
173

Chapter 7

Querying

While machine-readable datasets are published primarily for software agents, automatic data extraction
is not always an option. Semantic Information Retrieval often involves users searching for the answer to a
complex question, based on the formally represented knowledge in a dataset or database. While Structured
Query Language (SQL) is used to query relational databases, querying graph databases and flat Resource
Description Framework (RDF) files can be done using the SPARQL Protocol and RDF Query Language
(SPARQL), the primary query language of RDF, which is much more powerful than SQL. SPARQL is a
standardized language capable of querying local and online RDF files, Linked Open Data (LOD) datasets,
and graph databases; constructing new RDF graphs, based on the information in the queried graphs; adding
new RDF statements to or deleting triples from a graph; inferring logical consequences; and federating
queries across different repositories. SPARQL can query multiple data sources at once, to dynamically merge
the smaller graphs into a large supergraph. While graph databases often have a proprietary query language
(often based on or extending SPARQL), most publicly available datasets have a SPARQL endpoint, from
which you can run SPARQL queries. As for the developers, many Semantic Web software tools provide a
SPARQL application programming interface (API) for programmatic access.

SPARQL: The Query Language for RDF
As mentioned before, the primary query language of RDF is SPARQL (pronounced “sparkle,” a recursive
acronym for SPARQL Protocol and RDF Query Language), which can be used to retrieve and manipulate
information stored in RDF or in any format that can be retrieved as RDF [1]. The output can be a result set or
an RDF graph.

Structure and Syntax
SPARQL uses a Notation3-like syntax. The URIs can be written in full between the less than (<) and greater
than (>) characters (see Listing 7-1) or abbreviated using the namespace mechanism with the PREFIX
keyword (see Listing 7-2).

Listing 7-1. Full URI Syntax in SPARQL

<http://example.com>

Listing 7-2. Using the Namespace Mechanism in SPARQL

PREFIX schema: <http://schema.org/>

http://schema.org/

Chapter 7 ■ Querying

174

After declaring the Schema.org namespace (http://schema.org/), for example, http://schema.org/
Person can be abbreviated as schema:Person. The default namespace of a SPARQL query can be set by
using the PREFIX directive with no prefix (e.g., PREFIX : <http://yourdefaultnamespace.com/>),
so that you can use empty prefixes in your queries, such as ?a :knows ?b. Similar to N3, the URI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type or rdf:type can be abbreviated as a. Literals can
be written with or without a language tag and typing. Plain string literals are delimited by quotation marks,
such as "a plain literal", while plain literals including a language tag end in the @ sign and the standard
language code, such as "Wagen"@de (the word car in German). Typed literals are written analogously to
the typed literals in RDF, as, for example, "55"^^xsd:integer (55 is an integer number rather than two
meaningless characters in a string literal). Frequently used typed literals can be abbreviated such that
"true"^^xsd:boolean corresponds to true, while integer and decimal numbers are automatically assumed
to be of type xsd:integer or xsd:decimal, respectively. As a consequence, "5"^^xsd:integer can be
abbreviated as 5, while "13.1"^^xsd:decimal can be written as 13.1.

Each SPARQL query has a head and a body. The head of a SPARQL query is an expression for
constructing the answer for the query. The evaluation of a query against an RDF graph is performed by
checking whether the body is matched against the graph, which results in a set of bindings for the variables
in the body. These bindings are processed using relational operators such as projection and distinction to
generate the output for the query. The body can be a simple triple pattern expression or a complex RDF
graph pattern expression containing triple patterns, such as subject-predicate-object RDF triples, where
each subject, predicate, or object can be a variable. The body can also contain conjunctions, disjunctions,
optional parts, and variable value constraints (see Figure 7-1).

Figure 7-1. The structure of SPARQL queries

http://schema.org/
http://schema.org/Person
http://schema.org/Person
http://yourdefaultnamespace.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 7 ■ Querying

175

The BASE directive, the namespace declarations (PREFIX), the dataset declaration (FROM, FROM NAMED),
and the query modifiers (GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET, BINDINGS) are optional. The BASE
directive and the list of prefixes are used to abbreviate URIs. The BASE keyword defines the base URI against
which all relative URIs in the query are resolved. The list of prefixes can contain an arbitrary number of
PREFIX statements. The prefix abbreviation pref preceding the semicolon represents the prefix URI, which
can be used throughout the SPARQL query, making it unnecessary to repeat long URIs (standard namespace
mechanism). The FROM clause specifies the default graph to search. The FROM NAMED clause can be used to
specify a named graph to query. In some cases, as, for example, when the SPARQL endpoint used for the
query is dedicated to the LOD dataset from which you want to retrieve data, the FROM clause is optional and
can be safely omitted. The WHERE clause specifies the patterns used to extract the desired results. The query
modifiers, such as ORDER BY or LIMIT, if present, are in the last part of the query.

SPARQL 1.0 and SPARQL 1.1
The first version of SPARQL, SPARQL 1.0, was released in 2008 [2]. SPARQL 1.0 introduced the SPARQL
grammar, the SPARQL query syntax, the RDF term constraints, the graph patterns, the solution sequences
and solution modifiers, and the four core query types (SELECT, CONSTRUCT, ASK, and DESCRIBE). SPARQL 1.0
has been significantly extended with new features in SPARQL 1.1 [3].

For example, SPARQL 1.1 supports aggregation. To perform aggregation, first you have to segregate the
results into groups, based on the expression(s) in the GROUP BY clause. Then, you evaluate the projections
and aggregate functions in the SELECT clause, to get one result per group. Finally, the aggregated results have
to be filtered in a HAVING clause.

The SPARQL 1.1 Update language supports graph update operations (INSERT DATA, DELETE DATA,
DELETE/INSERT, LOAD, CLEAR) and graph management operations (CREATE, DROP, COPY, MOVE, and ADD) [4].
The INSERT DATA operation adds some triples written inline in the request into the graphstore. The DELETE
DATA operation is used to remove RDF triples, if the respective graphs in the graphstore contain them. The
DELETE/INSERT operation can be used to remove triples from, or add triples to, the graphstore, based on
bindings for a query pattern specified in a WHERE clause. The LOAD operation reads an RDF document from
an internationalized resource identifier (IRI) and inserts its triples into the specified graph in the graphstore.
The CLEAR operation removes all the triples in the specified graph(s) in the graphstore. The CREATE operation
creates a new graph in the graphstore. The DROP operation removes a graph and all of its contents. The COPY
operation modifies a graph to contain a copy of another graph. In other words, it inserts all data from an
input graph into a destination graph. The MOVE operation moves all of the data from one graph into another
graph. The ADD operation reproduces all data from one graph into another graph. It is also possible to update
RDF graphs through a protocol known as the SPARQL 1.1 Uniform HTTP Protocol [5].

The SPARQL 1.1 Service Description specification [6] provides a method for discovering information
about SPARQL services, such as the supported extension functions, and details of the default dataset. It also
has a vocabulary for describing SPARQL services, which has the namespace IRI http://www.w3.org/ns/
sparql-service-description# and the prefix sd. In Semantic Web applications, it is not always possible to
explicitly write graph structures for graph pattern matching, and that is why SPARQL 1.1 defines semantic
entailment relations called entailment regimes [7]. These standard semantic entailment relations can
be used in applications that rely on RDF statements inferred from explicitly given assertions, so that the
graph pattern matching is performed using semantic entailment relations instead of explicitly given graph
structures. SPARQL 1.1 supports additional serialization formats for the query output, including JSON [8],
CSV, and TSV [9], beyond the formats supported by SPARQL 1.0, such as XML [10]. Beyond the four core
SPARQL query types introduced in SPARQL 1.0, SPARQL 1.1 also supports reasoning queries and federated
queries, as you will see in the next section.

http://www.w3.org/ns/sparql-service-description
http://www.w3.org/ns/sparql-service-description

Chapter 7 ■ Querying

176

Query Types
The optional namespace declarations are followed by the query. The four core query types in SPARQL are the
SELECT, the ASK, the CONSTRUCT, and the DESCRIBE queries. SELECT queries provide a value selection for the
variables matching the query patterns. The yes/no queries (ASK queries) provide a Boolean value. CONSTRUCT
queries create new RDF data from the above values, as well as resource descriptions. DESCRIBE queries return a
new RDF graph containing matched resources. The most frequently used SPARQL queries are the SELECT queries.

Beyond the basic query types, SPARQL 1.1 also supports reasoning through REASON queries and executes
queries distributed over different SPARQL endpoints (federated queries), using the SERVICE keyword [11].

Pattern Matching
The query output result clause is followed by the pattern matching. Two different pattern types can be used
in SPARQL queries: the triple patterns and the graph patterns. The SPARQL triple patterns are similar to
the subject-predicate-object triples of RDF, but they can also include variables. This makes it possible to
select RDF triples from an RDF graph that match your criteria described in the pattern. Any or all subject,
predicate, or object values can be variables, all of which are identified by a question mark1 preceding the
string, such as ?name. To match an exact RDF triple, you have to write the subject-predicate-object names
followed by a ., such as shown in Listing 7-3.

Listing 7-3. Exact RDF Triple Matching in SPARQL

ex:Person schema:familyName "Sikos" .

To match one variable, you have to substitute the appropriate triple component (the subject, the
predicate, or the object) with a variable (see Listing 7-4).

Listing 7-4. Matching One Variable in SPARQL

?person schema:familyName "Sikos" .

A variable is not limited to any part of the triple pattern. You can substitute any triple components
(the subject, the predicate, or the object) with variables (see Listing 7-5).

Listing 7-5. Matching Multiple Variables in SPARQL

?person schema:familyName ?name .

Even all components can be variables. For instance, the triple pattern ?subject ?object ?name will
match all triples in your RDF graph. Sometimes, much more complex selection rules are required than
what you can express in a single triple pattern. A collection of triple patterns is called a graph pattern and is
delimited by curly braces (see Listing 7-6).

Listing 7-6. A Graph Pattern in SPARQL

{
 ?who schema:name ?name.
 ?who iswc:research_topic ?research_topic.
 ?who foaf:knows ?others.
}

1Alternatively, the dollar sign ($) can be used.

Chapter 7 ■ Querying

177

Graph patterns can be used for matching optional parts, creating a union of patterns, nesting, filtering
values of possible matchings, and choosing the data source to be matched by the pattern. As a result, a graph
pattern will find all resources with all the desired properties written in the pattern. Graph patterns make it
possible to write complex queries, because each returned resource can be substituted into all occurrences of
the variable, in case the same variable is used in multiple triple patterns. This leads to a truly sophisticated
selection unknown to the conventional Web, whereby you cannot use multiple filtering in searches beyond
some basic operators, such as AND, OR, or XOR. However, SPARQL supports filter functions too, including
logical (!, &&, ||, =, !=, <, <=, >, and >=) and mathematical operations (+, -, *, /), as well as comparisons
(=, !=, >, <). SPARQL has built-in tests for checking web addresses, blank graph nodes, literals, and bounds
(isURI, isBlank, isLiteral, bound), accessors such as str, datatype, and lang (see Listing 7-7), and other
functions, such as sameTerm, langMatches, and regex, for checking same terms, language matching, and
writing regular expressions.

Listing 7-7. Language Checking in SPARQL

lang(?title)="en"

Beyond the SPARQL 1.0 operators and functions, SPARQL 1.1 also supports existence-checking
functions (EXISTS, NOT EXISTS), both of which can be used as part of a graph pattern (such as in Listing 7-8,
to find persons who do not have an e-mail address) as well as in FILTER expressions.

Listing 7-8. Existence Checking in a Graph Pattern

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 NOT EXISTS { ?person foaf:mbox ?email }
}

SPARQL 1.1 also has additional functions, such as COUNT, SUM, AVG, MIN, MAX, SAMPLE, and GROUP_CONCAT.
Furthermore, SPARQL 1.1 supports property paths that allow triple patterns to match arbitrary-length paths
through a graph. Predicates are combined with operators similar to regular expressions (see Table 7-1).

Table 7-1. Property Path Constructs in SPARQL 1.1

Construct Meaning

path1/path2 Forwards path (path1 followed by path2)

^path1 Backwards path (object to subject)

path1|path2 Either path1 or path2

path1* path1, repeated zero or more times

path1+ path1, repeated one or more times

path1? path1, optionally

path1{m,n} At least m and no more than n occurrences of path1

path1{n} Exactly n occurrences of path1

path1{m,} At least m occurrences of path1

path1{,n} At most n occurrences of path1

Chapter 7 ■ Querying

178

Solution Modifiers
The last optional part of the SPARQL queries are the solution modifiers. Once the output of the pattern has
been computed (in the form of a table of values of variables), solution modifiers allow you to modify these
values, applying standard classical operators such as projection,2 DISTINCT (removes duplicates), ORDER
(sorting mechanism), and LIMIT (sets the maximum number of results returned).

SELECT Queries
The most common SPARQL queries are the SELECT queries. The SELECT clause specifies data items
(variable bindings) to be returned by the SPARQL query. Even through LOD datasets can contain thousands
or even millions of RDF triples, you can select those items that meet your criteria. For example, from a
writer’s dataset, you can list those writers who lived in the 20th century or those who are American. SPARQL
supports joker characters, so you can select all variables mentioned in the query, using SELECT *. If you want
to eliminate potential duplicates, use the DISTINCT keyword after SELECT, such as SELECT DISTINCT ?var.
SELECT queries are often used to extract triples through specific variables and expressions. For example,
assume we need a query to extract all names mentioned in someone’s FOAF file declared using foaf:name.
The abbreviation of the namespace requires a PREFIX declaration. The query is a SELECT query, which uses
a variable for the names (?name), and a WHERE clause with a triple pattern to find all subjects (?person) and
objects (?name) linked with the foaf:name predicate (see Listing 7-9).

Listing 7-9. A SELECT Query to Find Subjects and Objects Linked with a Declared Predicate

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 ?person foaf:name ?name .
}

If we need all those people from an FOAF file who have an e-mail address specified, we have to declare
two predicates, one for the name (foaf:name) and another for the e-mail address (foaf:mbox), while all the
subjects (?person) and objects (?name, ?email) are variables (see Listing 7-10).

Listing 7-10. A SELECT Query to Find Subjects and Objects Linked with Two Different Predicates

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
 ?person foaf:name ?name .
 ?person foaf:mbox ?email .
}

The output will contain all the names and e-mail addresses.

2Only those expressions that consist of aggregates and constants can be projected in SPARQL query levels using
aggregates. The only exception is using GROUP BY with one or more simple expressions consisting of one variable only,
which variable can be projected from that level.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Chapter 7 ■ Querying

179

 ■ Note if the persons are described using Schema.org/Person, the names can be expressed using the
givenName and familyName properties, and the e-mail address using the email property, while the namespace
has to be modified to http://schema.org/.

The results of the SELECT queries are typically displayed as a table of values (in HTML, XML, or JSON).

Filtering
If we have to extract all those landlocked countries from DBpedia that have a population larger than 5
million, we need the FILTER keyword in the WHERE clause (see Listing 7-11).

Listing 7-11. A SELECT Query with a Filter to Extract All Landlocked Countries from DBpedia with More
Than 5 Million Inhabitants

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
 ?country a type:LandlockedCountries ;
 rdfs:label ?country_name ;
 prop:populationEstimate ?population .
 FILTER (?population > 5000000) .
}

The Boolean condition(s) provided will filter out the unwanted query results, in this case, all those
landlocked countries that have fewer than 5 million inhabitants.

 ■ Note the preceding example uses the ; shortcut to separate triple patterns sharing the same subject
?country.

ASK Queries
If you need the answer to a yes/no question, you can use the ASK query in SPARQL. For instance, you can
query DBpedia to find out whether the Amazon is longer than the Nile (see Listing 7-12).

Listing 7-12. An ASK Query in SPARQL

PREFIX prop: <http://dbpedia.org/property/>
ASK
{
 <http://dbpedia.org/resource/Amazon_River> prop:length ?amazonLength .
 <http://dbpedia.org/resource/Nile> prop:length ?nileLength .
 FILTER(?amazon > ?nile) .
}

The result of ASK queries is either true or false. In our example, the output is true.

http://schema.org/
http://www.w3.org/2000/01/rdf-schema
http://dbpedia.org/class/yago/
http://dbpedia.org/property/
http://dbpedia.org/property/
http://dbpedia.org/resource/Amazon_River
http://dbpedia.org/resource/Nile

Chapter 7 ■ Querying

180

CONSTRUCT Queries
SPARQL can be used not only to retrieve information from datasets but also to create new graphs, or to
reshape existing RDF graphs by adding new triples. Such queries are called CONSTRUCT queries. Assume
you want to extend your family tree description by adding a grandmother. To do so, you have to identify the
gender and parent-child relationships of the other family members (see Listing 7-13).

Listing 7-13. Preparing a CONSTRUCT Query

:Ben :hasParent :Christina ;
 :gender :male .
:Luke :hasParent :Linda ;
 :gender :male .
:Christina :hasParent :Anna ;
 :gender :female .
:Linda :hasParent :Anna ;
 :gender :female .
:Anna :gender :female .

The next step is to run a CONSTRUCT query to create new triples based on the preceding ones, to specify
who is whose grandmother (see Listing 7-14).

Listing 7-14. A CONSTRUCT Query

PREFIX : <http://samplefamilytreeonto.com/>

CONSTRUCT { ?p :hasGrandmother ?g . }

WHERE {?p :hasParent ?parent .
 ?parent :hasParent ?g .
 ?g :gender :female .}

The newly constructed triples describe the relationship between the two grandchildren and their
grandmother (see Listing 7-15).

Listing 7-15. A CONSTRUCT Query Generates New Triples

:Ben
 :hasGrandmother :Anna .

:Luke
 :hasGrandmother :Anna .

DESCRIBE Queries
The DESCRIBE queries describe the resources matched by the given variables. For example, if you run a
DESCRIBE query on a dataset of countries (see Listing 7-16), the output will be all the triples related to the
queried country (see Listing 7-17).

Listing 7-16. A DESCRIBE Query

DESCRIBE ?country

http://samplefamilytreeonto.com/

Chapter 7 ■ Querying

181

Listing 7-17. The Output of a DESCRIBE Query

ex:Hungary a geo:Country;
ex:continent geo:Europe;
ex:flag <http://yourwebsite.com/img/flag-hun.png> ;
…

Federated Queries
In SPARQL 1.1, queries can issue a query on another SPARQL endpoint during query execution. These queries
are called federated queries, in which the remote SPARQL endpoint is declared by the SERVICE keyword, which
sends the corresponding part of the query to the remote SPARQL endpoint. For example, if the remote SPARQL
endpoint is DBpedia’s endpoint, a federated query can be written as shown in Listing 7-18.

Listing 7-18. A Federated Query in SPARQL 1.1

SELECT DISTINCT ?person
WHERE {
 SERVICE <http://dbpedia.org/sparql> { ?person a <http://schema.org/Person> . }
} LIMIT 10

A sample output of this query is shown in Listing 7-19, identifying ten persons from DBpedia.

Listing 7-19. Federated Query Result Example

| person |
===
| <http://dbpedia.org/resource/%C3%81ngel_Gim%C3%A9nez> |
| <http://dbpedia.org/resource/Aaron_Lines> |
| <http://dbpedia.org/resource/Abel_Lafleur> |
| <http://dbpedia.org/resource/Ada_Maimon> |
| <http://dbpedia.org/resource/Adam_Krikorian> |
| <http://dbpedia.org/resource/Albert_Constable> |
| <http://dbpedia.org/resource/Alex_Reid_(actress)> |
| <http://dbpedia.org/resource/Alex_Reid_(art_dealer)> |
| <http://dbpedia.org/resource/Alex_Reid_(fighter)> |
<http://dbpedia.org/resource/Alex_Reid_(footballer)>

REASON Queries
In SPARQL 1.1, reasoning can be performed by executing a SPARQL query with the REASON keyword,
followed by a rule set in an ontology or declarative language (declared as a URL to a rule delimited by <> or
inline N3 rules between curly braces), and a combination of an OVER and a WHERE clause to define the triples
for reasoning.

For example, to list all the acquaintances of Leslie Sikos from two different datasets, you can write a
federated query with reasoning, as shown in Listing 7-20, regardless of whether Leslie Sikos listed them as
acquaintances or other people stated that they know him.

http://yourwebsite.com/img/flag-hun.png
http://dbpedia.org/sparql
http://schema.org/Person
http://dbpedia.org/resource/%C3%81ngel_Gim%C3%A9nez
http://dbpedia.org/resource/Aaron_Lines
http://dbpedia.org/resource/Abel_Lafleur
http://dbpedia.org/resource/Ada_Maimon
http://dbpedia.org/resource/Adam_Krikorian
http://dbpedia.org/resource/Albert_Constable
http://dbpedia.org/resource/Alex_Reid_(actress
http://dbpedia.org/resource/Alex_Reid_(art_dealer
http://dbpedia.org/resource/Alex_Reid_(fighter
http://dbpedia.org/resource/Alex_Reid_(footballer

Chapter 7 ■ Querying

182

Listing 7-20. Find Acquaintances Regardless of the Relationship Direction

REASON {
 { ?x foaf:knows ?y } => { ?y foaf:knows ?x }
}
OVER {
 :LeslieSikos foaf:knows ?person .
}
WHERE {
 {
 SERVICE <http://examplegraph1.com/sparql> { :LeslieSikos foaf:knows ?person . }
 } UNION {
 SERVICE <http://examplegraph2.com/sparql> { :LeslieSikos foaf:knows ?person . }
 }
}

URL Encoding of SPARQL Queries
In order to provide the option for automated processes to make SPARQL queries, SPARQL can be used
over HTTP, using the SPARQL Protocol (abbreviated by the P in SPARQL). SPARQL endpoints can handle
a SPARQL query with parameters of an HTTP GET or POST request. The query is URL-encoded to escape
special characters and create the query string as the value of the query variable. The parameters are defined
in the standardized SPARQL Protocol [12]. As an example, take a look at the default DBpedia SPARQL
endpoint (http://dbpedia.org/sparql/) query shown in Listing 7-21.

Listing 7-21. A URL-Encoded SPARQL Query

http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=select+distinct+
%3FConcept+where+{[]+a+%3FConcept}+LIMIT+100&format=text%2Fhtml&timeout=30000&debug=on

 ■ Note the second parameter (default-graph-uri) is DBpedia’s proprietary implementation, which extends
the standard urL-encoded SparQL query.

Graph Update Operations
In SPARQL 1.1, new RDF triples can be added to a graph, using the INSERT DATA operation. If the destination
graph does not exist, it is created. As an example, assume there are two RDF statements about a book in a
graph, title and format (see Listing 7-22).

Listing 7-22. Data Before the INSERT DATA Operation

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix schema: <http://schema.org/> .

<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:title
 "Mastering Structured Data on the Semantic Web" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback .

http://examplegraph1.com/sparql
http://examplegraph2.com/sparql
http://dbpedia.org/sparql/
http://dbpedia.org/sparql?default-graph-uri=http%253A%252F%252Fdbpedia.org%26query=select%2bdistinct%2b%253FConcept%2bwhere%2b%7b%5b%5d%2ba%2b%253FConcept%7d%2bLIMIT%2b100%26format=text%252Fhtml%26timeout=30000%26debug=on
http://dbpedia.org/sparql?default-graph-uri=http%253A%252F%252Fdbpedia.org%26query=select%2bdistinct%2b%253FConcept%2bwhere%2b%7b%5b%5d%2ba%2b%253FConcept%7d%2bLIMIT%2b100%26format=text%252Fhtml%26timeout=30000%26debug=on
http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/

Chapter 7 ■ Querying

183

To add two new triples to this graph about the author and the language the book was written in, you can
use the INSERT DATA operation, as shown in Listing 7-23. Because the subject is the same for both triples, it
has to be declared just once in a semicolon-separated list.

Listing 7-23. Adding New Triples to a Graph, Using the INSERT DATA Operation

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX schema: <http://schema.org/>

INSERT DATA
{
 <http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:creator
 "Leslie Sikos" ;
 schema:inLanguage "English" .
}

As a result, the graph will contain four triples about the book, as demonstrated in Listing 7-24.

Listing 7-24. Data After the INSERT DATA Operation

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix schema: <http://schema.org/> .

<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:title
 "Mastering Structured Data on the Semantic Web" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:creator
 "Leslie Sikos" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:inLanguage
 "English" .

SPARQL 1.1 also supports the removal of RDF triples, using the DELETE DATA operation. For example,
to remove the book format and the language of the book from Listing 7-24, you declare the prefixes, use the
DELETE DATA operation, and list the statements to remove (see Listing 7-25).

Listing 7-25. Removing Triples from a Graph, Using the DELETE DATA Operation

PREFIX schema: <http://schema.org/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA
{
 <http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback ; dc:inLanguage "English" .
}

Graph Management Operations
In SPARQL 1.1, RDF statements can be copies from the default graph to a named graph using the COPY
operation. As an example, assume we have the triples shown in Listing 7-26.

http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://schema.org/
http://purl.org/dc/elements/1.1/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/

Chapter 7 ■ Querying

184

Listing 7-26. Data Before Copying

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

Graph http://examplenamedgraph.com

<http://examplenamedgraph.com/Christina> a foaf:Person .
<http://examplenamedgraph.com/Christina> foaf:givenName "Christina" .

All triples of the default graph can be copied to the named graph with the COPY operation, as shown in
Listing 7-27.

Listing 7-27. A COPY DEFAULT TO Operation SPARQL 1.1

COPY DEFAULT TO <http:/examplenamedgraph.com>

The result of the COPY DEFAULT TO operation is shown in Listing 7-28.

Listing 7-28. Data After the COPY DEFAULT TO Operation

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

 ■ Note the original content of the named graph is lost by the COPY operation.

Similarly, RDF statements can be moved from the default graph to a named graph, using the MOVE
operation. For example, assume you have the data shown in Listing 7-29.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplegraph.com/Leslie

Chapter 7 ■ Querying

185

Listing 7-29. Data Before the MOVE DEFAULT TO Operation

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Nathan> a foaf:Person .
<http://examplegraph.com/Nathan> foaf:givenName "Nathan" .
<http://examplegraph.com/Nathan> foaf:mbox <mailto:nathan@examplegraph.com> .

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Peter> a foaf:Person .
<http://examplenamedgraph.com/Peter> foaf:givenName "Peter" .

To move all RDF statements from the default graph into a named graph, you can use the MOVE operation,
as shown in Listing 7-30.

Listing 7-30. A MOVE DEFAULT TO Operation

MOVE DEFAULT TO http://examplenamedgraph.com

 ■ Note the original content of the named graph is lost by the MOVE operation (see Listing 7-31).

Listing 7-31. Data After the MOVE DEFAULT TO Operation

Default Graph

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Nathan> a foaf:Person .
<http://examplegraph.com/Nathan> foaf:givenName "Nathan" .
<http://examplegraph.com/Nathan> foaf:mbox <mailto:nathan@examplegraph.com> .

RDF statements can be inserted from an input graph to a destination graph, using the ADD operation.
Listing 7-32 shows sample RDF triples to be added from the default graph to a named graph.

Listing 7-32. Data Before the ADD Operation

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@examplegraph.com> .

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplenamedgraph.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Chapter 7 ■ Querying

186

Graph http://examplenamedgraph.com
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Jemma> a foaf:Person .

The ADD operation in Listing 7-33 performs the task.

Listing 7-33. An ADD Operation in SPARQL 1.1

ADD DEFAULT TO <http://examplenamedgraph.com>

As a result, the default graph is merged to the named graph (see Listing 7-34).

Listing 7-34. The Result of an ADD Operation

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@examplegraph.com> .

Graph http://examplenamedgraph.com
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Jemma> a foaf:Person .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@example> .

Proprietary Query Engines and Query Languages
While most Semantic Web platforms and graph databases have SPARQL support through a SPARQL query
engine such as Apache Jena’s ARQ or AllegroGraph’s sparql-1.1, some vendors provide their own query
language. Many of these query languages are partially compatible with, or similar to, SPARQL but are often
incompatible with other Semantic Web software products beyond the ones they are released with.

SeRQL: The Sesame RDF Query Language
Sesame supports not only SPARQL but also SeRQL (pronounced “circle”), the Sesame RDF Query
Language [13]. Regardless of whether you have a connection to a local or remote Sesame repository, you
can perform a SeRQL query on a SesameRepository object, retrieve the result as a table, and display the
values (see Listing 7-35).

Listing 7-35. A SeRQL Query, Using the Sesame Repository API

String query = "SELECT * FROM {x} p {y}";
QueryResultsTable resultsTable = myRepository.performTableQuery(QueryLanguage.SERQL, query);

int rowCount = resultsTable.getRowCount();
int columnCount = resultsTable.getColumnCount();

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplenamedgraph.com/Jemma

Chapter 7 ■ Querying

187

for (int row = 0; row < rowCount; row++) {
 for (int column = 0; column < columnCount; column++) {
 Value value = resultsTable.getValue(row, column);

 if (value != null) {
 System.out.print(value.toString());
 }
 else {
 System.out.print("null");
 }

 System.out.print("\t");
 }

 System.out.println();
}

 ■ Note Some repository operations require elevated privileges, so you might have to log on to the
SesameService before obtaining the repository object. For instance, if you do not have read access to a
repository, you will get an AccessDeniedException.

If you have to change a lot of RDF triples in your repository, you can use the Sesame Graph API in
combination with SeRQL CONSTRUCT queries. For instance, if we have a repository that describes the
manuscript of a book with many triples, and the book has been published since the last update of the
repository, there are many obsolete property values (draft) for the PublicationStatus property from the
Publishing Status Ontology (PSO) that should be changed to published. Rather than changing the property
values manually for each affected triple, we derive the new triples from the existing PublicationStatus
statements, changing the object of these statements from draft to published (see Listing 7-36).

Listing 7-36. Changing Multiple Property Values, Using the Sesame Graph API

myRepository.addGraph(QueryLanguage.SERQL,
"CONSTRUCT {X} <http://purl.org/spar/pso/PublicationStatus> {\"published\"} " +
"FROM {X} <http://purl.org/spar/pso/PublicationStatus> {\"draft\"}");

Now all the triples are updated with the new property value; however, these triples are duplicated.
The original triples with the obsolete property value have to be removed from the graph. To do so, we select
all PublicationStatus triples with the object draft (the old value) and remove these triples from the
repository (see Listing 7-37).

Listing 7-37. Removing All Triples with the Obsolete Property Value

myRepository.removeGraph(QueryLanguage.SERQL,
"CONSTRUCT * " + "FROM {X} <http://purl.org/spar/pso/PublicationStatus> {\"draft\"}";

 ■ Note this workaround is needed only because SerQL does not support update operations. another option
to update a Sesame repository is using the SaiL api.

http://purl.org/spar/pso/PublicationStatus
http://purl.org/spar/pso/PublicationStatus
http://purl.org/spar/pso/PublicationStatus

Chapter 7 ■ Querying

188

CQL: Neo4j’s Query Language
Neo4j has a proprietary query language called Cypher Query Language (CQL), a declarative pattern-
matching language with an SQL-like, very simple, and human-readable syntax [14]. The most frequently
used Neo4j CQL commands and clauses are CREATE (to create nodes, relationships, and properties), MATCH
(to retrieve data about nodes, relationships, and properties), RETURN (to return query results), WHERE
(to provide conditions to filter retrieval data), DELETE (to delete nodes and relationships), REMOVE (to delete
properties of nodes and relationships), ORDER BY (to sort retrieval data), and SET (to add or update labels).
The most frequently used Neo4j CQL functions are String (to work with String literals), Aggregation
(to perform some aggregation operations on CQL Query results), and Relationship (to get details of
Relationships such as startnode and endnode). The data types of Neo4j CQL are similar to the Java
programming language. The datatypes are used to define properties of nodes and relationships, such as
boolean, byte, short, int, long, float, double, char, and string.

The MATCH command identifies a node through the node name and the node label. The MATCH command
expects the node name and the label name as the arguments in curly brackets separated by a colon
(see Listing 7-38).

Listing 7-38. MATCH Command Syntax

MATCH
(
 node-name:label-name
)

The RETURN clause is used in CQL, with the MATCH command, to retrieve data about nodes, relationships,
and properties from a Neo4j graph database. The RETURN clause can retrieve some or all properties of a node
and retrieve some or all properties of nodes and associated relationships. The arguments of the RETURN
clause are the node name(s) and property name(s) (see Listing 7-39).

Listing 7-39. RETURN Clause Syntax

RETURN
 node-name.property1-name, … node-name. propertyn-name

For example, to retrieve all property data of the Fac node representing a university’s faculties, you can
combine the MATCH command with the RETURN clause, as shown in Listing 7-40.

Listing 7-40. Retrieving All Faculty Data

MATCH (fac: Fac)
RETURN fac.facno,fac.fname,fac.location

The number of rows returned by the command will be identical to the number of faculties of the
university stored in the database.

Similar to SPARQL, Neo4j’s CQL uses the WHERE clause to get the desired data (see Listing 7-41). Rather
than using the WHERE clause with the SELECT command, however, in CQL, you use it with SELECT’s CQL
equivalent, MATCH.

Listing 7-41. The Syntax of the WHERE Clause in CQL

WHERE condition boolean_operator additional_condition

Chapter 7 ■ Querying

189

The first argument provides the condition, consisting of a property name, a comparison operator, and
a value. The property name is the name of a graph node or the name of a relationship. The comparison
operator is one of = (equal to), <> (not equal to), < (less than), > (greater than), <= (less than or equal to), or
>= (greater than or equal to). The value is a literal value, such as a number, a string literal, etc. The second
and third arguments (the Boolean operator and multiple conditions) are optional. The Boolean operator can
be AND, OR, NOT, or XOR.

To sort rows in ascending order or descending order, use the ORDER BY clause with the MATCH command
(similar to SPARQL’s ORDER BY on the SELECT queries). The ORDER BY clause contains the list of properties
used in sorting, optionally followed by the DESC keyword (when sorting in descending order).

Identify Datasets to Query
To access data from LOD datasets, you can perform a semantic search, browse dataset catalogs, or run
queries directly from a dedicated query interface. For searching machine-readable data, you can use
semantic search engines such as Sindice (http://sindice.com) or FactForge (http://factforge.net).
Third-party data marketplaces such as http://datamarket.com can find open data from secondary data
sources and consume or acquire data for data seekers.

To retrieve information from datasets, you can run SPARQL queries on purpose-built access points
called SPARQL endpoints (as mentioned earlier) that usually provide a web interface and, optionally, an API.
The automatic discovery of the SPARQL endpoint for a given resource is not trivial; however, dataset catalogs
such as http://datahub.io and http://dataportals.org can be queried for a SPARQL endpoint with a
given URI. Because a prerequisite for all LOD datasets to be added to the LOD Cloud Diagram is to provide a
dedicated SPARQL endpoint, Datahub registries often include a SPARQL endpoint URL.

Another approach for identifying SPARQL endpoints is using the VoID standardized vocabulary, which
is specifically designed for describing datasets. In VoID files, the descriptions are provided as URLs, which
can be canonically derived from a URI.

Public SPARQL Endpoints
Many SPARQL endpoints are publicly available and typically have a default LOD dataset set for querying.
Your SPARQL queries will run on the default graph of the endpoint, unless you refer to named graphs in your
queries. For example, DBpedia’s SPARQL endpoint is http://dbpedia.org/sparql/, which runs queries on
DBpedia by default.

 ■ Note DBpedia offers two other interfaces to its SparQL endpoint. the first is called SPARQL Explorer
and is available at http://dbpedia.org/snorql/. the second is the DBpedia Query Builder available at
http://querybuilder.dbpedia.org, which can be used to build your own queries. Because the dataset is the
same in each case, the SparQL query results are identical on all three interfaces.

SPARQL endpoints dedicated to a particular dataset can be domain-specific. Since the Web of Data is
highly distributed, there is no SPARQL endpoint to query the entire Semantic Web (like Google searches on
the conventional Web). However, the most frequently used public SPARQL endpoints can query extremely
large datasets containing millions or even billions of triples, which are suitable to answer complex questions
(see Table 7-2).

http://sindice.com/
http://factforge.net/
http://datamarket.com/
http://datahub.io/
http://dataportals.org/
http://dbpedia.org/sparql/
http://dbpedia.org/snorql/
http://querybuilder.dbpedia.org/

Chapter 7 ■ Querying

190

Setting Up Your Own SPARQL Endpoint
If you publish your LOD dataset on your server, you might want to set up a dedicated SPARQL endpoint to
provide easy access to it. There are a couple of free, open source, and commercial products available, not all
of which have a full SPARQL 1.1 support, but most have a complete SPARQL 1.0 support. Some products are
standalone SPARQL endpoints that you can install on your web server, while others are more comprehensive
products that provide a SPARQL endpoint as a feature. The most widely deployed SPARQL endpoints are
OpenLink Virtuoso, Fuseki, D2R, 4store SPARQL Server, and PublishMyData.

OpenLink Virtuoso
OpenLink Virtuoso is by far the most widely deployed SPARQL endpoint. Among others, Virtuoso is
implemented as the SPARQL endpoint for DBpedia and DBpedia Live, LinkedGeoData, Sindice, the BBC,
BioGateway, data.gov, CKAN, and the LOD Cloud Cache.

The Virtuoso SPARQL Query Editor provides the default LOD dataset associated with a particular
installation, which can be overridden when querying named graphs. For example, the default dataset of the
DBpedia SPARQL endpoint is http://dbpedia.org, as shown in Figure 7-2. This is obviously different in
each installation of Virtuoso, but the interface is usually very similar, if not identical.

The Query Text is a multiline text area in which you can write your SPARQL queries. This textarea
usually contains a skeleton query, which you can easily modify by overwriting, removing, or adding SPARQL
code. Under the textarea, you can select the output format, optionally the maximum time after which the
query execution will stop, and the rigorous check of the query. Some installations offer a set of sample
queries as a drop-down list. You typically have two buttons as well: one to run the query you wrote
(Run Query) and another to clear the textarea (Reset).

The output format drop-down might vary somewhat from installation to installation, but generally, you
have options such as HTML, Spreadsheet, XML, JSON, JavaScript, Turtle, RDF/XML, N-Triples, CSV, TSV,
and CXML. Some of the output formats might not be available, due to configuration or missing components.
For example, the CXML data exchange format suitable for faceted view, which can be displayed by programs
such as Microsoft Pivot, require the Virtuoso Universal Server (Virtuoso Open Source does not contain some
required functions), the ImageMagick plug-in, the QRcode plug-in (before version 0.6; after version 0.6 it is
optional), and the sparql_cxml VAD package to be installed, in order to get this option.

Table 7-2. Popular Public SPARQL Endpoints

Service/Dataset SPARQL Endpoint

Datahub/CKAN http://semantic.ckan.net/sparql

DBpedia http://dbpedia.org/sparql/

GeoNames http://geosparql.org/

Linked Open Commerce http://linkedopencommerce.com/sparql/

Linked Open Data Cloud http://lod.openlinksw.com/sparql

LinkedGeoData http://linkedgeodata.org/sparql

Sindice http://sparql.sindice.com/

URIBurner http://uriburner.com/sparql

http://dbpedia.org/
http://semantic.ckan.net/sparql
http://dbpedia.org/sparql/
http://geosparql.org/
http://linkedopencommerce.com/sparql/
http://lod.openlinksw.com/sparql
http://linkedgeodata.org/sparql
http://sparql.sindice.com/
http://uriburner.com/sparql

Chapter 7 ■ Querying

191

To install the OpenLink Virtuoso SPARQL Endpoint, follow these steps:

 1. Download Virtuoso Open Source from http://virtuoso.openlinksw.com/
dataspace/doc/dav/wiki/Main/VOSDownload or the commercial edition of
Virtuoso from http://virtuoso.openlinksw.com/download/.

 2. For the commercial Windows Open Source Edition, run the installer; otherwise,
create a build.

 3. Verify the installation and the configuration of the environmental variables by
running the virtuoso -? Command.

 4. Start the Virtuoso server with virtuoso-start.sh.

 5. Verify the connection to the Virtuoso Server, using isql localhost (if using the
default DB settings), isql localhost:1112 (assuming demo database), or visit
http://<virtuoso-server-host-name>:[port]/conductor in your browser

 6. Open the SPARQL endpoint at http://<virtuoso-server-host-name>:
[port]/sparql.

 7. Run a test query such as SELECT DISTINCT * WHERE {?s ?p ?o} LIMIT 50.

Figure 7-2. A Virtuoso SPARQL endpoint

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload
http://virtuoso.openlinksw.com/download/

Chapter 7 ■ Querying

192

Fuseki
Fuseki is Apache Jena’s SPARQL server that provides REST-style SPARQL HTTP Update, SPARQL Query, and
SPARQL Update, using the SPARQL protocol over HTTP.

 1. Download the binary distribution from https://jena.apache.org/download/.

 2. Unzip the file.

 3. Set file permission using the chmod +x fuseki-server s-* command.

 4. Run the server by executing the command fuseki-server --update --mem /ds,
which creates an in-memory, non-persistent dataset. If you want to create
an empty, in-memory (non-persistent) dataset and load a file into it, use
--file=FILE instead of --mem.

The default port number of Fuseki is 3030, which can be overridden by the port argument in the form
--port=number. Fuseki not only supports SPARQL 1.1 queries, SPARQL 1.1 update operations, and file
upload to a selected dataset but also provides validators for SPARQL Query and SPARQL Update, as well as
for RDF serializations. To open the control panel of Fuseki, visit http://localhost:3030 in your browser,
click Control Panel, and select the dataset.

The URI scheme of the Fuseki server consists of the host, followed by the dataset and the endpoint,
all of which are separated by a slash.

•	 http://host/dataset/query (SPARQL query endpoint)

•	 http://host/dataset/update (SPARQL UPDATE endpoint)

•	 http://host/dataset/data (SPARQL Graph Store Protocol endpoint)

•	 http://host/dataset/upload (file upload endpoint)

To load some RDF data into the default graph of the server, use the s-put command, as shown in
Listing 7-42.

Listing 7-42. Load RDF Data into the Default Graph of Fuseki

s-put http://localhost:3030/ds/data default books.ttl

To retrieve data from the default graph of the server, use the s-get command (see Listing 7-43).

Listing 7-43. Retrieving Data, Using s-get

s-get http://localhost:3030/ds/data default

The default graph of the server can be queried with SPARQL, using the …/query endpoint employing the
s-query command, as demonstrated in Listing 7-44.

Listing 7-44. SPARQL Querying with Fuseki

s-query --service http://localhost:3030/ds/query 'SELECT * {?s ?p ?o}'

A SPARQL UPDATE query can be executed using the …/update endpoint with s-update. As an example,
let’s clear the default graph, as shown in Listing 7-45.

Listing 7-45. A SPARQL UPDATE Query with Fuseki

s-update --service http://localhost:3030/ds/update 'CLEAR DEFAULT'

https://jena.apache.org/download/

Chapter 7 ■ Querying

193

To use SPARQL 1.1 Query from Java applications, you can use the QueryExecutionFactory.
sparqlService of Apache Jena’s SPARQL query engine, ARQ. For the programmatic access of
SPARQL Update, use UpdateExecutionFactory.createRemote. SPARQL HTTP can be used through
DatasetAccessor.

D2R
The D2R Server is a tool for publishing relational databases as Linked Data, providing access to the database
content through a browser interface and querying the database using SPARQL. D2R performs on-the-fly
transformation of SPARQL queries to SQL queries via a mapping. Among others, D2R is used as the SPARQL
endpoint of Dailymed, a comprehensive, up-to-date dataset of marketed drugs in the United States. The D2R
Server can be installed as follows:

 1. Download the server from http://d2rq.org.

 2. Run the server in one of the following ways:

•	 From the command line (for development or testing), with the syntax shown in
Listing 7-46.

Listing 7-46. Running D2R From the Command Line

d2r-server [--port port] [-b serverBaseURI][--fast] [--verbose]
[--debug] mapping-file.ttl

Because the default port number is 2020, the default server URI is
http://localhost:2020. The fast argument can optionally be used for
performance optimization, the verbose argument for detailed logging, and
debug for full logging. Optionally, you can declare the name of the D2RQ
mapping file to use. If the mapping file is not provided, the database connection
must be specified on the command line, so that a default mapping will be used.

•	 Deploy the D2R Server web application into a servlet container, such as Apache
Tomcat or Jetty (for production).

a) Ensure that the mapping file includes a configuration block,
setting the base URI in the form http://servername/webappname/.
The d2r:Server instance in this file configures the D2R server
(see Listing 7-47).

Listing 7-47. D2R Configuration File Example

@prefix d2r: <http://example.com/d2r-server/config.rdf#> .
@prefix meta: <http://exampe.com/d2r-server/metadata#> .

<> a d2r:Server;
 rdfs:label "My D2R Server";
 d2r:baseURI <http://localhost:2020/>;
 d2r:port 2020;
 d2r:vocabularyIncludeInstances true;

 d2r:sparqlTimeout 300;
 d2r:pageTimeout 5;

http://d2rq.org/
http://servername/webappname/

Chapter 7 ■ Querying

194

 meta:datasetTitle "My Dataset" ;
 meta:datasetDescription "This dataset contains Semantic Web
 publication resources." ;
 meta:datasetSource "The dataset covers publications from all related
 datasets such as XY." ;

 meta:operatorName "John Smith" ;
 .

The d2r:Server instance supports a variety of configuration properties.
The human-readable server name can be provided using rdfs:label.
The base URI of the server can be declared using d2r:baseURI (the
equivalent of the –b command line parameter). The port number of the
server can be added as d2r:port (same as --port in the command line).
By default, the RDF and HTML representations of vocabulary classes are
also list instances, and the property representations are also list triples
using the property. The d2r:vocabularyIncludeInstances configuration
property accepts the false Boolean value to override this behavior. To
specify automatic detection of mapping file changes, one can use the
d2r:autoReloadMapping property. The default value is true. The maximum
number of entities per class map can be set using d2r:limitPerClassMap.
The default value is 50, and the limit can be disabled with the property
value set to false. The maximum number of values from each property
bridge can be configured using d2r:limitPerPropertyBridge. The default
value is 50, and the limit can be disabled with the property value set to
false. The timeout of the D2R server’s SPARQL endpoint can be set in
seconds as the property value of the d2r:sparqlTimeout property. If you
want to disable the timeout for the SPARQL endpoint, set the value to 0. The
timeout for generating resource description pages can be similarly set in
seconds, using the d2r:pageTimeout, which can also be disabled by setting
the value to 0. The default resource metadata template can be overridden
using d2r:metadataTemplate, which specifies a literal value for the path
name, either absolute or relative to the location of the server configuration
file. The default dataset metadata template can be overridden by the value
of d2r:datasetMetadataTemplate. The d2r:disableMetadata property
enables the automatic creation and publication of all dataset and resource
metadata, which accepts a Boolean value. The true value is assumed if the
d2r:disableMetadata property is omitted.

b) The name of the configuration file declared as the configFile param
in /webapp/WEB-INF/web.xml has to be changed to the name of your
configuration file. The recommended location of the mapping file is the
/webapp/WEB-INF/ directory.

c) In the main directory of the D2R server, run ant war, which creates the
d2rq.war file (requires Apache Ant).

d) The name of your web application can optionally be changed by
renaming the file to webappname.war.

e) Deploy the .war file into your servlet container, such as by copying it
into the webapps directory of Tomcat.

Chapter 7 ■ Querying

195

4store SPARQL Server
4store provides a SPARQL HTTP protocol server, which can answer SPARQL queries using the SPARQL HTTP
query protocol. To run 4store’s SPARQL server, use the 4s-httpd command with the port number and KB
name as shown in Listing 7-48.

Listing 7-48. Running 4store’s HTTP Server

4s-httpd -p port_number 4store_KB_name

 ■ Note Multiple 4store KBs have to run on separate ports.

Once the server is running, the overview page can be accessed in the web browser at
http://localhost:port_number/status/, and the SPARQL endpoint at http://localhost:port_number/
sparql/ with an HTML interface at http://localhost:port_number/test/. From the command line, you
can query the SPARQL server using the sparql-query tool available at https://github.com/tialaramex/
sparql-query.

PublishMyData
PublishMyData is a commercial Linked Data publishing platform. Because it is a Software as a Service (SaaS)
in the cloud, you don’t have to install anything to use it. Beyond the SPARQL endpoint, PublishMyData
provides RDF data hosting, a Linked Data API, and customizable visualizations. It supports SPARQL 1.1.
To submit a SPARQL query from your code, issue an HTTP GET request to the SPARQL endpoint, as
demonstrated in Listing 7-49.

Listing 7-49. SPARQL Query on PublishMyData

http://example.com/sparql?query=URL-encoded_query

For instance, to run the query SELECT * WHERE {?s ?p ?o} LIMIT 10 and get the results in JSON, the
URL to be used will have the structure shown in Listing 7-50.

Listing 7-50. URL-Encoded SPARQL Query with PublishMyData

http://example.com/sparql.json?query=SELECT+%2A+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10

For demonstrating programmatic access, let’s use JavaScript to request data from the SPARQL endpoint
(see Listing 7-51).

Listing 7-51. Using jQuery to Request Data Through the SPARQL Endpoint

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <script type="text/javascript">
 var siteDomain = "example.com";
 var query = "SELECT * WHERE {?s ?p ?o} LIMIT 10";

https://github.com/tialaramex/sparql-query
https://github.com/tialaramex/sparql-query
http://code.jquery.com/jquery-1.9.1.min.js%22%3E%3C/script

Chapter 7 ■ Querying

196

 var url = "http://" + siteDomain + "/sparql.json?query=";
 url += encodeURIComponent(query);
 $.ajax({
 dataType: 'json',
 url: url,
 success: function(data) {
 alert('success: ' + data.results.bindings.length + ' results');
 console.log(data);
 }
 });
 </script>
 </body>
</html>

When requesting the SPARQL output as JSON, a callback parameter can be passed, so that the results
will be wrapped in the function, which can prevent cross-domain issues when running JavaScript under
older browsers (see Listing 7-52).

Listing 7-52. Using a Callback Function

http://example.com/sparql.json?callback=myCallbackFunction&query=SELECT+%2A+WHERE+%7B%3Fs
+%3Fp+%3Fo%7D+LIMIT+10

Alternatively, you can make a JSON-P request with jQuery and can omit the callback parameter from
the URL by setting the dataType to jsonp, as shown in Listing 7-53.

Listing 7-53. Using JSON-P for SPARQL Querying

queryUrl = 'example.com/sparql.json?query=SELECT+%2A+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10'

$.ajax({
 dataType: 'jsonp',
 url: queryUrl,
 success: function(data) {
 // callback code
 alert('success!');
 }
});

You can also use Ruby to request data from the PublishMyData SPARQL endpoint, as shown
in Listing 7-54.

Listing 7-54. Make a Request to the PublishMyData SPARQL Endpoint in Ruby

require 'rest-client'
require 'json'

query = 'SELECT * WHERE {?s ?p ?o} LIMIT 10'
site_domain = "example.com"
url = "http://\#example.com/sparql.json"

Chapter 7 ■ Querying

197

results_str = RestClient.get url, {:params => {:query => query}}
results_hash = JSON.parse results_str
results_array = results_hash["results"]["bindings"]

puts "Total number of results: \#{results_array.length}"

The request in this case is written as JSON, and the result will be put in a Hash table.

Summary
In this chapter, you learned the foundations of SPARQL, the standardized query language of RDF. You are
now familiar with the query types and know how to write SPARQL queries to answer complex questions,
display all nodes of an RDF graph with a particular feature, filter results, or add new triples to a dataset.
By now you also recognize the most popular SPARQL endpoint interfaces and know how to set up your
own endpoint.

The next chapter will show you how to handle high-volume, high-velocity datasets, leverage Semantic
Web technologies in Big Data applications, and add structured data to your site, so that it will be considered
for inclusion in the Google Knowledge Graph.

References
 1. The W3C SPARQL Working Group (2013) SPARQL 1.1 Overview. W3C

Recommendation. World Wide Web Consortium. www.w3.org/TR/sparql11-
overview/. Accessed 6 March 2015.

 2. Prud’hommeaux, E., Seaborne, A. (2008) SPARQL Query Language for RDF.
www.w3.org/TR/rdf-sparql-query/. Accessed 18 April 2015.

 3. Harris, S., Seaborne, A. (2013) www.w3.org/TR/sparql11-query/. Accessed
18 April 2015.

 4. Gearon, P., Passant, A., Polleres, A. (eds.) (2013) SPARQL 1.1 Update.
www.w3.org/TR/sparql11-update/. Accessed 18 April 2015.

 5. Ogbuji, C. (ed.) (2013) SPARQL 1.1 Graph Store HTTP Protocol. W3C
Recommendation. World Wide Web Consortium. www.w3.org/TR/sparql11-
http-rdf-update/. Accessed 6 March 2015.

 6. Williams, G. T. (ed.) SPARQL 1.1 Service Description. www.w3.org/TR/sparql11-
service-description/. Accessed 18 April 2015.

 7. Glimm, B., Ogbuji, C. (eds.) (2013) SPARQL 1.1 Entailment Regimes.
www.w3.org/TR/sparql11-entailment/. Accessed 18 April 2015.

 8. Seaborne, A. (ed.) (2013) SPARQL 1.1 Query Results JSON Format. www.w3.org/
TR/sparql11-results-json/. Accessed 18 April 2015.

 9. Seaborne, A. (ed.) (2013) SPARQL 1.1 Query Results CSV and TSV Formats.
www.w3.org/TR/sparql11-results-csv-tsv/. Accessed 18 April 2015.

 10. Hawke, S. (ed.) (2013) SPARQL Query Results XML Format (Second Edition).
www.w3.org/TR/rdf-sparql-XMLres/. Accessed 18 April 2015.

http://D:\\Sadam\\2015\\XML\\June\\6-6-2015\\Sikos\\XML\\Chapter7\\www.w3.org\\TR\\sparql11overview\\
http://D:\\Sadam\\2015\\XML\\June\\6-6-2015\\Sikos\\XML\\Chapter7\\www.w3.org\\TR\\sparql11overview\\
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-csv-tsv/
http://www.w3.org/TR/rdf-sparql-XMLres/

Chapter 7 ■ Querying

198

 11. Prud’hommeaux, E., Buil-Aranda, C. (eds.) (2013) SPARQL 1.1 Federated Query.
www.w3.org/TR/sparql11-federated-query/. Accessed 18 April 2015.

 12. Feigenbaum, L., Williams, G. T., Clark, K. G., Torres, E. (eds.) (2013) SPARQL 1.1
Protocol. W3C Recommendation. World Wide Web Consortium. www.w3.org/TR/
sparql11-protocol/. Accessed 9 March 2015.

 13. Broekstra, J., Ansell, P., Visser, D., Leigh, J., Kampman, A., Schwarte, A. et al.
(2015) The SeRQL query language. http://rdf4j.org/sesame/2.7/docs/
users.docbook?view#chapter-serql. Accessed 22 April 2015.

 14. Neo Technology, Inc. (2015) Intro to Cypher. http://neo4j.com/developer/
cypher-query-language/. Accessed 22 April 2015.

http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://rdf4j.org/sesame/2.7/docs/users.docbook?view#chapter-serql
http://rdf4j.org/sesame/2.7/docs/users.docbook?view#chapter-serql
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/

	Chapter 7: Querying
	 SPARQL: The Query Language for RDF
	 Structure and Syntax
	 SPARQL 1.0 and SPARQL 1.1
	 Query Types
	 Pattern Matching
	 Solution Modifiers
	 SELECT Queries
	Filtering

	 ASK Queries
	 CONSTRUCT Queries
	 DESCRIBE Queries
	 Federated Queries
	 REASON Queries
	 URL Encoding of SPARQL Queries
	 Graph Update Operations
	 Graph Management Operations

	 Proprietary Query Engines and Query Languages
	 SeRQL: The Sesame RDF Query Language
	 CQL: Neo4j’s Query Language

	 Identify Datasets to Query
	 Public SPARQL Endpoints
	 Setting Up Your Own SPARQL Endpoint
	 OpenLink Virtuoso
	 Fuseki
	 D2R
	 4store SPARQL Server
	 PublishMyData

	 Summary
	 References

