
309

Chapter 14

Google Cloud Endpoints

The production and sale of electronic devices connected to the Internet has exploded in recent years. In
2014, enough mobile devices were sold to connect one sixth of the world’s population. And this is just
the beginning. Big players in the market are working on alternatives to meet the needs of communities
and countries where, due to socioeconomic factors, the penetration of mobile devices is still low. Most
importantly, it is not the number but the diversity of devices we are seeing that demonstrates the need
to connect them all in an organized way. Intelligent houses, cars, home automation systems, sensor
boards, and the rest of the spectrum covered by the term Internet of things are generating huge amounts of
information about our world. But who is going to orchestrate all that?

This may be an ambitious and unnecessary problem for most system architects, developers, and other
engineers to solve, at least this year. Nevertheless, when you design a system nowadays, it is relevant—and
necessary in some cases—to account for transparently connecting different devices: mainly computers,
but also mobile devices. This generally means if you develop an API to connect and sync all your clients,
you need to enable each of them to communicate with your API in the cloud. This can become an arduous
amount of work if you develop native applications. Suppose you add one endpoint to your API, you then
need to write logic to communicate with this endpoint from each of your clients.

This is the point at which this chapter becomes useful to you. Google Cloud Endpoints is a service
built on top of Google App Engine that allows you to reduce the overhead of creating, maintaining, and
connecting to a RESTful API from your clients. One of its main features is the ability to decorate your API
with the necessary information to extract access endpoints, request methods, the version of your API,
request parameters and allowed client IDs, and so on. This information is then used to describe your
RESTful API and automatically generate client libraries for Android, iOS, and JavaScript clients that you can
import onto each platforms for which you develop. As mentioned, Cloud Endpoints operates on top of App
Engine, and it is available for Java and Python; therefore, you can access all the APIs, services, and features
that App Engine provides, some which are discussed in Chapter 5.

Cloud Endpoints and ProtoRPC
In Python, Cloud Endpoints uses the protocol RPC library. This library is one of the frameworks you can
use to build your application; others are webapp2 and Flask. This framework allows you to implement
HTTP-based remote procedure call (RPC) services, each made up of a collection of message types and
remote methods to interact with web applications. Details about this library are not included in the chapter
because most of it is abstracted away by the Cloud Endpoints library.

http://dx.doi.org/10.1007/9781484210055_5

Chapter 14 ■ Google Cloud Endpoints

310

As you learned in Chapter 5, App Engine uses NDB in Python to control your data storage system or
database. Recently, in order to integrate Cloud Endpoints without needing to deal with ProtoRPC messages
to exchange information, a new library called endpoints-proto-datastore1 was introduced. This library is
used to simplify the logic of applications and improve readability.

In this chapter, you build an API similar to the one in Chapter 5. If you have not read that chapter yet,
don’t worry; you see every part of the application involved in the process.

Setting Up Your Environment: The SDK

■■ Note  You can skip this section if your system is ready to start working on a new application.

The Python SDK includes all the tools you need to build, test, and manage your application code, data,
and indexes. You do that locally first, by using the development server included in the SDK. You operate
the local server from the Google App Engine Launcher, a small UI-based application that helps organize
App Engine projects, run them locally, access logs, explore their status through a browser-based console
that resembles a small part of what you can expect from the online dashboard, and finally deploy them
to the world. Alternatively, you can use the dev_appserver.py and appcfg.py commands to perform
these and other tasks. We mention them throughout the book when you need their specific functionality.
Also note that you can use these commands to integrate and automate specific operations in of your own
development/deployment process.

You can find the Python SDK at https://cloud.google.com/appengine/downloads. It comes in
the form of an installer file for Mac and Windows, and a zip file for Linux. Installing the SDK on Mac and
Windows also gives you access to the Google App Engine Launcher UI.

As of this writing, App Engine only supports for Python 2.7. If your code is written in Python 2.5, which
is now deprecated, consider migrating to 2.7. You can find a complete guide to how to do that at
http://cloud.google.com/appengine/docs/python/python25/migrate27.

To make sure Python is installed on your computer, simply run the following command on your console
or terminal:
 
python -V
 

If the output looks something like Python 2.7.x, you are good to go. Otherwise, you need to go to
the Python web site to download and install Python 2.7 on your machine: https://www.python.org/
downloads/releases/python-279.

The Foundations of Your Application: app.yaml
As a quick reminder, the application you are building in this chapter is a replica of the API for the LunchMates
application, which you built on App Engine in Chapter 5. LunchMates is a service that helps individuals who
share a common interest in a given topic to get together to learn and share knowledge about that topic. Users
are expected to create informal meetings such as lunch, drinks, brunch, and so on, and define a place and time
for their events; potential lunch mates can check the map of their area to look for meetings. They should be
able to send requests to join meetings and be accepted or rejected as quickly as possible.

1You can find endpoints-proto-datastore in this repository on GitHub:
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore.

http://dx.doi.org/10.1007/9781484210055_5
http://dx.doi.org/10.1007/9781484210055_5
https://cloud.google.com/appengine/downloads
http://cloud.google.com/appengine/docs/python/python25/migrate27
https://www.python.org/downloads/releases/python-279
https://www.python.org/downloads/releases/python-279
http://dx.doi.org/10.1007/9781484210055_5
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore

Chapter 14 ■ Google Cloud Endpoints

311

The app.yaml file is the entry point for each request. In it, you specify the version, application identifier,
libraries, and request handlers, but it is also the place to configure many other application features. For
details, see Chapter 5.

For this API, the app.yaml is as follows:
 
version: 1
runtime: python27
threadsafe: yes
api_version: 1
 
handlers:
 
Endpoints handler
- url: /_ah/spi/.*
 script: main.app
 
Endpoints libs
- name: pycrypto
 version: "2.6"
- name: endpoints
 version: 1.0
 

In the first group of parameters, the version helps differentiate iterations of the application. handlers
are the agents that process requests. For Cloud Endpoints, the handler prepended with /_ah/spi/ is the one
that manages requests. Note that the URL specified must not change, because this is a preconfigured value.

Finally, you are importing two of the libraries included in the SDK. pycrypto is used to deal with
signatures and tokens, and endpoints contains the necessary logic to take advantage of this service.

Your API and api_server
According to the app.yaml file you just defined, the script that handles Cloud Endpoints requests is called
main.app. This looks for the variable app in the main module (main.py):
 
import endpoints
 
Controllers
from controllers import base
 
from controllers import meetings
from controllers import meeting_requests
from controllers import users
from controllers import auth
 
Endpoints API
app = endpoints.api_server([base.lunchmates_api], restricted=False)
 

Cloud Endpoints is expecting an instance of endpoints.api_server. The classes added to the first
argument of this method determine the submodules that conform to your API. These submodules are
classes that inherit from remote.Service and implement endpoints.api directly or are decorated as
api_classes of a parent endpoints.api. Set the restricted keyword to False so that external clients can
access your API.

http://dx.doi.org/10.1007/9781484210055_5

Chapter 14 ■ Google Cloud Endpoints

312

■■ Note I f a single class defines your API, it is recommended that you put the code for your API class and API
server in the same file. Not only is your code easier to read, but both objects share common library symbols and
imports. For example: 

imports
....
@endpoints.api(name='lunchmates', version='v1', description='LunchMates API')
class LunchMatesApi(remote.Service):
 # methods
....

app = endpoints.api_server([LunchMatesApi], restricted=False)

 
Going back to the API you are building, the endpoints.api object is referenced as an instance variable

(base.lunchmates_api) instead of a class (LunchMatesApi). This is because this instance is simply a
placeholder variable that decorates each of the API classes that conform your multiclass API. In this case,
you want all the controllers—meetings.Meetings, meeting_requests.MeetingRequests, users.Users,
and auth.Auth—to be part of the same API. Therefore, they are all decorated with @lunchmates_api.api_
class(....). This API variable is defined in a file called base.py in controllers/, along with a couple of
utility methods used by the rest of the endpoint controllers:
 
#!/usr/bin/env python
 
import endpoints
from model.model import UserData
 
Client IDs
WEBAPP_CLIENT_ID = 'your-webapp-client-id.apps.googleusercontent.com'
IOS_CLIENT_ID = 'your-ios-client-id.apps.googleusercontent.com'
ANDROID_CLIENT_ID = 'your-android-client-id.apps.googleusercontent.com'
ANDROID_AUDIENCE = WEBAPP_CLIENT_ID
 
lunchmates_api = endpoints.api(name='lunchmates', version='v1',
 description='LunchMates API',
 allowed_client_ids=[
 WEBAPP_CLIENT_ID,
 IOS_CLIENT_ID,
 ANDROID_CLIENT_ID,
 endpoints.API_EXPLORER_CLIENT_ID],
 audiences=[ANDROID_AUDIENCE])
 
def authenticated_user_data():
 
 current_user_data = UserData.query(
 UserData.auth_user == endpoints.get_current_user()).get()
 
 if current_user_data is None:
 raise endpoints.UnauthorizedException()
 
 return current_user_data
 

Chapter 14 ■ Google Cloud Endpoints

313

Table 14-1.  endpoints.api Arguments

Argument Description

name Used to construct the path you need to query to access your API. The name
must start with a lowercase letter and match the following regular expression:
[a-z]+[A-Za-z0-9]*. All services in your API share the same path. In
the previous example, this would be <app-id>.appspot.com/_ah/api/
lunchmates/<version>/<service-method-path>

version Determines the version of your API.

description A short description of your API, which is used, for example, in the API’s
discovery service. This service allows you to make requests and test your API.

allowed_client_ids Specifies which clients are allowed to access information exposed through
authentication. Only these are granted an access token when requested. You
can create identifiers for your clients in the Developers Console by selecting
the project or creating a new one, navigating to APIs & Auth ➤ Credentials,
and clicking Create New Client ID. To read more about OAuth2 and client IDs,
see Chapter 3.

audiences Helps you avoid token requests to access your API coming from unwanted
sources in your Android device. The audience for your Android client is the
client ID for your web application.

canonical_name Used to name API classes in the automatically generated client libraries.

documentation A string containing the URL where users of the libraries can find
documentation about them.

owner_domain The domain name representing the entity that owns the API: for example,
lunchmates.com. The full package path is generated from the combination of
this field and package_path, in reverse order. That is com.lunchmates for this
example.

owner_name The name of the API’s owner.

package_path A set of string values separated by a forward slash (/) to further specify your
package. Used in conjunction with the owner domain, it determines the full
package name used in your client libraries. For example, if your owner_domain
is set to lunchmates.com and the package_path is api/tasks, the resulting
package name is com.lunchmates.api.tasks.

scopes The list of scopes to be used when authorizing access from Cloud Endpoints.
If you do not specify anything, the default value is https://www.googleapis.
com/auth/userinfo.email. To read more about OAuth, scopes, and the
authorization process, check Chapter 3.

hostname Specifies the hostname of your App Engine application. The default value is
<application-id>.appspot.com. For this example, that is lunch--mates--
endpoints.appspot.com.

title The text used to display a title for your application in services like APIs
Explorer (<app-id>.appspot.com/_ah/api/explorer) or discovery services.

lunchmates_api defines the main aspects of your API. endpoints.api accepts the arguments listed in
Table 14-1.

http://dx.doi.org/10.1007/9781484210055_3
https://www.googleapis.com/auth/userinfo.email
https://www.googleapis.com/auth/userinfo.email
http://dx.doi.org/10.1007/9781484210055_3

Chapter 14 ■ Google Cloud Endpoints

314

The method authenticated_user_data is useful when a specific part of your application needs to
retrieve the associated metadata for a given user.

The model: A Bridge between NDB Datastore
and Cloud Endpoints
Python has always been one of the programming languages leading the development process for App
Engine. Because of that, it receives services and features before Java, Go, or PHP, and its libraries are in a
more advanced development state. NDB Datastore is a good example. This is the layer that allows you to
communicate with Google Cloud Datastore, a schema-less, noSQL data-storage system build on top of
Google Cloud BigTable to perform and scale. NDB Datastore includes features like internal memory caching
to speed up requests, a wide set of properties for models that helps you optimize how you store and retrieve
data, support for transactions and asynchronous operations, and so on.

On the other hand, Cloud Endpoints makes it very easy to generate API code and take advantage
of automatic client-library generation to reduce the friction and investment of targeting multiple native
platforms at once. However, as mentioned earlier, Cloud Endpoints is built on top of ProtoRPC services,
leaving an important gap in terms of integration and migration for applications using any of the other
common frameworks used in App Engine—webapp2, Django, Flask, and so on—and/or relying on NDB to
build the model.

This is where endpoints-proto-datastore2 becomes really useful. This library provides you with tools
to develop your application without having to think too much about ProtoRPC messages. Instead, you can
use your own NDB models to operate your services directly. As of this writing, this library is not included in
Cloud Endpoints. Therefore, to use it, you need to add it to your application.

■■ Pro Tip I f you do not want to contaminate your code repository, you can add endpoints-proto-datastore
as a submodule or dependency so that the source control and life cycle of your code and external libraries
remain independent. For example, in git, you can add a submodule running the command git submodule add
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore from the folder where you intend
to store your libraries—for example, libs/.

Before taking advantage of the potential of endpoints-proto-datastore, there is only one thing you
need to do. Your model objects need to inherit from endpoints_proto_datastore.ndb.EndpointsModel.
That simply means replacing ndb.Model with EndpointsModel, because the latter inherits from ndb.Model.

Whether due to further optimizations or type inconsistencies between ProtoRPC messages and NDB
Datastore, you also need to migrate a few properties to endpoints-proto-datastore, as listed in Table 14-2.

2You can find the Endpoints Proto Datastore in this repository on GitHub:
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore.

https://github.com/GoogleCloudPlatform/endpoints-proto-datastore
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore

Chapter 14 ■ Google Cloud Endpoints

315

Table 14-2.  Properties to migrate from ndb.Model to endpoits-proto-datastore

Property in NDB Property in Proto Datastore Reasoning

DateTimeProperty,
DateProperty,
and TimeProperty

EndpointsDateTimeProperty,
EndpointsDateProperty, and
EndpointsTimeProperty

New properties in Proto Datastore
that allow a keyword argument
with the string_format of the
date, to handle serialization
internally.

ComputedProperty EndpointsComputedProperty Used to explicitly set the type
of the value generated in this
property, because it cannot be
extracted from the implementation
of ndb.ComputedProperty. If
no property_type argument is
specified, the default is used:
messages.StringField.

UserProperty EndpointsUserProperty The final entity
remains unchanged.
EndpointsUserProperty takes
care of retrieving the authenticated
user using the endpoints library:
endpoints.get_current_user().

IntegerProperty and
FloatProperty

EndpointsVariantIntegerProperty
and EndpointsVariantFloatProperty

Allow custom serialization of
integers and floats, respectively, by
accepting variant types if they were
used to create a message field.

This is what the model used in the API for the LunchMates application built in Chapter 5 looks like now:
 
#!/usr/bin/env python
 
import unicodedata
 
from protorpc import messages
 
from endpoints_proto_datastore.ndb import EndpointsModel
from endpoints_proto_datastore.ndb import EndpointsAliasProperty
from endpoints_proto_datastore.ndb import EndpointsDateTimeProperty
from endpoints_proto_datastore.ndb import EndpointsComputedProperty
 
from google.appengine.ext import ndb
 
DATE_FORMAT_STR = '%Y-%m-%dT%H:%MZ'
 

http://dx.doi.org/10.1007/9781484210055_5

Chapter 14 ■ Google Cloud Endpoints

316

class BaseModel(EndpointsModel):
 created = ndb.DateTimeProperty(auto_now_add=True)
 
class UserData(BaseModel):
 
 def normalize(self):
 return unicodedata.normalize(
 'NFKD', unicode(self.name)).encode('ascii', 'ignore').lower()
 
 _message_fields_schema = ('created', 'id', 'auth_provider', 'name', 'email')
 
 auth_provider = ndb.StringProperty(
 choices=['google', 'facebook'], required=True)
 
 name = ndb.StringProperty(default='')
 search_name = EndpointsComputedProperty(normalize)
 email = ndb.StringProperty(required=True)
 auth_user = ndb.UserProperty()
 
class Meeting(BaseModel):
 owner = ndb.KeyProperty(kind=UserData, required=True)
 venue_forsquare_id = ndb.StringProperty(required=True)
 location = ndb.GeoPtProperty()
 earliest_possible_start = EndpointsDateTimeProperty(
 required=True, string_format=DATE_FORMAT_STR)
 latest_possible_start = EndpointsDateTimeProperty(
 string_format=DATE_FORMAT_STR)
 topic = ndb.StringProperty(required=True)
 type = ndb.StringProperty(required=True, choices=['drink',
 'lunch',
 'brunch'])
 tags = ndb.StringProperty(repeated=True)
 
 @EndpointsAliasProperty(property_type=messages.IntegerField)
 def owner_id(self):
 return self.owner.id()
 
class MeetingRequest(BaseModel):
 
 meeting = ndb.KeyProperty(kind=Meeting, required=True)
 state = ndb.StringProperty(default='pending', choices=['pending',
 'accepted',
 'rejected'])
 

As you can see, most of the logic remains the same. The model now inherits from EndpointsModel
instead of ndb.Model. EndpointsDateTimeProperty-ies include a default date format that is used to
serialize without your needing to care about it, and search_name is now an EndpointsComputedProperty.

Chapter 14 ■ Google Cloud Endpoints

317

■■ Pro Tip O verride the value for _message_fields_schema in EndpointsModel to set a custom message
schema used to serialize your model objects into ProtoRPC messages. You can assign a dictionary, a list, a
tuple, or an instance of MessageFieldsSchema to it. If it is set to None, all properties and alias properties are
included in the message.

If you take a closer look at the Meeting class, you see a method with a decorator that you have not seen
before. EndpointsAliasProperty can be used to decorate methods that represent properties of your model
that you do not want to persist in Cloud Datastore. This property can look similar to ComputedProperty in
the sense that it allows you to serialize and access volatile information, potentially constructed from other
properties in the model. In this case, there is a bit more to it. EndpointAliasProperty exposes a keyword
to define a setter that is called every time a new value is assigned to the property. You can use this as a
pre-hook to do some work before a new value is assigned. Notice that the same applies at read time: every
time the property is accessed, the method you decorated with EndpointAliasProperty is called. Here is an
example, extracted from the final model in the LunchMates Cloud Endpoints API:
 
class MeetingRequest(BaseModel):
....
 
 def ParentMeetingSet(self, value):
 meeting_key = ndb.Key(Meeting, int(value))
 
 # Assign key to meeting. Scenario A: new entity
 self.meeting = meeting_key
 
 # Add the key to query info. Scenario B: fetch entities for a given meeting
 self._endpoints_query_info.meeting = meeting_key
 
 @EndpointsAliasProperty(required=True, setter=ParentMeetingSet,
 property_type=messages.IntegerField)
 def meeting_id(self):
 return self.meeting.id()
 

The method meeting_id has been decorated with EndpointsAliasProperty. This means every time
this property is accessed—meeting_request.meeting_id—the value read is the result returned by the
method in question. In this case, it returns the identifier from the key of the associated meeting. Also notice
that a setter keyword has been provided, pointing to a method defined just before. This method is called
when the property is set, which can happen either internally or from your own code. When the meeting ID
for a request is set, this method creates a key with kind=Meeting and the identifier provided and assigns it
to the meeting’s ndb.KeyProperty in the model. In addition, the same key is added to the model’s query
information.

This can be confusing. Why is all that happening? The answer is simple. We’ll explain it from the
perspective of each of the use cases. There are two situations where you may want to set the meeting
property in your model:

•	 When you create a new meeting request for a given meeting: In this case you need
to create a Key for the given meeting_id and assign it to the new entity’s meeting
property.

•	 When you are querying for meeting requests for a given meeting ID. In this case, you
want to make sure you specify the meeting that you want to use to filter your query.

Chapter 14 ■ Google Cloud Endpoints

318

Note that although this approach can be confusing at first, it holds a lot of potential for the way you
develop your application. In the next section, you discover why EndpointsAliasProperty-ies are so
powerful in the context of Cloud Endpoints Proto Datastore.

■■ Note A s you have seen, EndpointsAliasProperty-ies can also be assigned inherited keywords such as
repeated, required, default, and or name.

Services and Request Handlers
If you have read Chapter 5 of this book, you probably remember the concept of request handlers as classes
that process and respond to requests depending on their path, method, and parameters. The same idea
applies to ProtoRPC and Cloud Endpoints. In this case, the handlers are referred to as services. These
services contain methods that are responsible for processing incoming requests and returning a result.
In Cloud Endpoints, in single-class APIs, services are decorated with the endpoints.api method. When
your API has multiple remote.Service classes to process requests, you decorate each of them with
<your_api>.api_class. This method accepts parameters similar to those of the endpoints.api method—
resource_name, audiences, scopes and allowed_client_ids—but in this case they are only applied to the
scope of the defined class. In addition to those mentioned, you can also provide a path argument that is
added to the URL path and prepended to each method of the service. If you do not specify it, it defaults to
None, which causes it to be omitted in the path. Suppose, for example, that based on the configuration of
your API, your base URL is
 
lunch--mates--endpoints.appspot.com/_ah/api/lunchmates/v1/.
 

Now you add two new services to your API. The first one contains its own path:
 
@lunchmates_api.api_class(path='meetings')
class Meetings(remote.Service):
 
 @endpoints.method(....)
 def list(self, query):

 
 @endpoints.method(....)
 def create(self, meeting):

 

These methods can be accessed with the following URLs, respectively:
 
lunch--mates--endpoints.appspot.com/_ah/api/lunchmates/v1/meetings/list
lunch--mates--endpoints.appspot.com/_ah/api/lunchmates/v1/meetings/create
 

Next, consider a service for which you do not specify a path:
 
@lunchmates_api.api_class()
class Auth(remote.Service):
 

http://dx.doi.org/10.1007/9781484210055_5

Chapter 14 ■ Google Cloud Endpoints

319

 @endpoints.method(....)
 def authenticate(self, user):

 

Because a path is not specified in api_class, this method is accessed using its name:
 
lunch--mates--endpoints.appspot.com/_ah/api/lunchmates/v1/authenticate 

■■ Note  endpoints.method accepts a path argument. As you can see in the previous example, if this
argument is not specified, the name of the method is used to construct the URL path.

The previous examples show how you must decorate your methods for Cloud Endpoints to be able to
generate client libraries that can access them. endpoints.method accepts the arguments listed in Table 14-3.

Table 14-3.  Accepted arguments in the endpoints.method decorator

Argument Description

Request Message Class The message class corresponding to the ProtoRPC request used in the
method. This argument accepts the class itself or its name.

Response Message Class The message class corresponding to the ProtoRPC response used in
the method. This argument accepts the class itself or its name.

path A string with the path that is appended to the URL to access this
method. If you do not set this argument, the method name is used.

name An alternative name for this method. The name must start with
a lowercase letter and match the following regular expression:
[a-z]+[A-Za-z0-9]*.

http_method HTTP method of the incoming request. Defaults to POST if not set.

■■ Pro Tip A void collisions between the resource_name of your API and the name of your methods. For
example, when generating the client library for Java, the part of the method name before the dot (.) is an inner
class of the API resource name. Therefore, an API class with resource_name='meetings' and a method with
name='meetings.create' would create a conflict and not be able to build.

In addition to the arguments in the table, you can specify the keywords audiences and allowed_
client_ids at the method level, in which case they override the values specified in the API. You do so
through endpoints.api() or endpoints.api_class().

However, because you are using the Endpoints Proto Datastore API on top of Cloud Endpoints, most of
the time you will not decorate with endpoints.method directly. Instead, the Endpoints Proto Datastore API
provides two methods that simplify your requests by handling queries and serialization of Cloud Datastore
model objects into ProtoRPC messages for you. Because of that, you do not need to specify the classes for the
request and response Message objects.

Chapter 14 ■ Google Cloud Endpoints

320

■■ Note  Both EndpointsModel.method and EndpointsModel.query_method act as wrappers around
endpoints.method, which is called at the end of both implementations.

EndpointsModel.method
EndpointsModel.method takes the EndpointsModel class specified and uses it to serialize and deserialize the
entity into RPC messages. In addition to the arguments for endpoints.method listed previously, you can also
set the arguments in Table 14-4.

Table 14-4.  Accepted arguments in the EndpointModels.method decorator

Argument Description

request_fields* List of fields used to define the ProtoRPC message for the request.

response_fields* List of fields used to define the ProtoRPC message for the response.

user_required Accepts a boolean value. When set to True, an authenticated user is
required to proceed with the request. If no user is present, the request
responds with 401 Not Authorized.

*Both request_fields and response_fields are optional arguments that accept a list, a tuple, a dictionary,
or an entity of the class MessageFieldsSchema. If not set, messages are built using the variable_message_
fields_schema in your EndpointsModel class or the properties in the model definition if the schema is not set.

Here is an example of a POST method used to create new meetings in the application:
 
from protorpc import remote
 
from base import lunchmates_api
from base import authenticated_user_data
 
from model.model import Meeting
 
@lunchmates_api.api_class(resource_name='meeting')
class Meetings(remote.Service):
 
 @Meeting.method(path='meetings', name='meetings.create', user_required=True)
 def create(self, meeting):
 
 meeting.owner = authenticated_user_data().key
 meeting.put()
 return meeting
 

Chapter 14 ■ Google Cloud Endpoints

321

The Meeting class—which inherits from EndpointsModel—is used to decorate the method. As
explained earlier, this defines the underlying ProtoRPC message used in the request and response based
on the Meeting model. The rest of the arguments are common to endpoints.method. Notice that an
authenticated user is required to execute the request. Also note that the path is set to 'meetings'.
Hence the URL to access that method is
 
POST [localhost | <your-application-id>.appspot.com]/_ah/api/lunchmates/v1/meetings
 

The meeting object that is passed as an argument of the method you define is the result of deserializing
the body of your request into the class specified on its decorator, Meeting. All that is left is persisting the
object. In the previous example, the owner of the meeting is set using the currently authenticated user before
the entity is persisted.

EndpointsModel.query_method
In contrast to the previous method decorator, query_method is intended to help you work with Cloud
Datastore queries. As a result, only GET requests are allowed. When using this decorator, a query is created
based on the parameters passed and is made available to you through the query property on your decorated
method definition. In this method, you can modify the query as you wish—for example, adding a default
sort order. You must return the query at the end of the method. This causes the query to be executed. In the
response body of your requests there are two fields:

•	 items is an array of results of the type of the EndpointsModel class used to decorate
the method. The number of results is limited by default, but you can configure it
through the method’s keyword arguments.

•	 nextPageToken is used as a means of pagination. You can use this value, adding it
as a query parameter to your method so that if the caller sets it, it is converted into a
cursor and used to return the next page of results.

This is an example of a simple GET method to fetch meeting requests:
 
import endpoints
from protorpc import remote
 
from base import lunchmates_api
from model.model import MeetingRequest
 
@lunchmates_api.api_class(resource_name='meeting_request', path='meetings')
class MeetingRequests(remote.Service):
 
 @MeetingRequest.query_method(path='requests', user_required=True,
 name='meeting_requests.list')
 def list(self, query):
 return query.order(-MeetingRequest.created)
 

Notice that the only modification to the query is adding an order clause. In this case, the results are sorted
by the created property in descending order. Because created is a date, new records are returned first.

Chapter 14 ■ Google Cloud Endpoints

322

Table 14-5.  Accepted arguments in the EndpointModels.query_method decorator

Argument Description

query_fields Determines the fields used to construct the query. Each field specified
is expected to affect the results of the query. Because of that, the fields
have to refer to properties that are part of the model in question—
@Model.query_method—whether they are regular properties or
EndpointsAliasProperty-ies. For example, to retrieve meetings of
the type lunch, adding the query field type allows requests of the kind
request_url?type=lunch. This adds the filter to the query for you and
returns the results you are looking for. Note that this behavior only applies
to equality filters. If you need something more elaborate, you can use
EndpointsAliasProperty-ies with a setter to define the details of your
query. Check out the MeetingRequest model to see an example.

collection_fields Determines the fields to return for each item in the response results. If not
specified, it defaults to the model schema.

use_projection A boolean value that, when set to True, queries for a projection of the
entity instead of the entire entity. The projection is defined using the
collection fields. Projection queries are faster to retrieve and transfer, but
remember that they need an index on each of the fields specified. You
learn more about projection queries in Chapter 9.

limit_default Determines the number of records to be returned in the response body
when no limit clause is specified on the query. Defaults to endpoints_
proto_datastore.ndb.model.QUERY_LIMIT_DEFAULT, currently set to 10.

limit_max Sets the maximum allowed number of records to be returned in the
response body. If a query attempts to limit the number of results with a
number greater than the value specified in this argument, an endpoints.
ForbiddenException is raised. Defaults to endpoints_proto_datastore.
ndb.model.QUERY_LIMIT_MAX, currently set to 100.

user_required Accepts a boolean value. When set to True, an authenticated user is
required to proceed with the request. If no user is present, the request
responds with 401 Not Authorized.

EndpointsModel includes three convenient EndpointsAliasProperty-ies that you can use as
query_fields in query_method like this:
 
@YourModel.query_method(query_fields=('limit', 'order', 'pageToken'), path='your_path')
def yourQueryMethod(self, query):
 return query
 

These alias properties process the three query fields so that, when added as query parameters in the
request URL, they are used to modify the query that returns the results you are looking for. Therefore, if you
access this method with the following URL, your query returns five results from the selected page ordered by
the created property:
 
<method_url>/?limit=5&order=created&pageToken=<token-urlstring>
 

In addition to the arguments included in endpoints.method, query_method accepts the keyword
arguments listed in Table 14-5, all of them optional:

http://dx.doi.org/10.1007/9781484210055_9

Chapter 14 ■ Google Cloud Endpoints

323

Use these predefined EndpointsAliasProperty methods3 as an inspiration to construct your own based
on your needs.

Here is an example of a query method with an EndpointsAliasProperty used in the LunchMates API.
In the endpoint that handles meeting requests, there is a method that fetches all requests for a specific

meeting, passing the ID of the meeting as a parameter in the URL:
 
<api_host>/_ah/api/lunchmates/v1/meetings/<meeting_id>/requests
 

You can now access this property—meeting_id—by specifying it as a query_field in your method
definition:
 
@MeetingRequest.query_method(query_fields=('meeting_id',),
 path='{meeting_id}/requests',
 user_required=True,
 name='meeting_requests.list')
def list(self, query):
 return query.order(-MeetingRequest.created)
 

Now, in your model, you can define an EndpointsAliasProperty with a setter so that every time
query_method is called, the property meeting_id is assigned. Because of that, the setter you define in the
model is executed. Finally, in this setter, you can filter the potential query to fetch meeting requests, using
the meeting ID provided, like this:
 
class MeetingRequest(BaseModel):
 

 
 def ParentMeetingSet(self, value):
 
 meeting_key = ndb.Key(Meeting, int(value))
 
 # Assign key to meeting. Scenario: new entity
 self.meeting = meeting_key
 
 # Add key to the query info. Scenario: fetch entities for a given meeting
 self._endpoints_query_info.meeting = meeting_key
 
 @EndpointsAliasProperty(required=True, setter=ParentMeetingSet,
 property_type=messages.IntegerField)
 def meeting_id(self):
 return self.meeting.id()
 

3Line of the code in the endpoints-proto-datastore repository where the predefined query_fields aliases are
defined: https://github.com/GoogleCloudPlatform/endpoints-proto-datastore/blob/master/
endpoints_proto_datastore/ndb/model.py#L826.

https://github.com/GoogleCloudPlatform/endpoints-proto-datastore/blob/master/endpoints_proto_datastore/ndb/model.py#L826
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore/blob/master/endpoints_proto_datastore/ndb/model.py#L826

Chapter 14 ■ Google Cloud Endpoints

324

EndpointsModel.method and EndpointsModel.query_method can be very powerful assets to make the
methods in your services react wisely based on the type of requests your application receives and the data
you are exposing. Experimenting with them as concepts of query_fields, EndpointsAliasProperty, and
the internal wiring of Cloud Endpoints can make them a bit hard to learn and adopt at first. Here are some
resources that can help you throughout the process:

•	 endpoints_proto_datastore code repository: https://github.com/
GoogleCloudPlatform/endpoints-proto-datastore

•	 endpoints source code: http://code.metager.de/source/xref/google/
appengine/python/lib/endpoints-1.0

•	 Introduction to the Endpoints Proto Datastore API: http://endpoints-proto-
datastore.appspot.com

Finally, do not miss the documentation at Google Developers. This is a living entity that is regularly
updated with the latest additions and pieces of advice.

The APIs Explorer
The APIs Explorer is a tool that allows you to browse, explore, and perform requests against most Google
APIs in a visual way. It is very helpful when you are working with concrete APIs and need to experiment and
see the details of each request you are interested in, such as the full URL path, the parameters allowed, the
responses you can expect, and so on. You can access Google APIs Explorer at
 
https://developers.google.com/apis-explorer
 

It is even more useful in the context of developing your own API or application. To access the APIs
Explorer for the application you are currently working on, simply navigate to the following URL when the
development server is running:
 
http://localhost:<port>/_ah/api/explorer
 

You can also access the APIs Explorer for your deployed API by replacing the local host with its
deployed counterpart:
 
http://<your-app-id>.appspot.com/_ah/api/explorer
 

For example, for the LunchMates API you have been working on throughout the chapter, it is as follows:
 
http://lunch--mates--endpoints.appspot.com/_ah/api/explorer
 

From there you can see all your services and API versions and test your methods through the endpoints
generated based on the configuration of your API.

https://github.com/GoogleCloudPlatform/endpoints-proto-datastore
https://github.com/GoogleCloudPlatform/endpoints-proto-datastore
http://code.metager.de/source/xref/google/appengine/python/lib/endpoints-1.0
http://code.metager.de/source/xref/google/appengine/python/lib/endpoints-1.0
http://endpoints-proto-datastore.appspot.com/
http://endpoints-proto-datastore.appspot.com/
https://developers.google.com/apis-explorer
http://lunch--mates--endpoints.appspot.com/_ah/api/explorer

Chapter 14 ■ Google Cloud Endpoints

325

Generating Client Libraries for Your Application
One of the major benefits of Cloud Endpoints is the ability to generate client libraries that connect and
make requests to your API. This is useful in the initial phase of client development and also in scenarios of
continuous development and iterative approaches. When your API is still changing, Cloud Endpoints allows
you to circumvent the need to manually change your client libraries according to API updates.

■■ Pro Tip  Because you are using the command line and common build tools to generate your libraries,
you can easily automate this process with continuous integration tools like Jenkins and Travis. You can add
hooks to your API code repository4,5 so that every time the production branch is updated, the client libraries are
automatically generated and made available to your client developers.

The command-line tool endpointscfg.py allows you to generate API discovery docs for your
application as well as the client library you need to use in your client to connect to the API you just created.
For example, to create the API discovery doc for application, do the following:
 
$ endpointscfg.py get_discovery_doc --format rpc
 controllers.auth.Auth controllers.users.Users
 controllers.meetings.Meetings controllers.meeting_requests.MeetingRequests
 

You use the same command to generate the client library for your Android application, by using
get_client_lib instead of get_discovery_doc:
 
$ endpointscfg.py get_client_lib java -bs gradle
 controllers.auth.Auth controllers.users.Users
 controllers.meetings.Meetings controllers.meeting_requests.MeetingRequests
 

As you can see, the structure of the command is as follows:
 
endpointscfg.py <command> <language> <options> [services-list...]
 

Where:

•	 command can be either get_discovery_doc or get_client_lib, depending on
whether you are generating the discovery docs or a client library for your application.

•	 language determines the target programming language in which you want your
client library to be exported. This is only applicable to get_client_lib.

•	 options specifies the associated options that you can add to the two commands.

•	 services-list represents the list of services that conform your API.

4Git push hooks in Travis: http://docs.travis-ci.com/user/getting-started/#Step-four%3A-Trigger-Your-
First-Build-With-a-Git-Push.
5Git push hooks in Jenkins: https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin#GitPlugin-
Pushnotificationfromrepository.

http://docs.travis-ci.com/user/getting-started/#Step-four%3A-Trigger-Your-First-Build-With-a-Git-Push
http://docs.travis-ci.com/user/getting-started/#Step-four%3A-Trigger-Your-First-Build-With-a-Git-Push
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin#GitPlugin-Pushnotificationfromrepository
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin#GitPlugin-Pushnotificationfromrepository

Chapter 14 ■ Google Cloud Endpoints

326

These subcommands have a few options in common, as listed in Table 14-6.

The process of using client libraries to access your API is different on each platform. For example, you
can generate a Java client library directly using the endpointscfg.py command, whereas on iOS you need
to generate your library from Xcode. Conversely, in JavaScript, you can dynamically load your API into the
JavaScript-provided library. This chapter explains the Android case. For the JavaScript6 and iOS7 versions,
refer to the documentation at Google Developers.

Accessing Your API from Your Android client
The first thing you need to do is export the client libraries in Java using the get_client_lib command:
 
$ endpointscfg.py get_client_lib java -bs gradle
 controllers.auth.Auth controllers.users.Users
 controllers.meetings.Meetings controllers.meeting_requests.MeetingRequests
 

Table 14-6.  Available options in the endpointscfg.py command-line tool

Argument Description

Common to Both Subcommands

-a or --application Specifies the path for the directory where endpointscfg.py looks
to execute the desired command. By default, this is the current
directory. Remember that this path must point to the root directory of
your application—that is where your app.yaml file is placed.

--hostname Determines the hostname of your application. The default is used
if it is not specified. This is helpful, for example, when you need to
test your application locally or you are using a different host than the
default one: <application-id>.appspot.com.

-o or --output Indicates the directory where the output files should be placed. By
default, this is the current directory.

Specific to get_client_lib

-bs or
--build_system

Describes the type of bundle that is produced based on the build
system you are working with. Currently, the options for Android are
gradle and maven. If you omit this option, the default bundle is used.
This bundle contains only the dependency libraries and a
source.jar.

Specific to get_discovery_doc

-f or --format Selects the API protocol type used to export the discovery docs.
Options are rest (the default) and rpc.

6“Using Cloud Endpoints in a JavaScript Client,” https://cloud.google.com/appengine/docs/python/
endpoints/consume_js.
7“Using Cloud Endpoints in an iOS Client,” https://cloud.google.com/appengine/docs/python/
endpoints/consume_ios.

https://cloud.google.com/appengine/docs/python/endpoints/consume_js
https://cloud.google.com/appengine/docs/python/endpoints/consume_js
https://cloud.google.com/appengine/docs/python/endpoints/consume_ios
https://cloud.google.com/appengine/docs/python/endpoints/consume_ios

Chapter 14 ■ Google Cloud Endpoints

327

The bundle is generated, compressed, and saved in the output folder you specify or your current
directory. Once generated, you can decompress this file and add it to the root folder of your Android
application. In this case, a Gradle module was generated. In order for your Gradle build script in Android
Studio to recognize this module, you need to include it in your settings.gradle file:
 
include ':app', ':lunchmates'
 

Here, app is the module of the application and lunchmates is the API for the LunchMates application you
just generated. Once defined, you can go into the build.gradle script in your application module (app) and
add it as a dependency:
 
....
dependencies {

 compile project(':lunchmates')
  
 compile 'com.google.api-client:google-api-client-android:1.20.0'
 compile 'com.google.android.gms:play-services:7.0.0'
 compile 'com.android.support:appcompat-v7:22.0.0'
}
 

Notice that you need to add two more dependencies to your project:

•	 Google Play Services libraries allow you access the Account Manager, which helps
you handle the authentication process.

•	 The API client for Android includes a set of libraries that help you interact
with Google and other APIs. When you use Cloud Endpoints, your API is built
using similar conventions and technologies as APIs in Google, therefore this
dependency also simplifies access to your API in tasks like networking, serialization,
authorization, and so on.

In your manifest, make sure to add a permission to access the Internet. If you need to make
authenticated requests, also include get accounts from the accounts service and generate authorization
tokens using the Account Manager with USE_CREDENTIALS:
 
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.GET_ACCOUNTS"/>
 <uses-permission android:name="android.permission.USE_CREDENTIALS"/>
 
 <application>

 </application>
</manifest>
 

http://schemas.android.com/apk/res/android

Chapter 14 ■ Google Cloud Endpoints

328

To make requests on behalf of a user with an account set up in the Android device, you use the class
GoogleAccountCredential, which deals with the entire process of obtaining an access token for the selected
account:
 
private static final String ANDROID_AUDIENCE = "server:client_id:<your-web-client-id>";
 
private GoogleAccountCredential credential;
private SharedPreferences sharedPreferences;
 
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(....);
 
 sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
 credential = GoogleAccountCredential.usingAudience(this, ANDROID_AUDIENCE);
 
 checkSelectedAccount(sharedPreferences.getString("account_name", null));
}
 

To avoid users needing to select their preferred account every time they open your app, you store their
selection in SharedPreferences,8 Once the credentials and SharedPreferences members are instantiated,
you can check whether a user already selected an account to authenticate your requests—in which case
you try to fetch the current list of meetings—or prompt the user with the available accounts to start the
authentication process:
 
private static final int ACCOUNT_PICKER_REQUEST_CODE = 2;
 
private void checkSelectedAccount(String accountName) {
 if (accountName == null) {
 startActivityForResult(credential
 .newChooseAccountIntent(), ACCOUNT_PICKER_REQUEST_CODE);
 } else {
 setupLunchmatesApi(credential, accountName);
 fetchMeetingsList();
 }
}
 

8SharedPreferences is a simple storage for keys and values on disk. This means of storage is very convenient for small,
unstructured amounts of information that you need to persist across sessions. For more information, refer to the
documentation at http://developer.android.com/reference/android/content/SharedPreferences.html.

http://developer.android.com/reference/android/content/SharedPreferences.html

Chapter 14 ■ Google Cloud Endpoints

329

If there is not an account already stored, a new Activity is started to show the user the available
accounts in the Android device. When an option is selected, the Activity closes and calls back the original
Activity through onActivityResult:
 
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 
 switch (requestCode) {
 case ACCOUNT_PICKER_REQUEST_CODE:
 if (data != null && data.getExtras() != null) {
 String accountName = data.getExtras().getString(AccountManager.KEY_ACCOUNT_NAME);
 if (accountName != null) {
 checkSelectedAccount(accountName);
 }
 }
 break;
 }
}
 

If an account was selected, checkSelectedAccount is called, persisting the current account and creating
the API object that you can use to make requests:
 
private void setupLunchmatesApi(GoogleAccountCredential credential, String accountName) {
 credential.setSelectedAccountName(accountName);
 storeAccountName(accountName);
 
 Lunchmates.Builder lunchmates = new Lunchmates.Builder(
 new NetHttpTransport(),
 new JacksonFactory(),
 credential);
 
 lunchmatesApi = lunchmates.build();
}
 

In this method, you set the selected account in the credentials object and construct your API object
with it. You also persist the currently selected account in SharedPreferences with storeAccountName
(accountName).9

Finally, the method fetchMeetingsList retrieves a list of meetings from your API:
 
private void fetchMeetingsList() {
 ...
 try{
 MeetingCollection meetings = lunchmatesApi.meeting().meetings().list().execute();
 

9This and other methods have not been included in the book. To see the full source code of this Android application go to
https://github.com/GoogleCloudPlatformBook/lunchmates-android

https://github.com/GoogleCloudPlatformBook/lunchmates-android**

Chapter 14 ■ Google Cloud Endpoints

330

 final String result;
 if (meetings.get("items") != null) {
 result = meetings.getItems().size() + " meetings";
 } else {
 result = "0 meetings";
 }
 Log.i("# of meetings", result);
 } catch (IOException e) {
 e.printStackTrace();
 }
}
 

This code should not run in the main thread, because it blocks execution until the request returns a
response. Among the alternatives, consider using AsyncTask, Loader, or ThreadPoolExecutor. If you need
requests to execute and wait until a response is given even if the application is sent to the background,
consider using a service. Keep in mind that services help you to execute logic independently of the lifecycle
of your views or Activity-ies. However, a service runs in the main thread; thus you still need to handle
executing the operations in separate threads.

You can find, test, and contribute to the example application from the associated GitHub repository:
https://github.com/GoogleCloudPlatformBook/lunchmates-android.

Summary
In this chapter, you have seen the power of App Engine combined with Cloud Endpoints, which together give
you the ability to develop your API and client-side logic in much less time than with the usual approaches.
The combination of these two services is powerful when you target more than one platform at the same time
and also helps you make your API-side logic simpler, more maintainable, and flexible in the face of potential
changes in your business logic.

Now you have the tools you need to build an entire application or service from scratch. It is your duty to
experiment and try the list of projects, ideas, and prototypes you have had in mind for a while but never had
the resources to address.

https://github.com/GoogleCloudPlatformBook/lunchmates-android

	Chapter 14: Google Cloud Endpoints
	 Cloud Endpoints and ProtoRPC
	 Setting Up Your Environment: The SDK
	 The Foundations of Your Application: app.yaml
	 Your API and api_server
	 The model: A Bridge between NDB Datastore and Cloud Endpoints
	 Services and Request Handlers
	 EndpointsModel.method
	 EndpointsModel.query_method

	 The APIs Explorer
	 Generating Client Libraries for Your Application
	 Accessing Your API from Your Android client

	 Summary

