
27

Chapter 3

Using Google APIs

Virtually all of Google’s products are built according to an API-first philosophy. This approach encompasses
both Cloud Platform products like Google Compute Engine and consumer-facing products like Google
Maps. On Google Cloud Platform, although Google makes it easy to consume products using either the
web-based Developers Console or the console-based gcloud tool, the real power of the platform is best
appreciated by using the core building blocks: the product APIs. In addition, certain developer-targeted
products are made available solely through APIs.

API access is subject to access control. Access control comprises authentication and authorization
and is collectively referred to as Auth. In order to consume an API, an application should be properly
authenticated and authorized. The level of access control depends on whether the application is requesting
access just to a public API (for example Translate API) or to an API that has access to protected information
(for example Cloud Storage). In the first case, the application needs to be authenticated; in the second case,
the application needs to be both authenticated and authorized to access the user’s data.

Google supports OpenID Connect for authentication and OAuth 2.0 for authorization. OpenID Connect
is also known as OAuth for authentication. Google uses the OAuth 2.0 open-standard protocol with Bearer
tokens1 for both web and installed applications. This chapter first covers the essentials of OAuth 2.0 required
to access Google APIs. All Google APIs are available as REST APIs, so it is easy to consume them through
HTTP(S) requests.

In addition, Google provides application support libraries for many of its APIs in several programming
languages. This makes it easier to develop client applications that consume Google APIs and simpler for
Google APIs to be deeply integrated with the respective programming language’s features and capabilities.
For information about the availability of client libraries in your programming language of interest, see
https://developers.google.com/accounts/docs/OAuth2#libraries. To aid your understanding of both
Auth and API access, in this chapter’s example you use a relatively simple API from Cloud Platform—the
Google Translate API—and access it using both REST APIs and client libraries.

Auth Essentials
Every application that attempts to access Google APIs needs to prove its identity. The level of identification
depends on the access scope requested by the application. For example, for APIs like Google Translate that
do not access application or users’ private data, the level of identification is a simple API key. An application
that needs access to protected information must use an OAuth 2.0–based identification process. In addition
to that, there are different types of authorization in OAuth 2.0. 3-legged flows are common when requests

1Bearer tokens are a type of access tokens. Access tokens represent credentials that provide third-party clients with the
necessary rights to access protected information. These tokens are issued by an authorization server that has the approval
of the resource owner.

https://developers.google.com/accounts/docs/OAuth2#libraries

Chapter 3 ■ Using Google APIs

28

need to be done on behalf of a concrete user. This type of flow normally requires user interaction to obtain
access. Because of that, this flow is suitable for applications that have a user interface, like web server or
mobile applications. On the other hand, 2-legged flows are used by clients with limited capabilities
–e.g.: clients that are not able to store secret keys privately like JavaScript client side applications– or in
situations where requests are sent on behalf of applications, hence there is no need for user consent –e.g.:
server to server communication. For example, the Prediction API reads data from files stored in Google
Cloud Storage and so uses OAuth 2.0 to request access to the API. Conversely, the Translate API does not
need to access private data from users or the application itself, so the only authentication mechanism
needed is an API key. This is used by Google to measure usage of the API. Let’s examine the difference
between using an API key and user/application specific OAuth 2.0.

■■ Note I n order to keep tokens, secrets, and keys safe, it is strongly encouraged that you operate over secure
connections using SSL. Some endpoints will reject requests if they are run over HTTP.

API Keys
An API key has the following form:
 
AIzaSyCySn7SBWYPCMEM_2CBJgyDG05qNkiHtTA
 

This key is all you need to authenticate requests against services that do not access users’ private data
or specific permissions like Directions API, such as the Directions API. Here is an example of how to request
directions for the Via Regia—from Moscow to Berlin—using the Directions API2:
 
GET https://maps.googleapis.com/maps/api/directions/json?
origin=Moscow&
destination=Santiago%20de%20Compostela&
key=AIzaSyCySn7SBWYPCMEM_2CBJgyDG05qNkiHtTA
 

The key used in the previous example is not valid. Because of that, if you try to run a request using
the previous URL, it fails stating that access is denied for the key provided. To obtain a new API key, do the
following:

	 1.	 Go to the Developers Console in Google:
https://console.developers.google.com.

	 2.	 Select a project, or create a new one.

	 3.	 Go to Credentials, and create a new API key under Public API access.

2Via Regia is a historic road dating back to the Middle Ages that travels from Moscow to Santiago de Compostela
(http://en.wikipedia.org/wiki/Via_Regia).

https://maps.googleapis.com/maps/api/directions/json?
https://console.developers.google.com/
http://en.wikipedia.org/wiki/Via_Regia

Chapter 3 ■ Using Google APIs

29

When you do that, you are offered four different options or types of keys to create. Choose the type that
fits your needs, depending on the platform or system you are using to access an API:

•	 Choose a server key if your application runs on a server. Keep this private in order to
avoid quota theft.

When you select this method, you can specify the IP addresses of the allowed
clients that you expect to connect to this server. You do that by adding a
query parameter with the IP address: userIp=<user-ip-address>. If access is
started by your server—for example, when running a cron job—you can provide
a quotaUser parameter with a value limited to 40 characters. For example:
quotaUser=myemail@gmail.com. These two parameters are also used to associate
usage of an API with the quota of a specific user.

•	 Use a browser key if your application runs on a web client. When you select this type
of key, you must specify a list of allowed Referers. Requests coming from URLs that
do not match are rejected. You can use wildcards at the beginning or end of each
pattern. For example: www.domain.com, *.domain.com, *.domain.com/public/*.

•	 If you plan to access a Google API from an Android client, use an Android key.
For this key, you need to specify the list of SHA1 fingerprints and package names
corresponding to your application(s). To generate the SHA1 fingerprint of the
signature used to create your APK file, use the keytool command from the terminal:

 
keytool -exportcert -alias androiddebugkey -keystore <path-to-keystore-file> -list -v

 
When you run your app from your development environment, the key in
~/.android/debug.keystore is used to sign your APK. The password for this
signature is normally “android” or an empty string: “”.

Here is an example of the requested string to identify your application.
 
B6:BB:99:41:97:F1:1F:CF:84:2A:6E:0B:FE:75:78:BE:7E:6C:C5:BB;com.lunchmates

 
•	 Use an iOS key if your application runs on an iOS device. When using this key, you

need to add the bundle identifier(s) of the whitelisted app(s) to the dedicated field in
the API key creation process. For example: com.gcpbook.

■■ Note I n Windows machines, keytool.exe is usually located under
C:\Program Files\Java\<jdk-version>\bin\

Remember that prior to accessing a Google API, you must enable access to it and billing where it applies.

You do that as follows:

	 1.	 Go to the Developers Console in Google: https://console.developers.google.com.

	 2.	 Select a project, or create a new one.

	 3.	 In the left sidebar, Expand APIs and Auth and navigate to APIs.

	 4.	 Look for the API you are interested in, and change its status to On.

https://console.developers.google.com/

Chapter 3 ■ Using Google APIs

30

To enable billing, click on the preferences icon next to your profile in the top right side of the screen. If
a project is selected, you see an option to access “project billing settings”. From there, you can see the details
of the billing account associated with that project. To see all the billing accounts that you registered click on
“Billing accounts” from the same preferences menu.

OAuth 2.0
This protocol was created with the intention of providing a way to grant limited access to protected content
hosted by third-party services in a standardized and open manner. This protected content can be requested
on behalf of either a resource owner or an external application or service. This protocol has been adopted
by Google to enable access to its APIs, by providing a way to authenticate and authorize external agents
interested in exchanging information with Google APIs.

The following steps describe the complete process of requesting access to specific content:

	 1.	 The client requests authorization from the resource owner.

	 2.	 The resource owner sends back an authorization grant.

	 3.	 The client uses this authorization grant to request an access token to the
authorization server.

	 4.	 If the process is successful, the authorization server provides the client with an
access token.

	 5.	 The client accesses protected content, authorizing requests with the access token
just acquired.

	 6.	 If the token is valid, the client receives the requested information.

This process is very similar to how you obtain access to APIs in Google, although that varies depending on
the type of application or system you are building. We cover each of these cases in the following paragraphs.

■■ Note G iven the many steps involved in this process, the chances of making a mistake are high, which
has security implications. It is highly recommended that you use one of the available libraries that enable and
simplify the fulfillment of this protocol. Google provides a variety of client libraries that work with OAuth 2.03 in
programming languages like Java, Python, .NET, Ruby, PHP, and JavaScript. The Internet also offers valuable
resources related to this topic.

In this chapter, you use oauth2client. You can find this library in the Google APIs Client Libraries for
Python or through the link to the code repository in GitHub: https://github.com/google/oauth2client.

Each of the application types follow different OAuth 2.0 flows (2-legged, 3-legged) and thus require
different associated information. In the following sections you see how to operate with each of them.

3Google OAuth 2.0 client libraries: https://developers.google.com/accounts/docs/OAuth2#libraries.

https://github.com/google/oauth2client
https://developers.google.com/accounts/docs/OAuth2#libraries

Chapter 3 ■ Using Google APIs

31

OAuth 2.0 Application Authentication
You use this kind of authentication when you need to access content on behalf of your application, typically
in server-to-server communications: for example, managing internal files stored in Cloud Storage. Because
of this, the authorization process does not require the authentication of any specific user in order to obtain
an access token. Instead, you use the identity of your application.

Some services in Cloud Platform – like App Engine or Compute Engine – already have associated
default credentials that are used to perform requests to the different APIs through the client libraries. If you
are calling a Google API from somewhere else, you can still use this functionality by creating a new client ID
for your service in Developers Console:

	 1.	 Go to the Developers Console in Google:
https://console.developers.google.com.

	 2.	 Select a project, or create a new one.

	 3.	 In the left sidebar, Expand APIs and Auth, and navigate to Credentials.

	 4.	 Create a new client ID by clicking the button for that purpose.

	 5.	 Select the application type based on needs and click on Create.

Now you can generate and download the JSON key associated to this client ID. Place it somewhere
private within your system. The client libraries attempt to use this key by looking under the path set in the
environmental variable GOOGLE_APPLICATION_CREDENTIALS. Set this variable to the path where you stored
your key.

Figure 3-1 shows the application authorization process.

https://console.developers.google.com/

Chapter 3 ■ Using Google APIs

32

To create the credentials based on the key associated to your account you do the following:
 
from oauth2client.client import GoogleCredentials
 
credentials = GoogleCredentials.get_application_default()
 

Before making requests to the API, you need make sure that the credentials have the right scope to
access the information you are interested in. In this case, you need read permissions:
 
CLOUD_STORAGE_SCOPE = 'https://www.googleapis.com/auth/devstorage.read_only'
 
if credentials.create_scoped_required():
 credentials = credentials.create_scoped(CLOUD_STORAGE_SCOPE)
 

Generate
signed
JWT

Authorization
Server

Google APIAccess API
with token

Access
token

Your Server
Application

Google Servers

Request
access token

with JWT

Figure 3-1.  Oauth 2.0 authorization flow for service accounts

https://www.googleapis.com/auth/devstorage.read_only

Chapter 3 ■ Using Google APIs

33

Now, these credentials have all the necessary information to obtain an access token. The API client
does that internally by wrapping the creation of every new request and adding a pre-execution trigger that
checks for the existence of an access token. If the access token is invalid or inexistent, the method obtains
a new access token; otherwise, it adds the access token to the request as a means of authorization before it
is executed. You can create a client representing a concrete Google API that you can use to make requests
against it. In this case, we are using the Python client library. For example, if you are interested in listing the
files stored on a bucket in Cloud Storage, you do the following:
 
from apiclient.discovery import build
 
...previous code generating credentials
 
gcs_service = build('storage', 'v1', credentials=credentials)
content = gcs_service.objects().list(bucket='lunchmates_document_dropbox').execute()
print json.dumps(content) 

■■ Note  You can learn more about the discovery and build directives at https://cloud.google.com/
appengine/articles/efficient_use_of_discovery_based_apis.

If you want to see the full implementation, check the script api_access_application_authentication.py
under oauth2 in the code_snippets repo. https://github.com/GoogleCloudPlatformBook/code-
snippets/tree/master/oauth2.

If you are interested in obtaining an access token manually for testing or other purposes, you can do so
by executing the _refresh() method from the class OAuth2Credentials directly, passing a dummy request:
Http().request. This internal method is called each time you execute a request—after you authorize your
credentials with an instance of httplib2.Http()—if there is no access token yet or the access token is
invalid. The following snippet generates and prints the obtained access token:
 
credentials._refresh(Http().request)
print credentials.access_token
 

Note that once you have an access token, you can, for instance, perform requests from any system that
operates with the HTTP standard. For example, you can execute the previous request using only HTTP:
 
GET https://www.googleapis.com/drive/v2/files?alt=json
Authorization: Bearer <access_token>

OAuth 2.0 User Authentication
This type of authentication is used when there is the need to access protected information on behalf of a
concrete user. This is common in user facing applications so that users can grant access to the required scopes.

The most common version is the 3-legged OAuth 2.0 user authentication flow, shown in Figure 3-2.

https://cloud.google.com/appengine/articles/efficient_use_of_discovery_based_apis
https://cloud.google.com/appengine/articles/efficient_use_of_discovery_based_apis
https://github.com/GoogleCloudPlatformBook/code-snippets/tree/master/oauth2
https://github.com/GoogleCloudPlatformBook/code-snippets/tree/master/oauth2
https://www.googleapis.com/drive/v2/files?alt=json

Chapter 3 ■ Using Google APIs

34

As you can see in the figure, this flow asks for user consent. This is because the content is accessed on
behalf of that user. The first thing you need to do is obtain the authorization URI to redirect the user, in order
for the user to authenticate with their Google credentials and authorize the specified scope:
 
from oauth2client import client
 
client_secrets_json_path = <path_to_your_client_secrets_file.json>
api_scope = <api_scope_url>
redirect_uri = <redirect_uri_in_client_id>
 
flow = client.flow_from_clientsecrets(
 client_secrets_json_path,
 scope=api_scope,
 redirect_uri=redirect_uri,
 include_granted_scopes=True)
 
auth_uri = flow.step1_get_authorize_url()
 

Google Servers

Authorization
Server

Auth Code

Google API

Your
Application

Consent
from user

Exchange code
for token

Access API
with token

Access
token

Request
authorization

Figure 3-2.  Oauth 2.0 user authentication flow

Chapter 3 ■ Using Google APIs

35

client_secrets_json_path is the path to the file containing the secrets and other relevant information
related to your client ID. Remember that you can download this JSON file at any point from the Developers
Console, under APIs & Auth ➤ Credentials.

You can also execute this first step through HTTP:
 
POST https://accounts.google.com/o/oauth2/auth?
access_type=offline&
response_type=code&
client_id=<client_id>&
redirect_uri=<redirect_uri>&
scope=<api_scope>&
included_granted_scopes=true
 

This request accepts the parameters listed in Table 3-1.

Table 3-1.  List of accepted parameters for the authorization endpoint in Google APIs
https://accounts.google.com/o/oauth2/auth

Parameter Description

response_type Determines the expected response. Options are code for web server and
installed applications or access_token for JavaScript client-side applications.

client_id Identifies the client ID used for this request. You can get this value from the
client ID used to perform this request in the Developers Console.

redirect_uri Defines the mechanism used to deliver the response. This value must match
one of the values listed under Redirect URIs in the client ID in use. In web
applications, this URI is called to deliver a response after the authentication
phase. It must also contain the scheme and trailing /.

scope Determines the API and level of access requested. It also defines the consent
screen shown to the user after authorization succeeds.

state Allows any type of string. The value provided is returned on response; its
purpose is to provide the caller with a state that can be used to determine the
next steps to take.

access_type Determines whether the application needs to access a Google API when the
user in question is not present at the time of request. Accepted values are
online (the default) and offline. When using the latter, a refresh token is
added to the response in the next step of the process, the result of exchanging
the authorization code for an access token.

approval_prompt Accepts force or auto. If force is chosen, the user is presented with all the
scopes requested, even if they have been accepted in previous requests.

login_hint Provides the authorization server with extra information that allows it to
simplify the authentication process for the user. It accepts an e-mail or a
sub-identifier of the user who is being asked for access.

include_granted_scopes If the authorization process is successful and this parameter is set to true, it
includes any previous authorizations granted by this user for this application.

https://accounts.google.com/o/oauth2/auth?
https://accounts.google.com/o/oauth2/auth

Chapter 3 ■ Using Google APIs

36

■■ Note I n scenarios where applications cannot catch redirects to URLs—for example on mobile devices
other than Android or iOS—redirect_uri can take the following values:

urn:ietf:wg:oauth:2.0:oob: The authorization code is placed in the title tag of the HTML file. The same code is
also exposed in a text field where it can be seen and from which it can be copied manually. This approach is
useful when the application can load and parse a web page. Note that if you do not want users to see this code,
you must close the browser window as soon as the operation has completed. Conversely, if the system you are
developing for has limited capabilities, you can instruct the user to manually copy the code and paste it into
your application.

urn:ietf:wg:oauth:2.0:oob:auto: This value behaves almost identically to the previous value. This procedure
also places the authorization code in the title tag of the HTML page, but instead of showing the code in the body
of the HTML, it asks the user to close the window.

This request responds with a redirect to the URI specified under redirect_uri, including an error or
code parameters in the query string, depending on whether the authorization process succeeded or failed,
respectively. If the authorization succeeds, the redirect is as follows:
 
<redirect_uri>?code=<authorization_code>
 

And this is the redirect if the authorization fails:
 
<redirect_uri>?error=access_denied
 

Now you can use the code to obtain an access token with it:
 
from oauth2client import client
 
code = <auth_code_from_previous_step>
credentials = flow.step2_exchange(code)
...
 

Just as before, you can use the discovery classes and build directive to instantiate a service
representing the API to interact with:
 
from apiclient.discovery import build
 
gcs_service = build('storage', 'v1', credentials=credentials)
content = gcs_service.objects().list(bucket='lunchmates_document_dropbox').execute()
 

If you prefer to obtain the access token manually through HTTP, you can do so by using the following
endpoint:
 
POST https://www.googleapis.com/oauth2/v3/token
 
Content-Type: application/x-www-form-urlencoded
 

https://www.googleapis.com/oauth2/v3/token

Chapter 3 ■ Using Google APIs

37

client_id=<client_id>&
client_secret=<client_secret>&
code=<code_from_previous_request>&
grant_type=authorization_code&
redirect_uri=<redirect_uri>
 

This includes the following:

•	 client_id is the identifier for the client ID used throughout the process.

•	 client_secret is the secret corresponding to that client ID.

•	 code is the resulting authorization code extracted from the previous request.

•	 grant_type determines the type of authorization.

•	 redirect_uri has to match the specified value during the previous step.

If the request is successful, you should see something like this:
 
{
 "access_token": <access_token>,
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": <refresh_token>
}
 

Note that you get a property called refresh_token. This is because in the first step, when obtaining the
authorization code, you set access_type to offline. This refresh token allows you to obtain renewed access
tokens until the user deliberately revokes access to your application.

To obtain a new access token from a refresh token, perform the following request:

■■ Note T his step also applies to other scenarios and account types. 

POST https://www.googleapis.com/oauth2/v3/token
 
Content-Type: application/x-www-form-urlencoded
 
client_id=<client_id>&
client_secret=<client_secret>&
refresh_token=<refresh_token>&
grant_type=refresh_token
 

In this case, grant_type is set to refresh_token, and you need to add the refresh token under the
parameter refresh_token. As before, the expected response is
 
{
 "access_token": <access_token>,
 "token_type": "Bearer",
 "expires_in": 3600
} 

https://www.googleapis.com/oauth2/v3/token

Chapter 3 ■ Using Google APIs

38

■■ Pro Tip I n order to obtain new tokens from a refresh token, you must store the latter in your application for
as long as you want to have this ability.

■■ Note A s you may have noted, there is no Python implementation for the generation of new tokens from a
refresh token. This process is encapsulated and automated in the client libraries. As mentioned previously, you
can trigger this process manually in the Python library by calling credentials._refresh(Http().request).

Some applications may need to revoke access to authorized scopes and invalidate tokens when users
unsubscribe or delete their account from your system. You can do that by requesting the following:
 
GET https://accounts.google.com/o/oauth2/revoke?token=<access_or_refresh_token>
 

The value for the query parameter can be either an access token or a refresh token. If the revoked access
token has an associated refresh_token, both are revoked. This request responds with 200 OK if executed
successfully or 400 in case of error.

2-Legged OAuth 2.0 User Authentication

This scenario is aimed to support OAuth 2.0 on applications running on the side of the client. Because of that
they are not assumed to have the ability to keep a secret. For example, JavaScript client side applications do
not have a way to store a private key, used in the 3-legged user authentication flow.

The flow for this scenario is slightly different from those seen so far. However, the requests that need to
be performed to obtain access are consistent with what you used in earlier examples. You begin as in other
scenarios by calling to the /o/oauth2/auth endpoint. The difference this time is that instead of asking for a
code, you directly request an access token. Figure 3-3 shows the process.

https://accounts.google.com/o/oauth2/revoke?token=<access_or_refresh_token>

Chapter 3 ■ Using Google APIs

39

To request the access token, start by calling the authorization server:
 
POST https://accounts.google.com/o/oauth2/auth?
response_type=token&
client_id=<client_id>&
redirect_uri=<redirect_uri>&
scope=<api_scope>&
included_granted_scopes=true
 

The expected response for this request is as follows if the request failed to authorize a combination of
user and scope:
 
<redirect_uri>#error=access_denied
 

Google Servers

Request
access token

Consent
from user

Access
token

Validate
token

Validation
response

Access API
with token

Authorization
Server

Google API

Your JavaScript
Client side
Application

Figure 3-3.  Oauth 2.0 authorization flow for JavaScript client-side applications

https://accounts.google.com/o/oauth2/auth?

Chapter 3 ■ Using Google APIs

40

Or as follows if the process was completed successfully:
 
<redirect_uri>#
access_token=<access_token>&
token_type=Bearer&
expires_in=3600 

■■ Pro Tip  Your client needs to parse the fragment part of the URL. The sample response contains the
minimum set of parameters returned in the fragment, but others may be included.

Before using this token, you must validate it using the TokenInfo endpoint, adding the access token in
the query string:
 
GET https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=<access_token>
 

A successful response looks like this:
 
{
 "issued_to": <issuer_of_the_token>,
 "audience": <audience>,
 "scope": <requested_scope>,
 "expires_in": 3578,
 "access_type": "online"
}
 

This response includes two parameters that you have not seen before:

•	 issued_to: Specifies to whom the token was issued. This is normally the same
as audience.

•	 audience: The identifier of the application that is intended to use the token to query
Google APIs.

There is one last critical step before using the recently obtained access token: you need to confirm that
the value returned under audience exactly matches the client ID of your application. As you know very well
at this point, you can find this value in the Developers Console.

You can now use the access token to access the Google API you are targeting through one of the client
libraries offered for this purpose or simple HTTP. For example, you can use the curl command:
 
curl -H "Authorization: Bearer <access_token>" https://www.googleapis.com/drive/v2/
files?alt=json
 

If the token has expired or was revoked, the request to TokenInfo will respond with an error 400 and a
body similar to the following:
 
{
 "error": "invalid_token",
 "error_description": "Invalid Value"
}

https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%3caccess_token>
https://www.googleapis.com/drive/v2/files?alt=json
https://www.googleapis.com/drive/v2/files?alt=json

Chapter 3 ■ Using Google APIs

41

Translate API
Google Translate (https://translate.google.com) is an online service that automatically translates
text from one language to another (for example, English to Italian). Google Translate supports dozens of
languages and hundreds of language pairs for translations. The Google Translate API is a RESTful API that
lets developers programmatically translate text using either server-side or client-side applications. This API
can also detect the language of input text.

The first step in using any Google API, including the Translate API, is to enable it for a project. The
Translate API is a paid service and hence needs the API key for a successful transaction. You perform these
steps using the web-based Developers Console at https://console.developers.google.com.

Following are the high-level steps required to use the Translate API:

	 1.	 Open a browser window to URL https://console.developers.google.com.

	 2.	 Select a project, or create a new one.

	 3.	 Switch on the Translate API using the following steps:

a.	 In the left sidebar, Expand APIs and Auth.

b.	 Select APIs.

c.	 Change the status of the Google Translate API to On.

	 4.	 Click Credentials, and create a new API key under Public API Access. The OAuth
client ID is required for APIs that need access to user’s data.

	 5.	 Enable Billing, if required, as follows.

a.	 In the left sidebar, select Billing and Settings.

b.	 In the Billing section, click Enable Billing.

c.	 Fill in the required details, and click Submit and Enable Billing.

Accessing Translate REST API
The following key phrases are relevant to the Translate API:

•	 Source text: The input text provided to the Translate API for translation

•	 Source language: The language of the input text, as declared by the application
developer

•	 Target language: The language into which the source text needs to be translated

The following three methods make up the Translate API:

•	 Translate: Translates source text (from source language) into target language

•	 Languages: Lists the source and target languages supported by the translate methods

•	 Detect: Detects the source language of the input text

All of these methods are available as REST APIs. Translate REST APIs are different from cloud platform
REST APIs in the way they provide access to a service, whereas cloud platform REST APIs provide access to
a resource. As a result, the API provides a single URI that acts as a service endpoint, is accessible using the
HTTP GET method, and accepts service requests as query parameters.

https://translate.google.com/
https://console.developers.google.com/
https://console.developers.google.com/

Chapter 3 ■ Using Google APIs

42

The base URL for requesting service from the Translate API is https://www.googleapis.com/
language/translate/v2?PARAMETERS, where PARAMETERS is the list of keywords and values that applies
to the query. v2 in the URL refers to version 2 and is the current version of the Translate API. Listing 3-1
constructs a translation query using this base URL template and replacing PARAMETERS with actual query
names and values.

Listing 3-1.  HTTP Query for a Translation Request

https://www.googleapis.com/language/translate/v2?
key=INSERT-YOUR-KEY&q=good%20morning&source=en&target=it

 
This example includes four query words:

•	 key: Translate API is a paid service, and in order to use it, you need to activate billing
and obtain an API access key. The key is also a means to identify your application.

•	 q: Identifies the source text that needs to be translated into the target language. The
text is URL encoded to represent special characters like spaces.

•	 source: A language code that identifies the source language of the input text as
declared by the application developer.

•	 target: A language code that identifies the target language of the translation request.

Suppose the query in Listing 3-1 succeeds. The Translate API returns a 200 OK HTTP status code along
with a simple JSON object-based reply, as shown in Listing 3-2.

Listing 3-2.  HTTP Response for the Translation Query in Listing 3-1

200 OK
 
{
 "data": {
 "translations": [
 {
 "translatedText": "buongiorno"
 }
]
 }
}
 

In this query invocation, the API is called by specifying the source language. However, the source
language specification is optional; when the query does not specify a source language, the API figures it
out and does the translation. The Translate API charges an additional (nominal) fee for source-language
detection in addition to the translation fee.

The example in Listing 3-3 and Listing 3-4 shows the query syntax without a specified source language,
along with the corresponding JSON response. Note that the response object highlights that the source
language is not specified by stating the detected input language.

Listing 3-3.  HTTP Query for a Translation Request without the Source Language

GET https://www.googleapis.com/language/translate/v2?
key=INSERT-YOUR-KEY&target=it&q=Hello%20universe

https://www.googleapis.com/language/translate/v2?PARAMETERS
https://www.googleapis.com/language/translate/v2?PARAMETERS

Chapter 3 ■ Using Google APIs

43

Listing 3-4.  HTTP Response for the Translation Request in Listing 3-3

200 OK
 
{
 "data": {
 "translations": [
 {
 "translatedText": "ciao universo",
 "detectedSourceLanguage": "en"
 }
]
 }
}
 

The Translate API also supports batch mode, with which the client can make translation requests
consisting of a list of input text. The size of the HTTP request data is limited, due to the use of the GET or
POST HTTP method. The request when using GET should be fewer than 2,000 characters including the input
text. The request size when using POST should be fewer than 5,000 characters including the input text. To
use the HTTP POST method, the client needs to set an HTTP method override as part of the POST request to
be accepted by the Translate API, called X-HTTP-Method-Override: GET. The example in Listing 3-5 and
Listing 3-6 shows a sample batch query using the HTTP GET method and the JSON response returned by the
Translate API.

Listing 3-5.  Batch Query Request

GET https://www.googleapis.com/language/translate/v2?
key=INSERT-YOUR-KEY&source=en&target=it&q=Good%20Afternoon&q=Good%20Evening

Listing 3-6.  Batch Query Response

200 OK
 
{
 "data": {
 "translations": [
 {
 "translatedText": "buon pomeriggio"
 },
 {
 "translatedText": "buonasera"
 }
]
 }
}

Discovering Languages Supported by Translate API
The Translate API adds support for new languages and translations between new language pairs on a regular
basis. Hence it is useful to know the list of languages supported by the API at any point in time. You can find
this by using the API’s languages subcommand. The language query can be invoked in two forms: with and
without the target language specified. Listing 3-7 shows the URI template for making this request.

Chapter 3 ■ Using Google APIs

44

Listing 3-7.  URI Template for Retrieving Language Codes Supported by the Translate API

https://www.googleapis.com/language/translate/v2/languages?PARAMETERS
 
You can use this URI template to retrieve the language codes supported by the Translate API; see Listing 3-8.

The only required parameter for this API invocation is the key and corresponding value pair.

Listing 3-8.  Retrieving the Language Codes Supported by the Translate API

https://www.googleapis.com/language/translate/v2/languages?key=INSERT-YOUR-KEY
 
If this succeeds, the server responds with a HTTP 200 OK message along with a JSON object that lists all

the languages supported by the Translate API, as shown in Listing 3-9.

Listing 3-9.  Language Query Response

200 OK
 
{
 "data": {
 "languages": [
 {
 "language": "en"
 },
 {
 "language": "it"
 },
 ...
 {
 "language": "zh-TW"
 }
]
 }
}
 

This example assumes that you want the results returned in English—that is, the language codes
are listed in English. Perhaps you want the list of languages to be returned in another language, such as
traditional Chinese. Listing 3-10 shows the example URI to achieve this.

Listing 3-10.  Retrieving the Translate API Supported Language Codes in Italian

https://www.googleapis.com/language/translate/v2/languages?key=INSERT-YOUR-KEY&target=it
 
If this API succeeds, the server responds with a HTTP 200 OK message along with a JSON object that

list the supported languages codes and their translation in the requested target language. Listing 3-11 shows
the result.

Chapter 3 ■ Using Google APIs

45

Listing 3-11.  Language Query Response in a Specified Target Language

200 OK
 
{
 "data": {
 "languages": [
 {
 "language": "af",
 "name": "Afrikaans"
 },
 {
 "language": "sq",
 "name": "Albanese"
 },
 . . .
 {
 "language": "zu",
 "name": "Zulu"
 }
]
 }
}
 

In some situations, it may not be possible to determine the source language of the input text, or the
source language specified may not be correct or reliable. To handle these situations, the Translate API
provides a method to predict the source language of the input text. You request this service by using the API’s
detect subcommand. Listing 3-12 shows the URI query template.

Listing 3-12.  URI Query Template to Detect the Source Language

https://www.googleapis.com/language/translate/v2/detect?PARAMETERS
 
Listing 3-13 uses this URI template to detect the source language of an input string. The only required

parameters for this API invocation are the key and corresponding value pair along with the query string.

Listing 3-13.  Using the Detect Feature of the Translate API

https://www.googleapis.com/language/translate/v2/detect?
key=INSERT-YOUR-KEY&q=Este+mes+es+marzo

 
If the request succeeds, the server responds with a 200 OK HTTP status code along with a set of values in

a JSON object, as shown in Listing 3-14.

Chapter 3 ■ Using Google APIs

46

Listing 3-14.  Language-Detection Query Response for Spanish Input

200 OK
 
{
 "data": {
 "detections": [
 [
 {
 "language": "es",
 "isReliable": false,
 "confidence": 0.015852576
 }
]
]
 }
}
 

confidence is an optional parameter with a floating-point value between 0 and 1; optional means this
parameter is not always returned. The closer the value is to 1, the higher the confidence in the language
detection. isReliable has been deprecated, and Google plans to remove it in the near future. Hence you
should not use this value to make decisions.

You may wonder why the confidence score is so low and whether it is reliable enough to be used in
your applications. We wondered about that, too, and did another test using a simple English sentence;
see Listing 3-15 and Listing 3-16.

Listing 3-15.  Language-Detection Query Using an English Sentence

https://www.googleapis.com/language/translate/v2/detect?
key=YOUR_API_KEY&q=this+is+a+simple+english+sentence

Listing 3-16.  Language-Detection Query Response for English Input

200 OK
 
{
 "data": {
 "detections": [
 [
 {
 "language": "en",
 "isReliable": false,
 "confidence": 0.025648016
 }
]
]
 }
}
 

From this result, you can see that the English language-detection confidence score is low as well. This
may indicate that the Translate API is strict about confidence scores, and hence even a low score provides
usable results.

Just as in the translate command, you can pass in several query text inputs. The Translate API returns
a list of detected languages.

Chapter 3 ■ Using Google APIs

47

Accessing Translate API using Client Programs
Although the HTTP-based Translate API is easy to use, Google also makes it simple to consume the
Translate API from client applications. This is facilitated by the Google APIs client library (https://cloud.
google.com/translate/v2/libraries). The Translate API is part of the Google APIs client library, and as of
this writing the client library is available for six programming languages and is being developed for
three more.

Let’s take a brief look at the Python example provided as part of the Google APIs client library
(https://code.google.com/p/google-api-python-client/source/browse/samples/translate). We only
examine the relevant lines from the program—Listing 3-17 is a code snippet, not a complete program. To use
this snippet, you need to install the Google API client library for Python.

Listing 3-17.  Translate API Python Example Provided as Part of the Google APIs’ Client Library

from apiclient.discovery import build
def main():
 service = build('translate', 'v2', developerKey='INSERT_YOUR_KEY')
 print service.translations().list(
 source='en',
 target='fr',
 q=['flower', 'car']
).execute()
 
if __name__ == '__main__':
 main()
 

Any Python programmer should be able to easily understand the standard Python parts in this code
snippet. Hence we discuss only the distinctive parts. At the base level, the Google API client library builds a
service object. This is facilitated by using the discovery class from the module apiclient. Specifically, you
need the build method. The build method requires three parameters: the API name, API version, and API
key. Once the service object is built, you can use the methods inside it. Again, depending on the API name
provided to build, the methods available are different.

This example uses the translations() method to translate from English to French. The query text
is provided as a standard Python list containing two items. When the execute method is called, the client
library constructs the equivalent REST API using these values, makes the HTTP GET request, and returns
either the result or an error from this API invocation.

More methods are available in this class. They detect the source language and get the list of languages
supported by the Translate API. Listing 3-18 shows a more detailed example that uses most of the Translate
API capabilities. This example reads the Unix English dictionary and translates it into all possible languages
supported by the Translate API. We have added line numbers for easy reference.

Listing 3-18.  Python Program to Translate the Unix English Dictionary into Multiple Languages

1 #!/usr/bin/env python
2
3 __author__ = 'sptkrishnan@gmail.com (S. P. T. Krishnan)'
4
5 from apiclient.discovery import build
6 import json
7
8

https://cloud.google.com/translate/v2/libraries
https://cloud.google.com/translate/v2/libraries
https://code.google.com/p/google-api-python-client/source/browse/samples/translate

Chapter 3 ■ Using Google APIs

48

9 def main():
10 # create a build object
11 service = build('translate', 'v2', developerKey='INSERT_YOUR_KEY')
12
13 # STEP 1 - Get the list of languages supported by Translate API
14 languages = service.languages().list(target='en').execute()
15
16 # [debug] print the JSON dump of HTTP response
17 # print json.dumps(languages, sort_keys=True, indent=4, separators=(',', ': '))
18
19 # Unpack the JSON object from HTTPResponse, extracts the language name,
20 # code and creates a dictionary object from it.
21 langdict = {}
22 for key, value in languages.iteritems():
23 for x in value:
24 for y, z in x.iteritems():
25 if y == 'name':
26 name = z
27 elif y == 'language':
28 language = z
29 langdict[name] = language
30
31 # [debug] print the language name and code langdict object
32 # for name, code in sorted(langdict.iteritems()):
33 # print name, code
34
35 unidict = {}
36 filename = '/usr/share/dict/words'
37 filehandle = open(filename, 'r')
38 for line in filehandle:
39 line = line.rstrip('\n')
40 for name in langdict.keys():
41 if langdict[name] == 'en':
42 continue
43 else:
44 �translation = service.translations().list(source='en',

target=langdict[name], q=line).execute()
45 for key, value in translation.iteritems():
46 for x in value:
47 for y, z in x.iteritems():
48 if line == z:
49 pass
50 # print line, '(' + name + ')', 'x'
51 else:
52 print line, '(' + name + ')', z
53
54
55 if __name__ == '__main__':
56 main()
 

Chapter 3 ■ Using Google APIs

49

In this example, lines 1–8 and 55–56 are standard Python. They use the json module to programmatically
process the Translate API return values. Lines 10–11 construct the service object, and lines 13–14 get the list
of languages supported by the Translate API. By explicitly specifying the target language to be English, you get
the language codes and also the language names. Lines 16–17 are a debug print statement to print the JSON
response from the Translate API.

You parse the HTTP response and create a Linux data structure in lines 19–19. Once this code block
completes execution, you have a Python dictionary data structure that maps the language code to its name
in English. Lines 31–33 are a debug print statement that prints the contents of this dictionary data structure.

The primary purpose of this program is to read the English dictionary (assuming the default language is
English) from a Unix system and translate each word into all the languages supported by the Translate API.
This is achieved in lines 36–44. The dictionary file is opened, and words are read from each line. (Note that
each line contains a single word.) Next the supported language dictionary is iterated over, and each word is
passed to the translations method along with a single target language. It doesn't make sense to translate
from English to English, so you skip that combination.

There are 235,886 words in the English dictionary on our Mac system running Yosemite. Note that the
Translate API has daily API limits; see https://cloud.google.com/translate/v2/pricing. If you intend to
run this program, you are advised to have a delay between invocations or to use a subset of the word list per
day. Listing 3-19 shows the program output for a few words.

Listing 3-19.  Partial Output from the English Dictionary Translation Example

 
As you can see, the Translate API is able to translate between many language pairs. We leave it as an

exercise for you to extend this program to save the output into a file, such as a CSV. You can offset the cost of
using the Translate API by applying the $300 credit available from https://cloud.google.com.

Summary
In this chapter, you have learned about a fundamental concept that is applicable to all Cloud Platform
products: Auth. Auth, which stands for authentication and authorization, is the gatekeeper of Cloud
Platform. It is also responsible for safeguarding users’ data and allowing access only from approved
third-party applications. Cloud Platform Auth implements the authentication, authorization, and
accounting (AAA) protocol.

You also learned about the Translate API, which can translate between 90 pairs of languages. We
selected this API because it is relatively simple and showcases how to use a standalone API in Google Cloud
Platform. You saw how to use this API both via HTTP and using a client library. This chapter has given you a
good introduction to Auth and how to use it to access a Google API.

https://cloud.google.com/translate/v2/pricing
https://cloud.google.com/

	Chapter 3: Using Google APIs
	 Auth Essentials
	 API Keys
	 OAuth 2.0
	OAuth 2.0 Application Authentication
	OAuth 2.0 User Authentication
	2-Legged OAuth 2.0 User Authentication

	 Translate API
	 Accessing Translate REST API
	 Discovering Languages Supported by Translate API
	 Accessing Translate API using Client Programs

	 Summary

