
217

Chapter 9

Use Cases

By reading the book, you learned how to write HTML5 Microdata and JSON-LD annotations in the markup,
develop Semantic Web applications, describe web services in standardized languages, run powerful queries
on Linked Open Data (LOD) datasets, and develop Semantic Web applications. Now that you have become
familiar with Semantic Web technologies, let’s analyze four complex examples, to get ready for real-life
implementations!

RDB to RDF Direct Mapping
Using the R2RML language for expressing customized mappings from relational database (RDB) to Resource
Description Framework (RDF) datasets, you refer to logical tables to retrieve data from an input database.
A logical table can be either a base table, a view, or an SQL query [1]. Assume you have a relational database
about the staff members in your enterprise and would like to map it to RDF. Each staff member is identified
by a unique identifier (ID), which is used as the primary key (see Table 9-1).

Table 9-1.  The Employee Database Table

ID

INTEGER

FirstName

VARCHAR(50)

LastName

VARCHAR(50)

10 John Smith

11 Sarah Williams

12 Peter Jones

Table 9-2.  The Employee_Project Database Table

ID_Employee

INTEGER

ID_Project

INTEGER

10 110

11 111

11 112

12 111

The employee projects are described by the employee identifiers (ID_Employee) and the project
identifiers (ID_Project), both of which are primary foreign keys (see Table 9-2).

Chapter 9 ■ Use Cases

218

Table 9-3.  The Project Database Table

ID

INTEGER

Description

VARCHAR(50)

110 WebDesign

111 CloudComputing

112 DomainRegistration

The projects use an integer identifier (ID), which is a primary key featured by the description of a
maximum of 50 characters (Table 9-3).

The direct mapping defines an RDF graph representation of the data from the relational database [2].
The direct mapping takes the relational database (data and schema) as input, and generates an RDF graph
called the direct graph. During the mapping process, the staff members, the projects, and the relationship
between them are expressed in RDF using the Turtle syntax (see Listing 9-1). The rule for translating each
row of a logical table to zero or more RDF triples is specified as a triples map. All RDF triples generated from
one row in the logical table share the same subject. A triples map is represented by a resource that references
other resources. Each triples map has exactly one rr:logicalTable property with a value representing the
logical table that specifies a Structured Query Language (SQL) query result to be mapped to RDF triples.
A triples map also has exactly one subject map that specifies the technique to use for generating a subject for
each row of the logical table, using the rr:subjectMap property,1 whose value is the subject map.
The triples map may have optional rr:predicateObjectMap properties, whose values are predicate-object
maps that create the predicate-object pairs for each logical table row of the logical table. The predicate map-
object map pairs specified by predicate-object maps can be used together with the subjects generated by the
subject map for creating RDF triples for each row.

Listing 9-1.  Direct Mapping from RDB to RDF

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@base <http://example.com/base/> .
 
<TriplesMap1>
 a rr:TriplesMap;
  
 rr:logicalTable [rr:tableName "\"Employee\"";] ;
  
 rr:subjectMap [rr:template "http://example.com/employee/{\"\ID\"}";];
  
 rr:predicateObjectMap
 [
 rr:preficate ex:firstName ;
 rr:objectMap [rr:column "\"FirstName\""]
];
  

1Alternatively, the rr:subject constant shortcut property can also be used.

http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema%23

Chapter 9 ■ Use Cases

219

 rr:predicateObjectMap
 [
 rr:predicate ex:lastName ;
 rr:objectMap [rr:column "\"LastName\""]
]
 .
  
<TripleMap2>
 a rr:TriplesMap;
  
 rr:logicalTable [rr:tableName "\"Project\"";] ;
  
 rr:subjectMap [rr:template "http://example.com/project/{\"\ID\"}";];
  
 rr:predicateObjectMap
 [
 rr:preficate ex:id ;
 rr:objectMap [rr:column "\"ID\""]
];
  
 rr:predicateObjectMap
 [
 rr:predicate ex:description ;
 rr:objectMap [rr:column "\"Description\""]
]
 . 
 
<linkMap_1_2>
 a rr:TriplesMap;
  
 rr:logicalTable [rr:tableName "\"Employee_Project\"";] ;
  
 rr:subjectMap [rr:template "http://example.com/employee/{\"\ID_Employee\"}";];
  
 rr:predicateObjectMap
 [
 rr:preficate ex:involvedIn ;
 rr:objectMap [rr:template "http://example.com/project/{\"ID_Project\"}"];
] .

The R2RML mapping is supported by software tools such as the db2triples software library [3],
OpenLink Virtuoso [4], RDF-RDB2RDF [5], morph [6], and Ultrawrap [7]. In this example, the result is a set of
RDF triples that describe the staff members and the projects they are involved in (Table 9-4).

Chapter 9 ■ Use Cases

220

Table 9-4.  The RDF Triples of the Output

Subject Predicate Object

<http://example.com/
employee/10>

<http://example.com/lastName> "Smith"

<http://example.com/
employee/10>

<http://example.com/firstName> "John"

<http://example.com/
employee/12>

<http://example.com/lastName> "Jones"

<http://example.com/
employee/12>

<http://example.com/firstName> "Peter"

<http://example.com/
employee/11>

<http://example.com/lastName> "Williams"

<http://example.com/
employee/11>

<http://example.com/firstName> "Sarah"

<http://example.com/
project/110>

<http://example.com/description> "WebDesign"

<http://example.com/
project/110>

<http://example.com/id> "110"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
project/111>

<http://example.com/description> "CloudComputing"

<http://example.com/
project/111>

<http://example.com/id> "111"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
project/112>

<http://example.com/description> "DomainRegistration"

<http://example.com/
project/112>

<http://example.com/id> "112"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
employee/10>

<http://example.com/involvedIn> <http://example.com/
project/110>

<http://example.com/
employee/12>

<http://example.com/involvedIn> <http://example.com/
project/111>

<http://example.com/
employee/11>

<http://example.com/involvedIn> <http://example.com/
project/112>

<http://example.com/
employee/11>

<http://example.com/involvedIn> <http://example.com/
project/111>

By default, all RDF triples are in the default graph of the output dataset. However, a triples map can
contain graph maps that place some or all of the triples into named graphs instead.

Chapter 9 ■ Use Cases

221

A Semantic Web Service Process in OWL-S to Charge a
Credit Card
Assume a Web service that charges a valid credit card. In OWL-S, Web services can be modeled as processes
that specify how clients can interact with the service. There can be any number of preconditions, which must
all hold in order for the process to be successfully invoked. A process has zero or more inputs, representing
information required, under some conditions, for the performance of the process. A process might have
any number of outputs that represent information provided by the process to the requester. Effects describe
real-world conditions the process relies on. To describe the credit card charging process in OWL-S, we have
to check whether the card is overdrawn or not, which can be defined as an atomic process (a description of
a service that expects one message and returns one message in response). If the card is overdrawn, a failure
should be displayed. Otherwise, if the card can be charged, the process has to be executed. Hence, the
description of a process includes two result elements: one for charging the card and another for the error
handler (see Listing 9-2).

Listing 9-2.  OWL-S Description of Charging a Credit Card [8]

<process:AtomicProcess rdf:ID="Purchase">
 <process:hasInput>
 <process:Input rdf:ID="ObjectPurchased" />
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="PurchaseAmt" />
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="CreditCard" />
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:ID="ConfirmationNum" />
 </process:hasOutput>
 <process:hasResult>
 <process:Result>
 <process:hasResultVar>
 <process:ResultVar rdf:ID="CreditLimH">
 <process:parameterType rdf:resource="&ecom;#Dollars" />
 </process:ResultVar>
 </process:hasResultVar>
 <process:inCondition>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (current-value (credit-limit ?CreditCard)
 ?CreditLimH)
 (>= ?CreditLimH ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:inCondition>
 <process:withOutput>
 <process:OutputBinding>
 <process:toParam rdf:resource="#ConfirmationNum" />
 <process:valueFunction rdf:parseType="Literal">
 <cc:ConfirmationNum xsd:datatype="&xsd;#string" />

Chapter 9 ■ Use Cases

222

 </process:valueFunction>
 </process:OutputBinding>
 </process:withOutput>
 <process:hasEffect>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (confirmed (purchase ?purchaseAmt) ?ConfirmationNum)
 (own ?objectPurchased)
 (decrease (credit-limit ?CreditCard)
 ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:hasEffect>
 </process:Result>
 <process:Result>
 <process:hasResultVar>
 <process:ResultVar rdf:ID="CreditLimL">
 <process:parameterType rdf:resource="&ecom;#Dollars" />
 </process:ResultVar>
 </process:hasResultVar>
 <process:inCondition>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (current-value (credit-limit ?CreditCard)
 ?CreditLimL)
 (< ?CreditLimL ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:inCondition>
 <process:withOutput rdf:resource="&ecom;failureNotice" />
 <process:OutputBinding>
 <process:toParam rdf:resource="#ConfirmationNum" />
 <process:valueData rdf:parseType="Literal">
 <drs:Literal>
 <drs:litdefn xsd:datatype="&xsd;#string">00000000</drs:litdefn>
 </drs:Literal>
 </process:valueData>
 </process:OutputBinding>
 </process:withOutput>
 </process:Result>
 </process:hasResult>
</process:AtomicProcess>

The data transformation produced by the process is specified by the inputs and outputs (hasInput,
hasOutput). Atomic processes always receive the inputs specifying the information required for the
execution of the process from the client. The result of the process execution is that the credit card is charged,
and the money is withdrawn from the account. The effect in this example describes that the customer now
owns the object (own ?objectPurchased) and that the amount of money in the credit card account has been
reduced (decrease (credit-limit ?CreditCard) ?purchaseAmt). In real-life applications, such services
typically send an invoice with or without a notification about the success of the transaction. Credit card
transactions have two results: one for the case in which there was sufficient balance to pay the bill, and one
for when there wasn’t. Each result can be augmented with a further binding.

Chapter 9 ■ Use Cases

223

Modeling a Travel Agency Web Service with WSMO
Assume the following scenario. Leslie wants to book a flight and a hotel for a tropical holiday. The fictional
Dream Holidays Travel Agency provides recreational and business travel services based on Semantic Web
Service technologies. The travel agency arranges the flight booking and the hotel booking under the contract
with the service providers (Figure 9-1).

Figure 9-1.  Travel agency modeling

The goal of the service can be described as “book a flight and hotel room for a tropical holiday for
Leslie.” The post-condition is to get a trip reservation by providing the current location, the destination, the
payment method, and the name of the hotel (see Listing 9-3).

Listing 9-3.  Defining the Service Goal

goal _"http://www.example.com/successfulBooking"
 capability
 postcondition
 definedBy
 ?tripReservation memberOf tr#reservation[
 customer hasValue fof#Leslie,
 origin hasValue loc#adelaide,
 destination hasValue loc#bali,
 travel hasValue ?flight,
 accommodation hasValue ?Hotel
 payment hasValue tr#creditcard
] and
 ?flight[airline hasValue tr#staralliance] memberOf tr#flight and
 ?hotel[name hasValue "Tropical Paradise Hotel"] memberOf tr#hotel .

The DREAMHOLIDAYS service description should contain the tickets, hotels, amenities, and so on. The
pre-state capability description includes the reservation request and the prerequisites, such as a valid credit
card (see Listing 9-4).

Chapter 9 ■ Use Cases

224

Listing 9-4.  Pre-State Capability Description

capability DREAMHOLIDAYScapability
 sharedVariables {?creditCard, ?initialBalance, ?item, ?passenger}
 precondition
 definedBy
 ?reservationRequest[
 reservationItem hasValue ?item,
 passenger hasValue ?passenger,
 payment hasValue ?creditcard,
] memberOf tr#reservationRequest and
 ((?item memberOf tr#trip) or (?item memberOf tr#ticket)) and
 ?creditCard[balance hasValue ?initialBalance] memberOf po#creditCard.
 
 assumption
 definedBy
 po#validCreditCard(?creditCard) and
 (?creditCard[type hasValue po#visa] or ?creditCard[type hasValue po#mastercard]).

The post-state capability description includes the post-conditions, the reservation price, and the final
value of the credit card (see Listing 9-5).

Listing 9-5.  Post-State Capability Description

postcondition
 definedBy
 ?reservation[
 reservationItem hasValue ?item,
 customer hasValue ?passenger,
 payment hasValue ?creditcard
] memberOf tr#reservation .
 
 assumption
 definedBy
 reservationPrice(?reservation, "AUD", ?tripPrice) and
 ?finalBalance= (?initialBalance - ?ticketPrice) and
 ?creditCard[po#balance hasValue ?finalBalance] .

Querying DBpedia Using the RDF API of Jena
As mentioned earlier, Apache Jena uses the ARQ engine for the processing SPARQL queries. The ARQ API classes
are found in com.hp.hpl.jena.query. The core classes of ARQ are Query, which represents a single SPARQL
query; the Dataset, where the queries are executed; QueryFactory, used for generating Query objects from
SPARQL strings; QueryExecution, which provides methods for query execution; ResultSet, which contains the
results obtained from an executed query; and QuerySolution, which represents a row of query results. If there
are multiple answers to the query, a ResultSet will be returned, containing the QuerySolutions.

To query DBpedia from Jena, you can use QueryFactory and QueryExecutionFactory. QueryFactory
has create() methods to read a textual query and return a Query object with the parsed query.
QueryExecutionFactory creates a QueryExecution to access a SPARQL service over HTTP in the form
QueryExecutionFactory.sparqlService(String service,Query query), where service is a string representing
a SPARQL service. You can create a test connection to DBpedia’s SPARQL service, as shown in Listing 9-6.

Chapter 9 ■ Use Cases

225

Listing 9-6.  Test Connection to DBpedia’s SPARQL Endpoint

import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.sparql.engine.http.QueryExceptionHTTP;
 
public class QueryTest {
 public static void main(String[] args) {
 String service = "http://dbpedia.org/sparql";
 String query = "ASK { }";
 QueryExecution qe = QueryExecutionFactory.sparqlService(service, query);
 try {
 if (qe.execAsk()) {
 System.out.println(service + " is UP");
 }
 } catch (QueryExceptionHTTP e) {
 System.out.println(service + " is DOWN");
 } finally {
 qe.close();
 }
 }
}

As you can see, the service string contains the SPARQL endpoint of DBpedia. Now, run a query to
retrieve people who were born in Eisenach. To achieve this, you need a SELECT SPARQL query that searches
the person objects for dbo:birthPlace: Eisenach, as shown in Listing 9-7.

Listing 9-7.  A SPARQL Query to Run on DBpedia from Jena

String service="http://dbpedia.org/sparql";
String query="PREFIX dbo:<http://dbpedia.org/ontology/>"
 + "PREFIX : <http://dbpedia.org/resource/>"
 + "PREFIX foaf:<http://xmlns.com/foaf/0.1/>"
 + "select ?person ?name where {?person dbo:birthPlace : Eisenach."
 + "?person foaf:name ?name}";
QueryExecution qe=QueryExecutionFactory.sparqlService(service, query);
ResultSet rs=qe.execSelect();
while (rs.hasNext()){
 QuerySolution s=rs.nextSolution();
 Resource r=s.getResource("?person");
 Literal name=s.getLiteral("?name");
 System.out.println(s.getResource("?person").toString());
 System.out.println(s.getLiteral("?name").getString());
}

The result should contain the people who were born in Eisenach, such as Johann Sebastian Bach.

Summary
In this chapter, you analyzed four complex Semantic Web examples. You saw how to map a relational
database table to RDF, describe a process in OWL-S, model a Semantic Web Service in WSMO, and, finally,
query an LOD dataset programmatically from Apache Jena.

Chapter 9 ■ Use Cases

226

By having read this book, you now understand the core Semantic Web concepts and mathematical
background based on graph theory and Knowledge Representation. You learned how to annotate your web
site markup with machine-readable metadata from Schema.org, DBpedia, GeoNames, and Wikidata to
boost site performance on Search Engine Result Pages. By now, you can write advanced machine-readable
personal descriptions, using vCard-based hCard, FOAF, Schema.org, and DBpedia. You have seen how to
publish your organization’s data with semantics, to reach wider audiences, including HTML5 Microdata
or JSON-LD annotations for your company, products, services, and events to be considered by Google
for inclusion in the Knowledge Graph. You know how to serialize structured data as HTML5 Microdata,
RDF/XML, Turtle, Notation3, and JSON-LD and create machine-readable vocabularies and ontologies in
RDFS and OWL. You have learned to contribute to the Open Data and Open Knowledge initiatives and
know how to publish your own LOD datasets. You know how to set up your programming environment for
Semantic Web application development and write programs in Java, Ruby, and JavaScript using popular
APIs and software libraries such as Apache Jena and Sesame. You also learned how to store and manipulate
data in triplestores and quadstores and became familiar with the most popular graph databases, such as
AllegroGraph and Neo4j. You are capable of describing and modeling Semantic Web Services with OWL-S,
WSDL, WSML, and WS-BPEL. You can run complex SPARQL queries on large LOD datasets, such as
DBpedia and Wikidata, and even encourage data reuse with your own easy-to-access OpenLink Virtuoso,
Fuseki, or 4store SPARQL endpoint. Finally, you learned about Big Data applications leveraging Semantic
Web technologies, such as the Google Knowledge Vault, the Facebook Social Graph, IBM Watson, and the
Linked Data Service of the largest library in the world.

References 

	 1.	 Das, S., Sundara, S., Cyganiak, R. (eds.) (2012) R2RML Processors and Mapping
Documents. In: R2RML: RDB to RDF Mapping Language. www.w3.org/TR/
r2rml/#dfn-r2rml-mapping. Accessed 1 May 2015.

	 2.	 Arenas, A., Bertails, A., Prud’hommeaux, E., Sequeda, J. (eds.) (2012) Direct
Mapping of Relational Data to RDF. www.w3.org/TR/rdb-direct-mapping/.
Accessed 1 May 2015.

	 3.	 Antidot (2015) db2triples. https://github.com/antidot/db2triples.
Accessed 1 May 2015.

	 4.	 OpenLink Software (2015) Virtuoso Universal Server.
http://virtuoso.openlinksw.com. Accessed 1 May 2015.

	 5.	 Inkster, T. (2015) RDF-RDB2RDF—map relational database to RDF declaratively.
https://metacpan.org/release/RDF-RDB2RDF. Accessed 1 May 2015.

	 6.	 Calbimonte, J.-P. (2015) morph. https://github.com/jpcik/morph.
Accessed 1 May 2015.

	 7.	 Capsenta (2015) Ultrawrap. http://capsenta.com. Accessed 1 May 2015.

	 8.	 Martin, D. et al. (2004) Service Profiles. In: OWL-S: Semantic Markup for
Web Services. www.w3.org/Submission/OWL-S/. Accessed 1 May 2015.

http://www.w3.org/TR/r2rml/%23dfn-r2rml-mapping
http://www.w3.org/TR/r2rml/%23dfn-r2rml-mapping
http://www.w3.org/TR/rdb-direct-mapping/
https://github.com/antidot/db2triples
http://virtuoso.openlinksw.com
https://metacpan.org/release/RDF-RDB2RDF
https://github.com/jpcik/morph
http://capsenta.com
http://www.w3.org/Submission/OWL-S/

	Chapter 9: Use Cases
	 RDB to RDF Direct Mapping
	 A Semantic Web Service Process in OWL-S to Charge a Credit Card
	 Modeling a Travel Agency Web Service with WSMO
	 Querying DBpedia Using the RDF API of Jena
	 Summary
	 References
	

