
13

Chapter 2

Knowledge Representation

To improve the automated processability of web sites, formal knowledge representation standards are
required that can be used not only to annotate markup elements for simple machine-readable data but also
to express complex statements and relationships in a machine-processable manner. After understanding
the structure of these statements and their serialization in the Resource Description Framework (RDF),
the structured data can be efficiently modeled as well as annotated in the markup, or written in separate,
machine-readable metadata files. The formal definitions used for modeling and representing data make
efficient data analysis and reuse possible. The three most common machine-readable annotations that are
recognized and processed by search engines are RDFa (RDF in attributes), HTML5 Microdata, and JSON-LD,
of which HTML5 Microdata is the recommended format. The machine-readable annotations extend the
core (X)HTML markup with additional elements and attributes through external vocabularies that contain
the terminology and properties of a knowledge representation domain, as well as the relationship between
the properties in a machine-readable form. Ontologies can be used for searching, querying, indexing, and
managing agent or service metadata and improving application and database interoperability. Ontologies
are especially useful for knowledge-intensive applications, in which text extraction, decision support, or
resource planning are common tasks, as well as in knowledge repositories used for knowledge acquisition.
The schemas defining the most common concepts of a field of interest, the relationships between them, and
related individuals are collected by semantic knowledge bases. These schemas are the de facto standards
used by machine-readable annotations serialized in RDFa, HTML5 Microdata, or JSON-LD, as well as in RDF
files of Linked Open Data datasets.

Vocabularies and Ontologies
Controlled vocabularies of the Semantic Web collect concepts and terms used to describe a field of interest
or area of concern. Ontologies are more complex, very formal definitions of terms, individuals and their
properties, object groups (classes), and relationships between individuals suitable to describe virtually any
statement related to the field of interest in a machine-readable form.

For example, to declare a person in a machine-readable format, we need a vocabulary that has the
formal definition of “Person.” A straightforward choice is the Friend of a Friend (FOAF) vocabulary, which
has a Person class that defines typical properties of a person, including, but not limited to, name and
homepage. If we write this code in XML serialization, we would get the code in Listing 2-1.

Listing 2-1.  Pseudocode for Defining the Class and a Property of a Resource

<Person>
 <name>Leslie Sikos</name>
</Person>

Chapter 2 ■ Knowledge Representation

14

This code provides hierarchy, inferring that Person is a class and name is a property; however, it is out of
context. We have to declare which external vocabulary defines this class and property, using the namespace
mechanism. In RDF/XML serialization, this can be done using the xmlns attribute in the form xmlns:vocabulary_
prefix="vocabulary_namespace:web_address", in our case, xmlns:foaf="http://xmlns.com/foaf/0.1/",
which points to the FOAF namespace at http://xmlns.com/foaf/0.1/. The namespace mechanism makes it
possible to abbreviate http://xmlns.com/foaf/0.1/ as foaf (also known as prefix), so foaf:Person refers to
http://xmlns.com/foaf/0.1/Person, foaf:homepage to http://xmlns.com/foaf/0.1/homepage and so forth
(see Listing 2-2).

■■ Note T hese links are often symbolic links that do not always point to a dedicated web page for each
individual property and are sometimes forwarded to the domain of the namespace. Some vocabularies have a
namespace address mechanism whereby all links point directly to the corresponding section of the machine-
readable vocabulary file. The human-readable explanation of the properties of external vocabularies is not
always provided. In case of FOAF, the web address of the individual property addresses point to the web site
of the specification (http://xmlns.com/foaf/spec/), while the individual properties have their own fragment
identifier, such as the Person property’s address, http://xmlns.com/foaf/spec/#term_Person.

Listing 2-2.  Describing the Name of a Person Using a Class and a Property from a Vocabulary

… xmlns:foaf="http://xmlns.com/foaf/0.1/"
…
<foaf:Person>
 <foaf:name>Leslie Sikos</foaf:name>
</foaf:Person>

The format and serialization of the structured data are independent of the vocabulary definitions, so,
for example, the same schema.org reference can be used in RDF, RDFa, HTML5 Microdata, and JSON-LD.
The vocabulary or ontology required depends on the area of interest you want to represent; however, some
knowledge domains such as persons and books can be described with classes and properties from more
than one vocabulary.

The schema.org Vocabulary Collection
Covering approximately 300 concept definitions, https://schema.org is one of the most frequently
used collections of structured data markup schemas. Schema.org was launched by Google, Yahoo!, and
Bing in 2011. Schema.org contains the machine-readable definitions of the most commonly used concepts,
making it possible to annotate actions, creative works, events, services, medical concepts, organizations,
persons, places, and products.

Analogously to the previous example, if we want to describe a book, we need a vocabulary with the
definition of “Book” and typical book properties. If we want to add the book title with a more descriptive
property than the name property of schema.org, we can use the title property from the Dublin Core (DC)
vocabulary, resulting in two namespace declarations (see Listing 2-3).

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/homepage
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/0.1/
https://schema.org/

Chapter 2 ■ Knowledge Representation

15

Listing 2-3.  Describing a Book

…
xmlns:schema="http://schema.org/"
xmlns:dc="http://purl.org/dc/terms/"
…
<schema:Book>
 <dc:title>Web Standards: Mastering HTML5, CSS3, and XML</dc:title>
</schema:Book>

Here, schema:Book abbreviates http://schema.org/Book, which is the machine-readable definition
of the Book class, while dc:title abbreviates http://purl.org/dc/terms/title, which is the
machine-readable definition of the title property.

The most common schema.org types (classes) and properties are collected at http://schema.org/docs/
gs.html#schemaorg_types, while the full list of properties is available at http://schema.org/docs/full.html.

General, Access, and Structural Metadata
General metadata, such as abstract, creator, date, publisher, title, language of web resources (web sites,
images, videos), physical resources (books, CDs), and objects such as artworks, can be described using
Dublin Core. The Dublin Core elements are widely deployed in machine-readable annotations, used on
DMOZ [1], one of the biggest multilingual open-content directories of web links, as well as in XMP metadata
of JPEG photos. The namespace of Dublin Core Elements (dc) is http://purl.org/dc/elements/1.1/, and
the namespace of Dublin Core terms (dcterms) is http://purl.org/dc/terms/.

Structured datasets can be described using terms from the Vocabulary of Interlinked Datasets (VoID).
VoID covers general, access, and structural metadata definitions, as well as the description of links between
structured datasets. The prefix of VoID is void, and the namespace is http://rdfs.org/ns/void#.

Person Vocabularies
The features of a person and relationships between people can be described by a variety of controlled
vocabularies, as summarized in Table 2-1.

Table 2-1.  Person Vocabularies

Vocabulary Abbreviation Namespace Typical Use

Person class from
schema.org

schema:Person http://schema.org/Person Given name, family name, gender,
affiliation, award, nationality,
honorific prefix or suffix, job title, etc.

Friend of a Friend foaf http://xmlns.com/foaf/0.1/ Person, name, gender, home page

Contact: Utility
concepts for
everyday life

contact http://www.w3.org/2000/10/
swap/pim/contact

Contact location, personal title,
mother tongue, nearest airport to
your residence

vcard vcard http://www.w3.org/2001/
vcard-rdf/3.0#

Electronic business card

Bio bio http://vocab.org/bio/0.1/ Biographical information

Relationship
vocabulary

relationship http://vocab.org/
relationship/

Relationships between people
(friendOf, parentOf, spouseOf, etc.)

http://schema.org/
http://purl.org/dc/terms/
http://schema.org/Book
http://purl.org/dc/terms/title
http://schema.org/docs/gs.html#schemaorg_types
http://schema.org/docs/gs.html#schemaorg_types
http://schema.org/docs/full.html
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://rdfs.org/ns/void%23
http://schema.org/Person
http://xmlns.com/foaf/0.1/
http://www.w3.org/2000/10/swap/pim/contact
http://www.w3.org/2000/10/swap/pim/contact
http://www.w3.org/2001/vcard-rdf/3.0%23
http://www.w3.org/2001/vcard-rdf/3.0%23
http://vocab.org/bio/0.1/
http://vocab.org/relationship/
http://vocab.org/relationship/

Chapter 2 ■ Knowledge Representation

16

Book Vocabularies
Books can be precisely described using properties from http://schema.org/Book, defining book formats,
the number of pages, the copyright holder, the genre, and other features of books. Dublin Core is often used
to declare general metadata of books. The International Standard Book Number (ISBN) of books can be
declared not only with the isbn property of the Book class of schema.org (defined at http://schema.org/isbn),
but also using the isbn property from the URN vocabulary. Books you intend to read, books you’ve
already read, or your favorite books can be described using the reading list schema through the
http://www.ldodds.com/schemas/book/ namespace.

PRISM: A Publishing Vocabulary
The Publishing Requirements for Industry Standard Metadata (PRISM) describes many components of
print, online, mobile, and multimedia content, including the following:

•	 Creator, contributor, copyright owner

•	 Locations, organizations, topics, people, and events, conditions of reproduction

•	 Publication date, including cover date, post date, volume, number

•	 Restrictions for republishing and reuse

PRISM is commonly used for describing partner syndication, content aggregation, content
repurposing, resource discovery, multiple channel distribution, content archiving, capture rights usage
information, RSS, XMP, and machine-readable annotations of web sites. The PRISM namespaces
are http://prismstandard.org/namespaces/basic/2.1/ for PRISM 2.1 Basic (typical prefix: prism) and
http://prismstandard.org/namespaces/prism-ad/3.0/ for PRISM 3.0 (usual prefix: prism-ad).

GoodRelations: An E-commerce Ontology
The de facto ontology for e-commerce is GoodRelations (gr), which is suitable for describing businesses,
offerings, prices, features, payment options, opening hours, and so on. The namespace of GoodRelations
is http://purl.org/goodrelations/v1#. GoodRelations is widely deployed and also used by Yahoo! and
BestBuy.

Publication Ontologies
While the generic metadata of publications can be expressed in Dublin Core, there are ontologies specially
written for describing publications and citations. Table 2-2 summarizes the four most deployed publishing
ontologies (FaBiO, PRO, PSO, and PWO) and the four referencing ontologies (CiTO, BiRO, C4O, and DoCO)
that are known as the Semantic Publishing and Referencing Ontologies (SPAR), as well as the Bibliographic
Ontology (bibo).

http://schema.org/Book
http://schema.org/isbn
http://www.ldodds.com/schemas/book/
http://prismstandard.org/namespaces/basic/2.1/
http://prismstandard.org/namespaces/prism-ad/3.0/
http://purl.org/goodrelations/v1#

Chapter 2 ■ Knowledge Representation

17

DOAP: A Project Management Vocabulary
Description of a project (DOAP) is a vocabulary to describe software projects, especially open source
projects and their associated resources, including participants and web resources. The namespace of DOAP
is http://usefulinc.com/doap/.

Licensing Vocabularies
ALicensing, such as copyright information, permissions and prohibition regarding the reproduction, distribution,
and sharing of creative works, as well as creating derivative works, is best described using Creative Commons (cc)
licenses. The namespace of Creative Commons is http://creativecommons.org/ns#.

Table 2-2.  Publication and Referencing Ontologies

Ontology Abbreviation Namespace Typical Use

Bibliographic Ontology bibo http://purl.org/ontology/
bibo/

Citation, document
classification, describe
documents, distributors,
editors, interviewers,
performers, ISBN, etc.

Bibliographic Reference
Ontology

biro http://purl.org/spar/biro/ Bibliographic records,
references, collections, and
lists

Citation Counting and
Context Characterization
Ontology

c40 http://purl.org/spar/c4o/ Number of citations,
citation context

Citation Typing Ontology cito http://purl.org/spar/cito/ Factual and rhetorical type
and nature of citations
(e.g., shared authors, one
publication confirms the
conclusion of another one)

Document Components
Ontology

doco http://purl.org/spar/doco/ Chapter, section,
paragraph, table, preface,
glossary, etc.

FRBR-aligned Bibliographic
Ontology

fabio http://purl.org/spar/fabio/ Abstracts, articles, artistic
works, theses, blog posts,
conference proceedings

Publishing Roles Ontology pro http://purl.org/spar/pro Roles of agents (e.g., author,
editor, reviewer, publisher)

Publishing Status Ontology pso http://purl.org/spar/pso Status of publication
(e.g., submitted
manuscript, accepted
manuscript, proof)

Publishing Workflow
Ontology

pwo http://purl.org/spar/pwo Stages of publication
workflow (e.g., under
review)

http://usefulinc.com/doap/
http://creativecommons.org/ns%23
http://purl.org/ontology/bibo/
http://purl.org/ontology/bibo/
http://purl.org/spar/biro/
http://purl.org/spar/c4o/
http://purl.org/spar/cito/
http://purl.org/spar/doco/
http://purl.org/spar/fabio/
http://purl.org/spar/pro
http://purl.org/spar/pso
http://purl.org/spar/pwo

Chapter 2 ■ Knowledge Representation

18

Media Ontologies
There are ontologies dedicated to media resources, such as music and video files, as summarized in Table 2-3.

Vocabularies for Online Communities
Posts, user roles, threads, user accounts, and user groups of online communities can be described
using Semantically-Interlinked Online Communities (SIOC). The namespace of SIOC Core is
http://rdfs.org/sioc/ns#.

Facebook uses the vocabulary of Facebook OpenGraph (og) to allow web pages the same functionality
as any other object on Facebook. The namespace of OpenGraph is http://ogp.me/ns#.

Knowledge Management Standards
The most frequently used knowledge management standards are the Resource Description Framework
(RDF), the Web Ontology Language (OWL), and the Simple Knowledge Organization System (SKOS).

Resource Description Framework (RDF)
On the Semantic Web, structured datasets are usually expressed in, or based on, the Resource
Description Framework (RDF) [2]. RDF can be used to create a machine-interpretable
description about any kind of web resource, because RDF files can be extended with an arbitrary
number of external vocabularies. In fact, RDF and other core Semantic Web standards such as
RDFS and OWL have their own vocabularies, which are usually combined with one another
and extended using other vocabularies, in order to describe objects and their properties. Keep
in mind, however, that RDF is far more than just a vocabulary, as it is a fully featured semantic
data-modeling language. The namespace of RDF is http://www.w3.org/1999/02/22-rdf-syntax-ns# .

The RDF vocabulary defines classes for XML literal values (rdf:XMLLiteral), properties
(rdf:Property), RDF statements (rdf:Statement), RDF lists (rdf:List), as well as containers of alternatives
(rdf:Alt), unordered containers (rdf:Bag), and ordered containers (rdf:Seq). An instance of rdf:List
is rdf:nil, which represents the empty list. The RDF vocabulary also defines properties such as rdf:type
(an instance of rdf:Property used to express that a resource is an instance of a class), rdf:first (the
first item in the subject RDF list), rdf:rest (the rest of the subject RDF list after rdf:first), rdf:value
(structured value), rdf:subject (the subject of the RDF statement), rdf:predicate (the predicate of the
RDF statement), and rdf:object (the object of the RDF statement).

Table 2-3.  Media Ontologies

Ontology Abbreviation Namespace Typical Use

The Music Ontology mo http://purl.org/ontology/mo/ Artist, composer, conductor,
discography, imdb, record,
remixer, singer, tempo, etc.

VidOnt: The Video
Ontology

vidont http://vidont.org/ Movie properties (remake,
sequel, narrator, etc.), video
file properties (aspect ratio,
audio codec, letterboxed, video
bitrate, MAR, etc.)

http://rdfs.org/sioc/ns%23
http://ogp.me/ns%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/ontology/mo/
http://vidont.org/

Chapter 2 ■ Knowledge Representation

19

The RDF data model is based on statements to describe and feature resources, especially web resources, in
the form of subject-predicate-object (resource-property-value) expressions called RDF triples or RDF statements.
The predicate (property) describes the relationship between the subject and the object. For example, the
natural language sentence “Leslie’s homepage is http://www.lesliesikos.com” can be expressed as shown in
Table 2-4. All elements of the triple are resources defined by a unique URI (see Listing 2-4).

Listing 2-4.  Describing a Person in RDF/XML

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
 xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <foaf:Person rdf:about="http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos">
 <foaf:homepage rdf:resource="http://www.lesliesikos.com" />
 <foaf:family_name>Sikos</foaf:family_name>
 <foaf:givenname>Leslie</foaf:givenname>
 </foaf:Person>
</rdf:RDF>

The about attribute of RDF declares the subject of the RDF statement, which is, in this case,
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos. The fragment identifier #lesliesikos
is used to identify an actual person rather than a document (sikos.rdf). Those objects whose value is a web
address, such as the home page of a person, are declared using the resource attribute of RDF, in contrast
to those that are string literals (character sequences), such as Sikos (the value of the family_name property
from the FOAF vocabulary). The syntax of this example is known as the RDF/XML serialization (RDF/XML),
which is the normative syntax of RDF [3], using the application/rdf+xml Internet media type and the .rdf
or .xml file extension. Structured datasets can be written in RDF using a variety of other syntax notations and
data serialization formats, for example, RDFa, JSON-LD, Notation3 (N3), Turtle, N-Triples [4], TRiG [5], and
TRiX [6], so the syntax of RDF triples varies from format to format. The N3 syntax is, for example, less verbose
than the RDF/XML serialization, where the namespace prefix is declared by the @prefix directive, the URIs
are delimited by the less than (<) and greater than (>) signs, and the triples are separated by semicolons (;)
(see Listing 2-5).

Table 2-4.  An RDF Triple

RDF Data Model RDF Triple

Subject Leslie http://www.lesliesikos.com/
metadata/sikos.rdf#lesliesikos

Predicate The machine-readable definition of “homepage”
from the Friend of a Friend (FOAF) external
vocabulary

http://xmlns.com/foaf/0.1/homepage

Object http://www.lesliesikos.com http://www.lesliesikos.com

http://www.lesliesikos.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://xmlns.com/foaf/0.1/
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos
http://www.lesliesikos.com/
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos
http://www.lesliesikos.com/metadata/sikos.rdf%23lesliesikos
http://www.lesliesikos.com/metadata/sikos.rdf%23lesliesikos
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge Representation

20

Listing 2-5.  Describing a Person in N3

@prefix : <http://www.lesliesikos.com/metadata/sikos.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
  
:lesliesikos a foaf:Person ;
 foaf:givenname "Leslie" ;
 foaf:family_name "Sikos" ;
 foaf:homepage <http://www.lesliesikos.com> .

Shorthand notation can be used for the most common predicates (see Table 2-5).

This is the reason why the RDF type of the person is declared using a. If the Notation 3 code is in an
external file, the typical file extension is .n3. The MIME type and character encoding of N3 should be
declared as text/n3; charset=utf-8. Tokenizing and whitespace handling are not specified in the N3
grammar. Base URIs to be used for the parsing of relative URIs can be set with the @base directive in the form
@base <http://example.com/overview/>. Several N3 rules for string escaping are derived from Python,
namely, stringliteral, stringprefix, shortstring, shortstringitem, longstring, longstringitem,
shortstringchar, and longstringchar. Additionally, the \U extension, also used in another RDF
serialization (N-Triples), can be applied. Legal escape sequences are \newline, \\ (backslash, \), \' (single
quote, '), \" (double quote, "), \n (ASCII Linefeed, LF), \r (ASCII Carriage Return, CR), \t (ASCII Horizontal
Tab, TAB), \uhhhh (Unicode character in BMP), and \U00hhhhhh (Unicode character in plane 1–16 notation).
The escapes \a, \b, \f, and \v cannot be used, because the corresponding characters are not allowed in RDF.

A subset of N3 is the Terse RDF Triple Language, often referred to as Turtle. Turtle provides a syntax to
describe RDF graphs in a compact textual form, which is easy to develop. It is a subset of Notation 3 (N3) and
a superset of N-Triples. Turtle is popular among Semantic Web developers and considered an easy-to-read
alternative to RDF/XML. The typical file extension of Turtle files is .ttl. The character encoding of Turtle files
should be UTF-8. The MIME type of Turtle is text/turtle. Turtle is supported by many software frameworks
that can be used for querying and analyzing RDF data, such as Jena, Redland, and Sesame. Turtle files consist
of a sequence of directives, statements representing triples, and blank lines. Triples can be written in Turtle as
a sequence of subject-predicate-object terms, separated by whitespace, and terminated by a period (.).
URIs are written in angle brackets (<>), and string literals are delimited by double quotes ("") such as
<http://www.lesliesikos.com/metadata/sikos.rdf#> <http://xmlns.com/foaf/0.1/homepage>
<http://www.lesliesikos.com> . Using the URI prefix declaration @PREFIX foaf: <http://xmlns.com/
foaf/0.1/> ., this can be abbreviated as <http://www.lesliesikos.com/metadata/sikos.rdf#>
foaf:homepage <http://www.lesliesikos.com> ., where foaf:homepage declares the concatenation of
http://xmlns.com/foaf/0.1/ with homepage, revealing the original URI http://xmlns.com/foaf/0.1/
homepage.

Figure 2-1 represents the triples of Listing 2-5 as an RDF graph, which is a directed, labeled graph in
which the nodes are the resources and values [7]. The nodes and predicate arcs of the RDF graph correspond
to node elements and property elements. The default node element is rdf:Description, which is very
frequently used as the generic container of RDF statements in RDF/XML. To add context to RDF statements

Table 2-5.  Shorthand Notation for Common Predicates

Predicate Shorthand Notation

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> a

<http://www.w3.org/2002/07/owl#sameAs> =

<http://www.w3.org/2000/10/swap/log#implies> => or <=

http://www.lesliesikos.com/metadata/sikos.rdf%23
http://xmlns.com/foaf/0.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.lesliesikos.com/
http://example.com/overview/
http://www.lesliesikos.com/metadata/sikos.rdf%23
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.lesliesikos.com/metadata/sikos.rdf%23
http://www.lesliesikos.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/homepage
http://xmlns.com/foaf/0.1/homepage
http://www.w3.org/1999/02/22-rdf-syntax-ns%23type
http://www.w3.org/1999/02/22-rdf-syntax-ns%23type
http://www.w3.org/2000/10/swap/log%23implies

Chapter 2 ■ Knowledge Representation

21

and make them globally interpretable, RDF triples are sometimes stored with the name of the graph, called
quads (subject-predicate-object-graph name), which will be demonstrated in later chapters.

The example can be extended with properties from other external vocabularies, but the concept
remains the same. Once you’ve created your RDF file, you have a machine-readable metadata file you can
upload to your web site. Semantic software agents can find and retrieve the information in such files
(see Figure 2-2), display the human-readable part in a visually appealing manner (see Figure 2-3) and
generate a scalable graph based on the RDF triples (see Figure 2-4), and infer new information.

Figure 2-1.  A simple RDF graph

Chapter 2 ■ Knowledge Representation

22

Figure 2-2.  RDF triples extracted by Sindice Web Data Inspector [8]

Figure 2-3.  A personal description extracted from RDF and displayed on a web page

Chapter 2 ■ Knowledge Representation

23

While such machine-readable RDF files are useful, their primary application is data modeling, so the
RDF files are separate from the markup of your web site. You can add structured data directly to the markup,
such as (X)HTML5, by using machine-readable annotations, which can be processed by semantic data
extractors and, if needed, converted into RDF.

Machine-Readable Annotations
There are four machine-readable annotation formats for web sites (by order of introduction):

•	 Microformats, which publish structured data about basic concepts,1 such as people,
places, events, recipes, and audio, through core (X)HTML attributes

•	 RDFa, which expresses RDF in markup attributes that are not part of the core (X)
HTML vocabularies

•	 HTML5 Microdata, which extends the HTML5 markup with structured metadata
(a HTML5 Application Programming Interface)

•	 JSON-LD, which adds structured data to the markup as JavaScript code

RDFa and JSON-LD can be used in most markup language versions and variants, while HTML5
Microdata can be used in (X)HTML5 only. All these annotation formats have their own syntax. For example,
the vocabulary is declared with the vocab attribute in RDFa, the itemtype attribute in Microdata, and
context in JSON-LD (see Table 2-6).

Figure 2-4.  A graph generated from an RDF file

1The other three formats are more advanced, as they can use concepts from any external vocabulary.

Chapter 2 ■ Knowledge Representation

24

Table 2-6.  Data Represented as Structured Data in a Microformat, Microdata, RDFa, and JSON-LD

Markup without
Semantic Annotation

Leslie Sikos

Leslie's web site:
lesliesikos.com

Markup with the hCard
microformat

<link rel="profile" href="http://microformats.org/profile/hcard" />
…
 <div class="vcard">
 Leslie Sikos

 Leslie's web site: <a class="url"
 href="http://www.lesliesikos.com">lesliesikos.com
</div>

Markup with HTML5
Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Markup with RDFa <div vocab="http://schema.org/" typeof="Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Markup with JSON-LD <script type="application/ld+json">
{
 "@context": "http://schema.org",
 "@type": "Person",
 "image": "lesliesikos.jpg",
 "name": "Leslie Sikos",
 "url": "http://www.lesliesikos.com"
}
</script>

These syntaxes will be described in the next sections.

Microformats
The results of the very first approach to add machine-readable annotations to the (X)HTML markup are
called microformats (mF). Some microformats apply and reuse features of existing technologies, such as the
rel attribute of (X)HTML, while others, such as hCard, extend the core markup vocabulary the simplest
way possible: based on Plain Old Semantic HTML (POSH). Microformats can be implemented not only in
(X)HTML markup but also in XML, RSS, Atom, and so on. Microformats can express site structure, link
weight, content type, and human relationships with the class, rel, and rev attribute values. They are
very easy to write, and a great deal of software supports them (the Operator and Tails Export add-ons for
Firefox, the Michromeformats Google Chrome extension, the microformats transformer Optimus, or the
Microformats Bookmarklet for Safari, Firefox, and IE).

http://www.lesliesikos.com
http://microformats.org/profile/hcard
http://www.lesliesikos.com">lesliesikos.com</a
http://schema.org/Person
http://www.lesliesikos.com/
http://schema.org/
http://www.lesliesikos.com/
http://schema.org/
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge Representation

25

However, due to limitations and open issues, other machine-readable annotation formats gradually
overtook microformats. Applying various microformats as multiple values on the same a element, such as
rel="nofollow" and rel="friend", cannot be used. The rev attribute used by the Vote Links microformat is
not supported by HTML5. Profile URIs provided by the profile attribute cannot be used on the head element
in HTML5, wherein the profile attribute values can be declared for the rel attribute on anchors (a) or link
elements (link). As an example, a profile URI is presented for the hCalender microformat with all the three
options. The hCalendar microformat is based on the iCalendar standard (RFC 2445). All contents that use
hCalendar notation should refer to the hCalendar XMDP profile, in other words, http://microformats.org/
profile/hcalendar, as shown in Listing 2-6 or Listing 2-7 for the document head or Listing 2-8 as part of the
document body. These methods can also be combined.

Listing 2-6.  Providing the hCalendar Head Profile in the Document Head (Cannot Be Used in HTML5)

<head profile="http://microformats.org/profile/hcalendar">

Listing 2-7.  Linking to the hCalendar Profile in the Document Head

<link rel="profile" href="http://microformats.org/profile/hcalendar" />

Listing 2-8.  Using the hCalendar Profile in the Document Body

hCalendar

■■ Note N ew structural elements introduced by HTML5, such as article or section, are not recognized by
all microformat parsers, so the preceding attributes on these elements might not be processed.

In the next sections, I will give you an overview of some of the most popular microformats, namely,
hCalendar, hCard, rel="license", rel="nofollow", rel="tag", Vote Links, and XFN.

hCalendar and h-event

You can use the hCalendar microformat to create calendar entries for sport events, anniversaries, reminders,
meetings, workshops, conferences, and other events.

The root class name for hCalendar is vcalendar. The root class name for events is vevent, which is
required for all event listings. The properties are represented by the elements of hCalendar. The required
classes are dtstart, which should be provided in the ISO date format,2 and summary. Listing 2-9 shows an
hCalendar example.

Listing 2-9.  A Three-Day Conference Represented in hCalendar

<link rel="profile" href="http://microformats.org/profile/hcalendar" />
…
<div class="vevent">
 <h1 class="summary">Semantic Web Conference 2015</h1>
 <div class="description">Semantic Web Conference 2015 was announced yesterday.</div>
 <div>Posted on: <abbr class="dtstamp" title="20150825T080000Z">Aug 25, 2015</abbr></div>

2Beyond microformats such as hAtom, hCalendar, hCard, and hReview, several web technologies apply the ISO 8601
date format for date-time representation, such as XML, XML schema datatypes, RDF, and Atom.

http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar%22%3EhCalendar%3C/a
http://microformats.org/profile/hcalendar

Chapter 2 ■ Knowledge Representation

26

 <div class="uid">uid1@host.com</div>
 <div>Organized by: js@expl.com</div>
 <div>Dates: <abbr class="dtstart" title="20151012T093000Z">October 12 2015, 9.30am 
 UTC</abbr> – <abbr class="dtend" title="20151014T200000Z">October 14 2015, 8.00pm 
 UTC</abbr></div>
 <div>Status: Confirmed</div>
 <div>Filed under:</div>

 <li class="category">Conference

</div>

Optional properties include, but are not limited to, location, url, dtend (in ISO date format),
duration (in ISO date duration format), rdate, rrule, category, description, uid, geo, attendee, contact,
organizer, attach, and status. The geo property has the subproperties latitude and longitude, while
attendee has the subproperties partstat and role. Those who have to publish new events regularly might
find the hCalendar generator hCalendar-o-matic useful [9].

The specification has been superseded by the h-event specification, which supports the following
properties inside a markup element with class h-event: p-name (event name or title), p-summary (short
summary), dt-start (date and time when the event starts), dt-end (date and time when the event ends),
dt-duration (duration of the event), p-description (verbose description), u-url (web site), p-category
(event category or categories), and p-location (event location, which can include h-card, h-adr, or h-geo).
All properties are optional. An example is shown in Listing 2-10.

Listing 2-10.  A Three-Day Conference Annotated Using h-event

<div class="h-event">
 <h1 class="p-name"> Semantic Web Conference '15</h1>
 <p>From
 �<time class="dt-start" datetime="2015-10-12 09:30">12th October 2015,

9:30am</time>
 �to <time class="dt-end" datetime="2015-10-14 20:00">14th October 2015,

8:00pm</time>
 at Nice Conference Hall</p>
 <p class="p-summary">Semantic Web Conference 2015 was announced yesterday.</p>
</div>

hCard

The hCard microformat standard can be used to represent contact data of people, companies, and
organizations by semantic markup. hCard metadata should be provided on the contact pages of web sites.
In summer 2010, hCard crossed the 2 billion mark, according to the now-discontinued Yahoo! SearchMonkey,
which made hCard the most popular metadata format for people and organizations up to 2010. Because
hCard is based on the vCard standard (RFC 2426), existing vCards can be easily converted to hCard.3

3The vCard notation BEGIN:VCARD is class="vcard" in hCard, N: is class="n", FN: is class="fn", and so on.

Chapter 2 ■ Knowledge Representation

27

■■ Tip T he vCard standard is widely used for storing electronic business cards. For example, Microsoft Outlook
uses this format for the business cards available under Contacts. Also, many smartphones use the vCard format
to store contacts in the phone memory (when you set up contacts not to be stored on the SIM card).

The hCard class names should be in lowercase.

■■ Caution T he root class name for an hCard is vcard. An element with a class name vcard is itself called
an hCard.

The two required attributes in hCard are fn and n. However, the second one is optional if any implied
“N” optimization rules are in effect.4 The property n might have the subproperties family-name, given-name,
additional-name, honorific-prefix, and honorific-suffix. All other properties are optional, including
adr, agent, bday, category, class, email, geo, key, label, logo, mailer, nickname, note, org, photo, rev,
role, sort-string, sound, tel, title, tz, uid, and url. Permissible subproperties are post-office-box,
extended-address, street-address, locality, region, postal-code, country-name, type, and value for
adr; type and value for email; latitude and longitude for geo; organization-name and organization-
unit for org; and type and value for tel. A typical hCard code looks like Listing 2-11.

Listing 2-11.  A Typical hCard

<link rel="profile" href="http://microformats.org/profile/hcard" />
…
<div id="hcard-John-Smith" class="vcard">

 John Smith
 <div class="org">Smith and Sons</div>
 smith@example.com
 <div class="adr">
 <div class="street-address">123 Nice Street</div>
 Adelaide,
 SA,
 5000
 Australia
 </div>
 <div class="tel">+61812345678</div>
</div>

The following hCard elements are singular and can be provided just once: fn, n, bday, tz, geo,
sort-string, uid, class, and rev. All other properties are allowed to have multiple instances. Generally, the
visible property values of markup elements represent the value of the hCard property. However, there are
some exceptions. For hyperlinks that are represented by the a element for one or multiple hCard properties,
the href attribute provides the property value for all properties with a URL value (for example, photo). In case
the img element is used, the src attribute holds the property value for all properties with a URL value. For
object elements, the data attribute provides the property value. The content of the element is the property

4If n is omitted but fn is present, the value of n will be equal to the value of fn.

http://microformats.org/profile/hcard
http://www.example.com/jsmith.jpg
http://www.example.com

Chapter 2 ■ Knowledge Representation

28

value for all other properties. If the title attribute is provided for abbr elements with hCard notation, its
value is considered as the hCard property instead of the element contents used otherwise.

Although it is easy to create it manually, hCard metadata can be generated by the hCard creator
hCard-o-matic on the web site of the authors of the specification [10]. You simply fill in a form about the
name, organization, country, e-mail, and other contact data, and the software generates the hCard.

To provide additional information, microformats can also be nested. For example, a sport event review
might contain not only the review (annotated in hReview) but also personal information (in hCard) at the
same time (see Listing 2-12).

Listing 2-12.  A Combination of hReview and hCard

<link rel="profile" href="http://microformats.org/profile/hreview" />
<link rel="profile" href="http://microformats.org/profile/hcard" />
…
<div class="hreview">
 <h1 class="summary">The Winner Takes It All Review</h1>

 by John Smith, Editor 
 at Sport Reviews

 Rating: 4.5 out of 5.
 A fascinating performance.
</div>

The review is described by the hReview microformat (class="hreview"). The name of the reviewer
is revealed by span class="reviewer". The hCard microformat is nested inside the hReview microformat
in order to provide additional information about him/her (a space-separated list of attribute values in
). The hCard properties describe the name (fn), job title (title), and
organization (org) of the reviewer.

rel="license"

There are millions of web resources with some or all rights reserved. Many licenses associated with
documents and objects are sophisticated, and users cannot be expected to know them. The rel="license"
microformat can be added to hyperlinks that point to the description of the license. This is especially useful
for images but can be used for any resources. Basic image embeddings apply only the src and alt attributes
on the img element, such as in Listing 2-13.

Listing 2-13.  A Basic Image Embedding

To declare the image license, the rel and href attributes should also be used. In the case of the Creative
Commons Attribution-ShareAlike license, for example, it should be in the form shown in Listing 2-14.

Listing 2-14.  Declaring an Image License

<link rel="profile" href="http://microformats.org/profile/rel-license" />
…
<img src="hotel.jpg" alt="The Palace Hotel" rel="license" 
 ref="http://creativecommons.org/licenses/by-sa/4.0/" />

http://microformats.org/profile/hreview
http://microformats.org/profile/hcard
http://microformats.org/profile/rel-license
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2 ■ Knowledge Representation

29

The value of the href attribute provides the associated URI of the resource in which the license is
described. Some of the most commonly used license deeds are [11] as follows:

•	 Creative Commons Attribution (cc by)

http://creativecommons.org/licenses/by/4.0/

•	 Creative Commons Attribution Share Alike (cc by-sa)

http://creativecommons.org/licenses/by-sa/4.0/

•	 Creative Commons Attribution No Derivatives (cc by-nd)

http://creativecommons.org/licenses/by-nd/4.0/

•	 Creative Commons Attribution Non-Commercial (cc by-nc)

http://creativecommons.org/licenses/by-nc/4.0/

•	 Creative Commons Attribution Non-Commercial Share Alike (cc by-nc-sa)

http://creativecommons.org/licenses/by-nc-sa/4.0/

•	 Creative Commons Attribution Non-Commercial No Derivatives (cc by-nc-nd)

http://creativecommons.org/licenses/by-nc-nd/4.0/

You should select a license that matches what you let others do with your work (distribute commercially
or noncommercially, remix, tweak, share with proper crediting, alter, and so on).

rel="nofollow"

One value of the rel attribute deserves extended attention, because it is often used in search engine
optimization (SEO). When rel="nofollow" is added to a hyperlink, the link destination should not be
considered for additional ranking by search engines. This attribute value can be applied if document
owners require hyperlinks, without affecting the ranking of their web pages or links to external web sites.
For example, if a hyperlink is vital on the web page but its destination page has a very low PageRank (PR),
the hyperlink should be provided with rel="nofollow", to avoid search engine penalty.

■■ Note P ageRank is a link analysis algorithm used to assign a numerical weighting to each web page, in
order to express its relative importance on a 0–10 scale.

For example, if the index page of lowprsite.com has a low PR but you have to link to it because of the
content presented there, you can use the rel="nofollow" microformat, as shown in Listing 2-15.

Listing 2-15.  A Link That Will Not Be Considered by Search Engines While Indexing a Page

<link rel="profile" href="http://microformats.org/profile/rel-nofollow" />
…
Low PR site

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://microformats.org/profile/rel-nofollow
http://www.lowprsite.com/

Chapter 2 ■ Knowledge Representation

30

Although it is widely used, there are several open issues about this microformat. The rel="nofollow"
microformat indicates a behavior rather than a relationship, so the definition is illogical. The name of the
microformat does not reflect the real meaning, and it is not a noun. While rel="nofollow" was originally
introduced to stop comment spam in blogs, using it alone does not prevent spamming attempts to add
marketing to a page (only prevent target pages from benefiting through an increased page rank). Finally,
many legitimate non-spam links provided as the attribute value of rel="nofollow" might be ignored or
given reduced weight by search engines, which is an undesirable side effect.

rel="tag"

Unlike other microformats and general meta keywords, the rel="tag" microformat can be used for visible
links. It can be applied on hyperlink elements to indicate that the destination of the link is a general
author-designated tag (keyword) for the current page. An example is shown in Listing 2-16.

Listing 2-16.  Using rel="tag"

<link rel="profile" href="http://microformats.org/profile/rel-tag" />
…
Textbooks

Vote Links

Vote Links is an elemental microformat with three possible values on the rev attribute of the a element:
vote-for, vote-against, and vote-abstain. The values are mutually exclusive. Optionally, visible rollovers
can be provided by the title attribute. Listing 2-17 shows an example.

Listing 2-17.  A Vote Links Example

<link rel="profile" href="http://microformats.org/profile/vote-links" />
…
<a rev="vote-for" href="http://example.com/thumbsup/" 
 title="HTML should be the primary markup language">HTML5
<a rev="vote-against" href="http://example.com/thumbsdown/" 
 title="XHTML should be the primary markup language">XHTML5

XFN

The very first HTML microformat, XHTML Friends Network (XFN), was introduced in December 2003. XFN
was designed by Global Multimedia Protocols Group to express human relationships with simple hyperlinks.
XFN is especially useful for brochure-style home pages and blog entries. The name of the person should
be provided as the text of the hyperlink (between <a> and). The personal web site is the target of the
hyperlink, in other words, the value of the href attribute. All relationship data can be provided by the rel
attribute on a elements. Multiple values are allowed and should be separated by spaces. The friendship type
can be contact, acquaintance, or friend. If the person is known personally, it can be expressed by the met
attribute value of the rel attribute. For example, a friend of Leslie Sikos, whom he knows personally, can
publish that relationship on his web site by XFN, as shown in Listing 2-18.

Listing 2-18.  Link to the Web Site of a Friend

<link rel="profile" href="http://gmpg.org/xfn/11" />
…
I am an old friend of Leslie Sikos.

http://microformats.org/profile/rel-tag
http://www.lesliesikos.com/category/textbooks/
http://microformats.org/profile/vote-links
http://example.com/thumbsup/
http://example.com/thumbsdown/
http://gmpg.org/xfn/11
http://lesliesikos.com/

Chapter 2 ■ Knowledge Representation

31

The distance between the residence of the person and that of his friend can be expressed by the
co-resident and neighbor values. Relatives can set to child, parent, sibling, spouse, or kin. The
professional relationships co-worker and colleague are also supported. Feelings can also be expressed
(muse, crush, date, sweetheart).

CSS styles can also be added to XFN metadata. For example, friends can be provided in bold and
colleagues in italic, with the CSS rules shown in Listing 2-19.

Listing 2-19.  Styling XFN

a[rel~="friend"] {
 font-weight: bold;
}
 
a[rel~="colleague "] {
 font-style: italic;
}

Although it is easy to create XFN from scratch, XFN creators such as XFN Creator [12] or Exefen [13]
might speed up development.

XMDP

XHTML MetaData Profiles (XMDP) metadata is an XHTML-based format for defining metadata profiles
that are both machine- and human-readable. XMDP consists of a property definition list, an optional
description, and then, if applicable, one or more definition list items. The profile definition list is identified
by the class (see Listing 2-20).

Listing 2-20.  XMDP Profile Definition

<dl class="profile">

The definition term is identified by the id (see Listing 2-21).

Listing 2-21.  Definition Term and Data for XMDP

<dt id="property1">property1</dt>
<dd>propertydesc</dd>

The informatively used meta properties author and keywords, for example, can be defined by XMDP,
as shown in Listing 2-22.

Listing 2-22.  A Complete XMDP Example

<dl class="profile">
 <dt id="author">author</dt>
 <dd>A person who wrote (at least part of) the document.</dd>
 <dt id="keywords">keywords</dt>
 <dd>A comma and/or space separated list of the keywords or keyphrases of the document.</dd>
</dl>

Chapter 2 ■ Knowledge Representation

32

Drafts and Future Microformats

You can apply microformats to provide specific metadata on a wide variety of resources. Address information
can be described by adr. Geographic coordinates (latitude-longitude pairs) can be provided according to the
World Geodetic System (WGS) with the geo microformat. hAtom can be used for web syndication. Information
about audio recordings can be embedded by using the hAudio microformat. The hListing microformat can
be applied for open, distributed listings. Image, video, and audio media components can be described by
hMedia. hNews is a microformat to provide news content on web sites. Product descriptions can be expressed
in hProduct. Cooking and baking recipes can be described on the Web with hRecipe. Résumés and CVs can be
published with hResume. Document reviews can be written in hReview. The rel="directory" microdata can
indicate that a link destination is a directory listing that refers to the current page. File attachments provided
for downloading can be indicated by the rel="enclosure" microformat. rel="home" provides a hyperlink
to the home page of the web site. The rel="payment" microformat is an online payment mechanism.
The reworking of the robots meta tag is the Robot Exclusion Profile. The xFolk microformat (stands for
xFolksomony) was designed for publishing collections of bookmarks. The list goes on, and the Microformats
Community welcomes metadata enthusiasts to create new microformats; however, other formats, such as
RDFa and HTML5 Microdata, seem to replace microformats.

RDFa
RDFa (RDF in attributes) makes it possible to write RDF triples in the (X)HTML markup, XML, or SVG as
attribute values. The full RDFa syntax (RDFa Core) [14] provides basic and advanced features for experts
to express complex structured data in the markup, such as human relationships, places, and events. Those
who want to express fairly simple structured data in their web documents can use the less expressive RDFa
Lite [15], a minimal subset of RDFa that is easier to learn and suitable for most general scenarios. RDFa Lite
supports the following attributes: vocab, typeof, property, resource, and prefix. In host languages that
authorize the use of the href and src attributes, they are supported by RDFa Lite too.

A bunch of numbers has a different meaning in a math lesson than in the telephone book, while a word
often has a different meaning in a poem than in real life. The meaning of words depends on the context,
so in order to make computers understand the field or area (knowledge domain), we have to identify the
machine-readable vocabulary that defines the terminology of the domain. In RDFa, the vocabulary can be
identified by the vocab attribute, the type of the entity to describe is annotated by the typeof attribute, and
the properties with the property attribute (see Listing 2-23).

Listing 2-23.  Basic Machine-Readable Annotation of a Person in RDFa

<p vocab="http://schema.org/" typeof="Person">
 My name is Leslie Sikos and you can find out more about me 
 by visiting my web site.
</p>

Once the preceding code is published and indexed, search engines will find the “web site of Leslie Sikos”
more efficiently. To uniquely identify this entity on the Web, the resource attribute is used (see Listing 2-24).
The resource attribute is one of the options to set the object of statements, which is particularly useful when
referring to resources that are not navigable links, such as the ISBN number of a book.

Listing 2-24.  A Unique Identifier of the Entity in RDFa

<p vocab="http://schema.org/" typeof="Person" resource="#sikos">
 My name is Leslie Sikos and you can find out more about me 
 by visiting my web site.
</p>

http://schema.org/
http://www.lesliesikos.com
http://schema.org/
http://www.lesliesikos.com

Chapter 2 ■ Knowledge Representation

33

The vocabulary declaration makes it possible to omit the full URI from each property (name refers to
http://schema.org/name, url abbreviates http://schema.org/url). However, if you add RDFa annotation
for more than one real-world object or person, you can declare the namespace of the vocabulary on the
html element of your (X)HTML document (e.g., <html xmlns:foaf="http://xmlns.com/foaf/0.1/" …>)
and associate it with a prefix that can be reused throughout the document. Every time you use a term from
the vocabulary declared on the top of your document, you add the prefix followed by a colon, such as
foaf:name, schema:url, etc. Using prefixes is not only handy but sometimes the only way to annotate your
markup. For example, if you need terms from more than one vocabulary, additional vocabularies can be
specified by the prefix attribute (see Listing 2-25). You can refer to any term from your most frequently used
vocabulary (defined in the vocab attribute value) without the prefix, and terms from your second vocabulary
with the prefix you define as the attribute value of the prefix attribute, or define them on the html element
with the xmlns attribute followed by the prefix name and the namespace URI.

Listing 2-25.  Using the Term “Textbook” from the FaBiO Ontology

<p vocab="http://schema.org/" typeof="Person" prefix="fabio: http://purl.org/spar/fabio/" 
 resource="#sikos">
 My name is Leslie Sikos and you can find out more about me 
 by visiting my web site.
 I am the author of <a property="fabio:Textbook" 
 href="http://lesliesikos.com/mastering-structured-data-on-the-semantic-web/">Mastering 
 Structured Data on the Semantic Web.

To make search engines “understand” that the provided link refers to a textbook of Leslie Sikos, we
used the machine-readable definition of “textbook” from the FaBiO ontology. If you need more than one
additional vocabulary for your RDFa annotations, you can add them to the attribute value of the prefix
attribute as a space-separated list.

The most frequently used vocabulary namespaces are predefined in RDFa parsers, so you can omit
them in your markup and still be able to use their terms in RDFa annotations (Table 2-7).

Table 2-7.  Widely Used Vocabulary Prefixes Predefined in RDFa [16]

Prefix URI Vocabulary

cc http://creativecommons.org/ns# Creative Commons Rights Expression Language

ctag http://commontag.org/ns# Common Tag

dcterms http://purl.org/dc/terms/ Dublin Core Metadata Terms

dc http://purl.org/dc/elements/1.1/ Dublin Core Metadata Element Set,
Version 1.1

foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF)

gr http://purl.org/goodrelations/v1# GoodRelations

ical http://www.w3.org/2002/12/cal/icaltzd# iCalendar terms in RDF

og http://ogp.me/ns# Facebook OpenGraph

rev http://purl.org/stuff/rev# RDF Review

sioc http://rdfs.org/sioc/ns# SIOC Core

v http://rdf.data-vocabulary.org/# Google Rich Snippets

vcard http://www.w3.org/2006/vcard/ns# vCard in RDF

schema http://schema.org/ schema.org

http://schema.org/name
http://schema.org/url
http://xmlns.com/foaf/0.1/
http://schema.org/
http://purl.org/spar/fabio/
http://www.lesliesikos.com
http://lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://creativecommons.org/ns%23
http://commontag.org/ns%23
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://purl.org/goodrelations/v1%23
http://www.w3.org/2002/12/cal/icaltzd%23
http://ogp.me/ns%23
http://purl.org/stuff/rev%23
http://rdfs.org/sioc/ns%23
http://rdf.data-vocabulary.org/%23
http://www.w3.org/2006/vcard/ns%23
http://schema.org/

Chapter 2 ■ Knowledge Representation

34

More sophisticated annotations require additional attributes that are supported by RDFa Core only.
Beyond the RDFa Lite attributes, RDFa Core supports the about, content, datatype, inlist, rel, and rev
attributes.

The current subject is the web address5 of the document or a value set by the host language, such as the
base element in (X)HTML. As a result, any metadata written in a document will concern the document itself
by default. The about attribute can be used to change the current subject and state what the data is about,
making the properties inside the document body become part of a new object rather than referring to the
entire document (as they do in the head of the document).

If some displayed text is different from the represented value, a more precise value can be added using
the content attribute, which is a character data (CDATA) string to supply machine-readable content for a
literal. A value can also optionally be typed using the datatype attribute (see Listing 2-26). Declaring the
type ensures that machines can interpret strings, dates, numbers, etc., rather than considering them as a
character sequence.

Listing 2-26.  Using the content and datatype Attributes

<html xmlns="http://www.w3.org/1999/xhtml" 
 prefix="xsd: http://www.w3.org/2001/XMLSchema# dc: http://purl.org/dc/terms/">
 <head>
 <title>Leslie’s Blog</title>
 </head>
 <body>
 <h1 property="dc:title">Leslie’s Blog</h1>
 <p>
 Last modified: <span property="dc:modified"
 content="2014-11-28T12:43:00-09:30"
 datatype="xsd:dateTime">28 November 2014.
 </p>
 </body>
</html>

In RDFa, the relationship between two resources (predicates) can be expressed using the rel attribute
(see Listing 2-27).

Listing 2-27.  Describing the Relationship Between Two Resources in RDFa

This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#" 
 rel="cc:license" 
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons By-NC-ND 
 License.

When a predicate is expressed using rel, the href or src attribute is used on the element of the RDFa
statement, to identify the object (see Listing 2-28).

Listing 2-28.  Using href to Identify the Object

<link about="mailto:leslie@example.com" 
 rel="foaf:knows" href="mailto:christina@example.com" />

5Web address (Uniform Resource Identifier, URI), internationalized web address (Internationalized Resource Identifier, IRI),
or compact web address (Compact URI, CURIE)

http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema
http://purl.org/dc/terms/
http://creativecommons.org/ns%23
http://creativecommons.org/licenses/by-nc-nd/3.0/%22%3ECreative

Chapter 2 ■ Knowledge Representation

35

Reverse relationships between two resources (predicates) can be expressed with the rev attribute.
The rel and rev attributes can be used on any element individually or together. Combining rel and rev is
particularly useful when there are two different relationships to express, such as when a photo is taken by
the person it depicts (see Listing 2-29).

Listing 2-29.  Combining the rel and rev Attributes

■■ Caution I f a triple predicate is annotated using rel or rev only, but no href, src, or resource is defined
on the same element, the represented triple will be incomplete [17].

The inlist attribute indicates that the object generated on the element is part of a list sharing the same
predicate and subject (see Listing 2-30). Only the presence of the inlist attribute is relevant; its attribute
value is always ignored.

Listing 2-30.  Using the inlist Attribute

<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" 
 typeof="bibo:Website">
 The web site Andrew Peno Graphic and Fine Artist by 
 Andrew Peno and 
 Leslie Sikos.
</p>

RDFa DOM API

RDFa provides a Document Object Model (DOM) Application Programming Interface (API) to extract and
utilize structured data from a web page, for advanced user interfaces and interactive applications [18].

HTML5 Microdata
HTML5 Microdata is an HTML5 module defined in a separate specification, extending the HTML5 core
vocabulary with attributes for representing structured data [19].

Global Microdata Attributes

HTML5 Microdata represents structured data as a group of name-value pairs. The groups are called items,
and each name-value pair is a property. Items and properties are represented by regular elements. To create
an item, the itemscope attribute is used.6 To add a property to an item, the itemprop attribute is used on a
descendant of the item (a child element of the container element), as shown in Listing 2-31.

6In HTML5, most web designers use attribute minimization and omit the attribute value (even if it is irrelevant), which is
not allowed in XHTML5. In other words, in HTML5, you can write itemscope on the container element without a value,
while in XHTML5 you write itemscope="itemscope", which is more verbose and more precise and validates as HTML5
and XHTML5. The XHTML5 syntax is used throughout the book.

http://www.lesliesikos.com/
http://purl.org/ontology/bibo/
http://purl.org/dc/terms/
http://creativecommons.org/ns%23
http://creativecommons.org/ns%23

Chapter 2 ■ Knowledge Representation

36

Listing 2-31.  A Person’s Description in HTML5 Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Property values are usually strings (sequences of characters) but can also be web addresses, as the value
of the href attribute on the a element, the value of the src attribute on the img element, or other elements
that link to or embed external resources. In Listing 2-31, for example, the value of the image item property
is the attribute value of the src attribute on the img element, which is lesliesikos.jpg. Similarly, the value
of the url item property is not the content of the a element, lesliesikos.com, but the attribute value of the
href attribute on the a element, which is http://www.lesliesikos.com. By default, however, the value of
the item is the content of the element, such as the value of the name item property in this example: Leslie
Sikos (delimited by the and tag pair).

The type of the items and item properties are expressed using the itemtype attribute, by declaring the
web address of the external vocabulary that defines the corresponding item and properties. In our example,
we used the Person vocabulary from http://schema.org that defines properties of a person, such as
familyName, givenName, birthDate, birthPlace, gender, nationality, and so on. The full list of properties
is defined at http://schema.org/Person, which is the value of the itemtype. In the example, we declared
the name with the name property, the depiction of the person with the image property, and his web site
address using the url property. The allowed values and expected format of these properties are available at
http://schema.org/name, http://schema.org/image, and http://schema.org/url, respectively.

The item type is different for each knowledge domain, and if you want to annotate the description of a
book rather than a person, the value of the itemtype attribute will be http://schema.org/Book, where the
properties of books are collected and defined, such as bookFormat, bookEdition, numberOfPages, author,
publisher, etc. If the item has a global identifier (such as the unique ISBN number of a book), it can be
annotated using the idemid attribute, as shown in Listing 2-32.

Listing 2-32.  The Description of a Book in HTML5 Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Book" 
 itemid="urn:isbn:978-1-484208-84-7">
 <img itemprop="image" src="http://www.masteringhtml5css3.com/img/webstandardsbook.jpg" 
 alt="Web Standards" />
 Web Standards: Mastering HTML5, CSS3, and XML 
 by Leslie Sikos
</div>

Although HTML5 Microdata is primarily used for semantical descriptions of people, organizations,
events, products, reviews, and links, you can annotate any other knowledge domains with the endless variety
of external vocabularies.

Groups of name-value pairs can be nested in a Microdata property by declaring the itemscope attribute
on the element that declared the property (see Listing 2-33).

http://schema.org/Person
http://www.lesliesikos.com/
http://www.lesliesikos.com/
http://schema.org/
http://schema.org/Person
http://schema.org/name
http://schema.org/image
http://schema.org/url
http://schema.org/Book
http://schema.org/Book
http://www.masteringhtml5css3.com/img/webstandardsbook.jpg
http:www.lesliesikos.com

Chapter 2 ■ Knowledge Representation

37

Listing 2-33.  Nesting a Group of Name-Value Pairs

<div itemscope="itemscope">
 <p>Name: Herbie Hancock</p>
 <p>Band:
 The Headhunters
 (7 members)

 </p>
</div>

In the preceding example, the outer item (top-level Microdata item) annotates a person, and the inner
one represents a jazz band.

An optional attribute of elements with an itemscope attribute is itemref,7 which gives a list of
additional elements to crawl to find the name-value pairs of the item. In other words, properties that are not
descendants of the element with the itemscope attribute can be associated with the item using the itemref
attribute, providing a list of element identifiers with additional properties elsewhere in the document
(see Listing 2-34). The itemref attribute is not part of the HTML5 Microdata data model.

Listing 2-34.  Using the itemref Attribute

<div itemscope="itemscope" id="herbie" itemref="a b"></div>
<p id="a">Name: Herbie Hancock</p>
<div id="b" itemprop="band" itemscope="itemscope" itemref="c"></div>
<div id="c">
 <p>Band: The Headhunters</p>
 <p>Size: 7 members</p>
</div>

The first item has two properties, declaring the name of jazz keyboardist Herbie Hancock, and
annotates his jazz band separately on another item, which has two further properties, representing the name
of the band as The Headhunters, and sets the number of members to 7 using the size property.

HTML5 Microdata DOM API

HTML5 Microdata has a DOM API for web developers to directly access structured data [20].

JSON-LD
In contrast to RDFa and HTML5 Microdata, the two other mainstream formats to add
structured data to the web site markup, JavaScript Object Notation for Linked Data
(JSON-LD) is described as JavaScript code rather than markup elements and attributes.
As a result, JSON-LD is completely separate from the (X)HTML code. One of the
advantages of this lightweight Linked Data format is that it is easy for humans to read and
write. JSON-LD transports Linked Data using the JavaScript Object Notation (JSON), an
open standard format using human-readable text to transmit attribute-value pairs [21]. If the JSON-LD code
is written in a separate file rather than the markup, the de facto file extension is .jsonld. The Internet media

7The itemref attribute is not part of the Microdata data model and is purely a syntactic construct to annotate web page
components for which creating a tree structure is not straightforward, as, for example, a table in which the columns
represent items, and the cells the properties.

Chapter 2 ■ Knowledge Representation

38

type of JSON-LD is application/ld+json and, if written in the markup, the JSON-LD code is delimited by
curly braces between the <script> and </script> tags, as shown in Listing 2-35.

Listing 2-35.  Compact JSON-LD Code in the Markup

<script type="application/ld+json">
{
 "@context": "http://schema.org",
 "@type": "Person",
 "image": "lesliesikos.jpg",
 "name": "Leslie Sikos",
 "url": "http://www.lesliesikos.com"
}
</script>

This example uses the compact syntax of JSON-LD, which can be expanded to the full syntax notation
demonstrated in Listing 2-36.

Listing 2-36.  Expanded JSON-LD Code

[
 {
 "@type": [
 "http://schema.org/Person"
],
 "http://schema.org/image": [
 {
 "@id": "http://www.lesliesikos.com/images/lesliesikos.jpg"
 }
],
 "http://schema.org/name": [
 {
 "@value": "Leslie Sikos"
 }
],
 "http://schema.org/url": [
 {
 "@id": "http://www.lesliesikos.com"
 }
]
 }
]

JSON-LD DOM API

The API of JSON-LD provides a way to transform JSON-LD documents to be more easily consumed by
specific applications [22].

http://schema.org/
http://www.lesliesikos.com/
http://schema.org/Person
http://schema.org/image
http://www.lesliesikos.com/images/lesliesikos.jpg
http://schema.org/name
http://schema.org/url
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge Representation

39

GRDDL: XML Documents to RDF
Since valid XML documents comply to a very strict grammar, RDF triples can often be extracted from XML.
Gleaning Resource Descriptions from Dialects of Languages (GRDDL, pronounced as “griddle”) is a markup
format for transforming XML documents, including XHTML documents (with or without microformats such
as hCard or hCalendar) to RDF. These transformations are usually expressed in XSLT, and happen in the
following three steps:

	 1.	 Source document declaration

	 2.	 Link to one or more extractors

	 3.	 GRDDL agent extracts RDF from the document

XHTML 1.x documents use the profile attribute on the head element to declare that the document
supports GRDDL transformations, while the available transformations are provided as an .xsl file
(Listing 2-37).

Listing 2-37.  An XHTML 1.x Document That Supports GRDDL Transformations

<head profile="http://www.w3.org/2003/g/data-view">
<link rel="transformation" href="grddlxfn.xsl" />

■■ Caution T he profile attribute is not supported in XHTML5.

In XML documents such as the Atom syndication format (used for news feeds) or KML (used to display
geographic data in Google Earth and Google Maps), a transformation can be associated with the XML
namespace by simply pointing to the namespace (Listing 2-38).

Listing 2-38.  An XML Namespace Declaration Pointing to NamespaceTransformation

<foo xmlns="http://example.com/1.0/">

When the http://example.com/1.0/ namespace is accessed, it reveals the namespaceTransformation,
allowing easy deployment of RDF/XML from XML documents.

For XHTML documents that contain microformats, the profile specific to the applied annotations is
used. For example, an XHTML document that supports GRDDL and has hCard information has a profile like
that shown in Listing 2-39.

Listing 2-39.  An XHTML 1.x Document That Supports GRDDL and Contains hCard Information

<head profile="http://www.w3.org/2003/g/data-view http://www.w3.org/2006/03/hcard">

GRDDL agents can extract all the hCard data from pages that reference the link of profile transformation
(Listing 2-40).

Listing 2-40.  Profile Transformation Link

The RDF data is extracted by <a rel="profileTransformation" 
href="hcard2rdf.xsl">this XSL from this hCard.

http://www.w3.org/2003/g/data-view
http://example.com/1.0/
http://example.com/1.0/
http://www.w3.org/2003/g/data-view
http://www.w3.org/2006/03/hcard

Chapter 2 ■ Knowledge Representation

40

R2RML: Relational Databases to RDF
The majority of dynamic web site contents are powered by relational databases (RDB) such as Microsoft
SQL, MySQL, Oracle, IBM DB2, or PostgreSQL. RDB2RML (R2RML) is a standard for direct mapping of
relational databases to RDF [23], making data more accessible on the Semantic Web (see Figure 2-5).

The direct mapping represents the RDB data and schema as an RDF graph called a direct graph and
is described in the Turtle syntax. Assume we have two tables in a relational database, one of which collects
people, the other addresses (Listing 2-41).

Listing 2-41.  RDB Input

CREATE TABLE "Addresses" (
 "ID" INT, PRIMARY KEY("ID"),
 "city" CHAR(10),
 "state" CHAR(3)
)
 
CREATE TABLE "People" (
 "ID" INT, PRIMARY KEY("ID"),
 "fname" CHAR(10),
 "addr" INT,
 FOREIGN KEY("addr") REFERENCES "Addresses"("ID")
)
 
INSERT INTO "Addresses" ("ID", "city", "state") VALUES (52, 'Adelaide', 'SA')
INSERT INTO "People" ("ID", "fname", "addr") VALUES (5, 'Leslie', 52)

Figure 2-5.  RDB2RML enables RDF benefits for data from relational databases

Chapter 2 ■ Knowledge Representation

41

Both tables have a unique identifier as the primary key. The address identifier provides the relation
between the two tables (Figure 2-6).

The R2RML direct mapping of this example would create a People class with a Leslie entity with ID 5,
an Addresses class with the city and state details of the Leslie entity, and a link between the Leslie entity
and the associated address (Listing 2-42).

Listing 2-42.  RDF/Turtle Output

@base <http://example.com/DB/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
 
<People/ID=5> rdf:type <People> .
<People/ID=5> <People#ID> 5 .
<People/ID=5> <People#fname> "Leslie" .
<People/ID=5> <People#addr> 52 .
<People/ID=5> <People#addr> <Addresses/ID=52>
<Addresses/ID=52> rdf:type <Addresses> .
<Addresses/ID=52> <Addresses#ID> 52 .
<Addresses/ID=52> <Addresses#city> "Adelaide" .
<Addresses/ID=52> <Addresses#state> "SA" .

RDFS
While RDF is the cornerstone of the Semantic Web, by itself it is not suitable for describing ontologies.
RDFS (RDF Vocabulary Description Language, originally the RDF Schema Language) is a simple, RDF-
based language for creating RDF ontologies by defining terms of a knowledge domain and the relationships
between them [24]. RDFS is an extension of the RDF vocabulary with basic ontology elements and also
reuses RDF properties. RDFS ontologies can be represented as RDF graphs. RDFS is suitable for describing
various resource types, using specific properties. The RDFS classes and properties form the RDFS vocabulary,
including a specialized set of predefined RDF resources with their meaning and using URI references with
the prefix http://www.w3.org/2000/01/rdfschema# and the associated QName prefix rdfs:. The classes
of the RDFS vocabulary are used to define a class resource (rdfs:Resource), the class of literal values
such as strings and integers (rdfs:Literal), the class of classes (rdfs:Class), the class of RDF datatypes

Figure 2-6.  RDB input tables

http://www.w3.org/2001/XMLSchema%23
http://www.w3.org/2000/01/rdfschema%23

Chapter 2 ■ Knowledge Representation

42

(rdfs:Datatype), the class of RDF containers (rdfs:Container), and the class of container membership
properties (rdfs:ContainerMembershipProperty). The properties of RDFS can express that the subject is
a subclass of a class (rdfs:subClassOf), the subject is a subproperty of a property (rdfs:subPropertyOf),
define a domain (rdfs:domain) or range of the subject property (rdfs:range), add a human-readable name
for the subject (rdfs:label), declare a description of the subject resource (rdfs:comment), identify a member
of the subject resource (rdfs:member), add information related to the subject resource (rdfs:seeAlso), and
provide the definition of the subject resource (rdfs:isDefinedBy).

Defining RDFS Classes
An RDFS class corresponds to a type or category used for classification and hierarchy. In RDFS, a class C is
defined by a triple of the form shown in Listing 2-43, where rdfs:Class is a predefined class and rdf:type is
a predefined property.

Listing 2-43.  Class Definition in RDFS

C rdf:type rdfs:Class .

For example, the example.com video rental company wants to use RDFS to provide information about
movies, including westerns and comedies. The classes to represent these categories can be written as the
statements (triples) shown in Listing 2-44.

Listing 2-44.  Statements in RDFS

ex:Movie rdf:type rdfs:Class .
ex:Western rdf:type rdfs:Class .
ex:Comedy rdf:type rdfs:Class .

Defining RDFS Subclasses
Suppose example.com wants to define that westerns and comedies are movies. This can be done with RDFS
subclasses shown in Listing 2-45.

Listing 2-45.  Subclass Definition in RDFS

ex:Western rdfs:subClassOf ex:Movie .
ex:Comedy rdfs:subClassOf ex:Movie .

The rdfs:subClassOf property is reflexive, in other words, once an RDFS class is created, it is a
subclass of itself, such as the definition of ex:Movie infers that ex:Movie rdfs:subClassOf ex:Movie .
The rdfs:subClassOf property is also transitive. The predefined rdfs:subclassOf property is used as a
predicate in a statement to declare that a class is a specialization of another more general class. The meaning
of the rdfs:subClassOf predefined property in a statement of the form C1 rdfs:subClassOf C2 is that
any instance of class C1 is also an instance of class C2. For example, if we have the statements ex:Comedy
rdfs:subClassOf ex:Movie . (comedies are movies) and ex:ActionComedy rdf:type ex:Comedy .
(action comedies are comedies), the statement ex:ActionComedy rdf:type ex:Movie . (action comedies
are movies) can be inferred (knowledge explicitly not stated can be deducted).

Defining RDFS Instances
To define an instance for example.org, such as an individual movie, we can make an RDF statement that the
film Bad Boys is an action comedy, as shown in Listing 2-46.

Chapter 2 ■ Knowledge Representation

43

Listing 2-46.  Instance Definition in RDFS

@prefix films: <http://example.com/films> .
@prefix moviedb: <http://examplefilmdb.com> .
 
moviedb:BadBoys rdf:type films:ActionComedy .

The rdf:type predefined property is used as a predicate in a statement I rdf:type C . to declare that
individual I is an instance of class C. In statements of the form C rdf:type rdfs:Class ., rdf:type is used
to declare that class C (viewed as an individual object) is an instance of the rdfs:Class predefined class.
Defining a class explicitly is optional. If we write a triple such as I rdf:type C ., C is inferred to be a class
(namely, an instance of rdfs:Class). A class is not limited to one hierarchical level and can be a subclass or
superclass of other classes that is usually represented as a directed graph (see Figure 2-7).

In our example, the graph represents the machine-readable statements that can be expressed by the
ontology (Listing 2-47).

Listing 2-47.  RDFS Classes Correspond to Relationships Represented on the Graph

@prefix films: <http://example.com/films> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 
films:Movie rdf:type rdfs:Class .
films:Action rdf:type rdfs:Class .
films:Comedy rdf:type rdfs:Class .
films:Western rdf:type rdfs:Class .
films:ActionComedy rdf:type rdfs:Class .
films:Action rdfs:subClassOf films:Movie .
films:Comedy rdfs:subClassOf films:Movie .
films:Western rdfs:subClassOf films:Movie .
films:ActionComedy rdfs:subClassOf films:Comedy .
films:ActionComedy rdfs:subClassOf films:Action .

Figure 2-7.  Hierarchy of RDFS classes on a graph

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23

Chapter 2 ■ Knowledge Representation

44

Defining RDFS Properties
Specific properties can be defined without references to classes or to characterize classes. To create a
property for a class, one makes the statement that the property to be defined is an instance of the predefined
rdf:Property class. For example, we write ex:author rdf:type rdf:Property ., so that the ex:author
property can be used as a predicate in an RDF triple, such as ex:LeslieSikos ex:author ex:WebStandards .
Because RDFS properties are resources too, properties can be either subjects or objects of triples. For example,
ex:author prov:definedBy ke:LeslieSikos and ke:LeslieSikos prov:defined ex:author.

The rdfs:label property is an instance of rdf:Property that can be used to provide a human-readable
version of the name of a resource. The rdfs:comment property is an instance of rdf:Property suitable
for providing a human-readable description of a resource. A very frequently used RDFS property on the
Semantic Web is rdfs:seeAlso, which is an instance of rdf:Property and used to indicate a resource
that provides additional information about the subject resource. Assume we have an RDF description for
the textbook Web Standards: Mastering HTML5, CSS3, and XML. We declare the title of the book with the
title property from the Dublin Core vocabulary, so its namespace at http://purl.org/dc/terms/ has to
be included in the namespace declaration. To link the web site of the book to a web page that describes
additional books by the author, the rdfs:seeAlso property can be used (see Listing 2-48). Because we use
RDF and RDFS properties as well, their namespaces have to be added to the namespace declaration.

Listing 2-48.  Tagging, Describing, and Linking Resources with RDFS Properties

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 
<http://www.masteringhtml5css3.com>
 rdfs:label "RDF Description of the web design book Web Standards" ;
 dcterms:title "Web Standards: Mastering HTML5, CSS3, and XML" ;
 rdfs:comment "Web Standards: Mastering HTML5, CSS3, and XML presents step-by-step 
 guides based on solid design principles and best practices, and shows the most common 
 web development tools and web design frameworks. You will master HTML5 and its XML 
 serialization, XHTML5, the new structuring and multimedia elements, the most important 
 HTML5 APIs, and understand the standardization process of HTML 5.1, HTML 5.2, and 
 future HTML5 versions." ;
 rdfs:seeAlso <http://www.lesliesikos.com/web-design-books/> .

The rdfs:isDefinedBy property is an instance of rdf:Property that is used to indicate a resource that
defines the subject resource, such as a controlled vocabulary in which the resource is described.

Defining RDFS Domains and Ranges
Properties can be declared to apply only to certain instances of classes, by defining their domain and range,
which indicate the relationships between RDFS classes and properties and RDF data. The rdfs:domain
predicate indicates that a particular property applies to instances of a designated class (the domain of the
property), in other words, declares the class of those resources that may appear as subjects in a triple with
the predicate. The rdfs:range predicate indicates that the values of a particular property are instances of a
designated class (the class of those resources that may appear as the object in a triple with the predicate, also
known as the range of the property), as shown in Listing 2-49.

http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.masteringhtml5css3.com/
http://www.lesliesikos.com/web-design-books/

Chapter 2 ■ Knowledge Representation

45

Listing 2-49.  Using RDFS Domain and Range

ex:Book rdf:type rdfs:Class .
ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .
ex:author rdfs:range ex:Person .
Book1 ex:hasAuthor Author .

■■ Note N ot all properties have a domain or range.

The rdfs:range property can also indicate that a property value is declared with a typed literal8
(Listing 2-50).

Listing 2-50.  Using a Typed Literal

ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .

Web Ontology Language (OWL)
While simple machine-readable ontologies can be created using RDFS, complex knowledge domains require
more capabilities, such as

•	 Relations between classes (union, intersection, disjointness, equivalence)

•	 Property cardinality constraints (minimum, maximum, exact number, e.g., a Person
has exactly one father)

•	 Rich typing of properties (object vs. datatype, specific datatypes)

•	 Characteristics of properties and special properties (transitive, symmetric,
functional, inverse functional, e.g., A ex:hasAncestor B and B ex:hasAncestor C
implies that A ex:hasAncestor C)

•	 Specifying that a given property is a unique key for instances of a particular class

•	 Domain and range restrictions for properties when they are used with a certain class

•	 Equality of classes, specifying that two classes with different URI references actually
represent the same class

•	 Equality of individuals, specifying that two instances with different URI references
actually represent the same individual

•	 Enumerated classes

8The datatype can also be expressed by rdfs:Datatype such as xsd:integer rdf:type rdfs:Datatype . or using
rdf:datatype as for example rdf:datatype="http://www.w3.org/2001/XMLSchema#string".

http://www.w3.org/2001/XMLSchema#string

Chapter 2 ■ Knowledge Representation

46

Web Ontology Language (OWL) is a knowledge representation language especially designed for
creating web ontologies with a rich set of modeling constructors, addressing the limitations of RDFS. The
development of the first version of OWL was started in 2002, and the second version, OWL2, in 2008. OWL
became a W3C Recommendation in 2004 [25], and OWL2 was standardized in 2009 [26, 27]. OWL is based
on RDF, semantically extending RDF and RDFS, as well as its predecessor language, DAML+OIL.

■■ Note T he abbreviation of Web Ontology Language is intentionally not WOL but OWL [28].

Description Logic
Ontologies on the Semantic Web often implement mathematical logic, a subfield of mathematics dealing
with formal expressions, deductive reasoning, and formal proof. Description Logic (DL) is a family of formal
knowledge representation languages in Artificial Intelligence used for logical formalism for ontologies,
including formal reasoning of the concepts of a knowledge domain. Description Logic languages are
more expressive than propositional logic (which deals with declarative propositions and does not use
quantifiers) and more efficient in decision problems than first-order predicate logic (which uses predicates
and quantified variables over non-logical objects). A Description Logic can model concepts, roles and
individuals, and their relationships. A core modeling concept of a Description Logic is the axiom, which is a
logical statement about the relation between roles and/or concepts. Most web ontologies written in OWL are
implementations of a Description Logic.

Each Description Logic Knowledge Base (KB) consists of a terminological part (TBox) and an assertional
part (ABox), both of which contain a set of axioms. A basic Description Logic is AL, the Attributive
Language, which supports atomic negation,9 concept intersection, universal restrictions, and limited
existential quantification.

■■ Note T he naming convention of Description Logics is to indicate additional constructors by appending a
corresponding letter (see Table 2-8).

Table 2-8.  Common Letters Used in Description Logic Names

Symbol Includes Example

C Complex concept constructor negation The negation of arbitrary concepts

S An abbreviation of ALC with transitive roles Apple’s mobile operating system is
iOS, and iOS is developed for iPhone
smartphones, so iPhone smartphones are
made by Apple.

R Limited complex role inclusion axioms, reflexivity
and irreflexivity, role disjointness

“part of” and “has part”

O Enumerated classes of object value restrictions
(nominals)

Africa, Antarctica, Asia, Australia, Europe,
North America, South America

9Negation of concept names that do not appear on the left-hand side of axioms.

(continued)

Chapter 2 ■ Knowledge Representation

47

An extension of AL is the Attributive Concept Language with Complements, the Description Logic
abbreviated as ALC. ALC supports ABox expressions such as individual assignments (e.g., Ford is a car),
property assignments (e.g., Leslie has a wife, Christina), TBox expressions such as subclass relationships
(⊑) and equivalence (≡), as well as conjunction (⊓), disjunction (⊔), negation (¬), property restrictions
(∀,∃), tautology (⊤, a logical formula which is always true), and contradiction (⊥). By combining such
mathematical operators, you can construct complex class expressions, which are denoted by the C in the
name of this Description Logic. ALC can describe sets of individuals, sets of atomic classes, and sets of roles.

SR extends the capabilities of ALC with property chains, property characteristics, and role hierarchies.
The property characteristics include transitivity (e.g., Ben has the ancestor Violet), symmetry (e.g., Christina
is the spouse of Leslie, and Leslie is the spouse of Christina), asymmetry (e.g., Leslie has the son Ben),
reflexivity (e.g., Christina has the relative Linda), irreflexive (e.g., Christina is the parent of Ben), functional
(e.g., Christina has a husband) and inverse functional properties (e.g., Leslie is the husband of Christina).
SRO extends SR with nominals, i.e., enumerated classes of object value restrictions. SROI adds inverse
properties to SRO. SROIQ extends SRO with qualified cardinality constraints. SROIQ(D) extends SRO
IQ with datatypes, including facets. In addition, SROIQ(D) supports disjoint properties and adds tautology
(⊤) and contradiction (⊥) support for objects and datatypes (see Figure 2-8).

Beyond Abox and TBox, SROIQ(D) also supports so-called Role Boxes (RBox) to collect all statements
related to roles and the interdependencies between roles. Each RBox consists of a role hierarchy (including
generalized role inclusion axioms) and a set of role assertions.

Symbol Includes Example

I Inverse properties Employ and employed by

N Cardinality restrictions Each person has two parents.

F Functional properties, a special case of uniqueness
quantification

“there is one and only one”

Q Qualified cardinality restrictions Cardinality restrictions that have fillers
other than ⊤

(D) Data type properties, data values, or data types The number annotated as integer in the
statement “Christina is 30 years old”

Table 2-8.  (continued)

Chapter 2 ■ Knowledge Representation

48

OWL Variants
There are three flavors of OWL, each constituting different compromises between expressive power and
computational complexity (reasoning practicability):

•	 OWL-Full: No restrictions on the use of language constructs: no global restrictions
or restrictions for RDF usage. Maximum expressiveness, syntactic freedom, and no
computational guarantees. The semantics of OWL-Full is a mixture of RDFS and
OWL-DL (RDF-Based Semantics).

•	 OWL-DL: A restricted version of OWL-Full that corresponds to a Description Logic.
OWL-DL provides maximum expressiveness, computational completeness
(all conclusions are guaranteed to be computable), and decidability (all computations
can be finished in finite time). It inherits global restrictions from SROIQ(D). In
OWL-DL, RDF can be used only for expressing OWL axioms. OWL-DL implements
the model-theoretic semantics of SROIQ(D) called OWL2 Direct Semantics.

•	 OWL-Lite: A subset of OWL-DL designed for easy implementation. OWL-Lite has
limited applicability, because it is suitable only for classification hierarchy and
simple constraints.

Figure 2-8.  Relationship between the description logic constructors of ALC and SROIQ(D)

Chapter 2 ■ Knowledge Representation

49

OWL2 provides the expressiveness of the SROIQ(D) Description Logic; OWL-DL is based on the
SHOIN(D) Description Logic; while OWL-Lite is based on the SHIF(D) Description Logic.

OWL ontologies are RDF graphs, in other words, sets of RDF triples. Similar to RDF graphs, OWL
ontology graphs can be expressed in various syntactic notations. OWL is a higher-level language than RDF;
in fact, it is a vocabulary extension of RDF. Consequently, RDF graphs are OWL-Full ontologies. The default
OWL namespace is http://www.w3.org/2002/07/owl#, which defines the OWL vocabulary. There is no
MIME type defined specifically for OWL, but the application/rdf+xml or the application/xml MIME type
is recommended for OWL documents with the .rdf or .owl file extension.

OWL has three components: classes, properties, and individuals. Classes and individuals are
differentiated in OWL using Class and Thing. While in RDFS only subclasses of existing classes can be
created, in OWL, classes can be constructed based on existing classes in any of the following ways:

•	 Enumerating the content

•	 Through intersection, union, or complement

•	 Through property restrictions

Syntaxes
At the high level, the OWL abstract syntax [29] and the OWL2 functional syntax [30] can be used. OWL also
supports several exchange syntaxes, including the RDF syntaxes, such as RDF/XML and RDF/Turtle, the
OWL2 XML syntax [31], and the Manchester syntax [32], but RDF/XML is the normative syntax.

■■ Note I n the examples, I use declarations for a hypothetical smartphone ontology.

The OWL2 functional syntax is compatible with the Unified Modeling Language (UML), one of the most
widely deployed general-purpose standardized modeling languages (see Listing 2-51). It is clean, adjustable,
modifiable, and easy to parse. The functional syntax is primarily used for defining the formal OWL2
grammar in the W3C specifications.

Listing 2-51.  OWL2 Functional Syntax Example

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
 
Ontology(<http://example.com/smartphone.owl>
 Declaration(Class(:Smartphone))
)

The notational variant of the OWL2 functional syntax is the OWL/XML syntax, which uses an XML tree
structure instead of RDF triples, as shown in Listing 2-52.

Listing 2-52.  OWL2 XML Syntax Example

<Ontology ontologyIRI="http://example.com/smartphone.owl">
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Declaration>
 <Class IRI="Smartphone"/>
 </Declaration>
</Ontology>

http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl%23
http://www.w3.org/2002/07/owl%23

Chapter 2 ■ Knowledge Representation

50

The only normative syntax of OWL 2 is the RDF/XML syntax (see Listing 2-53). Every OWL2-compliant
tool supports this syntax.

Listing 2-53.  RDF/XML Syntax Example

<rdf:RDF 
 xmlns:owl="http://www.w3.org/2002/07/owl#" 
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about="Phone Ontology"/>
 <owl:Class rdf:about="#Smartphone"/>
</rdf:RDF>

A straightforward syntax for representing RDF triples for OWL ontologies is the RDF/Turtle syntax
shown in Listing 2-54.

Listing 2-54.  RDF/Turtle Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
 
<http://example.com/smartphone.owl>
 rdf:type owl:Ontology .
 :Smartphone rdf:type owl:Class .

The less frequently used Manchester syntax is a compact, user-friendly syntax for OWL-DL that collects
information about a particular class, property, or individual into a single construct called a frame. The
Manchester syntax is easy to read and write, especially for those who are not experts in mathematical logic.
Complex descriptions consist of short, meaningful English words, while eliminating the logical symbols and
precedence rules represented in other syntaxes, as shown in Listing 2-55.

Listing 2-55.  Manchester Syntax Example

Prefix: owl: <http://www.w3.org/2002/07/owl#>
 
Ontology: <http://example.com/smartphone.owl>
Class: Smartphone

Properties
In OWL, the following types of properties exist:

•	 Object properties that link individuals to other individuals

•	 Datatype properties that link individuals to data values (subclasses of object
properties)

•	 Annotation property (owl:AnnotationProperty)

•	 Ontology property (owl:OntologyProperty)

Property features are defined by the property axioms. The basic form expresses the existence only.
For example, in a smartphone ontology, the property hasTouchscreen can be declared to express a major
feature of mobile phones (see Listing 2-56).

http://www.w3.org/2002/07/owl%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl

Chapter 2 ■ Knowledge Representation

51

Listing 2-56.  A Property Declaration in OWL

<owl:ObjectProperty rdf:ID="hasTouchscreen" />

OWL property axioms can also define additional characteristics. OWL reuses RDF Schema constructs
such as rdfs:subPropertyOf, rdfs:domain, and rdfs:range. Relations to other properties can be expressed
by owl:equivalentProperty and owl:inverseOf (Listing 2-57).

Listing 2-57.  Two Equivalent Smartphone Properties (Accelerometer and G-sensor)

<owl:ObjectProperty rdf:ID="hasAccelerometer">
 <owl:equivalentProperty>
 <owl:ObjectProperty rdf:ID="hasGsensor" />
 </owl:equivalentProperty>
</owl:ObjectProperty>

Global cardinality constraints are defined by owl:FunctionalProperty and
owl:InverseFunctionalProperty (see Listing 2-58). Symmetry and transitivity features are defined by
owl:SymmetricProperty and owl:TransitiveProperty [33].

Listing 2-58.  A FunctionalProperty in OWL

<owl:ObjectProperty rdf:about="&myMobile;manufactured_by">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="&myMobile;Mobile" />
</owl:ObjectProperty>

OWL provides precise declarations for expressing relationships, even if they are evident. For example,
the property hierarchy of two smartphone features can be expressed using rdfs:subPropertyOf, as
presented in Listing 2-59.

Listing 2-59.  Property Hierarchy in OWL

<owl:ObjectProperty rdf:ID="hasGeotagging" />
 <owl:ObjectProperty rdf:ID="hasCamera">
 <rdfs:subPropertyOf rdf:resource="hasGeotagging" />
</owl:ObjectProperty>

Classes
Similar to RDF, OWL provides classes to group resources. There are six different class descriptions in OWL:

	 1.	 Class identifier (URI reference). A named instance of owl:Class, a subclass of
rdfs:Class.10 Listing 2-60 shows an example.

Listing 2-60.  A Class Identifier in OWL

<owl:Class rdf:ID="Handheld"/>

10In OWL Lite and OWL DL. In OWL-Full they are equivalent.

Chapter 2 ■ Knowledge Representation

52

 	 2.	 Set of individuals (instances of a class) defined by the owl:oneOf property.
For example, the class of smartphones can be declared in the RDF/XML syntax,
with the RDF construct rdf:parseType="Collection", as shown in Listing 2-61.

Listing 2-61.  Declaring Class Instances in OWL

<owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Touch" />
 <owl:Thing rdf:about="#Type" />
 <owl:Thing rdf:about="#TouchType" />
 </owl:oneOf>
</owl:Class>

 	 3.	 Property restriction: a value constraint or a cardinality constraint (for example,
see Listing 2-62).

Listing 2-62.  Property Restrictions in OWL

<owl:Restriction>
 <owl:onProperty rdf:resource="hasGPS" />
 <owl:allValuesFrom rdf:resource="#Smartphone" />
</owl:Restriction>

 	 4.	 Intersection of two or more class descriptions. For example, the intersection
of the Smartphone and the MadeByApple classes can be described by
owl:intersectionOf, stating that iPhones are smartphones made by Apple
(see Listing 2-63).

Listing 2-63.  Intersection in OWL

<owl:Class rdf:ID="IPhone">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Smartphone" />
 <owl:Class rdf:about="#MadeByApple" />
 </owl:intersectionOf>
</owl:Class>

 	 5.	 Union of two or more class descriptions.

	 6.	 Complement of a class description. The class extension contains exactly those
individuals that do not belong to the class extension of the class description that
forms the object of the statement. The complement can be described by the
owl:complementOf property.

Class descriptions can be combined into class axioms. Class hierarchy can be expressed by a subclass
axiom (Listing 2-64).

Listing 2-64.  Class Hierarchy in OWL

<owl:Class rdf:ID="Slide">
 <rdfs:subClassOf rdf:resource="#smartphone" />
</owl:Class>

Chapter 2 ■ Knowledge Representation

53

The equivalence of two classes express that the individuals contained by them are identical.
Listing 2-65 shows an example.

Listing 2-65.  Equivalent Classes in OWL

<owl:Class rdf:about="VirtualKeyboard">
 <owl:equivalentClass rdf:resource="#Softquerty">
</owl>

Although individuals can be members of several classes in general, in many cases, memberships are
exclusive. For example, smartphones either have a physical keyboard or a virtual keyboard (on the touchscreen).
This class disjointness can be expressed as shown in Listing 2-66.

Listing 2-66.  Class Disjointness in OWL

<owl:Class rdf:about="VirtualKeyboard">
 <owl:equivalentClass rdf:resource="#Softquerty" />
 <owl:disjointWith rdf:resource="Keyboard" />
</owl>

Simple Knowledge Organization System (SKOS)
Simple Knowledge Organization System (SKOS) is a W3C recommendation for representing taxonomies,
thesauri, classification schemes, subject-heading systems, and structured controlled vocabularies. Being
one of the most frequently implemented Semantic Web standards in industrial applications, SKOS is built
upon RDF and RDFS to enable easy publication of controlled vocabularies as linked data. RDF provides
interoperability, consistency, and integrity and allows knowledge organization systems to be used in
distributed, decentralized metadata applications where metadata are retrieved from multiple resources.

The SKOS standard defines the SKOS data model as an OWL-Full ontology [34]. The elements of the
SKOS data model are OWL classes and properties with individual URIs that form the SKOS vocabulary. The
classes and properties of SKOS are suitable for representing the common features of thesauri (lists words in
groups of synonyms and related concepts). The abstract concepts of SKOS are represented by terms and can
be organized in hierarchies using relationships such as broader and narrower or linked by nonhierarchical
(associative) relationships, such as related. Further SKOS classes and predicates can be used for basic
descriptions (Concept, ConceptScheme), labeling (prefLabel, altLabel, prefSymbol, altSymbol),
documentation (definition, scopeNote, changeNote), subject indexing (subject, isSubjectOf), grouping
(Collection, OrderedCollection), and subject indication (subjectIndicator). SKOS also provides some
inference rules similar to the RDFS inference rules.

Rule Interchange Format (RIF)
The additional information used to automatically make new discoveries on the Semantic Web are based
either on ontologies or on rule sets. While ontologies focus on the classification methods by defining
classes, subclasses, and relations, rule sets focus on general mechanisms for discovering and generating
new relations, based on existing relations. Rule sets are collections of IF-THEN constructs called rules. If the
condition in the IF part of the code holds, the conclusion of the THEN part of the code is processed. Rules
are simplifications of a first-order predicate logic, are relatively easy to implement, and beyond syntax
and semantics, and they can express existential quantification, disjunction, logical conjunction, negation,
functions, non-monotonicity, and other features.

Chapter 2 ■ Knowledge Representation

54

There are many different rule languages, for example, the Rule Markup Language (RuleML), an XML
approach to represent both forward (bottom-up) and backward (top-down) rules, or the Semantic Web
Rule Language (SWRL), which was introduced as an extension to OWL. Due to the different paradigms,
semantics, features, syntaxes, and commercial interests of rule languages, there is a need for rule exchange.

The Rule Interchange Format (RIF) was designed for rule sharing and exchange between existing
rule systems, in other words, allowing rules written for one application to be shared and reused in other
applications and rule engines while preserving semantics. RIF is a collection of rigorously defined rule
languages called dialects. The Core Dialect of RIF is a common subset of most rule engines. The Basic Logic
Dialect (BLD) adds logic functions, equality and named arguments, and supports the Horn logic
(a disjunction of literals with at most one positive literal). The Production Rules Dialect (PRD) provides
action with side effects in rule conclusion. RIF has a mapping to RDF.

Reasoning
Description logic-based ontologies are crucial in describing the meaning of web resources and can leverage
powerful description logic reasoning tools to facilitate machine-processability of semantic web sites. Reasoning
derives facts that are not expressed explicitly in machine-readable ontologies or knowledge bases. Description
logic reasoners implement the analytic tableau method (truth tree) for semantic reasoning, which is the
most popular proof procedure for formulas of first-order predicate logic. Among other benefits, this makes it
possible to determine the satisfiability of formula sets. Reasoners can determine whether a description of the
concept is not contradictory, or whether a description is more general than another description. They can
check consistency and whether an individual is an instance of a concept or not. Reasoners can retrieve all
instances of a particular concept and find the most specific concept individuals belong to. Due to decidability,
computational complexity, and the level of formality, automatic processing is not always feasible.

Parsers
Semantic parsing is the process of mapping a natural language sentence into a formal representation of its
meaning. A basic form of semantic parsing is the case-role analysis (semantic role labeling), which identifies
roles such as source or destination. An advanced semantic parsing represents a sentence in predicate logic
or other formal language for automated reasoning.

Summary
In this chapter, you became familiar with the most common controlled vocabularies and ontologies, so that
you can identify the suitable vocabularies and ontologies for your projects, in addition to the right classes
and properties. You know how to model statements in RDF, represent them as directed graphs, and write
them in RDF/XML or Turtle, as well as annotate them in RDFa, Microdata, or JSON-LD.

The next chapter will show you how to create datasets from structured data and link them to other
datasets, making your dataset part of the Linked Open Data Cloud.

Chapter 2 ■ Knowledge Representation

55

References
	 1.	 DMOZ—the Open Directory Project. www.dmoz.org. Accessed 20 March 2015.

	 2.	 Cyganiak, R., Wood, D., Lanthaler, M. (eds.) (2014) RDF 1.1
Concepts and Abstract Syntax. World Wide Web Consortium.
 www.w3.org/TR/rdf11-concepts/. Accessed 18 January 2015.

	 3.	 Gandon, F., Schreiber, G. (eds.) (2014) RDF 1.1 XML Syntax. World Wide Web
Consortium. www.w3.org/TR/rdf-syntax-grammar/. Accessed 18 January 2015.

	 4.	 Carothers, G., Seaborne, A. (2014) RDF 1.1 N-Triples. A line-based syntax for an
RDF graph. World Wide Web Consortium. www.w3.org/TR/n-triples/. Accessed
18 January 2015.

	 5.	 Bizer, C., Cyganiak, R. (2014) RDF 1.1 TriG. RDF Dataset Language. World Wide
Web Consortium. www.w3.org/TR/trig/. Accessed 18 January 2015.

	 6.	 Carroll, J. J., Stickler, P. (2004) RDF Triples in XML. HP Laboratories.
www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf. Accessed
18 January 2015.

	 7.	 Klyne, G., Carroll, J. J., McBride, B. (eds.) (2014) RDF 1.1 Concepts and Abstract
Syntax. World Wide Web Consortium. www.w3.org/TR/rdf11-concepts/.
Accessed 18 January 2015.

	 8.	 Sindice (2014) Sindice Web Data Inspector. Sindice Ltd.
http://inspector.sindice.com. Accessed 18 January 2015.

	 9.	 King, R., Çelik, T. (2012) hCalendar Creator. http://microformats.org/code/
hcalendar/creator.html. Accessed 20 March 2015.

	 10.	 Çelik, T. (2005) hCard Creator. The Microformats Community.
http://microformats.org/code/hcard/creator. Accessed 18 January 2015.

	 11.	 Casserly, C. et al (eds.) (2015) Licenses. Creative Commons.
http://creativecommons.org/about/licenses/. Accessed 14 April 2015

	 12.	 Mullenweg, M., Çelik, T. (2004) XFN 1.1 Creator. Global Multimedia Protocols
Group. http://gmpg.org/xfn/creator. Accessed 18 January 2015.

	 13.	 Mullenweg, M. (2014) Exefen. http://ma.tt/tools/exefen.php/. Accessed
18 January 2015.

	 14.	 Adida, B., Birbeck, M., McCarron, S., Herman, I. (eds.) (2013) RDFa Core
1.1—Second Edition. Syntax and processing rules for embedding RDF through
attributes. World Wide Web Consortium. www.w3.org/TR/rdfa-core/. Accessed
18 January 2015.

	 15.	 Sporny, M. (ed.) (2012) RDFa Lite 1.1. World Wide Web Consortium.
www.w3.org/TR/rdfa-lite/. Accessed 18 January 2015.

	 16.	 Herman, I. (2014) RDFa Core Initial Context. World Wide Web Consortium.
www.w3.org/2011/rdfa-context/rdfa-1.1. Accessed 18 January 2015.

	 17.	 Adida, B., Birbeck, M., McCarron, S., Herman, I. (eds.) (2012) Completing
incomplete triples. In RDFa Core 1.1. www.w3.org/TR/2012/REC-rdfa-core-
20120607/#s_Completing_Incomplete_Triples. Accessed 18 January 2015.

http://www.dmoz.org/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/trig/
http://www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf
http://www.w3.org/TR/rdf11-concepts/
http://inspector.sindice.com/
http://microformats.org/code/hcalendar/creator.html
http://microformats.org/code/hcalendar/creator.html
http://microformats.org/code/hcard/creator
http://creativecommons.org/about/licenses/
http://gmpg.org/xfn/creator
http://ma.tt/tools/exefen.php/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/2011/rdfa-context/rdfa-1.1
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/#s_Completing_Incomplete_Triples
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/#s_Completing_Incomplete_Triples

Chapter 2 ■ Knowledge Representation

56

	 18.	 Rixham, N., Birbeck, M., Herman, I. (2012) RDFa API. World Wide Web
Consortium. www.w3.org/TR/rdfa-api/. Accessed 18 January 2015.

	 19.	 Hickson, I. (2013) HTML Microdata. World Wide Web Consortium.
www.w3.org/TR/microdata/. Accessed 18 January 2015.

	 20.	 Hickson, I. (ed.) (2013) HTML Microdata. World Wide Web Consortium.
www.w3.org/TR/microdata/#using-the-microdata-dom-api. Accessed
18 January 2015.

	 21.	 Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N. (2014)
JSON-LD 1.0. World Wide Web Consortium. www.w3.org/TR/json-ld/. Accessed
18 January 2015.

	 22.	 Longley, D., Kellogg, G., Lanthaler, M., Sporny, M. (2014) JSON-LD 1.0 Processing
Algorithms and API. World Wide Web Consortium. www.w3.org/TR/json-ld-api/.
Accessed 18 January 2015.

	 23.	 Das, S., Sundara, S., Cyganiak, R. (eds.) (2012) R2RML: RDB to RDF Mapping
Language. World Wide Web Consortium. www.w3.org/TR/r2rml/. Accessed 18
January 2015.

	 24.	 Brickley, D., Guha, R. V. RDF Schema 1.1. World Wide Web Consortium.
www.w3.org/TR/rdf-schema/. Accessed 18 December 2014.

	 25.	 Dean, M., Schreiber, G. (eds.), Bechhofer S, van Harmelen F, Hendler J, Horrocks
I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL Web Ontology
Language Reference. World Wide Web Consortium. www.w3.org/TR/owl-ref/.
Accessed 18 January 2015.

	 26.	 Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., Rudolph, S. (eds.) (2012)
OWL 2 Web Ontology Language—Primer 2nd ed. World Wide Web Consortium.
www.w3.org/TR/owl-primer/. Accessed 18 January 2015.

	 27.	 Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.), Calvanese,
D., Carroll, J., De Giacomo, G., Hendler, J., Herman I., Parsia, B., Patel-Schneider,
P. F., Ruttenberg, A., Sattler, U., Schneider, M. (2012) OWL 2 Web Ontology
Language—Profiles. World Wide Web Consortium. www.w3.org/TR/owl2-
profiles/. Accessed 18 January 2015.

	 28.	 Herman, I. (2010) “Why OWL and not WOL?” Tutorial on Semantic Web
Technologies. World Wide Web Consortium. www.w3.org/People/Ivan/
CorePresentations/RDFTutorial/Slides.html#%28114%29. Accessed
18 January 2015.

	 29.	 Patel-Schneider, P. F., Horrocks, I. (eds.) (2004) Abstract Syntax. In: OWL
Web Ontology Language. Semantics and Abstract Syntax. World Wide Web
Consortium. www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html.
Accessed 18 January 2015.

	 30.	 Motik, B., Patel-Schneider, P. F., Parsia, B. (eds.), Bock, C., Fokoue, A., Haase,
P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., Smith, M. (2012) OWL 2
Web Ontology Language. Structural Specification and Functional-Style Syntax 2nd Ed.
World Wide Web Consortium. www.w3.org/TR/owl-syntax/. Accessed
18 January 2015.

http://www.w3.org/TR/rdfa-api/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/#using-the-microdata-dom-api
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld-api/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html
http://www.w3.org/TR/owl-syntax/

Chapter 2 ■ Knowledge Representation

57

	 31.	 Motik, B., Parsia, B., Patel-Schneider, P. F. (eds.), Bechhofer, S., Grau,
B. C., Fokoue, A., Hoekstra, R. (2012) OWL 2 Web Ontology Language. XML
Serialization 2nd Ed. World Wide Web Consortium. www.w3.org/TR/owl-xml-
serialization/. Accessed 18 January 2015.

	 32.	 Horridge, M., Patel-Schneider, P. F. (2012) OWL 2 Web Ontology Language.
Manchester Syntax. World Wide Web Consortium. www.w3.org/TR/owl2-
manchester-syntax/. Accessed 18 January 2015.

	 33.	 Dean, M., Schreiber, G. (eds.), Bechhofer S, van Harmelen F, Hendler J, Horrocks
I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) Properties. In: OWL Web
Ontology Language Reference. World Wide Web Consortium. www.w3.org/TR/
owl-ref/#Property. Accessed 18 January 2015.

	 34.	 Miles, A., Bechhofer, S. (2009) SKOS Simple Knowledge Organization System
Reference. World Wide Web Recommendation. www.w3.org/TR/skos-
reference/. Accessed 18 January 2015.

http://www.w3.org/TR/owl-xml-serialization/
http://www.w3.org/TR/owl-xml-serialization/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl-ref/#Property
http://www.w3.org/TR/owl-ref/#Property
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/

	Chapter 2: Knowledge Representation
	 Vocabularies and Ontologies
	 The schema.org Vocabulary Collection
	 General, Access, and Structural Metadata
	 Person Vocabularies
	 Book Vocabularies
	 PRISM: A Publishing Vocabulary
	 GoodRelations: An E-commerce Ontology
	 Publication Ontologies
	 DOAP: A Project Management Vocabulary
	 Licensing Vocabularies
	 Media Ontologies
	 Vocabularies for Online Communities

	 Knowledge Management Standards
	 Resource Description Framework (RDF)
	 Machine-Readable Annotations
	Microformats
	hCalendar and h-event
	 hCard
	 rel="license"
	 rel="nofollow"
	 rel="tag"
	 Vote Links
	 XFN
	 XMDP
	Drafts and Future Microformats

	 RDFa
	RDFa DOM API

	HTML5 Microdata
	Global Microdata Attributes
	HTML5 Microdata DOM API

	 JSON-LD
	JSON-LD DOM API

	 GRDDL: XML Documents to RDF
	 R2RML: Relational Databases to RDF
	 RDFS
	Defining RDFS Classes
	Defining RDFS Subclasses
	Defining RDFS Instances
	Defining RDFS Properties
	Defining RDFS Domains and Ranges

	 Web Ontology Language (OWL)
	Description Logic
	O WL Variants
	 Syntaxes
	 Properties
	 Classes

	 Simple Knowledge Organization System (SKOS)
	 Rule Interchange Format (RIF)

	 Reasoning
	 Parsers
	 Summary
	 References

