
79

Chapter 4

Semantic Web Development Tools

Extracting and manipulating RDF from semistructured data and writing client applications to handle RDF
data are common tasks that can be made easier and more efficient using software tools. Web designers
and search engine optimization (SEO) experts often generate machine-readable annotations or convert
existing structured data to a different serialization. While web site markup can be edited in any text editor,
some advanced features are desired when working with semantic annotations, so an advanced text editor
is a fundamental tool. Annotators can be used for semantically annotating your web pages and RDFizers to
convert text, HTML, and XML documents to RDF. Application developers writing Semantic Web applications
in Java, JRuby, Clojure, Scala, Python, and other programming languages often work with Integrated
Development Environments, many of which support the integration of semantic software libraries. Ontology
editors are widely deployed and used in ontology engineering, many of which support reasoning as well.
Linked Data software tools are useful for extracting Linked Data, visualizing Linked Data interconnections,
as well as exporting and publishing Linked Data. Semantic Web browsers can display structured data
extracted from web pages, generate a map from geospatial data on your smartphone, and provide advanced
navigation and interactivity features unavailable in traditional web browsers.

Advanced Text Editors
In contrast to word processors such as Microsoft Word or OpenOffice.org Writer, plain-text editors cannot
be used for document formatting, but they are suitable for creating and modifying web pages. However,
basic text editors are not convenient for web design, because some vital features are missing from them. For
example, many of them do not handle control characters and whitespaces correctly. The most well-known
examples are Notepad under Windows and vi under Linux. Advanced text editors such as WordPad provide
text formatting and other additional features. Some advanced text editors are also source code editors with
additional tools specifically designed for web designers and software engineers. While not suitable for
structured data conversions or LOD processing, advanced text editors are fundamental programs in the
toolbox of every Semantic Web developer, owing to advanced features such as the following:

•	 Comprehensive character encoding support, including full Unicode support

•	 Whitespace character support

•	 Control character support, for example, CR+LF (Windows), LF only (UNIX),
and Apple (CR only) break rows

•	 Multifile editing with tabs

Chapter 4 ■ Semantic Web Development Tools

80

•	 Customizable color schemas for syntax highlighting (HTML, CSS, XML,1 scripts,
and so on)

•	 Undo/redo

•	 Forced word wrap

•	 Line numbering

•	 Auto-indent

•	 Guides for tag pairs and element nesting

•	 OS integration (adds application to right-click menu)

The selected editor should be integrated with at least one of your browsers as the default source code
editor, which you can use to open the currently rendered web document with a hot key (usually Ctrl+U).
There are additional features of text editors that are not vital but can be useful.

•	 Customized color and font settings

•	 Customizable toolbars

•	 Spell checker

•	 Templates

•	 Bookmarks

•	 Full drag-and-drop support

•	 Built-in FTP client or integration with an (S)FTP client

•	 Conversions (uppercase, lowercase, invert case, and initial caps)

•	 International versions (can be convenient for some developers)

•	 Support for double-byte character systems (DBCS) used in Far East Asian languages,
such as Chinese or Japanese (if required)

•	 Browser preview (launching the default or selected web browser for debugging
and testing)

Some of the most well-known advanced text editors are EditPlus and NotePad++ (free, open source
[1]) for Windows, BlueFish [2] and Komodo Edit [3] for Linux, and BBEdit [4] and TextWrangler [5] for Mac
OS. A comprehensive cross-platform editor is Arachnophilia, which is available for Windows, Linux, Unix,
FreeBSD, and Mac OS [6].

As an example, let’s look at the major features of Notepad++ . It is a multifile editor with convenient file
manager options. Notepad++ saves multiple files with a single click, opens recently edited files, and provides
tabs for each opened file. It has a fully customizable interface with advanced features such as line markers,
guides for opening and closing tag pairs, structuring guides to collapse or reveal the currently edited level of
the DOM tree, and syntax highlighting (see Figure 4-1).

1On Windows systems, the file format used for syntax highlighting depends on the file extension, so an entire
RDF/XML file with the .rdf extension might be white by default, while the same file in the same editor would be
syntax-highlighted when saved as .xml.

Chapter 4 ■ Semantic Web Development Tools

81

There is a variety of programming and web development languages supported in syntax highlighting,
from HTML to XML and from PHP to Ruby. There are several predefined color themes you can select from,
or you can create new ones to your taste. The different document components (indent guidelines, marks,
carets, whitespaces, tag pairs, active and inactive tabs, and so on) can be styled individually. Notepad++ can
change text direction of documents. It also supports a variety of character encodings, can add and remove
byte-order marks, supports big-endian and little-endian Unicode files, and converts files from one encoding
to another.2 The documents opened in the application can be previewed in any installed browsers.

Notepad++ also provides advanced text transformation functionalities, such as escaping certain
characters, transforming lowercase characters to uppercase (or vice versa), searching for matching strings,
converting decimal numbers to their hexadecimal equivalents, inserting the current date and time, sorting
lists ascending or descending, automatically converting leading spaces to tabs, and so on. Notepad++ also
supports macros, which you can run multiple times. The list of features can be extended through additional
plug-ins, such as the MIME tools for Base64 encoding and decoding.

Semantic Annotators and Converters
While there are templates available for all machine-readable metadata annotations and one might also write
them manually from scratch, you can use software tools that can evaluate your code, provide a preview of
the human-readable part of your markup, as well as extract RDF triples, generate the RDF graph of your
structured data, and/or convert the annotation to other formats, which can be very handy, owing to the large
number of RDF serializations.

Figure 4-1.  Syntax highlighting and tag pair guides in Notepad++

2This feature should be used for those encodings that can be reasonably converted to another, more advanced encoding
without sacrificing special characters (for example, ANSI to UTF-8).

Chapter 4 ■ Semantic Web Development Tools

82

RDFa Play
RDFa Play is a real-time RDFa 1.1 editor, data visualizer, and debugger available at http://rdfa.info/play/.
It takes the raw RDFa input, generates a live preview for the human-readable data, and generates a graph
from the triples (see Figure 4-2). If you modify the code, RDFa Play regenerates the browser preview and
the graph.

Figure 4-2.  Live browser preview and graph in RDFa Play

RDFa Play provides RDFa annotation examples for persons, events, and places using schema.org,
personal data expressed in FOAF, product description in GoodRelations, and Dublin Core metadata in SVG.

RDFa 1.1 Distiller and Parser
W3C’s RDFa 1.1 Distiller and Parser at http://www.w3.org/2012/pyRdfa/ processes your HTML markup
containing RDFa and converts the triples to Turtle, RDF/XML, JSON-LD, or N-Triples. The RDFa 1.1 Distiller
and Parser is written in Python and powered by RDFLib (https://rdflib.readthedocs.org). It accepts
online RDFa code fragments, uploaded files, and RDFa annotations copied and pasted. The supported host
languages for file upload and direct input are HTML5+RDFa, XHTML+RDFa, SVG+RDFa, Atom+RDFa, and
XML+RDFa.

http://rdfa.info/play/
http://www.w3.org/2012/pyRdfa/
https://rdflib.readthedocs.org/

Chapter 4 ■ Semantic Web Development Tools

83

RDF Distiller
The RDF Distiller at http://rdf.greggkellogg.net/distiller integrates RDF graphs, readers, and writers
to Ruby projects. The distiller can be used to transform data between different RDF serializations. The web
interface provides a form, which takes the user input through a URI or as direct input in JSON, JSON-LD,
HTML5 Microdata, N3, N-Quads, N-Triples, RDFa, RDF/XML, TRiG, TRiX, or Turtle, and converts the code
to any of the formats (see Figure 4-3).

Figure 4-3.  RDFa to Turtle conversion in RDF Distiller

http://rdf.greggkellogg.net/distiller

Chapter 4 ■ Semantic Web Development Tools

84

Figure 4-4.  Annotation with DBpedia Spotlight

The Distiller can automatically detect the input format, which can also be explicitly selected from a
drop-down list.

DBpedia Spotlight
DBpedia Spotlight is a tool for annotating DBpedia concepts in plain text [7]. It has three basic functions:
annotation, disambiguation, and marking candidates. DBpedia Spotlight’s web application visualizes the
user’s input with DBpedia resource annotations (see Figure 4-4).

The RESTful, SOAP-based web API exposes the functionality of annotating and disambiguating entities.
The annotation Java/Scala API exposes the underlying logic that performs the annotation or disambiguation.
The indexing Java/Scala API executes the data processing necessary to enable the annotation or
disambiguation algorithms used.

Google Structured Data Testing Tool
The Google Structured Data Testing Tool at http://www.google.com/webmasters/tools/richsnippets
is suitable for machine-readable metadata testing, including Microformats, RDFa, and HTML5 Microdata
annotations online or through direct input. The code length of the direct input is limited to 1,500 characters.
The tool provides a preview of Google’s representation of your site on Search Engine Result Pages (SERPs),
along with the extracted structured data as item, type, and properties (see Figure 4-5).

http://www.google.com/webmasters/tools/richsnippets

Chapter 4 ■ Semantic Web Development Tools

85

The tool can identify incomplete triples and provides a short explanation if any mandatory property
is missing. The Google Structured Data Testing Tool also indicates properties that are not parts of the
vocabulary used for the object.

■■ Note  Google does not use machine-readable metadata annotations on Search Engine Result Pages
if certain properties are missing for a particular object type. For example, an hCard description will be
used by Google only if you provide not only the name but also at least two of the following three properties:
organization, location, or role, while code validity can be achieved even if you omit them.

The tool provides machine-readable metadata examples for applications, authors, events, music,
people, products, product offers, recipes, and reviews; however, you must log in to your Google account to
retrieve the HTML markup of the examples. All other functionalities are available without logging in.

RDFizers
Those software tools that convert application and web site data to RDF are called RDFizers. They can be used
for a one-time migration effort or implemented as middleware components of Semantic Web software tools
such as OpenLink Data Explorer. RDFizers are often available as a software library.

Apache Any23
Apache Anything To Triples (Any23) is a Java library, RESTful web service, and command-line tool available
at https://any23.apache.org. Any23 extracts structured data from a variety of Web documents, including
RDF serializations such as RDF/XML, Turtle, Notation 3, and RDFa; Microformats such as Adr, Geo,
hCalendar, hCard, hListing, hRecipe, hReview, License, XFN and Species; HTML5 Microdata; JSON-LD;
CSV (Comma Separated Values exported from, for example, Microsoft Excel); as well as vocabularies such
as Dublin Core, DOAP, FOAF, GeoNames, Open Graph Protocol, schema.org, and vCard. Any23 can also be
used for data conversion such as Turtle to N-Triples.

Apache Any23 can perform validation for code quality assurance. It automatically fixes the DOM
structure if it detects incorrect HTML element nesting. Any23 can identify not only structuring markup
elements but also meta tags and RDFa annotations. If, for example, a prefix mapping is missing for an RDFa
annotation, the RDFa parser will find it out of context and will not be able to handle it. To address this,
Apache Any23 provides the Validator classes to implement a Rule precondition, which, when matched,
will trigger the Fix method to correct the code.

Owing to its comprehensive features, Any23 is implemented in major Semantic Web applications,
such as Sindice.

Figure 4-5.  Triples extracted by the Google Structured Data Testing Tool

https://any23.apache.org/

Chapter 4 ■ Semantic Web Development Tools

86

General Architecture for Text Engineering (GATE)
The General Architecture for Text Engineering (GATE), an open source text processor tool developed by the
University of Sheffield, uses Natural Language Processing (NLP) methods to generate RDF from text files [8].
GATE’s Ontology plug-in provides an API for manipulating OWL-Lite ontologies that can be serialized as
RDF and RDFS. If you work with OWL-DL ontologies, classes that are subclasses of restrictions supported in
OWL-Lite are usually shown, but the classes that are subclasses of other restrictions will not be displayed.
Similarly, plain RDF/RDFS files will not be shown correctly, because there is no way for the API to represent
many constructs that are allowed in RDF but not allowed in OWL-Lite.

OpenRefine
OpenRefine is a tool for exploring large datasets, cleaning and transforming data from one format to the
other, reconciling and matching data, extending data with web services, and linking data to LOD databases
[9]. With OpenRefine, you can filter and partition data with regular expressions, use named-entity extraction
on full-text fields to automatically identify topics, and perform advanced data operations with the General
Refine Expression Language.

Ontology Editors
Ontology editors are software tools specifically designed for ontology engineering. They cover the common
tasks of all major stages of ontology development, namely they

•	 Determine domain and scope. What is the knowledge domain the ontology will
cover? What are the potential implementation areas? What types of questions does it
intend to answer?

•	 Consider reuse. Assess other ontologies of similar knowledge domains.

•	 Enumerate important terms. Create a comprehensive list of terms for the chosen
knowledge domain, without focusing on class hierarchy, properties, overlapping
terms, or relationships.

•	 Define classes and class hierarchy.

•	 Define properties, and characteristics of properties. Define property types, including
simple properties and relationships to classes, domains and ranges, as well as
universal, existential, and cardinality restrictions.

•	 Create individuals.

Protégé
Stanford University’s Protégé is the most widely used open source ontology editor and knowledge
management toolset, which can be downloaded from http://protege.stanford.edu. It supports reasoners
such as HermiT and FaCT++ to validate ontologies for consistency, as well as a variety of other plug-ins.
Originally developed as a Learning Health System for translating raw biomedical data into machine-
readable data for decision making, Protégé is now suitable for modeling, ontology-driven application
development, and collaborative ontology engineering. The ontologies can be exported in many formats,
such as RDFS, and various OWL syntaxes.

While the ontologies can be created in Protégé through a Graphical User Interface (GUI), the software
is Java-based, so when it is executed, it opens a command line (see Figure 4-6) behind the GUI in a separate
window. The ontologies created in Protégé can be accessed from Java programs through the Protégé-OWL API.

http://protege.stanford.edu/

Chapter 4 ■ Semantic Web Development Tools

87

The GUI of Protégé features a main menu, an address bar, and a tab-based editor (see Figure 4-7).

Figure 4-6.  Protégé’s command line

Figure 4-7.  Protégé’s Graphical User Interface

Chapter 4 ■ Semantic Web Development Tools

88

In the File menu, you can create a new, empty ontology or open an ontology from an offline or online
.owl file. Ontologies can be saved in a variety of formats, including RDF/XML, OWL/XML, OWL Functional
Syntax, Manchester Syntax, OBO (Open Biomedical Ontologies format), KRSS2 (Knowledge Representation
System Specification v2), Latex, or Turtle. The wide range of plug-ins available for Protégé can be
downloaded and the already installed plug-ins updated also from this menu.

Under File ➤ Preferences, you can handle hidden annotation URIs. To make it easier to automatically
generate unique identifiers to classes, properties, and individuals of an ontology, you can set up or modify
the structure of entity URIs for a particular ontology. Once you set up the base URI of the ontology, all
fragment identifiers of the ontology will start with this address, which can be modified any time later (New
Ontologies tab in File ➤ Preferences). This can be very useful if the address structure has to be changed
after creating the ontology, because the developer does not have to change the hundreds or thousands of
addresses manually one by one. The default base URI can be a web address of your choice, and the path
can optionally include the actual year, month, and day. The base URI typically ends in a #, but this can
be changed to / or :, if needed (New Entities tab in File ➤ Preferences). The number sign is the default
setting, however, because it creates valid fragment identifiers. You can set the ending of the entity URIs to an
arbitrary name, which is the default choice. If you want to use automatically generated identifiers instead,
you can set entity labels, including custom URIs and a globally unique prefix or suffix.

OWLViz, a Protégé plug-in installed by default, powers the graphical representation of class hierarchies
of OWL ontologies and the navigation between the classes represented as a tree structure (OWLViz tab
in File ➤ Preferences). OWLViz makes the comparison of the asserted class hierarchy and the inferred
class hierarchy possible. By default, Protégé automatically checks for plug-in updates at program startup,
which can also be disabled (Plugins tab in File ➤ Preferences). The default plug-in repository is set to
GitHub, which can be changed. The Reasoner tab in File ➤ Preferences can display or hide class, object
property, data property, and object inferences or initialize reasoners by setting up precomputation tasks
such as classification or realization to be done when the reasoner is launched. The tree hierarchy can be
automatically expanded under Tree Preferences in File ➤ Preferences by setting an auto-expansion depth
limit (the default value is 3) and an auto-expansion child count limit (the default value is 50). By default,
automatic tree expansion is disabled. Accidentally performed changes on any tab can be reverted by clicking
the Reset preferences… button on the bottom right-hand corner of File ➤ Preferences.

The core functionalities and views are available through tabs. The Active Ontology tab shows general
ontology metadata, such as title, creator, description, in addition to the reused ontologies and statistics
about ontology metrics, such as the number of axioms, classes, object properties, individuals, and so on.
Protégé also displays all the prefixes used in the opened ontology. Protégé features a dedicated tab for
Entities, Classes, Object Properties, Data Properties, Annotation Properties, and Individuals. The class
hierarchy is shown as a tree structure, wherein each node can be opened or closed individually. The selected
entity, class, or property details are shown in separate panels. Class descriptions provide information
about equivalent classes, subclasses, class axioms, members, etc., of the selected class, as well as the
option to change the values or add new ones. The classes in Protégé are subclasses of Thing and overlap by
default. Class hierarchies can be created from the Tools menu. The object or data type properties can have
subproperties or inverse properties. The properties can be functional, transitive, symmetric, asymmetric,
reflexive, or irreflexive. Protégé automatically updates inverse properties (such as hasChild and isSonOf in a
family relationship ontology).

The Object Properties and Data Properties tabs also have a Characteristics panel. For object properties,
the Characteristics panel features checkboxes for Functional, Inverse functional, Transitive, Symmetric,
Asymmetric, Reflexive, and Irreflexive properties. The Individuals tab shows not only the class hierarchy
but also the members list and the property assertions. The OntoGraf tab provides a visual representation
of any part of the ontology (see Figure 4-8). When you hover the mouse over any part of the graph, Protégé
shows the fragment identifier, as well as the subclasses/superclasses (if any).

Chapter 4 ■ Semantic Web Development Tools

89

The SPARQL Query tab provides an interface to execute SPARQL queries. Protégé enumerates the prefixes,
provides an editable SELECT query template, which you can modify or delete, and adds arbitrary queries.

Protégé also has an online version at http://webprotege.stanford.edu, which has collaboration support.

SemanticWorks
Altova’s SemanticWorks is a visual Semantic Web editor that features a graphical RDF and RDFS editor and
a graphical OWL editor, supports OWL-Lite, OWL-Full, and OWL-DL dialects [10]. SemanticWorks provides
syntax and format checking options and the evaluation of ontology semantics with direct links to errors.
Context-sensitive entry helpers display the list of valid input options, depending on the serialization being
used. SemanticWorks can generate code in RDF/XML and N-Triples and convert RDF/XML to N-Triples and
vice versa. The program features a printing option for RDF and OWL diagrams. New class instances can be
defined using intelligent shortcuts. The instances, properties, and classes are organized on tabs, and, similar
to software engineering environments, properties and property values can also be manipulated through
separate subwindows. The Overview subwindow is very useful when editing large, complex diagrams, when
the currently displayed portion of the diagram is indicated as a red rectangle. You can switch between the
diagram and the code view at any time.

Figure 4-8.  Graph visualization in Protégé

http://webprotege.stanford.edu/

Chapter 4 ■ Semantic Web Development Tools

90

TopBraid Composer
TopQuadrant’s TopBraid Composer is a graphical development tool for data modeling and semantic
data processing. The free Standard Edition supports standards such as RDF, RDFS, OWL, and SPARQL,
as well as visual editing and querying, and data conversions [11]. The commercial Maestro Edition provides
a model-driven application development environment [12]. Composer is also an RDFizer, which can convert
Excel spreadsheets into instances of an RDF schema.

TopBraid Composer can open ontologies serialized in RDF/XML or Turtle, import RDFa data sources,
RSS or Atom news feeds, and e-mails into RDF. It can connect to SPARQL endpoints as well as RDBMS
sources, import tab-delimited spreadsheet files and Excel spreadsheets, online RDF and OWL files, UML
files, XML Schemas, and XML catalogs. Wizards guide you in creating new projects, such as faceted
project resources, projects from CSV files, JavaScript projects, static web projects, as well as XML editing
and validation. You can create markup files with RDFa and HTML5 Microdata annotations and develop
semantic web applications and RDF/OWL file connections to Jena SDB databases, Jena TDB databases,
Oracle databases, and Sesame 2 repositories. The Graphical User Interface features panels for classes, visual
representation (diagrams and graphs) and source code, properties, file system navigation, imports, and
“baskets” (see Figure 4-9).

Figure 4-9.  Ontology editing with TopBraid Composer Maestro

On the Classes panel, you can navigate in your ontologies, represented as a tree structure, create
and delete classes, create subclasses and siblings, group components by namespace, and search by name.
The Properties panel features, among property manipulation, GoogleMaps integration too. On the Imports
panel, the resources can be displayed, along with their rdf:type, rdfs:label, and rdfs:comment values
(if provided), as well as rules, instances, errors, SPARQL queries, and text searches. On the Baskets
panel, you can load contents from, and save contents to, a text file; add selected resources; add matching
properties; add subclasses, subproperties, instances, individuals, and unreferences resources; and perform
batch operations.

Chapter 4 ■ Semantic Web Development Tools

91

Apache Stanbol

Apache Stanbol is a semantic data modeler and comprehensive ontology manager [13].
It includes a content-management system that supports Semantic Web services

and web application functions such as tag extraction, text completion in search fields,
and e-mail routing, based on extracted entities. The functionalities of the Stanbol
components are available through a RESTful web service API. The RESTful services
return results in RDF, JSON, and JSON-LD. Apache Stanbol can be run as a stand-alone
application (packaged as a runnable JAR) or as a web application (packaged as .war)
deployable in servlet containers such as Apache Tomcat. It is compatible with Apache
frameworks such as Solr (for semantic search), Tika (for metadata extraction), and Jena (for storage).

Stanbol has a built-in RDFizer that processes traditional web contents sent in a POST request with the
MIME type specified in the Content-type header and adds semantic information (“RDF enhancement”) to it,
serialized in the format specified in the Accept header.

Stanbol also provides a reasoner component, which implements a common API and supports different
reasoners and configurations through OWLApi and Jena-based abstract services, with implementations for
Jena RDFS, OWL, OWLMini, and HermiT. The reasoner module can perform a consistency check, which
returns HTTP Status 200 if data is consistent and 204 if not. The reasoner can also be used for classification,
in other words, to materialize all inferred rdf:type statements. The semantic enrichment materializes all
inferred statements.

The Apache Stanbol Ontology Manager supports multiple ontology networks by interconnecting
seemingly unrelated knowledge represented in different ontologies, ontology libraries, a central ontology
repository, as well as common ontology engineering tasks, such as reasoning and rule execution. Stanbol
can also store and cache semantic information and make it searchable through its persistence services.

Fluent Editor
Fluent Editor is an ontology editor, which can handle RDF, OWL, and SWRL files [14]. Fluent Editor uses a
proprietary representation language and query language compatible with Semantic Web standards. The tool
has been designed for managing complex ontologies. It features a reasoner window, a SPARQL window for
queries, an XML preview window, a taxonomy tree view, and an annotation window. Fluent Editor has two
types of plug-ins: a Protégé interoperability plug-in, which supports data export to and import from Protégé,
and R language plug-ins that support the development of analytical models with R and rOntorion and
plug-in development for Fluent Editor with the R language.

Ontology Analysis Tools
There are software tools for ontology mapping and specific ontology engineering tasks not supported by
general-purpose ontology editors such as semantic similarity estimation.

ZOOMA
ZOOMA is an application for discovering optimal ontology mappings and automatic mapping of text
values to ontology terms using mapping repositories [15]. ZOOMA can reuse mappings already asserted in
the database, explore mapping best suitable for multiple mappings, derive better mappings by recording
contextual information, and suggest new terms. The commonly observed values can be processed
automatically.

Chapter 4 ■ Semantic Web Development Tools

92

ZOOMA finds all optimal mappings automatically where one text value maps to the same set of terms
every time. When using mapping repositories, it can detect errors, in other words, it finds all the text value
to ontology term mappings that are potentially incorrect. ZOOMA can also propose new mappings to terms
based on the input values; however, selecting the best mapping requires human evaluation and assessment.
ZOOMA can easily be used as a software library, as, for example, within an Apache Maven project.

Semantic Measures Library
The Semantic Measures Library (SML) is a Java library for semantic measure analysis, such as estimating
semantic similarity and relatedness by using ontologies to define the distance between terms or concepts
[16]. SML functionalities can be accessed also through a set of command-line tools called SML-Toolkit. The
library supports RDF and RDFS, OWL ontologies, WordNet (a lexical database), Medical Subject Headings
(MeSH, a controlled vocabulary for life science publishing), the Gene Ontology, and so on.

Reasoners
Reasoners derive new facts from existing ontologies and check the integrity of ontologies. The various
software tools are different in terms of reasoning characteristics, practical usability, and performance,
owing to the different algorithms implemented for Description Logic reasoning. Not all reasoners can
evaluate all possible inferences, so their soundness and completeness vary. Some ontologies support rules
for combining ontologies with rules. A common feature of reasoners is ABOX reasoning, the reasoning
of individuals that covers instance checking, conjunctive query answering, and consistency checking.
Advanced reasoners support the OWL API, a standard interface for application development with OWL
reasoning. Another feature of advanced reasoners is the OWLLink support, leveraging an implementation-
neutral protocol to interact with OWL 2 reasoners.

HermiT
HermiT is one of the most popular OWL 2 reasoners that can be used to determine ontology consistency,
identify relationships between classes, and perform further tasks [17]. HermiT uses its own algorithm,
called the “hypertableau” calculus, to check the consistency of OWL ontologies and identify subsumption
relationships between classes. HermiT can be used as a Protégé plug-in (see Figure 4-10), through the
command line, or in Java applications. The latest Protégé versions come with a preinstalled HermiT plug-in.
From the command line, you can perform classification, querying, and other common reasoning tasks. As
for the Java applications, HermiT supports the OWLReasoner interface from the OWL API, providing access
to OWL API objects, such as ontologies and class expressions.

Chapter 4 ■ Semantic Web Development Tools

93

Pellet
Clark & Parsia’s Pellet is an OWL 2 DL reasoner, which can be used in Protégé, Jena, TopBraid Composer,
or in Java programs through the OWL API interface [18]. It is based on the tableau algorithm to break down
complex statements into smaller and simpler pieces to detect contradictions and supports expressive
Description Logics. Pellet supports different incremental reasoning, including incremental consistency
checking and incremental classification, where updates (additions or removals) can be processed and

Figure 4-10.  The HermiT reasoner running in Protégé

Chapter 4 ■ Semantic Web Development Tools

94

applied to an ontology without having to perform all the reasoning steps from scratch. Pellet also supports
reasoning with SWRL rules. It provides conjunctive query answering and supports SPARQL queries. Pellet
reasons ontologies through Jena and the OWL API. Pellet also supports the explanation of bugs.

FaCT++
FaCT++ (Fast Classification of Terminologies) is a tableaux-based OWL 2 DL reasoner3 [19]. It can be used as
a description logic classifier and for modal logic satisfiability testing. It implements a sound and complete
tableau algorithm for expressive description logics. FaCT++ is available as a stand-alone tool, as a Protégé
plug-in, and can be used in applications through the OWL API.

RACER
Racer (Renamed ABox and Concept Expression Reasoner) is a server-side reasoner for building ontology-
based applications, available through Java and Common Lisp APIs [20]. Racer provides not only standard
reasoning mechanisms but also logical abduction. It implements a highly optimized tableau calculus for
the Description Logic SRIQ(D). Racer supports the consistency check of RDF data descriptions and OWL 2
ontologies and can open multiple ontologies simultaneously for ontology merging. It can find implicit subclass
relationships induced by the axioms of an ontology and find synonyms for properties, classes, or instances.
Racer can retrieve information from OWL/RDF documents via SPARQL queries and also support incremental
queries. It supports FaCT optimization techniques and optimization for number restrictions and ABoxes.

Application Development Frameworks
The most common programming tasks are collected in software libraries, so that you do not have to write
frequently used code. In Semantic Web applications, for example, a common task is to covert an RDF
file from one serialization to another, which can be easily performed by tools such as Apache Jena. Such
software libraries can be used in a variety of environments, such as through the command line or as a
plug-in of an Integrated Development Environment (IDE) such as Eclipse or NetBeans.

Jena
Apache Jena is an open source Semantic Web and Linked Data application
development framework, which supports the storage, retrieval, and analysis of
structured data written in RDF [21].

The core RDF API of Jena has dedicated methods for extracting subjects, objects,
and predicates of RDF statements such as getSubject(), which returns the Resource,
getObject(), which returns the RDFNode, and getPredicate(), which returns the Property of the statement.
Using the Jena RDF API, you can easily create and manipulate RDF graphs, which are called models in Jena
and represented by the Model interface. For example, to describe a person using the RDF API, first define the
URI or the subject and the string of the object (see Listing 4-1), then create an empty, memory-based Model
using the createDefaultModel() method (see Listing 4-2).

Listing 4-1.  Constant Declaration in Jena

static String personWebsite = "http://www.lesliesikos.com";
static String personName = "Leslie Sikos";

3FaCT++ has a partial support for OWL 2 key constraints and datatypes.

http://www.lesliesikos.com/

Chapter 4 ■ Semantic Web Development Tools

95

Listing 4-2.  Creating a Memory-Based Model

Model model = ModelFactory.createDefaultModel();

The resource will be created using the Model (see Listing 4-3).

Listing 4-3.  Creating a Resource

Resource lesliesikos = model.createResource(personWebsite);

Finally, add a property to the resource using addProperty (see Listing 4-4).

Listing 4-4.  Adding Property to a Resource

lesliesikos.addProperty(FOAF.Name, personName);

To retrieve statements from an RDF graph (Jena Model), the listStatements() method can be used
(see Listing 4-5).

Listing 4-5.  Extracting RDF Triples

StmtIterator iter = model.listStatements();

If you need more details, you can list all the predicated, subjects, and objects from the RDF graph,
as shown in Listing 4-6.

Listing 4-6.  Listing All Triple Components Individually

while (iter.hasNext()) {
 Statement stmt = iter.nextStatement();
 Resource subject = stmt.getSubject();
 Property predicate = stmt.getPredicate();
 RDFNode object = stmt.getObject();
 
 System.out.print(subject.toString());
 System.out.print(" " + predicate.toString() + " ");
 if (object instanceof Resource) {
 System.out.print(object.toString());
 } else {
 System.out.print(" \"" + object.toString() + "\"");
 }
 
 System.out.println(" .");
}

Jena supports SPARQL queries, including SPARQL, over the JDBC driver framework. In fact, it can serve
RDF data over HTTP, using Fuseki, a SPARQL server that provides REST-style SPARQL HTTP update, SPARQL
querying, and SPARQL update [22]. The Jena rules engine, along with other inference algorithms, can derive
consequences from RDF models. The Inference API provides reasoning to expand and check triplestore
contents. You can not only use built-in OWL and RDFS reasoners but also configure your own inference
rules. The Jena Ontology API can work with data models, RDFS, and OWL, including partial support for
OWL 1.1 features. Jena has its own high performance triplestore component called TDB, which stores triples
directly to disk and can be directly accessed from a Java Virtual Machine. SQL DB provides a persistent

Chapter 4 ■ Semantic Web Development Tools

96

triplestore for Jena, using relational databases, namely, an SQL database for RDF data storage and querying.
Jena supports advanced text and spatial search. Jena can be integrated into Eclipse, the popular software
development environment for Java developers.

Sesame
Sesame is an open source framework for RDF data analysis and SPARQL querying [23]. The approach
implemented to the Sesame framework is different from other semantic frameworks in a way that it features
an extensible interface and that the storage engine is segregated from the query interface. Alibaba, a Sesame
API, is used for mapping Java classes to ontologies and generating Java source files from ontologies, making
it possible to directly exploit RSS, FOAF, and Dublin Core from Java. Sesame provides its RDF triplestore as
a Java web application (.war), which can be easily deployed to application servers such as Apache Tomcat
or Eclipse Jetty. It supports both memory-based (MemoryStore) and disk-based (NativeStore) storage. The
RDF triplestore provides a SPARQL query endpoint. Sesame can be integrated to software development
environments such as Eclipse and Apache Maven.

The Repository API provides methods for data file uploading, querying, extracting, and manipulation.
One of its implementations, SailRepository, translates calls to a SAIL implementation of your choice, while
another implementation, HTTPRepository, offers transparent client-server communication with a Sesame
server over HTTP. The HTTP Server, the topmost component of Sesame, has Java servlets for accessing
Sesame repositories over HTTP. Using the Repository API of Sesame, you can create a local repository
directly from your application, with the capability to store, query, and modify RDF data (see Listing 4-7).

Listing 4-7.  Creating a Basic Local Repository in Sesame

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
…
Repository repo = new SailRepository(new MemoryStore());
repo.initialize();

This repository will use the main memory for data storage, which is by far the fastest RDF repository type.
However, the created repository is volatile, meaning that the content is lost when the object is garbage collected or
when the program execution is finished. For persistent storage, you need to save the data to a file (see Listing 4-8).

Listing 4-8.  Creating a Local Repository with File Storage in Sesame

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.nativerdf.NativeStore;
…
File dataDir = new File("/path/to/datadir/");
Repository repo = new SailRepository(new NativeStore(dataDir));
repo.initialize();

To create a repository with RDF Schema inferencing, you have to create a Repository object by passing
it a reference to the appropriate Sail object (see Listing 4-9).

Chapter 4 ■ Semantic Web Development Tools

97

Listing 4-9.  Creating a Repository with RDF Schema Inferencing

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
import org.openrdf.sail.inferencer.fc.ForwardChainingRDFSInferencer;
…
Repository repo = new SailRepository(
 new ForwardChainingRDFSInferencer(
 new MemoryStore()));
repo.initialize();

If you use a remote Sesame server rather than a local one, the remote connection has to be set up by
initializing the RemoteRepositoryManager (see Listing 4-10).

Listing 4-10.  Initializing a RemoteRepositoryManager

import org.openrdf.repository.manager.RemoteRepositoryManager;
…
String serverUrl = "http://localhost:8080/openrdf-sesame";
RemoteRepositoryManager manager = new RemoteRepositoryManager(serverUrl);
manager.initialize();

The Storage And Inference Layer API (SAIL) separates storage and inference. The SAIL API is primarily
used by triplestore developers. The RIO API, which stands for “RDF I/O,” contains parsers and writers
for RDF serialization. The parsers can transform RDF files to statements, while the writers can transform
statements to RDF files. The RIO API can be used independently from all the other Sesame components.

The RDF Model API defines the representation of RDF building blocks such as statements, URIs, blank
nodes, literals, graphs, and models. The RDF statements are represented by the org.openrdf.model.
Statement interface, in which each statement has a subject, predicate, object, and (optionally) a context.
Each of these items is an org.openrdf.model.Value, which covers org.openrdf.model.Resource and
org.openrdf.model.Literal. Each resource represents an RDF value that is either a blank node
(org.openrdf.model.BNode) or a URI (org.openrdf.model.URI). Literals represent RDF literal values
such as strings, dates, and integer numbers. New triples and values can be created using org.openrdf.
model.ValueFactory (see Listing 4-11).

Listing 4-11.  Using a Default ValueFactory Implementation

ValueFactory factory = ValueFactoryImpl.getInstance();

Once you obtain your ValueFactory, you can create new URIs, literals, and triples (see Listing 4-12).

Listing 4-12.  Adding URIs, Literals, and Triples to a ValueFactory Implementation

URI webstand = factory.createURI("http://yourbookdataset.com/webstand");
URI title = factory.createURI("http://yourbookdataset.com/title");
Literal webstandsTitle = factory.createLiteral("Web Standards");
Statement titleStatement = factory.createStatement(webstand, title, webstandsTitle);

The Graph API represents an RDF graph as a Java object. The org.openrdf.model.Graph class handles
RDF graphs from the Java code. Graphs can be created in two ways: writing them programmatically by
adding statements to them or created using a construct query. Empty graphs can be obtained by creating a
GraphImpl object (see Listing 4-13).

http://yourbookdetaset.com/webstand
http://yourbookdetaset.com/title

Chapter 4 ■ Semantic Web Development Tools

98

Listing 4-13.  Creating an Empty Graph

Graph myGraph = new org.openrdf.model.impl.GraphImpl();

Next, the RDF statement components (subject-predicate-object) have to be created using the
ValueFactory object (see Listing 4-14). This prepares the graph to support triples and adds the
WebDesignBook subject, the Title predicate, and the Web Standards object to the graph.

Listing 4-14.  Adding Triple Support to a Graph

ValueFactory myFactory = myGraph.getValueFactory();
String namespace = "http://www.foo.com/bar#";
 
URI mySubject = myFactory.createURI(namespace, "WebDesignBook");
URI myPredicate = myFactory.createURI(namespace, "Title");
Literal myObject = myFactory.createLiteral("Web Standards");
 
myGraph.add(mySubject, myPredicate, myObject);

Another option is to use the URIs directly to add properties (see Listing 4-15).

Listing 4-15.  Using URIs Directly to Add Triples to a Graph

URI bookClass = myFactory.createURI(namespace, "Book");
URI rdfType = myFactory.createURI(org.openrdf.vocabulary.RDF.TYPE);
mySubject.addProperty(rdfType, bookClass);

Integrated Development Environments
Integrated Development Environments (IDEs) provide an interface for efficient Semantic Web application
development, including a source editor with syntax highlighting for a variety of programming languages,
such as Java and Python. IDEs have wizards and built-in applications to simplify software development, file
handlers, and other tools to support deploying, running, and testing applications. IDEs consist of a runtime
system, a workbench, and other features, such as a remote debugger or data modeler.

Eclipse

Eclipse is one of the most popular IDEs for Java developers, providing essential
tools, such as a Java IDE, a CVS client, a Git client, an XML Editor, and Apache
Maven integration [24].

Eclipse is one of the popular IDEs to use Apache Jena and Sesame. The installation of Eclipse can be
done as follows:

	 1.	 A prerequisite of Eclipse is the Java Development Kit (JDK). Download it from
http://www.oracle.com/technetwork/java/javase/downloads/ and install it
(Figure 4-11).

http://www.foo.com/bar%23
http://www.oracle.com/technetwork/java/javase/downloads/

Chapter 4 ■ Semantic Web Development Tools

99

■■ Caution  The Java Development Kit is different from the Java Runtime
Environment (JRE), also known as the Java Virtual Machine (JVM), which is a secure
computing environment for running Java programs on your computer. 

Figure 4-11.  Installing the Java Development Kit for Eclipse

	 2.	 Visit http://www.eclipse.org and download the installer. Eclipse is available
for Windows, Linux, and Mac OS X. The Windows binary is distributed as a ZIP
archive, the Linux and the Apple installers as gzipped TAR archives.

	 3.	 Extract the installation files and execute eclipse.exe.

	 4.	 You have to specify a folder for Eclipse project files. If you want to use the same
path every time you launch Eclipse, you can set the folder to the default Eclipse
project folder.

Set Up Apache Jena in Eclipse
Once you have Eclipse installed, you can set up Apache Jena.

	 1.	 Go to http://jena.apache.org/download/, select a download mirror, and
download the binary distribution suitable for your platform (.zip or .tar.gz).

	 2.	 Extract the Jena files from the archive.

	 3.	 In Eclipse, select File ➤ New ➤ Java Project.

	 4.	 Right-click the name of the newly created project and select Properties (or select
File ➤ Properties).

http://www.eclipse.org/
http://jena.apache.org/download/

Chapter 4 ■ Semantic Web Development Tools

100

	 5.	 Select Java Build Path and click the Libraries tab.

	 6.	 Click Add Library… on the right.

	 7.	 Select User Library as the library type (see Figure 4-12).

Figure 4-12.  Load the Apache Jena software library to Eclipse

	 8.	 Click the Next ➤ button on the bottom.

	 9.	 Click User Libraries… on the right.

	 10.	 Click the New… button.

	 11.	 Add a name to your library, such as JenaLib.

	 12.	 Click the Add external JARs… button on the right.

	 13.	 Browse to your Jena directory (apache-jena-versionNumber) and go to the lib
subdirectory.

	 14.	 Select all the .jar files (for example, with Ctrl+A) and click Open (see Figure 4-13).

	 15.	 Click OK.

	 16.	 Click Finish.

	 17.	 Once you click OK, the Jena software library will be added to your Eclipse project.

Chapter 4 ■ Semantic Web Development Tools

101

To see the Jena library in action, let’s create a Java program to convert your RDF/XML serialized FOAF
file to Turtle!

	 1.	 In the Package Explorer, right-click src and select New ➤ Package and
create a package.

	 2.	 Click the package name and select New ➤ File.

	 3.	 Specify a file name and click Finish.

	 4.	 Add the file content (type in directly or copy-paste it). If you don’t have a FOAF
file yet, create one manually in RDF/XML serialization or generate one using
FOAF-a-matic at http://www.ldodds.com/foaf/foaf-a-matic.html. The
asterisk (*) in front of the file name on the file’s tab indicates that the file has
been changed. When you save the file with File ➤ Save or Ctrl+S, the character
disappears. Save the file as, for example, foaf.rdf.

■■ Note  If you have characters not supported by Windows-1252, Eclipse offers you
the option to save the file with UTF-8 encoding to avoid character loss. 

Figure 4-13.  Apache Jena to be added to the Eclipse project

http://www.ldodds.com/foaf/foaf-a-matic.html

Chapter 4 ■ Semantic Web Development Tools

102

	 5.	 Right-click the package and select New ➤ Class and add a name such as Main
(creates Main.java).

	 6.	 Write the code to open the FOAF file and convert it to Turtle serialization using
Apache Jena. Import the model (com.hp.hpl.jena.rdf.model.Model) and the
File Manager of Jena (com.hp.hpl.jena.util.FileManager). Using the File
Manager, load the model (FileManager.get().loadModel()) and write the RDF
content out to the standard output (the console) in Turtle using System.out
(see Listing 4-16).

Listing 4-16.  Loading and Converting an RDF File Using Jena

package JenaPackage;
 
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
 
public class Main {
 public static void main(String args[])
 {
 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());
 Model model = FileManager.get().loadModel("C:/develop/eclipse/workspace/ 
 jenaapp/src/jenapackage/foaf.rdf");
 model.write(System.out,"TURTLE");
 }
}

 

	 7.	 Run the program by clicking the Run button on the top toolbar (white triangle
in green circle) or Run under the Run menu. The Console shows the output in
Turtle (see Figure 4-14).

Figure 4-14.  Using Apache Jena to convert RDF/XML to Turtle

Chapter 4 ■ Semantic Web Development Tools

103

Set Up Sesame in Eclipse
Once you have Eclipse installed, you can add Sesame to your environment, similar to Jena.

	 1.	 Go to http://sourceforge.net/projects/sesame/ and download the binary
distribution.

	 2.	 Extract the Sesame files from the archive.

	 3.	 In Eclipse, select File ➤ New ➤ Java Project.

	 4.	 Right-click the name of the newly created project and select Properties (or select
File ➤ Properties).

	 5.	 Select Java Build Path and click the Libraries tab.

	 6.	 Click Add Library… on the right.

	 7.	 Select User Library as the library type.

	 8.	 Click the Next > button on the bottom.

	 9.	 Click User Libraries… on the right.

	 10.	 Click the New… button.

	 11.	 Add a name to your library, such as JenaLib.

	 12.	 Click the Add external JARs… button on the right.

	 13.	 Browse to your Sesame directory (openrdf-sesame-versionNumber) and go to
the lib subdirectory.

	 14.	 Select all the .jar files (for example, with Ctrl+A) and click Open (see Figure 4-15).

Figure 4-15.  Adding Sesame to Eclipse

http://sourceforge.net/projects/sesame/

Chapter 4 ■ Semantic Web Development Tools

104

	 15.	 Click OK.

	 16.	 Click Finish.

	 17.	 Once you click OK, the Sesame software library will be added to your
Eclipse project.

To see the Sesame library in action, let’s create a Java program, to initialize a repository, and add data to
and retrieve data from that repository!

	 1.	 Create a new Java class. To make it easier to write our code, on the New Java Class
window, tick the checkbox public static void main(String[] args) under
Which method stubs would you like to create?

	 2.	 To store RDF data, we first have to create a repository. While there are many
different types of repositories, for our example, we need a simple local repository
with fast in-memory store (see Listing 4-17).

Listing 4-17.  Creating a Local Repository in Sesame

Repository rep = new SailRepository(new MemoryStore());

To use this code, however, we have to write some import statements manually
(see Listing 4-18).

Listing 4-18.  Import Packages from the Sesame Library

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;

Alternatively, you can force missing imports to be resolved automatically, using the
Ctrl+Shift+O hot key.

	 3.	 Initialize the repository by calling the rep.initialize() method.

	 4.	 Add data to the repository. You can add triples directly from Java or load them
from external files. In this example, we add some statements directly. To do so,
we need a namespace to be used for creating new URIs and a ValueFactory for
creating URI, BNode, and Literal objects (see Listing 4-19).

Listing 4-19.  Adding Data to the Repository

String namespace = "http://example.com/";
ValueFactory f = rep.getValueFactory();

 
	 5.	 Create a new URI through an identifier for the person Leslie (see Listing 4-20).

Listing 4-20.  Creating a URI

URI leslie = f.createURI(namespace, "leslie");
 

	 6.	 To add data to the repository, you have to open a RepositoryConnection
(Listing 4-21).

Chapter 4 ■ Semantic Web Development Tools

105

Listing 4-21.  Opening a Connection

RepositoryConnection conn = rep.getConnection();
 

	 7.	 To ensure that any connection is open only when needed, create a try-finally
code block (see Listing 4-22). The try clause holds the tasks to be performed
during a connection, while the finally clause is used to close the connection
when it is not needed anymore or if something goes wrong.

Listing 4-22.  A try-finally Block

try {
  
}
finally {
 conn.close();
}

 
	 8.	 In the try clause, add triples to the repository (see Listing 4-23).

Listing 4-23.  Adding RDF Statements to a Sesame Repository

conn.add(leslie, RDF.TYPE, FOAF.PERSON);
conn.add(leslie, RDFS.LABEL, f.createLiteral("Leslie",
XMLSchema.STRING));

The first triple describes Leslie as a Person, the second states Leslie’s name as a
string.

■■ Note  The frequently used namespaces (RDF, RDFS, FOAF, etc.) are predefined as
constants in Sesame. 

	 9.	 Retrieve the data from our repository using the getStatements method
(see Listing 4-24), which has four arguments.

Listing 4-24.  Data Retrieval from a Repository

RepositoryResult<Statement> statements = conn.getStatements(null,
null, null, 
true);

The first three arguments represent the subject, predicate, and object to be
matched. In this case, we want to retrieve all triples. The first three arguments
will be null. The last argument is a Boolean value for indicating whether those
statements that are inferred by a reasoner should be included. In this example, we
do not use any reasoners, so the fourth value won’t have any effect on the output.
Alternatively, one could use SPARQL queries as well, to extract data from the
repository.

Chapter 4 ■ Semantic Web Development Tools

106

	 10.	 Convert the result to a Sesame Model (see Listing 4-25), which is a Java
Collection.

Listing 4-25.  Converting the Result to a Model

Model model = Iterations.addAll(statements, new LinkedHashModel()); 

	 11.	 To provide a neat output, we need some namespace abbreviations, so that the
output won’t include full URIs. Again, we can use the predefined constants for
the RDF, RDFS, XMLSchema, and FOAF namespaces (see Listing 4-26).

Listing 4-26.  Namespace Declaration

model.setNamespace("rdf", RDF.NAMESPACE);
model.setNamespace("rdfs", RDFS.NAMESPACE);
model.setNamespace("xsd", XMLSchema.NAMESPACE);
model.setNamespace("foaf", FOAF.NAMESPACE);
model.setNamespace("ex", namespace);

 
	 12.	 Display the output in Turtle on the Console, using the Sesame toolkit Rio

(“RDF I/O”) (see Listing 4-27).

Listing 4-27.  Sending the Output to the Console

Rio.write(model, System.out, RDFFormat.TURTLE);

The final code should look like Listing 4-28.

Listing 4-28.  A Complete Sesame Code Example

package sesamePackage;
 
import info.aduna.iteration.Iterations;
 
import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.Model;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.impl.LinkedHashModel;
import org.openrdf.model.vocabulary.FOAF;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.model.vocabulary.XMLSchema;
import org.openrdf.repository.Repository;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.RepositoryException;
import org.openrdf.repository.RepositoryResult;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
import org.openrdf.rio.RDFFormat;
import org.openrdf.rio.RDFHandlerException;
import org.openrdf.rio.Rio;
 

Chapter 4 ■ Semantic Web Development Tools

107

public class SesameApp {
 
 �public static void main(String[] args) throws RepositoryException,
RDFHandlerException {

 
 Repository rep = new SailRepository(new MemoryStore());
 rep.initialize();
 
 String namespace = "http://example.com/";
 ValueFactory f = rep.getValueFactory();
 
 URI leslie = f.createURI(namespace, "leslie");
 
 RepositoryConnection conn = rep.getConnection();
 try {
 conn.add(leslie, RDF.TYPE, FOAF.PERSON);
 �conn.add(leslie, RDFS.LABEL, f.createLiteral("Leslie", XMLSchema.

STRING));
 
 �RepositoryResult<Statement> statements = conn.getStatements(null,

null, null, true);
 
 Model model = Iterations.addAll(statements, new LinkedHashModel());
 model.setNamespace("rdf", RDF.NAMESPACE);
 model.setNamespace("rdfs", RDFS.NAMESPACE);
 model.setNamespace("xsd", XMLSchema.NAMESPACE);
 model.setNamespace("foaf", FOAF.NAMESPACE);
 model.setNamespace("ex", namespace);
 
 Rio.write(model, System.out, RDFFormat.TURTLE);
 }
 finally {
 conn.close();
 }
 
 }
 
}

Finally, you can run the application. The data stored in and retrieved from the repository is displayed on
the Console (see Figure 4-16).

http://example.com/

Chapter 4 ■ Semantic Web Development Tools

108

NetBeans
NetBeans is another popular Integrated Development Environment for Java [25].

NetBeans is powered by Apache Ant and supports Apache Maven, refactoring,
version control, etc. All the functions of the IDE are provided through modules.

Setup Apache Jena in NetBeans
Integrating Apache Jena in NetBeans is similar to the installation we discussed for Eclipse.

	 1.	 Go to http://jena.apache.org/download/, select a download mirror, and
download the binary distribution suitable for your platform (.zip or .tar.gz).

	 2.	 Extract the Jena files from the archive.

	 3.	 In NetBeans, select File ➤ New Project ➤ JavaWeb.

	 4.	 Give a name to the project and select servers.

	 5.	 Select File ➤ Project Properties.

	 6.	 Select the Libraries category and select Add JAR/Folder.

Figure 4-16.  Using Sesame to store and retrieve RDF triples

http://jena.apache.org/download/

Chapter 4 ■ Semantic Web Development Tools

109

	 7.	 Select the required files.

	 8.	 When the files are listed, verify and click OK.

To use Jena in your project, you have to import the required packages, as discussed in the previous sections.
If you use Apache Maven integration in NetBeans, you can also start a Jena project as follows:

	 1.	 Select File ➤ New Project ➤ Maven ➤ Java Application.

	 2.	 Add a name to the project and additional information, such as location, then
click Finish.

	 3.	 Once NetBeans has created a new Maven project and opened it, right-click
Dependencies and choose Add Dependency….

	 4.	 Declare the Group ID, such as org.apache.jena, the Artifact ID, such as
jena-core, and the version of your Jena integration.

	 5.	 Open the Dependencies directory and check the dependencies.

■■ Note  The download of declared dependencies can be forced by right-clicking
Dependencies and choosing Download Declared Dependencies.

CubicWeb
CubicWeb is an object-oriented Semantic Web application framework written in Python [26]. It supports RDF
and OWL, features semiautomatic XHTML/XML/JSON/text generation, and a proprietary query language
similar to SPARQL. CubicWeb supports SQL databases and LDAP directories. The rapid application
development is powered by a library of reusable components called “cubes,” including a data model and
views for common tasks. For example, the file cube contains the file entity type, gallery view functionality,
and a file import utility. If you build a blog application, you create a new cube, such as mycube, and reuse the
blog cube (see Figure 4-17).

Figure 4-17.  Visualization of the data model in CubicWeb

Chapter 4 ■ Semantic Web Development Tools

110

When you develop a new web application, you create a new cube, select building blocks from existing
cubes, create class definitions in your cube’s schema, and create instances. The cubes have a standard folder
structure to store the Python scripts, style sheets, JavaScript files, and translation files.

Linked Data Software
Sindice
Sindice is one of the most popular Linked Data platforms. Sindice collects, processes and integrates Linked
Data from RDF, RDFa, Microformats, and HTML5 Microdata [27]. One of Sindice’s components is the Sindice
Web Data Inspector at http://inspector.sindice.com, which is a comprehensive semantic data extractor
tool. The tool can be used to extract RDF triples from markup, RDF/XML, Turtle, or N3 documents provided
either by URI or by direct input. Sindice Web Data Inspector can be used for retrieving semantic data
(Inspect button), combined semantic data extraction and validation (Inspect + Validate button), or ontology
analysis and reasoning (see Figure 4-18).

Figure 4-18.  Comprehensive options on the start screen of Sindice Web Data Inspector

As a result, the tool provides the full list of subject-predicate-object triples retrieved from the file.
The output format can also be changed to N-triples or RDF/XML.

■■ Note  For usability reasons, Sindice Web Data Inspector displays a maximum of 1,000 triples only.

The “Sigma” option is a really good demonstration of machine-readable metadata. Software tools can
extract structured data from properly written semantic documents and display them arbitrarily. This is the
true essence of the Semantic Web !

http://inspector.sindice.com/

Chapter 4 ■ Semantic Web Development Tools

111

A useful feature of Sindice Web Data Inspector is that a scalable graph can be generated from your
semantic document. The graph not only presents the triples but also provides a quick summary of the
ontologies and vocabularies used in the file.

The Sindice Web Data Inspector also has a validation feature with two different options. The first one,
called “RDF syntax validation ,” performs an RDF syntax validation according to the W3C specification. The
second option is the “Pedantic validator ,” which is a validation over the extracted triples. In case of a valid
document, both validators give the result “Valid document.”

Apache Marmotta
Apache Marmotta is a Linked Data server, SPARQL server, and Linked Data
development environment [28]. Marmotta provides a Linked Data Platform (LDP)
for human-readable and machine-readable read-write data access via HTTP
content negotiation.

Marmotta features modules and libraries for LD application development.
The modular server architecture makes it possible to implement the required
functionalities only. For instance, if you don’t need reasoning for your project,
you can exclude the reasoner module. Marmotta provides a collection of Linked
Data libraries for common LD tasks such as access to LD resources and query
Linked Data (through LDPath, a simple LD query language). The triplestore is segregated from the
server, so it can be used independently. The Apache Marmotta platform is implemented as a Java web
application and deployed as a .war file. It is a service-oriented architecture using Contexts and Dependency
Injection (CDI), a set of services of Java web application development. The Marmotta Core, a fundamental
component of Apache Marmotta, provides Linked Data access, RDF import and export functionality, and
an admin interface. Marmotta Core unites the service and dependency injection, the triplestore, the system
configuration, and logging.

As a SPARQL server, Marmotta provides a public SPARQL 1.1 query and update endpoint and
full support for SPARQL 1.1 through HTTP Web services. Marmotta features a fast, native SPARQL
implementation in KiWi triplestore, a high-performance, highly scalable transactional triplestore back
end for OpenRDF Sesame building on top of a relational database such as MySQL, PostgreSQL, or H2.
To make SPARQL queries easier, Apache Marmotta provides Squebi, a lightweight user interface. Beyond
KiWi, Marmotta’s default triplestore back end, you can also choose Sesame Native (based on Sesame Native
RDF back end), BigData (based on the BigData clustered triplestore), or Titan (based on the Titan graph
database). Marmotta Reasoner, an optional module, is a rule-based reasoner for the KiWi triplestore. It
implements datalog-style rules over RDF triples. The Marmotta Loader is a command-line tool for loading
RDF data in various formats to different triplestores. It supports RDF serializations and can also import
directories, split-files, gzip and bzip2 compressed files, as well as Tar and Zip archives.

The Marmotta software libraries can be used not only as components of the Marmotta platform but also
as stand-alone lightweight Java libraries. The Apache Marmotta LDClient library is a flexible and modular
RDFizer suitable for Linked Data projects to retrieve remote Linked Data resources via different protocols
and data providers [29]. The modules of Marmotta support RDF/XML, Turtle, N3, JSON-LD, RDFa, XML,
HTML, and can process Freebase, Facebook, YouTube, Vimeo, and MediaWiki contents. The software library
is extensible through Java’s ServiceLoader class, enabling custom wrappers for legacy data sources such
as RDF, RDFa, Facebook, YouTube, and Wikipedia, as well as base classes for mapping other formats such
as XML and JSON. Marmotta LDCache, another library, can access remote Linked Data resources as if they
were local. It supports wrapping for legacy data sources such as Facebook Graph. LDCache features a local
triplecache. Another optional library is Marmotta LDPath, a query language less expressive than SPARQL
but specifically designed for querying Linked Data in the cloud. LDPath features a path-based navigation,
which starts at the resource and follows the links.

Chapter 4 ■ Semantic Web Development Tools

112

■■ Note  If you use SPARQL queries, LDPath is recommended over LDCache.

LDPath includes a large function library that can be integrated in your own applications. LDPath can be
used with LDCache and LDClient and supports back ends such as Jena and Sesame.

sameAs.org
Because interlinking is fundamental in the Linked Open Data cloud, you will often define resources that
describe the same object you express in RDF. For example, you refer to the machine-readable definition of
your city of residence, pointing to its resource page on DBpedia, GeoNames, and Freebase. Because finding
equivalent resource pages can be time-consuming, you might find the tool at www.sameas.org, which finds
equivalent resource pages across different datasets, useful (see Figure 4-19).

Figure 4-19.  sameAs finds equivalent resource definitions from different LOD datasets

4Named after Callimachus (310/305?–240 BC), the “Father of Bibliography,” who worked at the ancient Great Library
of Alexandria.

Callimachus
Callimachus4 is an integrated Linked Data application development environment for graph storage,
visualization, RDFa templating, data processing with XSLT and XProc, SPARQL querying, and Linked Open
Data publishing [30]. It is suitable for standardizing metadata and combining data from different systems
and combining enterprise data with open data from the Web.

Callimachus extends the RDFa syntax by allowing variables as well as URIs to be used in attributes.
Callimachus further extends the RDFa syntax by introducing expressions that allow values to be substituted
within attribute values or within text nodes. Callimachus converts the attributes into graph patterns. Blank
nodes and empty property contents are treated as wildcards. Graph patterns with wildcards or variables
partners are optionally joined in the result.

Neologism
Neologism is a free and open source vocabulary publishing platform [31]. It is distributed as a Drupal plug-in
and supports RDF and RDFS and partially supports OWL. Neologism can import offline and online files
written in RDF/XML, RDFa, Turtle, or OWL (see Figure 4-20). The form fields of Neologism feature client-side
validation for correct input. Neologism displays relationships between terms in both directions. You can add
arbitrary triples in Turtle to any vocabulary’s RDF output.

http://www.sameas.org/

Chapter 4 ■ Semantic Web Development Tools

113

LODStats
LODStats is an extensible framework written in Python for high-performance dataset analytics [32]. It gathers
statistical dataset characteristics such as class usage count, class hierarchy depth, property hierarchy depth,
distinct entities, and so on. LODStates is so powerful that its developers integrated the framework with CKAN,
the LOD cloud metadata registry to generate timely and comprehensive statistics about the LOD cloud.

Semantic Web Browsers
Semantic Web browsers are browsing tools for exploring and visualizing RDF datasets enhanced with Linked
Data such as machine-readable definitions from DBpedia or geospatial information from GeoData. Semantic
Web browsers provide exploration, navigation, and interactivity features different from conventional web
browsers. They display not only human-readable but also machine-readable annotations and extracted
RDF triples. While conventional browsers use hyperlinks for navigating between documents, Semantic Web
browsers provide mechanisms for forward and backward navigation with typed links. Semantic Web browsers
support facet-based (faceted) browsing by processing the list of discrete filter attributes called facets, gradually
refining the search on a collection of information and visualizing the result (such as generating a map from
geospatial data). Semantic Web browsers also support pivoting (rotation), the dimensional orientation of
data. For example, pivoting the initially aggregated Book, Publisher, and Date yields Publisher, Date, and
Book. Semantic Web browsers can convert non-linked data to Linked Data and create links to related URIs.
They provide text search or SPARQL queries, or both, and support the five-star data deployment scheme
discussed in Chapter 3, for data consumption, generation, aggregation, augment, and reinterpretation.

Tabulator
Tabulator is W3C’s Semantic Web browser and editor available as a web application and a Firefox plug-in at
http://www.w3.org/2005/ajar/tab. It can display Linked Data in various visualization formats. Tabulator
contains an RDF store written in JavaScript. The tool has two modes: Exploration Mode and Query Mode.

Figure 4-20.  Neologism can import vocabulary and ontology files written in any of the mainstream RDF
serializations

http://dx.doi.org/10.1007/9781484210505_3
http://www.w3.org/2005/ajar/tab

Chapter 4 ■ Semantic Web Development Tools

114

In Exploration Mode, it displays a table of predicate-object pairs, which might also include nested properties.
One of the exploration options is Outline Mode, with which the user can explore resources by opening the
branches of the tree structure. The Outliner Mode addresses the limitations of the circle-and-arrow diagrams
used by RDF visualizers, such as IsaViz, that are inefficient for large amounts of data with many nodes and
many different properties. In Outliner Mode, the user can also perform graph-matching queries by selecting
a number of fields and pressing the Find All button, when the Linked Data graph is searched for subgraphs
matching the given fields. Instances are listed of a dedicated pane for each class. Tabulator can also show the
network activity involved in retrieving the opened document, human-readable content, and RDF.

When used as an editor, Tabulator supports three editing options in Outline Mode: object modification,
adding a new object with an existing predicate, and adding a new predicate-object pair to an existing
subject. To modify a cell that contains a literal value, you click once (or press Enter) when the cell is
highlighted, so that the field becomes editable. Once the editing is done, you just press Enter. If the object
of the predicate-object pair is not a literal value but a URI identifier, you can select it by name or by drag-
and-drop. Tabulator always tries to display a name rather than a URI whenever possible (for example, a
textual description rather than rdfs:label or dc:title). When the predicate is not present, a new fact to
the property or object table can be added by clicking the blue plus symbol displayed to the left, at the end of
the table. When the new pair is added, you will be prompted with an auto-completion box for the predicate,
while the object can be selected as usual.

When you perform a query for a subgraph pattern, a table is generated. Inserting a new row creates
a new subgraph that matches the query. When a cell value is edited, a statement is removed and another
inserted in the same document.

Marbles
Marbles is a server-side application and linked data engine for semantic data retrieval and storage. As a
Semantic Web browser, it displays colored “marbles” to indicate the relationship between data origin and
data sources. Marbles can also be used as a SPARQL endpoint that supports SELECT, CONSTRUCT, and DESCRIBE
queries. Once you download the .war file from http://sourceforge.net/projects/marbles/files/,
you can place it into a J2EE web container such as Tomcat to install Marbles automatically. For manual
installation, invoke the ant install and remove tasks on the source distribution, then invoke the servlet at
the directory root. Among others, Marbles is implemented in DBpedia Mobile.

OpenLink Data Explorer (ODE)
OpenLink Data Explorer (ODE, originally OpenLink RDF Browser) is a browser extension to exploit
structured data. ODE adds two options to the standard View menu, both in the main menu and the context
menu (see Figure 4-21).

The Data Explorer is available for Internet Explorer, Firefox, Safari, Google Chrome, and Opera
(http://ode.openlinksw.com/#Download). Let’s install the add-on, say, for Firefox!

	 1.	 Go to http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/
firefox3.0/ode.xpi.

	 2.	 Depending on your security settings, Firefox might prevent automatic
installation. Click Allow to download the add-on.

	 3.	 The Software Installation pop-up asks for permission to proceed
(“Install add-ons from authors whom you trust.”) Click Install Now.

	 4.	 Restart Firefox.

http://sourceforge.net/projects/marbles/files/
http://ode.openlinksw.com/#Download
http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/firefox3.0/ode.xpi
http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/firefox3.0/ode.xpi

Chapter 4 ■ Semantic Web Development Tools

115

Once installed, the plug-in becomes available from the View menu as well as the context menu.
The View Entity Description option gives a structured description of the current page. View Data Sources
provides raw data display options for the structured data retrieved from the current page (see Figure 4-22).

Figure 4-21.  ODE options in the context menu

Figure 4-22.  Result screen of View Data Sources

The settings of the plug-in are available via Tools ➤ OpenLink Data Explorer ➤ Options. First, you can
select the viewer. The default one is OpenLink Data Explorer, but you can also choose Zitgist Data Viewer,
Marbles, DISCO, Tabulator, or a custom viewer. For Linked Data access, there is an RDFizer service,

Chapter 4 ■ Semantic Web Development Tools

116

a SPARQL Endpoint, and you can also define HTTP headers. The default host for RDFizer and the SPARQL
endpoint is linkeddata.uriburner.com, which can be modified arbitrarily. The RDFizer is Virtuoso
Sponger (http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger), a component
of Virtuoso’s SPARQL Processor and Proxy Web Service. Sponger supports RDFa, GRDDL, Amazon Web
Services, eBay Web Services, Freebase Web Services, Facebook Web Services, Yahoo! Finance, XBRL Instance
documents, Document Object Identifiers (DOI), RSS and Atom feeds, ID3 tags of MP3 music files, vCard,
Microformats, Flickr, and Del.icio.us contents.

OpenLink Data Explorer handles RDF, Turtle, and Notation3 MIME data. The default viewer for MIME
data is Virtuoso Describe, but you can also choose Virtuoso About or Virtuoso ODE with or without SSL.

DBpedia Mobile
DBpedia Mobile is a location-aware DBpedia client application for mobile devices, providing a map view
and a GPS-enabled launcher application [33]. Based on the GPS position of your mobile device, DBpedia
Mobile displays a map that contains information about nearby locations extracted from the DBpedia dataset.
Approximately 300,000 geographical locations are covered. DBpedia Mobile is powered by the rendering engine
and SPARQL capabilities of the Marbles Linked Data Browser. Once the map is rendered, you can browse
additional information about the location and go directly to DBpedia, GeoNames, Flickr, and other datasets.

IsaViz
Being a visual authoring tool for RDF, IsaViz represents data as a circle-and-arrow diagram, which shows
“things” related to each other (see Figure 4-23) [34]. This is useful when analyzing data structures. On an
IsaViz diagram you can see clustering when a large number of “things” are related by the same properties.

Figure 4-23.  An RDF graph in IsaViz

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger

Chapter 4 ■ Semantic Web Development Tools

117

RelFinder
RelFinder (Relationship Finder) can be used to visualize, filter, and analyze large amounts of relationships
between objects. It is suitable for knowledge representation and knowledge discovery. RelFinder provides
standard SPARQL access to datasets. The online version is available at http://www.visualdataweb.org/
relfinder/relfinder.php, which can generate a directed graph based on the selected objects and their
relationships (see Figure 4-24).

Figure 4-24.  Visualizing connections with RelFinder

Summary
In this chapter, you became familiar with frequently used software tools that can generate, store, extract,
and visualize RDF data. You learned how to generate RDFa annotation for your web site and test RDFa
and Microdata annotations with Google Structured Data Testing Tool. You saw how to set up Integrated
Development Environments to use software libraries for writing Semantic Web applications and examples
for storing RDF data in, and retrieving RDF data from, repositories. You know the most popular Linked Data
platforms to import, edit, and serialize datasets.

The next chapter will introduce you to Semantic Web service standards, including protocols, interfaces,
and languages used by services such as location-aware applications and semantic e-commerce portals.

References
	 1.	 Ho, D. et al. (2014) Notepad++. Don Ho. http://notepad-plus-plus.org.

Accessed 31 March 2015.

	 2.	 Sessink, O. (2014) BlueFish. The Bluefish Project Team.
http://bluefish.openoffice.nl/. Accessed 4 November 2014.

	 3.	 ActiveState Software (2014) Komodo. ActiveState Software.
www.activestate.com/komodo-ide. Accessed 4 November 2014.

http://www.visualdataweb.org/relfinder/relfinder.php
http://www.visualdataweb.org/relfinder/relfinder.php
http://notepad-plus-plus.org/
http://bluefish.openoffice.nl/
http://www.activestate.com/komodo-ide

Chapter 4 ■ Semantic Web Development Tools

118

	 4.	 Bare Bones Software (2014) BBEdit. Bare Bones Software, Inc.
www.barebones.com/products/bbedit/. Accessed 4 November 2014.

	 5.	 Bare Bones Software (2014) TextWrangler. Bare Bones Software, Inc.
www.barebones.com/products/textwrangler/index.html. Accessed
4 November 2014

	 6.	 Lutus, P. (2014) Arachnophilia. www.arachnoid.com/arachnophilia/.
Accessed 4 November 2014.

	 7.	 GitHub (2015) DBpedia Spotlight. https://github.com/dbpedia-spotlight/
dbpedia-spotlight. Accessed 31 March 2015.

	 8.	 The GATE project team (2015) GATE. https://gate.ac.uk. Accessed 31 March 2015.

	 9.	 The OpenRefine community (2015) OpenRefine. http://openrefine.org.
Accessed 31 March 2015.

	 10.	 Altova (2012) Altova SemanticWorks 2012 User and Reference Manual.
www.altova.com/documents/SemanticWorks.pdf. Accessed 31 March 2015.

	 11.	 TopQuadrant (2015) TopBraid Composer Standard Edition. www.topquadrant.com/
tools/modeling-topbraid-composer-standard-edition/. Accessed
31 March 2015.

	 12.	 TopQuadrant (2015) TopBraid Composer Maestro Edition.
www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/.
Accessed 31 March 2015.

	 13.	 The Apache Software Foundation (2015) Apache Stanbol.
http://stanbol.apache.org. Accessed 31 March 2015.

	 14.	 Fluent Editor. www.cognitum.eu/semantics/FluentEditor/. Accessed
15 April 2015.

	 15.	 The European Bioinformatics Institute (2015) ZOOMA.
www.ebi.ac.uk/fgpt/zooma/. Accessed 31 March 2015.

	 16.	 Harispe, S. (2014) Semantic Measures Library & ToolKit.
www.semantic-measures-library.org. Accessed 29 March 2015.

	 17.	 Motik, B., Shearer, R., Glimm, B., Stoilos, G., Horrocks, I. (2013) HermiT OWL
Reasoner. http://hermit-reasoner.com. Accessed 31 March 2015.

	 18.	 Clark & Parsia (2015) Pellet: OWL 2 Reasoner for Java. http://clarkparsia.com/
pellet/. Accessed 31 March 2015.

	 19.	 Tsarkov, D., Horrocks, I. (2007) FaCT++. http://owl.man.ac.uk/factplusplus/.
Accessed 31 March 2015.

	 20.	 University of Luebec (2015) Racer. www.ifis.uni-luebeck.de/
index.php?id=385. Accessed 31 March 2015.

	 21.	 The Apache Software Foundation (2015) Apache Jena. http://jena.apache.org.
Accessed 31 March 2015.

	 22.	 The Apache Software Foundation (2015) Apache Jena Fuseki.
http://jena.apache.org/documentation/fuseki2/. Accessed 31 March 2015.

http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/index.html
http://www.barebones.com/products/textwrangler/index.html
http://www.arachnoid.com/arachnophilia/
https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://gate.ac.uk/
http://openrefine.org/
www.altova.com/documents/SemanticWorks.pdf
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://stanbol.apache.org/
http://www.cognitum.eu/semantics/FluentEditor/
http://www.ebi.ac.uk/fgpt/zooma/
http://www.semantic-measures-library.org/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://owl.man.ac.uk/factplusplus/
http://www.ifis.uni-luebeck.de/index.php?id=385
http://www.ifis.uni-luebeck.de/index.php?id=385
http://jena.apache.org/
http://jena.apache.org/documentation/fuseki2/

Chapter 4 ■ Semantic Web Development Tools

119

	 23.	 Broekstra, J., Ansell, P., Visser, D., Leigh, J., Kampman, A., Schwarte, A. et al.
(2015) Sesame. http://rdf4j.org. Accessed 31 March 2015.

	 24.	 The Eclipse Foundation (2015) Eclipse. www.eclipse.org.
Accessed 31 March 2015.

	 25.	 Oracle Corporation (2015) NetBeans IDE. https://netbeans.org. Accessed
31 March 2015.

	 26.	 Logilab (2015) CubicWeb Semantic Web Framework. www.cubicweb.org.
Accessed 31 March 2015.

	 27.	 Digital Enterprise Research Institute (2015) Sindice—The Semantic Web index.
http://sindice.com. Accessed 31 March 2015.

	 28.	 The Apache Software Foundation (2015) Apache Marmotta.
http://marmotta.apache.org. Accessed 31 March 2015.

	 29.	 The Apache Software Foundation (2015)
http://marmotta.apache.org/ldclient/. Accessed 31 March 2015.

	 30.	 3 Round Stones (2015) Callimachus—Data-driven applications made easy.
http://callimachusproject.org. Accessed 31 March 2015.

	 31.	 National University of Ireland (2011) Neologism—Easy Vocabulary Publishing.
http://neologism.deri.ie/. Accessed 31 March 2015.

	 32.	 Auer, S., Ermilov, I., Lehmann, J., Martin, M. (2015) LODStats.
http://aksw.org/Projects/LODStats.html. Accessed 1 April 2015.

	 33.	 Bizer, C. (2008) DBpedia Mobile. http://wiki.dbpedia.org/DBpediaMobile.
Accessed 31 March 2015.

	 34.	 Pietriga, E. (2007) IsaViz: A Visual Authoring Tool for RDF.
www.w3.org/2001/11/IsaViz/. Accessed 31 March 2015.

http://rdf4j.org/
http://www.eclipse.org/
https://netbeans.org/
http://www.cubicweb.org/
http://sindice.com/
http://marmotta.apache.org/
http://marmotta.apache.org/ldclient/
http://callimachusproject.org/
http://neologism.deri.ie/
http://aksw.org/Projects/LODStats.html
http://wiki.dbpedia.org/DBpediaMobile
http://www.w3.org/2001/11/IsaViz/

	Chapter 4: Semantic Web Development Tools
	 Advanced Text Editors
	 Semantic Annotators and Converters
	 RDFa Play
	 RDFa 1.1 Distiller and Parser
	 RDF Distiller
	 DBpedia Spotlight
	 Google Structured Data Testing Tool

	 RDFizers
	 Apache Any23
	 General Architecture for Text Engineering (GATE)
	 OpenRefine

	 Ontology Editors
	 Protégé
	 SemanticWorks
	 TopBraid Composer
	 Apache Stanbol
	 Fluent Editor

	 Ontology Analysis Tools
	 ZOOMA
	 Semantic Measures Library

	 Reasoners
	 HermiT
	 Pellet
	 FaCT++
	 RACER

	 Application Development Frameworks
	 Jena
	 Sesame

	 Integrated Development Environments
	 Eclipse
	 Set Up Apache Jena in Eclipse
	 Set Up Sesame in Eclipse

	 NetBean s
	Setup Apache Jena in NetBeans

	 CubicWeb

	 Linked Data Software
	 Sindice
	 Apache Marmott a
	 sameAs.org
	 Callimachus
	 Neologism
	 LODStats

	 Semantic Web Browsers
	 Tabulator
	 Marbles
	 OpenLink Data Explorer (ODE)
	 DBpedia Mobile
	 IsaViz
	 RelFinder

	 Summary
	 References

