
1© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_1

 CHAPTER 1

 Version Control

 If you’re not already using some type of version control on your project, you should
definitely start now. Whether you’re a single developer or part of a bigger team, version
control provides numerous benefits to any project, big or small.

 If you’re not familiar with what version control is, it is a system used to capture and
record changes in files within your project. It provides you with a visual history of these
changes, giving you the ability to go back and see who made the changes, what they
changed — both files and the changed contents, when they made the change, and,
by reading their commit message, why it was changed. In addition, it provides you with a
mechanism to segregate changes in your code, called branches (more on that later).

 There are a number of version control systems available, some free and open source,
others proprietary and requiring licensing. For the purposes of this chapter, we’ll be
focusing on the free and open source Git. Git was first developed by Linus Torvalds for the
Linux Kernel project. Git is a distributed version control system (DVCS) that allows you
to distribute many copies (mirrors) of your repository to other members of your team so
as to be able to track changes. This means that each person with a clone of the repository
has an entire working copy of the system at the time of the clone. Git was built to be
simple, fast, and fully distributable.

 This chapter is meant to give you an overview of Git, covering enough information to
get you started using it every day in your projects. Since I only have one chapter in which
to cover this, I’ll only touch on the surface of Git’s most commonly used functionality.
However, this should be more than enough to get you comfortable with using it. For a
more complete, in-depth look at Git, check out Pro Git by Scott Chacon and Ben Straub,
available from Apress.

 Using Git
 To start using Git , you first need to install it on your system. Binaries for Mac
OS X, Windows, Linux, and Solaris are available by visiting http://git-scm.com and
downloading the appropriate binary install for your OS. In addition to this, Git is also
available for RedHat/CentOS systems using the yum package manager or apt-get on
Debian/Ubuntu. On Mac OS X, you can get it by installing the Xcode command line tools.
In this manuscript, we will use a Linux version of Git.

http://git-scm.com/

CHAPTER 1 ■ VERSION CONTROL

2

 Git Configuration
 Now that Git is installed, let’s do a minimum amount of configuration by setting your
name and email address in the Git configuration tool so that this information will be
shown for commits that you make (a commit being the act of placing a new version of
your code in the repository). We can do this using the git config tool:

 $ git config --global user.name "Chad Russell"
 $ git config --global user.email chad@intuitivereason.com

 We can verify that these settings took by using the git config tool again, this time
using the property key as the setting we want to check:

 $ git config user.name
 Chad Russell
 $ git config user.email
 chad@intuitivereason.com

 Notice that you will run the same configuration commands in both Windows and
Unix environments.

 Initializing Your Repository
 To create your first Git repository , you will simply use the git init command. This will
initialize an empty Git repository in your source code directory. Once you initialize, you
can then perform your first commit to your new repository. For this example, we have an
empty directory that we’ll initialize in, then we will add a README file, and finally we’ll add
and commit the file to our new repository .

 Remember that Git will initiate based on the directory in which the Git command
will be called. For instance, if you are in

 C:\Program Files (x86)\Git

 then the result will be

 Initialized empty Git repository in C:/Program Files (x86)/Git/bin/.git/

 We’ll use the following repository and directory as the book progresses to track
various code examples that we’ll use:

 $ git init
 Initialized empty Git repository in /Apress/source/.git/

CHAPTER 1 ■ VERSION CONTROL

3

 Initial Commit
 Now that we have initialized our empty repository, we’ll add a very basic README file to it
and then perform our initial commit :

 $ echo "This is our README." > README.md

 Now, if we look at the current status of our repository using git status we’ll see that
we now have one untracked file, meaning one file that isn’t yet added to our repository or
being tracked for changes by Git. You can use git status any time you’d like to view the
status of the working branch of your repository:

 $ git status
 On branch master

 Initial commit

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 README.md

 Now, we’ll add the file to our repository using git add :

 $ git add README.md

 If we view the git status again, we’ll see our file has been added, but not yet
committed (saved) to the repository:

 $ git status
 On branch master

 Initial commit

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: README.md

 Lastly, we’ll commit our change, and our new README will now be in our repository
and be tracked for changes going forward:

 $ git commit -m "Initial commit. Added our README"
 [master (root-commit) e504d64] Initial commit. Added our README
 1 file changed, 1 insertion(+)
 create mode 100644 README.md

CHAPTER 1 ■ VERSION CONTROL

4

 We can see from the message we received back from git commit that our commit
was saved. Now, if we check the git status one more time we’ll see we currently have
nothing else to commit:

 $ git status
 On branch master
 nothing to commit, working directory clean

 Staging Changes
 We have our initial tracked file in our repository and have seen how to add a new file to
Git to be tracked. Let’s now change the README and then stage and commit this change.

 I’ve added a change to the README.md file, altering the initial text we added to
something slightly more informative. Let’s run git status again and see what it shows:

 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README. md

 It shows that our README was modified, but that it’s not staged for commit yet. We do
this by using the git add command. We’ll add it and check the status one more time:

 $ git add README.md
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: README.md

 Lastly, we’ll make this new commit, which will wrap up the change to the file we made:

 $ git commit -m "Updated README"
 [master ca476b6] Updated README
 1 file changed, 1 insertion(+), 1 deletion(-)

 ■ Note The staging changes may be configured a bit differently in a Windows
environment.

CHAPTER 1 ■ VERSION CONTROL

5

 Viewing History
 With all of the changes we’ve just made, it is helpful to be able to go back and view
the history of our repository. One of the easiest ways to do this is to use the git log
command. When no arguments are passed to it, git log will show you all of the
commits in your repository, starting with your most recent changes and descending
chronologically from there:

 $ git log
 commit ca476b6c41721cb74181085fd24a40e48ed991ab
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Tue Mar 31 12:25:36 2015 -0400

 Updated README

 commit dc56de647ea8edb80037a2fc5e522eec32eca626
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Tue Mar 31 10:52:23 2015 -0400

 Initial commit. Added our README

 There are a number of options and arguments you can pass to git log . You can limit
the number of results by passing in a number as an argument; you can view the results
for just a specific file; and you can even change the output format using the --pretty
argument along with a number of different options. For example, if we wanted to see only
the last commit to our README.md file and summarize the commit onto one line, we could
use the following:

 $ git log -1 --pretty=oneline -- README.md
 ca476b6c41721cb74181085fd24a40e48ed991ab Updated README

 To break down this command, we’re telling it to limit it to -1 one result, to use the
 oneline pretty format, and -- README.md only for our README.md file.

 ■ Note By far, the most frequent commands you'll use will be git add , git commit ,
 git log , git pull , and git push . These commands add files, commit files to the
repository, pull changes from a remote origin, or push local changes to a remote origin (such
as a hosted repository—more on that later). However, there are a number of additional
commands and sub-commands that Git makes available to perform various tasks. For a full
list of commands you can use git --help , and use git --help a to show sub-commands
available.

CHAPTER 1 ■ VERSION CONTROL

6

 Ignoring Specific Files
 There will often be a number of files and directories within your project that you do not
want Git to track. Git provides an easy way of specifying this by way of a Git Ignore file ,
called . gitignore . You can save these anywhere within your project, but usually you’ll
start with one in your root project directory.

 Once you create and save this file, you can edit it within your IDE or text editor and
add the files and/or paths that you want to ignore. For now, I want to ignore the settings
files that my IDE, PHPStorm, creates. PHPStorm creates a directory called .idea where it
stores a number of files that are specific to my IDE’s settings for this project. We definitely
don’t want that in our repository, as it’s not related to the project specifically, and it could
cause problems for other developers that clone this code and use PHPStorm. Our initial
. gitignore file will now look like this :

 # Our main project .gitignore file
 .idea/*

 For now, we have two lines; the first is a comment, which can be added anywhere
in the file using the number sign # . The second is the line to tell Git to ignore the .idea
folder and anything inside of it, using the asterisk to denote a wildcard match. We will
then want to commit this file to our repository so that it’s distributed to anyone else who
may clone this repository and contribute back to it.

 As your project grows and you have new files or directories that you don’t want
in your repository, simply continue to add to this file. Other items that are commonly
ignored are configuration files that contain passwords or other system-specific
information, temporary files such as caches, other media, or resources that are not
directly needed by your project or even maintained within your development team.

 Removing Files
 At times you will need to remove files from your repository. There are a few different ways
to approach removing files depending on the intentions of what you’re doing.

 If you want to completely remove a file from both the repository and your local
working copy, then you can use the git rm command to perform this task. If you delete
the file from your local copy using your operating system or within your IDE, then it will
show up as a deleted file that needs to be committed.

 Let’s take a look. First, we’ll create a simple text file to add to our repository, commit
it, then delete it:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding a file that we plan on deleting"
 [master 5464914] Adding a file that we plan on deleting
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ git rm DELETEME

CHAPTER 1 ■ VERSION CONTROL

7

 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 $ git commit -m "Removed our temporary file"
 [master 6e2722b] Removed our temporary file
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME

 $ git status
 On branch master
 nothing to commit, working directory clean

 Now, we’ll delete it first on the local system and then remove it from Git, and then we
will commit the change:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding another temporary file to delete"
 [master b84ad4f] Adding another temporary file to delete
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ rm DELETEME
 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: DELETEME

 no changes added to commit (use "git add" and/or "git commit -a")
 $ git rm DELETEME
 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 $ git commit -m "Removing our second temporary file"
 [master e980b99] Removing our second temporary file
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME

CHAPTER 1 ■ VERSION CONTROL

8

 Lastly, you may find that you want to delete a file from Git so it’s no longer tracked,
but you want to keep the file locally. Perhaps you accidentally committed a configuration
file that has now been added to your .gitignore file; you want to remove it from Git but
keep it locally, for obvious reasons. For that you will use the --cache option along with
the git rm command:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding a temporary file to delete one more time"
 [master f819350] Adding a temporary file to delete one more time
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ git rm --cached DELETEME
 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 DELETEME

 $ git commit -m "Removed temporary file just in the repository"
 [master 26e0445] Removed temporary file just in the repository
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME
 $ git status
 On branch master
 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 DELETEME

 Branching and Merging
 Branching is a mechanism that allows you to separate various segments of changes to
your code into sub-repositories of a sort. Merging is the method for bringing this code
back together. For example, suppose you have your main-line repository that most
development is performed under. Then you have some requirements to build a brand-new
set of functionality into your application, but you’ll still be making various unrelated
changes and bug fixes to your existing code base. By creating a separate branch just for
this new functionality, you can continue to make and track your changes to your main-line
code and work on changes for the new functionality separately. Once you’re ready to

CHAPTER 1 ■ VERSION CONTROL

9

integrate this change into your main code, you will perform a merge, which will merge
your changes into the main-line branch.

 Note, however, that Git branches are not like a bridge to Subversion (git svn)
 branches , since svn branches are only used to capture the occasional large-scale
development effort, while Git branches are more integrated into our everyday workflow.

 To get started, let’s create a branch for us to explore this functionality with:

 $ git branch branch-example
 $ git checkout branch-example
 Switched to branch 'branch-example'

 We created our new branch, called branch-example , with the first command. The
second tells Git to switch to that branch so as to start working in and tracking changes
there. Switching between branches is done with the git checkout command. Now, we’ll
create a test file for this new branch and commit it:

 $ touch test.php
 $ git add test.php
 $ git commit -m 'Added a test file to our branch'

 If we switch back to our initial branch (master) we’ll see this file isn’t there:

 $ git checkout master
 Switched to branch 'master'
 $ ls
 README.md
 $ git log
 commit e504d64a544d6a1c09df795c60d883344bb8cca8
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:23:18 2015 -0500

 Initial commit. Added our README

 Merging
 Once we’re ready for our changes in the test branch to appear in the master branch, we’ll
need to perform a merge. When performing a merge , Git will compare changes in both
branches and will attempt to automatically merge the changes together. In the event of a
collision of changes, meaning that the same lines of code were changed in both branches,
it will have you manually intervene to resolve the conflict. Once resolved, this will be
tracked as another commit, and you can finish your merge.

 Let’s merge our branch-example changes into the master branch:

 $ git merge branch-example
 Updating e504d64..a6b7d2d
 Fast-forward
 test.php | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.php

CHAPTER 1 ■ VERSION CONTROL

10

 Now that we’ve merged this in, in this case we don’t need our branch-example any
longer. We can simply delete it using the git branch command again:

 $ git branch -d branch-example

 Stashing Changes
 There will be many times when working with your project that you might need to pull
changes from a remote repository before you’re ready to commit what you’re working on,
or you might need to switch to another branch to do some other work before you’re ready
to commit and don’t want to lose your changes. This is where the git stash command
comes in handy.

 To stash your changes, you simply invoke the git stash command. You can view
the stashes you’ve saved by passing in the list sub-command, and you can reapply the
changes by using the apply sub-command. Let’s see it in action:

 $ git status
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

 $ git stash
 Saved working directory and index state WIP on master: 08e9d29 adding a test
file
 HEAD is now at 08e9d29 adding a test file
 $ git status
 On branch master

 nothing to commit, working directory clean

 You can see we had changes to test.php that weren’t yet committed; after calling
 git stash we now have a clean working directory. See here:

 $ git stash list
 stash@{0}: WIP on master: 08e9d29 adding a test file
 $ git stash apply
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

CHAPTER 1 ■ VERSION CONTROL

11

 no changes added to commit (use "git add" and/or "git commit -a")
 $ git status
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

 We can see the stash we have saved using git stash list . We can reapply it and
see it back in our working directory after calling git stash apply . By default, calling git
stash apply will apply the most recent stash in the list. If you want to apply a specific
stash, then you must supply the stash number that you see when calling git stash list .
Using the preceding list output as an example, we would use the following:

 $ git stash apply stash@{0}

 Tagging
 Tagging within Git allows you to tag any given commit with a label for future reference.
For example, you can use it to tag specific releases of your code or other important
landmarks along the way during development.

 Git provides two different tag types. There’s lightweight tags, which are just label
pointing to a commit. Annotated tags are instead full checksummed objects that contain
the name and email of the person tagging, and can include a message. It’s highly
recommended that you always use annotated tags unless you need to temporarily tag
something, in which case a lightweight tag will do.

 Lightweight Tags
 Let’s create a simple lightweight tag to demonstrate, then delete it and create an
annotated tag.

 Create initial lightweight tag:

 $ git tag v0.0.1

 Now show details of the tag:

 $ git show v0.0.1
 commit a6b7d2dcc5b4a5a407620e6273f9bf6848d18d3d
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:44:11 2015 -0500

CHAPTER 1 ■ VERSION CONTROL

12

 Added a test file to our branch

 diff --git a/test.php b/test.php
 new file mode 100644
 index 0000000.. e69de29

 We can delete a tag using the -d option:

 $ git tag -d v0.0.1
 Deleted tag 'v0.0.1' (was a6b7d2d)

 Annotated Tags
 Now create the annotated version:

 $ git tag -a v0.0.1 -m "Initial Release"

 Show the details of the annotated tag:
 $ git show v0.0.1
 tag v0.0.1
 Tagger: Chad Russell <chad@intuitivereason.com>
 Date: Sun Mar 15 18:54:46 2015 -0400

 Initial Release

 commit a6b7d2dcc5b4a5a407620e6273f9bf6848d18d3d
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:44:11 2015 -0500

 Added a test file to our branch

 diff --git a/test.php b/test.php
 new file mode 100644
 index 0000000..e69de29

 As you can see, on the annotated version we have the date, name, and email of the
person who created the tag.

CHAPTER 1 ■ VERSION CONTROL

13

 Undoing Changes
 There will come times when you might accidentally commit something that you want to
undo, or where you might want to reset your local working copy back to what it was from
the last commit or a given commit within the repository history. Undoing changes in Git
can be broken down in the following ways:

• Amend

• Un-stage

• File Reset

• Soft Reset

• Mixed Reset

• Hard reset

 Amend
 Undoing a previous commit by changing the commit message or adding additional files
can be done using the --amend option with git . For example, suppose you have two files
to commit, and you accidentally only commit one of them. You can append the other file
you wanted to commit to the same file and even change the commit message using the
-- amend option, like this:

 $ git add second.php
 $ git commit -m "Updated commit message" --amend

 Un-stage
 This action would un-stage a file that has been staged but not yet committed. Un-staging
a file makes use of the git reset command. For example, suppose you accidentally
staged two files to commit but you only wanted to stage and commit one of them for now.
You would use the git reset command along with the filename to un-stage it, like this:

 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: first.php
 new file: second.php

 $ git reset HEAD second.php
 $ git status
 On branch master

CHAPTER 1 ■ VERSION CONTROL

14

 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: first.php

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 second.php

 File Reset
 A file reset would mean reverting your working changes to a file back to the most recent
commit or to an earlier commit that you specify. To reset a file to the most recent commit,
you will use git checkout :

 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: first.php

 $ git checkout -- first.php
 $ git status
 On branch master
 nothing to commit, working directory clean

 If you wanted to reset a file back to a specific commit, you would use git
reset along with the commit hash and the filename, like this:

 $ git reset a659a55 first.php

 Soft Reset
 A soft reset resets your repository index back to the most recent commit or a specified
commit and leaves your working changes untouched and your staged files staged. It is
invoked using the --soft option with git reset . You can either specify a commit hash to
reset to or omit the commit hash, and it will reset to the most recent commit:

 $ git reset –soft 26e0445

CHAPTER 1 ■ VERSION CONTROL

15

 Mixed Reset
 Much like a soft reset, a mixed reset resets your repository index back to the most recent
commit or a specified commit, leaving your working changes untouched. However, it
removes any files from staging. This is the default action of just using git reset or git
reset along with a commit hash, such as:

 $ git reset 26e0445

 Hard Reset
 Lastly, the hard reset is the most dangerous of all options, so use this only when
absolutely necessary. It is a hard reset of your repository back to a given commit while
discarding all working and staged changes. This action cannot be undone, so make sure
you know that you want to do this before doing it:

 $ git reset --hard e504337
 HEAD is now at e504337 Added our first .gitignore file

 Version Control in the Cloud: Bitbucket and GitHub
 Having a remote-hosted repository is common practice when using Git other than for
just your own personal projects. While there are many different ways of accomplishing
this, there are two very popular services that allow you to have hosted repositories in the
cloud. Enter Bitbucket (http://bitbucket.com) and GitHub (http://github.com).

 Each of these services offers both free and paid plans. The largest difference in
the free plan offered by both services is that Bitbucket al lows an unlimited amount
of private repositories, limited to five collaborators, and GitHub provides only public
free repositories. Once you have an account with one of these services and create your
repository, you will define this remote repository in your local Git configuration to allow
you to push and pull changes to and from it.

 Bitbucket
 Let’s get started with Bitbucket. When you first visit their site, you will create a new
account. Once your account is created, you will log in and be provided with the option to
set up a new repository. Before we proceed with creating our repository, there’s a single
step we can do that will make interacting with this repository a lot easier for us, which is
adding an SSH key to use for authentication.

 One of the most important advantages of Bitbucket is that it is JIRA integrated and
also supports Mercurial.

http://bitbucket.com/
http://github.com/

CHAPTER 1 ■ VERSION CONTROL

16

 SSH Key
 You can add an SSH key to your Bitbucket account, which will allow you to interact with
it from within Git on your local machine without having to type your Bitbucket password
over and over again. To do this, navigate to the Manage Account section and then locate
“SSH Keys.” From here, you can add an SSH key from your local machine that will be used
as authorization when working with any remote repository under your account. If you
haven’t ever set up an SSH key, it’s easily done with Mac OS X and Linux, and by using Git
Bash on Windows.

 From within Mac OS X or Linux, open a terminal, or on Windows open a Git Bash
prompt, then issue the following command and answer the few questions it presents you:

 $ ssh-keygen -t rsa -C "chad@intuitivereason.com"

 It is highly recommended that you accept the default values it provides, including
the path to store the new key pair.

 Once these steps are finished, you will have both a public and private key pair
created. Locate the public key (using the path shown from the ssh-keygen process) and
open it using your favorite text editor. You will then copy the contents of the public key to
your Bitbucket account and save it. This will complete the key setup for your account.

 Creating Your First Remote Repository
 With the SSH in place in the Bitbucket account, you can now create your repository. To
start, click the Create button located in the top navigation bar, which takes you to the
Create form. Enter the information about your project and then click Create Repository.
This will take you to the repository configuration page. This will provide you with a
few options on what to do with this new repository. If you haven’t yet created your
local repository, as we did earlier, then you could use the “Create from scratch” option.
However, in our case we want to push our current repository to this new remote Git
repository. Following the instructions provided on this screen, let’s link our repository
and do the first push to it to copy our current code to it:

 $ git remote add origin git@bitbucket.org:intuitivereason/pro-php-mysql.git
 $ git push -u origin --all
 Counting objects: 6, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (6/6), 524 bytes | 0 bytes/s, done.
 Total 6 (delta 0), reused 0 (delta 0)
 To git@bitbucket.org:intuitivereason/pro-php-mysql.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 Now that we’ve successfully pushed it, we can click on the “Source” icon on
Bitbucket to see our code visible there.

CHAPTER 1 ■ VERSION CONTROL

17

 GitHub
 Instead of using Bitbucket, you might want to use GitHub, and when comparing them
we can say that they have very different billing structures and they also differ in history
viewer and collaboration features.

 The steps using Github are very similar. You first find and click the New Repository
button, which will then present you with a Repository Create form similar to what we had
with Bitbucket. From here, you’ll fill out the form and create the repository. On the next
screen, you’ll be presented with instructions based on whether this is a new or existing
repository, just as with Bitbucket. We can add this repository just like we did with Bitbucket:

 $ git remote add origin git@github.com:intuitivereason/pro-php-mysql.git
 $ git push -u origin --all

 Pushing, Pulling, and Conflict Resolution
 As we just did to initially push our code to our new remote repository, we’ll use the git
 push command to continue to push code to it, as well as utilize the git pull command to
pull code from the repository that may have been committed by others since our last pull.

 For example, suppose you invite another developer to collaborate with you on a project.
You pull the latest from the remote repository, then do some work. Developer 2 does the
same, but commits and pushes his changes to the remote repository before you do. When
you go to push, you’ll receive a message back from Git telling you that your repository
version is behind. You’ll then use the git pull command to fetch any changes and attempt
to automatically merge and rebase the changes with yours. Then you can push your changes
to the repository. You’ll both continue this pattern while both working with the repository.

 In the event that both of you work on the sample file and have overlapping changes,
Git won’t be able to determine which version is the correct one to use. This is called a
 conflict . You must manually resolve conflicts, then commit the resolved changes and push
back to the remote repository.

 Git Tools
 There are a number of tools that exist to make working with Git easier. Many IDEs offer
integration with Git, and both Bitbucket and Github provide their own GUI tools that
make working with Git much easier.

 PHPStorm
 If you’re not familiar with PHPStorm, it is a popular, cross-platform (Linux, Mac OS X,
and Windows) PHP IDE developed by JetBrains. It is the IDE that I use throughout the
various examples; however, you do not have to have PHPStorm to do any of the exercises
in this book.

 You can download PHP Storm at:

 https://www.jetbrains.com/phpstorm/download/

CHAPTER 1 ■ VERSION CONTROL

18

 If you have a Git repository in your project root folder in PHPStorm, it will
automatically detect it and provide menu entries to perform a number of different
actions, as shown in Figure 1-1 .

 Figure 1-2. Git Repository sub-menu entry in PHPStorm

 Figure 1-1. PHPStorm Git menu entries

 Here we see there are a number of actions available to us when viewing these
options while on our test.php file. From here we can commit or add the file, if it hasn’t
been added yet. We can also do a diff to compare our local file with the same version in
the repository or with what the latest version might be on a remote repository. We can
also compare it with another branch within our repository or see the history of all of the
changes for this one file. Another function is the “Revert” function, which allows you to
quickly revert any uncommitted changes in your file back to the state it was in for the last
local commit.

 Figure 1-2 shows the Repository sub-menu entry and the actions it provides within
this sub-menu.

CHAPTER 1 ■ VERSION CONTROL

19

 From this entry we can view branches, tag, merge, stash or un-stash our current
changes, or fetch, pull, or push changes from and to a remote repository.

 SourceTree
 The SourceTree application is a free Git client for Windows and Mac users that is built by
Atlassian, the same company that runs Bitbucket. It is a very powerful Git GUI client that
makes working and interacting with Git repositories, both locally and remote, quite easy.

 Installing SourceTree
 SourceTree can be downloaded by visiting http://www.sourcetreeapp.com .
Once downloaded, run the installer and follow the instructions to install it on your
development machine. The first time you run SourceTree, it will prompt you to log in
with an existing Bitbucket or GitHub account. You can either log in or skip this step. If you
do choose to log in, you will be able to see your remote repositories within SourceTree’s
main bookmark/browser window. You can always choose to add one of these linked
accounts later.

 Adding a Repository
 To add a Git repository to SourceTree, you will click on the New Repository button and
choose whether you are cloning an existing remote repository, adding an existing local
repository, or creating a new local or remote repository (Figure 1-3).

 Figure 1-3. Adding a new repository to SourceTree

http://www.sourcetreeapp.com/

CHAPTER 1 ■ VERSION CONTROL

20

 Add the new repository that you created earlier in this chapter by selecting “Add
existing local repository.” This will have you navigate to the directory where the repository
was initialized, and then click the Add button. This repository will now be visible in the
SourceTree bookmark/browser window. Simply double-click the name of the repository
to bring up the full GUI (Figure 1-4).

 Figure 1-4. SourceTree repository view

 From here, you can continue to work with Git for all of the actions we have discussed
so far and others, including committing, branching, merging, pushing and pulling to and
from a remote repository, and more.

 GitHub GUI
 GitHub has their own Git GUI that’s freely available as well. It’s very clean and intuitive to
use, but lacks some of the advanced features you’ll find in SourceTree. However, if you’re
looking for a nice, clean interface to use with Git, it’s definitely worth looking at.

 Installing the GitHub GUI
 Like SourceTree, GitHub GUI is available for both Windows and Mac users. Mac users can
download by visiting https://mac.github.com , and Windows users can download by
visiting https://windows.github.com . Once downloaded and installed, GitHub will walk
you through the setup process to finish the installation.

https://mac.github.com/
https://windows.github.com/

CHAPTER 1 ■ VERSION CONTROL

21

 Adding a Repository
 One interesting feature of the GitHub GUI is that it can find Git repositories on your
system and provide them to you during setup, with the option of importing them in to
start working with them in GitHub GUI. If you choose not to do that, you can also add or
create a new repository later using the menu entry. Once your repository has been added
to the GitHub GUI, you will be presented with the repository view, as shown in Figure 1-5 .

 Figure 1-5. GitHub GUI repository view

 gitg
 gitg is an open source Git GUI that’s made by the Gnome foundation and is for Linux
users only.

 Installing gitg
 gitg is available for installation using both yum and apt-get . gitg doesn’t quite provide the
power and usability that is found with SourceTree, GitHub, or even within the PHPStorm
IDE. It does, however, provide a nice interface for browsing or searching through a
repository’s history on Linux systems.

 Adding a Repository
 To add a repository using gitg, you click the “cog wheel” icon, which then reveals a sub-
menu for opening a local repository or cloning a remote repository. Once added, you can
click to open the repository view, as seen in Figure 1-6 .

CHAPTER 1 ■ VERSION CONTROL

22

 Summary
 In this chapter, we introduced the Git distributed version control system (DVCS).
We covered the basics of using Git in day-to-day development, such as adding and
committing changes, merging, and branching. We also covered working with remote
repositories with the popular Github and Bitbucket services. We then discussed working
with other developers and managing conflict resolution with committed files before
reviewing some tools you can use to make working with Git even easier. Hopefully you’re
now moving on with a comfortable knowledge of Git and are able to start using it in your
projects right away!

 In the next chapter we will discuss virtualizing development environments.

 Figure 1-6. gitg repository view

	Chapter 1: Version Control
	Using Git
	Git Configuration
	Initializing Your Repository
	Initial Commit
	Staging Changes
	Viewing History
	Ignoring Specific Files
	Removing Files

	Branching and Merging
	Merging
	Stashing Changes
	Tagging
	Lightweight Tags
	Annotated Tags

	Undoing Changes
	Amend
	Un-stage
	File Reset
	Soft Reset
	Mixed Reset
	Hard Reset

	Version Control in the Cloud: Bitbucket and GitHub
	Bitbucket
	SSH Key
	Creating Your First Remote Repository

	GitHub

	Pushing, Pulling, and Conflict Resolution
	Git Tools
	PHPStorm
	SourceTree
	Installing SourceTree
	Adding a Repository

	GitHub GUI
	Installing the GitHub GUI
	Adding a Repository

	gitg
	Installing gitg
	Adding a Repository

	Summary

