulator program enters a loop and generates simulated readings
several times a second. The messages are serialized and sent to Event Hub.

while (true)
{
 try
 {
 var deviceReading = new DeviceMessage();
  
 // randomly select a device from the registry
 var device = _devices.list[random.Next(0, 299)];
 
 // lookup the participant from the profile microservice
 var participant = _profiles.GetById(device.participantid);
 
 deviceReading.deviceid = device.id;
 deviceReading.participantid = participant.id;
 
 deviceReading.location.latitude = participant.location.latitude;
 deviceReading.location.longitude = participant.location.longitude;
 
 // generate simulated sensor reaings
 var glucose = new SensorReading
 {
 type = SensorType.Glucose,
 value = random.Next(70, 210)
 };
 
 var heartrate = new SensorReading
 {
 type = SensorType.Heartrate,
 value = random.Next(60, 180)
 };
 
 var temperature = new SensorReading
 {
 type = SensorType.Temperature,
 value = random.Next(98, 105) + (.1 * random.Next(0, 9))
 };
 
 var bloodoxygen = new SensorReading
 {
 type = SensorType.Bloodoxygen,
 value = random.Next(80, 100)
 };
 
 deviceReading.sensors.Add(glucose);
 deviceReading.sensors.Add(heartrate);

Chapter 7 ■ IoT and Microservices

147

 deviceReading.sensors.Add(temperature);
 deviceReading.sensors.Add(bloodoxygen);
 
 deviceReading.timestamp = DateTime.Now;
 
 // serialize the message to JSON
 var json = ModelManager.ModelToJson<DeviceMessage>(deviceReading);
 // send the message to EventHub
 eventHubClient.Send(new EventData(Encoding.UTF8.GetBytes(json)));
 }
 catch (Exception exception)
 {
 Console.ForegroundColor = ConsoleColor.Red;
 �Console.WriteLine("{0} > Exception: {1}", DateTime.Now,

exception.Message);
 Console.ResetColor();
 }
 
 Thread.Sleep(100);
}

This code is meant to simulate the code executing on a device. In the real world,
many of these devices are running a non-Windows OS such as Linux or Linux variants
and the code would most likely be written in C. Microsoft provides a C library for Event
Hub using the AMQP protocol and has expanded the number of client libraries with
the recent release of IoT Hub. Note that Windows 10 IoT is now available and Microsoft
licenses that OS for free on physical devices that are 9 inches or less in diameter.

■■ Note T o review the simulator source code refer to the following solution:
Microservices\Biometrics\Simulator\BioMaxSimulator.

Telemetry Transformation and Storage
Stream Analytics provides low-latency, highly available, elastic event processing over
streaming data. Stream Analytics marries extremely well with Event Hub, allowing you
to connect to and consume events in the repository based on the properties and values
in the JSON message as well as temporal properties such as arrival time. Once messages
are selected, they can be directed to one or more storage locations such as Blob Storage,
Table Storage, DocumentDb and SQL Database, or sent to another Event Hub for
further processing.

To get started with Stream Analytics, you create and configure one or more Stream
Analytics jobs (see Figure 7-12). You can do this in either the Classic Portal or the Preview
Portal. When creating a job, you specify a unique name, the region the job runs in, and a
monitoring storage location.

Chapter 7 ■ IoT and Microservices

148

Figure 7-12.  Create Stream Analytics Job

From the Azure Portal, you can then configure the input, output, and query settings
for the Stream Analytics job (see Figure 7-13). Sources of data input can come from Event
Hubs or Blob Storage. When defining an input, you provide an alias that will be used
in the query (‘input’ for example). You can also configure the format of the incoming
messages, specifying JSON, CSV, or Avro. Avro is a compact and efficient binary file format
that leverages JSON for describing Hadoop MapReduce data sets.

Figure 7-13.  Stream Analytics Job Input Settings for Event Hub

Chapter 7 ■ IoT and Microservices

149

When you define an output, you provide an alias and then select an output target.
The current set of Stream Analytics Outputs includes SQL Database, DocumentDb, Table
Storage, Blob Storage, PowerBI, Event Hub, Service Bus queues, and Service Bus topics
(see Figure 7-14).

When configuring SQL Database output, you will be asked to provide the database
table name and the login credentials for the database. Note that the table definition in
SQL Database must match the columns being selected in the query. In addition, the table
must be defined with a clustered index.

Here is the DDL for the SQL Database table that is used by the Reference
Implementation:

CREATE TABLE[dbo].[biometrics] (
 [deviceid] [char](256) NOT NULL,
 [participantid] [char](256) NOT NULL,
 [longitude] float NOT NULL,
 [latitude] float NOT NULL,
 [reading] datetime NOT NULL,
 [type] bigint NOT NULL,
 [value] float NOT NULL)
 
CREATE CLUSTERED INDEX[biometrics] ON[dbo].[biometrics] ([deviceid] ASC)

Figure 7-14.  Stream Analytics Job Output Settings

Chapter 7 ■ IoT and Microservices

150

Stream Analytics Queries
Stream Analytics queries are SQL syntax statements that are able to select events based
on criteria that includes values in the event, time, and the particular partition where they
reside. The Reference Implementation defines six queries:

biometrics-blob: Grab all incoming device messages and
send to blob storage using a CSV file format.

biometrics-store: Grab all incoming device messages
and send to SQL Database for downstream application
integration.

glucose-alarms: Grab only messages that have a glucose
reading that is out of bounds and send to the alarms Event
Hub endpoint.

heartrate-alarms: Grab only messages that have a heart rate
reading that is out of bounds and send to the alarms Event
Hub endpoint.

temperature-alarms: Grab only messages that have a
temperature reading that is out of bounds and send to the
alarms Event Hub endpoint.

bloodoxygen-alarms: Grab only messages that have a blood
oxygen reading that is out of bounds and send to the alarms
Event Hub endpoint.

Each query has a similar structure. Let’s looks at one of the alarm queries and dissect
its function.

1 WITH Device as (SELECT * from input)
2 SELECT
3 Device.deviceid,
4 Device.participantid,
5 Device.location.longitude,
6 Device.location.latitude,
7 Device.timestamp,
8 DeviceSensors.ArrayValue.type,
9 DeviceSensors.ArrayValue.value
10 INTO
11 output
12 FROM
13 Device
14 CROSS APPLY GetElements(Device.sensors) AS DeviceSensors
15 WHERE
16 ((DeviceSensors.ArrayValue.type = 1) AND
 (DeviceSensors.ArrayValue.value > 180))

Chapter 7 ■ IoT and Microservices

151

Line 1: Get the next batch of messages from input and create
the alias Device to refer to an individual message.

Lines 2 through 9: Select the data of interest. Note the use of
the ‘.’ (dot) dereference to select into the JSON structure.

Lines 10 and 11: Identify the output by alias.

Lines 12 and 13: Specify where the data is coming from, in this
case Device.

Line 14: The CROSS APPLY function allows you to flatten out
an array. The end result is that there will be a unique output
message for each element in the array.

Lines 15 and 16: The where clause specifies that you are only
interested in messages that contain a glucose (type = 1) value
that is out of range (value > 180).

Stream Analytics has a feature that allows you to test your queries before putting
them into action. This is a very useful feature and should not be overlooked when
developing with Stream Analytics. First, let’s see how you can test the biometrics-store
Stream Analytics query (see Figure 7-15).

Figure 7-15.  Stream Analytics Query Definition

Chapter 7 ■ IoT and Microservices

152

When you click the Test button, a dialog pops up and you can browse to a JSON file
that may contain one or more sample JSON messages. When you click Ok, the query
is run against the input file and the results are displayed on the page. You can also
download the results to a spreadsheet for further analysis. As you can see from the output
in Figure 7-16, the query processed a single incoming device message and created four
output rows.

Now let’s see what happens when you run a message through the blood oxygen
alarm query of a blood oxygen value that is out of range (see Figure 7-17).

Note that when messages contain out-of-bound values, the new alarm message
event with the out-of-bound value is sent to the alarms Event Hub for processing. By
routing alarm messages to a new Event Hub, you can create a real-time notification
process.

Figure 7-17.  Stream Analytics Output for Alarm Query

Figure 7-16.  Stream Analytics Test Output

Chapter 7 ■ IoT and Microservices

153

Real-Time Notifications
A service that reads from an Event Hub is called a consumer. Stream Analytics, for
example, is an Event Hub consumer. It is also possible to create custom Event Hub
consumers. As you have seen, Stream Analytics can output to Event Hub, giving you the
ability to create a cascading set of Event Hub repositories and Event Hub consumers,
which may be useful if you need to run custom business logic on a subset of the incoming
messages. Dealing with alarm states is one such scenario.

In the case of alarms, you want to do be able to redirect messages to Notification Hub
to provide push notification to mobile devices and log the alarms to SQL Database for
reporting purposes. Notification Hub is another service available in Azure Service Bus. Its
purpose is to provide push notifications to registered applications. A push notification is
a dynamic message that arrives on a device in the form of a badge, toast, or tile message.
The applications that can receive push notifications can be running on Windows, Apple,
Google, Amazon, or Baidu devices.

A Notification Hub defines a namespace within which one or more push notification
hubs can be defined. After you create a notification hub, you can add the necessary
certificate and client secret settings for each of the platforms that you want to target
(see Figure 7-18).

Figure 7-18.  Notification Hub Configuration

Chapter 7 ■ IoT and Microservices

154

The Biometrics Alarm Notification cloud service connects the dots between the
alarm’s Event Hub and the alarm’s Notification Hub. It will log the alarm to SQL Database
using the Biometrics API and send push notifications to a Windows Store application
using a push notification hub called alarms. The alarm’s Notification Hub is defined
within the alarms-ns namespace (see Figure 7-19).

Biometrics Alarm Worker
Upon startup, the Biometrics Alarm Worker instantiates an Event Hub Client, the same
client that the BioMax Simulator leverages, to connect to the alarms Event Hub. An
EventProcessorHost is created. This class provides an event-driven model for receiving
events from an Event Hub endpoint.

// the name of the event hub to receive events from
const string eventHubName = "alarms";
 
// get the service bus connection string from configuration
var serviceBusConnectionString = RoleEnvironment.
GetConfigurationSettingValue(
 "Azure.ServiceBus.ConnectionString");
 
// get the storage connection string from configuration
var storageConnectionString = RoleEnvironment.GetConfigurationSettingValue(
 "Azure.Storage.ConnectionString");
 
// define the transport type as AMQP - advanced message queue protocol
var builder = new ServiceBusConnectionStringBuilder(serviceBusConnection
String);
builder.TransportType = TransportType.Amqp;
 
// create the event hub client
var eventHubReceiveClient = EventHubClient.CreateFromConnectionString(
 builder.ToString(), eventHubName);
 
// get the default consumer group
var eventHubConsumerGroup = eventHubReceiveClient.GetDefaultConsumerGroup();
 

Figure 7-19.  Reference Implementation Notification Hub

Chapter 7 ■ IoT and Microservices

155

// create the EventProcessorHost
var eventProcessorHost = new EventProcessorHost("AlarmsWorker",
 eventHubName,
 eventHubConsumerGroup.GroupName,
 builder.ToString(),
 storageConnectionString);
 
// register the MessageProcessor class so it recieves the incoming events
eventProcessorHost.RegisterEventProcessorAsync<MessageProcessor>();

The EventProcessorHost will route incoming events to a class that implements
the IEventProcessor interface. Your solution defines a class called MessageProcessor
that implements the IEventProcessor interface. This class encapsulates the work that is
necessary to prepare a push notification message and send it to the Notification Hub.

The OpenAsync() method uses two of your microservice SDKs, ConfigM and
ProfileM. ConfigM is used to retrieve the manifests for ProfileM and Biometrics
microservices. ProfileM is used to look up the details for the study participant who
raised the alarm event and the Biometrics API is used to log the alarm messages to SQL
Database. This method also creates the connection to the Notification Hub.

_config = new ConfigM
{
 ApiUrl = "<path to the config public api service>"
};
 
Manifest profileManifest = _config.GetByName("ProfileM");
 
_profile = new ProfileM
{
 ApiUrl = profileManifest.lineitems["PublicAPI"]
};
 
var biometricsManifest = _config.GetByName("BiometricsAPI");
_biometricsApi = biometricsManifest.lineitems["PublicAPI"] + "/alarm";
 
// connect to notification hub
var hub = NotificationHubClient.CreateClientFromConnectionString(
 RoleEnvironment.GetConfigurationSettingValue(
 "Azure.NotificationHub.ConnectionString"),
 RoleEnvironment.GetConfigurationSettingValue(
 "NotificationHubName"));

The ProcessEventsAsync() method contains the code that will take each incoming
alarm event and log it to SQL Database and create a push notification toast message to
send to the alarms Notification Hub.

Chapter 7 ■ IoT and Microservices

156

// get the alarm message from event hub
var stream = eventData.GetBodyStream();
var bytes = new byte[stream.Length];
stream.Read(bytes, 0, (int) stream.Length);
var json = bytes.Aggregate(string.Empty, (current, t) => current + ((char)
t).ToString());
var alarm = ModelManager.JsonToModel<BiometricReading>(json);
 
// lookup the user that raised the alarm
var user = _profile.GetById(alarm.participantid);
 
// log the alarm to biometrics database using the API
Rest.Post(new Uri(_biometricsApi), json);
 
//format the toast message
var biometric = string.Empty;
switch (alarm.type)
{
 case BiometricType.Glucose:
 biometric = "Glucose";
 break;
 case BiometricType.Heartrate:
 biometric = "Heartrate";
 break;
 case BiometricType.Temperature:
 biometric = "Tempurature";
 break;
 case BiometricType.Bloodoxygen:
 biometric = "Blood Oxygen";
 break;
 default:
 biometric = "Not Set";
 break;
}
 
// format the toast message
var toast = "<toast><visual><binding template = 'ToastText04'> " +
 $"<text id = '1'>{"Home Biomedical Alert"}</text>" +
 $"<text id = '2'>{"The " + biometric + " reading for " +
 user.firstname + " " + user.lastname + " is out of
 range."}</text>" +
 $"<text id = '3' >{"Contact: " + user.social.phone}</text>" +
 "</binding ></visual></toast>";
 
// forward the toast to Notification Hub for push
hub.SendWindowsNativeNotificationAsync(toast).Wait();

Chapter 7 ■ IoT and Microservices

157

In order to test the Reference Implementation real-time notification mechanism,
you will need a mobile application that is associated with the Windows, Apple, or Google
stores and is configured to receive notifications. The association is required so that you
can retrieve the Package SID and Client Secret necessary to register the application with
Notification Hub.

If you have a Windows Store account, you can create an application by reserving
a name and then retrieving the Package SID and Client secret. To retrieve these values,
reserve an application name, and then under the Services menu on the left, click
Push Notifications. On the page, look for the Live Services site link and click through
(see Figure 7-20).

You will arrive on the page that provides the Package SID and Client Secret. Retrieve
these values and enter them on the Notification Hub Configuration page (see Figure 7-21).

Figure 7-20.  Windows Store Push Notification Instructions

Chapter 7 ■ IoT and Microservices

158

The next step is to associate your Windows Store app with this reserved name in
the Store. In Visual Studio, select Project ➤ Store ➤ Associate App with Store. You will
be promoted to log into your store account, and you will receive a list of your reserved
names. Select the one that you just created and move through the wizard (see Figure 7-22).

Figure 7-21.  Package SID and Client Secret

Chapter 7 ■ IoT and Microservices

159

Open the Package Manifest, and on the Application Tab, set the Toast Capable option
to ‘Yes’ (see Figure 7-23).

Figure 7-22.  Windows Store Association Wizard

Chapter 7 ■ IoT and Microservices

160

Using NuGet Package Manager, add the Windows Azure Messaging package to your
solution (see Figure 7-24).

At application startup, create the hub client and the channel on which the push
notifications will arrive. This creates a registration between the client application and the
alarms push notification endpoint.

Figure 7-23.  Application Package Manifest

Figure 7-24.  Windows Azure Messaging Package for Notification Hub Clients

Chapter 7 ■ IoT and Microservices

161

hub = new NotificationHub("alarms", "<notificaiton hub connection tring");
 
var channel = await PushNotificationChannelManager.
 CreatePushNotificationChannelForApplicationAsync();
 
await hub.RegisterNativeAsync(channel.Uri);

Testing Push Notifications
To test your mobile application, start the BioMax Simulator and then start your mobile
application. You can optionally run the Biometrics Alarm Worker solution locally if you
want to set breakpoints in that project. As alarms are picked up by the Stream Analytics
jobs, they will be routed to the alarms Event Hub. There they will be picked up the
Biometrics Alarm Worker who formats push notifications and sends them to the alarms
Notification Hub. The Notification Hub will then push the notifications to any app that
has an open channel on that hub. Figure 7-25 shows both the dashboard showing all
biometric data being tracked in real time and the mobile app showing an alert toast.

Figure 7-25.  Real-Time Dashboard and Mobile Alerts

Real-Time Data Visualization
The biometrics-store Stream Analytics job routes device readings to SQL Database. Since
the data is a bit cryptic, it makes sense to wrap the data with an API that provides context
and, if necessary, business logic so that the data is provided in a meaningful way to the
application.

Chapter 7 ■ IoT and Microservices

162

There are many libraries, controls, and products that can be used to create data
visualizations in responsive web applications. The Reference Implementation includes
a sample application that uses AngularJS, Bootstrap, and D3 to create a wallboard-style
dashboard that displays the device locations on maps of New York, Boston, and Chicago.
It aggregates sensor reading data on gauges and provides examples of data aggregation
(see Figure 7-19).

Biometrics API
The Biometrics API provides a contextual API for accessing the device readings stored
in SQL Database. When used in conjunction with ASP.NET SignalR, the API can be
used to provide real-time updates to client applications. SignalR allows bi-directional
communication between server and client. Servers can push content to connected clients
the instant it becomes available. SignalR supports Web Sockets, and falls back to other
compatible techniques for older browsers.

■■ Note  For more information on SignalR, including documentation and sample code, visit
the official SignalR web site at www.asp.net/signalr.

Each row of data in the database contains a device id, participant id, the longitude
and latitude coordinates for the location of the device, a time stamp, a sensor id, and a
value. Since the data is flowing in real time, the API will return a specified number of rows
of the most recent data. There are three endpoints:

// return the last N-number of readings by device id
biometrics/device/{deviceid}{/count/{count}
 
// return the last N-number of readings by participant id
biometrics/participant/{participantid}/count/{count}
 
// return the last N-number of readings by city and sensor
// type where sensor type is glucose, heartrate, temperature
// or bloodoxygen
biometrics/city/{city}/type/{type}/count/{count}

The Home Biomedical Reference implementation has pre-defined a set of 300
participants who are located in Boston, New York, and Chicago. These city names can be
used as arguments to the Biometrics API along with the name of the sensor type and a
count of records. For example, a possible invocation of the Biometrics API would be

http://biometricsapi.azurewebsites.net/biometrics/city/boston/type/glucose/
count/10

The data returned would be formatted as depicted in Figure 7-26.

http://www.asp.net/signalr
http://biometricsapi.azurewebsites.net/biometrics/city/boston/type/glucose/count/10
http://biometricsapi.azurewebsites.net/biometrics/city/boston/type/glucose/count/10

Chapter 7 ■ IoT and Microservices

163

■■ Note T he Biometrics-related solutions can be found in Microservices\Biometrics.

Summary
IoT is not new. Devices connected on a network delivering real-time telemetry have been
around for a long time. Think about the connectivity and telemetry acquisition that NASA
put in place for the first trip to the moon in 1969. Mission control was monitoring every
aspect of the hardware, the capsule, and landing module, as well as the biometrics of the
astronauts through their suits.

What has changed in the past couple of years is the commoditization and
proliferation of sensors and devices and the commoditization of the services necessary to
connect to these devices and ingest the sensor data at volume. Azure is at the forefront of
this movement, providing an IoT microservices stack that allows you to bring these types
of solutions to market in days and weeks rather than months and years. Azure Event Hub,
Stream Analytics, and Notification Hub provide the necessary foundational microservices
that, when combined with your custom Microservices, deliver a highly scalable, fault
tolerant, reliable Software as a Service IoT solution.

Figure 7-26.  Biometrics API JSON

165

Chapter 8

Service Fabric

You now know that Azure is a platform built from the ground up using a microservice
architecture. You have examined the evolution from monolithic architectures to
microservices for modern cloud-native applications. You learned what a microservice
is, and you looked at how Azure provides a rich set of managed services on which you
can build Software as a Service solutions such as SQL Database, DocumentDb, Service
Bus, and many more. You learned how Azure allows you to define application containers
that provide elastic scale and fault tolerance, and are managed completely through
automation. You learned about the very pattern that is at the heart of Azure and how to
leverage that pattern to deliver modern software.

In the spring of 2015, at the annual //build conference, Microsoft announced Service
Fabric. Service Fabric is the public release of the foundational services, runtime, and
infrastructure that Microsoft uses to build, deploy, and manage their own first-class cloud
services such as SQL Database, DocumentDb, Bing Cortana, Halo Online, Skype for
Business, In Tune, Event Hubs, and many others.

This early preview release of Service Fabric is targeted at startups and ISVs that
must provide the most scalable and fault tolerant solutions. It introduces some new
terminology and concepts as well as programming models and related tools for building,
deploying, and maintaining stateful and stateless microservices. This chapter will provide
a primer on Service Fabric using the Developer Preview, and it provides an example using
the RefM Microservice from the reference implementation.

Concepts
Service Fabric is a distributed systems platform that provides a rich set of built-in
capabilities for creating scalable, available, consistent, reliable, and manageable solutions
consisting of traditional monolithic applications or microservices. It solves some of
the toughest problems that developers and operations face when supporting complex,
mission-critical applications by providing platform services for hyper scale, partitioning,
rolling upgrades and rollbacks, health monitoring, load balancing, replication, and
failover. It allows you to focus on the design and implementation of the solution while
Service Fabric provides the runtime management.

Service Fabric provides a model by which you package the code for a collection of related
microservices and their configuration manifests into Application Packages. Application
Packages are deployed and activated across Service Fabric Clusters.

Chapter 8 ■ Service Fabric

166

Clusters are made up of a few to thousands of VMs. You can pack each VM in your cluster
with many application package deployments. Using this approach you can maximize your
investment in your cloud resources by increasing the service density (the number of instances
of your microservices that can run concurrently). Service Fabric will be initially supported on
Windows with Linux soon to follow. It can be deployed to Azure, to on-premises servers or
virtual machines and can be hosted in third-party environments. (see Figure 8-1).

Service Fabric defines two programming models, Reliable Service and Reliable
Actor. Both Reliable Service and Reliable Actor give you the ability to create stateless and
stateful microservices. Stateless microservices do not maintain state beyond individual
request/response interactions and typically leverage message queues and in-memory
caches to decrease latency and increase performance. Stateful microservices maintain
state beyond the request/response interaction. They keep the logic and data close so that
you can eliminate the need for queues and caches.

Platform Architecture
Service Fabric provides a comprehensive set of lifecycle management services that take
care of cluster provisioning, package deployment, health monitoring, managing upgrades
and rollbacks, and much more (see Figure 8-2).

Figure 8-1.  Service Fabric Concepts

Chapter 8 ■ Service Fabric

167

•	 Transport: The Transport Service provides fast reliable
messaging between all the Service Fabric service components.

•	 Federation: The Federation Service manages the coordination
between nodes in a cluster. A cluster is a network-connected set
of VMs or physical machines into which application packages
are deployed. A node is an addressable unit in a cluster and have
characteristics such as placement properties and unique IDs, and
can join and leave clusters. The Federation Service can determine
if a machine, VM, or service fails, and will provide automatic
restart, reconfiguration, and redeployment capabilities.

•	 Reliability: The Reliability Service provides reliable replicated
state storage, failover, and placement across cluster nodes for
your microservices.

•	 Activation: The Activation Service gives you the ability to logically
distribute your application packages across multiple nodes and
partitions, and run multiple instances, different configurations,
and different versions across your cluster environment.

•	 Management: The Management Service provides full lifecycle
management capabilities covering provisioning, rolling upgrades,
rollbacks, and monitoring.

•	 Testability: The Testability Service gives you the ability to inject
actual failures in your run-time environment in order to test for
various failure scenarios.

Figure 8-2.  Service Fabric Architecture

Chapter 8 ■ Service Fabric

168

Application Model
An Application is a collection of Services which can be either traditional monolithic
services or as we have been discussing throughout this book, microservices. When using
Service Fabric along with microservices, each application does one thing and does it
well and is defined by a collection of code, configuration, and data. Each service can be
versioned and managed and upgraded independently (see Figure 8-3).

A cluster consists of multiple nodes. Each node can host multiple application
packages. Each application package is the lifecycle isolation unit and lifecycle
management component for an application. An application is made up one of more
services.

The details of what makes up an application are found in its application manifest,
and a service is defined by its service manifest. A service consists of code, data, and
a configuration package. As you have observed, a microservice can consist of several
components such as a public API, a private API, a NoSql store, a console application, and
so on. The ability to package together all the components that define a microservice and
manage as a versioned deployment unit is a powerful construct and provides the isolation
and deployment model required for a microservice architecture.

In Figure 8-4, the Service Fabric cluster is made up of six nodes running two
application packages per node. The packages for Application Type A and Application
Type B are distributed across the cluster, and there are two versions of each application
running.

Figure 8-3.  Application Model

Chapter 8 ■ Service Fabric

169

The act of distributing the application packages across the nodes and managing their
lifecycle is handled by the Service Fabric runtime. If a service fails, it is restarted. If nodes
fail, they are replaced, and the application packages are re-deployed and started.

Partitioning
Service Fabric supports both stateless and stateful service types. A stateless service
type persists state to an external storage location such as SQL Database, DocumentDb
or Service Bus Queues, Topics or Event Hubs. If a node on which an instance of this
service is running goes down, another instance is automatically started on another node.
Incoming requests are distributed across the stateless service endpoints.

A stateful service type maintains its own state and achieves reliability through
replication between replicas on other nodes in the Service Fabric cluster. Stateful service
types have a primary replica and multiple secondary replica instances. If a node on which
a replica of a service is running goes down, a new replica is started on another node. If the
replica happens to be the primary replica, a secondary replica is automatically promoted
to be the new primary.

Figure 8-4.  Six-Node Service Fabric Cluster

Chapter 8 ■ Service Fabric

170

In addition to providing classic load balancing across service instances, Service
Fabric provides a partitioning mechanism. Service instances can be divided into
partitions which are then distributed across the Service Fabric cluster. There are three
types of partitioning schemes:

•	 Singleton: The service is not partitioned.

•	 Named: Each service partition is given a unique name.

•	 Ranged: A number of partitions and an integer range defined
by a low and high value are combined to distribute load. Each
partition is responsible for a non-overlapping subrange.

For example, if you want to use a ranged partition schema with 5 replicas, 3
partitions, and a range of 00 to 99, you would define your ranged partitions as depicted in
Figure 8-6.

Figure 8-5.  Stateless and Stateful Distribution Model

Chapter 8 ■ Service Fabric

171

Programming Models
Service Fabric provides two APIs for building services: the Reliable Actors API and the
Reliable Services API. Each programming model supports stateless and stateful services
as well as the ability to plug in a communication protocol of your choice such as Web API,
WCF, WebSockets, or TCP.

Reliable Service
Reliable Services can be used to create stateful services or used to create stateless services
just like the microservices you have been using up to this point that use Web API as their
communication protocol. Since you have done a good job of separation of concerns
between the implementation of your services and the protocol layer, migrating to Service
Fabric should not be difficult.

For stateful services, you use Reliable Dictionary or Reliable Queue classes to
maintain state right within the code that implements your service. There is no need to
employ an external store. This programming model is suitable for applications where you
need to perform compute across multiple common units of state. A deployed instance of
a stateful service is composed of a replica set. One of the replicas in the set is a primary,
and the others are secondary. Read operations can be performed by both primaries
and secondaries with the caveat that secondary reads may not be fully consistent. Write
operations can only be performed on the primary and are automatically replicated
to secondary replicas. A write quorum is achieved when a majority of replicas have
acknowledged the write operations (see Figure 8-7).

Figure 8-6.  Ranged Partitioning Scheme

Chapter 8 ■ Service Fabric

172

Reliable Actor
A service based on the Reliable Actor programming model uses the actor pattern. The
actor pattern defines an actor as an isolated unit of logic and state that communicates
through asynchronous messaging. In Service Fabric, actors are isolated, single-threaded
objects that encapsulate logic and state, and implement an interface of asynchronous
methods that are used for passing messages between the other components of the
system. This pattern is suitable for applications that require multiple independent units of
state. A multi-player game is an example of an application that might use this approach.
Each player can be represented by an actor that is managing their state within the game
as well as the code that represents the AI for a player.

Service Fabric actors are virtual. They are not explicitly created or destroyed. When
a request for an actor arrives, an actor is created. That instance will remain around and if
not used for some period of time will get garbage collected. The value of data members of
stateful actors is maintained on disk and replicated across multiple nodes in the cluster.
That actor’s state will be brought back into memory when that actor is reanimated. The
data members of a stateless actor are not preserved. Service Fabric will distribute actors
throughout a cluster and automatically migrate them to a new node if the node they are
running on fails.

Service Fabric Example: Stateless Web
API - RefM
To demonstrate how to create a stateless Reliable Service, let’s migrate the existing RefM
Public API to Service Fabric. Before we dive into the details on migrating existing Web API
applications to Service Fabric, let’s cover some background first.

Getting Started
At the time of this writing, Azure Service Fabric is available as a developer preview that
you can download and work with in your local environment.

Figure 8-7.  Stateful Reliable Service Write Quorum

Chapter 8 ■ Service Fabric

173

■■ Note  Download the Service Fabric Developer Preview from
http://azure.microsoft.com/en-us/updates/developer-preview-service-fabric/.

The preview consists of the SDK, a collection of samples, and several online articles
that provide instructions and sample code. Follow the instructions to install the SDK and
set up a local Service Fabric cluster that will be used as the deployment environment for
the sample projects. You can download the Service Fabric samples from GitHub.

■■ Note  Download the Service Fabric samples from GitHub at
https://github.com/Azure/servicefabric-samples.

The Service Fabric SDK installs four project templates: a stateless and stateful
template for the Reliable Service programming model and a stateless and stateful
template for the Reliable Actor programming model (see Figure 8-8).

Figure 8-8.  Service Fabric Project Templates

http://azure.microsoft.com/en-us/updates/developer-preview-service-fabric/
https://github.com/Azure/servicefabric-samples

Chapter 8 ■ Service Fabric

174

You can start with these templates or leverage the Service Fabric samples to
jumpstart your experimentation with the SDK. Another good starting point for this
application type is the web application sample included with the sample code you
downloaded from GitHub. You can also follow along using the article referenced below to
create a Reliable Service Web API.

■■ Note  You will find a useful article on Web API Reliable Service at
http://bit.ly/1UMdKIf.

For this examination of Service Fabric, you will reference the ServiceFabricWebAPI
solution located in the folder ServiceFabric\API folder in the supplied Git Repo.

Service Fabric Hosting Model
Since Service Fabric does not leverage IIS to host Web API, you will leverage the Katana
implementation of the Open Web Interface for .NET (OWIN). OWIN allows you to write a
web application that is decoupled from the host process, in essence creating a web server
and placing that web server within the context of a host process. This is a perfect model
for Service Fabric, which will provide the host process. All you need to do is implement
the web server. Enter OWIN.

To use OWIN in your applications, reference the Microsoft.AspNet.WebApi.
OwinSelfHost NuGet Package or run the following command in the NuGet Console:

> Install-Package Microsoft.AspNet.WebApi.OwinSelfHost

The OwinCommunicationListener class implements the OWIN contract. You can find
the implementation in the file OwinCommunicationListener.cs. There are two methods
of interest: Initialize() and OpenAsync().

Initialize is where the URL for the service is configured. The Service Endpoint
settings are read from the manifest, and the listening address and publish address strings
are constructed for use by the OpenAsync method.

public void Initialize(ServiceInitializationParameters
serviceInitializationParameters)
{
 var serviceEndpoint = serviceInitializationParameters.
 CodePackageActivationContext.GetEndpoint("ServiceEndpoint");
 var port = serviceEndpoint.Port;
 
 this._listeningAddress = string.Format(
 CultureInfo.InvariantCulture,
 "http://+:{0}/{1}",
 port,
 string.IsNullOrWhiteSpace(this._appRoot) ?
 string.Empty: this._appRoot.TrimEnd('/') + '/');
 

http://bit.ly/1UMdKIf

Chapter 8 ■ Service Fabric

175

 this._publishAddress = this._listeningAddress.Replace("+",
 FabricRuntime.GetNodeContext().IPAddressOrFQDN);
}

The OpenAsync() method uses the listening and publish strings to start the web
server. The OwinCommunicationListener class also provides methods for stopping the
web server either through graceful means or due to an error.

public Task<string> OpenAsync(CancellationToken cancellationToken)
{
 ServiceEventSource.Current.Message("Opening on {0}", this._publishAddress);
 
 try
 {
 ServiceEventSource.Current.Message("Starting web server on {0}",
 this._listeningAddress);
 
 this._serverHandle = WebApp.Start(this._listeningAddress, appBuilder =>
 this._startup.Configuration(appBuilder));
 
 return Task.FromResult(this._publishAddress);
 }
 catch (Exception ex)
 {
 Trace.WriteLine(ex);
 this.StopWebServer();
 throw;
 }
}

The host process for a Service Fabric application is a console application. The
implementation of this console application can be found in Program.cs. The Service
Fabric Runtime object is used to register the StatelessWebAPI Service Type, which creates
an instance of the StatelessWebAPI class.

Chapter 8 ■ Service Fabric

176

public class Program
{
 public static void Main(string[] args)
 {
 try
 {
 using (var fabricRuntime = FabricRuntime.Create())
 {
 �fabricRuntime.RegisterServiceType(StatelessWebAPI.

ServiceTypeName, typeof(StatelessWebAPI));
 Thread.Sleep(Timeout.Infinite);
 }
 }
 catch (Exception e)
 {
 ServiceEventSource.
 Current.
 ServiceHostInitializationFailed(e);
 throw;
 }
 }
}

The StatelessWebAPI class creates the OwinCommunicationListener, passing in the
root name of the application. The web server is created and runs within the host process,
in this case a console app managed by Service Fabric.

using Microsoft.ServiceFabric.Services;
 
namespace StatelessWebAPI
{
 public class StatelessWebAPI : StatelessService
 {
 public const string ServiceTypeName = "StatelessWebAPIType";
 
 �protected override ICommunicationListener

CreateCommunicationListener()
 {
 return new OwinCommunicationListener("refm", new Startup());
 }
 }
}

Chapter 8 ■ Service Fabric

177

Implement RefM Public Web API
By default, the application will run on port 80. Each service fabric solution will need to
have a unique port number so you will want to get into the habit of modifying the port
setting. The port setting is in the ServiceManifest file. Look for the <Endpoint> element
and modify the Port attribute.

<Resources>
 <Endpoints>
 <Endpoint Name="ServiceEndpoint" Type="Input" Protocol="http" Port="8081" />
 </Endpoints>
 </Resources>

Modify the DefaultController to provide a status message when the root URL is
invoked. This function could be enhanced to provide a more compelling user experience.
For now, you simply want to know that the service is up and running.

using System.Web.Http;
 
namespace StatelessWebAPI.Controllers
{
 public class DefaultController : ApiController
 {
 [HttpGet]
 public HttpResponseMessage Index()
 {
 var message = new HttpResponseMessage
 {
 StatusCode = HttpStatusCode.OK, Content = new StringContent(
 "RefM Reliable Service Available")
 };
 return message;
 }
 }
}

Add a reference to the RefPublicAPI NuGet package and an additional controller
class called RefMController to the project. This class will provide the implementation
of the RefM routes. Add your DocumentDb and Redis Cache connection strings in
the constructor.

using System.Collections.Generic;
using System.Configuration;
using System.Web.Http;
using LooksFamiliar.Microservices.Ref.Models;
using LooksFamiliar.Microservices.Ref.Public.Service;
 

Chapter 8 ■ Service Fabric

178

namespace StatelessWebAPI.Controllers
{
 public class RefMController : ApiController
 {
 private readonly RefM _refM;
 
 public RefMController()
 {
 var docdburi = "[your-docdb-uri]";
 var docdbkey = "[your-docdb-key]";
 var redisuri = "[your-redis-uri]";
 
 _refM = new RefM(docdburi, docdbkey, redisuri);
 }
 
 [HttpGet]
 public List<Entity> GetAllByDomain(string domain)
 {
 return _refM.GetAllByDomain(domain);
 }
 
 [HttpGet]
 public Entity GetByCode(string code)
 {
 return _refM.GetByCode(code);
 }
 
 [HttpGet]
 public List<Entity> GetByCodeValue(string codevalue)
 {
 return _refM.GetByCodeValue(codevalue);
 }
 
 [HttpGet]
 public List<Entity> GetAllByLink(string link)
 {
 return _refM.GetAllByLink(link);
 }
 }
}

This controller is identical to the original RefM controller except that the routes
are no longer defined using the Route Attribute but instead are defined at startup in the
RouteConfig class located in the App_Start folder.

Chapter 8 ■ Service Fabric

179

using System.Web.Http;
 
namespace StatelessWebAPI.App_Start
{
 public static class RouteConfig
 {
 public static void RegisterRoutes(HttpRouteCollection routes)
 {
 routes.MapHttpRoute(
 name: "Default",
 routeTemplate: "{action}",
 defaults: new { controller = "Default", action = "Index" },
 constraints: new { }
);
 
 routes.MapHttpRoute(
 name: "GetAllByDomain",
 routeTemplate: "entities/domain/{domain}",
 defaults: new { controller = "RefM", action = "GetAllByDomain" },
 constraints: new { }
);
 
 routes.MapHttpRoute(
 name: "GetByCode",
 routeTemplate: "entities/code/{code}",
 defaults: new { controller = "RefM", action = "GetByCode" },
 constraints: new { }
);
 
 routes.MapHttpRoute(
 name: "GetByCodeValue",
 routeTemplate: "entities/codevalue/{codevalue}",
 defaults: new { controller = "RefM", action = "GetByCodeValue" },
 constraints: new { }
);
 
 routes.MapHttpRoute(
 name: "GetAllByLink",
 routeTemplate: "entities/link/{link}",
 defaults: new { controller = "RefM", action = "GetAllByLink" },
 constraints: new { }
);
 }
 }
}

Chapter 8 ■ Service Fabric

180

To complete the RefM migration, specify the name 'refm' as the application name
in the OwinCommunicationListener constructor call in StatelessWebAPI.cs.

using Microsoft.ServiceFabric.Services;
 
namespace StatelessWebAPI
{
 public class StatelessWebAPI : StatelessService
 {
 public const string ServiceTypeName = "StatelessWebAPIType";
 
 protected override ICommunicationListener CreateCommunicationListener()
 {
 return new OwinCommunicationListener("refm", new Startup());
 }
 }
}

Testing the Service
Once the service is running, use a browser to enter a RefM route such as
http://localhost:8081/refm/entities/domain/LanguageCodes. This call will return
the list of language codes from the reference store (see Figure 8-9).

Chapter 8 ■ Service Fabric

181

Figure 8-10.  Service Fabric Explorer

Figure 8-9.  RefM Reliable Service

The Service Fabric Visual Studio templates provide the PowerShell scripts to provision
and deploy the application package to your local Service Fabric cluster. Once deployed, you
can use the Service Fabric Explorer to view the details of the deployment (see Figure 8-10).

Chapter 8 ■ Service Fabric

182

The current Developer Preview version of Service Fabric only runs locally on your
machine. While working with Service Fabric, I have found that F5 build and deploy
from Visual Studio will not work past the first time due to an Access Denied error from
Service Fabric. This happens because the application is still running even though you
have stopped the debugger. It is necessary to remove the application from Service Fabric
before each deployment. There are two PowerShell cmdlets that provide this ability.

> Connect-ServiceFabricCluster
> Remove-ServiceFabricApplication -ApplicationName 'fabric:/
ServiceFabricWebAPI'

The Connect-ServiceFabricCluster cmdlet will make sure you are talking to your
local cluster environment. Since it is the only Service Fabric environment, this cmdlet
does not require any parameters. The Remove-ServiceFabricApplication cmdlet takes
a single parameter, the 'fabric:/' based name of the application. This command will
prompt you to confirm removal unless you add the -Force parameter. I have added a
Remove-FabricApplication.ps1 script to the solution for convenience.

Summary
Service Fabric represents a future state for microservice-based solutions running in
Azure. It is Microsoft's next generation platform for creating cloud-native, highly scalable,
fault tolerant, resilient, autonomous, and automated microservices. Service Fabric
provides a rich set of deployment, management, and monitoring capabilities that make
moving to microservice architecture more straightforward than ever before.

As demonstrated, it is not difficult to migrate existing Web API solutions to Service
Fabric. This has powerful ramifications. The investments you make today in microservice
architecture, adopting Azure Services and creating your own cloud services and web
APIs are long-term investments that will continue to pay dividends as the Azure platform
evolves. You will be optimizing your solutions to take full advantage of the platform.

Taking those first steps in this direction can be the most difficult part of the process.
You must as a team commit to a DevOps culture as well as lean engineering and Agile
principles along with a modern development process that emphasizes customer
satisfaction through frequent delivery of working code. You must rethink your monolithic
designs and look for opportunities to carve off capabilities and reimagine your solutions
by leveraging microservice architecture, Azure Services, and of course automation.

My goal in writing this book was to provide you with a new perspective on
application architecture and cloud platforms and afford you the opportunity to consider
how you are developing software today, to re-imagine your solutions as fully automated,
cloud-native services and consider how you might get started adopting this approach.
You have learned that Azure is a platform built form the ground up using a microservice
architecture and that it provides you the best opportunity to realize a fully automated
software solution that delivers a high-value experience for your customers and a high-
velocity platform that drives business impact. As Azure is an ever evolving platform, I
do expect that the contents of this book will evolve as well. I look forward to interactions
online and in person with you, the reader, as we take this journey together into the deep
blue. Code on!

183

�       � A
AddDeviceAsync() method, 136
Agile approach, 34
Alarm Notification Cloud Service, 97
API console, 60
API management

Administrator Dashboard, 55
developer key, 55
Developer Portal, 55–56
gateway services, 55
policy injection, 62
proxies, 56
subscriptions

API console, 60
API products, 59
portal authentication, 58
profile page, 59
Try It button, 61

API proxies, 56–58
App Services, 63–64
Automation

ASP.NET Web API
Autodocumentation, 101

Azure Preview portal, 71
Azure resource groups, 72–73
BioMax Event Simulator Console, 106
ConfigM Management Console, 103
connection strings, 79
Create-EventHub.psm1 module, 77
Create-ServiceBus.ps1 script, 77
data deployment testing, 99
definition, 67
deployment, 68
DevOps, 67
Import-Module command, 76
management, 68

microservice architecture, 67
oversight and quality assurance, 67
PowerShell (see Azure PowerShell)
PowerShell cmdlets, 76
product lifecycle, 68
provisioning, 67, 71
Redis Cache blade, 81
Redis Cache Settings blade, 80
RefM Public API test, 102
SBUpdate console application, 77
software building and automated

testing, 67
software development lifecycle, 67
source code control, 67
SQL database connection strings, 106
Stream Analytics job, 105
tools and technologies, 68
Web App Blade, 105

Azure Explorer, 38
Azure Management Console, 71
Azure Management Studio, 38–39
Azure PowerShell

accounts and subscriptions, 69
Microsoft Web Platform Installer, 69
PowerShell console, 70
PowerShell ISE, 70

Azure resources
Azure Cloud Service

Package Files, 92
Azure cmdlets, 75
Azure Website Package Files, 92
CmdletBinding, 75
Create-ResourceGroup.Ps1 script, 75
deployment scripts, 91
JSON file, 94
MSBuild, 92
New-AzureResourceGroup, 94

Index

■ index

184

ResourceGroup Script Execution, 76
Set-WebsiteConfiguration function, 95

Azure Storage
account creation, 35
account managing key, 36
add references, 37
architecture, 35
Azure Explorer, 38
Azure Management Studio, 38–39
Blob, 34, 38
files, 35
NuGet package installation, 37
queues, 35
tables, 34
Visual Studio, 38

�       � B
Biomedical Reference Implementation.

See also Home Biomedical
Reference Implementation

deployment, 86
NuGet packages, 86–88

Biometrics
Azure environment, 85
Azure Preview Portal, 98
Cloud Service container, 84
connection string information, 96
data visualization website, 84
Event Hubs, 84
Notification Hubs, 84
Set-AzureDeployment cmdlet, 97
SQL Database, 84
staging and production support, 97
Stream Analytics, 85
Stream Analytics jobs, 84
UpdateCSCFG, 97
verification, 103

�       � C
Cloud Services, 63–64
ConfigM

administrator console, 130–131
API, 113
ApiUrl property, 129
architecture, 112
ConfigMController class, 126
ConfigPublicService NuGet

package, 124

Connection strings, 125
data model, 122
DevKey property, 130
interfaces, 122–123
Public API routesConfigMController

class, 126, 128
SDK class, 128–129
services, 123–124
Store Assembly (see Store Assembly)

Wire Assembly (see Wire Assembly)
Continuous Delivery Software, 67

�       � D
Data access layer (DAL), 28
Data services layer (DSL), 24
Device management, 141
DevOps, 67
DocumentDb

bounded-staleness, 41
client SDK, 45
definition, 43
DocDb class, 45
Entity class, 46
eventual, 41
granular consistency levels, 41
internal structure, 42
JSON documents, 43
Keys, 43
NuGet package installation, 45
provision, 42
query, 44
reference collection database, 47
session, 41
strong, 41

�       � E, F
Event Hubs, 84

�       � G
Geographically Redundant

Storage (GRS), 35

�       � H
Home Biomedical Reference

Implementation
Azure, 111
BioMax device, 109

Azure resources (cont.)

■ Index

185

business capability, 110
ConfigM

administrator console, 130–131
API, 113
ApiUrl property, 129
architecture, 112
ConfigMController class, 126
ConfigPublicService NuGet

package, 124
Connection strings, 125
data model, 122
DevKey property, 130
interfaces, 122–123
Public API

routesConfigMController
class, 126, 128

SDK class, 128–129
services, 123–124
Store Assembly (see Store Assembly)
Wire Assembly (see Wire Assembly)

microservice
capabilities, 83–84, 110, 112

new product, 109
provisioning process, 78
technical capability, 111

Home Biomedical Git Repository, 73–75

�       � I
Infrastructure as a Service (IaaS), 4
Initialize() method, 174
Internet of Things (IoT) services

analytics and data visualization, 134
custom development, 134

IoT Hub Connection String
Blade, 136

IoT Hub Creation Blade, 135
IoT Hub RegistryManager, 136

device management, 133
real-time data visualization, 161
real-time notifications, 153
reference implementation

device management, 141
Home Biomedical Microservice

Architecture, 141
telemetry ingestion, 143

scripted scenarios, 134
IoT Suite Dashboard, 139
IoT Suite Landing Page, 139
resource group, 140

status and notifications, 134
telemetry ingestion, 133
telemetry transformation, 147
transformation and storage, 133

�       � J, K
JavaScript Object Notation (JSON), 11

�       � L
Locally Redundant Storage (LRS), 35
Logical architecture, 25

API gateway layer, 26
automation, 30
DAL, 28
models, 25
protocol layer, 27
SDK layer, 26
service layer, 27
store, 30

�       � M
Microservices

approach, 73
architecture, 24

Continuous Delivery, 24
data services layer, 24
layered architecture, 22
logical. Logical architecture
Service Bus Queue, 24
SQL Database, 24

automated, 12
autonomous and isolated, 10
benefits of

evolutionary, 13
flexible, 14
high velocity, 14
one team, owned by, 15
open, 14
reusable and composable, 14
versionable and replaceable, 15

ConfigM provisioning, 81–83
configurable, 12
definition, 9
deployment, 100
DeviceM, 81
discoverability, 19
elastic, resilient, and responsive, 11

■ index

186

Home Biomedical Reference
implementation, 83–84

identification, 16
message-oriented and

programmable, 11
Microsoft Azure, 16
platform (see Microsoft Azure)
ProfileM, 81
RefM, 81–82
RefM Microservice Automation

Scripts, 82
[re]organization, 15–16
Service Fabric (see Service Fabric)
testing, 18

Microsoft Azure, 16
Agile approach, 34
analytics and IoT, 33
API management (see API management)
Azure Storage

account creation, 35
account managing key, 36
add references, 37
architecture, 35
Azure Explorer, 38
Azure Management Studio, 38–39
Blob, 34, 38
files, 35
NuGet package installation, 37
queues, 35
tables, 34
Visual Studio, 38

compute, 33
Containers, 62–64
data and storage, 33
developer services and

management, 34
DocumentDb

bounded-staleness, 41
client SDK, 45
definition, 43
DocDb class, 45
Entity class, 46
eventual, 41
granular consistency levels, 41
internal structure, 42
JSON documents, 43
Keys, 43
NuGet package installation, 45

provision, 42
query, 44
reference collection database, 47
session, 41
strong, 41

finished services, 33
hybrid integration, 34
identify and access management, 34
lean engineering, 34
management, 34
media and CDN, 34
Microservices, 16
networking, 34
NoSQL, 41
Redis Cache, 48
Service Bus

connection information, 51–52
endpoint, 51
event hubs, 50
namespace, 50
queues, 50, 52
relays, 50
ReST APIs/client SDK, 50
shared access policy

configuration, 51
topics, 50

SQL database, 39
web and mobile, 33

Microsoft Web Platform Installer, 69
Minimal-viable product (MVP), 110–111
Model-View-Controller (MVC), 21

�       � N
Notification Hub, 153
NuGet packaging

build script, 90
ConfigM microservice, 89
Invoke-MsBuild.psm1, 88
Invoke-UpdateNuGet.psm1, 89
Manager Options, 88
microservice API, 87
Store assembly, 87
Wire and Store microservices, 89

�       � O
OpenAsync() method, 155, 174
Open Web Interface for .NET (OWIN), 174

Microservices (cont.)

■ Index

187

�       � P, Q
Platform as a Service (PaaS), 4
ProcessEventsAsync() method, 155
Provisioning process, 78

�       � R
Real-time data visualization, 161
Real-time notifications

Biometrics Alarm Worker, 154
Notification Hub, 153
testing, 161
Windows Store

Application Package Manifest, 160
Association Wizard, 159
Client Secret, 158
Messaging Package, 160
Package SID, 158
push notification, 157

Reliable Actor, 166, 171–173
Reliable Service, 166, 171–174, 181
Representational State Transfer (ReST), 11

�       � S
SendEventAsync() method, 138
Separation of Concerns (SoC), 21–22, 25, 171
Service Bus

connection information, 51–52
endpoint, 51
event hubs, 50
namespace, 50
queues, 50, 52
relays, 50
ReST APIs/client SDK, 50
shared access policy configuration, 51
topics, 50

Service Fabric
application model, 168

cluster, 168
components, 168
partitioning, 169

concepts, 165
definition, 165
platform architecture, 166–167
programming models

Reliable Actor, 172
Reliable Service, 171–172

startups and ISVs, 165
Stateless Web API-RefM

developer preview, 172
implementation, 177
project templates, 173
Service Fabric Hosting

Model, 174
service testing

Software as a Service (SaaS)
Agile and Scrum, 2
cloud, 4
Continuous Delivery, 2
DevOps, 4
lean engineering, 3
microservices, 6

Store assembly
Cache class, 118–119
Dbase class, 119
interfaces, 115
optimized persistence, 115
Persist class, 120–121
Queue class, 117

Stream Analytics
alarm queries, 150
biometrics-blob, 150
biometrics-store, 150
bloodoxygen-alarms, 150
creation, 148
DDL, 149
glucose-alarms, 150
heartrate-alarms, 150
input settings, 148
output settings, 149
query definition, 151
temperature-alarms, 150
test output, 152

Structured Query Language (SQL), 43

�       � T
Telemetry ingestion

BioMaxSimulator, 144
DeviceMessage class, 145
device simulator program, 146
event hub partition model, 143

�       � U, V
User-defined functions (UDF), 42

■ index

188

�       � W, X, Y, Z
Windows Communication Foundation

(WCF), 62
Windows Store

Application Package Manifest, 160
Association Wizard, 159
Client Secret, 158

Messaging Package, 160
Package SID, 158
push notification, 157

Wire Assembly
ModelManager

class, 114
Rest class, 114

Wire NuGet package, 87

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction
	Chapter 1: From Monolithic to Microservice
	 Software as a Service
	 Continuous Delivery
	 Agile and Scrum
	 Lean Engineering
	 DevOps
	 Cloud
	 Microservices

	 Summary

	Chapter 2: What Is a Microservice?
	 Microservices Are…
	 Autonomous and Isolated
	Implications

	 Elastic, Resilient, and Responsive
	Implications

	 Message-Oriented and Programmable
	Implications

	 Configurable
	Implications

	 Automated
	Implications

	 The Benefits of Microservices
	 Evolutionary
	 Open
	 High Velocity
	 Reusable and Composable
	 Flexible
	 Versionable and Replaceable
	 Owned by One Team

	 The Challenges of Microservices
	 [re]Organization
	 Platform
	 Identification
	 Testing
	 Discoverability

	 Summary

	Chapter 3: Microservice Architecture
	 Layered Architecture
	 A Microservice Approach
	 Microservice Logical Architecture
	 Models
	 SDK Layer
	 API Gateway Layer
	 Protocol Layer
	 Service Layer
	 Data Access Layer
	 Store
	 Automation

	 Summary

	Chapter 4: Azure, A Microservice Platform
	 Data and Storage
	 Azure Storage
	 SQL Database
	 DocumentDb
	 Redis Cache

	 Service Bus
	 Queue

	 API Management
	 API Proxies
	 API Subscriptions
	 Policy Injection

	 Containers
	 Cloud Services and App Services

	 Summary

	Chapter 5: Automation
	 Azure PowerShell
	 PowerShell Consoles

	 Provisioning
	 Azure Resource Groups
	 The Home Biomedical Git Repository
	 Provisioning Azure Resources
	 Console Application Integration
	 Provisioning Shared Services
	 Collecting Connection Strings
	 Provisioning Microservices
	 Provisioning the Biometrics Microservice

	 Build
	 NuGet Packaging
	 Build Scripts

	 Deployment
	 Deploy Data
	 Generate Packages
	 Deploy Packages
	 Deploy Biometrics Microservice
	 Verifying Data Deployment
	 Verifying Microservice Deployment
	 Verifying the Biometrics Microservice

	 Summary

	Chapter 6: Microservice Reference Implementation
	 The Product
	 The Epic
	 The Business Capabilities
	 The Technical Capabilities
	 The Azure Resources
	 The Custom Microservices

	 Microservice Reference Implementation
	 One Microservice, Two APIs
	 Common
	Wire
	ModelManager
	Rest

	Store
	Optimized Persistence
	Interfaces
	Implementation
	Queue
	Cache
	Dbase
	Persist

	 ConfigM - Configuration and Discoverability
	ConfigM Model
	ConfigM Interfaces
	ConfigM Services
	ConfigM APIs
	ConfigM SDKs
	The ConfigM Administrator Console

	 Summary

	Chapter 7: IoT and Microservices
	 IoT Capabilities
	 Azure IoT Services
	 Custom Development
	IoT Hub

	 Scripted Scenario
	IoT Suite

	 The Reference Implementation IoT Capabilities
	 Device Management
	 Telemetry Ingestion
	The BioMax-Home Device Simulator

	 Telemetry Transformation and Storage
	Stream Analytics Queries

	 Real-Time Notifications
	Biometrics Alarm Worker
	Testing Push Notifications

	 Real-Time Data Visualization
	Biometrics API

	 Summary

	Chapter 8: Service Fabric
	 Concepts
	 Platform Architecture
	 Application Model
	 Partitioning

	 Programming Models
	 Reliable Service
	 Reliable Actor

	 Service Fabric Example: Stateless Web API - RefM
	 Getting Started
	 Service Fabric Hosting Model
	 Implement RefM Public Web API
	 Testing the Service

	 Summary

	Index

