
23© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_2

 CHAPTER 2

 Virtualizing Development
Environments

 Creating virtualized development environments allows you to form encapsulated
environments for specific projects that can have the same exact versions of operating
systems, PHP, web servers, databases, libraries, settings, etc. as the real thing. These
environments keep everything isolated from each other and can easily be destroyed and
recreated as needed. This provides a number of benefits:

• Ability to run multiple projects on various PHP versions to match
their production versions without trying to run them on your
development machine.

• No chance of messing anything up with any configurations on
your development machine when trying to install a library,
change a setting, etc.

• Ability to take a snapshot of your environment that you can easily
revert back to.

 In this chapter, as we look into virtualizing your development environments, we will
be focusing solely on using Vagrant, which is a tool for building complete, distributable
development environments.

 Traditionally, there are two approaches to setting up the development environment:

• Client and server processes run on the same machine.

• Client and the server run on different machines, which imitates
the way the deployed application is executed by end users.

 We’ll look at the benefits of using virtualized environments, how to get and set up
Vagrant, and how to provision your very first environment. By the end of the chapter you
should be able to easily get up and running with your own virtual machine after running
just one simple command: vagrant up .

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

24

 Introduction to Vagrant
 There’s a good chance you have heard of or maybe even looked at using Vagrant before.
As previously mentioned, Vagrant is a tool for building complete, reproducible, and
distributable development environments.

 ■ Note Vagrant is open source software distributed under MIT license.

 It does this by following a consistent configuration pattern, allowing you to define
sets of instructions to configure your virtual environment using Vagrant’s specific
language. These instructions are stored in a file called Vagrantfile , and since it is only
text, it can easily be added to your project’s source control repository, thus allowing
the versioning of these environment configurations as well as allowing it to be easily
distributed among other developers.

 At the heart of it all, we can break a full Vagrant setup down into four pieces:

• Provider – This is the virtual platform that your Vagrant setup will
run on. Since Vagrant doesn’t provide any actual virtualization,
it relies on providers to provide this functionality for you. By
default, Vagrant supports VirtualBox. However, there are a
number of other providers you can use, such as Docker, VMWare,
Parallels, Hyper-V, and even cloud providers such as AWS and
DigitalOcean.

• Boxes – Boxes are the virtual machine images used to build your
Vagrant setup. They can be used by anyone and on any Vagrant
provider. There are a growing number of public Vagrant boxes
available for your use, some that are base OS installations and
some with a preconfigured LAMP stack or other configurations
and languages. In addition to the ones publicly available, you
can also create your own Vagrant boxes that can be either shared
publicly or used privately only by you and/or your team.

• Vagrantfile – Configuration file for Vagrant.

• Provisioners – Provisioners are used in Vagrant to allow you to
automatically install software, alter configurations, and perform
other operations when running the vagrant up process. There
are a number of provisioners supported by Vagrant, but for the
sake of this book we’ll be looking at Bash, Puppet, and Ansible.

 Installing Vagrant and VirtualBox
 Before you can do anything with Vagrant, you must first have a virtual machine provider
installed, such as the free and open source VirtualBox that we’ll use throughout these
examples. You of course also need Vagrant itself installed .

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

25

 VirtualBox can be downloaded from its website, located at https://www.virtualbox.org .
Simply download the appropriate installer package for your operating system and follow the
instructions on the installer to install.

 Like VirtualBox , Vagrant can be downloaded from its website at
http://www.vagrantup.com . Download the appropriate installer package for your
operating system and follow the instructions on the installer to install. Once installed, the
 vagrant command will be available to you in your terminal.

 In this book we will use Vagrant for a Linux environment.

 Vagrant Commands
 All commands issued to Vagrant are done using the vagrant command that’s now
available to you in your terminal. Let’s take a look at the list of command options we have:

 $ vagrant -h
 Usage: vagrant [options] <command> [<args>]

 -v, --version Print the version and exit.
 -h, --help Print this help.

 Common commands:
 box manages boxes: installation, removal, etc.
 connect connect to a remotely shared Vagrant environment
 destroy stops and deletes all traces of the vagrant machine
 global-status outputs status Vagrant environments for this user
 halt stops the vagrant machine
 help shows the help for a subcommand
 hostmanager
 init initializes a new Vagrant environment by creating a Vagrantfile
 login log in to HashiCorp’s Atlas
 package packages a running Vagrant environment into a box
 plugin manages plugins: install, uninstall, update, etc.
 provision provisions the Vagrant machine
 push deploys code in this environment to a configured destination
 rdp connects to machine via RDP
 reload restarts Vagrant machine, loads new Vagrantfile configuration
 resume resume a suspended Vagrant machine
 share share your Vagrant environment with anyone in the world
 ssh connects to machine via SSH
 ssh-config outputs OpenSSH valid configuration to connect to the machine
 status outputs status of the Vagrant machine
 suspend suspends the machine
 up starts and provisions the Vagrant environment
 version prints current and latest Vagrant version

https://www.virtualbox.org/
http://www.vagrantup.com/
http://www.vagrantup.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

26

 For help on any individual commands, run `vagrant COMMAND -h`

 Additional subcommands are available, but are either more advanced or are not
commonly used. To see all subcommands, run the command `vagrant list-commands`.

 As you can see from the last bit of information outputted from this command, there
are additional subcommands that are available for us to use. For the sake of this chapter,
we’ll be focusing on the most commonly used commands and subcommands.

 Setting Up Our First Environment
 With VirtualBox and Vagrant installed, getting up and running with your first Vagrant
 environment is a relatively short and easy process. At a minimum, all you need is a basic
Vagrantfile and a selected Vagrant box to use.

 For starters, we’re going to set up a minimal install using a base Ubuntu 14.04 box.
Perusing the Hashicorp (the official company behind Vagrant) community box-repository
catalog, located at https://atlas.hashicorp.com/boxes/search , I see the box we want
to use is ubuntu/trusty64 . Using two commands, we’ll initialize our Vagrant setup,
download the box, install it, then boot our new virtual machine (VM).

 The first thing you have to do is define Vagrant’s home directory in the VAGRANT_HOME
environment variable. This can be easily done by executing the following command in bash:

 $ export VAGRANT_HOME=/some/shared/directory

 Let’s create a new folder just for this Vagrant instance that we’re setting up, then we’ll
initialize the Vagrant setup:

 $ mkdir VagrantExample1
 $ cd VagrantExample1
 $ vagrant init ubuntu/trusty64

 You should see a message returned that tells you a Vagrantfile has been placed in
your directory and you’re ready to run vagrant up . Before we do that, let’s take a look at
the initial Vagrantfile that was generated:

 # All Vagrant configuration is done below. The "2" in Vagrant.configure
 # configures the configuration version (we support older styles for
 # backward compatibility). Please don’t change it unless you know what
 # you're doing.
 Vagrant.configure(2) do |config|
 # The most common configuration options are documented and commented below.
 # For a complete reference, please see the online documentation at
 # https://docs.vagrantup.com.

 # Every Vagrant development environment requires a box. You can search for
 # boxes at https://atlas.hashicorp.com/search.
 config.vm.box = "ubuntu/trusty64"

https://atlas.hashicorp.com/boxes/search

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

27

 # Disable automatic box update checking. If you disable this, then
 # boxes will only be checked for updates when the user runs
 # `vagrant box outdated`. This is not recommended.
 # config.vm.box_check_update = false

 # Create a forwarded port mapping, which allows access to a specific port
 # within the machine from a port on the host machine. In the example below,
 # accessing "localhost:8080" will access port 80 on the guest machine.
 # config.vm.network "forwarded_port", guest: 80, host: 8080

 # Create a private network, which allows host-only access to the machine
 # using a specific IP.
 # config.vm.network "private_network", ip: "192.168.33.10"

 # Create a public network, which generally matches to bridged network.
 # Bridged networks make the machine appear as another physical device on
 # your network.
 # config.vm.network "public_network"

 # Share an additional folder to the guest VM. The first argument is
 # the path on the host to the actual folder. The second argument is
 # the path on the guest to mount the folder. And the optional third
 # argument is a set of non-required options.
 # config.vm.synced_folder "../data", "/vagrant_data"

 # Provider-specific configuration so you can fine-tune various
 # backing providers for Vagrant. These expose provider-specific options.
 # Example for VirtualBox:
 #
 # config.vm.provider "virtualbox" do |vb|
 # # Display the VirtualBox GUI when booting the machine
 # vb.gui = true
 #
 # # Customize the amount of memory on the VM:
 # vb.memory = "1024"
 # end
 #
 # View the documentation for the provider you are using for more
 # information on available options.

 # Define a Vagrant Push strategy for pushing to Atlas. Other push strategies
 # such as FTP and Heroku are also available. See the documentation at
 # https://docs.vagrantup.com/v2/push/atlas.html for more information.
 # config.push.define "atlas" do |push|
 # push.app = "YOUR_ATLAS_USERNAME/YOUR_APPLICATION_NAME"
 # end

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

28

 # Enable provisioning with a shell script. Additional provisioners such as
 # Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
 # documentation for more information about their specific syntax and use.
 # config.vm.provision "shell", inline <<-SHELL
 # sudo apt-get install apache2
 # SHELL
 end

 As you can see, most of the options here are commented out. The only configuration
options line that isn’t is:

 config.vm.box = "ubuntu/trusty64"

 This line tells Vagrant to use the box that we specified with our vagrant init command.

 Initial VM setup
 We’re now ready to issue our next and final command, vagrant up . This will boot our
VM for the first time and do any initial setup (provisioning) that we’ve told it to do.
For now, this is just a basic system, so it will download the box we chose for the first time
and import it, then just set up the initial SSH keys and make the machine available to us.
See here:

 $ vagrant up --provider virtualbox

 You will see quite a bit of output from Vagrant as it downloads and brings up this
initial box. The last few lines let you know it was a success and is ready for your use:

 ==> default: Machine booted and ready!
 ==> default: Checking for guest additions in VM...
 ==> default: Mounting shared folders...
 default: /vagrant => /Apress/VagrantExample1

 We now have a new VM running Ubuntu 14.04. We can connect to this VM via
ssh , just like on any other Linux machine. With Vagrant, we do this by issuing the vagrant
ssh command:

 $ vagrant ssh
 Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-45-generic x86_64)

 ...

 vagrant@vagrant-ubuntu-trusty-64:~$

 The Vagrant user is the default user set up with each box. This user has full sudo
privileges without needing any additional passwords.

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

29

 ■ Note Remember to run the command vagrant –help to get the entire list of
commands you can use with Vagrant.

 Shared Folders
 By default, Vagrant will share your project’s folder with the /vagrant directory inside of your
VM. This allows you to easily edit files located directly in your project on your development
machine and see those changes immediately reflected in the VM. A typical use for this
would be to set up Apache on your Vagrant box and point the site root folder to somewhere
within the /vagrant directory. Also, you can specify additional shared directories using the
 config.vm.synced_folder configuration parameter in the default Vagrantfile.

 Networking
 Vagrant provides multiple options for configuring your VM’s networking setup.
All network options are controlled using the config.vm.network method call. The
most basic usage would be to use a forwarded port, mapping an internal port such as
port 80 for regular HTTP traffic to a port on your host machine. For example, the
following configuration line will make regular web traffic of your VM accessible at
 http://localhost:8080 :

 config.vm.network "forwarded_port", guest: 80, host: 8080

 If you would prefer to specify a private IP address from which you can instead access the
entire VM on your local network, you can use the config.vm.network "private_network"
method call:

 config.vm.network "private_network", ip: "192.168.56.102"

 VM Settings
 If you wish to change the amount of RAM or CPU that your VM is using, you can do so
with the section of our Vagrantfile that starts with config.vm.provider " virtualbox " do
|vb| . You will notice two entries there already that are commented out, one setting the
Virtualbox GUI settings, the other setting the memory. If we want to change the memory
as well as the default virtual CPU available to our image — to, say, 2048 MB memory and
2 CPUs — we can do so by adding the following under that section of our Vagrantfile:

 config.vm.provider "virtualbox" do |vb|
 # Customize the amount of memory on the VM:
 vb.memory = "2048"

 # 2 virtual CPU’s
 vb.cpus = 2
 end

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

30

 Before we apply this change, let’s check to see what our VM is currently showing:

 $ vagrant ssh
 vagrant@vagrant-ubuntu-trusty-64:~free -m
 total used free shared buffers cached
 Mem: 489 331 158 0 12 207
 -/+ buffers/cache: 112 377
 Swap: 0 0 0

 vagrant@vagrant-ubuntu-trusty-64:~$ cat /proc/cpuinfo
 processor : 0
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2700.450
 cache size : 6144 KB
 physical id : 0
 siblings : 1
 core id : 0
 cpu cores : 1
 apicid : 0
 initial apicid : 0
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp
lm constant_tsc rep_good nopl pni monitor ssse3 lahf_ lm

 bogomips : 5400.90
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 We can apply these changes to our Vagrantfile by running the vagrant reload
command, which will be the same as doing a vagrant halt to shut down the VM and
then a vagrant up to start it back up:

 $ vagrant reload

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

31

 Let’s ssh in again and check our VM memory and CPU settings now:

 $ vagrant ssh
 vagrant@vagrant-ubuntu-trusty-64:~$ free -m
 total used free shared buffers cached
 Mem: 2001 208 1793 0 11 77
 -/+ buffers/cache: 120 1881
 Swap: 0 0 0

 vagrant@vagrant-ubuntu-trusty-64:~$ cat /proc/cpuinfo
 processor : 0
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2702.438
 cache size : 6144 KB
 physical id : 0
 siblings : 2
 core id : 0
 cpu cores : 2
 apicid : 0
 initial apicid : 0
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
rdtscp lm constant_tsc rep_good nopl pni ssse3 lahf_lm

 bogomips : 5404.87
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 Processor : 1
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2702.438
 cache size : 6144 KB
 physical id : 0
 siblings : 2

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

32

 core id : 1
 cpu cores : 2
 apicid : 1
 initial apicid : 1
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
rdtscp lm constant_tsc rep_good nopl pni ssse3 lahf_lm

 bogomips : 5404.87
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 Removing VMs
 Now, just as easily as we set up this VM, let’s destroy it and all traces of it with another
simple command, vagrant destroy :

 $ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...

 Just like that, our Vagrant VM is gone. However, our Vagrantfile is still intact, and the
VM can be brought right back again by simply issuing another vagrant up .

 Default Vagrant LAMP box
 Our previous example is just a basic, bare Linux machine without Apache, MySQL, or
PHP installed. This isn’t very helpful if you’re setting this box up for PHP development,
unless you want to roll your own custom configurations.

 Luckily, there are a number of community-provided Vagrant boxes that are already
pre-configured with Apache, MySQL, and PHP, as well as some that already have popular
PHP frameworks and platforms installed, such as Laravel, Drupal, and others.

 Using the aforementioned Atlas community repository catalog or the Vagrantbox.es
catalog (http://www.vagrantbox.es/), you can search and find a box that will work for
you without any other configuration changes needed.

http://www.vagrantbox.es/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

33

 Advanced Configurations Using Ansible, Bash,
and Puppet
 As you can see from our initial example, it’s extremely easy to get a VM up and running
with Vagrant. However, just a basic VM isn’t going to be of much use to us when setting it
up as a full development environment that is supposed to mirror our production setup.
If you don’t find a Vagrant box that already has LAMP configured, then having to install
and configure Apache, MySQL, and PHP manually each time you set up a new VM makes
Vagrant a lot less useful.

 It’s also common that even if LAMP is already set up, there will be a number of
configuration operations that need to be run after the initial setup, such as pointing
Apache to a different public folder for your framework, or setting up a database for your
application. This is where advanced configurations using one of the Vagrant-supported
provisioners come in handy.

 Vagrant supports a number of provisioners. For the sake of this chapter, we are going
to look at Ansible, Bash, and Puppet. If you’re only familiar with Bash, then it’s the easiest
to jump in and start using. However, there are many preconfigured packages available
for Ansible (playbooks), Chef (recipes/cookbooks), and Puppet (modules) that will
drastically cut down on the time it would take you to do these tasks even in Bash using
basic commands.

 Bash (Shell) Provisioner
 Let’s start with a simple example by installing Apache, MySQL, and PHP using a simple
bash script. This entire Vagrant setup consists of two files — the Vagrantfile and our bash
script. We’re going to call this script provision.sh . This script will install the Ubuntu repo
versions of Apache, MySQL, and PHP using apt-get .

 We use the following line in our Vagrantfile to tell Vagrant to use Bash as a
provisioner and then to use the provision.sh script:

 config.vm.provision :shell, :path => "provision.sh"

 The contents of our provision.sh script are as follows:

 #!/bin/sh

 set -e # Exit script immediately on first error.
 set -x # Print commands and their arguments as they are executed.

 export DEBIAN_FRONTEND=noninteractive

 # Do an update first
 sudo apt-get -y update

 # Install Apache
 sudo apt-get -y install apache2

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

34

 # Install PHP
 sudo apt-get -y install php5 php5-mysql php5-cli php5-common

 # Install MySQL
 echo mysql-server mysql-server/root_password password 123 | sudo debconf-
set-selections
 echo mysql-server mysql-server/root_password_again password 123 | sudo
debconf-set-selections
 sudo apt-get -y install mysql-server-5.6

 # Restart Apache & MySQL to ensure they're running
 sudo service apache2 restart
 sudo service mysql restart

 As you can see, with this script we’re just running the same commands we would run
if we were manually setting up our VM; however, we automate the process since Vagrant
can run the Bash commands for us.

 Puppet Provisioner
 Puppet is a configuration management system that allows us to create very specialized
Vagrant configurations. Puppet can be used to form many different types of Vagrant
configurations via the inclusion of specific Puppet modules inside of your project. These
modules can be obtained from the Puppet Forge site at https://forge.puppetlabs.com/ .
Each one of the modules you use will have anywhere from a few to many different
configuration options so as to tailor the environment to your exact needs. You should
reference the README for each one of these modules as you start customizing to find out
what options are made available to you.

 For this example, download the Apache, MySQL, and PHP manifests from Puppet Forge
and organize them according to their recommended hierarchy as noted on the website. You
should also download a few required dependencies from Puppet Forge as well. We’ll use
these to set up a VM with Apache, MySQL, and PHP just like with our Bash example.

 ■ Note A manifest is the instructions that tell Puppet what to do with all of the modules.

 We’ll place the Puppet manifest in the default location in which Vagrant will look for
it, under manifests/default.pp . First, update the Vagrantfile to tell Vagrant that we’re
now using Puppet as a provisioner:

 config.vm.provision "puppet" do |puppet|
 puppet.manifests_path = "manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "modules"
 end

https://forge.puppetlabs.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

35

 Our directory structure is as shown in Figure 2-1 .

 The default.pp file located under the main manifests directory is the file that tells
Puppet what to install and configure for our VM. This is where you would define the
various configuration options you need for your setup. For the sake of this example, I’ve
kept the configurations simple and concise:

 # Update apt-get
 exec { 'apt-get update':
 command => 'apt-get update',
 path => '/usr/bin/',
 timeout => 60,
 tries => 3
 }

 class { 'apt':
 always_apt_update => true
 }

 # Install puppet in our VM
 package {
 [
 'puppet',
]:
 ensure => 'installed',
 require => Exec['apt-get update'],
 }

 Figure 2-1. Puppet Vagrant directory structure

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

36

 # Install Apache, set webroot path
 class { 'apache':
 docroot => '/var/www/html',
 mpm_module => 'prefork'
 }

 # Install MySQL, setting a default root password
 class { '::mysql::server':
 root_password => '123',
 remove_default_accounts => true
 }

 # Install PHP and two PHP modules
 class { 'php':
 service => 'apache2'
 }
 php::module { 'cli': }
 php::module { 'mysql': }

 # Install and configure mod_php for our Apache install
 include apache::mod::php

 As you can see, there is a bit more going on here than we had in our Bash script;
however, having the power and flexibility of being able to make configuration changes
and specific installation setups just by adding in a few additional configuration
parameters makes Puppet a great choice for complex setups.

 Ansible Provisioner
 Ansible is an automation tool that can be used for many types of autonomous tasks and
is not limited to use with Vagrant. With Vagrant, we can use it along with a playbook to
automate the setup and configuration of our Vagrant machines. An Ansible playbook is
simply a YAML file that instructs Ansible on what actions to perform.

 ■ Note You may want to consider running Ansible against the machine you are
configuring because it can be quicker than using a combination of setup scripts.

 Using Ansible is much more lightweight than using Puppet, as there is no need to
download or include various modules to perform the tasks you need, and the guest VM
doesn’t need anything special installed. The only requirement is that the host machine
running Vagrant have Ansible installed. Installation instructions for a variety of operating
systems can be found in the Ansible documentation at http://docs.ansible.com/
intro_installation.html#getting-ansible .

http://docs.ansible.com/intro_installation.html#getting-ansible
http://docs.ansible.com/intro_installation.html#getting-ansible

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

37

 For this example, we’ll configure a very simple Ansible playbook to set up Apache,
MySQL, and PHP on our Vagrant machine, just like in our Bash and Puppet examples.
First, we must instruct Vagrant to use Ansible as the provisioner and supply the name of
our playbook file:

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end

 Then we instruct Ansible to install Apache, MySQL, and PHP:

 - hosts: all
 sudo: true
 tasks:
 - name: Update apt cache
 apt: update_cache=yes
 - name: Install Apache
 apt: name=apache2 state=present
 - name: Install MySQL
 apt: name=mysql-server state=present
 - name: Install PHP
 apt: name=php5 state= present

 Even though this configuration seems very simple, don’t let it fool you; Ansible is
very powerful and can perform complex configurations. We can easily make configuration
customizations — just as we can with Puppet — by making use of Ansible templates, variables,
includes, and much more to organize and configure a more complex setup.

 Advanced Configuration Conclusion
 As you can see, utilizing provisioners to automate the tasks of completely building your
environment makes setting up your development environments much easier than having
to manually do it over and over again. Each provisioner has a different approach for how
it accomplishes these tasks, giving you a range of choices and flexibility for you and your
project or environment.

 Configuration Tools
 Now that we have a better understanding of some of the core configuration settings and
provisioners available to Vagrant, let’s take a look at two configuration tools aimed at
making the setup of these environments even easier.

 ■ Note Both of these tools are under current development, so they’re both constantly
changing and progressing over time. It’s been my experience with them that they’re great for
getting you up and running quickly, but they do have their periodic issues and weaknesses.

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

38

 PuPHPet
 This tool, pronounced “puffet,” uses Puppet as the provisioning language and provides an
easy-to-follow GUI for configuring your environment.

 Accessing PuPHPet
 You can access this tool by visiting https://puphpet.com , as seen in Figure 2-2 .

 Figure 2-2. PuPHPet web-based Puppet configuration tool

 PuPHPet is publicly hosted on GitHub, is open-source, and anyone can fork over
and contribute to it. This tool works by generating a manifest YAML file along with the
respective Puppet modules needed to build and configure your new VM environment.
You can use the configurations it generates directly as is, or you can make modifications
and tweaks as needed.

https://puphpet.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

39

 Setting Up and Using PuPHPet Configurations
 Once you walk through each of the setup options on PuPHPet, you will download your
 custom configuration . This download consists of the Vagrantfile and a puphpet directory
that contains all of the necessary Puppet manifests and modules needed for your
environment.

 Simply copy these two items to your project directory and you’re ready to run
 vagrant up to set up and provision this environment.

 ■ Tip One nice feature of the configuration setup generated by PuPHPet to note is the file
structure under the files directory. This directory consists of four other directories, which
allows you to create scripts that will execute once, every time, during startup, and so on. For
example, you could utilize the execute once to perform post-setup cleanup, running custom
commands needed to provision PHP application-specific dependencies (like composer
install), as well as setting up databases data, etc.

 Phansible
 This is a newer tool that’s become available, and it uses Ansible instead of Puppet as the
provisioning language. It’s similar to PuPHPet, but as of right now it does not have all
of the bells and whistles that are available using PuPHPet. It also is publicly hosted on
GitHub, is open source, and is available for anyone to contribute to (Figure 2-3).

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

40

 Just as with PuPHPet, once you walk through each of the setup options on Phansible,
you will download your custom configuration. This download also consists of the
Vagrantfile and an ansible directory that has the playbook.yml file. It also holds several
other items that can be used along with Ansible that we didn’t utilize in our basic Ansible
example earlier (such as the templates that were mentioned).

 Phansible can be found at:

 http://phansible.com/

 Figure 2-3. Phansible web-based Ansible configuration tool

http://phansible.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

41

 Vagrant Plugins
 As you begin using Vagrant more and more, you will periodically need additional
functionality that isn’t provided to you out of the box from Vagrant. Fortunately, Vagrant
has a plugin system , and many times a plugin exists to do exactly what you need.

 Vagrant plugins are very easily installed using the vagrant plugin install
plugin-name-here subcommand. Here are a few helpful plugins that you may find useful
as you begin to use Vagrant as your development environment choice:

• Vagrant Host Manager – This plugin manages the hosts file on
the host machine, allowing you to easily specify a temporary
 hosts entry that maps to your VM’s IP address. This allows you
to easily set up access to your development environments using
something similar to the production address. So if you have
 www.someproduct.com you could set up something like dev.
someproduct.com or www.someproduct.dev and use the Vagrant
Host Manager to automatically add this to your hosts file. It
will add and remove this entry for you during the vagrant up
and halt commands. This plugin is very useful when combined
with specifying your own private network IP address for your
VM. Additional information on this plugin can be found here:
 https://github.com/smdahlen/vagrant-hostmanager .

• Vagrant Share – This plugin, installed by default, allows you to
share your environment with anyone, anywhere using a free
account with HashiCorp.

• Vagrant Librarian Puppet – This plugin allows for Puppet modules
to be installed using Librarian-Puppet .

• Vagrant Ansible Local – This plugin allows you to use Ansible as
your provisioner, but instead allows Ansible to be run from within
the guest VM rather than making the host machine dependent
have Ansible installed.

• Providers – Although this isn’t a specific plugin, there are many
different plugins that allow Vagrant to be run on other providers,
such as Parallels, KVM, AWS, DigitalOcean, and many more.

 For a complete Vagrant plugin listing you can check this web page:
 http://vagrant-lists.github.io/

 Summary
 With the introduction of Vagrant, using virtual machines in your development process
makes perfect sense. Hopefully, the topics covered here not only demonstrated this value
you to you, but also gave you everything you need to be up and running with it on your
next project or even on your existing project in no time flat. In the next chapter, we will
discuss coding standards in order to define how to structure your code.

http://www.someproduct.com/
http://www.someproduct.dev/
https://github.com/smdahlen/vagrant-hostmanager
http://vagrant-lists.github.io/

	Chapter 2: Virtualizing Development Environments
	Introduction to Vagrant
	Installing Vagrant and VirtualBox
	Vagrant Commands

	Setting Up Our First Environment
	Initial VM setup
	Shared Folders
	Networking
	VM Settings
	Removing VMs
	Default Vagrant LAMP box

	Advanced Configurations Using Ansible, Bash, and Puppet
	Bash (Shell) Provisioner
	Puppet Provisioner
	Ansible Provisioner
	Advanced Configuration Conclusion

	Configuration Tools
	PuPHPet
	Accessing PuPHPet
	Setting Up and Using PuPHPet Configurations

	Phansible

	Vagrant Plugins
	Summary

