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    Introd uction 

   Writing software has become part of the job description for nearly every professional engineer and 
engineering student. While there are many excellent prebuilt software applications for engineers, almost 
everyone can benefit from writing custom software for their own problems. 

 MATLAB® has origins for that very reason. Scientists that needed to do operations on matrices used 
numerical software written in FORTRAN. At the time, using computer languages required the user to go 
through the write-compile-link-execute process that was time-consuming and error-prone. MATLAB 
presented a scripting language that allowed the user to solve many problems with a few lines of a script that 
executed instantaneously. MATLAB had built-in visualization tools that helped the user better understand 
the results. Writing MATLAB was a lot more productive and fun than writing FORTRAN. 

 MATLAB has grown greatly since its origins. The power of the basic MATLAB software has grown 
dramatically, and hundreds of MATLAB libraries are now available, both commercially and as open source. 
MATLAB is so sophisticated that most new users only use a fraction of its power. 

 The goal of  MATLAB Recipes  is to help all users harness the power of MATLAB. This book has two parts. 
The first part, Chapters   1     through 5, gives a framework that you can use to write high-quality MATLAB code 
that you, your colleagues, and possibly your customers, can utilize. We cover coding practices, graphics, 
debugging and other topics in a problem-solution format. You can read these sections from cover to cover or 
just look at the recipes that interest you and use them in your latest MATLAB code. 

 The second part of the book, Chapters   6     through   12    , shows complete MATLAB applications revolving 
around the control and simulation of dynamical systems. Each chapter provides the technical background 
for the topic, ideas on how you can write a simple control system, and an example of how you might simulate 
the system. Each system is implemented in a MATLAB script supported by a number of MATLAB functions. 
Each chapter also highlights a general MATLAB topic, like graphics or writing graphical user interfaces 
(GUIs). We have deliberately made the control systems simple so that the reader won’t need a course in 
control theory to get results. Control experts can easily take the script and implement their own ideas. We 
cover a number of areas, ranging from chemical processes to satellites—and we apologize if we didn’t write 
an example for your area of interest! 

 The book has something for everyone—from the MATLAB novice to the authors of commercial 
MATLAB packages. We learned new things writing this book! We hope that you enjoy the book and look 
forward to seeing your software that it inspires.  

xxiii
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   PART I 

   Coding in MATLAB 
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    CHAPTER 1   

 Coding Handbook           

 The purpose of this chapter is to provide an overview of MATLAB syntax and programming, highlighting 
features that may be underutilized by many users and noting important differences between MATLAB and 
other programming languages and integrated development environments (IDEs). You should also become 
familiar with the very detailed documentation that is available from MathWorks in the help browser. The 
“Language Fundamentals” section of the MathWorks web site describes entering commands, operators, and 
data types. 

 Over the last two decades, MATLAB has matured a lot from its origins as a linear algebra package. 
Originally, all variables were double-precision matrices. Today, MATLAB provides different variable types, 
such as integers, data structures, object-oriented programming and classes, and integration with Java. The 
MATLAB application is a full IDE with an integrated editor, debugger, command history, and code analyzer, 
and offering report capabilities. Engineers who have worked with MATLAB for many years may find that they 
are not taking advantage of the full range of capabilities now offered. In this text, we hope to highlight the 
more useful new features. 

 The first part of this chapter provides an overview of the most commonly used MATLAB types and 
constructs. We’ll then provide some recipes that make use of these constructs to show you some practical 
applications of modern MATLAB. 

   MATLAB Language Primer 
   A Brief Introduction to MATLAB 
 MATLAB is both an application and a programming language. It was developed primarily for numerical 
computing and it is widely used in academia and industry.    MATLAB was originally developed by a college 
professor in the 1970s to provide easy access to linear algebra libraries.  MathWorks   was founded in 1984 to 
continue the development of the product. The name is derived from   MAT rix  LAB oratory  . Today, MATLAB 
uses the  LAPACK ( L inear  A lgebra  Pack age) libraries   for the underlying matrix manipulations. Many 
toolboxes are available for different engineering disciplines; this book focuses on features available only in 
the base MATLAB application. 

 The MATLAB application is a rich development environment for the MATLAB language. It provides 
an editor, command terminal, debugger, plotting capabilities, creation of graphical user interfaces, and 
more recently, the ability to install third-party apps. MATLAB can interface with other languages, including 
Fortran, C, C++, Java, and Python. A code analyzer and profiler are built in. Extensive online communities 
provide forums for sharing code and asking questions. 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0559-4_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_1
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  The following are the main components of the  MATLAB   application:

    Command Window  The terminal for entering commands and operating on 
variables in the base workspace. The MATLAB prompt is  > > .  

   Command History  A list of previously executed commands.  

   Workspace display  Lists the variables and their values in the current workspace 
(application memory). Variables remain in memory once created until you 
explicitly clear them or close MATLAB.  

   Current Folder  The file browser displaying the contents of the current folder and 
providing file system navigation. Recent versions of MATLAB can also display the 
SVN status on configuration managed files.  

   File Details  A panel displaying information on the file selected in the Current 
Folder panel.  

   Editor  The editor for m-files with syntax coloring and a built-in debugger. It can 
also display any type of text file, and recognizes and appropriately colors other 
languages, including Java, C/C++, and XML/HTML.  

   Variables editor  A spreadsheet-like graphical editor for variables in the workspace.  

   GUIDE  The graphical interface development window.  

   Help browser  A searchable help documentation on all MATLAB products and 
third-party products you have installed.  

   Profiler  A tool for timing code as it runs.    

 These components can be docked in various configurations. The default layout of the main application 
window or  desktop  contains the first five components listed and is shown in Figure  1-1 . The Command 
Window is in the center. The upper-left panel shows a file browser with the contents of the Current Folder. 
Under this is a file information display. On the right-hand side are the workspace display and the Command 
History panel. The  base workspace  is all the variables currently in application memory. Commands from 
the history can be double-clicked or dragged onto the command line to be executed. The extensive toolbar 
includes buttons for running the code analyzer, opening the code profiler, and the Help window, as well as 
typical file and data operations. Note the PLOTS and APPS tabs above the toolbar. The PLOTS tab allows the 
graphical creation and management of plots from data selected in the workspace browser. The APPS tab 
allows you to access and manage the third-party apps that you install.  
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 The Editor with the default syntax coloring is shown in Figure  1-2  (you can see a file from this chapter). 
The horizontal lines show the division of the code into “cells” using a double-percent sign, which can be 
used for sequential execution of code and for creating sections of text when publishing. The cell titles are 
bolded in the editor. MATLAB keywords are highlighted in blue, comments in green, and strings in pink. 
The toolbar includes buttons for commenting code, indenting, and running or debugging the code. The 
Go To pop-up menu gives access to subfunctions within a large file. Note the PUBLISH and VIEW tabs with 
additional features on publishing (covered in the next chapter) and options for the editor view.  

  Figure 1-1.    MATLAB desktop with the Command Window       
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 The Help browser is shown in Figure  1-3 . MATLAB offers extensive help, including examples and links 
to online videos and tutorials. Third-party toolboxes can also install help in this browser. Like any browser, 
you can open multiple tabs; there is a search utility; and you can mark favorite topics. Topics available in the 
help browser are referred to throughout this book.    

  Figure 1-2.    MATLAB File Editor       
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    Everything Is a Matrix 
 By default, all variables in MATLAB are double-precision  matrices.   You do not need to declare a type for 
these variables. Matrices can be multidimensional and are accessed using 1-based indices via parentheses. 
You can address elements of a matrix using a single index, taken columnwise, or one index per dimension. 
To create a matrix variable, simply assign a value to it, like this 2 × 2 matrix  a : 

  >> a = [1 2; 3 4];  
  >> a(1,1)  
       1  

  >> a(3)  
       2  

 You can simply add, subtract, multiply, and divide matrices with no special syntax. The matrices must 
be the correct size for the linear algebra operation requested. A transpose is indicated using a single quote 
suffix,  ' , and the matrix power uses the operator  ̂  . 

  >> b = a'*a;  
  >> c = a^2;  
  >> d = b + c;  

 By default, every variable is a numerical variable. You can initialize matrices to a given size using the 
 zeros ,  ones ,  eye , or  rand  functions, which produce zeros, ones, identity matrices (ones on the diagonal), 
and random numbers, respectively. Use  isnumeric  to identify numeric variables. Table  1-1  shows a selection 
of key matrix functions.    

  Figure 1-3.    MATLAB Help Window       
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    Strings Are Simple 
 String and character variables are defined using single quotes. They can be concatenated using the same 
syntax as matrices, namely, square brackets. They are indexed the same way as matrices. Here is a short 
example of string manipulation:    

  >> s = 'Hello World' ;  
  >> msg = [s 'more string'];  
  >> hello = msg(1:5)  

  hello =  

  Hello  

 Use  ischar  to identify string variables. Also note that  isempty  returns true for an empty string; that is,  '' . 
 For a description of string syntax, type  help strings  at the MATLAB command line, and for a 

comprehensive list of string functions, type  help strfun . Table  1-2  shows a selection of key string functions.    

   Table 1-1.    Key Functions for Matrices   

 Function  Purpose 

 zeros  Initialize a matrix to zeros 

 ones  Initialize a matrix to ones 

 eye  Initialize an identity matrix 

 rand, randn  Initialize a matrix of random numbers 

 isnumeric  Identify a matrix or scalar numeric value 

 isscalar  Identify a scalar value (a 1 × 1 matrix) 

 size  Return the size of the matrix 

   Table 1-2.    Key Functions for Strings   

 Function  Purpose 

 ischar  Identify a character string 

 char  Convert integer codes or cell array to character string 

 sprintf  Write formatted data to a string 

 strcmp, strncmp  Compare strings 

 strfind  Find one string within another 

 num2str, mat2str  Convert a number or matrix to a string 

 lower  Convert a string to lowercase 

    Use Strict Data Structures 
 Data structures in MATLAB are highly flexible, leaving it up to the user to enforce consistency in fields and 
types. You are not required to initialize a data structure before assigning fields to it, but it is a good idea to do 
so, especially in scripts, to avoid variable conflicts.    
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 Replace 

  d.fieldName = 0;  

 with 

  d = struct;  
  d.fieldName = 0;  

 In fact, we have found that it is generally a good idea to create a special function to initialize larger 
structures that are used throughout a set of functions. This is similar to creating a class definition. 
Generating your data structure from a function, instead of typing out the fields in a script, means that you 
always start with the correct fields. Having an initialization function also allows you to specify the types of 
variables and provide sample or default data. Remember, since MATLAB does not require you to declare 
variable types, doing so yourself with default data makes your code that much clearer. 

 ■   Tip   Create an initialization function for data structures.  

 You make a data structure into an array simply by assigning an additional copy. The fields must be in 
the same order, which is yet another reason to use a function to initialize your structure. You can nest data 
structures with no limit on depth. 

  d = MyStruct;  
  d(2) = MyStruct;  

  function   d = MyStruct  

  d =   struct ; 
  d.a = 1.0;  
  d.b = 'string';  

 MATLAB now allows   dynamic field names    using variables; for example,  structName.(dynamicExpression) . 
This provides improved performance over  getfield , where the field name is passed as a string. This allows all 
sorts of inventive structure programming. Take our data structure array in the previous code snippet to get the 
values of field a using a dynamic field name; the values are returned in a cell array. 

  >> field = 'a';  
  >> values = {d.(field)}  

  values =  

      [1]   [1]  

 Use  isstruct  to identify structure variables and  isfield  to check for the existence of fields. Note 
that  isempty  will return  false  for a struct initialized with  struct , even if it has no fields. Table  1-3  shows a 
selection of key struct functions.    
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    Cell Arrays Hold Anything and Everything 
 One variable type unique to MATLAB is cell arrays. This is really a list container, and you can store variables 
of any type in elements of a cell array. Cell arrays can be multidimensional, just like matrices, and are useful 
in many contexts.    

 Cell arrays are indicated by curly braces,  {} . They can be of any dimension and contain any data, 
including string, structures, and objects. You can initialize them using the  cell  function, recursively display 
the contents using  celldisp , and access subsets using parentheses, just like with a matrix. The following is a 
short example. 

  >> c = cell(3,1);  
  >> c{1} = 'string';  
  >> c{2} = false;  
  >> c{3} = [1 2; 3 4];  
  >> b = c(1:2);  
  >> celldisp(b)  
  b{1} =  
  string  

  b{2} =  
       0  

 Using curly braces for access gives you the element data as the underlying type. When you access 
elements of a cell array using parentheses, the contents are returned as another cell array, rather than the 
cell contents. MATLAB help has a special “Comma-Separated Lists” section, which highlights the use of 
cell arrays as lists. The code analyzer also suggests efficient ways to use cell arrays. Take the following, for 
instance. 

 Replace 

  a = {b{:} c};  

 with 

  a = [b {c}];  

   Table 1-3.    Key Functions for Structs   

 Function  Purpose 

 struct  Initialize a structure with or without fields 

 isstruct  Identify a structure 

 isfield  Determine if a field exists in a structure 

 fieldnames  Get the fields of a structure in a cell array 

 rmfield  Remove a field from a structure 

 deal  Set fields in a structure to a value 
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 Cell arrays are especially useful for sets of strings, with many of MATLAB’s string search functions 
optimized for cell arrays, such as  strcmp . 

 Use  iscell  to identify cell array variables. Use  deal  to manipulate structure array and cell array contents. 
Table  1-4  shows a selection of key cell array  functions.    

   Table 1-4.    Key Functions for Cell Arrays   

 Function  Purpose 

 cell  Initialize a cell array 

 cellstr  Create cell array from a character array 

 iscell  Identify a cell array 

 iscellstr  Identify a cell array containing only strings 

 celldisp  Recursively display the contents of a cell array 

    Optimize Your Code with Logical Arrays 
 A  logical array  is composed of only ones and zeros. You can initialize logical matrices using the  true  and 
 false  functions, and there is an  islogical  function to test if a matrix is logical. Logical arrays are outputs of 
numerous built-in functions, like  isnan , and are often recommended by the code analyzer as a faster alternative 
to manipulating array indices. For example, you may need to set any negative values in your array to zero.    

 Replace 

  k =   find  (x<0);  
  x(k) = 0;  

 with 

  x(x<0) = 0;  

 where  x<0  produces a logical array with 1, where the values of  x  are negative and 0 elsewhere. 
 MATLAB provides both traditional relational operators, such as  &&  for  AND  and  ||  for  OR , as well as 

unique element-wise operators. These element-wise operators, such as single  &  and  | , compare matrices of 
the same size and return logical arrays.   

   Use Persistent and Global Scope to Minimize Data Passing 
 In general, variables defined in a function have a local scope and are only available within that function. 
Variables defined in a script are available in the workspace and, therefore, from the command line.    

 MATLAB has a  global  scope, which is the same as any other language, applying to the base workspace and 
maintaining the variable’s value throughout the MATLAB session. Global variables are empty once declared, 
until initialized. The  clear  and  clearvars  functions each have flags for removing only the global variables. 
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  >>   global   MY_GLOBAL_VAR; % variable is empty  
  >> MY_GLOBAL_VAR = 1.0;  
  >>   whos  
    Name            Size    Bytes   Class     Attributes  
       MY_GLOBAL_VAR    1x1        8   double      global  

  >> clearvars -GLOBAL  

 Table  1-5  shows some key functions for logical operations. 

   Table 1-5.    Key Functions for Logical Operations   

 Function  Purpose 

 logical  Convert numeric values to logical 

 islogical  Identify a logical array (composed of 1 s and 0 s) 

 true  Return a true value (1) or array (M,N) 

 false  Return a false value (0) or array (M,N) 

 any  Return true if any value in the array is a nonzero number 

 all  Return true if none of the values in the array is 0 

 and, or  Functional forms of element-wise operators  &  and  |  

 isnan, isinf, isfinite  Values testing functions returning logical arrays 

 MATLAB has a unique scope that pertains to a single function,  persistent . This is useful for initializing 
a function that requires a lot of data or computation, and then saving that data for use in later calls. The 
variable can be reset using the  clear  command on the function, such as  clear functionName . This can also 
be a source of bugs, thus it is important to note the use of persistent variables in a function’s help comments 
so that you don’t get unexpected results when you switch models. 

 ■   Tip   Use a persistent variable to store initialization data for subsequent function calls.  

  Variables   can also be in scope for multiple functions defined in a single file, if the  end  keyword is 
used appropriately. In general, you can omit a final  end  for functions, but if you use it to wrap the inner 
functions, the functions become  nested  and can access variables defined in the parent function. This allows 
subroutines to share data without passing large numbers of arguments. The editor highlights the variables 
that are so defined. 

 In the following example, the  constant  variable is available to the nested function inside the parent 
function. 
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   Table 1-6.    Key Functions for  Scope Operations     

 Function  Purpose 

 persistent  Specify the persistent scope for a variable in a function 

 global  Specify the global scope for a variable 

 clear  Clear a function or variable 

 who, whos  List the variables in a workspace 

 mlock, munlock  Lock (and unlock) a function or MEX file that prevents it from being cleared 

 NESTED FUNCTION

  function   y = parentFunction( x )  
  constant   = 3.0;  
  y = nestedFunction( x );  

      function   z = nestedFunction( x )  

      z =   constant  *x;  

      end  
  end    

 Table  1-6  shows a selection of scope functions.  

   Understanding Unique MATLAB Operators and Keywords 
 Some common operators have special features in MATLAB, which we call attention to here. 

    Colon 
 The colon operator for creating a list of indices in an array is unique to MATLAB. A single colon used by itself 
addresses all elements in that given dimension; a colon used between a pair of integers creates a list.    

  >> a(1,1:2)  
  ans =  
       1 2  
  >> a(:,1)  
  ans =  
       1  
       3  

 The colon operator applies to all variable types when accessing elements of an array: cell arrays, strings, 
and data structure arrays. 

 The colon operator can also be used to create an array using an interval, as a shorthand for  linspace . 
The interval and the endpoints can be doubles. Using it for matrix indices is really an edge case using a 
default interval of 1. For example,  0.1:0.2:0.5  produces  0.1 0.3 0.5 . 

  >> a = 0.1:0.2:0.5  
  a =  
            0.1     0.3     0.5    
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    Tilde 
 The tilde ( ~ ) is the logical  NOT  operator in MATLAB. The output is a logical matrix of the same size as the 
input, with values of 1 if the input value is zero and a value of 0 otherwise.    

  >> a = [0 -1; 1 0];  
  >> ~a  
  ans   =  
       1    0  
       0    1  

 In newer versions, it also can be used to ignore an input or output to a function; this is suggested often 
in the code analyzer as preferable to the use of a dummy variable. 

  [~,b] = MyFunction(x,y);    

    Dot 
 By  dot , we mean using a period with standard arithmetic operators, like  .*  or  .\  or  .^ . This is special 
syntax in MATLAB used to apply an operator on an element per element basis over the matrices, instead 
of performing the linear algebra operation otherwise implied. This is also termed an  array operation  
as opposed to a  matrix operation . Since the matrix and array operations are the same for addition and 
subtraction, the dot is not required.    

  y = a.*b;  

 MATLAB is optimized for array operations. Using this syntax is a key way to reduce  for  loops in your 
MATLAB code and make it run faster. Consider the traditional alternative code. 

  a =   rand  (1,1000);  
  b =   rand  (1,1000);  
  y =   zeros  (1,1000);  
  for   k = 1:1000  
    y(k) = a(k)*b(k);  
  end  

 Even this simple example takes two to three times as long to run as the vectorized version shown.   

    end 
 The   end  keyword   serves multiple purposes in MATLAB. It is used to terminate  for ,  while ,  switch ,  try , and 
 if  statements, rather than using braces, as in other languages. It is also used to serve as the last index of a 
variable in a given dimension. Using  end  appropriately can make your code more robust to future changes in 
the size of your data. 

  >> a = [1 2 3; 4 5 6; 7 8 9];  
  >> b = a(1:  end-1,2:   end )  
  b =  
       2     3  
       5     6     
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    Harnessing the Power of Multiple Inputs and Outputs 
 Uniquely, MATLAB functions can have multiple outputs. They are specified in a comma-separated list, just 
like the inputs.    Additionally, you do not need to specify the data types of the inputs or outputs, and you can 
silently override the output types by assigning any data you want to the variables. Thus, a function can have 
an infinite number of syntaxes defined within a single file. Outputs must be assigned the names given in the 
signature; you cannot pass a variable to the  return  keyword. 

 MATLAB provides helper functions for specifying a variable number of inputs or outputs, namely, 
 varargin  and  varargout . These variables are cell arrays, and you access and assign elements using curly 
braces. Here is an example function definition: 

  function   [y,varargout] = varargFunction(x,varargin)  

  y = varargin{1};  
  varargout{1} =   size  (x,1);  
  varargout{2} =   size  (x,2);  

 The following example demonstrates that the outputs were correctly assigned. 

 USING VARARGOUT AND VARARGIN

  >> [y,a,b] = varargFunction(   rand (3,2),1.0)  

  y =  
       1  

  a =  
       3  

  b =  
       2   

 This allows you to accept unlimited arguments or parameter pairs in your function. It is up to you to 
create consistent forms for your function and document them clearly in the help comments. 

 You can also count the input and output arguments for a given call to your function using  nargin  and 
 nargout , and use this with logical statements or a  switch  statement to handle multiple cases. 

 If you need very complex input handling, MATLAB now provides an  inputParser  class, which allows 
you to parse and validate an input scheme. You can define functions to validate the inputs, optional 
arguments, and predefine parameter pairs.   

    Use Function Handles for Efficiency 
 Function  handles   are pointers to functions. They are closely related to anonymous functions, which allow 
you to define a short function inline, and return the function handle. When you create a handle, you can 
change the input scheme and give values for certain inputs, such as parameters. Using handles as inputs to 
integrators and similar routines is much faster than passing in a string variable of the function name. 
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 In the following snippet, we created an anonymous function handle to  myFunction  with a different 
signature and a specific value for  a . Note the use of the ampersand, which designates a function handle. The 
handle can be evaluated with inputs, just like a regular function. 

  function   y = myFunction(a, b, c)  
  ...  

  a = 2;  
  h = @(c,b) myFunction(a,b,c);  
  y = h(c,b);  

 The handle  h  can be passed to a function such as an integrator that is expecting a signature with only 
two variables. You will also commonly use function handles to specify an events function for integrators or 
similar tools, as well as output functions that are called between major steps. Output functions can print 
information to the screen or a figure; for example,  odeplot  and  odeprint . 

 In order to test if a variable is a function handle, you need to use the function handle class name with 
 isa , for example: 

  isa(f,'function_handle')  

  ishandle  works only for graphics handles. For more information, see the help documentation for 
 function_handle . Table  1-7  provides the few key functions for dealing with function handles.    

   Table 1-7.    Key Functions for Handles   

 Function  Purpose 

 feval  Execute a function from a handle or string 

 func2str  Construct a string from a function handle 

 str2func  Construct a handle from a function name string 

 isa  Test for a function handle 

    Advanced Data Types 
 The  data types   discussed so far are all that are needed for most engineering programming. However, for 
specialized applications, there are additional options for data types, including the following.

    Classes  Classes, with properties and methods, can be defined using the  classdef  
keyword in an m-file similar to writing a function. See also the  properties , 
 methods , and  events  keywords.  

   Tables  Tables are new to release R2013 of MATLAB and allow tabular data to be 
stored with metadata in one variable. It is an effective way to store and interact 
with data that one might put in a spreadsheet. The table columns can be named, 
assigned units and descriptions, and accessed as one would fields in a data 
structure, such as  T.DataName . See the function readtable on creating a table 
from a file.  

   Categorical Arrays  Arrays of data from a discrete set of categories (an 
enumeration) can be stored in this special type, which provides more efficient 
searching than elements of a cell array. See  categorical  and  categories .  
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   Time Series  The  timeseries  object and the related  tscollection  object provide 
methods for associating data samples with timestamps. Plotting a  timeseries  
object uses the stored time vector automatically.  

   Map Containers  The map container allows you to store and look up data using 
a key that may be nonnumeric. This is an object instantiated via  containers.Map .    

 The MATLAB documentation is thorough, should you find these data types advantageous to your 
application.    

   Primer Recipes 
 The next part of this chapter provides recipes for some common tasks in modern MATLAB, like adding help 
to your functions, loading binary data, writing to a text file, creating a MEX file, and parsing functions into 
“pcode.”  

    1-1. Creating Function Help 
   Problem 
 You need to document your functions so that others may use them and so that you remember how they work.     

   Solution 
 MATLAB provides a mechanism for providing command-line access to documentation about your function 
or script using the  help  command, if you put the documentation in the right place.  

   How It Works 
 The comments you provide at the top of your function file, called a  header , become the function help. The 
help can be printed at the command line by typing  help MyFunction . Whereas the style and format of these 
comments are covered in the next chapter, your attention is drawn to the functionality here. 

 The help comments can go either above or below the declarative line of your function. If you include 
the words “see also” in your comments, followed by the names of additional functions, MATLAB helpfully 
supplies links to those functions’ help. All comments are printed until the first blank line is reached. 

 Consider the help for a function that calculates a dot product. The first line should be a single sentence 
description of the function, which is utilized by  lookfor . If you insert your function name in all capital 
letters, MATLAB automatically replaces it with the true case version when printing the help. Your comments 
might look like this: 

  function   d = Dot( w, y )  
  %%   DOT Dot product of two arrays.  
  %%   Forms  
  %    d   =   Dot( w, y )  
  %    d   =   Dot( w )  
  %  
  %%   Description  
  %   Dot product with support for arrays. The number of columns of w and y can be:  
  %  



CHAPTER 1 ■ CODING HANDBOOK

18

  % *   Both   >   1 and equal  
  % *   One can have one column and the other any number of columns  
  %  
  %   If there is only one input the dot product will be taken with itself.  
  %  
  %%   See also  
  %   Cross  

 When printed to the command line, MATLAB removes the percent signs and just displays the text, 
like this: 

  >> help   Dot  
    Dot Dot   product of two arrays.  
   %   Forms  
     d =   Dot  ( w, y )  
     d =   Dot  ( w )  

   %   Description  
    Dot   product with support for arrays. The number of columns of w and y can be:  

    * Both > 1 and equal  
    * One can have one column and the other any number of columns  

    If there is only one input the dot product will be taken with itself.  
   % See also  
  Cross  

 You can link to additional help documentation attached to subfunctions in your file. This can be handy 
for providing more detailed examples or descriptions of algorithms. In order to do so, you have to embed an 
HTML link in your help comments. For example: 

  % More detailed help is in the <a href="matlab: help foo>extended_help">extended help  
      </a>.  

  function   extended_help  
  %EXTENDED_HELP Additional technical details and examples  
  %  
  % Describe additional details of your algorithms or provide examples.  

  error  ('This  is  a  placeholder  function  just  for  helptext');  

 This type sets in the Command Window as 

 More detailed information is in the extended help. 

 MATLAB also provides the capability for you to create HTML help for your functions that will appear in 
the help browser. This requires the creation of XML files to provide the contents hierarchy. See the MATLAB 
help topic “Display Custom Documentation” and the related recipe in the next chapter. 

 You can also run help reports to identify functions that are missing help or missing certain sections 
of help, such as a copyright notice. To learn how to launch this report on your operating system, see the 
MathWorks “Check Which Programs Have Help” help topic.    
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    1-2. Locating Directories for Data Storage 
   Problem 
 A variety of demos and functions in your toolbox generate data files and they end up all over your file system. 
You can’t use an absolute path on your computer because the code is shared among multiple engineers.     

   Solution 
 Use  mfilename  to save files in the same location as the generating file or to locate a dedicated data directory 
that is relative to your file location.  

   How It Works 
 It’s easy to sprinkle  save  commands throughout your scripts, or print figures to image files, and end up with 
files spread all over your file system. MATLAB provides a handy function,  mfilename , which can provide the 
path to the folder of the executing m-file. You can use this to locate a data folder dedicated to either input 
files or output files for your routine. This uses the MATLAB functions  fileparts  and  fullfile . 

 For example, to save an output mat-file in the same location as your function or script: 

  thisPath =   mfilename ('fullpath'); 
  thisDir =   fileparts (thisPath); 
  save  (  fullfile (thisDir,'fileName'),x,y); 

 To save output to a dedicated directory, you only need an additional call to  fileparts . In this case, the 
directory is called  DataDir . 

  thisPath =   mfilename ('fullpath'); 
  prevDir =   fileparts (fileparts(thisPath)); 
  dataDir =   fullfile (prevDir,'DataDir','fileName'); 
  save  (  fullfile (dataDir,'fileName'),x,y); 

 If you are printing images, you can either use the functional form of  print , as with  save , or change the 
path to the directory you want. You should save the current directory and return there when your script is 
complete. 

  thisPath =   mfilename ('fullpath'); 
  cd0 =   cd;  
  cd  (  fileparts (thisPath)); 
  print   -dpng MyFigure  
  cd  (cd0)  
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          1-3. Loading Binary Data from a File 
   Problem 
 You need to store data in a binary file, perhaps for input to another software program.     

   Solution 
 MATLAB provides low-level utilities for creating and writing to binary files, including specifying the 
endianness.  

   How It Works 
 Reading and writing binary data introduces some complexities beyond text files. Let’s start with MATLAB’s 
example of creating a binary file of a magic square. This demonstrates  fopen ,  fwrite , and  fread . The options 
for precision are specified in the help for  fread . For example, a 32-bit integer can be specified with the 
MATLAB-style string  'int32'  or the C-style string  'integer*4' . 

  >> magic(4)  

  ans =  

      16     2     3    13  
       5    11    10     8  
       9     7     6    12  
       4    14    15     1  

  >> fid = fopen('magic4.bin','wb');  
  >> fwrite(fid,magic(4),'integer*4');  
  >> fclose(fid);  

 Now, let’s try to read this data file back in. Since the data was stored as 32-bit integers, you have to 
specify this precision to get the data back. 

   Table 1-8.    Key Functions for Path Operations   

 Function  Purpose 

 mfilename  The name, and optionally, the full path to the currently executing m-file 

 fileparts  Divide a path into parts (directory, file name, extension) 

 fullfile  Create a system-dependent file name from parts 

 cd  The current directory 

 path  The current MATLAB path 

 Table  1-8  shows key functions for path operations. 
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  >> fid = fopen('magic4.bin','rb');  
  >> c = fread(fid,inf,'integer*4')  

  c =  

      16  
       5  
       9  
       4  
       2  
      11  
       7  
      14  
       3  
      10  
       6  
      15  
      13  
       8  
      12  
       1  

 The shape of the matrix was not preserved, but you can see that the data was printed to the file in 
columnwise order. To fully re-create the data, you need to reshape the matrix. 

  >> data = reshape(c,5,5)  

  data =  
      16      2      3     13  
       5     11     10      8  
       9      7      6     12  
       4     14     15      1  

 If you need to specify the endianness of the data, you can so do in both  fopen  and  fread . The local 
machine format is used by default, but you can specify the IEEE floating point with a little endian byte 
ordering, the same with big ending ordering, and both with 64-bit long data type. This may be important if 
you are using binary data from an online source or using data on embedded processors. 

 For example, to write the same data in a big endian format, simply add the  'ieee-be'  parameter. 

  >> fid = fopen('magic5.bin','wb','ieee-be');  
  >> fwrite(fid,magic(5),'integer*4');  
  >> fclose(fid);  

 Table  1-9  lists key functions for interacting with binary data. 

   Table 1-9.    Key Functions for Binary Data   

 Function  Purpose 

 fopen  Open a file in text or binary mode 

 fwrite  Write to a file 

 fread  Read the contents of a file 

 fclose  Close the file 
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          1-4. Command-Line File Interaction 
   Problem 
 You have some unexpected behavior when you try to run a MATLAB script and you suspect a function 
conflict among different toolboxes.     

   Solution 
 MATLAB provides functions for locating and managing files and paths from the command line.  

   How It Works 
 MATLAB has a file browser built in to the command window, but it is still helpful to be familiar with the 
commands for locating and managing files from the command line. In particular, if you have a lot of 
toolboxes and files in your path, you may need to identify name conflicts. 

 For example, if you get the wrong behavior or a strange error from a function and you recently changed 
your path, you may have a file shadowing it in your path. To check for duplicate copies of a function name, use 
 which  with the  -all  switch. Shadowed versions of the function are marked.  which  can take a partial pathname. 

  >> which DemoPSS –all  
  /Users/.../Toolboxes/Missions/Demos/DemoPSS.m  
  /Users/.../Toolboxes/Math/Demos/DemoPSS.m    % Shadowed  
  /Users/.../Toolboxes/Imaging/Demos/DemoPSS.m % Shadowed  
  /Users/.../Toolboxes/Common/Demos/DemoPSS.m  % Shadowed  

 To display the contents of a file at the command line, which is helpful if you need to see something in 
the file but don’t need to open the file for editing, use  type , as in Unix. 

 To list the contents of a directory, use  what . A partial path can be used if there are multiple directories 
with the same name on your path. Specifying an output returns the results in a data structure array. MATLAB 
identifies which files are code, mat-files, p-files, and so forth.  what  is recursive and returns all directories 
with the given name anywhere in the path—useful if you use the same name of a directory for functions and 
demos, as follows. 

  >>     what Database  

  MATLAB Code files in folder /Users/Shared/svn/Toolboxes/SourceCode/Core/Common/Demos/  
      Database  

  Contents    TConstant  

  MATLAB Code files in folder /Users/Shared/svn/Toolboxes/SourceCode/Core/Common/  
      Database  

  BuildConstant    Contents    MergeConstantDB  
  Constant         Database  

 Use  exist  to determine if a function or variable exists in the path or workspace. The code analyzer will 
prompt you to use the syntax with a second argument specifying the desired type, such as  'var' ,  'file' , or 
 'dir' . The output is a numerical code indicating the type of file or variable found. 
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 Open a file in the editor from the command line using  edit . 
 Load a mat-file or ASCII file using  load . Give an output to store the data in a variable, or else it will be 

loaded directly into the workspace. For mat-files, you can also specify particular variables to load. 

  d =   load  ('MyMatFile','var1','var2');  

 The final command-line function introduced is  lookfor . This function searches for a keyword through 
all help available on the MATLAB path. The keyword must appear in the first line of the help, such as the 
one-line help comment or H1 line. The printed result looks like a Contents file and includes links to the help 
for the found functions. Here is an example for the keyword  integration . 

  >> lookfor integration  
  IntegrationAccuracyDemo          - Integration Accuracy for PropagateOrbitPlugin.  
  PropagatorComparison              - Integration accuracy study comparing RK4, RK45, and ode113.  
  lotkademo                        - Numerical Integration of Differential Equations  
  cumtrapz                         - Cumulative trapezoidal numerical integration.  
  trapz                            - Trapezoidal numerical integration.  

 Table  1-10  lists key functions to use at the command line.     

   Table 1-10.    Key Functions for Command-Line Interaction   

 Function  Purpose 

 which  The location of a function in the path 

 what  List the MATLAB-specific files in directory 

 type  Display the contents of a file 

 dbtype  Display the contents of a file with line numbers 

 exist  Determine if a function or variable exists 

 edit  Open a file in the editor 

 load  Load a mat-file into the workspace 

 lookfor  Search help comments in the path for a keyword 

      1-5. Using a MEX File to Link to an External Library 
   Problem 
 There is an external C++ library that you need to use for an application. You would like to perform the 
analysis in  MATLAB.    

   Solution 
 You can write and compile a special function in MATLAB using the C/C++ matrix API that allows you to call 
the external library functions via a MATLAB function. This is called a  MEX file .  
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   How It Works 
 A  mex  function is actually a shared library compiled from C/C++ or Fortran source code, and is callable from 
MATLAB. It can be used to link to external libraries such as GLPK, BLAS, and LAPACK. When writing a  mex  
function, you provide a gateway routine  mexFunction  in your code, and use MATLAB’s C/C++ Matrix Library 
API. You must have a MATLAB-supported compiler installed on your machine. 

  #include "mex.h"  

  void   mexFunction  ( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])  

 You can see that, as with regular MATLAB functions, you can provide multiple inputs and multiple 
outputs.  mxArray  is a C language type, actually the fundamental data type for all matrices in MATLAB, 
provided by the MATLAB API. 

 You use the  mex  function to compile your C, C++, for Fortran function into a binary. Passing the 
verbose flag,  -v , provides verbose output familiar to C programmers. An extension such as  'mexmaci64' , as 
determined on your system by  mexext , is appended and you can then call the function from MATLAB like 
any other m-file. For example, on the Mac, MATLAB detects and uses Xcode automatically when compiling 
one of the built-in examples,  yprime.c . This function solves simple three-body orbit problems. First, you 
need to copy the example into a local working directory. 

  >> copyfile(fullfile(  matlabroot  ,'extern','examples','mex','yprime.c'),'.','f');  

 The following are excerpts from the verbose compile. 

  >> mex -v -compatibleArrayDims yprime.c  
  Verbose mode is on.  
  No MEX options file identified; looking   for   an implicit selection.  
  ... Looking   for   compiler 'Xcode  with  Clang' ...  
  ... Looking   for   environment variable 'DEVELOPER_DIR' ...No.  
  ... Executing command 'xcode-select  -print-path' ...Yes ('/Applications/Xcode.app/  
      Contents/Developer').  
  ... Looking   for   folder '/Applications/Xcode.app/Contents/Developer' ...Yes.  
  ... Executing command 'which  xcrun' ...Yes ('/usr/bin/xcrun').  
  ... Looking   for   folder '/usr/bin' ...Yes.  
  ...  
  Found installed compiler 'Xcode with  Clang'.  
  --------------------------------------------------------  
          Compiler location: /Applications/Xcode.app/Contents/Developer  
          Options file: /Applications/MATLAB_R2014b.app/bin/maci64/mexopts/clang_maci64.xml  
          CC : /usr/bin/xcrun -sdk macosx10.9 clang  
          DEFINES : -DMX_COMPAT_32 -DMATLAB_MEX_FILE  
          MATLABMEX : -DMATLAB_MEX_FILE  
          CFLAGS : -fno-common -arch x86_64 -mmacosx-  version-min  =10.9 -fexceptions -  
              isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.  
              platform/Developer/SDKs/MacOSX10.9.sdk  
          INCLUDE : -I"/Applications/MATLAB_R2014b.app/extern/include" -I"/Applications/  
              MATLAB_R2014b.app/simulink/include"  
          COPTIMFLAGS : -O2 –DNDEBUG  
          LD : /usr/bin/xcrun -sdk macosx10.9 clang  
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          LDFLAGS : -Wl,-twolevel_namespace -undefined   error   -arch x86_64 -mmacosx-  
              version-min  =10.9 -Wl,-syslibroot,/Applications/Xcode.app/Contents/Developer  
              /Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk -bundle -Wl,-  
              exported_symbols_list,"/Applications/MATLAB_R2014b.app/extern/lib/maci64/  
              mexFunction  .map"  
          LDBUNDLE : -bundle  
          LINKEXPORT : -Wl,-exported_symbols_list,"/Applications/MATLAB_R2014b.app/  
              extern/lib/maci64/  mexFunction  .map"  
          LINKLIBS : -L"/Applications/MATLAB_R2014b.app/bin/maci64" -lmx -lmex -lmat -  
              lstdc++  
          OBJEXT : .o  
          LDEXT : .mexmaci64  
  ----------------------------------------------------  
  Building with 'Xcode  with  Clang'.  
  /usr/bin/xcrun -sdk macosx10.9 clang -c -DMX_COMPAT_32 -DMATLAB_MEX_FILE -I"/  
      Applications/MATLAB_R2014b.app/extern/include" -I"/Applications/MATLAB_R2014b.app/  
      simulink/include" -fno-common -arch x86_64 -mmacosx-  version-min  =10.9 -fexceptions -  
      isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/  
      Developer/SDKs/MacOSX10.9.sdk -O2 -DNDEBUG /Users/Shared/svn/Manuals/  
      MATLABCookbook/MATLAB/yprime.c -o /var/folders/22/l715021s5rnghdtkxsy_cbk40000gp/T//  
      mex_47653762085718_983/yprime.o  
  /usr/bin/xcrun -sdk macosx10.9 clang -Wl,-twolevel_namespace -undefined   error   -arch  
      x86_64 -mmacosx-  version-min  =10.9 -Wl,-syslibroot,/Applications/Xcode.app/Contents/  
      Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk -bundle -Wl,-  
      exported_symbols_list,"/Applications/MATLAB_R2014b.app/extern/lib/maci64/  
      mexFunction  .map" /var/folders/22/l715021s5rnghdtkxsy_cbk40000gp/T//  
      mex_47653762085718_983/yprime.o -O -Wl,-exported_symbols_list,"/Applications/  
      MATLAB_R2014b.app/extern/lib/maci64/  mexFunction  .map" -L"/Applications/  
      MATLAB_R2014b.app/bin/maci64" -lmx -lmex -lmat -lstdc++ -o yprime.mexmaci64  
  rm -f /var/folders/22/l715021s5rnghdtkxsy_cbk40000gp/T//mex_47653762085718_983/yprime.o  
  MEX completed successfully.  

 Now, assuming that you copied the source into an empty directory, if you now print the contents, you 
will see something like the following: 

  >>   dir  
  .         ..        yprime.c           yprime.mexmaci64  

 And you can run a test of the compiled library. 

  >> T = 0;  
  >> Y =   rand  (1,4);  
  >> yprime(T,Y)  

 Writing MEX files is not for the faint of heart and requires substantial programming knowledge in the 
base language. In the preceding printout, you can see that the standard C++ library is included, but you 
need to provide links and includes explicitly to other libraries that you want to use. Note that your MEX file 
will not have any function help, so it is a good idea to provide a companion m-file that supplies the help 
comments and calls your  mex  function internally. 
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 ■   Tip   Provide a separate m-file with your MEX file that contains help comments, and optionally, calls the 
MEX file.  

 See the help articles, including “Components of MEX File” in MATLAB, as well as the many examples 
for help writing MEX files. In the case of GLPK (GNU Linear Programming Kit), an excellent MEX file is 
available under the GNU public license. It was written by Nicolo Giorgetti and is maintained by Niels 
Klitgord. It is now available on SourceForge at    http://glpkmex.sourceforge.net     .    

    1-6. Protect Your IP with Parsed Files 
   Problem 
 You want to share files with customers or collaborators without compromising your intellectual property in 
the source code.     

   Solution 
 Create protected versions of your functions using MATLAB’s  pcode  function. Create a separate file with the 
help comments so that users have access to the documentation.  

   How It Works 
 The  pcode  function provides a capability to parse m-files into executable files with the content obscured. 
This can be used to distribute your software while protecting your intellectual property. A pcoded file on 
your path with a “p” extension, takes precedence over an m-file of the same name. Parsing an m-file is simple: 

  >> pcode Dot  

 The only argument available is the - INPLACE  flag to store the p-file in the same directory as the source 
m-file; otherwise, it is saved to the current directory. 

 One difficulty you may encounter is that once you have parsed your functions and moved them into 
a new folder, you no longer have access to the function help you created. The command-line help is not 
implemented for pcoded files and typing “help MyFunction” no longer works. You have to create a separate 
m-file with the help comments, as with MEX files. You can write a function to extract the header from an 
m-file and save it. You will use  fprintf  for this, so it’s important that the header not contain any special 
characters like backslashes. 

  function   ParseAndSaveHeader( readFromFile, writeToFile )  

  filePath =   which  (readFromFile);  
  [pathStr,name,ext] =   fileparts (filePath); 

  copyfile  (filePath,  fullfile (pathStr,[name,'_orig',ext])); 

  fid =   fopen  (filePath,'rt');  
  t =   fgetl  (fid);  
  hlp = ";  

http://glpkmex.sourceforge.net/
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  while  ( ˜  isempty  (t) &&   strcmp  (t(1),'%') )  
    if length  (t)>1 &&   strcmp  (t(2),'%')  
      t = ['%' t];  
    end  
    hlp = [hlp,'\n%',t];  
    t =   fgetl  (fid);  
    if  ( ˜ischar(t) )  
      break  ;  
    end  
  end  
  hlp = [hlp,'\n%%\n%%  This  function  was  parsed  on  ',  date  ,'\n\n'];  
  fclose  (fid);  
  if   ischar(writeToFile)  
    fid =   fopen  (writeToFile,'wt');  
  else  
    fid = writeToFile;  
  end  
  fprintf  (fid,hlp);  
  if   ischar(writeToFile)  
    fclose  (fid);  
  end  

  pcode(filePath);  

 You save a copy of the m-file with the  _orig  suffix to prevent unpleasant mistakes with deleted files. 
Note that you add a final comment at the end with the date that the function was parsed.    

    1-7. Writing to a Text File 
   Problem 
 You need to write some information from MATLAB to a text file. One example is creating a template for new 
functions following a preferred format.     

   Solution 
 You use  fopen ,  fprintf , and  fclose  to open a new text file, print desired lines to it, and then close it. The 
 input  function is used to allow the user to enter a one-line summary of the function.  

   How It Works 
 MATLAB has a full set of functions for input and output, including writing to files. See  help iofun  for a 
detailed listing. You can write to text files, spreadsheets, binary files, XML, images, or zip files. 

 One useful example is creating a template for new functions for your company, following your preferred 
header format. This requires using  fopen  and  fclose , and  fprintf  to print the lines to the file. The first input is 
the desired name of the new function. Note that  fprintf  prints to the command line if given a file ID of 1. You 
are provided an option to do so with the second input, which is a boolean flag. You use the  date  function to get 
the current year for the copyright notice, which returns a string in the format ‘dd-mmm-yyyy’; you use the string 
function  strsplit  to break the string into tokens. Using string indices would be an alternative. In addition, this 
demonstrates using  input  to prompt the user for a string, namely, a one-line description of the new function. 
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  %%   NEWBOOKFILE Create a new function with the default header style.  
  %    Pass in a file name and the header template will be printed to that file  
  %    in the current directory. You will be asked to enter a one-line summary.  
  %%   Forms:  
  %  NewBookFile( fName, outputIsFile )  
  %%   Input  
  %    fName         (1,1)    File name  
  %    outputIsFile  (1,1)    True if a file is created, otherwise header is  
  %                           printed to the command line.  
  %%   Output  
  %    None.  

  function   NewBookFile( fName, outputIsFile )  

  if   (  nargin   < 2)  
    outputIsFile = false;  
  end  

  if   (  nargin   == 0 ||   isempty  (fName))  
    fName =   input  ('Function  name:  ','s');  
  end  

  %   Check if the filename is valid and if such a function already exists.  
  if   (˜isvarname(fName))  
    error  ('Book:error','invalid name');  
  end  
  if   (outputIsFile &&   exist  (fName,'file'))  
    error  ('Book:error','file  %s  already  exists',fName);  
  end  

  %   Get a one-line description (H1 line) from the user.  
  comment =   input  ('One-line  description:  ','s');  

  %   Open the file or specify command line output.  
  if   (outputIsFile)  
    fid =   fopen  ([fName '.m'],'wt');  
    c = onCleanup(@()   fclose  (fid));  
  else  
    fid = 1;  
    fprintf  (fid,'\n');  
  end  

  %   Write the header to the file. Use the current year for the copyright  
  %   notice.  
  fprintf  (fid,'%%%%  %s  %s\n',  upper  (fName),comment);  
  fprintf  (fid,'%%  Description.\n');  
  fprintf  (fid,'%%%%  Forms\n');  
  fprintf  (fid,'%%  y =  %s(  x  )\n',fName);  
  fprintf  (fid,'%%%%  Input\n');  
  fprintf  (fid,'%%  x  (1,1)  Description\n%%\n');  
  fprintf  (fid,'%%%%  Output\n');  
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  fprintf  (fid,'%%  y  (1,1)  Description\n%%\n');  
  fprintf  (fid,'%%%%  Reference\n');  
  fprintf  (fid,'%%  Insert  the  reference.\n');  
  fprintf  (fid,'%%%%  See  also\n');  
  fprintf  (fid,'%%  List  pertinent  functions.\n\n');  

  today =   strsplit ( date  ,'-');  
  year = today{  end  };  

  fprintf  (fid,'%%%% Copyright\n');  
  fprintf  (fid,'%%  Copyright  (c)  %s Princeton  Satellite  Systems,  Inc.\n%%  All  rights  
      reserved.\n',year);  
  fprintf  (fid,'\nfunction  y =  %s(x)\n',fName);  

  if   outputIsFile  
    edit  (fName);  
  end  

 Note that this function checks for two errors: a bad function name and a function with the same name 
already exists on the path. You use the two-input form of  error  where the first input is a message identifier. 
The message identifier is useful if an error is returned from a  catch  block. The message identifier can be 
verified using  lasterr . For instance, if you fail to enter a valid function name when prompted, you can see 
the results of the first error. 

  >> NewBookFile([])  
  Function name:  
  Error using NewBookFile (line 29)  
  invalid name  

  >> [LASTMSG, LASTID] = lasterr  

  LASTMSG =  

  Error using NewBookFile (line 29)  
  invalid name  

  LASTID =  

  Book:error  

 The function includes the ability to print the header to the command window, instead of creating a file, 
which is useful for testing, or if you went ahead and started with a blank file and need to add a header after 
the fact. This is accomplished by using 1 for the file identifier. This is what the header looks like: 

  >> NewBookFile('Test')  
  One-line description: This is a test function.  

  %% TEST This is a test function.  
  % Description.  
  %% Forms  
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  %  y = Test( x )  
  %% Input  
  %   x  (1,1)   Description  
  %  
  %% Output  
  %   y    (1,1)  Description  
  %  
  %% Reference  
  % Insert the reference.  
  %% See also  
  % List pertinent functions.  

  %% Copyright  
  % Copyright (c) 2015 Princeton Satellite Systems, Inc.  
  % All rights reserved.  

  function y = Test(x)  

 Table  1-11  summarizes some key functions for interacting with text files.     

   Table 1-11.    Key Functions for Interacting with Text Files   

 Function  Purpose 

 fprintf  Print formatted text to a file 

 strsplit  Split a string into tokens using a delimited 

 fgetl  Get one line of a file (until a newline character) 

 input  Get string input from the user via the command line 

   Summary 
 This chapter reviewed basic syntax for MATLAB programming. It highlighted differences between MATLAB 
and similar languages, like C and C++, in the language primer. Recipes give tips for efficient usage of key 
features, including writing to binary and text files. Tables at the end of each section highlight key functions 
you should have at your fingertips. 

 This chapter did not provide any information on using MATLAB’s computational tools, like integration 
and numerical search, as those are covered in the applications chapter. Interacting with MATLAB graphics is 
also covered a later chapter.      
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    CHAPTER 2   

 MATLAB Style           

 This chapter provides guidelines and recipes for suggested style elements to make your code and tools more 
understandable and easier to use. 

 When structuring a function, we have specific guidelines. The comments should be clear and 
descriptive, and follow the formatting guidelines set by your institution. The same goes for naming 
conventions. In addition, we recommend supplying “built-in” inputs and outputs; that is, example 
parameters so the function can be completely executed without any input from the user. These additional 
demo forms should be listed with the different syntaxes that you create for the function. 

 Documenting your code goes beyond adding a header and some comments to your code. MATLAB now 
allows you to integrate HTML help into your toolboxes that displays in the browser along with MATLAB’s 
documentation. You can also use the publishing utility to create comprehensive technical reports. 
Incorporating these features into your style guidelines from the beginning will save you a lot of work when 
you want to release your toolbox to others. 

   2-1. Developing Your Own MATLAB Style Guidelines 
   Problem 
 Each engineer in your group has her own favorite naming and whitespace styles. When people work on each 
other’s code, you end up with a mishmash that makes the code more difficult to read.  

   Solution 
 Develop and publish your own style guidelines. MATLAB can help enforce some guidelines, such as tab 
sizes, in the preferences.     

   How It Works 
 We recommend the classic book,  The Elements of MATLAB Style  by Richard K. Johnson (Cambridge 
University Press, 2010), as a starting point for developing your own style guidelines. Many of the 
recommendations are generic to good coding practice across programming languages, and others are 
specific to MATLAB, such as using publishing markup syntax in your comments. The book addresses 
formatting, naming, documentation, and programming.    

 We deviate from the book’s recommendations in a few ways. For one, we prefer to capitalize the names 
of functions. This distinguishes your custom functions from built-in MATLAB functions in scripts. We also 
prefer to use single letter variables for structures, rather than long camel-case names. However, the key to 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0559-4_2    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_2
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clear MATLAB code, which is also emphasized in Johnson’s text, is to treat MATLAB code like compiled 
code. Be mindful of variable types, use parentheses even when MATLAB doesn’t explicitly require them, and 
write plentiful comments. 

 For instance, when a variable value is a double, indicate this with a decimal point. This avoids confusion 
that the parameter may be an integer. 

 Replace 

  length = 1;  

 with 

  length = 1.0;  

 In   if  statements,   always use parentheses. If you ever want to port the code to another language in 
the future, this saves you time, and it makes the code clearer and easier to read for programmers versed in 
multiple languages. 

 Replace 

  if thisIsTrue && thatIsTrue  

 with 

  if (thisIsTrue && thatIsTrue)  

 You should always avoid “magic numbers” in your code, which are easy to use when quickly typing out 
a function to test a concept. This is a number value that is typed in, such as to a logical statement, instead 
of assigned to a variable. Take the time to define a properly named variable and add a comment with the 
source of the number. 

 Replace 

  if (value > 2.0 || value < 0.0)  

 with 

  if (value > minValue || value < maxValue)  

 With the advent of color-coding IDEs, such as MATLAB’s editor, adding a lot of whitespace to delineate 
code sections has fallen out of favor in style guidelines. Generally, one line of blank space is enough between 
blocks of code. We suggest adding an additional line of whitespace between the end of a function and the 
start of a subfunction. You shouldn’t put whitespace between lines of code that are closely related. 

 Some programmers prefer to align blocks of code on their equal signs. This can be helpful, especially 
when coding sets of equations from references. However, it can also be tedious to maintain when code is 
under active development. If you like this style, you may prefer to wait on adding the aligning space until the 
function has passed internal code review and is ready for release. In our code, we generally align on equals 
signs only within smaller blocks as delineated by comments or whitespace. 

 Consider the following: 

  %   Initialization  
  myVar1 =   linspace  (0,1);  
  b = 1.0;  

  %   Calculation  
  [result1, result2] = MyFunction(myVar1,b);  
  plotH =   plot  (myVar1,result2);  
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 This could be aligned in multiple ways, such as: 

  %   Initialization  
  myVar1 =   linspace  (0,1);  
  b      = 1.0;  

  %   Calculation  
  [result1, result2] = MyFunction(myVar1,b);  
  plotH              =   plot  (myVar1,result2);  

 Or, if aligning across the blocks, as: 

  %   Initialization  
  myVar1             =   linspace  (0,1);  
  b                  = 1.0;  

  %   Calculation  
  [result1, result2] = MyFunction(myVar1,b);  
  plotH              =   plot  (myVar1,result2);  

 In the code for this book, you will see the former, per-block style of alignment. 
 Another consideration with whitespace is  tab sizes.   Some guidelines recommend larger tabs of four or 

eight spaces, arguing that MATLAB code is rarely deeply nested. We routinely write a lot of deeply nested 
code, so our internal guideline is for two spaces. When you set the tab size in the MATLAB preferences and 
set it to insert spaces for tabs, you can use the Smart Indent features to easily highlight and update code 
blocks. Figure  2-1  shows the tab preferences pane in MATLAB R2014b, on a Mac.  

  Figure 2-1.    Tab preferences with size of 2 and spaces option checked       

 We prefer to use uppercase for function names ( MyFunction ), specifically to distinguish them 
from the lowercase function names of the built-in MATLAB functions. Otherwise, we use camel case 
( myVariableName ) for variables; we often use a single letter or very short names for structures. For index 
variables, we tend to use  k  to avoid confusion with the variables  i  and  j  and their association with imaginary 
numbers. We follow the standard convention of capitalizing constant names; for example, for the Earth’s 
gravitational constant,  MU_EARTH . 
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 In other words, you need to establish naming conventions for the following:   

•    Function names  

•   Variable names  

•   Structure names  

•   Index variables  

•   Constants    

 Additional naming conventions might include standard prefixes or suffixes for certain types of files 
or variables. One example is using the letters “RHS” in the name of a function that provides dynamics for 
integration; that is, the right-hand side of the equations when the derivatives are on the left. The word 
“Demo” is helpful in the name of a script that demonstrates a particular function or feature. You should 
be consistent about the order of variable name elements. For example, if  r  means radius and the second 
element is the name of the planet, then use  R_EARTH  and  R_MOON . Don’t make the second  MOON_R . The order 
should be consistent throughout your code base. 

 Further rules could address the names of boolean variables or the use of verbs in function names. The 
most important step is to create and write down a set of conventions for your organization, or create some 
function templates so that your engineers write consistent code. 

 The following guidelines are used throughout this book:

    Naming  Naming guidelines.  

   Function names  Use camel case for function names with the first letter 
capitalized. The first word is ideally an action verb or “RHS”.  

   Script names  If the script is a demo of a particular function or set of functions, 
append “Demo” to the name.  

   Variable names  Use camel case for variable names with a lowercase first letter.  

   Constants  Use uppercase to identify constants.  

   Variable name length  Most variable names should be at least three characters. 
Exceptions include commonly used data structures, index variables, and when 
replicating equations from a text where single letter variable names are standard 
and easily recognizable to someone in the field.  

   Index variables  When using a single index variable, use  k ; when using two,  j  and 
 k ; for additional variables, use  l ,  m .  

   Doubles  Always use a decimal point when typing out a double value.  

   Magic numbers  Avoid magic numbers in your code; prefer the use of a variable 
to specify a number.  

   Comments  Always add a comment describing the source or rationale for a hard-
coded number in your code.  

   If statements  Always use parentheses around the conditional portion of IF 
statements.  

   Tabs  Use a tab size of two spaces and set MATLAB to insert spaces for tabs. Use 
Smart Indent to enforce consistent tabs before committing files.  
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   Blank lines  Use one blank line between most code sections and two blank lines 
between subfunctions.  

   Alignment  Align code on the equal sign only within the code block (as separated 
by blank lines).    

 Guidelines for function headers are addressed in the next recipe.   

   2-2. Writing Good Function Help 
   Problem 
 You look at a function a couple months (or years) after you wrote it, or a colleague wrote it, and find it 
has only one cryptic comment at the top. You no longer remember how the function works, what it was 
supposed to do, or exactly what your comment means.     

   Solution 
 Establish a format for your function headers and stick to it. Use the publishing markup to enable you to 
generate good-looking documentation from the m-file.     

   How It Works 
 Write the header for your function at the top, using the publishing markup. This means that the very first 
line should start with a section break,  %% , and include the name of your function, as that will be the title of 
the published page. This line should also include a one-sentence summary of the function; this must be in 
the first non-empty comment line of the file, which is also termed the H1 line. This summary can be used 
automatically by MATLAB when generating  Contents.m  files for your folders and by the  lookfor  function, 
which searches files on the path for keywords. 

 Document inputs and outputs separately using section titles. Indicate the type or size of the 
variable and provide a description. Use two spaces between the comment sign  %  and the line to generate 
monospaced text for the input and output lists. Use the following keys to indicate  variable type and size:  

•     {}  Cell array  

•   ( 1,1 ) Scalar value  

•   ( : ) String  

•   ( :,: ) Matrix of variable size  

•   ( 1,: ) Row of variable length  

•   ( :,1 ) Column of variable length  

•   ( m,n ) Matrix with row and column sizes (m,n) that must match other inputs or 
outputs  

•   ( . ) Data structure  

•   ( : ) Data structure array  

•   ( * ) Function handle    
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 Always include a copyright notice. Take credit for authoring your code! The standard is to start with 
the initial year that the function is created, and then add a range of years when you update the function, for 
instance, Copyright (c) 2012, 2014–2015. The “c” in parenthesis approximates the actual copyright symbol. 
After the copyright, the next line should state “All Rights Reserved”. Add a blank line between the main 
header and the copyright notice to suppress it from the command-line help display. 

 The following example shows a function that computes a dot product columnwise for two matrices. 
Note that this is still legible in the Command Window output of   help Dot , with the first  %  of the cell breaks 
suppressed. Use the  *  markup for a bulleted list. The output is always one row, which is indicated in the size key. 

 FUNCTION HEADER EXAMPLE

  %% DOT Dot product of two arrays.  
  %% Forms  
  %  d = Dot ( w, y )  
  %  d = Dot ( w )  
  %% Description  
  % Dot product with support for arrays. The number of columns of w and y can be:  
  %  
  % * Both > 1 and equal  
  % * One can have one column and the other any number of columns  
  %  
  % If there is only one input the dot product will be taken with itself.  
  %% Inputs  
  %  w  (:,:)  Array of vectors  
  %  y  (:,:)  Array of vectors  
  %% Outputs  
  %  d  (1,:)  Dot product of w and y  
  %% See also  
  % Cross  

  %% Copyright  
  % Copyright (c) 2015 Princeton Satellite Systems, Inc.  
  % All Rights Reserved.   

 When published to HTML, this will appear as follows, ignoring the generated Contents section: 

  DOT Dot product of two arrays.  

   Forms 
  d = Dot( w, y )  
  d = Dot( w )   

   Description 
 Dot product with support for arrays. The number of columns of w and y can  be  

•    Both > 1 and equal  

•   One can be a single column and the other any number of columns    

 If there is only one input, the dot product will be taken with itself.  
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   Inputs 
  w  (:,:)  vector  
  y  (:,:)  vector   

   Outputs 
  d  (1,:)  Dot product of w and y   

   See also 
 Cross 

 Finally, remember to describe any plots created or files generated; i.e. “side effects.” It’s also a good idea to 
identify whether a function uses persistent or global variables, which may require a  clear  command to reset. 
The following list summarizes the parts of the header, in order.   

    1.     H1 line  Start with a single line description of the function.  

    2.     Syntax  List the syntaxes supporter.  

    3.     Description  Provide a more detailed description. Describe any built-in demos, 
default values for parameters, persistent or global variables that users need to be 
aware of, and any “side effects,” including plots or files saved. Indicate whether a 
function will request input from the user.  

    4.     Inputs  List the inputs with a size/format key. Include units, if applicable.  

    5.     Outputs  List the outputs as is done with inputs.  

    6.     See also  List any related functions.  

    7.     Reference  If applicable, list any references.  

    8.     Copyright  Include a copyright notice. There should be a blank line between the 
rest of the header and the copyright notice.        

    2-3. Overloading Functions and Utilizing varargin 
   Problem 
 You want to reuse a section of code that you have written, but you may use it in different situations or extract 
additional data for it in some circumstances but not others.     

   Solution 
 You can overload functions in MATLAB easily and implicitly.  varargin  and  varargout  make it simple to 
manage variable length input and output lists.  
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   How It Works 
 MATLAB allows you to overload a function in any way you would like inside the file that defines it. This 
applies to the inputs and the outputs. There is generally a trade-off between writing the clearest code you 
can, with a single calling syntax, and avoiding duplication of code. Perhaps there are intermediate variables 
that may be useful as outputs in some cases, or you want to provide backward compatibility with an older 
syntax. When creating libraries for numerical computations, there always seem to be additional syntaxes 
that are useful. We recommend the following when overloading functions:

•    Use  varargin  and  varargout  when possible and rename the variables with 
descriptive names as close to the top of the function as you can.  

•   Be sure to clearly document all input and output variants in the header. Adding 
another optional input or output and neglecting to document it is the number-one 
reason for out-of-date headers.  

•   Use comments to clearly identify what the outputs are when you are renaming them 
to match the function’s syntax, or use  varargout .  

•   Clear the function outputs if you are creating a plot and they are not needed, to avoid 
unnecessary printing to the command line.    

 The following example highlights use of these guidelines. We often use functions with a string “action” 
defining multiple input variations by name. This provides additional clarity beyond depending on input 
number or type to select an overloaded method. 

 FUNCTION OVERLOADING

  %   d = OverloadedFunction(  '  default data');  
  %   OverloadedFunction(  '  demo');  
  %   [y,d] = OverloadedFunction(  '  update',x,d);  

  function   varargout = OverloadedFunction ( action, varargin )  

  switch   action  
    case   'default  data'  
      d = DefaultData;  
      varargout{1} = d;  

    case   'demo'  
      d = DefaultData;  
      x = linspace  (0,1);  
      y = OverloadedFunction('update',x,d);  
      figure  ('name', 'OverloadedFunction  Demo');  
      plot  (x,y);  

    case   'update'  
      x = varargin{1};  
      d = varargin{2};  
      y = Update(x,d);  
      varargout{1} = y;  
      varargout{2} = d;  

  end      
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    2-4. Adding Built-in Inputs and Outputs to Functions 
   Problem 
 You would like to provide default values for some optional inputs or provide a short demonstration of how a 
function works.     

   Solution 
 Add built-in inputs and outputs to your function using an action input or  nargin . This can include a full 
demo that calls the function and generates plots, as appropriate.  

   How It Works 
 Built-in inputs provide an example set of parameters that produce output. In many cases, we provide an 
input range that can create a plot demonstrating the computation performed in the function. In MATLAB, 
you must explicitly handle input options in the code, as you can’t add a default value in the function 
definition itself. 

 One convention that we find useful is to allow an empty matrix,  [] , to be entered for an input to use its 
default value. This allows you to request a default for one input, but provide values for subsequent inputs. 
The following example shows both a demo that creates a plot and a default value for a constant. 

   function  output = MyFunction( variable, constant )  

  if   (nargin == 0)  
    % perform demo  
    variable = linspace(0,100);  
    MyFunction( variable );  
    return;    
  end    
  if   (nargin < 2 || isempty (constant))  
    % default value of constant  
    constant = VALUE;  
  end    

 Notice that the built-in demo, which is performed when there are no inputs at all, calls the function 
itself and then returns. This makes the demo also a built-in test. The code to generate the built-in outputs, 
which could be a text report to the command line or a plot, generally comes at the end of the function. This 
enables you to create the built-in outputs with inputs that the user specifies, and not just the built-in inputs. 
For instance, there might be alternative values of the constant. Note that in the following output generation 
example, the name of the figure is specified, including the name of the function, which is exceedingly helpful 
if you routinely generate dozens of plots during your work. 

  ... body of function with calculations ...  

   if  (nargout==0)  
    % Default output is a plot  
    figure('Name', 'Demo of MyFunction')  
    plot(variable, output)  
    clear output  
   end   
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 ■   Tip   Assign a name to figures that you create. Include the name of the function or demo for clarity. 
The name will be displayed in the title bar of the figure and in MATLAB’s Windows menu.  

 Writing all of your functions this way has several advantages. For one, you are showing valid ranges 
of the variables up front, without requiring a reader to refer to a separate test function or demo in another 
folder. Having this hard data available every time you open the function helps keep your code and your 
comments consistent. Also, you have a test of the function, which you can easily rerun at any time right from 
the editor. You can publish the function with execution turned on, which performs the demo and includes 
the command-line output and plots right in the HTML file (or LaTeX or Word, if you so choose.) All of this 
helps reduce bugs and documents your function for other readers or yourself in the future. 

 Following this guideline, here is the general format followed for all functions in this book:

    1.    Detailed header  

    2.    Copyright  

    3.    Function definition  

    4.    Default inputs  

    5.    Function demo—that calls itself  

    6.    Code body with calculations  

    7.    Default output     

 Note that no final  return  statement is necessary. 
 In summary, the following usages of this function have been enabled by adding default inputs and 

outputs: 

  output = MyFunction( variable, constant );  
  output = MyFunction( variable );   %   uses default value of constant  
  MyFunction;                        %   performs built-in demo  
  MyFunction(variable, constant);    %   creates a plot for the given input     

    2-5. Smart Structuring of Scripts 
   Problem 
 You write a few lines of code in a script to test some idea. Can you figure out what it does a year later?  

   Solution 
 Treat your scripts like functions, and structure them well. Take the time to follow a template.     
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   How It Works 
 A script is any collection of commands that you put in a file and execute together. In our toolboxes, we 
treat scripts as demos of our toolbox functions, and therefore as instructional. Here are some guidelines we 
recommend when creating scripts:

    Create help  Help headers are not just for functions; write them for your scripts 
too. In a year from now, will you remember what this script does? Will someone 
else in your company be able to understand it? Write a detailed description 
including a list of any files required or generated.  

   Use publishing markup  Create cells in your scripts (using  %% ) to delineate 
sections. Write detailed comments after the section headings. Publish your script 
to HTML and see how it looks. You can even add equations using LaTeX markup 
or by inserting images.  

   Initialize your variables  Take care to fully initialize your variables or you could 
have conflicts when you run multiple scripts in a row. This especially applies to 
data structures and cell arrays. See the recipes for data types in Chapter   1     for the 
correct way to initialize different variables.  

   Specify a directory for saved files  Make sure that you are saving any data into a 
particular location and not just wherever the current directory happens to be.    

 Our scripts use the following pattern. Cell breaks are used between the sections.

    1.    Detailed header using publishing markup  

    2.    Copyright notice  

    3.    User parameters (meant to be changed between runs) are grouped at the top  

    4.    Constants are defined  

    5.    Initialize plotting arrays before loops  

    6.    Perform calculations  

    7.    Create plots  

    8.    Store outputs in files, if desired     

 The following is a complete example, which can be executed. 

  %%   DEMO This is a template for a script layout.  
  %   A detailed description of the script includes and files loaded or  
  %   generated and an idea of what data and plots will be created.  
  %   We will calculate a sine or cosine with or without scaling of the input.  
  %   The script creates one plot and saves the workspace to a file called  
  %   Demo.mat.  
  %%   See also  
  %   sin, cos  

http://dx.doi.org/10.1007/978-1-4842-0559-4_1
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  %%   User parameters  
  param1 = 0.5;  
  nPoints = 50;  
  useSine = false;  

  %%   Constants  
  MY_CONSTANT = 0.25;  

  %%   Calculation loop  
  yPlot =   zeros  (2,nPoints);  
  x     =   linspace  (0,4*  pi  ,nPoints);  
  for   k = 1:nPoints  
    if   (useSine)  
      y =   sin  ( [1.0;param1]*x(k) + MY_CONSTANT );  
    else  
      y =   cos  ( [1.0;param1]*x(k) + MY_CONSTANT );  
    end  
    yPlot (:,k) = y;  
  end  

  %%   Plotting  
  figure  ('Name', 'DEMO');  
  plot  (x,yPlot);  

  %%   Save workspace to a file  
  saveDir = fileparts(mfilename('fullpath'));  
  save  (fullfile(saveDir, 'Demo'))  

 You can verify that the data is stored by clearing the workspace and loading the mat-file after the demo 
has run. 

  >>  clear all 
  >> ScriptDemo  
  >>  clear all 
  >>  load  Demo.mat  
  >>  who 

  Your variables are:  

  MY_CONSTANT  nPoints     useSine     y  
  k            param1      x           yPlot     

    2-6. Implementing MATLAB Command-Line Help for Folders 
   Problem 
 You have a set of folders in your code base and you would like users to easily navigate them as they can the 
built-in MATLAB library.     
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   Solution 
 Placing  Contents.m  files in each folder can provide metadata for the contents of the folders, and this can be 
displayed on the command line.  

   How It Works 
 Command-line help isn’t just for functions and scripts. Folders can also have help in the form of a contents 
listing, which includes the function names and a single-line description of each. Toolboxes can also provide 
documentation in response to a  ver  command with a toolbox-level contents listing. This information is 
provided in a  Contents.m  file that consists entirely of comments. 

 The Contents Report can generate  Contents.m  files for you. It can also check and fix existing 
 Contents.m  files. It automatically uses the H1 line, or the first line of the header, in the function or script. 
Recipe 2-2 provided an example of a function header that includes this line. To read more and learn how to 
run the report on your operating system, see the MATLAB help topic “Create Help Summary Files.” 

 Version information isn’t limited to a single Contents file per toolbox; it is generated by a special line 
inserted into the top of any  Contents.m  file: 

  % Version xxx dd-mmm-yyyy  

 You can also add a descriptive line above the Version information and add subheadings to groups of 
files. For example, consider the output from the  codetools  directory included in MATLAB: 

  >> help codetools  
    Commands for creating and debugging code  
    MATLAB Version 8.4 (R2014b) 08-Sep-2014  

    Editing and publishing  
      edit                   - Edit or create a file  
      grabcode               - Copy MATLAB code from published HTML  
      mlint                  - Check files for possible problems  
      notebook               - Open MATLAB Notebook in Microsoft Word (on Microsoft  
                               Windows platforms)  
      publish                - Publish file containing cells to output file  
      snapnow                - Force snapshot of image for published document  

    Directory tools  
      mlintrpt               - Run mlint for file or folder, reporting results in browser  
      visdiff                - Compare two files (text, MAT, or binary) or folders  

 As with the header of a function, there can be no blank lines in the Contents file, only comments. This 
is shown in an example in Chapter   6     of this book, the Double Integrator, where we added letters of the 
alphabet as section breaks. 

  %   MATLAB/Ch06-DoubleIntegrator  
  %  
  %   D  
  %      DoubleIntegratorSim - Double Integrator Demo  
  %  

http://dx.doi.org/10.1007/978-1-4842-0559-4_6
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  %   P  
  %      PDControl           - Design and implement a PD Controller in sampled time.  
  %      PlotSet             - Create two-dimensional plots from a data set  .  
  %  
  %   R  
  %      RHSDoubleIntegrator - Right hand side of a double integrator  .  
  %      RungeKutta          - Fourth order Runge-Kutta numerical integrator  .  
  %  
  %   T  
  %      TimeLabel           - Produce time labels and scaled time vectors  

 Figure  2-2  shows how to access the Contents Report for this folder from the Command Window.  

 The actual report is shown in Figure  2-3 . You can see that there are links to edit the  Contents.m  file, 
such as for adding version information; fixing the spacing; or fixing all problems. The report detects if you 
have changed the H1 description line of the function and it conflicts with the text in the Contents file.     

  Figure 2-2.    Access the Contents Report on Double Integrator       
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    2-7. Publishing Code into Technical Reports 
   Problem 
 You are creating a report based on some analysis you are doing in MATLAB. You are laboriously copying and 
pasting code snippets and figures into your report document. You discover a bug in your code, and you have 
to do it all over again...     

   Solution 
 The publishing feature in MATLAB allows you to run a script and automatically generate a document 
containing the results, including images of each figure generated and the code itself, with text and equations 
that you insert. These reports can be easily regenerated when you change your code.  

   How It Works 
 The publishing features allow you to generate HTML, LaTeX, Word, and PowerPoint documents from your 
code. These documents can display the code itself, as well as command-line output and plots. You can 
even capture snapshots of your figures during loops and include equations using LaTeX markup. Every 
programmer should become familiar with these features. The main features are highlighted shortly. 

  Figure 2-3.    Completed Double Integrator contents report       
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 The very first section at the top of your file gives a title to the published document. The comments that 
follow in your header are published as discussed in Recipe 2-2. Having a good header is important since this 
can be displayed at the command line, up until the first blank line of your function. However, you can also 
add more sections, text, equations, and images throughout your code. MATLAB automatically generates 
a table of contents of all the sections, and inserts the generated plots and command-line output in each 
section. 

 You need to be careful about putting section breaks inside loops, since this produces a snapshot of any 
figures at every iteration. This could be a desired behavior if you want to capture the evolution of a figure, but 
it could also accidentally produce hundreds of unwanted images. The following is an example script created 
to demonstrate publishing. 

 CREATE A TECHNICAL MEMO FROM YOUR CODE

  %%   Technical Memo Example  
  %   Summary of example objective  .  
  %   Evaluate a function, in this case $\sin(x)$, in a loop. Show how the  
  % equation looks on its own line:  
  %  
  %   $$ y = sin(x) $$  

  %%   Section 1 Title  
  %   Description of first code block.  
  %   Define a customizable scale factor that is treated as a constant  .  
  SCALE_FACTOR = 1.0;  

  %%   Section 2 Title  
  %   Description of second code block  .  
  %   Perform a for loop that updates a figure  .  
  %  
  h =   figure  ('Name','Example  Memo  Figure');  
  hold   on;  
  y =   zeros  (1,100);  
  x =   linspace  (0,2*  pi  );  
  for   k = 1:100  
          %%%   Evaluate the function. Comments not in a block after the title will  
          %%%   not be included in the main text  .  
          y(k) =   sin  (SCALE_FACTOR*x(k));  
          plot  (x(k),y(k),'.')  
  end  

  %%   Conclusions  
  %   You can add additional text throughout your script. You can insert lists,  
  %   HTML, links, images, etc.   

 Figure  2-4  shows this script in the publishing tab of the MATLAB editor, with the pop-up menu opened 
to access the publishing options.  
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 There are a number of settings that apply to publishing. You can save a set of settings with a name and 
easily reuse it for all of your files. The default settings for code are to both evaluate it and include the source 
code in the published document, but these may be turned off independently. To create a technical memo 
from a script without including the source code itself, you set the “Include code” option to  false . You can set 
maximum dimensions on figures and select the format: JPEG, PNG, bitmap, or TIFF. You can even specify a 
MATLAB expression for a function to include input arguments, rather than just running it as a built-in demo. 

 Figure  2-5  shows the settings window with PDF selected as the output type. Note the Save As... button, 
which allows you to save settings. We set the maximum width of the figure to 200 pixels to enable the memo 
to fit on one page, for the purposes of this book. 

  Figure 2-4.    Preparing to publish a script in the editor       
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 Figure  2-6  shows a LaTeX memo generated and compiled for the preceding listing, published without 
the code, with the figure generated in a loop. Note the table of contents, equation, and insertion of the 
graphic. We had to remove some extra \ vspace  commands that MATLAB added to the LaTeX to fit the memo 
on one page.      

  Figure 2-5.    Editting the publish settings for a file       
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    2-8. Integrating Toolbox Documentation into the MATLAB 
Help System 
   Problem 
 You would like to write a users’ guide and provide it with your  toolbox.    

   Solution 
 If you write HTML help files, you can, in fact, include them with your toolbox when you distribute it, and the 
help will show up in MATLAB’s help browser.  

  Figure 2-6.    Technical memo published to LaTeX and compiled to PDF       
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   How It Works 
 You are not limited to command-line help when providing documentation for your code or toolbox. 
MATLAB now provides an API for writing HTML documentation and displaying it to users in the help 
browser. You can write an entire HTML manual and include published versions of your demos. 

 In order to integrate your HTML help files into the MATLAB help system, you need to generate a few XML 
files. One provides a top-level table of contents for your toolboxes. Another provides a list of the demos or 
examples. The third identifies your product. The help topics to read are “Display Custom Documentation” and 
“Display Custom Examples.” The help for third-party products is displayed in a separate section of the MATLAB 
help browser, entitled “Supplemental Software.” The files you need to generate are listed in Table  2-1 .  

   Table 2-1.    Custom Documentation Files   

 info.xml  Identify your documentation 

 helptoc.xml  Table of contents 

 demos.xml  Table of examples 

 The MATLAB documentation describes the XML tags that you need. It provides template documents. 
Comments can be included within the files using standard HTML comments with  <!--  and  --> . 

 The main purpose of the  info.xml  file is to provide a name for your toolbox, identify it as a toolbox or 
blockset, and provide a path to the remaining HTML documentation. The following is an example for our 
recipes code. 

 EXAMPLE INFO.XML

  <  productinfo   xmlns:xsi="    http://www.w3.org/2001/XMLSchema-instance      "  
      xsi:noNamespaceSchemaLocation="optional">  
      <?xml-stylesheet   type  ="text/xsl"href="optional"?>  

      <  matlabrelease  >R2014b</  matlabrelease  >  
      <  name  >MATLAB Recipes</  name  >  
      <  type  >toolbox</  type  >  
      <  icon  ></  icon  >  
      <  help_location  >Documentation</  help_location  >  
      <  help_contents_icon  >$toolbox/matlab/icons/bookicon.gif</  help_contents_icon  >  

  </  productinfo  >   

 The table of contents file,  helptoc.xml , must provide a listing of all the HTML files in your help. This 
is accomplished with a  <tocitem>  tag that can be nested. You generally provide a starting or main page 
for your toolbox, a “getting started” page, users’ guide pages, release notes, and further pages that list the 
functions provided.  <tocitem> ’s can have references to HTML anchors; they do not all need to refer to 
separate HTML files. 

 A small set of icons is included, which can be displayed in the help contents. Consider the following 
 helptoc.xml . 

http://www.w3.org/2001/XMLSchema-instance
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 EXAMPLE HELPTOC.XML

  <?xml   version  ='1.0' encoding="utf-8"?>  
  <  toc version  ="2.0">  
  <!-- First   tocitem   specifies top level page in Help browser Contents -->  
      <  tocitem   target="index.html">Recipes Toolbox  
          <!-- A Getting Started page is generally first -->  
          <  tocitem   target="getting_started.html"   image  ="HelpIcon.GETTING_STARTED">  
              Getting Started  
              <  tocitem   target="requirements.html">System Requirements</  tocitem  >  
              <  tocitem   target="features.html">Features  
                  <!-- TOC levels may include anchor IDs -->  
                  <  tocitem   target="features.html#10187">Feature 1</  tocitem  >  
                  <  tocitem   target="features.html#10193">Feature 2</  tocitem  >  
              </  tocitem  >  
          </  tocitem  >  
          <!-- There is a special icon for the User Guide -->  
          <  tocitem   target="guide_intro.html"  
              image  ="HelpIcon.USER_GUIDE">Recipes User Guide  
              <  tocitem   target="setup.html">Setting Up</  tocitem  >  
              <  tocitem   target="data_processing.html">Processing Data</  tocitem  >  
              <  tocitem   target="verification.html">Verifying Outputs  
                  <  tocitem   target="test_failures.html">Handling Test Failures</  tocitem  >  
              </  tocitem  >  
          </  tocitem  >  
          <!-- The function reference is next with the FUNCTION icon -->  
          <!-- First item is page describing function categories, if any -->  
          <  tocitem   target="function_categories.html"  
                   image  ="HelpIcon.FUNCTION">Function Reference  
              <  tocitem   target="function_categories.html#1">Double Integrator  
                  <!-- Inside category, list the functions -->  
                  <  tocitem   target="function_1.html">function_1</  tocitem  >  
                  <  tocitem   target="function_2.html">function_2</  tocitem  >  
                  <!-- ... -->  
              </  tocitem  >  
              <  tocitem   target="function_categories.html#2">Aircraft  
                  <  tocitem   target="function_3.html">function_3</  tocitem  >  
                  <  tocitem   target="function_4.html">function_4</  tocitem  >  
              </  tocitem  >  
             <  tocitem   target="function_categories.html#3">Spacecraft  
                 <!-- ... -->  
             </  tocitem  >  
         </  tocitem  >  
         <!-- Web links with the webicon.gif -->  
         <  tocitem   target="    http://www.psatellite.com      "  
                  image  ="$toolbox/matlab/icons/webicon.gif">  
         Web Site (psatellite.com)  
         </  tocitem  >  
      </  tocitem  >  
  </  toc  >   

http://www.psatellite.com/
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 This produces the contents listing in the help browser shown in Figure  2-7 . The major icons to delineate 
the help sections are used. Anchor IDs are used for both  features.html  and  function_categories.html . 
There is even a reference to an external web site. Note that this means you will have written the following 
HTML files:

•    index.html  

•   getting_started.html  

•   requirements.html  

•   features.html  

•   guide_intro.html  

•   setup.html  

•   data_processing.html  

•   verification.html  

•   test_failures.html  

•   function_categories.html  

•   function_1.html  

•   function_2.html  

•   ...     

  Figure 2-7.    Custom toolbox table of contents       

 Clearly, generating a function list for a large toolbox by hand could be cumbersome. At PSS, we have 
functions to generate this XML automatically from a directory, using  dir . You can use the functional form of 
 publish  to publish your functions and scripts to HTML automatically, as well. 

 The demos file is similar to the  toc  file in that it provides a nested list of demos or examples. There are 
two main tags:  <demosection>  and  <demoitem> . Items can be m-files or videos. Published demos display 
a thumbnail for one of the figures from the demo, if any exist; the thumbnail image has the same name as 
the HTML file, but a different extension. The demos are completely independent from the HTML table of 
contents, and you can implement an examples listing without creating any other HTML help pages. 

 Here is a short example from our Cubesat Toolbox that includes a published demo called 
 MagneticControlDemo . 
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 EXAMPLE DEMOS.XML

  <?xml   version  ="1.0" encoding="utf-8"?>  
  <  demos  >  
     <  name  >CubeSat</  name  >  
     <  type  >toolbox</  type  >  
     <  icon  >$toolbox/matlab/icons/demoicon.gif</  icon  >  
     <  description  >Contains all the demo files for the CubeSat</  description  >  
     <  website  >  
        <a href="  http://www.psatellite.com">For   more info see psatellite.com</a>  
     </  website  >  
     <  demosection  >  
        <  label  >AttitudeControl</  label  >  
        <  demoitem  >  
           <  label  >MagneticControlDemo: Magnetic control demand analysis</  label  >  
           <  callback  >MagneticControlDemo</  callback  >  
           <  file  >../CubeSat/Demos/AttitudeControl/html/MagneticControlDemo.html</  file  >  
        </  demoitem  >  
     </  demosection  >  
  </  demos  >   

 Once you have created a set of HTML files, you can create a database that will allow MATLAB to search 
them efficiently. To do this, you use  builddocsearchdb  with a path to the folder containing your help files; 
that is, the same path you enter in your  info.xml  file. This function creates a subfolder called  helpsearch  
containing the database. With this subfolder added to your help installation, users will get results from your 
documentation when they search in the Help browser.    

    2-9. Structuring a Toolbox 
   Problem 
 You have a jumble of functions and scripts that you would like to organize into a toolbox that you can 
distribute to others.     

   Solution 
 A previous recipe showed you how to create or generate  Contents.m  files for individual folders in your 
toolbox. You can also create a top-level  Contents.m  file. We describe our usual toolbox structure, including 
placement of these files.  

   How It Works 
 We have a fixed structure for our commercial toolboxes that is used by our build tools and testing routines.

•    Group-related functions together in folders  

•   Place scripts in separate folders  

•   Place script folders together in a Demos folder  
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•   Use the same name for the function folder and corresponding demos folder  

•   Organize folder groups into Modules or Toolboxes    

 Once you create the help files, as described in the previous recipes, they will appear in the directory 
structure as shown next—not in literal alphabetical order. Note that the published demos are stored in the 
 html  directories within the demo folders. We do not display them all, but every folder should have its own 
 Contents.m  file. 

  Module  
  | Contents.m  
  | Folder1  
  |   |     Contents.m  
  |   |     Function1.m  
  | Folder2  
  |   |     Function2.m  
  | Demos  
  |   |     Folder1  
  |   |      | Function1Demo.m  
  |   |      | html  
  |   |     Folder2  
  |   |      | Function2Demo.m  
  |   |      | html  
  |   |     CombinedDemos  
  |   |      | SuperDemo.m  
  |   |      | html  
  | Documentation  
  |   |     demos.xml  
  |   |     info.xml  
  |   |     ToolboxHelp  
  |   |      |   helptoc.xml  
  |   |      |   GettingStarted.html  
  |   |      |   ...  

 You will note that there is a top-level  Contents.m  file within the Module, at the same level as the folders. 
MATLAB does not have any automated utility to make this for you. You can create one with a version line, 
the name of your toolbox, and any other information you would like displayed when the user types “help 
Module”; we generate a list of folders within the module using  dir . Here is an example, noting that all lines 
in a  Content.m  file are comments: 

  %   PSS Toolbox Folder NewModule  
  %   Version 2015.1      05-Mar-2015  
  %  
  %   Directories:  
  %   Folder1  
  %   Folder1  
  %   Demos  
  %   Demos/Folder1  
  %   Demos/Folder1  
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 Your toolbox module will now appear when the user types  ver  at the command. For example: 

  >>   ver  
  ----------------------------------------------------------------------------------------  
  MATLAB Version: 8.4.0.150421 (R2014b)  
  MATLAB License Number: 6xxxxx  
  Operating System: Mac OS X Version: 10.9.5 Build: 13F1066  
  Java Version: Java 1.7.0_55-b13 with Oracle Corporation Java HotSpot(TM) 64-Bit Server  
      VM mixed mode  
  ----------------------------------------------------------------------------------------  
  MATLAB                                                Version 8.4        (R2014b)  
  PSS Toolbox Folder NewModule                       Version 2015.1     

   Summary 
 This chapter reviewed style guidelines for writing MATLAB code and highlighted some differences between 
styles for MATLAB and other languages. When establishing guidelines for your own toolboxes, consider the 
features you may want to use, such as automatic generation of contents files, publishing your results to HTML 
or Microsoft Word, and even incorporating HTML help in the web browser. Also, take the time to create 
proper headers and initialization when you generate code to avoid unpleasant surprises down the road! 
Table  2-2  lists the code developed in the chapter.       

   Table 2-2.    Chapter Code Listing   

 File  Description 

  Dot   Dot product header example. 

  MemoExample   Example of a technical memo for publishing. 

  OverloadedFunction   An internally overloaded function. 

  ScriptDemo   Demo template for a script layout. 
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    CHAPTER 3   

 Visualization           

  MATLAB   provides extensive capabilities for visualizing your data. You can produce 2D plots, 3D plots, and 
animations; you can view images; and you can create histograms, contour and surfaces plots, and other 
graphical representations of your data. You are probably familiar with making simple 2D plots with lines 
and markers, and pie and bar charts, but you may not be aware of the additional possibilities made available 
by the low-level routines. There are also interactive capabilities for editing plots and figures, and adding 
annotations before printing or exporting them. 

 MATLAB excels in scientific visualization and in engineering the visualization of 3D objects. Three-
dimensional visualization is used to visualize data that is a function of two parameters, for example, the 
height on the surface of the Earth, or to visualize three-dimensional objects. The former is used in all areas 
of science and engineering. The latter is particularly useful in the design and simulation of any kind of 
machine, such as robots, aircraft, automobiles, and spacecraft. 

  Three dimensional visualization   of objects can be further divided into  engineering visualization   
and  photo-realistic visualization  . The latter helps you understand what an object looks like and how it is 
constructed. When the inside of an object is considered, you move into the realm of solid modeling, which 
is used for creating models suitable for manufacturing of the object. The goal of photo-realistic visualization 
is to make the 3D view look like a photo. Photo-realistic rendering focuses the interaction of light with the 
object and the eye. MATLAB does provide some capabilities for lighting and camera interation, but it does 
not provide true photo-realistic rendering. 

 The main plotting routines are organized into several categories in the command line help:

    graphics  Low-level routines for figures, axes, lines, text, and other graphics objects.  

   graph2d  Two-dimension graphs like linear plots, log scale plots, and polar plots.  

   graph3d  Three-dimensional graphs like line, meshes, and surfaces; control of 
color, lighting, and the camera.  

   specgraph  Specialized graphs, the largest category. Special 2D graphs, like bar 
and pie charts, histograms, contour plots, special 3D plots, volume and vector 
visualization, image display, movies, and animation.    

 The online help has an entire top-level section devoted to graphics, including plots, formatting and 
annotation, images, printing and saving, graphics objects and performance, and major changes to plotting 
internals that occurred in R2014b. 

 A good command of these functions allows you to create very sophisticated graphics, as well as to adapt 
them to different publication media, whether you need to adjust the dimensions, color, or font attributes 
of your plot. In this chapter, we present recipes that cover what you need to know to use MATLAB graphics 
effectively. There isn’t space to discuss every available plotting routine, which is well-covered in the available 
help, but we do cover the basic functionality and provide recipes for common usage. 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0559-4_3    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_3
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   3-1. Plotting Data Interactively from the MATLAB Desktop 
   Problem 
 You would like to plot data in your workspace, but you aren’t sure of the best method for visualizing it.     

   Solution 
 You can use the PLOTS tab in the MATLAB desktop to plot data directly by selecting variables in the 
workspace display. You select from a variety of plot options, and MATLAB automatically only shows you 
those that are applicable to the selected data set.  

   How It Works 
 Let’s create some sample data to demonstrate this interactive capability, which is a fairly new feature in 
MATLAB. You’ll start with some trigonometric functions to create sample data that oscillates. 

  theta =  linspace(0, 4*pi );  
  y =  sin(theta).*cos (2*theta) + 0.05*theta;  

 There are now two vector variables available in the workspace. Select the PLOTS tab in the desktop, 
and then select the  y  variable in the Workspace display (see Figure  3-1 ). The variable appears on the far left 
of the PLOTS tab area and various plot icons in the ribbon becomes active: plot, bar, area, pie, and so forth. 
Note the radio buttons on the far left, which are for either reusing the current figure for the plot or creating a 
new figure.  

  Figure 3-1.    PLOTS tab with plot icon ribbon       

 Close any open figures with a  close all  and click the plot icon to create a new figure with a simple 2D 
plot of the data. Note that clicking the icon results in the plot command printing to the command line: 

  >>  plot (y)  

 The data is printed with linear indices along the x axis, as shown in Figure  3-2 . 
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 You simply click another plot icon to replot the data using a different function, and again the function 
call is printed to the command line. The plot icons that are displayed are not all the plots available, but 
simply the default favorites from among all the many options; to see more icons, click the pop-up arrow at 
the right of the icon ribbon. The available plot types are organized by category. There is  a   Catalog button that 
you can press to bring up a dedicated plot catalog window with the documentation for each function. 

 To plot data  y  against input  theta , you need to select both variables in the workspace view. They will be 
displayed in the plot ribbon, with a button to reverse their order. Now click an area plot to get a plot with the 
angle on the x axis, as shown in Figure  3-3 . 

  >> area(theta, y)  

  Figure 3-2.    Linear plot of trigonometric data       

  Figure 3-3.    Parametric area plot of trigonometric data       

 

 



CHAPTER 3 ■ VISUALIZATION

60

 Note that this time, as expected, the x-axis range is from 0 to 4  p  . 
 You can annotate the plot interactively with arrows and text, add subplots, change line properties, and 

more using the  Plot Edit toolbar   and the Figure Palette window.    These are available from the View menu of 
the figure window and by clicking the Show Plot Tools button in the standard Figure toolbar. For example, 
using the plot tools, you can select the axes, double-click to open the property editor, type an X Label, and 
turn on grid lines. You can add another subplot, plot the values of theta against linear indices, and then 
change the plot type to a stem plot, all from this window. See Figure  3-4 . 

  Figure 3-4.    Plot of trigonometric data in the Figure Palette       

 The same changes can be made programmatically, as shown in following recipes. In fact, you can 
generate code from the Figure Palette and MATLAB will create a function with all the commands necessary 
to replicate your figure from your data.    The Generate Code command is under the File menu of the 
window. It allows you to interactively create a visualization that works with some example data and then 
programmatically adapt it to your toolbox. MATLAB calls the new autogenerated function  createfigure . 
You can see the use of the following functions:  figure ,  axes ,  box ,  hold ,  ylabel ,  xlabel ,  title ,  area ,  stem , 
and  annotation .    
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  function   createfigure(X1, yvector1)  
  %  CREATEFIGURE(X1, YVECTOR1)  
  %    X1:  area x  
  %    YVECTOR1:   area yvector  
   
  %    Auto  −  generated by MATLAB on 03  −  Jun  −  2015 14:32:43  
   
  %   Create figure  
  figure1 =   figure  ;  
   
  %   Create axes  
  axes1 =   axes  ('Parent', figure1, 'XGrid', 'on', 'OuterPosition', [0 0.5 1 0.5]);  
  box  (axes1,'on');  
  hold  (axes1,'on');  
   
  %   Create ylabel  
  ylabel  ('Data');  
   
  %   Create xlabel  
  xlabel  ('Angle  (rad)');  
   
  %   Create title  
  title  ('Area  Plot');  
   
  %   Create area  
  area  (X1,yvector1,'DisplayName','Area','Parent',axes1);  
   
  %   Create axes  
  axes2 =   axes  ('Parent',figure1,'OuterPosition',[0 0 1 0.5]);  
  box  (axes2,'on');  
  hold  (axes2,'on');  
   
  %   Create ylabel  
  ylabel  ('Theta');  
   
  %   Create xlabel  
  xlabel  ('Increment');  
   
  %   Create stem  
  stem  (X1,'DisplayName','theta','Parent',axes2,'Marker','none',...  
    'Color',[0 0.447 0.741]);  
   
  %   Create textarrow  
  annotation  (figure1,'textarrow',[0.609822646657571 0.568894952251023],...  
    [0.827828828828829 0.717117117117118]);  
   
  %   Create textbox  
  annotation  (figure1,'textbox',...  
    [0.553888130968622 0.814895792699917 0.120787482806052 0.0489690721649485],...  
    'String',{'Point  of  interest'});  
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 Note that this code did not, in fact, use the   subplot  function,   but rather the option to specify the exact 
axes location in the figure with the  'OuterPosition'  property. Also note that the units of the axes positions 
and the annotations are between 0 and 1; that is, normalized. This is, in fact, an option for axes, as seen in 
the following call using  gca  to get the handle to the current axes: 

  >>   set  (  gca  , 'units')  
      'inches'  
      'centimeters'  
      'characters'  
      'normalized'  
      'points'  
      'pixels'  

 Using other units may be helpful for certain applications, but normalized units are always the default. 
The following are additional interactive buttons in the Figure toolbar that should be mentioned:   

•    Zoom in  

•   Zoom out  

•   Hand tool to move an object in the plane of the figure  

•   Rotate tool to rotate the view  

•   Data cursor  

•   Brush/Select Data  

•   Colorbar  

•   Legend    

 The hand and rotate tools are very helpful with 3D data. The data cursor displays the values of a plot 
point right in the figure. The brush highlights a segment of data using a contrast color of your choosing using 
the colors pop-up. The colorbar and the legend buttons serve as on/off switches.   

    3-2. Incrementally Annotate a Plot 
    Problem   
 You need to annotate a curve in a plot at a subset of points on the curve.  

   Solution 
 Use the  text  function to notate the plot.  
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   How It Works 
 Call  text  within a  for  loop in  AnnotatePlot . Use  sprintf  to create the text for the annotations, which gives 
you control over the formatting of any numbers. In this case, use  %d  for integer display.  linspace  creates an 
evenly spaced index array into the data to give you the selected points to annotate; in this case, five points. 

  %% Annotate a plot  
  % Add text annotations evenly spaced along a curve.  
      
  %% Parameters  
  nPoints = 5;   % Number of plot points to have annotations  
   
  %% Create the line  
  v        = [1;2;3];  
  t        =   linspace  (0,1000);  
  r        = [v(1)*t;v(2)*t;v(3)*t];  
   
  %% Create the figure and plot  
  s = 'Annotated  Plot';  
  h =   figure  ('name',s);  
  plot3  (r(1,:),r(2,:),r(3,:));  
  xlabel  ('X');  
  ylabel  ('Y');  
  zlabel  ('Z');  
  title  (s)  
  grid  
   
  %% Add the annotations  
  n    =   length  (t);  
  j    =   ceil  (  linspace  (1,n,nPoints));  
   
  for   k = j  
    text  (r(1,k), r(2,k), r(3,k),   sprintf   (' −  Time  %d',  floor  (t(k))));  
  end  

 Note that you pass the index array  j  directly to the loop index  k . Figure  3-5  shows the annotated plot. 
You create a three-dimensional straight line to annotate.     
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    3-3. Create a Custom Plot Page with  Subplot   
   Problem 
 You need multiple plots of your data for a particular application, and as you rerun your script, they are 
cluttering your screen and hogging memory. We often create many dozens of plots as we work with our 
commercial toolboxes.  

   Solution 
 Create a single plot with several subplots on it so you only need one figure to see the results of one run of 
your application.  

   How It Works 
 The  subplot  function allows you to create a symmetric array of plots in a figure in two dimensions. You 
generate an  m  ×  n  array of small axes that are spaced in the figure automatically. A good example is a 3D 
trajectory with views from different angles. You can create a plot with a 2 × 2 array of axes, with the 3D plot in 
the lower left-hand corner and views from each direction around it. The function is  QuadPlot . It has a built-
in demo, creating the figure shown in Figure  3-6 .  

  Figure 3-5.    Annotated three-dimensional plot       
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 Note that you must use the size of your axes array—in this, case (2,2)—in each call to  subplot . 

  %% QUADPLOT Create a quad plot page using subplot.  
  % This creates a 3D view and three 2D views of a trajectory in one figure.  
  %% Form  
  %  QuadPlot( x )  
  %% Input  
  %   x   (3,:)     Trajectory data  
  %  
  %% Output  
  % None. But you may want to return the graphics handles for further programmatic  
  % customization.  
  %  
      

  Figure 3-6.    QuadPlot using subplot for axes placement       
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  function   QuadPlot(x)  
    if nargin   == 0  
    disp  ('Demo  of  QuadPlot');  
    th =   logspace  (0,  log10  (4*  pi  ),101);  
    in =   logspace  ( − 1,0,101);  
    x = [  sin  (th).*  cos  (in);  cos  (th).*  cos  (in);  sin  (in)];  
    QuadPlot(x);  
    return  ;  
  end  
   
  h =   figure  ('Name','QuadPage');  
  set  (h,'InvertHardcopy','off')  
   
  % Use subplot to create plots  
  subplot  (2,2,3)  
  plot3  (x(1,:),x(2,:),x(3,:));  
  xlabel  ('X')  
  ylabel  ('Y')  
  zlabel  ('Z')  
  grid   on  
  title  ('Trajectory')  
  rotate3d   on  
   
  subplot  (2,2,1)  
  plot  (x(1,:),x(2,:));  
  xlabel  ('X')  
  ylabel  ('Y')  
  grid   on  
  title  ('Along Z')  
   
  subplot  (2,2,2)  
  plot  (x(2,:),x(3,:));  
  xlabel  ('Y')  
  ylabel  ('Z')  
  grid   on  
  title  ('Along  X')  
   
  subplot  (2,2,4)  
  plot  (x(1,:),x(3,:));  
  xlabel  ('X')  
  ylabel  ('Z')  
  grid   on  
  title  ('Along  Y')  

 In the latest versions of MATLAB, you can easily access figure and axes properties using field names. 
For instance, let’s get the figure generated by the demo using  gcf , and then look at the children, which should 
include the four subplots. 
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  >> h =  gcf 
   
  h =  
   
  Figure (5: PlotPage) with properties:  
   
        Number: 5  
          Name: 'PlotPage'  
         Color: [0.94 0.94 0.94]  
      Position: [440 378 560 420]  
         Units: 'pixels'  
   
      Show   all   properties  
   
  >> h.Children  
   
  ans   =  
    5x1 graphics array:  
   
    ContextMenu  
    Axes           (Along Y)  
    Axes           (Along X)  
    Axes           (Along Z)  
    Axes           (Trajectory)  

 Note that the titles of the axes are helpfully displayed. If you wanted to add additional objects or change 
the properties of the axes, you could access the handles this way. Or, you might want to provide the handles 
as an output for your function. You can also make a subplot in a figure of the current axes, just by calling 
 subplot  again with the array size and ID: 

    (2,2,1)     

    3-4. Create a Plot Page with Custom-Sized Axes 
   Problem 
 You would like to group some plots together in a figure, but not as evenly spaced subplots.     

   Solution 
 You can create custom-sized axes using the  'OuterPosition'  property of the axes, placing them anywhere 
in the figure that you wish.  

   How It Works 
 You’ll create a custom figure with two plots, one spanning the width of the figure and a second smaller axes, 
as in Figure  3-7 . This leaves room for a block of descriptive text, which might describe the figure itself or 
display the results. In order to make the plots more interesting, you will add markers and text annotations 
using  num2str . 
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  Figure 3-7.    PlotPage with custom-sized plots       

 The function is  PlotPage . Using  'OuterPosition'  for the axes instead of  'Position'  means the limits 
include the axes labels, so you can use the full range of the figure from 0 to 1 (normalized units). 

  %% PLOTPAGE Create a plot page with several custom plots in one figure.  
  % Specify axes with custom sizes on the figure.  
  %% Form  
  %  PlotPage( t, x )  
  %% Input  
  %   t   (1,:)    Time vector  
  %   x   (3,:)    Trajectory data  
  %  
  %% Output  
  % None. But you may want to return the graphics handles for further programmatic  
  % customization.   
  
  function   PlotPage(t, x)  
   
  if nargin   == 0  
    disp  ('Demo of PlotPage');  
    t =   linspace  (0,100,101);  
    th =   logspace  (0,  log10  (4*  pi  ),101);  
    in =   logspace  (-1,0,101);  
    x = [  sin  (th).*  cos  (in);  cos  (th).*  cos  (in);  sin  (in)];  
  end  
   
  h =   figure  ('Name','PlotPage');  
  set  (h,'InvertHardcopy','off')  
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  % Specify the axes position as [left, bottom, width, height]  
  axes  ('outerposition',[0.5 0 0.5 0.5]);  
  plot  (t,x);  
  xlabel  ('Time')  
  grid   on  
   
  % Specify an additional axes and make a 3D plot  
  axes  ('outerposition',[0 0.5 1 0.5]);  
  plot3  (x(1,:),x(2,:),x(3,:));  
  xlabel  ('X')  
  ylabel  ('Y')  
  zlabel  ('Z')  
  grid   on  
   
  % add markers evenly spaced with time  
  hold   on  
  for   k=1:10:  length  (t)  
      plot3  (x(1,k),x(2,k),x(3,k),'x');  
      % add a text label  
      label = [' '   num2str  (t(k)) ' s'];  
      text  (x(1,k),x(2,k),x(3,k),label);  
  end  
  hold   off  
   
  uh =   uicontrol  ('Style','text','String','Description of the plots',...  
            'units','normalized','position',[0.05 0.1 0.35 0.3]);  
  set  (uh,'string',['You may wish to provide a detailed description '...  
                    'of the visualization of your data or the results right on the figure  
                       '...  
                    'itself in a uicontrol text box such as this.']);  
  set  (uh,'fontsize',14);  
  set  (uh,'foregroundcolor',[1 0 0]);     

    3-5. Plotting with Dates 
   Problem 
 You want to plot data as a function of time using dates on the x axis.     

   Solution 
 Access the tick labels directly using handles for the axis, or use  datetick  with serial date numbers.  

   How It Works 
 First, you can manually specify the tick labels. You plot the data as a function of the index and then replace 
the  x  labels with strings of your choice; in this case, specific months. For example, you plot the power 
consumption of a home in kilowatt-hours (kWh), see Figure  3-8 . Note how the  xlim ,  xtick , and  xticklabel  
properties are set using  set  after generating the plot. The limits are set to [0 13] instead of [1 12] to 
accommodate the width of the bars. 
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  %% Plot using months as the x label  
  % First we will set the labels manually. Then we will use MATLAB  '  s serial date  
  % numbers to set the labels automatically.  
   
  %% Specify specific months as labels  
  kWh = [ 2500 2600 2900 1500 1300 1500 1600 1000 1400 1100 1200 2300];  
  month = {'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' 'Nov' 'Dec'};  
   
  figure  ('Name','Plotting  With  Manual  Date  Labels');  
  bar  (1:12,kWh)  
  xlabel  ('Month');  
  ylabel  ('kWh')  
  title  ('Power  Consumption');  
  grid   on  
   
  set  (  gca  ,'xlim',[0 13],'xtick',1:12,'xticklabel',month);  

  Figure 3-8.    Plotting with manual month labels       

 If you are plotting data against complete dates, you can also use MATLAB’s serial date numbers, which 
can be automatically displayed as tick marks using  datetick . You can convert between calendar dates 
and serial numbers using  datestr ,  datenum , and  datevec . A date vector is the six-component date as [year 
month day hour minute second]. So, for instance, let’s assign the data in the preceding example to actual 
dates in the year 2014. The default date tick marks show months just, like in the manual example, but for 
demonstration purposes, let’s specify a format including the year:  'mmmyy' . See Figure  3-9 . 

  %% Specify full dates and use serial dates to automatically produce labels  
  % Specifying only the month will use the current year by default. We will set  
  % the year to 2014 by using datevec.  

  N =  datenum (month,'mmm');   
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  V =   datevec  (N);  
  V(:,1) = 2014;  
  N =   datenum  (V);  
   
  figure  ('Name','Plotting  With  Serial  Dates');  
  bar  (N,kWh)  
  xlabel  ('Date');  
  title  ('Power  Consumption  with  datetick');  
  datetick  ('x','mm/yy')  
  grid   on   

  Figure 3-9.    Plotting using datetick with serial dates       

 Note that the ticks themselves are no longer one per month; if you want to specify them manually, you 
now need to use date numbers. The properties are printed here, using  get  to show the  XTicks  used. 

  >>   get(gca)  
  ...  
                               XLim: [735508 735965]  
                           XLimMode: 'manual'  
                         XMinorGrid: 'off'  
                         XMinorTick: 'off'  
                             XScale: 'linear'  
                              XTick: [735508 735600 735690 735781 735873 735965]  
                         XTickLabel: [6x5 char]  
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 MATLAB’s serial date numbers do not correspond to other serial date formats, like the Julian date. 
MATLAB simply counts days from Jan-1-0000, so the year 2000 starts at a serial number of 
2000 * 365=730,000. The following quick example demonstrates this, as well as uses  now  to get the current date: 

  >> v = datevec(now)  
  v =  
           2015          7           31         11         37          0.6198  
  >> n = datenum(v)  
  n =  
      7.3618e+05  
  >> s = datestr(n,'local')  
  s =  
  31 − Jul − 2015 11:37:00     

    3-6. Generating a Color Distribution 
   Problem 
 You want to assign colors to markers or lines in your plot.     

   Solution 
 Specify the HSV components algorithmically from around the color wheel and convert to RGB.  

   How It Works 
  ColorDistribution  chooses colors from around the color wheel, as shown in Figure  3-10 . The colors 
are selected using the hue component of HSV, with a full range from 0 to 1. Parameters allow the user to 
separately specify the saturation and value, which are the same for all the colors generated. You could 
alternatively use these components to select a variety of colors of one hue.  

  Figure 3-10.    Original lines and lines with a color distribution with values and saturation of 1       
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 Reducing the saturation  (sat)  lightens the colors while remaining on the same “spoke” of the color 
wheel. A saturation of 0 produces all grays. Value  (val)  keeps the ratio between RGB components remains 
the same, but lowering the magnitude makes colors darker; for example, [1 0.85 0] and [0.684 0.581 0]. 

  %% Demonstrate a color distribution for an array of lines.  
  % Colors are calculated around the color wheel using hsv2rgb.  
      
  val    = 1;  
  sat    = 1;  
  n      = 100;  
  dTheta = 360/n;  
  thetaV =   linspace  (0,360-dTheta,n);  
   
  h      =   linspace  (0,1-1/n,n);  
  s      = sat* ones (1,n);  
  v      = val* ones (1,n);  
  colors =   hsv2rgb  ([h;s;v]');  
  y      =   sin  (thetaV*  pi  /180);  
  h      =   figure  ;  
  hold   on;  
  set  (h,'name','Color Wheel')  
  l     =  gobjects (n);  
  for   k = 1:n  
    l(k) =   plot  (thetaV,k*y);  
  end  
  set  (  gca  ,'xlim',[0 360]);  
  grid   on  
  pause  
   
  for   k = 1:n  
    set  (l(k),'color',colors(k,:)*val);  
  end     

    3-7. Visualizing Data over 2D or 3D Grids 
   Problem 
 You need to perform a calculation over a grid of data and view the results.     

   Solution 
 The function  meshgrid  produces grids over  x  and  y  that can be used for calculations and subsequently input 
to  surf . This is also useful for  contour  and  quiver  plots.  
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   How It Works 
 First, you define the vectors in  x  and  y  that define your grid. You can perform your calculations in a  for  loop 
or in a vectorized function. The vectors do not have to be physical dimensions; indeed, in general they are 
quite different quantities involved in a parametric study. The classic example is an exponential function of 
two variables, which is viewed as a surface in Figure  3-11 . 

  %% 2D example of meshgrid  
  figure  ('Name','2D Visualization');  
  xv = -1.5:0.1:1.5;  
  yv = -2:0.2:2;  
  [X,Y] =   meshgrid  (xv, yv);  
  Z = Y .*   exp  (-X.ˆ2 - Y.ˆ2);  
   
  surf  (X,Y,Z,'edgecolor','none')  
  title  ('2D Grid Example')  
  zlabel  ('z  =  y  exp(  -xˆ2-yˆ2  )')  
  colormap hsv  
   
  size  (X)  
  size  (Y)  

 The generated matrices are square and consist of the input vector replicated in the correct dimension. 
You could achieve the same result by hand using  repmat , but  meshgrid  eliminates the need to remember the 
details. 

  Figure 3-11.    3D surface generated over a 2D grid       
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  >>   size  (X)  
  ans   =  
      41    41  
  >>   size  (Y)  
  ans   =  
      41    41  
  >> X(1:5,1:5)  
  ans   =  
              -2           -1.9           -1.8             -1.7           -1.6  
              -2           -1.9           -1.8             -1.7           -1.6  
              -2           -1.9           -1.8             -1.7           -1.6  
              -2           -1.9           -1.8             -1.7           -1.6  
              -2           -1.9           -1.8             -1.7           -1.6  
  >> Y(1:5,1:5)  
  ans =  
              -2           -2             -2               -2             -2  
              -1.9         -1.9           -1.9             -1.9           -1.9  
              -1.8         -1.8           -1.8             -1.8           -1.8  
              -1.7         -1.7           -1.7             -1.7           -1.7  
              -1.6         -1.6           -1.6             -1.6           -1.6   

 For fun, you can plot contours of the data as well. You can use the  gradient  function to calculate the 
slope and plot this using  quiver . See Figure  3-12 . 

  figure  ('Name','Contour and Quiver')  
  [px,py] =   gradient  (Z,0.1,0.2);  
  contour  (X,Y,Z),   hold   on  
  quiver  (X,Y,px,py)  
  title  ('Contour  and  Quiver  Demo')  
  xlabel  ('x')  
  ylabel  ('y')  
  colormap hsv  
  axis   equal   
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  Figure 3-12.    3D surface visualized as contours       

 You can also generate a 3D grid and compute data over the volume, for a fourth dimension. In order to 
view this extra data over the volume, you can use  slice . This uses interpolation to draw slices at any location 
along the axes that you specify. If you want to see the exact planes in your data, you can use  pcolor ,  surf , or 
 contour  in individual figures.  quiver3  can be used to plot arrows in 3D space as well. The result is shown in 
Figure  3-13 . 
   
  %% 3D example of meshgrid  
  % meshgrid can be used to produce 3D matrices, and slice can display selected  
  % planes using interpolation.  
  figure  ('Name','3D Visualization');  
  zv = -3:0.3:3;  
  [x,y,z] =   meshgrid  (xv, yv, zv);  
  v = x .*   exp  (-x.ˆ2 - y.ˆ2 - z.ˆ2);  
  slice  (x,y,z,v,[-1.2 -0.5 0.8],[],[-0.25 1])  
  title  ('3D  Grid  Example')  
  zlabel  ('v  =  y  exp(  -xˆ2-yˆ2-zˆ2  )')  
  colormap hsv      
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    3-8. Generate 3D Objects Using Patch 
   Problem 
 You would like to draw a 3D box.     

   Solution 
 You can create a 3D box as in Figure  3-14  using the  patch  function.   

  Figure 3-13.    3D Volume with slices       

  Figure 3-14.    Box generated using patch       
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   How It Works 
 The  patch  function in MATLAB uses vertices and faces to define an area in two or three dimensions. The 
vertex list is an  n  × 3 array specifying the vertex locations. The faces array is an  n  ×  m  array, where  m  is the 
number of vertices per polygon. The faces array contains the row indices for the vertices. We usually set  m  to 
3 since all graphics engines eventually reduce polygons to triangles. We draw a box in  BoxPatch , shown next. 
Generally, when drawing a physical object, set  axis  to  equal  so that the aspect ratio is correct.  patch  has 
many properties. In this case, just set the color of the faces to gray using RGB. The edge color, which can also 
be specified, is black by default. The  view(3)  call sets the camera to a position with equal x, y, and z values. 
 rotate3d on  lets us move the camera around. This is very handy for inspecting the model. 

  %% Generate a cube using patch  
  % Create a figure a draw a cube in it. The vertices and faces are specified  
  % directly. Uses   '  axis equal  '   to display the cube with an accurate aspect ratio.  
      
  %% Box design  
  x = 3;  
  y = 2;  
  z = 1;  
   
  % Faces  
  f   = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7 8];  
   
  % Vertices  
  v = [ − x x x  − x  − x x x  − x;...  
      − y  − y y y  − y  − y y y;...  
      − z  − z  − z  − z z z z z]'/2;  
   
  %% Draw the object  
  h =   figure  ('name','Box');  
  patch  ('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5]);  
  axis   equal  
  grid   on  
  axis  ([ − 3 3  − 3 3  − 3 3])  
  xlabel  ('x')  
  ylabel  ('y')  
  zlabel  ('z')  
  view  (3)  
  rotate3d   on     
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    3-9. Working with Light Objects 
   Problem 
 You would like to light the 3D box drawn in the previous recipe.     

   Solution 
 You can create ambient or directed light objects using the  light  function. Light objects affect both patch and 
surface objects, which are created by  surf ,  mesh ,  pcolor ,  fill ,  fill3 , and  patch .  

   How It Works 
 The main properties for working with light objects are  Color ,  Style ,  Position , and  Visible . The style 
may be infinite, with the light shining in parallel rays from a specified direction, or local, with a point 
source shining in all directions. The  Position  property has a different meaning for each of these styles. 
 PatchWithLighting  adds a local light to the box script. You modify the box surface properties using 
 material  to get different effects. 

  %% Add lighting to the cube patch  
  % We use findobj to locate the patch drawn in Patch, then change its properties  
  % to be suitable for lighting. We add a local light.  
   
  %% Create the box patch object  
  BoxPatch;  
   
  %% Find and update the patch object  
  p =   findobj  (  gcf  ,'type','patch');  
  c = [0.7 0.7 0.1];  
  set  (p,'facecolor',c,'edgecolor',c,...  
         'edgelighting','gouraud','facelighting','gouraud');  
  material  ('metal');  
   
  %% Lighting  
  l =   light  ('style','local','position',[10 10 10]);  

 Figure  3-15  shows dull and metal material with the same lighting. The lighting produced by MATLAB 
is limited by being OpenGL lighting. Modern 3D graphics use textures and shaders for photo-realistic scene 
lighting. Also, you cannot generate shadows in MATLAB.  
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 The dull, shiny, and metal settings for  material  set the patch properties to produce these effects. You 
can easily print the effects to the command line using  get . 

  >> material dull  
  >>  get (p)  
                      DiffuseStrength: 0.8  
  ...  
             SpecularColorReflectance: 1  
                     SpecularExponent: 10  
                     SpecularStrength: 0  
  >> material metal  
  >>  get (p)  
                      DiffuseStrength: 0.3  
                    ...  
             SpecularColorReflectance: 0.5  
                     SpecularExponent: 25  
                     SpecularStrength: 1  
   
  >> material shiny  
  >>  get (p)  
                      DiffuseStrength: 0.6  
               ...  
             SpecularColorReflectance: 1  
                     SpecularExponent: 20  
                     SpecularStrength: 0.9  

  Figure 3-15.    Box illuminated with a local light object. The left box has “dull” material. The one on the right 
has “metal”.       
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  Figure 3-17.    Shiny box with flat lighting       

  Figure 3-16.    Shiny box with ambient lighting removed (AmbientStrength is set to 0) and a different camera 
viewpoint       

 Note that the  AmbientStrength  is 0.3 for all the settings material settings listed. If you want to see the 
effect of only your light objects without ambient light, you have to manually set this to 0. In Figure  3-16 , the 
ambient strength is set to 0 and the shiny material is applied.  

 MATLAB has a  lighting  function to control the lighting model with four settings:  none ,  gouraud ,  phong , 
and  flat . Gouraud interpolates the lighting across the faces gives the most realistic effect. Note that setting 
the lighting to Gouraud for our box sets the  FaceLighting  property to  gouraud  but the  EdgeLighting  to 
 none , which gives a different effect than in our script, where the edge lighting was also set to Gouraud via its 
property. Flat lighting gives each entire face a uniform lighting, as seen in Figure  3-17 , where we set the view 
to (-50,30) and the lighting to flat. 

 The MATLAB recommendations are to use flat lighting for faceted objects and gouraud lighting for curved 
objects. The easiest way to compare these is to create a sphere, which is simple using the  sphere  function and 
generating a surface. This is done as follows in  SphereLighting . The infinite light object shines from the  x  axis. 
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  %% Create and light a sphere  
   
     %% Make the sphere surface in a new figure  
  [X,Y,Z] =  sphere (16);   
 figure('Name','Sphere Demo') 
  s =  surf(X,Y,Z); 
 xlabel('x') 
 ylabel('y') 
 zlabel('z') 
 axis  equal  
 view(70,15) 
   
  %% Add a lighting object and display the properties  
  light('position',[1 0 0])  
 disp(s) 
 title('Flat  Lighting')  
  pause  
   
  %% Change to Gouraud lighting and display again  
  lighting gouraud  
 title('Gouraud  Lighting')  
 disp(s)  

 In addition to a  sphere  function, MATLAB also provides  cylinder  and  ellipsoid .    

  Figure 3-18.    Sphere illuminated with an infinite light object. The left sphere has flat lighting. The one on the 
right has gouraud       
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    3-10. Programmatically Setting the Camera Properties 
   Problem 
 You would like to have a camera that can be pointed in your scene.     

   Solution 
 Use the MATLAB  cam  functions. These provide the same functionality as the buttons in the Camera toolbar, 
but with repeatability and the ability to pass in variables for the parameters.  

   How It Works 
 Make two boxes in the scene: one is scaled and displayed from the other by 5 in  x . Use the MATLAB 
functions  camdolly ,  camorbit ,  campan ,  camzoom , and  camroll  to control the camera. Put all of these 
functions in the  PatchWithCamera.m  script and provide examples of two sets of parameters. Note that 
without lighting, the edges disappear.  

  %% Generate two cubes using patch and point a camera at the scene  
  % The camera parameters will be set programmatically using the cam functions.  
   
  %% Camera parameters  
  % Orbit  
  thetaOrbit = 0;  
  phiOrbit = 0;  
   
  % Dolly  
  xDolly = 0;  
  yDolly = 0;  
  zDolly = 0;  
   

  Figure 3-19.    Boxes with different camera parameters       
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  % Zoom  
  zoom   = 1;  
   
  % Roll  
  roll = 50;  
   
  % Pan  
  thetaPan = 1;  
  phiPan = 0;  
   
  %% Box design  
  x = 1;  
  y = 2;  
  z = 3;  
   
  % Faces  
  f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7 8];  
   
  % Vertices  
  v = [-x x x -x -x x x -x;...  
       -y -y y y -y -y y y;...  
       -z -z -z -z z z z z]'/2;  
   
  %% Draw the object  
  h =  figure ('name','Box');  
   
  c = [0.7 0.7 0.1];  
 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,... 
        'edgelighting','gouraud','facelighting','gouraud');  
   
  c = [0.2 0 0.9];  
  v      = 0.5*v;  
  v(:,1) = v(:,1) + 5;  
 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,... 
        'edgelighting','gouraud','facelighting','gouraud');  
   
  material('metal');  
  lighting gouraud  
 axis  equal  
 grid  on  
  XLabelS('x')  
  YLabelS('y')  
  ZLabelS('z')  
 view(3) 
  rotate3d on  
   
  %% Camera commands  
  campan(thetaPan,phiPan)  
  camzoom(  zoom  )  
  camdolly(xDolly,yDolly,zDolly);  
  camorbit(thetaOrbit,phiOrbit);  
  camroll(roll);  
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  s =   sprintf  ('Pan  %3.1f  %3.1f\nZoom  %3.1f\nDolly  %3.1f  %3.1f %3.1f\nOrbit  %3.1f  %3.1f\  
      nRoll  %3.1f',...  
  thetaPan,phiPan,  zoom  ,xDolly,yDolly,zDolly,thetaOrbit,phiOrbit,roll);  
   
  text  (2,0,0,s);  

 Additional functions for interacting with the scene camera include  campos  and  camtarget , which can be 
used to set the camera position and target. This can be used to image one object from the vantage point of 
another.  camva  sets the camera view angle, so you can model a real camera’s field of view.  camup     

   3-11. Display an Image 
   Problem 
 You would like to draw an image.  

   Solution 
 You can read in an image directly from an image file and draw it in a figure window. MATLAB supports a 
variety of formats, including GIF, JPG, TIFF, PNG, and BMP.     

   How It Works 
 A black-and-white image is read using  imread  and displayed using  imagesc .  imagesc  scales the color data 
into the colormap. It is necessary to apply the grayscale color map; otherwise, you’ll get the colors in the 
default colormap. For the parula colormap, the colors are blue and yellow. 

  %% Draw a JPEG image in a figure multiple ways  
  % We will load and display an image of a mug.  
  %% See also  
  % imread, pcolor, imagesc, imshow, colormap  
   
  %% Read in the JPEG image  
  i =   imread  ('Mug.jpg');  
   
  %% Draw the picture with imagesc  
  % This preserves an axes. Each pixel center of the image lies at integer  
  % coordinates ranging between 1 and M or N. Compare the result of imagesc to  
  % that of pcolor. axis image sets the aspect ratio so that tick marks on both  
  % axes are equal, and makes the plot box fit tightly around the data.  
  h =   figure  ('name','Mug')  
  subplot  (1,2,1)  
  pcolor  (i)  
  shading  ('interp')  
  colorbar  
  axis image  
  title  ('pcolor  with  colorbar')  
  a =   subplot  (1,2,2)  
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  % scale the image into the colormap  
  imagesc  ( i );  
  colormap  (a,'gray')  
  axis image  
  grid   on  
  title  ('imagesc with gray colormap')  

 Figure  3-20  shows the mug first using  pcolor , which creates a pseudocolor plot of a matrix, but is really 
a  surf , with the view looking down from above. To highlight this fact, we added a colorbar. Then on the right, 
the image is drawn using  imagesc  with a gray colormap. Observe that  imagesc  has changed the direction of 
the axes so that the image appears right-side up. Both plots have axes with tick marks. 

  Figure 3-20.    Mug displayed using pcolor and imagesc       

 MATLAB has another image display function called  imshow , which is considered the fundamental 
image display function. It optimizes the figure, axes, and image object properties for displaying an image. 
If you have the Image Processing toolbox,  imtool  extends  imshow  with additional features. Notice how the 
image is displayed without the axes box. This function automatically scales and selects the gray colormap.    

  %% Draw with imshow  
  % The axes will be turned off. The image will be scaled to fit the figure if it  
  % is too large.  
  f =   figure  ('Name','Mug  Image');  
  subplot  (1,2,1)  
  imshow  (i)   
  title  ('imshow')  
  subplot  (1,2,2)  
  imshow  (i,[30 200])  
  title  ('imshow  with  limits  [30  200]')   
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  Figure 3-21.    Mug displayed using imshow, with color limits applied on the right       

 Not all images use the full depth available; for instance, this mug image has a minimum value of 30 and 
a maximum of 250.  imshow  allows you to set the color limits of the image directly, and the pixels are scaled 
accordingly. You can darken the image by increasing the lower color limit, and brighten it by lowering the 
upper color limit.   

    3-12. Adding a Watermark 
   Problem 
 You have a lot of great graphics in your toolbox and you would like them marked to show that they were 
created by your company. Alternatively, or additionally, you may want to mark these images with a date or 
the version number of the software that generated it.     

   Solution 
 You can use low-level graphics functions to add a textual or image watermark to figures that you generate 
in your toolbox. The tricky part is adding the items to the figure in the correct order so that they are not 
overridden.  

   How It Works 
 The best way to add watermarks is to make a special axis for each text or image item you want to add. You turn 
the axis box off so that all you see is the text or image. In the first example, we added an icon and text to the 
lower left-hand corner of the plot. We added a color for the edge around the text so that it is nicely delineated. 
This is shown in Figure  3-22 . In the example, we set the hard copy inversion to off, so that when we print the 
figure we will get a gray background; this makes it easier to see in the book. 

 >> h = figure ;  
  >>  set (h,'InvertHardCopy','off')  
  >>  axes 
  >> Watermark(h)   
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  function   Watermark( fig, pos )  
   
  %% WATERMARK Add a watermark to a figure.  
  % This function creates two axes, one for the image and one for the text.  
  % Calling it BEFORE plotting can cause unexpected results. It will reset  
  % the current axes after adding the watermark. The default position is  
  % the lower left corner, (2,2).  
  %% Form  
  %   Watermark( fig, pos )  
  %% Inputs  
  %   fig        (1,1) Figure hangle  
  %   pos        (1,2) Coordinates, (left, bottom)  
  %% Outputs  
  % None.  
      
  if   (  nargin  <1 ||   isempty  (fig))  
      fig =   figure  ('Name','Watermark  Demo');  
      set  (fig,'color',[0.85 0.9 0.85]);  
  end  
   
  if   (  nargin  <2 ||   isempty  (pos))  
      pos = [2 2];  
  end  
   

  Figure 3-22.    Company watermark       
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  string = 'MATLAB  Recipes';  
   
  % Save the current axes so we can restore it  
  aX = [];  
  if   ̃  isempty  (  get  (fig,'CurrentAxes'))  
    aX =   gca  ;  
  end  
   
  % Draw the icon  
  %−−−−−−−−−−−−−−  
  [d,map] =  imread ('matlabicon','gif');  
  posIcon = [pos(1:2) 16 16];  
  a =   axes  ( 'Parent', fig, 'box', 'off', 'units', 'pixels', 'position', posIcon );  
  image  ( d );  
  colormap  (a,map)  
  axis   off  
   
  % Draw the text  
  %−−−−−−−−−−−−−−  
  posText = [pos(1)+18 pos(2)+1 100 15];  
  axes  ( 'Parent', fig, 'box', 'off', 'units', 'pixels', 'position', posText );  
  t =   text  (0,0.5,string,'fontangle','italic');  
  set  (t,'edgecolor',[0.87 0.5 0])  
  axis   off  
   
  % Restore current axes in figure  
  if   ̃  isempty  (aX)  
    set  (fig,'CurrentAxes',aX);  
  end  
   
  set  (fig,'tag','Watermarked')  

 As an additional example, we added text along the left- and right-hand sides of a figure using text 
rotation. We gave the text a light color. This marks the figure as a draft. We create a blank figure and axis 
before adding the draft mark, as shown in Figure  3-23 . 
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  >> h =  figure ('Name','Draftmark  Demo');  
  >>  set (h,'color',[0.85 0.9 0.85]);  
 >> set (h,'InvertHardCopy','off')  
  >>  axes ;  
  >> Draftmark(h);  
   
  function   Draftmark( fig, pos )   
  %% DRAFTMARK Add a draft marking to a figure.  
  % This function creates two axes, one each block of text.  
  % Calling it BEFORE plotting can cause unexpected results. It will reset  
  % the current axes after adding the watermark. The default position is  
  % the lower left corner, (2,2).  
  %% Form  
  %   Draftmark( fig, pos )  
  %% Inputs  
  %   fig (1,1) Figure hangle  
  %   pos (1,2) Coordinates, (left, bottom)  
  %% Outputs  
  % None.  
      
  if   (  nargin  <1 ||   isempty  (fig))  
      fig =   figure  ('Name','Draft  Demo');  
      set  (fig,'color',[0.85 0.9 0.85]);  
  end  
   

  Figure 3-23.    Draft watermark       
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  if   (  nargin  <2 ||   isempty  (pos))  
      pos = [2 2];  
  end  
   
  string = 'DRAFT';  
   
  % Save the current axes so we can restore it  
  aX = [];  
  if   ̃  isempty  (  get  (fig,'CurrentAxes'))  
      aX =   gca  ;  
  end  
   
  % Draw the text  
  %−−−−−−−−−−−−−−  
  pf =   get  (fig,'position');  
  posText = [pos(1)+5 pos(2)+0.5*pf(4) − 40 20 80];  
  axes  ( 'Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition', posText );  
  t1 =   text  (0,0,string,'fontsize',20,'color',[0.8 0.8 0.8]);  
  set  (t1,'rotation',90,'edgecolor',[0.8 0.8 0.8],'linewidth',2)  
  axis   off  
   
  posText = [pos(1)+pf(3) − 25 pos(2)+0.5*pf(4) − 40 20 80];  
  axes  ( 'Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition', posText );  
  t2 =   text  (0,1,string,'fontsize',20,'color',[0.8 0.8 0.8]);  
  set  (t2,'rotation',270,'edgecolor',[0.8 0.8 0.8],'linewidth',2)  
  axis   off  
   
  % Restore current axes in figure  
  if   ̃  isempty  (aX)  
      set  (fig,'CurrentAxes',aX);  
  end  

 If you want to get very fancy, you could draw objects across the front of the figure and give them 
transparency, but they have to be fill or patch objects; text cannot be given transparency.    

   Summary 
 This chapter reviewed key features of MATLAB visualization, from basic plotting to 3D visualization, 
including objects and lighting. We demonstrated accessing figure and axes handles, and setting properties 
programmatically, as well as using the interactive tools for figures. Creating helpful visualization routines 
is a key part of any toolbox. MATLAB provides excellent data management routines, including those that 
can manage large grids of data, and many options for colorization. Table  3-1  lists the code developed in the 
chapter.          
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   Table 3-1.     Chapter Code Listing    

 File  Description 

  AnnotatePlot   Add text annotations evenly spaced along a curve. 

  Boxpatch   Generate a cube using patch. 

  ColorDistribution   Demonstrate a color distribution for an array of lines. 

  DraftMark    Add a draft marking to a figure. 

  GridVisualization    Visualize data over 2D and 3D grids. 

  PatchWithCamera    Generate two cubes using patch and point a camera at the scene. 

  PatchWithLighting    Add lighting to the cube patch. 

  PlotPage    Create a plot page with several custom plots in one figure. 

  PlottingWithDates    Plot using months as the x label. 

  QuadPlot   Create a quad plot page using subplot. 

  ReadImage   Draw a JPEG image in a figure multiple ways. 

  SphereLighting   Create and light a sphere. 

  Watermark   Add a watermark to a figure. 
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    CHAPTER 4   

 Interactive Graphics           

 The previous chapter addressed generating static graphics. This chapter provides recipes for generating 
dynamic graphics. This includes animations of line and patch objects; utilizing  uicontrol  objects in figures; 
designing GUIs using the GUIDE development environment; and deploying your GUI as a MATLAB app. 
We present some tips for maximizing the performance of your dynamic graphics functions. 

   4-1. Creating a Simple Animation 
   Problem 
 You want a visualization that changes over time without generating hundreds of different figures.     

   Solution 
 You can create an animation by updating patch objects in a figure successively in a loop, Figure  4-1  shows one 
frame of such a animation.   

  Figure 4-1.    Animation of a rotating box       

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0559-4_4    ) 
contains supplementary material, which is available to authorized users.
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   How It Works 
 First, you create a graphic involving the 3D box from the previous chapter. Then you update it in a loop. This 
is most efficient if you can assign new data to the existing graphics object. This could be changing the color, 
style, or physical location of the object. Alternatively, you can delete and re-create the object in the current 
axes. In both cases, you need to store the graphics handle for the updates. 

 In this case, you update the vertices by multiplying by a rotation matrix  b . You then pass the vertices 
to the patch via the handle using  set  ( p , ' vertices ',  vK ). Note the use of the transposes as the vertices are 
stored in an n × 3 array. A light object makes the resulting animation more interesting. You set ' linestyle ' to 
' none ' for the patch object to eliminate the lines between triangles. 

  %% Animate a cube using patch  
  % Create a figure and draw a cube in it. The vertices and faces are specified  
  % directly. We only update vertices to get a smooth animation.  
   
  %% Box design  
  x   = 3;  
  y   = 2;  
  z   = 1;  
   
  % Faces  
  f   = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7 8];  
   
  % Vertices  
  v = [ − x x x  − x  − x x x  − x;...  
      − y  − y y y  − y  − y y y;...  
      − z  − z  − z  − z z z z z]'/2;  
   
  %% Draw the object  
  h =   figure  ('name','Box');  
  p =   patch  ('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5],...  
            'linestyle','none','facelighting','gouraud');  
  ax =   gca  ;  
  set  (ax,'DataAspectRatio',[1 1 1],'DataAspectRatioMode','manual')  
  axis  ([ − 3 3  − 3 3  − 3 3])  
  grid   on  
  xlabel  ('x')  
  ylabel  ('y')  
  zlabel  ('z')  
  view  (3)  
  rotate3d   on  
  light  ('position',[0 0 1])  
   
  %% Animate  
  % We use tic and toc to time the animation. Pause is used with a fraction of a  
  % second input to slow the animation down.  
  tic  
  n = 10000;  
  a =   linspace  (0,8*  pi  ,n);  
   
  c =   cos  (a);  
  s =   sin  (a);  
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  for   k = 1:n  
    b = [c(k) 0 s(k);0 1 0; − s(k) 0 c(k)];  
    vK = (b*v')';  
    set  (p,'vertices',vK);  
    pause  (0.001);  
  end  
  toc  

 The full animation of four rotations takes about 16 seconds on a MacBook Pro laptop. About 10 
seconds of this is expected to be from the  pause  command; that is, 10000 steps * 0.001 seconds. Using   pause  
  allows you to slow down an animation that would otherwise be too fast to be useful. Remember that  pause  
commands can be temporarily disabled by using  pause off ; this is useful when testing graphics functions 
that use  pause . 

 ■   Tip   Use  pause  to slow down animations as needed. Remember to use  pause off  to disable the pausing 
and run full speed during testing.  

 Check the execution time on your computer! Run the script twice, with pause turned off the second time. 

  >>   pause   on  
  >> PatchAnimation;  
  Elapsed time is 15.641664 seconds.  
  >>   pause   off  
  >> PatchAnimation;  
  Elapsed time is 0.780012 seconds.  

 Note that  pause  flushes the system graphics queue, drawing the updated patch to the screen. When 
 pause  is off, the graphics don’t update, and you see just the initial frame in the window. Also note that actual 
increase in time from the pause and the graphics updates was almost 15 seconds. To force a graphics update 
without using  pause , use  drawnow . 

 This script uses cells to allow the individual sections to be run independently. This means you can 
rerun the animation without re-creating the figure, by re-executing that cell. This can be done from the  Run 
Section  toolbar button or by keyboard command, such as Command-Enter on a Mac.    

 Suppose you want to add a text item to the animation that displays the angle of rotation. You can do this 
using  title  easily enough: 

 title(sprintf ('Angle:  %f deg',a(k)*180/pi ));  

 However, you will be surprised at the performance impact. The animation now takes over 90 seconds! 
Displaying text is much less efficient than updating the graphics vertices. First, you can try directly using the 
handle to the axis title object and setting the string. However, this makes little difference, still taking about 90 
seconds. Another solution would be to add an inner loop to update the title less often. Trial and error shows 
that an update every 50 steps has little impact on the runtime. The figure with the title is shown in Figure  4-2 .  

  if   rem(k,50)==0  
   set(ax.Title,'string',sprintf('Angle: %.5g deg',a(k)*180/pi ));  
  end  
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 Table  4-1  is a summary of the execution times on the reference MacBook. The times are as printed 
from  toc ; they are from a single run, not an average. Expect a variation in execution time of up to 10% across 
multiple runs.       

  Figure 4-2.    Animation of the box with a changing title       

   Table 4-1.    Execution Times for PatchAnimation   

 No title 

  pause off  

  pause on  (0.001 sec) 

 0.780154 sec 

 17.254507 sec 

  With title  

 Title  90.761500 sec 

 Set every step  90.213318 sec 

 Set every 50 steps  20.218774 sec 
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    4-2. Playing Back an Animation 
   Problem 
 You want to store and play back an  animation.    

   Solution 
 Save each frame of the animation into an AVI file using the  VideoWriter  class.  

   How It Works 
 In the following listing, you use  VideoWriter  to save the animation and read it into an AVI file. This line of 
code opens an AVI file: 

  vObj = VideoWriter('RotatingBox.avi');  

 The script is  PatchAnimationStorage.m.  The sections creating the box and figure aren’t shown because 
they are the same as the previous recipe. In this case, you only use 100 points for the four rotations; the 
execution time, including saving the movie, is about 4 seconds with pause off. Running the script in the 
Profiler shows that almost 90% of the execution time is spent in the  writeVideo  command. 

  %% Animate a cube using patch and store as an AVI file  
  % The figure and box are created as in PatchAnimation. This time we use a  
  % VideoWriter to store the frames in a movie.  
   
 . 
 . 
 . 
   
  %% Animate  
  n = 100;  
  a =   linspace  (0,8*  pi  ,n);  
  c =   cos  (a);  
  s =   sin  (a);  
   
  % Create a video file  
  vObj = VideoWriter('RotatingBox.avi');  
  open(vObj);  
  tic  
  for   k = 1:n  
    pause  (0.01);  
    b = [c(k) 0 s(k);0 1 0; − s(k) 0 c(k)];  
    vK = (b*v')';  
    set  (p,'vertices',vK);  
    writeVideo(vObj,  getframe  (h));  
  end  
  toc  
   
  close  (h)  
  close  (vObj)  
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 You can then play back your animation in any movie player, as shown in Figure  4-3 .     

  Figure 4-3.    Movie file playing back in a video player       

    4-3. Animate Line Objects 
   Problem 
 You would like to update a plot with line objects in a loop.     

   Solution 
 This is similar to Recipe 4-1, but you will update different properties of the graphics object. You’ll use the 
quad plot from Chapter   3     and add animation of a marker along the trajectory. This will also demonstrate 
adding a menu to a figure using  uimenu .  

   How It Works 
 Start with the  QuadPlot.m  function. This creates four subplots to view a trajectory: one in 3D and three 2D 
views from different directions (see Figure  4-4 ). You must do a few things to add a marker that you can animate:

    1.    Add a time input.  

    2.    Add a marker to each subplot and save the handles.  

    3.    Add a text  uicontrol  to display the current time as the animation progresses.  

 

http://dx.doi.org/10.1007/978-1-4842-0559-4_3
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    4.    Store the trajectory data and handles in the figure  UserData .  

    5.    Turn off the regular figure menu, and add an  Animate  menu with a 
 Start  function.      

  Figure 4-4.    Frame of an animation of the quad plot       

 You use a  nargin  check to determine if you are creating the figure using  t  and  x  data, or entering a 
callback using the input  'update' . An alternative is to place the callback in a separate function; the figure 
executing the callback can be identified using a  Tag  property or using  gcbf , as done here. 

  %% QUADANIMATOR Create a quad plot page with animation.  
  % This creates a 3D view and three 2D views of a trajectory in one figure. A  
  % menu is provided to animate the trajectory over time.  
  %% Form  
  %   QuadAnimator( t, x )  
  %% Input  
  %    t (1,:) Time data  
  %    x (3,:) Trajectory data  
  %  
  %% Output  
  % None.  
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  function   QuadAnimator(t,x)  
   
  if nargin   == 0  
    disp  ('Demo of QuadAnimator');  
    t =   linspace  (0,4*  pi  ,101);  
    th =   logspace  (0,  log10  (4*  pi  ),101);  
    in =   logspace  (-1,0,101);  
    x = [  sin  (th).*  cos  (in);  cos  (th).*  cos  (in);  sin  (in)];  
    QuadAnimator(t,x);  
    return  ;  
  end  
   
  if nargin  ==2  
    h =   figure  ('Name','QuadAnimator');  
    set  (h,'InvertHardcopy','off','menubar','none')  
    ma =   uimenu  (h,'Label','Animate');  
    ms =   uimenu  (ma,'Label','Start','Callback','QuadAnimator(''update'')');  
    m = Plot(x);  
    p =   get  (h,'position');  
    ut =   uicontrol  ('Style','text','String','Time: 0.0 s',...  
                  'Position',[0 0 p(3) 20]);  
   
    d.t = t;  
    d.x = x;  
    d.m = m;  
    d.ut = ut;  
    set  (h,'UserData',d);  
  else  
    h = gcbf;  
    d =   get  (h,'UserData');  
    Animate(d);  
  end  
   
  function   m = Plot(x)  
  % Use subplot to create four plots of a trajectory  
   
  subplot  (2,2,3)  
  plot3  (x(1,:),x(2,:),x(3,:));  
  hold   on  
  m(3) =   plot3  (x(1,1),x(2,1),x(3,1),'o');  
  hold   off  
  xlabel  ('X')  
  ylabel  ('Y')  
  zlabel  ('Z')  
  grid   on  
  title  ('Trajectory')  
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  subplot  (2,2,1)  
  plot  (x(1,:),x(2,:));  
  hold   on  
  m(1) =   plot  (x(1,1),x(2,1),'o');  
  hold   off  
  xlabel  ('X')  
  ylabel  ('Y')  
  grid   on  
  title  ('Along Z')  
   
  subplot  (2,2,2)  
  plot  (x(2,:),x(3,:));  
  hold   on  
  m(2) =   plot  (x(2,1),x(3,1),'o');  
  hold   off  
  xlabel  ('Y')  
  ylabel  ('Z')  
  grid   on  
  title  ('Along X')  
   
  subplot  (2,2,4)  
  plot  (x(1,:),x(3,:));  
  hold   on  
  m(4) =   plot  (x(1,1),x(3,1),'o');  
  hold   off  
  xlabel  ('X')  
  ylabel  ('Z')  
  grid   on  
  title  ('Along Y')  
   
  function   Animate( d )  
  % Animate the markers on the subplots over time  
   
  for   k = 1:  length  (d.t)  
    x = d.x(:,k);  
    set  (d.m(3),'XData',x(1),'YData',x(2),'ZData',x(3));  
    set  (d.m(1),'XData',x(1),'YData',x(2));  
    set  (d.m(2),'XData',x(2),'YData',x(3));  
    set  (d.m(4),'XData',x(1),'YData',x(3));  
    set  (d.ut,'string',  sprintf  ('Time: %f s',d.t(k)));  
    drawnow  ;  
  end  

 As can be seen, two subfunctions segregate the plotting and animating functionality. The animation 
sets the  XData ,  YData , and  ZData  of the markers for the current time, and updates the text control. We used a 
 drawnow  to flush the events queue. The animation runs at a nice speed without requiring a  pause  command, 
but this may be different on your computer, so be prepared to experiment!    
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    4-4. Implementation of a uicontrol Button 
   Problem 
 You want to use a button in a dialog box to stop a script as it is running.     

   Solution 
 Use  uicontrol  and  figure  to create a pop-up window with control, as shown in Figure  4-5 .   

  Figure 4-5.    UIControlDemo window       

   How It Works 
 Use two  uicontrol  calls in the script,  UIControlDemo.m . The first puts a text box in the window. The second 
puts a button in the window. You don’t have to specify a style for a button, as this is the default style, but you 
may choose to specify it for clarity. The button control has a callback. A callback can be any MATLAB code 
or a function handle. In this case, just set the global  stop  to  true  to stop the loop. Note that we used  true  and 
 false  for the global boolean for clarity, although 1 and 0 will work. 

  %% Demonstrate the use of a uicontrol button with a callback  
  % Create a window with a button that interacts with a global variable in the script.  
     
  %% Build the GUI  
  % This is a global to communicate the button push from the GUI  
  global   stop;  
  stop = false;  
   
  % Build the GUI  
  set  (0,'units','pixels')  
  p =   get  (0,'screensize');  
  bottom = p(4) - 190;  
  fig =   figure  ('name','UIControlDemo','position',[340 bottom 298 90],...  
               'NumberTitle','off','menubar','none',...  
               'resize','off');  
   
  % The display text  
  speed =   uicontrol  ( 'Parent', fig, 'position', [ 20 40 280 15],...  
                     'style', 'text','string','Waiting to start.');  
   
  % This has a callback setting stop to 1  
  step =   uicontrol  ( 'parent', fig, 'position',[ 40 40 40 20],...  
                     'string','Stop', 'callback','stop = true;');  
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  %% Run the GUI  
  for   k = 1:1000  
    pause  (0.01)  
    set  ( speed, 'String', k );  
    if  ( stop )  
      break  ; %#ok<UNRCH>  
    end  
    %drawnow % alternative to pause  
  end  

 The position  input  is defined as 

  [left bottom width height]  

 The purpose of obtaining the computer’s screen size is to place the window near the top of the screen 
by assigning the bottom position parameter to the screen size minus the figure size (90 pixels tall), plus a 100 
pixel margin; that is,  p(4) − 190 . 

 MATLAB’s code analyzer places an alert on the line with the  break  saying that the line is unreachable 
when  stop  is false. This is, in fact, the case, but you have the  uicontrol  to change that parameter. MATLAB 
can’t ascertain that, so you can add the  %#ok<UNRCH>  comment to suppress the warning. This comment can 
be automatically added by MATLAB (i.e., Autofixed), if you right-click the line with the warning and select 
“Suppress this statement...” in the pop-up menu. 

 ■   Tip   Suppress warnings on lines with code that is reachable only by changes in your boolean logic.  

 Let’s check the execution time. Run the script with  tic  and  toc  twice, with pause turned off the second time. 

  >>  tic; UIControlDemo; toc 
  Elapsed time is 11.601678 seconds.  
  >>  pause  off  
  >>  tic; UIControlDemo; toc 
  Elapsed time is 0.147663 seconds.  

 If you want the animation to last more or less than the 11 seconds, you can adjust the  pause  time. You 
can see that the graphics loop alone takes only a small fraction of a second, despite updating 1000 times! 
This is because with pause off, the graphics are not forced to update every step of the loop. MATLAB flushes 
the graphics only when the script ends, unless you have one of the commands that flushes the system queue, 
such as  pause ,  drawnow , or  getframe . If you don’t want or need pause, use  drawnow  to force a graphics update 
every step of the loop. Table  4-2  shows the execution times with  pause  on or off and using  drawnow  instead. 
These are the times from a single run on the reference MacBook, not an average; expect a variation in 
runtimes of up to 10%.     

   Table 4-2.    Execution Times for PatchAnimation   

  pause off   0.147663 sec 

  pause on  (0.01 sec)  11.601678 sec 

  drawnow   2.642504 sec 

  pause  AND  drawnow   13.785564 sec 
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    4-5. Display Status of a Running Simulation or Loop 
   Problem 
 You want to display the time remaining for a time-consuming task done in a loop.     

   Solution 
 Create a window with a text  uicontrol  to display the time remaining (see Figure  4-6 ).   

  Figure 4-6.    Time Display window       

   How It Works 
  TimeDisplayGUI  implements the time window. It uses three actions with  varargin . A persistent variable, 
 hGUI , stores the steps and increments automatically for every update call. The following are some things to 
notice in this function:

•    The MATLAB function  now  is used to get the current date for timing purposes.  

•   The number of steps completed is stored in  hGUI.stepsDone .  

•   The GUI only updates the text string every half second of real time.  

•   It calculates an estimated amount of real time until script completion, assuming all 
steps take the same amount of time.  

•   The built-in demo uses  pause .    

  function   TimeDisplayGUI( action, varargin )  
   
  %% TimeDisplayGUI Displays an estimate of time to go in a loop  .  
  % Call TimeDisplayGUI(  '  update  '  ) each step; the step counter is incremented  
  % automatically using a persistent variable. Updates at 0.5 sec intervals  .  
  %  
  %     TimeDisplayGUI(   '  initialize  '  , nameOfGUI, totalSteps )  
  %   TimeDisplayGUI(   '  update  '   )  
  %   TimeDisplayGUI(   '  close  '   )  
  %  
  % You can only have one TimeDisplayGUI operating at once. The built-in demo uses  
  % pause to run for about 5 seconds.  
  %% Form:  
  %   TimeDisplay( action, varargin )  
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  %% Inputs  
  %   action       (1,:)     '  initialize  '  ,   '  update  '  , or   '  close  '  
  %   nameOfGUI    (1,:)   Name to display  
  %   totalSteps   (1,1)   Total number of steps  
  %  
  %% Outputs  
  %   None  
   
  persistent hGUI  
  if nargin   == 0  
    % Demo  
    disp  ('Initializing  demo  window  with  100  steps.')  
    TimeDisplayGUI( 'initialize', 'TimeDisplay Demo', 100 );  
    for   k = 1:100  
      pause  (0.05)  
      TimeDisplayGUI( 'update' );  
    end  
    return  ;  
  end  
   
   switch  action  
     case  'initialize'  
      hGUI            = BuildGUI( varargin{1} );  
      hGUI.totalSteps = varargin{2};  
      hGUI.stepsDone  = 0;  
      hGUI.date0      = now;  
      hGUI.lastDate   = now;  
     case  'update'  
      if  (   isempty  ( hGUI ) )  
        return  
      end  
      hGUI.stepsDone = hGUI.stepsDone + 1;  
      hGUI = Update( hGUI );  
     case  'close'  
      if   ̃  isempty  (hGUI) && ishandle(hGUI.fig)  
        delete  ( hGUI.fig );  
      else  
        delete  (  gcf  )  
      end  
      hGUI = [];  
  end  
   
  function   hGUI = Update( hGUI )  
  % Update the display  
   
  thisDate = now;  
  dTReal   = thisDate-hGUI.lastDate;   % days  
  if   (dTReal > 0.5/86400)  
    % Increment every 1/2 second  
    stepPer   = hGUI.stepsDone/(thisDate  −  hGUI.date0);  
    stepsToGo = hGUI.totalSteps  −  hGUI.stepsDone;  
    tToGo     = stepsToGo/stepPer;  
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    datev     = datevec(tToGo);  
    str       = FormatString( hGUI.stepsDone/hGUI.totalSteps, datev );  
   
    set  ( hGUI.percent, 'String', str );  
    drawnow  ;  
    hGUI.lastDate = thisDate;  
  end  
   
  function   h = BuildGUI( name )  
  % Initialize the GUIs  
   
  set  (0,'units','pixels')  
  p          =   get  (0,'screensize');  
  bottom     = p(4)  −  190;  
  h.fig      =   figure  ('name',name,'Position',[340 bottom 298 90],'NumberTitle','off',...  
                      'menubar','none','resize','off','closerequestfcn',...  
                      'TimeDisplayGUI(''close'')');  
   
  v        = {'Parent',h.fig,'Units','pixels','fontunits','pixels'};  
   
  str = FormatString( 0, [0 0 0 0 0 0] );  
  h.percent =   uicontrol  ( v{:}, 'Position',[ 20 35 260 20], 'Style','text',...  
                         'fontsize',12,'string',str,'Tag','StaticText2');  
  drawnow  ;  
   
  function   str = FormatString( fSteps,   date   )  
  % Format the time to go string  
   
  str =   sprintf  ('%4.2f%%  complete  with  %2.2i:%2.2i:%5.2f  to  go',...  
                       100*fSteps,  date  (4),  date  (5),  date  (6));  

 The following script,  TimeDisplayDemo , shows how the function is used. Figure  4-6  shows the 
resulting window. 

  %% Demonstrate a GUI that shows the time to go in a process  
   %% See also  
  % TimeDisplayGUI  
   
  %% Script constants  
  n  = 10000;  
  dT = 0.1;  
  a  =   rand  (10,10);  
   
  %% Initialize the time display  
  TimeDisplayGUI( 'initialize', 'SVD', n )  
   
  %% Loop  
  for   j = 1:n  
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      % Do something time consuming  
      for   k = 1:100  
        svd  (a);  
      end  
   
      % Display the status message  
      TimeDisplayGUI( 'update' );  
  end  
   
  %% Finish  
  TimeDisplayGUI( 'close' );     

   4-6. Create a Custom GUI with GUIDE 
   Problem 
 You have a repeating workflow and you would like to build a GUI to avoid changing parameters in your script 
repeatedly. For example, let’s take the rotating cube animation from Recipe 4-1 and put it in a GUI, so you 
can easily see the effect of different pause lengths.     

   Solution 
 You will use the  GUI Design Environment (GUIDE)   to create a GUI, starting from a blank figure. You need an 
edit box for the pause length, plus buttons for interaction.  

   How It Works 
 Type  guide  to start the GUIDE Quick Start window. From the Create New GUI tab, choose Blank GUI. This 
opens a blank figure entitled  untitled1.fig  in the editor, as seen in Figure  4-7 .  

  Figure 4-7.    Blank GUI in the  GUIDE editor         
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 Create the following items in the GUI using the buttons on the left:

•    Edit box for entering the pause time  

•   Text label for the box  

•   Button to start the animation    

 Start with the  text label,   which looks like a box with TXT inside. Click the button, then drag with the 
mouse until you have a good-sized box. It fills in with the words “Static Text”. Double-click the text box to 
open the control Inspector. From here, you can change the style and content of the text. Change the String 
to “Pause Duration (s)” and tab out of the field or hit Enter. 

 Next, add the  edit box.   This button looks like a box with EDIT inside. Draw the box for the edit box to the 
right of your text label. Double-click it to open the Inspector. Change the String to “0.01”, the default pause 
duration. Note that there is a Tag field below the String field. This is something like “edit1” by default. It is the 
identifier of the handle to this edit box in the GUI code. Change it to “pauseDur”. 

 Finally, add the  button.   This looks like a button with the letters OK on it. Place the button under your 
text and edit boxes. It reads “Push Button” by default. In the Inspector, change it to “Start”. Change the Tag to 
“startButton”. 

 You can change parameters of the figure itself as well by double-clicking the background, outside 
of your controls. Change the Color to the background color of your choice. Uncheck the box for 
InvertHardcopy, which allows your background color to show when you print the figure. The controls you 
added will be much easier to see with the altered background color. 

 There are options for implementing the animation. You can add an axes directly in the GUI, or maintain 
a separate window for the animation so that it looks the same as before. For now, you will use a separate 
figure window for the animation. 

 Resize the figure smaller if you like. Align your controls using Tools ➤Align Objects.... and save your 
new figure. Your figure should now look something like Figure  4-8 .  

  Figure 4-8.    Newly saved GUI       
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 At this time, MATLAB creates an m-file to control the figure.    The FIG-file maintains the geometry, 
style, and tag data that you saw in the Inspectors. The m-file handles the execution of the control callbacks. 
Figure  4-9  shows the list of functions in your new m-file, using the Tag names you specified when you edited 
the controls.  

  Figure 4-9.    Functions in the newly saved GUI m-file       

 The main function,   BoxAnimationGUI ,   contains a section of initialization code labeled DO NOT EDIT. 
You can add additional initialization code after this section, or in the  OpeningFcn , where you have access 
to the handles data. The edit box, your control for entering the pause duration, has two related functions: a 
 callback  and a  create  function.    The Start button has only a callback. 

 You need to do the following in the code:

    1.    Create the figure window and draw the cube in  BoxAnimationGUI_OpeningFcn , 
storing the handle to the patch object so that you can access the vertices.  

    2.    Convert the string in the edit box to a number and store it.  

    3.    Run the animation in  startButton_Callback . 

 There are two choices for converting the edit box contents string to a number. You can do it in the edit 
box callback, activated when the user tabs out of the box or hits Enter when it is active, or wait and convert 
the data only when the user pushes Start. This is an architectural decision that may, in a larger GUI, be 
impacted by relationships between the different parameters the user might be entering. In this simple case, 
it doesn’t make much difference, and you will convert it in the edit box callback. This does, however, bring 
up the issue of initialization of the data; you have to convert the default string for the pause duration into a 
double during initialization, or the user won’t be able to run the animation until activating the callback for 
the first time. Therefore, you need to add the following step to your list of coding tasks:  
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    4.    Initialize the value of the pause duration in  pauseDur_CreateFcn . 

 Finally, you are creating an external figure with the GUI. With this default list of functions, there 
is no way to close the extra GUI when the main window closes. However, it is possible to add a close 
function that can take care of this cleanup step. From the FIG window, in the figure Inspector, the default 
 CloseRequestFcn   is  closereq . If you click the small button to the left of this, MATLAB creates a close 
function and adds it to your m-file. This is your final piece of coding in the GUI:  

    5.    Close the extra figure window in the  figure1_CloseRequestFcn .     

 The fully realized GUI function is shown next. Note that the custom data fields that are added to the 
handles data structure are grouped together in a data substructure called data to avoid name clashes with 
the  uicontrol  handles. It is very easy to introduce bugs by inadvertently using the same name for a control 
object and the related parameter. 

  function   varargout = BoxAnimationGUI(varargin)  
  % BOXANIMATIONGUI MATLAB code for BoxAnimationGUI.fig  
  %      BOXANIMATIONGUI, by itself, creates a new BOXANIMATIONGUI or raises the existing singleton*.  
  %  
  %      H = BOXANIMATIONGUI returns the handle to a new BOXANIMATIONGUI or the handle to  
  %      the existing singleton*  .  
  %  
  %      BOXANIMATIONGUI(  '  CALLBACK  '  ,hObject,eventData,handles  ,...)   calls the local  
  %      function named CALLBACK in BOXANIMATIONGUI.M with the given input arguments  .  
  %  
  %      BOXANIMATIONGUI(  '  Property  '  ,  '  Value  '  ,...) creates a new BOXANIMATIONGUI or raises the  
  %      existing singleton*. Starting from the left, property value pairs are  
  %      applied to the GUI before BoxAnimationGUI_OpeningFcn gets called. An  
  %      unrecognized property name or invalid value makes property application  
  %      stop. All inputs are passed to BoxAnimationGUI_OpeningFcn via varargin  .  
  %  
  %       *See GUI Options on GUIDE  '  s Tools menu. Choose "GUI allows only one  
  %      instance to run (singleton)"  .  
  %  
  % See also: GUIDE, GUIDATA, GUIHANDLES  
   
  % Edit the above text to modify the response to help BoxAnimationGUI  
   
  % Last Modified by GUIDE v2.5 25-Aug-2015 15:10:40  
   
  % Begin initialization code  −  DO NOT EDIT  
  gui_Singleton = 1;  
  gui_State = struct('gui_Name',        mfilename, ...  
                     'gui_Singleton',   gui_Singleton, ...  
                     'gui_OpeningFcn',  @BoxAnimationGUI_OpeningFcn, ...  
                     'gui_OutputFcn',   @BoxAnimationGUI_OutputFcn, ...  
                     'gui_LayoutFcn',   [], ...  
                     'gui_Callback',    []);  
  if nargin   && ischar(varargin{1})  
      gui_State.gui_Callback = str2func(varargin{1});  
  end  
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  if nargout  
      [varargout{1:  nargout  }] = gui_mainfcn(gui_State, varargin{:});  
  else  
      gui_mainfcn(gui_State, varargin{:});  
  end  
  % End initialization code - DO NOT EDIT  
   
  % --- Executes just before BoxAnimationGUI is made visible  .  
  function   BoxAnimationGUI_OpeningFcn(hObject, eventdata, handles, varargin)  
  % This function has no output args, see OutputFcn  .  
  % hObject    handle to figure  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    structure with handles and user data (see GUIDATA)  
  % varargin   command line arguments to BoxAnimationGUI (see VARARGIN)  
   
  % ADDED CUSTOM CODE FOR RECIPE  
  % Design the box  
  x   = 3;  
  y   = 2;  
  z   = 1;  
  f    = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7 8];  
  v = [ − x x x  − x  − x x x  − x;...  
      − y  − y y y  − y  − y y y;...  
      − z  − z  − z  − z z z z z]'/2;  
   
  % Create the figure  
  h =   figure  ('name','Box');  
  p =   patch  ('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5],...  
            'linestyle','none','facelighting','gouraud');  
  ax =   gca  ;  
  set  (ax,'DataAspectRatio',[1 1 1],'DataAspectRatioMode','manual')  
  grid   on  
  axis  ([ − 3 3  − 3 3  − 3 3])  
  xlabel  ('x')  
  ylabel  ('y')  
  zlabel  ('z')  
  view  (3)  
  light  ('position',[0 0 1]);  
   
  % Choose default command line output for BoxAnimationGUI  
  handles.output = hObject;  
   
  % Additional variables required  
  handles.data.box = p;  
  handles.data.vertices = v;  
  handles.data.  axis   = ax;  
  handles.data.  figure   = h;  
  % END CUSTOM CODE  
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  % Update handles structure  
  guidata  (hObject, handles);  
  % UIWAIT makes BoxAnimationGUI wait for user response (see UIRESUME)  
  % uiwait(handles.figure1);  
   
  % --- Outputs from this function are returned to the command line  .  
  function   varargout = BoxAnimationGUI_OutputFcn(hObject, eventdata, handles)  
  % varargout  cell array for returning output args (see VARARGOUT);  
  % hObject    handle to figure  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    structure with handles and user data (see GUIDATA)  
   
  % Get default command line output from handles structure  
  varargout{1} = handles.output;  
   
  function   pauseDur_Callback(hObject, eventdata, handles)  
  % hObject    handle to pauseDur (see GCBO)  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    structure with handles and user data (see GUIDATA)  
   
  % Hints: get(hObject,  '  String  '  ) returns contents of pauseDur as text  
  %        str2double(get(hObject,  '  String  '  )) returns contents of pauseDur as a double  
   
  % ADDED CUSTOM CODE FOR RECIPE  
  pauseDur =   str2double  (  get  (hObject,'String'));  
  % Optional: add checking of pause value; can  '  t be negative  
  handles.data.pauseVal = pauseDur;  
  guidata  (hObject, handles);  
   
  % --- Executes during object creation, after setting all properties  .  
  function   pauseDur_CreateFcn(hObject, eventdata, handles)  
  % hObject    handle to pauseDur (see GCBO)  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    empty - handles not created until after all CreateFcns called  
   
  % Hint: edit controls usually have a white background on Windows  .  
  %       See ISPC and COMPUTER  .  
  if   ispc && isequal(  get  (hObject,'BackgroundColor'),   get  (0,'  
      defaultUicontrolBackgroundColor'))  
      set  (hObject,'BackgroundColor','white');  
  end  
   
  % ADDED CUSTOM CODE FOR RECIPE  
  pauseDur =   str2double  (  get  (hObject,'String'));  
  % Optional: add checking of pause value; can  '  t be negative  
  handles.data.pauseVal = pauseDur;  
  guidata  (hObject, handles);  
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  % --- Executes on button press in startButton  .  
  function   startButton_Callback(hObject, eventdata, handles)  
  % hObject    handle to startButton (see GCBO)  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    structure with handles and user data (see GUIDATA)  
   
  % ADDED CUSTOM CODE FOR RECIPE  
  dT = handles.data.pauseVal;     % pause duration from our edit box  
  p = handles.data.box;           % handle to the patch object  
  v0 = handles.data.vertices;     % initial vertices, before rotation  
  ax = handles.data.  axis  ;         % axis, for updating title  
  n = 1000;  
  a =   linspace  (0,8*  pi  ,n);  
   
  c =   cos  (a);  
  s =   sin  (a);  
   
  for   k = 1:n  
    b   = [c(k) 0 s(k);0 1 0; − s(k) 0 c(k)];  
    vK  = (b*v0')';  
    set  (p,'vertices',vK);  
    if rem  (k,25)==0  
      title  (ax,  sprintf  ('Angle:  %.5g  deg',a(k)*180/  pi  ));  
    end  
    pause  (dT);  
  end  
   
  % --- Executes when user attempts to close figure1  .  
  function   figure1_CloseRequestFcn(hObject, eventdata, handles)  
  % hObject    handle to figure1 (see GCBO)  
  % eventdata  reserved - to be defined in a future version of MATLAB  
  % handles    structure with handles and user data (see GUIDATA)  
   
  % Hint: delete(hObject) closes the figure  
  delete  (hObject);  
   
  % ADDED CUSTOM CODE FOR RECIPE  
  delete  (handles.data.  figure  )  

 ■   Tip   Store your added data in a unique substructure, so it can’t be confused with any of your 
graphics handles.  

 To run the GUI, either execute the m-file or use the Run button from the GUIDE figure editor. The GUI 
with the plot window opens, as shown in Figure  4-10 .     
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  Figure 4-10.    Completed GUI with plot window       

 You can verify that changing the pause duration and running the animation works. Closing the GUI 
closes the plot with it. However, if you close the plot and try to run the GUI, you get an error; this is not a case 
that has been handled with this implementation. You could add a close function to the plot figure to either 
ask the user for confirmation using  questdlg  or close the GUI with it. Alternatively, the GUI could check that 
the figure window exists, and re-create it if it was inadvertently closed. In order to do this, the initialization 
code needs to be moved to its own function. 

 As an exercise, try implementing the pause time via a slider instead of an edit box, with a range of 0 to 
0.1 seconds. You may also want to try adding additional controls for the number of steps in the animation.   

    4-7. Build a MATLAB App from Your GUI 
   Problem 
 You would like to share your new GUI with others as a packaged app.     

   Solution 
 MATLAB provides a utility to package a GUI (or script) as an  app , which can then easily be installed and 
uninstalled by users. You will use the GUI created in the previous recipe as an example.  
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   How It Works 
 You create an app by specifying the main file that runs it, or in this case, the main function for the 
 BoxAnimationGUI  from the previous recipe. The packaging utility performs a dependency check and 
includes any other related functions and files in your path. The resulting binary file can then be distributed 
and installed by others. 

 The app utilities are accessed from the Apps tab of the MATLAB Command Window. This tab has 
buttons to Get More Apps, Install App, and most importantly for this recipe, Package App. The tab also has 
a ribbon showing any apps you currently have installed. Clicking Package App opens a window where you 
enter the file and metadata information for your app. 

 The first step, starting from the upper left of the Package App window, is to select the main file for your 
app. Keep in mind that this doesn’t have to be a GUI; for instance, you could have a script that gathers user 
input from the command line using  input  or  inputdlg . Click “Add main file” and select  BoxAnimationGUI.m . 
MATLAB automatically fills in the name of the app from the name of your main file and does a dependency 
check. In this case, the only dependency is the corresponding FIG-file,  BoxAnimationGUI.fig . In the bottom 
left you can add any additional shared resources that can’t be found by MATLAB’s search utility, such as files 
called via  eval  or  load  with string names. 

 In the center of the Package App window, you add additional information to describe the app. You 
can select an icon, including a custom icon if you have one; assign a version number; write a summary and 
a longer description; and provide a screenshot. The icon you choose is displayed in the Apps toolbar of 
MATLAB when users install your app. 

 Once you have entered all the information for the app and verified the dependencies, you package the 
files into the app on the right of the Package App window. You can change the output folder before creating 
the package; the app installer that is generated is saved with the . mlappinstall  extension. 

 Your package data is saved in a project file with a . prj  extension. This allows you to repackage your 
app as needed during development; you can increment the version number for bug fixes or major version 
changes.      

  Figure 4-11.    Package app window       
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   Summary 
 This chapter introduced figure controls and updating graphics in a loop. MATLAB provides a rich 
GUI building environment, including buttons, sliders, list boxes, menus, and plot axes. You can create 
 uicontrols  directly or use the GUIDE tool to place controls with the mouse. It is important to consider 
performance when designing graphics that update, as some operations have widely disparate performance, 
such as strings vs. object geometry. Table  4-3  lists the code developed in the chapter.          

   Table 4-3.    Chapter Code Listing   

 File  Description 

  BoxAnimationGUI.fig   File with GUI definition. 

  BoxAnimationGUI.m   MATLAB code implementing  BoxAnimationGUI.fig . 

  BoxAnimationGUI.prj   File storing information for creating an app from  BoxAnimationGUI.m . 

  PatchAnimation   Animate a 3D patch in a  for  loop. 

  PatchAnimationStorage   Animate a cube using patch and store as an AVI file. 

  QuadAnimator   Create a quad plot page with animation. 

  TimeDisplayDemo   Demonstrate a GUI that shows the time remaining in a process. 

  UIControlDemo   Demonstrate the use of a  uicontrol  button with a callback. 

  Figure 4-12.    Packaged app results with project file       
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    CHAPTER 5   

 Testing and Debugging           

 The MATLAB unit test framework now allows you to incorporate testing into your MATLAB software, just as 
you would your C++ or Java packages. Since entire textbooks have been written on testing methodologies, 
this chapter is limited to covering the mechanics of using the test framework itself. We also present a couple 
of recipes that are useful for debugging. 

 We should, however, say a few words about the goal of software testing. Testing should determine if 
your software functions as designed. The first step is to have a concrete  design   against which you are coding. 
The functionality needs to be carefully described as a set of requirements. The  requirements   need to specify 
which inputs the software expects and what outputs it will generate. Testing needs to verify that for all 
valid inputs, it generates the expected outputs. A second consideration is that the software should handle 
expected errors and warn the user. For example, a simple function adds two MATLAB variables:     

  c = a + b;  

 You need to verify that it works for any numeric  a  and  b . You generally do not need to warn the user if 
 a  or  b  is not numeric; that would just fill your code up with unneeded tests. A case where you might want a 
check is a function containing 

  b =   acos  (a);  

 If it is supposed to return a real number (perhaps as part of another function), you might want to limit  a  
to have a magnitude less than 1. If you have the code, 

  if  (   abs  (a) > 1 )  
    a =   sign  (a);  
  end  
  b =   acos  (a);  

 In this case, your test code needs to pass in values of  a  that are greater than one. This is also a case 
where you might want to add a custom warning to the user if the magnitude limiting code is exercised, as 
shown next. If you have custom warnings and errors in your code, you also need to test them.     

  if  (   abs  (a) > 1 )  
    warning('MyToolbox:MyFunction:OutOfBounds','Input  a  is  out  of bounds');  
    a =   sign  (a);  
  end  
  b =   acos  (a);  

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0559-4_5    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_5
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 For engineering software, your test code should include known outputs generated by known inputs. 
   In the preceding code, you might include inputs of 1.1, 1, 0.5, 0, −0.5 − 1, and −1.1. This would span the range 
of expected inputs. You might also be very thorough and input  linspace  (−1.1, 1.1) and test against another 
source of values for the inverse cosine. As shown in the later chapters, we usually include a demo function 
that tests the function with an interesting set of inputs. Your test code can use the code from the demo 
function as part of the testing. 

 All test procedures should employ the MATLAB code coverage tools. The Coverage Report,    used in 
conjunction with the MATLAB Profiler, keeps track of which lines of code are exercised during execution. 
For a given function or script, it is essential that all code be exercised in its test. Studies have shown that 
testing done without coverage tools typically exercises only 55 % of the code. In reality, it is impossible to 
actually test every path in anything but the simplest software, and this must be factored into the software 
development and quality assurance processes. MATLAB does not currently support running the coverage 
tools on a suite of tests, or during your regression testing, so you should exercise the coverage tools on a 
per-test basis as you design them. 

 Once you start using your software, any bug you find should be used to add an additional test case to 
your tests. 

   5-1. Creating a  Unit Test   
   Problem 
 Your functions require unit tests.  

   Solution 
 Use MATLAB’s built-in test capabilities (now available using Java classes) to write and execute unit test 
functions. Test functions and scripts are identified by using the word  test  as a prefix or suffix to the file name, 
and are run via the   runtests  function.     

   How It Works 
 The  matlab.unittest  package is an xUnit-style, unit-testing framework for MATLAB. You can write scripts 
with test cases separated using cell titles, or functions with test cases in subfunctions, and execute them 
using the framework. We will show an example of each. There is extensive documentation of the framework 
and examples in the MATLAB documentation; these lists will get you started: 

 These are the relevant MATLAB packages implementing the framework:    

•    matlab.unittest  

•   matlab.unittest.constraints  

•   matlab.unittest.fixtures  

•   matlab.unittest.qualifications    

 The  qualifications package   provides all the methods for checking function results, including numerical 
values, errors, and warnings. The fixtures package allows you to provide setup and teardown code for 
individual tests or groups of tests.     
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 Here are the relevant classes you will use when coding tests:    

•    matlab.unittest.TestCase  

•   matlab.unittest.TestResult  

•   matlab.unittest.TestSuite  

•   matlab.unittest.qualifications.Verifiable    

  TestCase  is the superclass for writing test classes. 
 Here are the relevant  functions:   

•     assert   

•    runtest   

•    functiontests   

•    localfunctions     

 The simplest way to implement tests for a function is to write a script. Each test case is identified with a 
cell title, using  %% . Use the  assert  function to check function output. The script can then be run via  runtest , 
which runs each test, even if a prior test fails, and collates the output into a useful report. 

 Let’s write tests for an example function,  CompleteTriangle , that computes the remaining data for a 
triangle given two sides and the interior angle:     

  function   [A,B,c] = CompleteTriangle (a,b,C)  
   
  c =   sqrt  (aˆ2 + bˆ2  −  2*a*b*cosd(C));  
  sinA =   sind  (C)/c*a;  
  sinB =   sind  (C)/c*b;  
  cosA = (cˆ2+bˆ2  −  aˆ2)/2/b/c;  
  cosB = (cˆ2+aˆ2-bˆ2)/2/a/c;  
  A =   atan2  (sinA,cosA)*180/  pi;  
  B =   atan2  (sinB,cosB)*180/  pi;   % insert typo: change a B to A  
   
  end  

 This is similar to the right triangle function used as an example in the MATLAB documentation, but you 
need the four quadrant inverse tangent, as you are allowing obtuse triangles. Since there are very similar 
lines of code for the two angles,  A  and  B , there is a note that having a typo in one of these lines would be 
likely, especially if you use copy/paste while writing the function; we’ll demonstrate the effect of such a typo 
via our tests. 

 Now let’s look at a script that defines a few test cases for this function,  TriangleTest . Each check uses 
assert with a logical statement.     

  %% Test1: sum of angles  
  % Test that the angles add up to 180 degrees.  
  C = 30;  
  [A,B] = CompleteTriangle(1,2,C);  
  theSum = A+B+C;  
  assert  (theSum == 180,'PSS:Book:triangle','sum  of  angles:  %f',theSum)  
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  %% Test 2: isosceles right triangles  
  % Test that if sides a and b are equal, angles A and B are equal.  
  C = 90;  
  [A,B] = CompleteTriangle(2,2,C);  
  assert  (A ==B,'PSS:Book:triangle','Isoceles  Triangle')  
   
  %% Test 3: 3-4-5 right triangle  
  % Test that if side a is 3 and side b is 4, side c (hypotenuse) is 5.  
  C=90;  
  [˜,˜,c] = CompleteTriangle(3,4,C);  
  assert  (c == 5,'PSS:Book:triangle','3-4-5  Triangle')  
   
  %% Test 4: equilateral triangle  
  % Test that if sides a and b are equal, all angles are 60  .  
  [A, B, c] = CompleteTriangle(1,1,60);  
  assert  (A == 60,'PSS:Book:triangle','Equilateral  Triangle  %d',1)  
  assert  (B == 60, 'PSS:Book:triangle','Equilateral  Triangle  %d',2)  
  assert  (c == 1,'PSS:Book:triangle','Equilateral  Triangle  %d',3)  

 Note how the additional inputs available to  assert  are used to add a message ID string and an error 
message. The error message can take formatted strings with any of the specifiers supported by  sprintf , such 
as  %d  and  %f . 

 You can simply execute this script, in which case it exits on the first assert that fails. Even better, 
you can run it with  runtests , which automatically distinguishes between the test cases and runs them 
independently should one fail. 

  >>  runtests('TriangleTest'); 
   
  Running TriangleTest  
  ...  
  ================================================================================  
  Error occurred in TriangleTest/Test4_EquilateralTriangle and it did not run to  
      completion.  
   
      --------------  
      Error Details:  
      --------------  
      Equilateral Triangle 1  
  ================================================================================  
  .  
  Done TriangleTest  
  __________  
   
  Failure Summary:  
       Name                                    Failed  Incomplete  Reason(s)  
      =======================================================================  
       TriangleTest/Test4_EquilateralTriangle    X         X       Errored.  
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 The equilateral triangle test failed. You can tell it was the first  assert  in that case due to the index that 
was printed,  Equilateral Triangle 1 . If you run the code for that test at the command line, you see that 
the output does, in fact, look correct: 

  >> [A,B,c] = CompleteTriangle (1,1,60)  
  A =  
             60  
  B =  
             60  
  c =  
      1  

 If you actually subtract the expected value, 60, from A and B, you see why the test has failed. 

  >> A  −  60  
 ans  =  
     7.1054e  −  15  
  >> B  −  60  
 ans = 
     7.1054e  −  15  

 You are within the tolerances of the trigonometric functions in MATLAB, but the assert statement did 
not take that into account. You can add a tolerance, like so: 

  assert  (  abs   (A  −  60) < 1e  −  10,'PSS:Book:triangle', 'Equilateral  Triangle  %d',1)  
  assert  (  abs   (B  −  60) < 1e  −  10,'PSS:Book:triangle','Equilateral  Triangle  %d',2)  

 And now the tests all pass: 

  >>  runtests('TriangleTest') 
  Running TriangleTest  
  ....  
  Done TriangleTest  
  __________  
   
 ans   =  
    1×4 TestResult array with properties:  
   
      Name  
      Passed  
      Failed  
      Incomplete  
      Duration  
  Totals:  
     4 Passed, 0 Failed, 0 Incomplete.  
     0.012243 seconds testing time.  

 Note that the terminating semicolon is left off; so in addition to the brief report, you see that  runtests  
returns an array of  TestResult  objects and prints additional totals information, including the test duration. 
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 Now let’s consider the case of a typo in the function that you have not yet debugged. You change a  B  to 
an  A  on the last line of the function, so that it reads: 

  B =   atan2  (sinB, cosA)*180/  pi  ;   % insert typo: change a B to A  

 Run the tests again, using the  tolerance check.   Use the table class with the  TestResult  output to get a 
nicely formatted version of the test results. 

  >> tr =  runtests('TriangleTest'); 
  >>  table(tr) 
 ans  =  
                      Name                      Passed  Failed   Incomplete  Duration  
  ________________________________________      ______  ______   ________    _______  
  'TriangleTest/Test1_SumOfAngles'              False   true     true        0.0040209  
  'TriangleTest/Test2_IsoscelesRightTriangles'  true    false    false       0.002971  
  'TriangleTest/Test3_3_4_5RightTriangle'       true    false    false       0.0027831  
  'TriangleTest/Test4_EquilateralTriangle'      true    false    false       0.0031556  

 Despite this being a major error in the code, only one test has failed: the sum of angles test. The 
isosceles and equilateral triangle tests still passed because  A  and  B  are equal in both cases. You could 
introduce errors into each line of your code to see if your tests catch them! 

 Now let’s consider the other possibility for the unit tests: a test function, as opposed to the script. In 
this case, each test case has to be in its own subfunction, and the main function has to return an array 
of test function objects. This provides you the opportunity to write setup and teardown functions for the 
tests. It also makes use of the  TestCase  class and the qualifications package. Here is what the tests look 
like in this format: 

  function   tests = TriangleFunctionTest  
  % Create an array of local functions  
  tests =   functiontests  (  localfunctions  );  
  end  
   
  %% Test Functions  
  function   testAngleSum(testCase)  %#ok<*DEFNU>  
  C      = 30;  
  [A,B]  = CompleteTriangle(1, 2, C);  
  theSum = A+B+C;  
  testCase.  verifyEqual   (theSum,180)  
  end  
   
  function   testIsosceles(testCase)  
  C     = 90;  
  [A,B] = CompleteTriangle(2,2,C);  
  testCase.  verifyEqual  (A,B)  
  end  
   
  function   test345(testCase)  
  C       = 90;  
  [˜,˜,c] = CompleteTriangle(3,4,C);  
  testCase.  verifyEqual  (c,5)  
  end  
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  function   testEquilateral(testCase)  
  [A,B,c] = CompleteTriangle(1,1,60);  
  assert  (  abs  (A-60)<testCase.TestData.tol)  
  testCase.  verifyEqual  (B,60,'absTol',1e-10)  
  testCase.  verifyEqual  (c,1)  
  end  
   
  %% Optional file fixtures  
  function   setupOnce(testCase)    % do not change function name  
  % set a tolerance that can be used by all tests  
  testCase.TestData.tol=1e-10;  
  end  
   
  function   teardownOnce(testCase)    % do not change function name  
  % change back to original path, for example  
  end  
   
  %% Optional fresh fixtures  
  function   setup(testCase)    % do not change function name  
  % open a figure, for example  
  end  
   
  function   teardown(testCase)    % do not change function name  
  % close figure, for example  
  end  

 If you just run this function, you get an array of the four test methods. 

  >> TriangleFunctionTest  
 ans  =  
    1×4 Test array with properties:  
   
      Name  
      Parameterization  
      SharedTestFixtures  

 Two methods for setting a tolerance for the tests in  testEquilateral  have been shown; in one case, you 
hardcode a tolerance in using the   absTol  parameters,   and in the other, you use a setup function to pass a 
tolerance in via  TestData .    There are two types of setup and teardown functions to choose from:  file  fixtures, 
which run just once for the entire set of tests in the file, and  fresh  fixtures, which run for each test case. The file 
fixtures are identified with the  Once  suffix. In the case of this tolerance, the  setupOnce  function is appropriate. 

 To run the tests, use  runtests  as for the script. Happily, the tests all pass! 

  >>  runtests ('TriangleFunctionTest')  
  Running TriangleFunctionTest  
  ....  
  Done TriangleFunctionTest  
  __________  
  ...  
  Totals:  
     4 Passed, 0 Failed, 0 Incomplete.  
     0.043001 seconds testing time.  
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 You can run either set of tests in the Profiler (i.e., Run and Time) to verify coverage of the function being 
tested. It is a bit easier to navigate to the results for  CompleteTriangle  using the script version of the tests; 
the results from the test function lists many functions from the test framework. The result in the Profiler, 
showing 100 % coverage of the function, is shown in Figure  5-1 .  

  Figure 5-1.    Triangle tests in the Profiler       

 After you have run the Profiler, you can run a Coverage  Report . To run the report, you have to use the 
Current Folder pane of the Editor, and select  Reports/Coverage Report  from the context menu. An example 
is shown in Figure  5-2 . The example function runs too quickly to take any measurable time, but generally, 
this report gives you insight into the time taken by your function, as well as the coverage you achieved.    
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    5-2. Running a  Test Suite   
   Problem 
 Your toolbox has dozens or hundreds of functions, each with unit tests. You need an efficient way to run 
them all, or even better, run subsets.  

   Solution 
 MATLAB’s test framework includes the construction of test suites.  

   How It Works 
 After you have generated tests for the functions in your toolbox, you can group them into suites in several 
ways. The help for the  TestSuite  class lists the options: 

      TestSuite methods:  
          fromName    - Create a suite from the name of the test element  
          fromFile    - Create a suite from a TestCase class filename  
          fromFolder  - Create a suite from all tests in a folder  
          fromPackage - Create a suite from all tests in a package  
          fromClass   - Create a suite from a TestCase class  
          fromMethod  - Create a suite from a single test method  

 You can also concatenate test suites made using these methods and pass the array to the test runner. In 
this way, you can easily generate subsets of your tests to run. 

  Figure 5-2.    Coverage Report for  CompleteTriangle         
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 In the previous recipe, you created two test files for  CompleteTriangle:  a test script and a test function. 
You can create a test suite for the folder containing this code, and it will automatically find both sets of test 
cases. Assume that the current folder contains the two test files. 

  >>  import  matlab.unittest.TestSuite  
 >> testSuite = TestSuite.fromFolder(pwd );  
  >> result =  run(testSuite) 
   
  Running TriangleFunctionTest  
  ....  
  Done TriangleFunctionTest  
  __________  
   
  Running TriangleTest  
  .......  
  Done TriangleTest  
  __________  
  result =  
    1×8 TestResult array with properties:  
   
      Name  
      Passed  
      Failed  
      Incomplete  
      Duration  
  Totals:  
     8 Passed, 0 Failed, 0 Incomplete.  
     0.04218 seconds testing time.  

 As you can see, test suites are really quite simple. Some advanced features include the ability to apply 
selectors to a suite to obtain a subset of tests. To see the full documentation of  TestSuite  at the command 
line, type either 

  >>  help  matlab.unittest.TestSuite  

 or 

  >>  import  matlab.unittest.TestSuite  
  >>  help  TestSuite  

 The function for performing selections is  select If . Here is an example that selects the two tests of an 
equilateral triangle from the suite: 

  >> subSuite = testSuite.selectIf('Name','*Equilateral*');  
  >> subSuite  
  subSuite =  
    1×2 Test array with properties:  
   
      Name  
      Parameterization  
      SharedTestFixtures  
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  >> subSuite.Name  
 ans  =  
  TriangleFunctionTest/testEquilateral  
 ans  =  
  TriangleTest/Test4_EquilateralTriangle  

 You can run the tests in the resulting suite, or concatenate with other suites, as before.    

    5-3. Setting Verbosity Levels in Tests 
   Problem 
  The   printouts from your tests are getting out of control, but you don’t want to just delete or comment out all 
the information you have needed as you are developing the tests. If a test fails in the future, you may need 
those messages.  

   Solution 
 The test framework includes a logging feature that has four levels of verbosity. To utilize it, you create a test 
runner using the logging plugin and add  log  calls in your test cases.  

   How It Works 
 The four verbosity levels supported are Terse, Concise, Detailed, and Verbose, which are enumerated in 
Table  5-1 .  

   Table 5-1.        

 1  Terse  Minimal amount of information 

 2  Concise  Typical amount of information 

 3  Detailed  Supplemental amount of information 

 4  Verbose  Surplus of information 

 The default test runner uses the lowest verbosity setting, Terse. The  log  function you use in your test 
cases is a method of  TestCase , so to access the help, you need to use the fully qualified name: 

  >>  help matlab.unittest.TestCase/log 

 The following is the log method syntax from the help:

   log(TESTCASE, LEVEL, DIAG) logs the diagnostic at the specified LEVEL. LEVEL 
can be either a numeric value (1, 2, 3, or 4) or a value from the matlab.unittest.
Verbosity enumeration. When level is unspecified, the log method uses level 
Concise (2).    
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 Logging requires a  TestCase  object. The diagnostic data for  DIAG  can be a string or an instance 
of  matlab.unittest.diagnostics.Diagnostic . Let’s write an example test for  eig  that demonstrates 
verbosity. 

  %% VerboseEigTest Demonstrate verbosity levels in tests  
  % Run a test of the eig function using log messages. Demonstrates  
  % all four levels of verbosity. To run the tests, at the command line use  
  % a TestRunner configured with the LoggingPlugIn:  
  %  
  %   import matlab.unittest.TestRunner;  
  %   import matlab.unittest.plugins.LoggingPlugin;  
  %   runner = TestRunner.withNoPlugins;  
  %   runner.addPlugin(LoggingPlugin.withVerbosity(4));  
  %   results = runner.run(VerboseEigTest);  
  %% Form  
  %   tests = VerboseEigTest  
  %% Inputs  
  % None.  
  %% Outputs  
  %   tests (:) Array of test functions  
   
  function   tests = VerboseEigTest  
  % Create an array of local functions  
  tests = functiontests (localfunctions);  
  end  
   
  %% Test Functions  
  function   eigTest (testCase)  
  log  (  testCase  ,  'Generating  test  data'  ); % default is level 2  
  m =   rand  (2000);  
  A = m'*m;  
  log  (testCase,'About  to  call  eig.');  
  [V,D,W] =   eig  (A);  
  log  (testCase, 4, 'Eig  finished.');  
  assert  (  norm  (W'*A-D*W')<1e-6)  
  log  (testCase,3, 'Test  of  eig  completed.');  
  end  
   
  % If you want to use the Verbose enumeration in your code instead of numbers,  
  % import the class matlab.unittest.Verbosity  
  function   eigWithEnumTest(testCase)  
  import   matlab.unittest.Verbosity  
  m   =   rand  (1000)  ;  
  A = m'*m;  
  log  (testCase, Verbosity.Detailed, 'About  to  call  eig  (with  enum).');  
  [V,D,W] =   eig  (A);  
  assert  (  norm  (W'*A-D*W')<1e-6)  
  log  (testCase, Verbosity.Terse, 'Test  of  eig  (with  enum)  completed.');  
  end  
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 If you just run this test with  runtests , you get the Terse level of output. Note that the system time is 
displayed along with your log message. 

  >> runtests('VerboseEigTest');  
  Running VerboseEigTest  
     [Terse] Diagnostic logged (2015–09–14 T12:15:29): About to call   eig  .  
  .   [Terse] Diagnostic logged (2015–09-14 T12:15:40): Test of   eig   (with enum) completed      
  .  
  Done VerboseEigTest  
  __________  

 To get a higher level of verbosity requires a test runner with the logging plugin. This requires a few 
imports at the command line (or in your script). You need to generate a “plain” runner, with no plugins, 
and then add the logging plugin with the desired level of verbosity. The verbosity level of the message is 
displayed in the output. 

  >> import matlab.unittest.TestRunner;  
  >> import matlab.unittest.plugins.LoggingPlugin;  
  >> runner = TestRunner.withNoPlugins;  
  >> runner.addPlugin (LoggingPlugin.withVerbosity(4));  
  >> results = runner.run(VerboseEigTest);  
    [Concise] Diagnostic logged (2015-09-14 T12:19:57): Generating test data  
      [Terse] Diagnostic logged (2015-09-14 T12:19:57): About to call   eig  .  
    [Verbose] Diagnostic logged (2015-09-14 T12:20:01): Eig finished.  
   [Detailed] Diagnostic logged (2015-09-14 T12:20:07): Test of   eig   completed.  
   [Detailed] Diagnostic logged (2015-09-14 T12:20:07): About to call   eig   (with enum).  
      [Terse] Diagnostic logged (2015-09-14 T12:20:08): Test of   eig   (with enum) completed.     

    5-4. Create a Logging Function to Display Data 
   Problem 
    It is easy and convenient to print variable values by removing the semicolons from statements, but code 
left in this state can produce unwanted printouts that are very difficult to track down. Even using  disp  and 
 fprintf  can make unwanted printouts hard to find, because you probably use these functions elsewhere.  

   Solution 
 Create a custom logging function to display a variable with a helpful identifying message. You can extend 
this to a logging mechanism with verbosity settings similar to that described in the previous recipe, as used 
in the MATLAB testing framework, and in most C++ and Java testing frameworks.  

   How It Works 
 An example logging function is implemented in  DebugLog. DebugLog  prints out a message, which can be 
anything, and before that displays, the path to where  DebugLog  is called. The backtrace is obtained using 
 dbstack . 
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  %% DEBUGLOG Logging function for debugging  
  % Use this function instead of adding disp() statements or leaving out semicolons.  
  %% Form  
  %   DebugLog( msg, fullPath )  
  %% Description  
  % Prints out the data in in msg using disp() and shows the path to the message.  
  % The full path option will print a complete backtrace.  
  %% Inputs  
  %   msg         (.)      Any message  
  %   fullPath    (1,1)    If entered, print the full backtrace  
  %% Outputs  
  %   None  
   
  function   DebugLog( msg, fullPath )  
   
  % Demo  
  if  (   nargin   < 1 )  
    DebugLog(  rand  (2,2));  
    return;  
  end  
   
  % Get the function that calls this one  
  f =   dbstack;  
   
  % The second path is only if called directly from the command line  
  if  (  length  (f) > 1)  
    f1 = 2;  
  else  
    f1 = 1;  
  end  
   
  if  (   nargin   > 1 && fullPath )  
    f2 =   length  (f);  
  else  
    f2 = f1;  
  end  
   
  for   k = f1:f2  
    disp  (['- >  ' f(k).name]);  
  end  
  disp  (msg);  

  DebugLog  is demonstrated in  DebugLogDemo . The function has a subfunction to demonstrate the 
backtrace. 

  %% Demonstrate DebugLog  
  % Log a variable to the command window using DebugLog.  
   
  function   DebugLogDemo  
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  y =   linspace  (0,10);  
  i = FindInY(y);  
   
  function   I = FindInY(y)  
   
  i =   find  (y < 0.5);  
  DebugLog( i, true );  

 This the output of the demo: 

  >> DebugLogDemo  
  -> FindInY  
  -> DebugLogDemo  
       1     2     3     4     5  

 One extension of this function is to add the name of the variable being logged, if  msg  is a variable, using 
the function  inputname . This additional lines of code look like this: 

  str = inputname(1);  
  if ˜isempty  (str)  
    disp  (['Variable:  ' str]);  
  end  

 The demo output now looks like this: 

  >> DebugLogDemo  
  -> FindInY  
  -> DebugLogDemo  
  Variable: i  
       1     2     3     4     5  

 Consistently using your own logging functions for displaying messages to the user and printing debug 
data will make your code easier to maintain.    

    5-5. Generating and Tracing MATLAB Errors and Warnings 
   Problem 
 You would like to display errors and warnings to the user in an organized fashion.      

   Solution 
 Always use the additional inputs to  warning  and  error  to specify a message ID. This allows your message to be 
traced back to the function in the code that generated it, as well as controlling the display of certain warnings.  

   How It Works 
 The  warning  function has several helpful parameters for customizing and controlling warnings displays. 
When you are generating a warning, use the full syntax with a message identifier: 

  warning('MSGID','MESSAGE', A, B, ...)  
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 The  MSGID  is a mnemonic in the form  <component>[:<component>]:<mnemonic> , such as 
 PSS:FunctionName:IllegalInput . The ID is not normally displayed when you give a warning, unless 
you have turned verbose display on, via  warning on verbose  and  warning off verbose . This is easy to 
demonstrate at the command line: 

  >>  warning('PSS:Example:DemoWarning', 'This  is  an  example  warning')  
  Warning: This is an example  warning 
  >>  warning verbose on 
  >>  warning('PSS:Example:DemoWarning','This  is  an  example  warning')  
 Warning: This is an example warning 
  (Type  "warning  off PSS:Example:DemoWarning  "   to suppress this  warning .)  

 As displayed, you can turn a given warning off using its message ID by using the command form shown 
or the functional form,  warning(  'off'  ,  'msgid'  ) . 

 The  lastwarn  function can also return the message ID if passed an additional output, as in: 

  >> [lastmsg, lastid] = lastwarn  
  lastmsg =  
  This is an example warning  
  lastid =  
  PSS:Example:DemoWarning  

 The  error  and  lasterr  functions work the same way. An added benefit of using message identifiers is 
that you can select them when debugging, as an option when stopping for errors or warnings. The debugger 
is integrated into the editor window, and the debugger options are grouped under the Breakpoints toolbar 
button. The button and the More Options pop-up window are shown in Figure  5-3 . In this case, we entered 
an example PSS message identifier.  

  Figure 5-3.    Option to stop on an error in debugger       

 Remember, you should always mention any warnings and errors that may be generated by a function in 
its header!    
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    5-6. Testing Custom Errors and Warnings 
   Problem 
 You have code that generates warnings or errors for problematic inputs and you need to test it.      

   Solution 
 You have two possibilities for testing the generation of errors in your code:  try / catch  blocks with  assert  
and the  verifyError  method available to a  TestCase . With warnings, you can either use  lastwarn or 
verifyWarning .  

   How It Works 
 A comprehensive set of tests for your code should include all paths, or as close to all paths, as possible; and 
it must exercise all the warnings and errors that can be generated by your code. You can do this manually by 
using  try / catch  blocks to catch errors and comparing the error (MException object) to the expected error. 
For warnings, you can check  lastwarn  to see that a warning was issued, like so: 

  >> lastwarn('');  
  >> warning('PSS:Book:id','Warning!')  
  Warning: Warning!  
  >> [anywarn, anyid] = lastwarn;  
  >> assert(  strcmp   (anyid, 'PSS:Book:wrongid'))  
  Assertion failed.  

 Here is an example of a  try / catch  block with  assert  to detect a specific error: 

  %% Test that we get the expected error, and pass  
  errFun = @()   error  ('PSS:Book:id','Error!');  
  try  
    feval  (errFun);  
  catch ME  
    assert  (  strcmp(  ME.identifier,'PSS:Book:id'));  
  end  

 This test verifies that the error thrown is the one expected; however, it does not detect if no error is 
thrown at all. For this, you need to add a boolean variable to the  try  block. 

  %% This time we don  '  t get any error at all  
  wrongFun = @()   disp  ('some  error-free  code.');  
  tf = false;  
  try  
    feval  (wrongFun);  
    tf = true;  
  catch   ME  
    assert  (  strcmp  (ME.identifier,'PSS:Book:id'));  
  end  
  if   (tf)  
    assert  (false,'CatchErrorTest:  No  error  thrown');  
  end  
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 When you run this code segment, you get the following output: 

  Some error-free code.  
  CatchErrorTest: No error thrown  

 If you run the test as part of a test script with  runtests , the test fails. 
 A far better way to test for warnings and errors is to use the unit test framework’s qualifiers to check that 

the desired warning or error is generated. Here is an example of verifying a warning, with a test that will pass 
and a test that will fail; note that you need to pass a function handle to the  verifyWarning  function. 

  function   tests = WarningsTest  
  % Create an array of local functions  
  tests = functiontests (localfunctions);  
  end  
   
  %% Test Functions  
  function   passTest (testCase)  
  warnFun = @()warning('PSS:Book:id','Warning!');  
  testCase.verifyWarning(warnFun,'PSS:Book:id');  
  end  
   
  function   failTest (testCase)  
  warnFun = @() warning ('Wrong:id','Warning!');  
  testCase.verifyWarning (warnFun,'PSS:id','Wrong  id');  
  end  

 When you run this test function with  runtests , you can see that  failTest  did, in fact, fail. 

  >> runtests('WarningsTest')  
  Running WarningsTest  
  .Warning: Warning!  
   
  ===========================================================  
  Verification failed in WarningsTest/failTest.  
   
      ----------------  
      Test Diagnostic:  
      ----------------  
      Wrong id  
   
      ---------------------  
      Framework Diagnostic:  
      ---------------------  
      verifyWarning failed.  
      --> The   function   handle did not issue the expected warning.  
   
          Actual Warnings:  
                  Wrong:id  
          Expected Warning:  
                  PSS:id  
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      Evaluated Function:  
              @()warning('Wrong:id','Warning!')  
      ------------------  
      Stack Information:  
      ------------------  
      In /Users/Shared/svn/Manuals/MATLABCookbook/MATLAB/Ch05-Debugging/WarningsTest.m   
          (failTest) at 12  
  ===========================================================  
  .  
  Done WarningsTest  
  _________  
   
  Failure Summary:  
       Name                   Failed   Incomplete   Reason(s)  
      ======================================================================  
       WarningsTest/failTest    X                   Failed by verification.  
   
  Totals:  
     1 Passed, 1 Failed, 0 Incomplete.  
     0.047691 seconds testing time.  

  verifyError  works the same way. In practice, you need to make a function handle that includes the 
inputs that cause the error or warning to be generated. 

 For advanced programmers, there is a further mechanism for constructing tests using  verifyThat  with 
the  Constraint  class. You can supply your own  Diagnostic  objects as well. For more information, see the 
reference pages for these classes along with the  Verifiable  class.    

    5-7. Testing Generation of Figures 
   Problem 
 Your function generates a figure instead of an output variable. How do you test it?      

   Solution 
 Although you may need a human to verify that the figure looks correct, you can at least verify that the correct 
set of figures is generated by your function using  findobj .  

   How It Works 
 Routinely assigning names to your figures makes it easy to test that they have been generated, even if you 
don’t have access to the handles. You can also assign tags to figures, such as having a single tag for your 
entire toolbox, which allows you to locate sets of figures. 

  >>   figure   ('Name', 'Figure 1', 'Tag', 'PSS');  
  >>   figure   ('Name', 'Figure 2', 'Tag', 'PSS')  
  >> h = findobj('Tag', 'PSS')  
  h =  
    2×1 Figure array:  
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    Figure   (PSS)  
    Figure   (PSS)  
  >> h = findobj('Name','Figure  1')  
  h =  
    Figure (PSS) with properties:  
   
        Number: 1  
          Name: 'Figure  1'  
         Color: [0.94 0.94 0.94]  
      Position: [440 378 560 420]  
         Units: 'pixels'  

 In your test, you can then check that you have the correct number of figures generated using  length(h)  
or that each specific named figure exists using  strcmp . If you are storing any data in your figures using 
 UserData , you can test that as well. 

 If you are not using tags or need to check for figures that do not have names or tags, you can find all 
figures currently open using the  type  input to  findobj : 

  >> findobj('type','figure')  
 ans  =  
    2×1 Figure array:  
   
    Figure    (PSS)  
    Figure    (PSS)  

 Note that figures are only returned by  findobj  if they are visible to the command line via their 
 HandleVisibility  property. This property can have the values  'on' ,  'off' , and  'callback' . GUIs generated by 
the design tool GUIDE are generally hidden to prevent users from accidentally altering the GUI using  plot  or 
similar commands; these figures use the value  'callback' . Regular figures have the value  'on'  and can be 
located. A figure with  HandleVisibility  set to  'off'  can only be accessed using its handle.    

   Summary 
 This chapter demonstrated how to use MATLAB’s unit test framework and provided recipes to help you 
debug your functions. Table  5-2  lists the code files.          

   Table 5-2.    Chapter Code Listing   

 File  Description 

  CatchErrorTest   Script showing how to catch errors in a  try  block. 

  CompleteTriangle   Example function calculating angles in a triangle. 

  DebugLog   Custom data logging function. 

  DebugLogDemo   Demo of  DebugLog  showing a backtrace. 

  TriangleFunctionTest    A function with test cases for  CompleteTriangle . 

  TriangleTest   A script with test cases for  CompleteTriangle . 

  VerboseEigTest   A test function showing all levels of verbosity. 

  WarningsTest   A test function using  verifyWarning  



   PART II 

   Applications 

            In this part of the book we will explore the use of MATLAB for dynamical systems and control system 
design in a number of technologies. In each area we will derive the equations of motion for the 
system. A system is defined by its state equations, states and parameters. The equations of motion 
are the equations of the states of a system. The state variables are the set of variables that evolve 
with time that completely define the current state of the system and allow for future prediction of 
the state without any knowledge of the past. We also need parameters that are independent of the 
states to fully define the system along with the inputs to the system. The state vector will always be 
represented by an  n -by-1 MATLAB array. 

 In the equations that we present, we will use the dot notation for derivatives, i.e.

 
r

dr

dt
=

  

State equations are of the form

 

x ax bu

y cx du

= +
= +   

 x  is the state and is an  n  × 1 vector represented by an  n  row by 1 column MATLAB array.  u  is the input 
matrix and is  m  × 1.  y  is the measurement.  a  relates the state to the state derivative and is an  n  ×  n  
array.  b  is the input array and is  n  ×  m  where the number of inputs,  u , is  m .  c  relates the state the to 
measurement and  d  relates the input to the measurement. 

 We are not going to delve into control theory in detail. That would require a complete textbook 
by itself, or many textbooks if you wanted to explore control system design in depth. We will provide 
an intuitive approach to allow you to get control systems up and running quickly without too 
much code!       
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Chapter 6

The Double Integrator

A double integrator is a dynamical model for a wide variety of physical systems. This includes a mass moving 
in one dimension and an object rotating around a shaft. It represents a broad class of systems with two 
states. In this chapter, you will learn how to model a double integrator and how to control it. In the process, 
you will create some very important functions for implementing control systems, plotting, and performing 
numerical integration. This will provide a springboard to other, more complex systems in later chapters.

6-1. Writing Equations for the Double Integrator Model
Problem
A double integrator is a second-order model, with a second derivative, where the derivative is independent 
of the state. This model appears in many engineering disciplines.

Solution
You will write the equations for the model dynamics and implement these in a function.

How It Works
One-dimensional linear motion can be modeled with the following differential equations:

	 r =u 	 (6.1)

	 m Fu = 	 (6.2)

r and u are states; m, the mass, is a parameter; and F, the force, is an input. The state vector is

	
x

r
=








u 	 (6.3)

The variable x is represented by a MATLAB two rows × one column array. The first element of the array 
is r and the second is u.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_6) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_6


Chapter 6 ■ The Double Integrator

140

■■ Tip T his equation works equally well for rotational motion. Just replace m with I for inertia, r with q for 
angle, u with w for angular velocity, and F with T for torque.

To write a function for the derivatives, divide by m to isolate the derivatives on the left-hand side of the 
equations. The terms on the right-hand side are what you will calculate in this so-called RHS function.

	 r =u 	 (6.4)

	
u = F

m
a≡ 	 (6.5)

Writing these equations in vector notation, you have

	

x
a

=










u
	 (6.6)

Now you can write the function, RHSDoubleIntegrator, for the derivative of the state vector x. Note the 
prefix of RHS in the name, which you use to identify all functions that can be integrated. The velocity term 
is the second element of state x, and is passed as the derivative of the position state r. The derivative of the 
velocity state is the acceleration a. The RHS function has a placeholder ~ for the first argument, where the 
integrator will pass the time t, which this function doesn’t require.

function xDot = RHSDoubleIntegrator(~, x, a)
 
xDot = [x(2);a];

6-2. Creating a Fixed-Step Numerical Integrator
Problem
You need to use numerical integration in the simulations to evolve the state of the systems. 

Solution
You will review the equations for a fourth-order Runge-Kutta integrator and develop a function to perform 
fixed-step integration.

How It Works
Let’s look at a simple model for linear motion. You need to put the equations in state equation form, which 
is a set of first-order differential equations with the derivatives on the left-hand side. Take, for example, the 
one-dimensional motion model from Recipe 6-1, with the derivative terms for r and u on the left-hand side 
of the equations.
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dr

dt
=u 	 (6.7)

	

d

dt

F

m

u = 	 (6.8)

Multiply both sides by dt.

	 dr dt=u 	 (6.9)

	
d

F

m
dtu = 	 (6.10)

Replace dt with the fixed-time interval h. You can now write the simplest type of numerical integrator 
for computing the state at step k + 1 from the state at step k.

	 r r hk k k+ = +1 u 	 (6.11)

	
u uk k

kF

m
h+ = +1 	 (6.12)

Step k is at time t
k
 and step k + 1 is at time t

k+1
, where t

k+1
 = t

k
 + h.

This simple integrator is called Euler integration. It assumes that the force F
k
 is constant over the time 

interval h. Euler integration works fairly well for simple systems, like the preceding one. For example, for a 
spring system

	 r r a+ =w 2 	 (6.13)

the natural frequency of oscillation is w. If the time step is greater than half the period of the oscillation  
2p/w, the numerical integration cannot capture the dynamics. In practice, the time step, h, must be much 
lower than half.

Euler integration is rarely used for engineering due to its limited accuracy. One of the most popular methods 
used for control system simulation is the fourth-order Runge-Kutta method. The equations are as follows:

	

k f x u t t

k f x
h
k u t

h
t

h

k f x
h
k u t
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	 (6.14)

f (x, u, t) is the right-hand side of the differential equations. O(h4) means the truncation error due to the 
order of the integration goes as the fourth power of the time step. This means that if you halve this time step, 
the error drops to 0.0625 of the error with the bigger time step. In the preceding system, the right-hand sides 
are computed at four different points, twice at h/2 and once at t and t + h.
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u
	 (6.15)

■■ Note   There are other fourth-order Runge-Kutta methods with different coefficients.

MATLAB has many numerical integrators. They are designed to integrate over any interval. Some, such 
as ode113, adjust the step size and the order of the integration (Euler is first-order, the preceding Runge-
Kutta is fourth-order), between the desired interval. For digital control, you need to integrate between the 
step size of the digital controller. You could use ode113 for this, but usually the fourth-order Runge-Kutta is 
sufficient. This method is used for all of the examples in this book.

You next want to look at the RungeKutta function that implements equation 6.14. Note the use of feval 
to evaluate the right-hand-side function in the following code.

function x = RungeKutta( Fun, t, x, h, varargin )
 
hO2   = 0.5*h;
tPHO2 = t + hO2;
 
k1    = feval( Fun,      t,     x,          varargin{:} );
k2    = feval( Fun,      tPHO2, x + hO2*k1, varargin{:} );
k3    = feval( Fun,      tPHO2, x + hO2*k2, varargin{:} );
k4    = feval( Fun,      t+h,   x + h*k3,   varargin{:} );
 
x     = x + h*(k1 + 2*(k2+k3) + k4)/6;

Fun is a pointer to the right-hand-side function. varargin is passed to that function, which enables the 
dynamics model to have any number of parameters. This RungeKutta function is used in all of the examples 
in this book. You precompute all values that are used multiple times, such as t h+ /2. This is particularly 
important in functions that are called repeatedly.

You pass this function a handle to the right-hand-side function, RHSDoubleIntegrator, which 
implements equation 6.1.

■■ Tip R eplace unused variables in function calls with the tilde.

In order to integrate the model one step, you call

xNew = RungeKutta( @RHSDoubleIntegrator, ~, x, h, a )

Our RungeKutta function, and all MATLAB integrators, have the dependent variable first, which is t in 
this case. Since it isn’t used here, you replace it with the tilde. MATLAB’s code analyzer will suggest this for 
efficiency for all unused function inputs and outputs in your code.
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6-3. Implement a Discrete Proportional-Derivative 
Controller
Problem
You want digital control software that can control a double integrator system and other dynamical systems. 

Solution
You will derive the equations for a damped second-order system in the time domain and then create a 
sampled data version and implement it a MATLAB function.

How It Works
If a constant force F is applied to the system, the mass m will accelerate and its position will change with the 
square of time. The analytical solution for the two states, r and u, is

	
r t r t t

F

m
t t( ) = ( ) + ( ) − ( )( ) + − ( )( )0 0 0

1

2
0

2
u 	 (6.16)

	
u ut

F

m
t t( ) = ( ) + − ( )( )0 0 	 (6.17)

If you wish to have the position of mass stay close to zero, you can use a control system known as a 
regulator. You will use a proportional-derivative regulator. This regulator measures position and applies 
a control force proportional to the position error and to the derivative of the position error. Let’s look at a 
particularly simple form of this control:

	 F k r kc r= - - uu 	 (6.18)

F
c
 is the control force. You don’t have to be able to measure the disturbance force, F, for this to work. 

Picking the gains, k
r
 and ku, is easy if you write the dynamical system as a second-order system:

	 mr F Fc
= + 	 (6.19)

	 mr F k r kr
= − − uu 	 (6.20)

	 mr k r k r Fr
 + + =u 	 (6.21)

The controlled system is a damped second-order oscillator. You can write the desired differential 
equation as

	
 r r r

F

m
+ + =2 2zs s 	 (6.22)
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where the gains are

	 k mr = s 2 	 (6.23)

	 k mu zs= 	 (6.24)

s is the undamped natural frequency and z is the damping ratio. This system will always be stable as 
long as the gains are positive. If F if constant the position will settle to an offset. This is

	
r

F

m
=

s 2 	 (6.25)

This method of control design is called “pole-placement”. 
Virtually all control systems are implemented on digital computers, so you must transform this 

controller into a digital form. Assume that you only measure position. The first step is to assemble the 
control in a continuous time state space form. For this implementation, you add a rate filter to the PD 
controller.

	 w w zw= +r n2 	 (6.26)

	 k mr n=w w 2 /w 	 (6.27)

	
t w w zw w= +( ) −





m

k n n r2 1 /
	 (6.28)

	 a = −w 	 (6.29)

	 b =w 	 (6.30)

	 c k= − wt 	 (6.31)

	 d k= +( )* tw 1 	 (6.32)

where w
r
 is the cutoff frequency for the first-order filter on the rate term; w

n
 is the undamped natural 

frequency for the controller; and z is the controller damping ratio. m is the “mass” or inertia. You can always 
set this to 1 and scale the control output. The undamped natural frequency gives the bandwidth of the 
controller. The higher the bandwidth, the faster it responds to errors. The higher the bandwidth, the smaller 
the offset error will be due to a constant input.

	 x ax bu= + 	 (6.33)

	 y cx du= − − 	 (6.34)

x is the controller state and u is the position measurement. The state space form is convenient for 
computation but still assumes that you are sampling continuously. There are many ways to convert this to 
digital form. You will use a zero-order-hold, meaning you will compute the control each sample and hold the 
value over that sample period. You convert this using the matrix exponential function in MATLAB, expm. If T 
is the sample period, you assemble the matrix
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s =











aT bT

0 0 	 (6.35)

The sampled time versions of a and b are

	

a

b
ed

d









 =

s

	 (6.36)

The digital controller is now

	 x a x b uk d k d k+ = +1 	 (6.37)

	 y cx duk k k= - - 	 (6.38)

Let’s now look at PDControl. This function designs and implements the control system derived in 
equation 6.26. The name stands for Proportional-Derivative Control. It has several child functions. The 
header is shown below. It has a link to the help for one of the subfunctions, which is active when the header 
is displayed at the command line. You list each data structure field for the input and output.

%% PDCONTROL Design and implement a PD Controller in sampled time.
%% Forms
%  d = PDControl( 'struct' )
%  d = PDControl( 'initialize', d )
%  [y, d] = PDControl( 'update', u, d )
%
%% Description
% Designs a PD controller and implements it in discrete form.
%
%  y = -c*x - d*u
%  x = a*x + b*u
%
% where u is the input and y is the output. This controller has a first
% order rate filter on the derivative term.
%
% Set the mode to initialize to create the state space matrices for the
% controller. Set the mode to update to update the controller and get a
% new output.
%
% Utilizes the subfunction C2DZOH to discretize, see <a href="matlab: help PDControl>
    CToDZOH">CToDZOH help</a>
%
%% Inputs
% mode      (1,1) 'initialize' or 'update'
% u         (1,1) Measurement
% d          (.) Data structure
%                 .m       (1,1) Mass
%                 .zeta    (1,1) Damping ratio
%                 .wN      (1,1) Undamped natural frequency
%                 .wD      (1,1) Derivative term filter cutoff
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%                 .tSamp   (1,1) Sampling period*
%                 .x       (1,1) Controller state
%
%% Outputs
%  y        (1,1) Control
%  d         (.)  Data structure additions
%                 .a      (1,1) State transition matrix
%                 .b      (1,1) Input matrix
%                 .c      (1,1) State output matrix
%                 .d      (1,1) Feedthrough matrix
%                 .x      (1,1) Updated controller state

Next, the body of the function. Note the switch statement and the two child functions, CToDZOH and 
DefaultStruct, at the bottom.

function [y, d] = PDControl( mode, u, d )
% Demo
if( nargin < 1 )
  disp('DemoofPDControlusingthedefaultstruct')
  d = PDControl('struct');
  d = PDControl('initialize',d);
  disp(d)
  return
end
 
switch lower(mode)
  case 'initialize'
    d           = u;
    w           = d.wD + 2*d.zeta*d.wN;
    k           = d.wD*d.wNˆ2*d.m/w;
    tau         = ((d.m/k)*d.wN*(d.wN + 2*d.zeta*d.wD) - 1 )/w;
    d.a         = -w;
    d.b         = w;
    d.c         = -k*w*tau;
    d.d         = k*(tau*w + 1);
 
    [d.a, d.b]  = CToDZOH(d.a,d.b,d.tSamp);
    y           = d;
 
  case 'update'
    y   = -d.c*d.x - d.d*u;
    d.x = d.a*d.x + d.b*u;
 
  case 'struct'
    y = DefaultStruct;
 
  otherwise
    error('%sisnotavalidmode',mode);
end
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function [f, g] = CToDZOH( a, b, T )
%% CToDZOH
% Continuous to discrete transformation using a zero order hold. Discretize
% using a matrix exponential, <matlab:doc('expm') expm>.
%
%  [f, g] = C2DZOH( a, b, T )
%
% *Inputs*
%
%  a   (1,1)    Continuous plant matrix
%  b   (1,1)    Input matrix
%  T   (1,1)    Time step
%
% *Outputs*
%
%  f   (1,1)    Discrete plant
%  g   (1,1)    Discrete input
%
% See also
% expm
 
q = expm([a*T b*T;zeros(1,2)]);
 
f = q(1,1);
g = q(1,2);
 
function d = DefaultStruct
 
d.m      = 1.0;
d.zeta   = 0.7;
d.wN     = 0.1;
d.wD     = 0.5;
d.tSamp  = 1.0;
d.x      = 0.0;
d.a      = [];
d.b      = [];
d.c      = [];
d.d      = [];

This is our standard format for an engineering function. The following are its important features: 

•	 It combines design and implementation in one function.

•	 It returns the default data structure that it uses.

•	 It has modes.

•	 It has a built-in demo.

•	 It has nested functions.
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The built-in demo uses the default values. The default values give the user an idea of reasonable 
parameters for the function. This built-in demo generates the state space matrices, which are scalars in  
this case. 

Demo of PDControl using the default struct
        m: 1
     zeta: 0.7000
       wN: 0.1000
       wD: 0.5000
    tSamp: 1
        x: 0
        a: 0.5273
        b: 0.4727
        c: -0.0722
        d: 0.0800

A more elaborate demo, with a simulation, could have been added. The built-in demos are very useful 
because they show the user a simple example of how to use the function. It also is helpful in developing the 
function, because you can test the function by just typing the function name in the command line.

The first argument is the mode variable that indicates which case in the switch statement the function 
should execute. The “initialize” mode must always be run first. The initialization modifies the data structure, 
which is used as the function’s memory. You could also have used persistent variables for the function 
memory. Using an output makes it easier to programmatically inspect the contents of memory. The 
“update” is used to update the controller as new inputs arrive. The switch statement has an “otherwise” case 
to warn the user of mode errors. This throws an error, stopping execution of the script. You may not always 
want to do this and may just use a warning to warn the user.

The nested function CToDZOH converts the continuous control system to a sampled-data control 
system using equation 6.35. The name stands for Continuous to Discrete Zero-Order Hold. A non-controls 
expert wouldn’t immediately understand the acronym, but the expanded name is too long to be a useful 
function name.

■■ Tip  Make function names consistent in form and use terms that are standard for your field. Remember that 
not all readers of your code will be native English-language speakers!

If you were building a toolbox, the CToDZOH function would likely be a separate file. For this book, it is 
only used by PDControl, so you put it into that function file.

6-4. Simulate the Double Integrator with Digital Control
Problem
You want to simulate digital control of the double integrator model. 

Solution
You will write a script that calls the control function and integrator sequentially in a loop and plots the 
results.
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How It Works
Table 6-1 presents the nominal values for the control parameters that you will use for the double integrator 
simulation.

Table 6-1.  Control Parameters

Zeta Damping ratio 1.0

wN Undamped natural frequency 0.1 rad/sec

wD Derivative term filter cutoff 1.0 rad/sec

dT Time step 0.1 sec

The simulation script is implemented in DoubleIntegratorSim.m. Note the use of cell breaks to divide 
the script into sections that can be run independently. The “See also” section lists the functions used, which 
are links when the header is displayed via the command-line help.

%% Double Integrator Demo
% Demonstrate control of a double integrator.
%% See also
% PDControl, RungeKutta, RHSDoubleIntegrator, TimeLabel
 
%% Initialize
tEnd        = 100; % Simulation end time (sec)
dT          = 0.1; % Time step (sec)
aD          = 1.0; % Disturbance acceleration (m/sˆ2)
controlIsOn = false; % True if the controller is to be used
x           = [0;0]; % [position;velocity]
 
% Controller parameters
d       = PDControl( 'struct' );
d.zeta  = 1.0;
d.wN    = 0.1;
d.wD    = 1.0;
d.tSamp = dT;
d       = PDControl( 'initialize', d );
 
%% Simulation
nSim  = tEnd/dT+1;
xPlot = zeros(3,nSim);
 
for k = 1:nSim
  if( controlIsOn )
    [u, d] = PDControl('update',x(1),d);
  else
    u = 0;
  end
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  xPlot(:,k) = [x;u];
  x          = RungeKutta( 'RHSDoubleIntegrator', 0, x, dT, aD+u );
end
 
%% Plot the results
yL     = {'r(m)' 'v(m/s)' 'u(m/sˆ2)'};
[t,tL] = TimeLabel(dT*(0:(nSim-1)));
 
PlotSet( t, xPlot, 'xlabel', tL, 'ylabel', yL );

The first code block sets up simulation parameters that the user can change. The controlIsOn variable 
is set to true if the controller is to be used. This makes it easy to test the script without the controller. When 
the controller is disabled, you get the “open loop” response. It is a good idea to make sure that the open-loop 
response makes sense before testing the controller.

■■ Tip P ut all parameters that the user can change at the beginning of the script.

The second block sets up the controller. Recall that PDControl has three arguments: 'struct' 
'initialize', 'update'. The first returns the data structure required by the function. You fill the structure 
fields with the values selected for the problem in the lines that follow that statement. At the end of this block, 
you initialize the controller. This sets the controller state to zero and creates the sampled time state space 
matrices, which in this case are four scalars.

The third block is the simulation with the check to see if the controller is on. Note the sequential use 
of the control function followed by the integrator. This is discrete control because the control, u, is constant 
over the integration time step. The final block plots the results.

Figure 6-1 shows the open-loop response obtained by setting the controlIsOn flag to false and 
executing DoubleIntegratorSim. The velocity increases linearly and the position increases with the square 
of time, as it should. The output agrees with the analytical solution in equation 6.16. Figure 6-2 shows the 
closed-loop response, with controlIsOn set to true. The velocity goes to zero and the position reaches a 
constant, though not zero. The control acceleration u exactly matches the disturbance acceleration a. You 
could have eliminated the position offset by using a proportional integral differential (PID) controller.
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Figure 6-1.  The open-loop response with a constant disturbance acceleration of 1 m/s2
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Figure 6-2.  The closed-loop response with a constant disturbance acceleration of 1 m/s2
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The two examples show that the simulation works without the control and that the control performs 
as expected. This script is an integrated test of all of the functions listed in the header. It does a good job 
of testing their functionality. However, one test isn’t sufficient to understand the controller. Let’s make the 
controller underdamped by setting z in the field d.zeta, to 0.2. Now the response oscillates (see Figure 6-3). 
You set tEnd to 300 to show that it damps.
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Figure 6-3.  The closed-loop response with a constant disturbance acceleration of 1 m/s2 and z equal to 0.2

Another thing to try is setting the bandwidth really high. Set w
n
, in field d.wN, to 8, and the rate filter 

bandwidth d.wD to 50. The result is shown in Figure 6-4. The controller is unstable because the bandwidth is 
much higher than that allowed by the sampling rate.



Chapter 6 ■ The Double Integrator

153

Your bandwidth has to be less than half the sampling bandwidth, which is

	
w p

s T
= 2

	 (6.39)

All the results are expected behavior. The last case is what is known as an edge or corner case that shows 
that the expected instability does happen. These four cases are a minimalist set of tests for this admittedly 
simple control system example.

6-5. Create Time Axes with Reasonable Time Units
Problem
You want your time axes to have easy-to-read units, not just seconds. 

Solution
You will create a function that checks the duration and converts from seconds to minutes, hours, days, or 
years.

How It Works
You check the maximum time in the array of times and scale it to larger time units. The time units 
implemented are seconds, minutes, hours, days, and years. You return the scaled time vector, the label 
string, and the units string, as it might be useful.
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function [t, c, s] = TimeLabel( t )
 
secInYear   = 365.25*86400;
secInDay    = 86400;
secInHour   =  3600;
secInMinute =    60;
 
tMax        = max(t);
 
if( tMax > secInYear )
  c = 'Time(years)';
  s = 'years';
  t = t/secInYear;
elseif( tMax > 3*secInDay )
  c = 'Time(days)';
  t = t/secInDay;
  s = 'days';
elseif( tMax > 3*secInHour )
  c = 'Time(hours)';
  t = t/secInHour;
  s = 'hours';
elseif( tMax > 3*secInMinute )
  c = 'Time(min)';
  t = t/secInMinute;
  s = 'min';
else
  c = 'Time(sec)';
  s = 'sec';
end

6-6. Create Figures with Multiple Subplots
Problem
You frequently generate figures with multiple subplots during control analysis, and this results in large 
blocks of repetitive code at the bottom of every script. 

Solution
You make a function that can easily generate subplots with a single line.

How It Works
You will write a function that uses parameter pairs to flexibly create subplot figures in a single function call. 
The y input can have multiple rows, and the x input can have one row or the same number of rows as y. You 
supply default labels so that the function can be called with just two inputs.
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The only parameters supported in this version are various labels and the plot type—standard plot, 
semilogx, semilogy, and loglog—but you can easily add functionality for line thickness, plot markers, 
shading, and so forth. You use a for loop to check every other component of varargin in a switch statement. 
Remember that varargin provides a cell array of arguments.

Note the use of a built-in demo showing both main branches of the function, for one x series and for two.
The plotting code creates subplots in the figure for each plot based on the number of rows in x and y. 

This function assumes the subplots are in a single column, but you could extend the logic to create multiple 
columns or any arrangement of subplots that suits your application. The grid is turned on.

function PlotSet( x, y, varargin )
 
% Demo
%-----
if( nargin < 1 )
  x = linspace(1,1000);
  y = [sin(0.01*x);cos(0.01*x)];
  disp('PlotSet:Onexandtwoyrows')
  PlotSet( x, y )
  disp('PlotSet:Twoxandtwoyrows')
  PlotSet( [x;y(1,:)], y )
 
  return;
end
 
% Defaults
nCol      = 1;
n         = size(x,1);
m         = size(y,1);
 
yLabel    = cell(1,m);
xLabel    = cell(1,n);
plotTitle = cell(1,n);
for k = 1:m
  yLabel{k} = 'y';
end
for k = 1:n
  xLabel{k}    = 'x';
  plotTitle{k} = 'yvs.x';
end
figTitle = 'PlotSet';
plotType = 'plot';
 
% Handle input parameters
for k = 1:2:length(varargin)
  switch lower(varargin{k} )
    case 'xlabel'
      for j = 1:n
        xLabel{j}      = varargin{k+1};
      end
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    case 'ylabel'
      temp        = varargin{k+1};
      if( ischar(temp) )
        yLabel{1} = temp;
      else
        yLabel    = temp;
      end
    case 'plottitle'
      plotTitle{1}  = varargin{k+1};
    case 'figuretitle'
      figTitle      = varargin{k+1};
    case 'plottype'
      plotType      = varargin{k+1};
    otherwise
      fprintf(1,'%sisnotanallowableparameter\n',varargin{k});
    end
  end
 
h = figure;
set(h,'Name',figTitle);
 
% First path is for just one row in x
if( n == 1 )
  for k = 1:m
    subplot(m,nCol,k);
    plotXY(x,y(k,:),plotType);
    xlabel(xLabel{1});
    ylabel(yLabel{k});
    if( k == 1 )
      title(plotTitle{1})
    end
    grid on
  end
else
  for k = 1:n
    subplot(n,nCol,k);
    plotXY(x(k,:),y(k,:),plotType);
    xlabel(xLabel{k});
    ylabel(yLabel{k});
    title(plotTitle{k})
    grid on
  end
end
 
%% Implement different plot types
function plotXY(x,y,type)
 
switch type
  case 'plot'
    plot(x,y);
  case {'log' 'loglog' 'loglog'}
    loglog(x,y);
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  case {'xlog' 'semilogx' 'xlog'}
    semilogx(x,y);
  case {'ylog' 'semilogy' 'ylog'}
    semilogy(x,y);
  otherwise
    error('%sisnotanavailableplottype',type);
end

This function allows DoubleIntegratorSim.m to generate its plots with one line of code.

Summary
The double integrator is a very useful model for developing control systems, as it represents an ideal version 
of many systems, such as a spring attached to a mass. In this chapter, you developed the mathematical 
model for the double integrator and wrote the dynamics in a right-hand-side function. You were introduced 
to numerical integration and wrote the Runge-Kutta integrator, which will be used throughout the remaining 
applications in this book. The recipe for the control function combines design and implementation, contains 
a built-in demo, and defines a data structure that is used for memory between calls. The first demo script 
showed how to initialize a controller for a double integrator, simulate it, and plot the results. Table 6-2 lists 
the code developed in the chapter. This is the basis for almost any mathematical or control analysis that you 
will do in MATLAB! 

Table 6-2.  Chapter Code Listing

File Description

RHSDoubleIntegrator Dynamical model for the double integrator.

RungeKutta Fourth-order Runge-Kutta integrator.

PDControl Proportional-derivative controller.

DoubleIntegratorSim Simulation of the double integrator with discrete control.

PlotSet Create two-dimensional plots from a data set.

TimeLabel Produce time labels and scaled time vectors.
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Chapter 7

Robotics

The SCARA robot (Selective Compliance Articulated Robot Arm) is a simple industrial robot used for placing 
components in a two-dimensional space. You will learn the equations of motion for a SCARA robot arm that 
has two rotational joints and one prismatic joint. Each joint has a single degree of freedom. A SCARA robot 
is broadly applicable to work where a part needs to be inserted in a two-dimensional space or where drilling 
needs to be done.

The input to the robot system will be a new location for the arm end effector. You have to solve two 
control problems. One is to determine which angles you need to place the arm at a particular xy coordinate. 
This is the inverse kinematics problem. The second is to control the two joints so that you get a smooth 
response to commands to move the arm. You will also develop a custom visualization function that can be 
used to create animations of the robot motion.

For more information on the dynamics used in this chapter, see example 9.8.2 (p. 405) in Lung-Wen 
Tsai’s book Robot Analysis: The Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, 1999).

7-1. Creating a Dynamic Model of the SCARA Robot
Problem
The robot has two rotational joints and one linear “joint.” You need to write the dynamics that link the forces 
and torques applied to the arm to its motion so that you can simulate the arm. 

Solution
The equations of motion are written as second order differential equations. The right hand side involves 
solving a set of linear equations.

How It Works
The SCARA robot is shown in Figure 7-1. It has two arms that move in the xy-plane and a plunger that moves 
in the z direction. The angles q

1
 and q

2
 are measured around the z

0
 and z

1
 axes.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_7) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_7
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The equations of motion for the SCARA robot are
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(7.1)

The first term is the product of the generalized inertia matrix and the acceleration vector. The second 
array contains the rotational coupling terms. The final array is the control vector. The generalized inertia 
matrix, I, is

	

I I

I I

I

11 21

21 22

33

0

0 0

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

	 (7.2)
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Figure 7-1.  SCARA robot. The two arms move in a plane. The plunger moves perpendicular to the plane
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Note that in developing this inertia matrix, the author is treating the links as point masses and not 
solid bodies.

The matrix is symmetric, as it should be. There is coupling between the two rotational degrees of 
freedom but no coupling between the plunger and the rotational hinges.

First, define a data structure for the robot, defining the length and mass of the links, and with fields for 
the forces and torques that can be applied. The function can supply a default structure to be filled in, or the 
fields can be specified a priori.

%  d = SCARADataStructure
%  d = SCARADataStructure( a1, a2, d1, m1, m2, m3 )
%
%% Description
% Create a SCARA robot data structure. Type d = SCARADataStructure for
% default arguments. The forces and torques are set to zero.
%
%% Inputs
%   a1 (1,1) Link 1 length
%   a2 (1,1) Link 2 length
%   d1 (1,1) Distance of link 1 from ground
%   m1 (1,1) Link 1 mass
%   m2 (1,1) Link 2 mass
%   m3 (1,1) Link 3 mass
%   t1 (1,1) Joint 1 torque
%   t2 (1,1) Joint 2 torque
%   f3 (1,1) Joint 3 force
%
%% Outputs
%   d (.) Data structure
 
function d = SCARADataStructure( a1, a2, d1, m1, m2, m3 )
 
if( nargin < 1 )
  d = struct('a1',0.1,'a2',0.1,'d1',0.05,'m1',1,'m2',1,'m3',1,'t1',0,'t2',0,'f3',0);
else
  d = struct('a1',a1,'a2',a2,'d1',d1,'m1',m1,'m2',m2,'m3',m3,'t1',0,'t2',0,'f3',0);
end

Then write the right-hand-side (RHS) function from the equations. You need to solve for the state 
derivatives   q q1 2 3, ,d , which you do with a left matrix divide. This is easily done in MATLAB with a backslash, 

which uses a QR, triangular, LDL, Cholesky, Hessenberg, or LU solver, as appropriate for the inputs. The 
function does not have a built-in demo, as this impacts performance in RHS functions, which are called 
repeatedly by integrators. Note the definition of the constant for gravity at the top of the file. The inertia 
matrix is returned as an additional output.
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%% RHSSCARA Right hand side of the SCARA robot arm equations.
%
%% Form
%  [xDot, i] = RHSSCARA( t, x, d )
%
%% Description
% Generates an acceleration vector given the current state, time, and data
% structure describing the SCARA robot's configuration.
%  function [xDot, i] = RHSSCARA( t, x, d )
%
%% Description
% Generates an acceleration vector.
%
%% Inputs
%  t         (1,1)  Time (s)
%  x         (6,:)  State vector [theta1;theta2;d3;omega1;omega2;v3]
%  d         (.)    SCARA data structure
%
%% Outputs
%  xDot      (6,:)  State derivative
%  i         (3,3)  Generalized inertia matrix
%
%% See also
% SCARADataStructure
 
function [xDot, i] = RHSSCARA( ~, x, d )
g   = 9.806;  % The acceleration of gravity (m/sˆ2)
 
c2  = cos(x(2));
s2  = sin(x(2));
 
theta1Dot = x(4);
theta2Dot = x(5);
 
% Inertia matrix
i       = zeros(3,3);
a1Sq    = d.a1ˆ2;
a2Sq    = d.a2ˆ2;
a12     = d.a1*d.a2;
m23     = 0.5*d.m2 + d.m3;
i(1,1)  = (d.m1/3 + d.m2 + d.m3)*a1Sq + 0.5*m23*a12*c2 + (d.m2/3 + d.m3)*a2Sq;
i(2,2)  = (d.m2/3 + d.m3)*a2Sq;
i(3,3)  = d.m3;
i(1,2)  = m23*a12*c2 + (d.m2/3 + d.m3);
i(2,1)  = i(1,2);
 
% Right hand side
u = [d.t1;d.t2;d.f3];
f = [−(d.m2 + 2*d.m3)*a12*s2*(theta1Dot*theta2Dot + 0.5*theta2Dotˆ2);...
      0.5*m23*a12*s2*theta1Dotˆ2;...
      −d.m3*g];
 
xDot = [x(4:6);i\(f − u)];
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7-2. Customize a Visualization Function for the Robot
Problem
You would like to be able to visualize the motion of the robot arm in three dimensions. 

Solution
You will write a function to draw a 3D SCARA robot arm. This will allow you to easily visualize what is 
happening with the robot arm.

How It Works
This function demonstrates the use of the low-level plotting functions patch and light. You create box 
and cylinder shapes for the components of the robot arm. This function also demonstrates how to produce 
MATLAB movies of the robot motion using getframe. The resulting visualization is shown in Figure 7-2.

Figure 7-2.  SCARA robot visualization using patch

This function’s first argument is an action. You define an initialization action to generate all the patch 
objects, which are stored in a persistent variable. Then, during the update action, you only need to update 
the patch vertices. The function has one output, which is movie frames from the animation. Note that the 
input x is vectorized, meaning you can pass a set of states to the function and not just one at a time. The 
following is the header of the function.
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%% DRAWSCARA Draw a SCARA robot arm.
%
%% Forms
%      DrawSCARA( 'initialize', d )
%  m = DrawSCARA( 'update', x )
%
%% Description
% Draws a SCARA robot using patch objects. A persistent variable is used to
% store the graphics handles in between update calls.
%
% The SCARA acronym stands for Selective Compliance Assembly Robot Arm
% or Selective Compliance Articulated Robot Arm.
%
% Type DrawSCARA for a demo.
%
%% Inputs
%  action  (1,:) Action string
%  x       (3,:) [theta1;theta2;d3]
%    or
%  d       (1,1) Data structure for dimensions
%                 .a1 (1,1) Link arm 1 joint to joint
%                 .a2 (1,1) Link arm 2 joint to joint
%                 .d1 (1,1) Height of link 1 and link2
%
%% Outputs
%  m       (1,:) If there is an output it makes a movie using getframe

Next, show the body of the main function. Note that the function has a built-in demo demonstrating a 
vector input with 100 states. The function initializes itself with default data if the data structure d is omitted.

function m = DrawSCARA( action, x )
 
persistent p
 
% Demo
%−−−−−
if( nargin < 1 )
  DrawSCARA( 'initialize' );
  t       = linspace(0,100);
  omega1  = 0.1;
  omega2  = 0.2;
  omega3  = 0.3;
  x       = [sin(omega1*t);sin(omega2*t);0.01*sin(omega3*t)];
  m       = DrawSCARA( 'update', x );
  if( nargout < 1 )
    clear m;
  end
  return
end
switch( lower(action) )
  case 'initialize'
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    if( nargin < 2 )
      d = SCARADataStructure;
    else
      d = x;
    end
 
    p = Initialize( d );
 
  case 'update'
    if( nargout == 1 )
      m = Update( p, x );
    else
      Update( p, x );
    end
end

Note that subfunctions were used for the Initialize and Update actions. This keeps the switch 
statement clean and easy to read. In the Initialize function, you define additional parameters for creating 
the box and cylinder objects you use to visualize the entire robot arm. Then you use patch to create the 
graphics objects, using parameter pairs instead of the (x,y,z) input. Specifying the unique vertices this 
way can reduce the size of the data needed to define the patch, and it is simple conceptually. See the 
“Introduction to Patch Objects” and the “Specifying Patch Object Shapes” sections of MATLAB help for more 
information. The handles are stored in the persistent variable p.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%   Initialize the picture. The robot is defined using these parameters:
%       .b  (1,3) Box dimensions [x y z] See Box
%       .l1 (1,5) Link arm 1 dimensions [x y z t d] See UChannel
%       .l2 (1,3) Link arm 2 dimensions [x y z] See Box
%       .c1 (1,2) Cylinder 1 [r l]
%       .c2 (1,2) Cylinder 2 [r l]
%       .c3 (1,2) Cylinder 3 [r l]
%       .c4 (1,2) Cylinder 4 [r l]
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function p = Initialize( d )
 
p.fig = figure( 'name','SCARA' );
 
% Create parts
c = [0.5 0.5 0.5]; % Color
r = [1.0 0.0 0.0];
 
% Store for use in updating
p.a1 = d.a1;
p.a2 = d.a2;
 
% Physical parameters for drawing
d.b  = [1 1 1]*d.d1/2;
d.l1 = [0.12 0.02 0.02 0.005 0.03]*10*d.a1;
d.l2 = [0.12 0.02 0.01]*10*d.a2;
d.c1 = [0.1 0.4]*d.a1;
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d.c2 = [0.06 0.3]*d.a1;
d.c3 = [0.06 0.5]*d.a2;
d.c4 = [0.05 0.6]*d.a2;
 
% Base
[vB, fB] = Box( d.b(1), d.b(2), d.b(3) );
[vC, fC] = Cylinder( d.c1(1), d.c1(2) );
F        = [fB;fC+size(vB,1)];
vB(:,3)  = vB(:,3) + d.b(3)/2;
vC(:,3)  = vC(:,3) + d.b(3);
v        = [vB;vC];
p.base   = patch('vertices', v, 'faces', f,...
                 'facecolor', c, 'edgecolor', c,...
                 'facelighting', 'phong' );
 
% Link 1
 
% Arm
[vA, fA]    = UChannel( d.l1(1), d.l1(2), d.l1(3), d.l1(4), d.l1(5) );
vA(:,3)     = vA(:,3) + d.d1;
vA(:,1)     = vA(:,1) − d.b(1)/2;
 
% Pin
[vC, fC]    = Cylinder( d.c2(1), d.c2(2) );
vC(:,3)     = vC(:,3) + d.d1 − d.c2(2)/2;
vC(:,1)     = vC(:,1) + d.a1 − d.c2(1);
p.v1        = [vC;vA];
f           = [fC;fA+size(vC,1)];
p.link1     = patch('vertices', p.v1, 'faces', f,...
                    'facecolor', r, 'edgecolor', r,...
                    'facelighting', 'phong' );
% Find the limit for the axes
zLim        = max(vC(:,3));
 
% Link 2
[vB, fB]    = Box(d.l2(1), d.l2(2), d.l2(3) );
[vC, fC]    = Cylinder( d.c3(1), d.c3(2) );
vC(:,1)     = vC(:,1) + d.l2(1)/2 − 2*d.c3(1);
vC(:,3)     = vC(:,3) − d.c3(2)/2;
p.v2        = [vC;vB];
p.v2(:,1)   = p.v2(:,1) + d.l2(1)/2 − 2*d.c3(1);
p.v2(:,3)   = p.v2(:,3) + d.d1;
f           = [fC;fB+size(vC,1)];
v2          = p.v2;
v2(:,1)     = v2(:,1) + d.a1;
p.link2     = patch('vertices', v2, 'faces', f,...
                    'facecolor', r, 'edgecolor', r,...
                    'facelighting', 'phong' );
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% Link 3
[vC, fC]    = Cylinder( d.c4(1), d.c4(2) );
p.v3        = vC;
p.r3        = d.l2(1) − 4*d.c3(1);
p.v3(:,3)   = p.v3(:,3) + d.d1/4;
vC(:,1)     = vC(:,1) + p.r3 + d.a1;
f           = fC;
p.link3     = patch('vertices', vC, 'faces', f,...
                    'facecolor', c, 'edgecolor', c,...
                    'facelighting', 'phong' );
 
xLim        = 1.3*(d.a1+d.a2);
xlabel('x');
ylabel('y');
zlabel('z');
grid on
rotate3d on
axis([−xLim xLim − xLim xLim 0 zLim])
set(gca,'DataAspectRatio',[1 1 1],'DataAspectRatioMode','manual')
s = 10*max(Mag(v'));
light('position',s*[1 1 1])
view([1 1 1])

The Update function updates the vertices for each patch object. The nominal vertices are stored in the 
persistent variable p and are rotated using a transformation matrix calculated from the sine and cosine of the 
link angles. If there is an output argument, the function uses getframe to grab the figure as a movie frame.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Update the picture and get the frame if requested
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function m = Update( p, x )
 
for k = 1:size(x,2)
 
  % Link 1
  c       = cos(x(1,k));
  s       = sin(x(1,k));
  b1      = [c − s 0;s c 0;0 0 1];
  v       = (b1*p.v1')';
  set(p.link1,'vertices',v);
 
  % Link 2
  r2      = b1*[p.a1;0;0];
  c       = cos(x(2,k));
  s       = sin(x(2,k));
  b2      = [c − s 0;s c 0;0 0 1];
  v       = (b2*b1*p.v2')';
  v(:,1)  = v(:,1) + r2(1);
  v(:,2)  = v(:,2) + r2(2);
  set(p.link2,'vertices',v);
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  % Link 3
  r3      = b2*b1*[p.r3;0;0] + r2;
  v       = p.v3;
  v(:,1)  = v(:,1) + r3(1);
  v(:,2)  = v(:,2) + r3(2);
  v(:,3)  = v(:,3) + x(3,k);
  set(p.link3,'vertices',v);
 
  if( nargout > 0 )
    m(k) = getframe(p.fig);
  else
    drawnow;
  end
 
end

The subfunctions Box, Cylinder, and UChannel create the vertices and faces for each type of 3D object. 
Faces are defined using indices of the vertices; in this case, triangles. The Box function is shown here to 
demonstrate how the vertices and faces matrices are created.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%   Inputs
%   −−−−−−
%   Box
%   x           (1,1)  x length
%   y           (1,1)  y length
%   z           (1,1)  z length
%
%   Outputs
%   −−−−−−−
%   v           (:,3) Vertices
%   f           (:,3) Faces
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [v, f] = Box( x, y, z )
 
f   = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7 8];
x   = x/2;
y   = y/2;
z   = z/2;
 
v = [−x  x  x −x −x  x  x −x;...
     −y −y  y  y −y −y  y  y;...
     −z −z −z −z  z  z  z  z]';

7-3. Using Numerical Search for Robot Inverse Kinematics
Problem
The goal of the robot controller is to place the end effector at a desired position. You need to know the link 
states corresponding to this position. 
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Solution
You will use a numerical solver to compute the robot states. The MATLAB solver is fminsearch, which 
implements a Nelder − Mead minimizer.

How It Works
The goal of our control system is to position the end effector and a desired position[x,y,z]. z is determined by 
d

1
−d

3
 from Figure 7-1 in Recipe 7-1. x and y are found from the two angles, a

1
 and a

2
. The position vector for 

the arm end effector is
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While these equations don’t seem complicated, they can’t be used to solve for x and y directly. First of 
all, if a

2
 is less than a

1
 there will be a region around the origin that cannot be reached. In addition, there may 

be more than one solution for each x, y pair.
You use this equation for the position to create a cost function that can be passed to fminsearch. This 

computes the state, which results in the desired position. The resulting function demonstrates a nested 
cost function, a built-in demo, and a default plot output. Note that you use a data structure as returned by 
optimset to pass parameters to fminsearch.

%% SCARAIK Generate SCARA states for desired end effector position and angle.
%
%% Form:
%  x = SCARAIK( r, d )
%
%% Description
% Uses fminsearch to find the link states given the effector location. The
% cost function is embedded. Type SCARAIK for a demo which creates a plot
% and a video.
%
%% Inputs
%  r           (3,:) End effector position [x;y;z]
%  d            (.)  Robot data structure
%                     .a1 (1,1) Link 1 length
%                     .a2 (1,1) Link 2 length
%                     .d1 (1,1) Distance of link 1 from ground
%
%% Outputs
%  x           (3,:) SCARA states [theta1;theta2;d3]
 
function x = SCARAIK( r, d )
 
% Demo
%-----
if( nargin < 1 )
  r = [linspace(0,0.2);zeros(2,100)];
  d = SCARADataStructure;
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  SCARAIK( r, d );
  return;
end
 
n = size(r,2);
xY = zeros(2,n);
 
TolX        = 1e − 5;
TolFun      = 1e − 9;
MaxFunEvals = 1500;
Options = optimset('TolX',TolX,'TolFun',TolFun,'MaxFunEvals',MaxFunEvals);
 
x0 = [0;0];
for k = 1:n
  d.xT    = r(1:2,k);
  xY(:,k) = fminsearch(@Cost, x0, Options, d );
  x0      = xY(:,k);
end
 
x = [xY;d.d1 − r(3,:)];
 
% Default output is to create a plot
%-----------------------------------
if( nargout == 0 )
  DrawSCARA( 'initialize', d );
  m = DrawSCARA( 'update', x );
  vidObj = VideoWriter('SCARAIK.avi');
  open(vidObj);
  writeVideo(vidObj,m);
end
 
%--------------------------------------------------------------------------
%  Cost function
%  The cost is the difference between the position as computed from the
%  states and the target position xT.
%--------------------------------------------------------------------------
function y = Cost( x, d )
 
xE = d.a1*cos(x(1)) + d.a2*cos(x(1)+x(2));
yE = d.a1*sin(x(1)) + d.a2*sin(x(1)+x(2));
y  = sqrt((xE-d.xT(1))ˆ2+(yE-d.xT(2))ˆ2);

The function creates a video using a VideoWriter object and the frame data returned by DrawSCARA. 
Before VideoWriter was introduced, this could be done with movie2avi.
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7-4. Developing a Control System for the Robot
Problem
Robot arm control is a critical technology in robotics. You need to be able to smoothly and reliably change 
the location of the end effector. The speed of the control determines the number of operations that you can 
do in a given amount of time, thus determining the productivity of the robot.

Solution
This problem is solved using the inverse kinematics function discussed earlier, and then feed the desired 
angles into two PD controllers, as developed in Chapter 6.

How It Works
Apply the PD controller described in Chapter 6 using the c array as the desired angle and position vector. You 
compute control accelerations, not torques, and then multiply by the inertia matrix to get control torques,

	 T Ia= 	 (7.8)

where T is the control torque, I is the inertia matrix, and a is the computed control acceleration. You need 
to do this because there are cross-coupling terms in the inertia matrix, and I

11
 changes as the position of the 

outer arm changes. You neglect the nonlinear terms in the equations of motion. These terms are functions 
of the angles and the angular rates. If you move slowly, this should not pose a problem. If you move quickly, 
you could feedforward the nonlinear torques and cancel them.

The first step is to specify a desired position for the end effector and use the inverse kinematics function 
to compute the target states corresponding to this location.

% Pick the location to place the end effector, [x;y;z]
r = [4;2;0];
 
% Find the two angles for the joints
setPoint = SCARAIK( r, d );

Next is the code that designs the controllers, one for each joint, using PDControl. Note that identical 
parameters are used for both controllers. Set the damping ratio, zeta, to 1.0 to avoid overshoot. Recall that 
wN, the undamped natural frequency, is the bandwidth of the controller; the higher this frequency, the faster 
the response. wD, the derivative term filter cutoff, is set to 5–10 times wN, so that filter doesn’t cause lag below 
wN. The dT variable is the timestep of the simulation.

%% Control Design
% We will use two PD controllers, one for each rotational joint.
 
% Controller parameters
dC1        = PDControl( 'struct' );
dC1.zeta   = 1.0;
dC1.wN     = 0.6;
dC1.wD     = 60.0;
dC1.tSamp  = dT;
dC2        = dC1;
 

http://dx.doi.org/10.1007/978-1-4842-0559-4_6
http://dx.doi.org/10.1007/978-1-4842-0559-4_6
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% Create the two controllers
dC1       = PDControl( 'initialize', dC1 );
dC2       = PDControl( 'initialize', dC2 );

This is the portion that computes and applies the control. You eliminate the inertia coupling by 
computing joint accelerations and multiplying by the inertia matrix, which is computed each time step, to 
get the desired control torques. Note that you use the feature of the RHS that computes the inertia matrix 
from the current state.

[acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
[acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
torque          = inertia(1:2,1:2)*acc;

You can run these lines at the command line to see what the acceleration and torque magnitude looks like 
for an example robot. Note that, assuming MKS units, you have links of 1 meter in length and masses of 1 kg.

>> dC1         = PDControl( 'struct' );
>> dC1.zeta    = 1.0;
>> dC1.wN      = 0.6;
>> dC1.wD      = 60.0;
>> dC1.tSamp   = 0.025;
>> dC2         = dC1;
>> dC1         = PDControl( 'initialize', dC1 );
>> dC2         = PDControl( 'initialize', dC2 );
>> d = SCARADataStructure(1,1,1,1,1,1);
>> x = zeros(6,1);
>> [˜,inertia] = RHSSCARA( 0, x, d );
>> inertia
inertia =
 
      4.4167       2.8333            0
      2.8333       1.3333            0
           0            0            1
 
>> thetaError = [0.1;0.1];
>> [acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
>> [acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
>> acc
acc =
 
      -7.236
      -7.236
 
>> torque = inertia(1:2,1:2)*acc
torque =
     -52.461
      -30.15
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7-5. Simulating the Controlled Robot
Problem
You want to test the robot arm under control. The input will be the desired xy coordinates of the end effector. 

Solution
The solution is to build a MATLAB script in which you design the PD controller matrices as you did earlier, 
and then simulate the controller in a loop, applying the calculated torques until the states match the desired 
angles. You will not control the vertical position of the end effector in this recipe.

How It Works
This is a discrete simulation, with a fixed-time step and the control torque calculated separately from the 
dynamics. The simulation runs in a loop, calling first the controller code from Recipe 7-4 and the right-hand 
side from the fourth-order Runge-Kutta function. When the simulation ends, the angles and angle errors are 
plotted and a 3D animation is displayed. You could plot more variables, but all the essential information is in 
the angles and errors.

With a very small time step of 0.025 seconds, you could have increased the bandwidth of the 
controller to speed the response. Remember that the cutoff frequency of the filter must also be below 
the Nyquist frequency. Any signals above the Nyquist Frequency will be observed at an alias of their true 
frequency, not their true frequency.

Notice that you do not handle large angle errors; that is, errors greater than 2p. In addition, if the desired 
angle is 2p − e and the current position is 2p + e, it will not necessarily go the shortest way. This can be 
handled by adding code that computes the smallest error between two points on the unit circle. The reader 
can add code for this to make the controller more robust.

The script SCARARobotSim.m follows, skipping the control design lines from Recipe 7-4. First, you 
initialize the simulation data, including the time parameters and the robot geometry. You initialize the 
plotting arrays using zeros before entering the simulation loop. There is a control flag that allows the 
simulation to be run open loop or closed loop. The integration occurs in the last line of the loop.

%% Initialize
% Specify the time, robot geometry and the control target.
 
% Simulation time settings
tEnd        = 20.0;     % sec
dT          = 0.025;
nSim        = tEnd/dT+1;
controlIsOn = true;
 
% Robot parameters
d = SCARADataStructure(3,2,1,4,6,1);
 
% Set the initial arm states
x0    = zeros(6,1);
%x0(5) = 0.05;
 
% Pick the location to place the end effector, [x;y;z]
r = [4;2;0];
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% Find the two angles for the joints
setPoint = SCARAIK( r, d );
 
%% Simulation
% The simulation can be run with or without control, i.e. closed or open
% loop.
x       = x0;
xPlot   = zeros(4,nSim);
tqPlot  = zeros(2,nSim);
inrPlot = zeros(2,nSim);
 
for k = 1:nSim
  % Control error
  thetaError  = setPoint(1:2) - x(1:2);
  [˜,inertia] = RHSSCARA( 0, x, d );
  acc         = zeros(2,1);
 
  % Apply the control
  if( controlIsOn )
    [acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
    [acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
    torque          = inertia(1:2,1:2)*acc;
  else
    torque = zeros(2,1);
  end
  d.t1 = torque(1);
  d.t2 = torque(2);
 
  % Plotting array
  xPlot(:,k)   = [x(1:2);thetaError];
  tqPlot(:,k)  = torque;
  inrPlot(:,k) = [inertia(1,1);inertia(2,2)];
 
  % Enter the motor torques into the dynamics model
  x = RungeKutta( @RHSSCARA, 0, x, dT, d );
end
 
%% Plot the results
% Plot a time history and perform an animation.
% Plot labels
yL = {'\theta_1(rad)' '\theta_2(rad)' 'Error\theta_1(rad)' 'Error\theta_2(rad)'};
    
% Time histories
[t,tL] = TimeLabel(dT*(0:(nSim-1)));
PlotSet( t, xPlot, 'ylabel', yL, 'xlabel', tL );
PlotSet( t, tqPlot, 'ylabel', {'T_x','T_y'}, 'xlabel', tL );
PlotSet( t, inrPlot, 'ylabel', {'I_{11}','I_{22}'}, 'xlabel', tL );
 
% Animation
DrawSCARA( 'initialize', d );
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Figure 7-3 shows the transient response of the two joints. Both converge to their set points, but look 
different than the double integrator response that you saw in the previous chapter. This system is nonlinear 
due to the coupling between the links. For instance, in a double integrator, you would expect no overshoot 
of the target angle for a damping ratio of 1.0. However, you do see some in the second subplot, of q

2
, and 

otherwise the shape is similar to a double integrator response. You see that q
1
, in contrast, reverses direction 

as it reacts to the motion of the outer joint; after about 2 seconds, when the q
2
 has peaked, q

1
 also resembles 

a double integrator. Keep in mind that the two controllers are independent and are working at cross-
purposes in some ways.

Figure 7-3.  SCARA robot angles showing the transient response

Figure 7-4 shows the resulting inertia components. I
11

 was expected to change and I
22

 to remain 
constant, which is, in fact, the case.
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After the simulation is done, the script runs an animation of the arm motion. Both 2D plots and the  
3D animation are needed to debug the controller and for production runs.

The same script could be extended to show a sequence of commands to the arm.

Summary
This chapter demonstrated how to write the dynamics and implement a simple control law for a two-link 
manipulator, the SCARA robot. You implemented coupled nonlinear equations in the right-hand side with 
the simple controller developed in the previous chapter. The format of the simulation was very similar to the 
double integrator. There are more sophisticated ways to perform this control, which would take into account 
the coupling between the links and which could be added to this framework. You did not implement any 
constraints on the motion or the control torque.

The chapter also demonstrated how to generate 3D graphics using the MATLAB graphics engine and 
how to make a movie. A movie is a good way to transmit your results to people and to debug your program. 
Table 7-1 lists the code developed in this chapter.

Table 7-1.  Chapter Code Listing

File Description

DrawSCARA Draw a SCARA robot arm.

RHSSCARA Right-hand side of the SCARA robot arm equations.

SCARADataStructure Initialize the data structure for all SCARA functions.

SCARAIK Generate SCARA states for the desired end effector position and angle.

SCARARobotSim SCARA robot demo.

Figure 7-4.  SCARA robot inertia as the arm moves
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Chapter 8

Electric Motors

You will model a three-phase permanent magnet motor driven by a direct current (DC) power source. There 
are three coils on the stator and permanent magnets on the rotor. This type of motor is driven by a DC power 
source with six semiconductor switches that are connected to the three coils, known as the A, B and C coils. 
Two or more coils can be used to drive a brushless DC motor, but three coils are particularly easy to implement. 
This type of motor is used in most industrial applications today, including electric cars and robotics. It is 
sometimes called a brushless DC motor (BLDC) or a Permanent Magnet Synchronous Motor (PMSM).

Pulsewidth modulation is used for the switching because it is efficient; the switches are off when not 
needed. Coding the model for the motor and the pulsewidth modulation is relatively straightforward. In the 
simulation, we demonstrate using two timesteps: one for the simulation to handle the pulsewidths and one 
for the outer control loop. The simulation script will have multiple control flags to allow for debugging this 
complex system.

8-1. Modeling a Three-Phase Brushless Permanent  
Magnet Motor
Problem
You want to model a three-phase permanent magnet synchronous motor in a form that is suitable for control 
system design. A conceptual drawing is shown in Figure 8-1. The motor has three stator windings and one 
permanent magnet on the rotor. The magnet has two poles or one pole pair. The coordinate axes are the 
a, b, and c on the stator; one axis out the center of each coil following the right-hand rule, and the (d,q) 
coordinates fixed to the magnet in the rotating frame. In motor applications, the axes represent currents or 
voltages, not positions like in mechanical engineering.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_8) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_8
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Solution
The solution is to model a motor with three stator coils and permanent magnets on the rotor. You have to 
model the coil currents and the physical state of the rotor.

How It Works
Permanent-magnet synchronous motors use two or more windings in the stator and permanent magnets 
in the rotor. The rotor can have any even number of magnet poles. The phasing of the currents in the stator 
coils must be synchronized with the position of the rotor. Define the inductance matrix L1:
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Figure 8-1.  Motor diagram showing the three phase coils a, b, and c on the stator and the two pole magnet 
(N,S) on the rotor. The × means the current is going into the paper, the dot means it is coming out of the paper

1Lyshevski, S. E. Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC Press, 2000,  
pp. 589–627.
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where

	 d L L L Lss ss m m= - -2 2 2 	 (8.2)

L
m

 is the mutual inductance of the phase windings and L
ss

 is the self-inductance. The phase current 
array, i, is
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where i
a
 is the phase A stator winding current; i

b
 is the phase B current; and so forth. The phase voltages,  

u, are

	

u

u

u

u

a

b

c

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú 	

(8.4)

where u
a
 is the phase A stator winding voltage. The dynamical equations are
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where w is the rotor angular rate and q is the rotor angle; p is the number of rotor poles; b is the viscous 
damping coefficient; r

s
 is the stator resistance; y is the magnet flux; T

L
 is the load torque; and J is the rotor 

inertia. i and u are the phase winding three vectors that are shown and L is the 3 × 3 inductance matrix, 
also shown. Equation 8.5 is actually five equations in matrix form. The first three equations, for the current 
array i, are the electrical dynamics. The last two, for w

e
 and q

e
, are the mechanical dynamics represented in 

electrical coordinates.
The driver circuitry is shown in Figure 8-2. It has six semiconductor switches. In this model, they are 

considered ideal, meaning they can switch instantaneously at any frequency you desire. In practice, switches 
have a maximum switching speed and have some transient response. Note that the motor is Y connected, 
meaning that the ends of the three phase windings are tied together.
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The right-hand-side code is shown next. The first output is the state derivative, as needed for 
integration. The second output is the electrical torque needed for the control. The first block of code defines 
the motor model data structure with the parameters needed by the dynamics equation. This structure can 
be retrieved by calling the function with no inputs. The remaining code implements equation 8.5. Note the 
suffix M used for w and q to reinforce that these are mechanical quantities; this distinguishes them from the 
electrical quantities, which are related by p/2, where p is the number of poles. Use of M and E subscripts is 
typical when writing software for motors.

%% RHSPMMACHINE Permanent magnet machine model in ABC coordinates.
% Assumes a 3 phase machine in a Y connection. The permanent magnet flux
% distribution is assumed sinusoidal.
%% Forms
%   d = RHSPMMachine
%   [xDot,tE] = RHSPMMachine( ˜, x, d )
%
%% Inputs
%   t   (1,1)    Time, unused
%   x   (5,1)    The state vector [iA;iB;iC;omegaE;thetaE]
%   d    (.)     Data structure
%                    .lM    (1,1)  Mutual inductance
%                    .psiM  (1,1)  Permanent magnet flux
%                    .lSS   (1,1)  Stator self inductance
%                    .rS    (1,1)  Stator resistance
%                    .p     (1,1)  Number of poles (1/2 pole pairs)
%                    .u     (3,1)  [uA;uB;uC]

SVPWM

Semiconductor Switches

u

u c

u a
u b

ib

ic

ia

Y Connected Motor

a

a'

b

b'

c

c'

Figure 8-2.  Motor three-phase driver circuitry. The semiconductor switches shown in the diagram are IGBT 
(integrated gate bipolar transistors). The pulsewidth modulation block, SVPWM, is discussed in Recipe 8-3
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%                    .tL    (1,1)  Load torque
%                    .bM    (1,1)  Viscous damping (Nm/rad/s)
%                    .j     (1,1)  Inertia
%                    .u     (3,1)  Phase voltages [uA;uB;uC]
%
%% Outputs
%   x    (5,1)    The state vector derivative
%   tE   (1,1)    Electrical torque
%
%% Reference
% Lyshevski, S. E., "Electromechanical Systems, Electric Machines, and
% Applied Mechatronics," CRC Press, 2000.
 
function [xDot, tE] = RHSPMMachine( ˜, x, d )
 
if( nargin == 0 )
  xDot = struct('lM',0.0009,'psiM',0.069, 'lSS',0.0011,'rS',0.5,'p',2,...
                'bM',0.000015,'j',0.000017,'tL',0,'u',[0;0;0]);
  return
end
 
% Pole pairs
pP = d.p/2;
 
% States
i       = x(1:3);
omegaE  = x(4);
thetaE  = x(5);
 
% Inductance matrix
denom = 2*d.lSSˆ2 - d.lSS*d.lM - d.lMˆ2;
l2    = d.lM;
l1    = 2*d.lSS - l2;
l     = [l1 l2 l2;l2 l1 l2;l2 l2 l1]/denom;
 
% Right hand side
tP3      = 2*pi/3;
c        = cos(thetaE + [0;-tP3;tP3]);
iDot     = l*(d.u - d.psiM*omegaE*c - d.rS*i);
tE       = pPˆ2*d.psiM*i'*c;
omegaDot = (tE - d.bM*omegaE - pP*d.tL)/d.j;
xDot     = [iDot;omegaDot;omegaE];

8-2. Controlling the Motor
Problem
You want to control the motor to produce a desired torque. Specifically, you need to compute the voltages to 
apply to the stator coils. 
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Solution
You will use field-oriented control (FOC) with a proportional integral controller to control the motor. FOC 
is a control method where the stator currents are transformed into two orthogonal components. One 
component defines the magnetic flux of the motor and the other defines the torque. The control voltages 
calculated are implemented using pulsewidth modulation of the semiconductor switches, as developed in 
the previous recipe.

How It Works
The motor controller is shown in Figure 8-3. This implements field-oriented control. FOC effectively turns 
the brushless three-phase motor into a commutated DC motor.

,   d,q

Inverse Park

3 Phase 
Inverter

AC Motor

a b c

ia

ib

Angle 
Sensor

PI

PI

u q

u d

id

iq

idRef

iqRef

a
b
c
a'
b'
c'

SVPWM
,d, q 

Park

u

u

a, b ,

Clarke

i

i

Figure 8-3.  Motor controller. PI is proportional integral controller. PWM is pulsewidth modulation. There are 
two current sensors measuring i

a
 and i

b
 and one angle sensor measuring q

There are three electrical frames of reference in this problem. The first is the (a,b,c) frame, which is 
the frame of the three-phase stator shown in Figure 8-1. This is a time-varying frame. Next, you want to 
transform it into a two-axis time-varying frame, the (a,b) frame, and then into a two-axis time invariant 
frame, the (d,q) frame, which is also known as the direct and quadrature axis, and is fixed to the permanent 
magnet. In our frames, each axis is a current. With a Y connected motor, the sum of the currents is zero, so 
you only need to work with two currents, i

a
 and i

b
.

	 0 = + +i i ia b c 	 (8.6)
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The (d,q) to (a,b) transformation is known as the Forward Park transformation:
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This transforms from the stationary (d,q) frame to the rotating (a, b) frame. q
e
 is in electrical axes  

and equals 1

2
p Mq  where p is the number of magnet poles. The Forward Clarke transformation for a Y 

connected motor is
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These two transformations are implemented in the functions ClarkeTransformationMatrix and 
ParkTransformationMatrix. They allow you to go from the time-varying (a,b,c) frame to the time-invariant, 
but rotating, (d,q) frame.

The equations for a general permanent magnet machine in the direct-quadrature frame are

	
u r i L i

dL i

dtq s q e d d
q q= + +( ) +w y 	 (8.9)

	
u r i L i

d L i

dtd s d e q q
d d= - +

+( )
w

y
	 (8.10)

where u are the voltages and i are the currents; r
s
 is the stator resistance; L

q
 and L

d
 are the d and q phase 

inductances; w
e
 is the electrical angular rate; and y  is the flux due to the permanent magnets. The electrical 

torque produced is

	
T p L i i L i ie d d q q q d= +( ) -( )3

2
y 	 (8.11)

where p is the number of pole pairs.
The torque equation is

	
T T b J

d

dte L m
m= + +w w

	 (8.12)

where b is the mechanical damping coefficient, J is the inertia, and the relationship between mechanical and 
electrical angular rate is

	 w we mp= 	 (8.13)
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In a magnet surface mount machine with coils in slots, L
d
 = L

q
 º L, and y  and the inductances are not 

functions of time. The equations simplify to

	
u r i Li L

di

dtq s q e d e
q= + + +w w y 	 (8.14)

	
u r i Li L

di

dtd s d e q
d= - +w 	 (8.15)

You control direct current i
d
 to zero. If i

d
 is zero, control is linear in i

q
. The torque is now

	
T p ie q=

3

2
y 	 (8.16)

Thus the torque is a function of the quadrature current i
q
 only. You can therefore control the electrical 

torque by controlling the quadrature current. The quadrature current is, in turn, controlled by the direct and 
quadrature phase voltages. The desired current i

q
s can now be computed from the torque setpoint T

e
s.

	
i T pq
s

e
s= ( )2

3
/ y 	 (8.17)

You use a proportional integral controller to compute the (d,q) voltages. The proportional part of the 
control drives errors to zero. However, if there is a steady disturbance, there will be an offset. The integral part 
can drive an error due to such a steady disturbance to zero. A proportional integral controller is of the form
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where u is the control, y is the measurement, t is the integrator time constant, and K is the forward 
(proportional) gain. The control u will be the phase voltages and the measurement y is the current error in 
the (d,q) frame.
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You now write a function, TorqueControl, that calculates the control voltages, u
(a, b)

, given the current 
state x. The state vector is the same as Recipe 8-1; that is, current i in the (a,b,c) frame plus the angle states q 
and w. You use the Park and Clarke transformations to compute the current in the (d,q) frame. You can then 
implement the proportional-integral controller with Euler integration. The function uses its data structure as 
memory—the updated structure d is passed back as an output. TorqueControl is shown next.
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%% TORQUECONTROL Torque control of an AC machine
% Determines the quadrature current needed to produce a torque and uses a
% proportional integral controller to control the motor. We control the
% direct current to zero since we want to use just the magnet flux to react
% with the quadrature current. We could control the direct current to
% another value to implement field-weakening control but this would result
% in a nonlinear control system.
%% Forms
%   d = TorqueControl
%   [u, d, iAB] = TorqueControl( torqueSet, x, d )
%
%% Inputs
%   torqueSet  (1,1)    Set point torque
%   x          (5,1)    State [ia;ib;ic;omega;theta]
%   d          (.)      Control data structure
%                       .kF      (1,1) Forward gain
%                       .tauI    (1,1) Integral time constant
%                       .iDQInt  (2,1) Integral of current errors
%                       .dT      (1,1) Time step
%                       .psiM    (1,1) Magnetic flux
%                       .p       (1,1) Number of magnet poles
%
%%  Outputs
%   u        (2,1)      Control voltage [alpha;beta]
%   d        (.)        Control data structure
%   iAB      (2,1)      Steady state currents [alpha;beta]
%
 
function [u, d, iAB] = TorqueControl( torqueSet, x, d )
 
% Default data structure
if( nargin == 0 )
  u = struct('kF',0.003,'tauI',0.001, 'iDQInt',[0;0], 'dT', 0.01,...
             'psiM',0.0690,'p',2);
  return
end
 
% Clarke and Park transforms
thetaE = 0.5*d.p*x(5);
park   = ParkTransformationMatrix( thetaE );
iPark  = park';
clarke = ClarkeTransformationMatrix;
iDQ    = iPark*clarke*x(1:2);
 
% Set point to produce the desired torque [iD;iQ]
iDQSet = [0;(2/3)*torqueSet/(d.psiM*d.p)];
 
% Error
iDQErr = iDQ - iDQSet;
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% Integral term
d.iDQInt = d.iDQInt + d.dT*iDQErr;
 
% Control
uDQ = -d.kF*(iDQErr + d.iDQInt/d.tauI);
u   = park*uDQ;
 
% Steady state currents
if( nargout > 2 )
  iAB = park*iDQSet;
end

8-3. PulseWidth Modulation of the Switches
Problem
In the previous recipe, you calculated the control voltages to apply to the stator. Now you want to take those 
control voltages as an input and drive the switches via pulsewidth modulation. 

Solution
You will use space vector modulation to go from a rotating, two-dimensional (a, b) frame to the rotating 
three-dimensional (a,b,c) stator frame, which is more computationally efficient than modulating in (a,b,c) 
directly. 

How It Works
You will use space vector modulation to drive the switches for pulsewidth modulation.2 This goes from  
(a, b) coordinates to switch states (a,b,c). Each node of each phase is either connected to ground or to +u. 
These values are shown in Figure 8-4. The six spokes in the diagram, as well as the origin, correspond to the 
eight discrete switch states.

2Analog Devices, “Implementing Space Vector Modulation with the ADMCF32X,” ANF32X-17, January 2000.
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Table 8-1 delineates each of these eight discrete switch states, the corresponding vector in the (a, b)  
coordinates, and the resulting voltages. Note that the O vectors are at the origin of the space vector modulation, 
while the U vectors are at 60-degree increments. The states are indexed from 0 to 7, with 0 being all open 
states and 7 being all closed.

u 0

u 60 u 120

u 180

u 240 u 300

[2/ 3,0]

[1/ 3,1]

[1/ 3,-1]

[-2/ 3,0]

I

II

III

IV

V

VI

[ , ]

[-1/ 3,1]

[-1/ 3,-1]

(010)

(011)

(001) (101)

(100)

(110)

(abc)

O 000

O 111
(111)

(000)

Figure 8-4.  Space vector modulation in (a, b) coordinates. You determine which sector (in Roman numerals) 
you are in and then pick the appropriate vectors to apply so that they, on average, attain the desired voltage. 
The numbers in brackets are the normalized [a, b] voltages
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Table 8-1.  Space vector modulation. In the vector names, O means open and U means a voltage is applied, 
while the subscripts denote the angle in the a-b plane. The switch states are a, b, c, as shown in Figure 8-2, 
where 1 means a switch is closed and 0 means it is open

k abc Vector ua / u ub / u uc / u uab / u ubc / u uac / u

0 000 O
000

0 0 0 0 0 0

1 110 U
60

2/3 1/3 −1/3 1 0 −1

2 010 U
120

1/3 1/3 −2/3 0 1 −1

3 011 U
180

−1/3 2/3 −1/3 −1 1 0

4 001 U
240

−2/3 1/3 1/3 −1 0 1

5 101 U
300

−1/3 −1/3 2/3 0 −1 1

6 100 U
360

1/3 −2/3 1/3 1 −1 0

7 111 O
111

0 0 0 0 0 0

In order to produce the desired torque, you must use a combination of the vectors or switch states so 
that you achieve the desired voltage on average. You select the two vectors, O or U, bracketing the desired 
angle in the (a, b) plane; these are designated k and k + 1, where k refers to the number of the vector in 
Table 8-1. You must then calculate the amount of time to spend in each switch state, for each pulsewidth 
period. The durations of these two segments, T

k
 and T

k + 1
, are found from this equation,
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(8.21)

The corresponding (a,b,c) switch patterns are each used for the calculated time, averaging to the 
designated voltage.

The time spent in each pattern, T
k
 or T

k + 1
 is then split into two equal portions so that the total pulse 

pattern is symmetric. The zero time T
0
, when no switching is required, is split evenly between the endpoints 

and the middle of the pulse T
s
 − so that the time in the middle pattern (O

111
) is twice the time in each end 

pattern (O
000

). This results in a total of seven segments, depicted in Figure 8-5. The total middle time is 
designated T

7
.

	
T T T Ts k k0 1

1

4
= - +( )( )+ 	 (8.22)
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The implementation of the pulse segments is slightly different for the even and odd sectors in Figure 8-4. 
Both are symmetric about the midpoint of the pulse as described, but you reverse the implementation of patterns 
k and k + 1. This is shown for the resulting voltages u in the following equations. You use the first in even sectors 
and the second in odd sectors.

	
u u u u u u uk k k k0 1 7 1 0+ +[ ] 	 (8.23)

and

	
u u u u u u uk k k k0 1 7 1 0+ +[ ] 	 (8.24)

Using the different patterns for odd and even vectors minimizes the number of commutations per cycle.
You determine the sector from the angle Q formed by the commanded voltages ua and ub.

	
Q = atan

u

u
b

a 	
(8.25)

The pulsewidth modulation routine, SVPWM, does not actually compute an arctangent. Rather it looks 
at the unit ua and ub vectors and determines first their quadrant and then their sector without any need for 
trigonometric operations.

The first section of SVPWM implements the timing for the pulses. Just as in the previous recipe for the 
controller, the function uses its data structure as memory—the updated structure is passed back as an 
output. This is an alternative to persistent variables. 

Figure 8-5.  Pulse Period Segments. Each pulse period T
s
 is divided into seven segments so that the two 

switching patterns, k and k + 1, are applied symmetrically
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%% SVPWM Implement space vector pulsewidth modulation.
% Space vector pulsewidth modulation takes the alpha and beta voltage
% components and enables the switches on a 6 switch inverter to drive a
% 3 phase AC motor. The data structure serves as the function memory.
% Memory variables are marked.
%
% The modulation has seven pulse subperiods each pulse period. These
% are arrange symmetrically about the center of the pulse. A zero
% pulse is at the beginning, middle and end. The order of the active
% pulses (for the two active space vectors) is ordered differently for
% even and odd sectors in the alpha-beta plane. This minimizes switches.
%
% Type SVPWM for a demo using a sine wave input.
%
%% Forms
%   d = SVPWM
%   [s, d] = SVPWM( t, d )
%
%% Inputs
%   t   (1,1) Time
%   d   (.)   Data structure
%             .dT         (1,1) Simulation time step (input)
%             .tLast      (1,1) Time of last pulse (memory)
%             .tUpdate    (1,1) Update period for new pulses (input)
%             .u          (2,1) Voltage vector [alpha;beta] (input) (V)
%             .uM         (1,1) Maximum voltage (parameter) (V)
%             .tP         (1,7) Time for each pulse segment (output)
%             .sP         (3,7) [a;b;c] for each pulse segment (output)
%
%% Outputs
%   s   (3,1) Switch states (1 or 0)
%   d   (.)   Updated data structure
%
%% Reference
% Implementing Space Vector Modulation with the ADMCF32X, ANF32X-17,
% Analog Devices, January 2000.
%% See also
% SVPWM>Demo
 
function [s, d] = SVPWM( t, d )
 
% Default data structure
if( nargin < 1 && nargout == 1 )
  s = struct( 'dT',1e-6,'tLast',-0.0001,'tUpdate',0.001,'u',[0;0],...
              'uM',10,'tP',zeros(1,7),'sP',zeros(3,7));
  return;
end
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% Run the demo
if( nargin < 1 )
  Demo;
  return;
end
 
% Update the pulsewidths at update time
if( t >= d.tLast + d.tUpdate || t == 0 )
  [d.sP, d.tP] = SVPW( d.u, d.tUpdate, d.uM );
  d.tLast = t;
end
 
% Time since initialization of the pulse period
dT = t - d.tLast;
s  = zeros(3,1);
 
for k = 1:7
  if( dT < d.tP(k) )
    s = d.sP(:,k);
    break;
  end
end

The pulsewidth vectors are computed in the subfunction SVPW. You first compute the quadrant and then 
the sector without using any trigonometric functions. This is done using simple if/else statements and a 
switch statement. Note that the modulation index k is simply designated k, and k + 1 is designated kP1. You 
compute the times for the two space vectors that bound the sector. You then assemble the seven subperiods.

%%% SVPWM>SVPW Compute the space vector pulsewidths
%  [sP, tP] = SVPW( u, tS, uD )
%
%  Inputs:
%  u   (2,1)   Voltage vector
%  tS  (1,1)   Update period
%  uD  (1,1)   Maximum voltage
%
%  Outputs:
%  sP  (3,7)   Switch patterns
%  tP  (1,7)   Pulse times
function [sP, tP] = SVPW ( u, tS, uD )
 
% Make u easier to interpret
alpha = 1;
beta  = 2;
 
% Determine the quadrant
if( u(alpha) >= 0 )
  if( u(beta) > 0 )
    q = 1;
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  else
    q = 4;
  end
else
  if( u(beta) > 0 )
    q = 2;
  else
    q = 3;
  end
end
sqr3 = sqrt(3);
 
% Find the sector. k1 and k2 define the edge vectors
switch q
  case 1 % [+,+]
    if( u(beta) < sqr3*u(alpha) )
      k      = 1;
      kP1    = 2;
      oddS   = 1;
    else
      k      = 2;
      kP1    = 3;
      oddS   = 0;
    end
  case 2 % [-,+]
    if( u(beta) < -sqr3*u(alpha) )
      k      = 3;
      kP1    = 4;
      oddS   = 1;
    else
      k      = 2;
      kP1    = 3;
      oddS   = 0;
    end
  case 3 % [-,-]
    if( u(beta) < sqr3*u(alpha) )
      k      = 5;
      kP1    = 6;
      oddS   = 1;
    else
      k      = 4;
      kP1    = 5;
      oddS   = 0;
    end
  case 4 % [+,-]
    if( u(beta) < -sqr3*u(alpha) )
      k      = 5;
      kP1    = 6;
      oddS   = 1;
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    else
      k      = 6;
      kP1    = 1;
      oddS   = 0;
    end
end
 
% Switching sequence
piO3    = pi/3;
kPiO3   = k*pi/3;
kM1PiO3 = kPiO3-piO3;
 
% Space vector pulsewidths
t  = 0.5*sqr3*(tS/uD)*[ sin(kPiO3)     -cos(kPiO3);...
                       -sin(kM1PiO3)  cos(kM1PiO3)]*u;
 
% Total zero vector time
t0 = tS - sum(t);
t  = t/2;
 
% Different order for odd and even sectors
if( oddS )
  sS = [0 k kP1 7 kP1 k 0];
  tPW = [t0/4 t(1) t(2) t0/2 t(2) t(1) t0/4];
else
  sS = [0 kP1 k 7 k kP1 0];
  tPW = [t0/4 t(2) t(1) t0/2 t(1) t(2) t0/4];
end
tP = [tPW(1) zeros(1,6)];
 
for k = 2:7
  tP(k) = tP(k-1) + tPW(k);
end
 
% The switches corresponding to each voltage vector
% From 0 to 7
%               a b c
s           = [ 0 0 0;...
                1 0 0;...
                1 1 0;...
                0 1 0;...
                0 1 1;...
                0 0 1;...
                1 0 1;
                1 1 1]';
sP = zeros(3,7);
 
for k = 1:7
  sP(:,k) = s(:,sS(k)+1);
end
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The built-in demo is fairly complex, so it is in a separate subfunction. You simply specify an example 
input, u, using trigonometric functions.

function Demo
%%% SVPWM>Demo Function demo
% Calls SVPWM with a sinusoidal input u.
% This demo will run through an array of times and create a plot of the
% resulting voltages.
 
d     = SVPWM;
tEnd  = 0.003;
n     = tEnd/d.dT;
a     = linspace(0,pi/4,n);
tP3   = 2*pi/3;
uABC  = 0.5*[cos(a);cos(a-tP3);cos(a+tP3)];
uAB   = ClarkeTransformationMatrix*uABC(1:2,:); % a-b to alpha-beta
tSamp = 0;
t     = 0;
tPP   = 1;
x     = zeros(4,n);
for k = 1:n
  if( t >= tSamp )
    tSamp = tSamp + d.tUpdate;
    tPP   = ˜tPP;
  end
  d.u    = uAB(:,k);
  [s, d] = SVPWM( t, d );
  t      = t + d.dT;
  x(:,k) = [SwitchToVoltage(s,d.uM);tPP];
end
 
[t,tL] = TimeLabel( (0:(n-1))*d.dT);
 
PlotSet(t,[uABC;x],'xlabel',tL,'plottitle','Voltages',...
    'ylabel', {'u_a' 'u_b' 'u_c' 'u_{ap}' 'u_{bp}' 'u_{cp}' 'Pulse' } );

Figure 8-6 shows the state vector pulsewidth modulation from the built-in demo. There are three pulses 
in the plot, each 0.001 seconds long. Each pulse period has seven subperiods.
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The function SwitchToVoltage converts switch states to voltages. It assumes instantaneous switching 
and no switch dynamics. 

%% SwitchToVoltage Switch state to voltage
% Converts the switch state for a six switch inverter to a, b and c
% voltages. The switches are numbered
%
%   a  b  c
%   a' b' c'
%
%% Form
%   u = SwitchToVoltage( s, uDC )
%
%% Inputs
%   s       (3,1)   Switches
%   uDC     (1,1)   DC voltage
%
%% Outputs
%   u       (3,1)   Three phase voltages [uA;uB;uC]
%
 


Figure 8-6.  The desired voltage vector and the space vector modulation pulses and pulsewidth. The bottom 
plot shows the pulse periods. Note that the pulse sequences are symmetric within each pulse period
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function u = SwitchToVoltage( s, uDC )
 
% Switch states [a;b;c]
sA    = [1 1 0 0 0 1;...
         0 1 1 1 0 0;...
         0 0 0 1 1 1];
 
% Array of voltages
uA   = [ 2 1 -1 -2 -1 1;...
        -1 1 2 1 -1 -2;...
        -1 -2 -1 1 2 1];
 
% Find the correct switch state
u   = [0;0;0];
for k = 1:6
  if( sum(sA(:,k) - s) == 0 )
    u = uA(:,k)*uDC/3;
    break;
  end
end

8-4. Simulating the Controlled Motor
Problem
You want to simulate the motor with torque control using space vector modulation. 

Solution
Write a script to simulate the motor with the controller. Include options for closed-loop control and 
balanced three-phase voltage inputs.

How It Works
The header for the script, PMMachineDemo, is shown in the following listing. The control flags bypassPWM and 
torqueControlOn are described, as well as the two periods implemented—one for the simulation and a 
longer period for the control.

%% Simulation of a permanent magnet AC motor
% Simulates a permanent magnet AC motor with torque control. The simulation has
% two options. The first is torqueControlOn. This turns torque control on and
% off. If it is off the phase voltages are a balanced three phase voltage set.
%
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% bypassPWM allows you to feed the phase voltages directly to the motor
% bypassing the pulsewidth modulation switching function. This is useful for
% debugging your control system and other testing.
%
% There are two time constants for this simulation. One is the control period
% and the second is the simulation period. The latter is much shorter because it
% needs to simulate the pulsewidth modulation.
%
% For control testing the load torque and setpoint torque should be the same.

The body of the script follows. Three different data structures are initialized from their corresponding 
functions, as described in the previous recipes; that is, from SVPWM, TorqueControl, and RHSPMMachine. Note 
that we are only simulating the motor for a small fraction of a second, 0.05 seconds, and the timestep is just 
1e-6 seconds. The controller timestep is set to 100 times the simulation timestep.

%% Initialize all data structures
dS      = SVPWM;
dC      = TorqueControl;
d       = RHSPMMachine;
dC.psiM = d.psiM;
dC.p    = d.p;
d.tL    = 1.0; % Load torque (Nm)
 
%% User inputs
tEnd            = 0.05;      % sec
torqueControlOn = false;
bypassPWM       = false;
torqueSet       = 1.0;       % Set point (Nm)
dC.dT           = 100*dS.dT; % 100x larger than simulation dT
dS.uM           = 1.0;       % DC Voltage at the input to the switches
magUABC         = 0.1;       % Voltage for the balanced 3 phase voltages
 
if (torqueControlOn && bypassPWM)
  error('ThecontrolrequiresPWMtobeon.');
end
 
%% Run the simulation
nSim = ceil(tEnd/dS.dT);
xP   = zeros(10,nSim);
x    = zeros(5,1);
 
% We require two timers as the control period is larger than the simulation period
t    = 0.0; % simulation timer
tC   = 0.0; % control timer
 
for k = 1:nSim
  % Electrical degrees
  thetaE = x(5);
  park   = ParkTransformationMatrix( thetaE );
  clarke = ClarkeTransformationMatrix;
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  % Compute the voltage control
  if( torqueControlOn && t >= tC )
    tC         = tC + dC.dT;
    [dS.u, dC] = TorqueControl( torqueSet, x, dC );
  elseif( ˜torqueControlOn )
    tP3  = 2*pi/3;
    uABC = magUABC*dS.uM*[cos(thetaE);cos(thetaE-tP3);cos(thetaE+tP3)];
    if( bypassPWM )
      d.u = uABC;
    elseif( t >= tC )
      tC   = tC + dC.dT;
      dS.u = park*clarke*uABC(1:2,:);
    end
  end
 
  % Space Vector Pulsewidth Modulation
  if( ˜bypassPWM )
    dS.u = park'*dS.u;
    [s,dS] = SVPWM( t, dS );
    d.u = SwitchToVoltage(s,dS.uM);
  end
 
  % Get the torque output for plotting
  [˜,tE] = RHSPMMachine( 0, x, d );
  xP(:,k) = [x;d.u;torqueSet;tE];
 
  % Propagate one simulation step
  x = RungeKutta( @RHSPMMachine, 0, x, dS.dT, d );
  t = t + dS.dT;
end
 
%% Generate the time history plots
[t, tL] = TimeLabel( (0:(nSim-1))*dS.dT );
 
figure('name','3PhaseCurrents');
plot(t, xP(1:3,:));
grid on;
ylabel('Currents');
xlabel(tL);
legend('i_a','i_b','i_c')
 
PlotSet( t, xP([4 10],:), 'xlabel', tL, 'ylabel', {'\omega_e' 'T_e(Nm)'}, ...
  'plottitle','Electrical', 'figuretitle','Electrical');
 
thisTitle = 'PhaseVoltages';
if ˜bypassPWM
  thisTitle = [thisTitle '-PWM'];
end
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PlotSet( t, xP(6:8,:), 'xlabel', tL, 'ylabel', {'u_a' 'u_b' 'u_c'}, ...
  'plottitle',thisTitle, 'figuretitle',thisTitle);
 
thisTitle = 'Torque/Speed';
if ˜bypassPWM
  thisTitle = [thisTitle '-PWM'];
end

Turn off torque control to test the motor simulation, with the results shown in Figure 8-7. The two 
plots show the torque speed curves. The first is with direct three-phase excitation; that is, bypassing the 
pulsewidth modulation, by setting bypassPWM to false. Directly controlling the phase voltages this 
way, while creating the smoothest response, would require linear amplifiers, which are less efficient than 
switches. This would make the motor much less efficient overall and would generate unwanted heat. The 
second plot is with space vector pulsewidth modulation. The plots are nearly identical, indicating that the 
pulsewidth modulation is working.

Figure 8-7.  Torque speed curves for a balanced three-phase voltage excitation and a load torque of 1.0 Nm. 
The left figure shows the curve for direct three-phase input and the right shows the curve for the space vector 
pulsewidth modulation input. They are nearly identical

Now turn on torque control, via the torqueControlOn flag, and get the results shown in Figure 8-8. The 
overshoot is typical for torque control. Note that the load torque is set equal to the torque set point of 1 Nm. 
There is limit cycling near the endpoint.
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The pulsewidths and resulting coil currents are shown in Figure 8-9. A zoomed view of the end of the 
pulsewidth plot with shading added to alternate pulsewidths is in Figure 8-10. This makes it easier to see the 
segments of the pulsewidths and verify that they are symmetric.

Figure 8-8.  PI torque control of the motor

Figure 8-9.  Voltage pulsewidths and resulting currents for PI torque control
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The code that adds the shading uses fill with transparency via the alpha parameter. In this case, you 
hard-code the function to show the last five pulsewidths, but this could be generalized to a time window or 
to shade the entire plot.

We did take the time to add an input for the pulsewidth length, so that this could be changed in the 
main script and the function would still work. Note that the axes children were reordered as the last step to 
keep the shading from obscuring the plot lines. 

%% ADDFILLTOPWM Add shading to the motor pulsewidth plot
% Adds gray shading to alternate pulsewidths for the last 5 pulses of the
% plot. The pulsewidth plot should be the current axes.
%
%% Form
%  AddFillToPWM( dT )
%
%% Input
%  dT (1,1) Pulsewidth
%% Output
% None.
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Figure 8-10.  Pulsewidths with shading
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function AddFillToPWM( dT )
 
if nargin == 0
  dT = 0.001;
end
 
hAxes = get(gcf,'children');
nAxes = length(hAxes);
 
for j = 1:nAxes
  if strcmp(hAxes(j).type,'axes')
    axes(hAxes(j));
    AddFillToAxes;
  end
end
 
  function AddFillToAxes
 
  hold on;
  y = axis;
  xMin = y(2) - 5*dT;
  xMax = y(2);
  axis([xMin xMax y(3:4)])
  x0 = xMin;
  yMin = y(3) + 0.01*(y(4)-y(3));
  yMax = y(4) - 0.01*(y(4)-y(3));
  for k = [2 4]
    xMinK = x0 + (k-1)*dT;
    xMaxK = x0 + k*dT;
 
    fill([xMinK xMaxK xMaxK xMinK],...
         [yMin,yMin,yMax,yMax],...
         [0.8 0.8 0.8],'edgecolor','none','facealpha',0.5);
  end
  babes = get(gca,'children');
  set(gca,'children',[babes(end); babes(1:end-1)])
  hold off;
 
  end
 
end
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Table 8-2.  Chapter Code Listing

File Description

AddFillToPWM Add shading to the motor pulsewidth plot.

ClarkeTransformationMatrix Clarke transformation matrix.

ParkTransformationMatrix Park transformation matrix.

PMMachineDemo Permanent magnet motor demonstration.

RHSPMMachine Right-hand-side of a permanent magnet brushless 3-phase electrical machine.

SVPWM Implements space vector pulsewidth modulation.

SwitchToVoltage Converts switch states to voltages.

TorqueControl Proportional integral torque controller.

Summary
This chapter demonstrated how to write the dynamics and implement a field-oriented control law for a 
three-phase motor. A proportional-integral controller with space vector pulsewidth modulation was used to 
drive the six switches. This produces a low-cost controller for a motor. Table 8-2 lists the code developed in 
the chapter.
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Chapter 9

Fault Detection

Introduction
Fault detection is the process of detecting failures, also known as faults, in a dynamical system. It is an 
important area for systems that are supposed to operate without human supervision. There are many ways 
of detecting failures. The simplest is using boolean logic to check against fixed thresholds. For example, you 
might check an automobile’s speed against a speed limit. Other methods include fuzzy logic, parameter 
estimation, expert systems, statistical analysis, and parity space methods. This chapter implements one 
type of fault detection system, a detection filter. This is based on linear filtering. The detection filter is a state 
estimator tuned to detect specific failures. You will design a detection filter system for an air turbine. You will 
also be shown how to build a graphical user interface (GUI) as a front end to the fault detection simulation.

9-1. Modeling an Air Turbine
Problem
You need to make a numerical model of an air turbine to demonstrate detection filters. 

Solution
Write the equations of motion for an air turbine. You will use a linear model of the air turbine to simplify the 
model and the detection filter design. This will allow you to model the system with a state space model.

How It Works
Figure 9-1 shows an air turbine.1 It has a constant pressure air supply. You can control the valve from the 
air supply, the pressure regulator, to control the speed of the turbine. The air flows past the turbine blades 
causing it to turn. The control needs to adjust the air pressure to handle variations in the load. You measure 
the air pressure p downstream from the valve and you also measure the rotational speed of the turbine w 
with a tachometer.

1PhD thesis of Jere Schenck Meserole, “Detection Filters for Fault-Tolerant Control of Turbofan Engines,” Massachusetts 
Institute of Technology, Department of Aeronautics and Astronautics, 1981.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_9) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_9


Chapter 9 ■ Fault Detection

206

The dynamical model for the air turbine is
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This is a state space system
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Figure 9-1.  Air turbine. The arrows show the airflow. The air flows through the turbine blade tips, causing it  
to turn
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The state vector is
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The pressure downstream from the regulator is equal to K
p
u when the system is in equilibrium. t

p
 is the 

regulator time constant and t
t
 is the turbine time constant. The turbine speed is K

t
p when the system is in 

equilibrium. The tachometer measures w and the pressure sensor measures p. The load is folded into the 
time constant for the turbine.

The code for the right-hand side of the dynamical equations is shown next. Only one line of code is the 
right-hand side. The rest returns the default data structure. The simplicity of the model is due to its being a 
state space model. The number of states could be large, yet the code would not change.

function xDot = RHSAirTurbine( ˜, x, d )
 
% Default data structure
if( nargin < 1 )
  kP   = 1;
  kT   = 2;
  tauP = 10;
  tauT = 40;
  c    = eye(2);
  b    = [kP/tauP;0];
  a    = [-1/tauP 0; kT/tauT -1/tauT];
 
  xDot = struct('a',a,'b',b,'c',c,'u',0);
  return
end
 
% Derivative
xDot = d.a*x + d.b*d.u;

The response to a step input for u is shown in Figure 9-2. The pressure settles faster than the turbine. 
This is due to the turbine time constant and the lag in the pressure change. The residuals are very small 
because there are no failures.
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9-2. Building a Detection Filter
Problem
You want to build a system to detect failures in an air turbine using the linear model developed in the 
previous recipe. 

Solution
You will build a detection filter that detects pressure regulator failures and tachometer failures. Our plant 
model (continuous a, b, and c state space matrices) will be an input to the filter building function.

How It Works
The detection filter is an estimator with a specific gain matrix that multiplies the residuals.
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Figure 9-2.  Air turbine response to a step pressure regulator input
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where p̂  is the estimated pressure and ŵ is the estimated angular rate of the turbine. The D matrix is the 
matrix of detection filter gains. These feed back the residuals, the difference between the measured and 
estimated states, into the detection filter. The residual vector is
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The D matrix needs to be selected so that this vector tells you the nature of the failure. The gains should 
be selected so that

•	 The filter is stable.

•	 If the pressure regulator fails, the first residual, p p- ˆ is non-zero but the second 
remains zero.

•	 If the turbine fails, the second residual w w- ˆ  is non-zero but the first remains zero.

The gain matrix is
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The time constant t
1
 is the pressure residual time constant. The time constant t

2
 is the tachometer 

residual time constant. In effect, you cancel out the dynamics of the plant and replace them with decoupled 
detection filter dynamics. These time constants should be shorter than the time constants in the dynamical 
model so that you detect failures quickly. However, they need to be at least twice as long as the sampling 
period to prevent numerical instabilities.

Write a function with three actions: an initialize case, an update case, and a reset case. varargin is used 
to allow the three cases to have different input lists. The function signature is

function d = DetectionFilter( action, varargin )

The header and syntax for DetectionFilter are shown next. Some LaTeX equations are used to 
describe the function.

%% DetectionFilter Builds and updates a linear detection filter.
% The detection filter gain matrix d is designed during the initialize
% action. The continuous matrices are then discretized using the internal
% function CToDZOH. The esimated state and residual vectors are initialized
% to the size dictated by a. During the update action, the residuals and
% new estimated state are calculated and stored in the data structure d.
%
% The residuals calculation is
%
% $$r = y - c\hat{x}$$
%
% The estimated state calculated with the detection filter gains is
%
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% $$\hat{x}_{k+1} = a*\hat{x} + +b*u + d*r$$
%
%% Form:
%   d = DetectionFilter( 'initialize', d, tau, dT );
%   d = DetectionFilter( 'update', u, y, d );
%   d = DetectionFilter( 'reset', d );
%
%% Inputs
%   action   (1,:)  'initialize' or 'update'
%   d        (.)    Data structure
%                    .a (:,:) State space continuous a matrix
%                    .b (:,1) State space continuous b matrix
%                    .c (:,:) State space continuous c matrix
%   tau      (:,1)  Vector of time constants
%   dT       (1,1)  Time step
%   u        (:,1)  Actuation input
%   y        (:,1)  Measurement vector
%
%% Outputs
%   d        (.)    Updated data structure
%                    .a (:,:) State space discrete a matrix
%                    .b (:,1) State space discrete b matrix
%                    .c (:,:) State space discrete c matrix
%                    .d (:,:) Detection filter gain matrix
%                    .x (:,1) Estimated states
%                    .r (:,1) Residual vector

The filter is built and initialized in the following code in DetectionFilter. The continuous state space 
model of the plant, in this case our linear air turbine model, is an input. The selected time constants t are 
also an input, and they are added to the plant model, as in equation 9.8. The function discretizes the plant a 
and b matrices and the computed detection filter gain matrix d.

switch lower(action)
  case 'initialize'
    d   = varargin{1};
    tau = varargin{2};
    dT  = varargin{3};
 
    % Design the detection filter
    d.d = d.a + diag(1./tau);
 
    % Discretize both
    d.d        = CToDZOH( d.d, d.b, dT );
    [d.a, d.b] = CToDZOH( d.a, d.b, dT );
 
    % Initialize the state
    m   = size(d.a,1);
    d.x = zeros(m,1);
    d.r = zeros(m,1);
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The update for the detection filter is in the same function. Note the equations are implemented as 
described in the header.

  case 'update'
    u   = varargin{1};
    y   = varargin{2};
    d   = varargin{3};
    r   = y - d.c*d.x;
    d.x = d.a*d.x + +d.b*u + d.d*r;
    d.r = r;

Finally, create a reset action to allow you to reset the residual and state values for the filter in between 
simulations.

  case 'reset'
    d   = varargin{1};
    m   = size(d.a,1);
    d.x = zeros(m,1);
    d.r = zeros(m,1);
end

9-3. Simulating the Fault Detection System
Problem
You want to simulate a failure in the plant and demonstrate the performance of the failure detection. 

Solution
You will build a MATLAB script that designs the detection filter using the function from the previous recipe 
and then simulates it with a user selectable pressure regulator or tachometer failure. The failure can be total 
or partial.

How It Works
The script designs a detection filter using DetectionFilter from the previous recipe and implements it 
in a loop. Runge-Kutta integration propagates the continuous domain right-hand-side of the air turbine, 
RHSAirTurbine. The detection filter is discrete time.

The script has two scale factors, uF and tachF, that multiply the regulator input and the tachometer 
output to simulate failures. Setting a scale factor to zero is a total failure and setting it to one indicates that 
the device is working perfectly. If you fail one, expect the associated residual to be non-zero and the other to 
stay at zero.

%% Simulation of a detection filter
% Simulates detecting failures of an air turbine.
% An air turbine has a constant pressure air source that sends air
% through a duct that drives the turbine blades. The turbine is
% attached to a load.
%
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% The air turbine model is linear. Failures are modeled by multiplying
% the regulator input and tachometer output by a constant. A constant
% of 0 is a total failure and 1 is perfect operation.
 
%% User inputs
 
% Failures. Set to any number. 0 is total failure. 1 is working.
% uF scales the actuation u. tachF scales the rate measurement.
uF    = 1;
tachF = 0;
 
% Time constants for failure detection
tau1 = 0.3; % sec
tau2 = 0.3; % sec
 
% End time
tEnd = 1000; % sec
 
% State space system
d = RHSAirTurbine;
 
%% Initialization
dT = 0.02; % sec
n  = ceil(tEnd/dT);
 
% Initial state
x = [0;0];
 
%% Detection Filter design
dF = DetectionFilter('initialize',d,[tau1;tau2],dT);
 
%% Run the simulation
 
% Control. This is the regulator input.
u = 100;
 
% Plotting array
xP = zeros(4,n);
t  = (0:n-1)*dT;
 
for k = 1:n
  % Measurement vector including measurement failure
  y       = [x(1);tachF*x(2)]; % Sensor failure
  xP(:,k) = [x;dF.r];
 
  % Update the detection filter
  dF = DetectionFilter('update',u,y,dF);
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  % Integrate one step
  d.u = uF*u; % Actuator failure
  x   = RungeKutta( @RHSAirTurbine, t(k), x, dT, d );
end
 
%% Plot the states and residuals
[t,tL] = TimeLabel(t);
yL     = {'p' '\omega' 'Residual P' 'Residual\omega' };
tTL    = 'DetectionFilterSimulation';
PlotSet( t, xP,'xlabel',tL,'ylabel',yL,'plottitle',tTL,'figuretitle',tTL)

In Figure 9-3, the regulator fails and its residual is non-zero. In Figure 9-4, the tachometer fails and its 
residual is non-zero. The residuals show what has failed clearly. Simple boolean logic (i.e., if end statements) 
are all that is needed.

Figure 9-3.  Air turbine response to a failed regulator
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9-4. Building a GUI for the Detection Filter Simulation
Problem
You want a GUI to provide a graphical interface to the fault detection simulation that will allow you to 
evaluate the filter’s performance. 

Solution
You will use the MATLAB GUIDE to build a GUI that allows you to

•	 Set the residual time constants.

•	 Set the end time for the simulation.

•	 Set the pressure regulator input.

•	 Introduce a pressure regulator or tachometer fault at any time.

•	 Display the states and residuals in a plot.

Figure 9-4.  Air turbine response to a failed tachometer
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How It Works
The MATLAB GUI building system, GUIDE, is invoked by typing guide at the command line. There are 
several options for GUI templates, or a blank GUI; you will start from the GUI with uicontrols. First, let’s 
make a list of the controls you will need from our desired features list:

•	 Edit boxes for the simulation duration, residual time constants t
1
 and t

2
, pressure 

regulator setting u

•	 Edit boxes for the pressure regulator and tachometer fault parameters, with buttons 
for sending the newly commanded values to the simulation

•	 Text box for displaying the calculated detection filter gains

•	 Run button for starting a simulation

•	 Plot axes

In order to change the fault parameters while the simulation is running, you will need the loop to check 
a variable that can be externally set by the GUI. You can do this using global variables. 

The template for the GUI controls gives you a couple edit boxes with labels, a set of radio buttons, and 
two action buttons for Calculate and Reset. You will use the edit boxes for the first two items on the list of 
controls and use the space with the radio buttons for the fault parameters. Figure 9-5 shows the template 
GUI in GUIDE before you make any changes to it.

Figure 9-5.  Template of a GUI with uicontrols
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Simply double-click an item in the template GUI in GUIDE to open the inspector and edit the item’s text 
and font size, and so forth. For a text item, change the String field in the item’s Inspector. For a frame item, 
such as the Measures frame, change the Title field. For an edit box, change the Tag field. Make the following 
changes to the left-hand set of controls:

	 1.	 Change the String for the Density(D) label to “Duration”.

	 2.	 Change the String for the Volume(V) label to “Input”.

	 3.	 Increase the label font sizes to 10 pt.

	 4.	 Change the Tag for the density edit box to “duration”.

	 5.	 Change the Tag for the volume edit box to “input”.

	 6.	 Change the Tag for the mass text box to “gains”.

	 7.	 Change the Title of the Measures frame to “Parameters”.

After making these changes, click the green triangle button to save and run the GUI. MATLAB saves 
the .fig file with the name you specify, as well as a corresponding .m file. We choose to name our GUI 
DetectionFilterGUI. The resulting initial GUI is shown in Figure 9-6.

Figure 9-6.  Snapshot of the GUI after the first few changes

At this point, you can start work on the GUI code itself. The template GUI stores its data, calculated from 
the data the user types into the edit boxes, in a field called metricdata. You can do a find/replace to change 
this field to filterdata throughout the m-file. Similarly, you can replace “density” with “duration” and 
“volume” with “input”. Changing the Tag of the edit boxes changes the name of the callback functions  
(i.e., from density_Callback to duration_Callback), but not the names of the variables inside the function 
bodies. The find/replace step is shown in Figure 9-7. 
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The updated duration_Callback function is shown next. You can keep the error-checking code that 
ensures that the input is a legitimate number. Note that MATLAB provides a nice hint on the best way 
to convert the contents of the graphics object from a string to a double, or how to keep it as a string. The 
guidata function stores the new value of the changed parameter in the figure itself using graphics handles.

 function duration_Callback(hObject, eventdata, handles)
% hObject    handle to duration (see GCBO)
% eventdata  reserved – to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
% Hints: get(hObject,'String') returns contents of duration as text
%        str2double(get(hObject,'String')) returns contents of duration as a double
duration = str2double(get(hObject, 'String'));
if isnan(filterdata)
    set(hObject, 'String', 0);
    errordlg('Inputmustbeanumber','Error');
end
 
% Save the new duration value
handles.filterdata.duration = duration;
guidata(hObject,handles)

The callback strings that are stored with the uicontrols can be seen in the Inspector by double-clicking 
the control, as shown in Figure 9-8, for the “duration” edit box.

Figure 9-7.  Find/Replace of metricdata fieldname
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The units, on the right-hand side of the edit boxes in the GUI, are being controlled by a function called 
by the units radio buttons. First, remove the entire Units panel; if you try to run the GUI now, it will throw 
an error due to the missing fields for the English and metric units. Next, remove the code relating to this 
“unitgroup” in the GUI’s m-file. You can also remove the code that sets the units fields, since you can  
hard-code these strings; in the template, they are labelled “text4”, “text5”, and “text6”. Remove lines in 
initialize_gui and the entire unitgroup_SelectionChangedFcn function.

Remove in initialize_gui():

set(handles.unitgroup, 'SelectedObject', handles.english);
set(handles.text4, 'String', 'lb/cu.in');
set(handles.text5, 'String', 'cu.in');
set(handles.text6, 'String', 'lb');

Set the initial values of the “duration” and inputs variables to the values from the simulation script:

handles.filterdata.duration = 1000;
handles.filterdata.input = 100;

Now, the GUI can run. You can change the units strings for the Duration, Input, and Gains in the 
Inspector now that you can removed the function that was setting them. You can give the figure a new name, 
Detection Filter GUI (click the figure background instead of one of the controls).

The next step is to add a new panel to the right-hand side of the GUI with edit boxes and buttons for 
failure parameters uF and tachF. Each items needs a Static Text uicontrol, the edit box, and a push button. 
The frame with these items added is shown in Figure 9-9. 

Figure 9-8.  Callback strings for a uicontrol
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Then, you can make the GUI and the panel on the right bigger; insert boxes for the time constants,  
t

1
 and t

2
; and add two plot axes. You have to leave a lot of room on the left-hand side of the axes for the axis 

labels. Change the Tag of the top axis to states and the bottom axis to residuals. The final GUI with all its 
uicontrols is shown in GUIDE in Figure 9-10. Note that the tags are shown on the axes.

Figure 9-10.  Finished GUI shown in GUIDE

Figure 9-9.  A panel with edit box and button uicontrols
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Now, you have quite a bit of code to add to the GUI. The detection filter simulation goes in the Calculate 
callback. You have to add the code to convert the new edit box items to doubles, namely, tachF, uF, tau1, 
and tau2, as in the duration_Callback. You need to add code to the initialize_gui function to set values 
of all the fields. Finally, you need to add handling of global variables for the Send buttons on the failure 
parameters.

First, let’s make sure that the initialize function defines all the needed variables and then fix the edit box 
callbacks. You define the two global variables that you need for the failures.

% ---------------------------------------------------------
function initialize_gui(fig_handle, handles, isreset)
 
global tachFSent
global inputFSent
% If the filterdata field is present and the reset flag is false, it means
% we are we are just re-initializing a GUI by calling it from the cmd line
% while it is up. So, bail out as we dont want to reset the data.
if isfield(handles, 'filterdata') && ˜isreset
    return;
end
 
handles.filterdata.duration = 1000;
handles.filterdata.input = 100;
handles.filterdata.tau1 = 0.3;
handles.filterdata.tau2 = 0.3;
handles.filterdata.tachF = 1.0;
handles.filterdata.uF = 1.0;
handles.filterdata.dT = 0.1; % sec
handles.filterdata.dF = [];
set(handles.duration, 'String', handles.filterdata.duration);
set(handles.input,  'String', handles.filterdata.input);
set(handles.tau1,  'String', handles.filterdata.tau1);
set(handles.tau2,  'String', handles.filterdata.tau2);
set(handles.uF,  'String', handles.filterdata.uF);
set(handles.tachF,  'String', handles.filterdata.tachF);
set(handles.gains, 'String', '[]');
 
tachFSent = false;
inputFSent = false;
 
% Update handles structure
guidata(handles.figure1, handles);
UpdateGains(handles.figure1, [], handles);

The reset feature is from the template GUI; you will leave it because it allows a user to return to nominal 
values for all the fields if they get the filter into an unstable state. Note that you are adding a field for dT here 
and a variable dF, which stores the detection filter data structure. You add a call to a function UpdateGains 
after setting the GUI data in the handles; this function updates the stored detection filter when the fields for 
tau1 or tau2 are changed. This allows you to display them in the gains text box and avoid recomputing the 
filter matrices every time you do a simulation. You use num2str to display the gains matrix, with a maximum 
of digits of precision so that the matrix fits in the allotted space. The UpdateGains function is shown here.
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function UpdateGains(hObject, eventdata, handles)
 
tau1 = handles.filterdata.tau1;
tau2 = handles.filterdata.tau2;
dT = handles.filterdata.dT;
 
d = RHSAirTurbine;
dF = DetectionFilter('initialize',d,[tau1;tau2],dT);
handles.filterdata.dF = dF;
set(handles.gains, 'String', num2str(dF.d,3));
guidata(hObject,handles)

Now you can update the callbacks for tau1 and tau2. After setting the value in the handles, you call the 
new update function, just as you did in the initialize function. The function for tau1 is shown next; the same 
changes must be made to tau2.

function tau1_Callback(hObject, eventdata, handles)
% hObject    handle to tau1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
tau1 = str2double(get(hObject, 'String'));
if isnan(tau1)
    set(hObject, 'String', 0);
    errordlg('Inputmustbe anumber','Error');
end
 
% Save the new duration value
handles.filterdata.tau1 = tau1;
guidata(hObject,handles)
UpdateGains(hObject,[],handles);

Now, you need to set the Send button callbacks to set the global variables. The Send button tags were 
set to sendTach and sendInput, respectively. The only code needed in the callbacks is to declare and set 
the global variables to true. The function for sendInput is shown next; the same changes must be made to 
sendTach, using the tachFSent global variable. 

% --- Executes on button press in sendInput.
function sendInput_Callback(hObject, eventdata, handles)
% hObject    handle to sendInput (see GCBO)
% eventdata  reserved 2013 to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
global inputFSent
inputFSent = true;

Now, you are ready to add the Calculate function. It is based on the simulation script from the previous 
recipe. You add handling of the global variables to change the failure parameters during the simulation loop. 
You also add real-time plot updates to give the user immediate feedback on the residuals. The TimeLabel 
function is used to get the scale factor for the time labeling using the duration field, before the simulation 
loop starts. 
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You calculate a parameter, dP, for the number of steps between plotting by using floor. Basically, you 
update the plot 100 times during the simulation. In the loop, you plot dots for the current state, and residuals 
if the remainder of the current step k divided by dP is zero. Updating graphics using drawnow or by selecting 
axes in a loop can be very slow, so this is a simple method to limit the time spent on the graphics.

■■ Tip U se an inner if statement with rem for intermittent graphics updates during a loop if plotting every 
step is too slow.

Also note that you use the form of plot where the axes handle can be passed in to avoid making the axes 
current using axes. MATLAB warns you that doing so can be very slow. However, there is no reason not to do 
so once the loop is finished, when creating the legends.

% --- Executes on button press in calculate.
function calculate_Callback(hObject, eventdata, handles)
% hObject    handle to calculate (see GCBO)
% eventdata  reserved – to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
global inputFSent
global tachFSent
 
% get the data from the handles
u = handles.filterdata.input;
duration = handles.filterdata.duration;
tachF = handles.filterdata.tachF;
uF = handles.filterdata.uF;
dT = handles.filterdata.dT;
 
% initialize the simulation states and arrays
n  = ceil(duration/dT);
x  = [0;0];
d  = RHSAirTurbine;
dF = handles.filterdata.dF;
dF = DetectionFilter('reset',dF);
xP = zeros(4,n);
t  = (0:n-1)*dT;
dP = floor(n/100);
 
% prepare for plotting during the simulation
[tt,tL] = TimeLabel(duration);
tF = tt/duration;
axes(handles.states)
cla
hold on
axes(handles.residuals)
cla
hold on
xlabel(tL)
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for k = 1:n
  if inputFSent
    inputFSent = false;
    data = guidata(hObject);
    uF = data.filterdata.uF;
  end
  if tachFSent
    tachFSent = false;
    data = guidata(hObject);
    tachF = data.filterdata.tachF;
  end
  y       = [x(1);tachF*x(2)]; % Sensor failure
  xP(:,k) = [x;dF.r];
  dF = DetectionFilter('update',u,y,dF);
  d.u = uF*u; % Actuator failure
  x   = RungeKutta( @RHSAirTurbine, t(k), x, dT, d );
  if rem(k,dP)==0
    plot(handles.states,tF*t(k), xP(1,k),'b.' );
    plot(handles.states,tF*t(k), xP(2,k),'r.' );
    plot(handles.residuals,tF*t(k), xP(3,k), 'b.' );
    plot(handles.residuals,tF*t(k), xP(4,k), 'r.' );
    drawnow
  end
end
 
% Plot the states and residuals
axes(handles.states)
plot(tF*t, xP(1:2,:) )
legend('p','\omega')
axes(handles.residuals)
plot(tF*t, xP(3:4,:) )
legend('r_p','r_{\omega}')

Now, you have a functioning GUI that plots the progress of the simulation and allow you to inject faults 
at any time. Figure 9-11 shows the result of a simulation with no faults.
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You have now built a tool that can be used to explore the parameter space of a model without 
generating dozens of plot windows. Note that adding a few toolbar buttons to enables the user to zoom or get 
data points from the plots. Additional features that could be added include menu items, such as saving and 
reloading particular cases, or exporting a run to the workspace, a mat-file, or a text file. Figure 9-12 shows a 
run with an input fault injected partway through the simulation. This affects the states as well as the residual. 
In order to replicate such a run, you would have to record the values of tachF and uF over time along with 
the initial conditions.

Figure 9-11.  GUI runs with no faults
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Summary
This chapter demonstrated how to design a detection filter for detecting faults in a dynamical system. The 
system is demonstrated with an air turbine that can experience a pressure regulator failure and a tachometer 
failure. In addition, you learned to use GUIDE to design a GUI to automate filter simulations. The GUI 
demonstrates real-time plotting and injecting failures into an ongoing simulation loop. Table 9-1 lists the 
code developed in this chapter.

Table 9-1.  Chapter Code Listing

File Description

RHSAirTurbine Air turbine dynamics model in continuous state-space form.

DetectionFilter Builds and updates a linear detection filter.

DetectionFilterSim Simulation of a detection filter.

DetectionFilterGUI Run the detection filter simulation from a GUI.

DetectionFilterGUI.fig Layout of the GUI for GUIDE.

Figure 9-12.  GUI run with injected input fault
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Chapter 10

Chemical Processes

In chemical engineering, the production of chemicals needs to be modeled and the production process 
controlled. Our example will be a simple process in which the pH of a mixed solution needs to be controlled. 
This problem is interesting because the process is highly nonlinear and the sensor model does not have an 
explicit solution for the pH measurement. Modeling the sensor will require use of the numerical solver fzero.

The specific chemical process that you will study consists of an acid (HNO
3
) stream, a buffer (NaHCO

3
) 

stream, and a base (NaOH) stream that are mixed in a stirred tank.1 This is based on a bench-scale 
experiment developed at the University of California, Santa Barbara (UCSB), to study chemical process 
control.2 Figure 10-1 shows a diagram of the system, with three incoming streams q1, q2, and q3, and a valve 
to the output stream q4, where you will measure pH. The goal is to achieve a neutral pH.

1Henson, M. A. and D. E. Seborg, Nonlinear Process Control, Prentice-Hall, 1997.
2Henson, M. and D. Seborg, “Adaptive Nonlinear Control of a pH Neutralization Process”, IEEE Transactions on 
Control Systems Technology, vol. 2, no. 3, August 1994.

Figure 10-1.  Chemical mixing problem

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_10) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_10
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10-1. Modeling the Chemical Mixing Process
Problem
You want to model the chemical process consisting of an acid stream, a buffer stream, and a base stream that 
are mixed in a stirred tank. 

Solution
Model the chemical equilibria by adding two reaction invariants for each inlet stream and write the 
dynamical equations using the invariants. These are coded in a right-hand-side function that also defines 
the model data structure.

How It Works
Reaction invariants are quantities whose values do not change during a reaction. Each is a combination of 
chemicals that do not vary. The inputs are nitric acid (HNO

3
), sodium bicarbonate or baking soda (NaHCO

3
), 

and sodium hydroxide or lye (NaOH). There is a pair of invariants for each input stream i. The two reaction 
invariants W

a
 and W

b
 are

	
Wai i i i i

= éë ùû - éë ùû - éë ùû - éë ùû
+ - - =H OH HCO CO3 32 	 (10.1)

	
Wbi i i i

= [ ] + éë ùû + éë ùû
- =H CO HCO CO2 3 3 3 	 (10.2)

I = 1 is for the acid stream, I = 2 for the buffer stream, i = 3 for the base stream, and i = 4 is for the mixed 
effluent. The dynamical equations for the effluent invariants are derived via mass balances to be

	
W
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W W q
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Ah
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1 1 1= −( ) + −( ) + −( ) 	 (10.3)
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1 1 1= −( ) + −( ) + −( ) 	 (10.4)

where q
i
 is the volumetric flow rates for the ith stream, A is the cross-sectional area of the mixing tank, and h 

is the liquid level. The liquid level is governed by a differential equation

	

h
A

q q q C h zv

n= + + - +( )é
ë

ù
û

1
1 2 3 	 (10.5)

where C
v
 is the valve coefficient, n is the valve exponent, and z is the vertical distance between the bottom 

of the mixing tank and the outlet of the effluent stream. You can measure h. Normally, you need to estimate 
the reaction invariants, but for this problem, you will assume they are measured. These equations are all 
first-order and are therefore the state equations for the system. The flow rates are all multiplied by the states, 
meaning that their influence on the derivatives is a product of the states and the streams. The differential 
equations for the effluent invariants are singular when h = 0. This is because if the tank is empty, the flows 
have to be zero.
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The resulting right-hand-side function, RHSpH, is shown next. It follows the format needed by the 
RungeKutta integrator (see Recipe 6-2)—that is, RHS(t,x,d)—with a tilde replacing the first input, because 
the dynamics are independent of time. Note the data structure that is defined and returned if there are no 
inputs. This model has quite a few parameters, which are documented in the header.

%% RHSpH Dynamics of a chemical mixing process.
% The process consists of an acid (HNO3) stream, buffer (NaHCO3) stream,
% and base (NaOH) stream that are mixed in a stirred tank. The mixed effluent
% exits the tank through a valve. The chemical equilibria is modeled by
% introducing two reaction invariants for each inlet stream. i = 1 for the
% acid, i = 2 for the buffer, i = 3 for the base, and i = 4 for the effluent.
%
%            +      -            -         =
%   wAi = [H ]i - [OH ]i - [HCO3 ]i - 2[CO3 ]i
%                         -          =
%   wBi = [H2CO3]i + [HCO3 ]i + 2[CO3 ]i
%
%% Forms
%   d = RHSpH
%   xDot = RHSpH( t, x, d )
%
%% Inputs
%   t          (1,1) Time, unused
%   x          (3,1) State [wA4;wB4;h]
%   d          (.)   Structure
%                    .wA1       (1,1) Acid invariant A, (M)
%                    .wA2       (1,1) Buffer invariant A, (M)
%                    .wA3       (1,1) Base invariant A, (M)
%                    .wB1       (1,1) Acid invariant B, (M)
%                    .wB2       (1,1) Buffer invariant B, (M)
%                    .wB3       (1,1) Base invariant B, (M)
%                    .a         (1,1) Cross-sectional area of mixing tank (cm2)
%                    .cV        (1,1) Valve coefficient
%                    .n         (1,1) Valve exponent
%                    .z         (1,1) Vertical distance between bottom of
                                      tank and outlet of effluent (cm)
%                    .q1        (1,1) Volumetric flow of HNO3 (ml/s)
%                    .q2        (1,1) Volumetric flow of NaHCO3 (ml/s)
%                    .q3        (1,1) Volumetric flow of NaOH (ml/s)
%
%% Outputs
%   xDot       (3,1) State derivative
%
%% Reference
% Henson, M. A. and D. E. Seborg. (1997.) Nonlinear Process
% Control, Prentice-Hall. pp. 207-210.
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function xDot = RHSpH( ˜, x, d )
 
if( nargin < 1 )
  % Note: Cv was omitted in the reference; we calculated it assuming a constant
  % liquid level in the tank of 14 cm.
  d = struct('wA1',0.003,'wA2',−0.03,'wA3',−3.05e−3,...
             'wB1',0.0, 'wB2', 0.03,'wB3', 5.0e−5,...
             'a',207,'cV',4.5860777,'n',0.607,'z',11.5,...
             'q1',16.6,'q2',0.55,'q3',15.6);
  xDot = d;
  return;
end
 
wA4 = x(1);
wB4 = x(2);
h   = x(3);
 
hA  =  1/(h*d.a);
 
xDot   = [hA*( (d.wA1 − wA4)*d.q1 + (d.wA2 − wA4)*d.q2 + (d.wA3 − wA4)*d.q3 );...
          hA*( (d.wB1 − wB4)*d.q1 + (d.wB2 − wB4)*d.q2 + (d.wB3 − wB4)*d.q3 );...
          d.q1 + d.q2 + d.q3 − d.cV*(h + d.z)ˆd.n];

The default values in the data structure are drawn from the data in the reference, with the exception of 
C

v
; this was neglected by the reference, so we calculated a value for an equilibrium tank level.

ans =
 
    wA1: 0.003
    wA2: −0.03
    wA3: −0.00305
    wB1: 0
    wB2: 0.03
    wB3: 5e − 05
      a: 207
     cV: 4.5861
      n: 0.607
      z: 11.5
     q1: 16.6
     q2: 0.55
     q3: 15.6

The goal of this chapter is to design an equilibrium point controller. We could rewrite the equations as 
linear equations in which each state and input is replaced with, for example,

	 q q q3 30 3= +d 	 (10.6)

	 h h h= +0 d 	 (10.7)

where dq
3
 is small. We could then formally derive the linear control system. However, we will leave that for 

the interested reader and just go ahead and implement a linear control system.
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10-2. Sensing the pH of the Chemical Process
Problem
The pH sensor is modeled by a nonlinear equation that cannot be solved explicitly for pH. 

Solution
Use the MATLAB fzero function to solve for pH.

How It Works
The equation for pH is

	
0 10 10

1 2 10

1 10 10
4

14
4

2

1
= + - +

+ ´
+ +

-( ) -
-( )

-( ) -
W Wa b

pK

pK p

pH pH
pH

pH pH KK2( ) 	 (10.8)

Recall that W
a4

 and W
b4

 are the reaction invariants for the mixed effluent as defined in Recipe 10-1.  
pK

1
 and pK

2
 are the base-10 logarithms of the H

2
CO

3
 and HCO3

-  disassociation constants.

pK Ka a= - log10

The function that generates the measurement is PHSensor.

%% PHSensor Model pH measurement of a mixing process
% Compute pH as a function of wA4 and wB4 and also the slope of pH with
% respect to those states. Requires the use of fzero.
%
%%  Forms
%    pH = PHSensor( x, d )
%    d = PHSensor('struct')
%
%%  Inputs
%    x   (2,:) State [wA4;wB4]
%    d   (.)   Data structure
%             .pK1       (1,1) Base 10 log of a disassociation constant (H2CO3)
%             .pK2       (1,1) Base 10 log of a disassociation constant (HCO3-)
%
%% Outputs
%   pH (:,:) pH of the solution
%
%% Reference
% Henson, M. A. and D. E. Seborg. Nonlinear Process control, Prentice–Hall,
%  1997. pp. 207–210.

The body of PHSensor calls fzero to compute the pH. This requires an objective function that will be 
searched for a zero near the input point. Use a neutral pH of 7.0 as the initial condition for the optimization. 
The function is vectorized for multiple input states, computing a square matrix of pH with the combinations 
of W

a4
 and W

b4
.
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% Compute the pH starting from neutral
n    = size(x,2);
pH   = zeros(n,n);
pH0  = 7.0;
for  k = 1:n
  for j = 1:n
    d.wA4 = x(1,k);
    d.wB4 = x(2,j);
    pH(k,j) = fzero( @Fun, pH0, [], d );
  end
end

■■ Tip  Use fzero to solve for the zero point for complex single equations. Use fminzero for sets of equations 
with multiple values to be found that minimize the function.

Notice that as per our usual pattern, we have defined a data structure d for passing data to the sensor 
model. Our two parameters are pK

1
 and pK

2
.

if( ischar(x) )
  pH = struct('pK1',-log10(4.47e-7),'pK2',-log10(5.62e-11));
  return
end

Equation 10.8 is embodied in the subfunction Fun, which is passed to fzero.

function y = Fun( pH, d )
%%% PHSensor>Fun Function to be zeroed via fzero
%  y = Fun( pH, d )
 
y  = d.wA4 + 10ˆ(Ph − 14) − 10ˆ(−pH) ...
         + d.wB4*(1 + 2*10ˆ(pH − d.pK2))/(1 + 10ˆ(d.pK1 − pH) + 10ˆ(pH − d.pK2));

A demo is included in the function, as suggested in the best practices described in the style recipes.  
The demo specifies a range of values for the states-the invariants—based on the numbers in the reference.

% Demo
if( nargin < 1 )
  x(1,:) = linspace(−9e−4,0);
  x(2,:) = linspace(0,1e−3);
  d      = PHSensor('struct');
  PHSensor( x, d );
  return
end
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The results are plotted at the end of the main function.

if( nargout == 0 )
  h = figure;
  set(h,'Name','PHSensor');
  mesh(pH)
  xlabel('WB4');
  ylabel('WA4');
  zlabel('pH')
  grid on
  rotate3d on
 
  clear pH
end

The plotting uses the mesh function. It is important to remember that the rows of p correspond to W
a4

 
and the columns to W

b4
. Columns are x and rows are y in the mesh plot. Figure 10-2 shows the mesh plot and 

also the alternative surf plot (with 'edgecolor' set to 'none'). Note the two MATLAB commands:

grid on
rotate3d on

Figure 10-2.  surf and mesh plots of the pH sensor output

Always use the on to be certain that the commands are executed rather than toggled; otherwise, you can 
get unexpected results if you have just run another script or function with those commands.

Notice that the relationship between the pH and the reaction invariants is highly nonlinear. You would 
ideally like a relationship
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4

4 	
(10.9)

where c is a 2 × 2 matrix with constant coefficients. This might be true in the flat regions, but it is not true in 
the “waterfall” region.
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When using this function in a simulation, you need it to run as fast as possible, without any diagnostics 
installed for fzero. During debugging, however, you may need addition information. fzero can display 
information on each iteration by setting the Display option. For instance, with the 'iter' setting it will print 
information for each iteration. The updated fzero call is

pH(k,j) = fzero( @Fun, pH0, optimset('Display','iter'), d );

and the results for a single state are

>> d = PHSensor('struct')
d =
    pK1: 6.3497
    pK2: 10.25
 
>> pH = PHSensor( [−4.32e − 4;5.28e − 4], d )
 
Search for an interval around 7 containing a sign change:
Func-count     a        f(a)               b        f(b)             Procedure
   1                 7  −2.39821e − 07           7  −2.39821e − 07   initial interval
   3           6.80201  −4.16536e − 05     7.19799   3.09792e − 05   search
 
Search for a zero in the interval [6.80201, 7.19799]:
 Func-count    x          f(x)               Procedure.
    3         7.19799   3.09792e − 05        initial
    4         7.0291    4.96758e − 06        interpolation
    5         7.00028  −1.88684e − 07        interpolation
    6         7.00133   3.84365e − 09        interpolation
    7         7.00131   2.86799e − 12        interpolation
    8         7.00131               0        interpolation
 
Zero found in the interval [6.80201, 7.19799]
 
pH =
 
       7.0013

This was a very rapid solution, as it is very near the starting point of 7.0. Note that fzero first found 
an interval containing a sign change, and then searched for the zero. fzero can also output diagnostic 
information when complete, instead of printing it during operation. For instance, if the call is

[pH(k,j),fval,exitflag,output] = fzero( @Fun, pH0, [], d );

then the output structure is available, such as

output =
 
    intervaliterations: 1
            iterations: 5
             funcCount: 8
             algorithm: 'bisection,interpolation'
               message: 'Zerofoundintheinterval[6.80201,7.19799]'
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Note that the algorithm used, bisection, is listed along with the total number of iterations and function 
evaluations. Consider a slight variation of the input state, lowering W

b4
 to 4e–4 M. The number of iterations 

jumps significantly.

>> pH = PHSensor( [−4.32e−4;4e−4], d )
output =
 
    intervaliterations: 8
            iterations: 7
             funcCount: 24
             algorithm: 'bisection,interpolation'
               message: 'Zerofoundintheinterval[4.76,9.24]'
pH =
        9.022

In particular, note that viewing the diagnostic information for your problem can help confirm if your 
tolerances are suitable. Consider the final iterations of the previous case.

Search for a zero in the interval [4.76, 9.24]:
 Func-count    x          f(x)               Procedure
   17            9.24   2.04571e − 05        initial
   18         9.04068   1.42294e − 06        interpolation
   19         9.02583   2.87604e − 07        interpolation
   20         9.02207   5.59178e − 09        interpolation
   21         9.02199   2.25694e − 11        interpolation
   22         9.02199    1.7808e − 15        interpolation
   23         9.02199   5.42101e − 20        interpolation
   24         9.02199   5.42101e − 20        interpolation

The search pushed the function value all the way down to 5.4e − 20, which may be more restrictive than 
needed. The default tolerances can be viewed by getting the default options structure using optimset.

>> options = optimset('fzero')
 
options =
 
        Display: 'notify'
    MaxFunEvals: []
        MaxIter: []
         TolFun: []
           TolX: 2.2204e − 16
    FunValCheck: 'off'
      OutputFcn: []
       PlotFcns: []

The default tolerance on the function value, TolX, is 2.2204e-16. Note that you passed in the name of the 
selected optimization routine, fzero, to optimiset. The same can be done with fminbnd and fminsearch.

■■ Tip  Use optimset with the name of the optimization function to get the default options structure.
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Now consider that you want to evaluate how fzero performs over a range of inputs. Assume that  
you create a separate function for Fun and make a script to record extra data from output during a run. 
Figure 10-3 shows a plot using pcolor.of the resulting recorded function evaluations. You can see the rapid 
changes due to the nonlinearities of the model. The maximum number of function evaluations does not 
exceed 35.

Figure 10-3.  Function evaluations for the PHSensor algorithm

The following is the augmented code creating the plot.

%% Script for debugging PHSensor algorithm
 
% Nominal operating conditions from the reference
x10 = −4.32e − 4;
x20 = 5.28e − 4;
 
x      = [];
x(1,:) = linspace(2*x10,0);
x(2,:) = linspace(0,2*x20);
d      = PHSensor('struct');
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% Compute the pH starting from neutral
n   = size(x,2);
pH  = zeros(n,n);
fEvals = zeros(n,n);
pH0 = 7.0;
for k = 1:n
  for j = 1:n
    d.wA4 = x(1,k);
    d.wB4 = x(2,j);
    % Options: TolX, Display, FunValCheck
    % ('TolX',1e − 10);
    % ('Display','iter')
    % ('FunValCheck','on') % no errors found for demo
    options = optimset('FunValCheck','on');
    [pH(k,j),fval,exitflag,output] = fzero( @Fun, pH0, options, d );
    fEvals(k,j) = output.funcCount;
  end
end
 
figure('Name','PHSensor');
surf(pH,'edgecolor','none')
xlabel('WB4');
ylabel('WA4');
zlabel('pH')
grid on
rotate3d on
 
figure('Name','Evaluations')
s = pcolor(x(2,:),x(1,:),fEvals);
set(s,'edgecolor','none')
xlabel('WB4');
ylabel('WA4');
colormap jet
title('FunctionEvaluationsbyfzero')

10-3. Controlling the Effluent pH
Problem
You want to control the pH level in the mixing tank when the flow of acid or base varies. 

Solution
You will vary the base stream, i = 3, to maintain the pH. This means changing the value of q

3
 using a 

proportional integral controller. This allows you to handle step disturbances.
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How It Works
A proportional integral controller is of the form

	
u K y= +



∫1

1

t 	
(10.10)

where u is the control, y is the measurement, t is the integrator time constant, and K is the forward 
(proportional) gain. The control is u = q

3
 and the measurement is y = pH. There is one control, q

3
, and one 

output, pH. This makes this a single-input/single-output process. However, the connection between q
3
 and 

pH involves three dynamical states: h, W
a4

, and W
b4

. The relationship between the states and pH is nonlinear. 
Another issue is that q

3
 cannot be negative; that is, you cannot extract the base from the tank. This should 

not pose a problem if the equilibrium q
3
 is high enough.

Despite these potential problems, this very simple controller works for this problem for a fairly wide 
range of disturbances. The equilibrium value is input with a perturbation that has an proportional and 
integral term. The integral term uses simpler Euler integration. The full script is described in the next recipe; 
here, attention is called to the lines implementing the control.

The control variables are defined next. The pH setpoint is neutral; that is, a pH of 7. kF is the forward 
gain and tau is the time constant from equation 10.10, set to 2 and 60 seconds, respectively. q3Set is the 
nominal setpoint for the base flow rate, taken from the reference.

%% Control design
pHSet  = 7.0;
tau    = 60.0; % (sec)
kF     = 2.0; % forward gain
q3Set  = 15.6; % (ml/s)

The following code snippet shows the implementation that takes place in a loop. The error is 
calculated as the difference between the modeled pH measurement and the pH setpoint. Note the Euler 
integration, where intErr is updated using simply the timestep times the error. Note also that there is a flag, 
controlIsOn, which allows you to run the script in open loop, without the control being applied.

% Proportional-integral Control
err = pH − pHSet;
if controlIsOn
  d.q3   = q3Set − kF*(err + intErr/tau);
  intErr = intErr + dT*err;
else
  d.q3 = q3Set;
end

To rigorously determine the forward gain and time constant for this problem, you would need to 
linearize the right-hand side for the simulation at the operating point and do a rigorous single-input/single-
output control design that involves Bode plots, Root-Locus, and other techniques. This is beyond the scope 
of this book. For now, simply select values that produce a reasonable response.
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10-4. Simulating the Controlled pH Process
Problem
You want to simulate the stirred tank, mixing three streams—acid, buffer, and base—to demonstrate 
control of the pH level. The base stream is the control variable in response to perturbations in the buffer 
and acid streams. 

Solution
Write a script PHProcessSim with the controller, starting at an equilibrium state. Use the proportional-integral 
controller as derived in the previous recipe. The script will be structured to allow you to insert pulses in 
either or both the acid and buffer streams.

How It Works
The disturbances d are deviations in q

1
 and q

2
,

	
d

q

q
=
é
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û
ú
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which are the acid and buffer streams. The base stream is q
3
 and the reaction invariants for the mixed 

effluent are W
a4

 and W
b4

.
Specify the user inputs to the script first. You are putting it into an equilibrium state and will investigate 

small disturbances from steady-state. There is a flag, controlIsOn, for turning the control system on or off. 
The timestep and duration are determined by iterating over a few values. 

%% User inputs
 
% Time (sec)
tEnd = 60*60;
dT = 1.0;
 
% States
wA4 = −4.32e−4; % Reaction invariant A for effluent stream (M)
wB4 = 5.28e−4; % Reaction invariant B for effluent stream (M)
h   = 14.0; % liquid level (cm)
 
% Closed or open loop
controlIsOn = true;

The disturbances are modeled as pulses to d.q1 and d.q2. The user parameters are the size and the 
start/stop times of the pulses. This setup allows you to run cases similar to the reference. 

% Disturbances
% The pulses will be applied according to the start and end times of tPulse:
%    q1 = q10 + deltaQ1; and q2 = q20 + deltaQ2;
% Small pulse: 0.65 ml/s in q2
% Large pulses: 2.0 ml/s
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% Very large pulses: 8.0 ml/s
deltaQ1 = 8.0; % +/− 1.5
deltaQ2 = 0.0; % 0.65 1.45 0.45 − 0.55 % values from reference
tPulse1 = [5 15]*60;

In the remainder of the script, you obtain the data structures defined in the previous recipes, specify 
the control parameters, and create the simulation loop. The measurements of the invariants are assumed to 
be exact; in practice, they need to be estimated. However, you should always test the controller under ideal 
conditions first to understand its behavior without complications. The pH measurement is modeled using 
PHSensor from Recipe 10-2. The right-hand side for the process is defined in Recipe 10-1. Integration is 
performed using the RungeKutta defined in Chapter 6.

%% Data format
dSensor = PHSensor('struct');
d       = RHSpH;
 
%% Control design
pHSet = 7.0;
tau   = 60.0; % (sec)
kF    = 2.0; % forward gain
q3Set = 15.6; % (ml/s)
q10   = d.q1;
q20   = d.q2;
 
%% Run the simulation
 
% Number of sim steps
n = ceil(tEnd/dT);
 
% Plotting arrays
xP = zeros(7,n);
t  = (0:n − 1)*dT;
 
% Initial states
x      = [wA4;wB4;h];
intErr = 0;
 
for k = 1:n
  % Measurement
  dSensor.wA4 = x(1);
  dSensor.wB4 = x(2);
  pH          = PHSensor( x, dSensor );
 
  % Proportional-integral Control
  err = pH − pHSet;
  if controlIsOn
    d.q3 = q3Set - kF*(err + intErr/tau);
    intErr = intErr + dT*err;
  else
    d.q3 = q3Set;
  end
 

http://dx.doi.org/10.1007/978-1-4842-0559-4_6
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  % Disturbance
  if( t(k) > tPulse1(1) && t(k) < tPulse1(2) )
    d.q1 = q10 + deltaQ1;
  else
    d.q1 = q10;
  end
 
  if( t(k) > tPulse2(1) && t(k) < tPulse2(2) )
    d.q2 = q20 + deltaQ2;
  else
    d.q2 = q20;
  end
 
  % Store data for plotting
  xP(:,k) = [x;pH;d.q1;d.q2;d.q3];
 
  % Integrate one step
  x = RungeKutta( @RHSpH, 0, x, dT, d );
end
 
%% Plot
[t,tL] = TimeLabel(t);
yL     = {'W_{a4}' 'W_{b4}' 'h' 'pH' 'q_1' 'q_2' 'q_3'};
tTL    = 'PHProcessControl';
if ˜controlIsOn
  tTL = [tTL '−OpenLoop'];
end
PlotSet( t, xP,'xlabel',tL,'ylabel',yL,'plottitle',tTL,'figuretitle',tTL)
PlotSet( �t, xP([4 7],:),'xlabel',tL,'ylabel',yL([4 7]),'plottitle',tTL, 

'figuretitle',tTL)

Now, you give results for running this script with some different pulses. The nominal plot gives all three 
states: the measured pH, the flow rates for the acid, base, and the buffer streams. A more compact plot shows 
just the pH and the commanded value of q

3
. We added a line in the plotting code to amend the plot title for 

an open-loop response, so that if you run the script repeatedly, you can more easily identify the plots.

■■ Tip  Use your control flags and string variables to customize the names of your plots.

Figure 10-4 shows the closed response with no disturbances at all, run for 30 simulated minutes. You 
can see that the values from the reference have not produced an exact equilibrium, but that the values 
achieved are quite close. Reaction invariant W

b4
 changes by less than 0.005 × 10−4; the liquid level h by less 

than 0.1 cm; and the base flow rate q
3
 by about 0.05 ml/s. This is equivalent to a very small step response. 

Note the settling time is about 5 minutes. These results give you confidence that you have coded the problem 
correctly. You see this initial response in the following simulations, before the perturbations are applied.
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Next, Figure 10-5 shows the open-loop response with a pulse of 0.65 ml/s in the buffer stream, starting 
at 20 minutes and ending at 40 minutes. Note that the pH rises to nearly 7.4 and q

3
 does in fact stay constant 

at the setpoint. Figure 10-6 shows the closed-loop transients in the pH and base flow q
3
. The pH rise is 

limited to less than 7.2 and the pH and base flow rate are reach equilibrium within about 10 minutes of the 
start and end of the pulse. This compares favorably with the plots in the reference, which compare adaptive 
and nonadaptive nonlinear control schemes. 

Figure 10-4.  Closed-loop response with no perturbations
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Figure 10-7 shows the transients with larger, offset perturbations of 2 ml/s in both q
1
 and q

2
. The pulse in 

q
1
 is applied from 5 to 15 minutes and the pulse in q

2
 from 25 to 40 minutes. Figure 10-8 has plots of just the 

pH and control flow q
3
.

Figure 10-5.  Open-loop response with a 0.65 ml/s pulse in q
2

Figure 10-6.  Performance of the controller with a 0.65 ml/s pulse in q
2
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Figure 10-8.  Larger plots of the q1 /q2 perturbation results

Figure 10-7.  Performance of the controller with large perturbations of 2 ml/s in q1 and q2
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Figure 10-9 shows the transients with a very large perturbation in q
2
 of 8 ml/s from 5 to 35 minutes. 

The controller no longer works very well, with a much longer settling time than the previous examples and 
the base flow rate q

3
 still dropping at the end of the pulse. A pulse value of 10 ml/s causes the simulation to 

“blow up,” or produce imaginary values. It is always necessary to see the limits of the control performance in 
a nonlinear system.

Figure 10-9.  Performance of the controller with a very large perturbation (8 ml/s) in q
2

Finally, since you are using a numerical optimization routine, it is instructive to profile the simulation 
to determine the proportion of execution time spent on fzero. The Profiler can be accessed from the 
Command Window button called Run and Time. The summary from running the pH simulation is shown 
in Figure 10-10. Out of nearly 19 seconds spent in the simulation, fully 12.6 seconds are spent inside fzero 
itself. Only 4.4 seconds were spent integrating, of which 3.4 seconds were spent in the right-hand side. The 
summary has hyperlinks to the individual functions, which are timed line by line. Figure 10-11 shows the 
time spent inside fzero, with percentages calculated in addition to absolute times. The objective function, 
PHSensor > Fun, was called 56,131 times, taking only 1.27 seconds (10% of the execution time). Significant 
chunks of time were spent in sprintf and optimget.



Chapter 10 ■ Chemical Processes

246

■■ Tip   Always do a run with the Profiler when you are implementing a numerical search or optimization 
routine. This gives you insight into the number of iterations used and any unsuspected bugs in your code.

In this case, there is not much optimization that can be done, as most of the time is spent in fzero itself 
and not in the objective function, but you wouldn’t have known that without running the analysis. Whenever 
you are using numerical tools and have a script or function taking more than a second or two to run, analysis 
with Profiler is merited. 

Figure 10-10.  Profiler summary from the simulation
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Figure 10-11.  Profiler results for fzero
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Table 10-1.  Chapter Code Listing

File Description

PHSensor Model pH measurement of a mixing process.

PHProcessSim Simulation of a pH neutralization process.

RHSpH Dynamics of a chemical mixing process.

SensorTest Script to test the sensor algorithm.

Summary
This chapter demonstrated how to write the dynamics and implement a simple control law for a chemical 
process. The process is highly nonlinear, but you can control the process with a simple proportional integral 
controller. The pH sensor does not have a closed form solution and you need the MATLAB fzero function 
to find pH from the invariants. The use of MATLAB plotting functions mesh and surf for showing three-
dimensional data were demonstrated. You used a simulation script to evaluate the performance of the 
controller for a variety of conditions and to run the script in the Profiler to analyze the time spent on the 
numerical routines. Table 10-1 lists the code developed in this chapter.
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Chapter 11

Aircraft

Our aircraft model is a three-dimensional point mass. This models only the translational dynamics in three 
dimensions. Translation is motion in the x, y, and z directions. An aircraft controls its motion by changing 
its orientation with respect to the wind (banking and angle of attack) and by changing the thrust its engine 
produces. In our model we assume that our airplane can instantaneously change its orientation and thrust 
for control purposes. This simplifies our model but at the same time allows us to simulate most aircraft 
operations, such as takeoff, level flight and landing. We also assume that the mass of the aircraft does not 
vary with time.

11-1. Creating a Dynamic Model of an Aircraft
Problem
You need a numerical model to simulate the three-dimensional trajectory of an aircraft in the atmosphere. 
The model should allow you to demonstrate control of the aircraft from takeoff to landing. 

Solution
You will build a six-state model using flight path coordinates. The controls will be roll angle, angle of attack, 
and thrust. You will not simulate the attitude dynamics of the aircraft. The attitude dynamics are necessary if 
you want to simulate how long it takes for the aircraft to change angle of attack and roll angle. In our model, 
you assume the aircraft can instantaneously change angle of attack, roll angle, and thrust.

How It Works
Our aircraft will have six states, needed to simulate velocity and position in three dimensions, and three 
controls. The controls are roll angle, f; angle of attack, a; and thrust, T. You aren’t going to use Cartesian 
coordinates and their time derivatives (i.e., velocities) as states; instead, you will use flight path coordinates. 
Flight path coordinates are shown in two dimensions in Figure 11-1. Roll, f, is about the x axis and heading 
y is out of the page. Drag, D, is opposite the velocity vector.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_11) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_11
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The angle of attack, a, is adjusted to change the lift, L, and drag. The thrust vector, T, is aligned with 
the body x axis. The flight path angle, g, is the angle between the x axis and the velocity vector, V. The state 
vector, s, is

	

s

v

x

y

h

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

g
y

	

(11.1)

X

h

V

D

L

T

Figure 11-1.  Flight path coordinates in two dimensions
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v is the velocity magnitude; g  is the flight path angle in the xz plane; y is the angle in the xy plane; x,y,h are 
the Cartesian coordinates. h is altitude, or the z coordinate. The dynamical equations are
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(11.2)

g is the gravitational acceleration, m is mass, D is drag force, and L is lift force. Define the dynamic pressure as

	
q v=

1

2
2r 	 (11.3)

where r is the atmospheric density. Our simple lift and drag model is

	
D qs C kCD L= +( )

0

2
	 (11.4)

	 L qsCL= 	 (11.5)

	
C CL L=

a
a 	 (11.6)

The first equation is called the drag polar. CD0
 is the drag at zero lift. k is the drag from lift coupling 

coefficient. s is the wetted area. This lift model is only valid for small angles of attack a, as it does not account 
for stall, which is when the airflow becomes detached from the wing and lift goes to zero rapidly.

Our RHS function that implements these equations is RHSAircraft. Notice that the equations are 
singular when v = 0 in equation 11.2. The header provides a warning about this singularity.

%% RHSAIRCRAFT Six DOF point mass aircraft model.
%% Form:
%   d                = RHSAircraft;
%   [sDot, D, LStar] = RHSAircraft( t, s, d )
%% Description
% Computes the right hand side for a point mass aircraft. If you call it
% without any arguments, it will return the default data structure.
% sDot(2) and sDot(3) will be infinite when v = 0. The default atmosphere
% model is AtmosphericDensity which uses an exponential atmosphere.
%
%% Inputs
%   t    (1,1)    Time (unused)
%   s    (6,1)    State vector [v;gamma;psi;x;y;h]
%   d     (.)    Data structure
%                .m                    (1,1) Aircraft mass
%                .g                    (1,1) Gravitational acceleration
%                .thrust               (1,1) Thrust
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%                .alpha                (1,1) Angle of attack
%                .phi                  (1,1) Roll angle
%                .s                    (1,1) Surface area
%                .cD0                  (1,1) Zero lift drag
%                .k                    (1,1) Lift drag coupling term
%                .cLAlpha              (1,1) Lift coefficient
%                .density              (1,1) Pointer to the atmospheric
%                                            density function
%
%% Outputs
%   sDot  (6,1)  State vector derivative d[v;gamma;psi;x;y;h]/dt
%   D     (1,1)  Drag
%   LStar (1,1)  Lift/angle of attack

The function body is shown next. Assemble the state derivative, sDot, as one array since the terms are 
simple. Each element is on a separate line for readability. Return D and LStar as auxiliary outputs for use by 
the equilibrium calculation.

function [sDot, D, LStar] = RHSAircraft( ˜, s, d )
 
% Default data structure
if( nargin == 0 )
  sDot = struct('m',5000, 'g', 9.806, 'thrust',0,'alpha',0, 'phi',0,...
                'cLAlpha',2*pi,'cD0',0.006,'k',0.06,'s',20,'density',
                    @AtmosphericDensity);
  return
end
 
% Save as local variables
V     = s(1);
gamma = s(2);
psi   = s(3);
h     = s(6);
 
% Trig functions
cG    = cos(gamma);
sG    = sin(gamma);
cPsi  = cos(psi);
sPsi  = sin(psi);
cB    = cos(d.phi);
sB    = sin(d.phi);
 
% Exponential atmosphere
rho   = feval(d.density,h);
 
% Lift and Drag
qS    = 0.5*rho*d.s*vˆ2;   % dynamic pressure
cL    = d.cLAlpha*d.alpha;
cD    = d.cD0 + d.k*cLˆ2;
LStar = qS*d.cLAlpha;
L     = qS*cL;
D     = qS*cD;
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% Velocity derivative
% sDot is d[v;gamma;psi;x;y;h]/dt
lT   = L + d.thrust*sin(d.alpha);
sDot = [ (d.thrust*cos(d.alpha) − D)/d.m − d.g*sG;...
         (lT*cB − d.m*d.g*cG)/(d.m*v);...
         lT*sB/(d.m*v*cG);...
         v*cPsi*cG;...
         v*sPsi*cG;...
         v*sG];

A more sophisticated right-hand side would pass function handles for the drag and lift calculations 
so that the user could use their own model. We passed a function handle for the atmospheric density 
calculation to allow the user to select their density function. We could have done the same for the 
aerodynamics model. This would make RHSAircraft more flexible.

Notice that we had to write an atmospheric density model, AtmosphericDensity, to provide as a default 
for the RHS function. This model uses an exponential equation for the density, which is the simplest possible 
representation. The function has a demo of the model, which uses a log scale for the plot.

%% AtmosphericDensity Atmospheric density from an exponential model.
% Computes the atmospheric density at the given altitude using an
% exponential model. Produces a demo plot up to an altitude of 100 km.
%% Form:
%   rho = AtmosphericDensity( h )
%
%%  Inputs
%    h     (1,:)   Altitude (m)
%
%% Outputs
%   rho    (1,:) Density (kg/mˆ3)
 
function rho = AtmosphericDensity( h )
 
% Demo
if( nargin < 1 )
  h = linspace(0,100000);
  AtmosphericDensity( h );
  return
end
 
% Density
rho = 1.225*exp(−2.9e − 05*h.ˆ1.15);
 
% Plot if no outputs are requested
if( nargout < 1 )
  PlotSet(h,rho,'x˽label','h˽(m)','y˽label','Density˽(kg/mˆ3)',...
        'figure˽title','Exponential˽Atmosphere',...
        'plot˽title','Exponential Atmosphere',...
        'plot˽type','y˽log');
  clear rho
end
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11-2. Finding the Equilibrium Controls for an Aircraft Using 
Numerical Search
Problem
You want to find roll angles, thrusts and angles of attack that cause the velocity, flight path angle, and bank 
angle state (roll angle) derivatives to be zero. This is a point of equilibrium.

Solution
You will use Downhill Simplex, via the MATLAB function fminsearch, to find the equilibrium angles.

How It Works
The first step is to find the controls that produce a desired equilibrium state, known as the set point. Define 
the set point as the vector
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with set values for the velocity, v
s
; heading, y

s
; and flight path angle, g

s
. Substitute these into the first three 

dynamical equations from equation 11.2 and set the left-hand side to zero.
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The controls are angle of attack, a; roll angle, f; and thrust, T. Since there are three equations in three 
unknowns, you can get a single solution. The easiest way to solve for the equilibrium controls is to use 
fminsearch. This routine finds the three controls that zero the three equations.

The function, EquilibriumControl.m, uses fminsearch in a loop to handle multiple states. Within the 
loop, you compute an initial guess of the control. The thrust needs to balance drag so you compute this at 
zero angle of attack. The lift must balance gravity so you compute the angle of attack from that relationship. 
Without a reasonable initial guess, the algorithm may not converge or may converge to a local minimum. 
The cost function is nested within the control function.

function [u, c] = EquilibriumControl( x, d, tol )
n   = size(x,2);
u   = zeros(3,n);
c   = zeros(1,n);
p   = optimset('TolFun',tol);
% additional options during testing:
%'PlotFcns',{@optimplotfval,@PlotIteration},'Display','iter','MaxIter',50);
for k = 1:n
  [˜,D,LStar] = RHSAircraft(0,x(:,k),d);
  alpha       = d.m*d.g/LStar;
  u0          = [D;alpha;0];
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  [umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d );
  u(:,k)        = umin;
  c(k)          = Cost( u(:,k), x(:,k), d );
end

The default output is to plot the results.

% Plot if no outputs are specified
if( nargout == 0 )
  yL = {'T (N)', '\alpha(rad)', '\phi(rad)' 'Cost'};
  s = 'EquilibriumControl:Controls';
  PlotSet(1:n,[u;c],'xlabel','set','ylabel',yL, ...
          'plottitle',s, 'figuretitle',s);
 
  yL = {'v' '\gamma' '\psi' 'h'};
  s = 'Equilibrium Control:States';
  PlotSet(1:n,x([1:3 6],:),'xlabel','set','ylabel',yL, ...
          'plottitle',s,'figuretitle',s);
  clear u
end

The cost function is shown next. Use a quadratic cost that is the unweighted sum of the squares of the 
state derivatives.

%% Find the cost of a given control
function c = Cost( u, x, d )
 
d.thrust  = u(1);
d.alpha   = u(2);
d.phi     = u(3);
 
xDot      = RHSAircraft(0,x,d);
y         = xDot(1:3);
c         = sqrt(y'*y);

The function has a built-in demo that looks at thrust and angle of attack at a constant velocity but 
increasing altitude, from 0 to 10 km.

if( nargin < 1 )
  x = [200*ones(1,101);...
       zeros(4,101);...
       linspace(0,10000,101)];
  d = RHSAircraft;
  EquilibriumControl( x, d )
  return;
end

Figure 11-2 shows the states for which the controls are calculated in the built-in demo. Figure 11-3 
shows the resulting controls. As expected, the angle of attack goes up with altitude, but the thrust goes down. 
The decreasing air density reduces drag and lift, so you need to decrease thrust but increase angle of attack 
to generate more lift. The roll angle is nearly zero.
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Figure 11-2.  States for the demo. Only altitude (h) is changing
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Figure 11-3 also plots the cost. The cost should be nearly zero if the function is working as desired.
During debugging, while writing a function requiring optimization, it may be helpful to have additional 

insight into the numerical search process. While you only need umin, consider the additional outputs 
available from fminsearch in this version of the function call.

[umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d )

The output structure includes the number of iterations and the exit flag indicates the exit condition 
of the function: whether the tolerance was reached (1), the maximum number of allowed iterations was 
exceeded (0), or if a user-supplied output function terminated the search (−1). We put a breakpoint in the 
script to check these outputs. For a state of v = 200 and h = 300 at k = 4, the output will be

>> u0
u0 =
 
            2880.4
          0.016255
                 0
 
>> [umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d );
umin =
          3180.7
        0.016237
       3.459e-08
 

Figure 11-3.  Controls for the demo. Thrust decreases with altitude and angle of attack increases
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cval =
 
  3.2473e-09
 
exitflag =
     1

output =
  iterations: 141
   funcCount: 260
   algorithm: 'Nelder-Meadsimplexdirectsearch'
     message: �'Optimizationterminated:thecurrentxsatisfiesthetermination  

criteriausin...'

So you can see that the search required 141 iterations and that the thrust increased to 3180 N from 
our initial guess of 2880 N. The resulting cost is 3e−9. Another alternative for more information is to set the 
Display option of fminsearch to iter or final, with the default being notify. In this case, the options  
look like

p = optimset('TolFun',tol,'Display','iter');

and the following type of output is printed to the Command Window:

>> d = RHSAircraft;
>> x = [200;0;0.5;0;0;5000];
>> EquilibriumControl( x, d )
 
Iteration        Func-count       min f(x)         Procedure
    0               1             0.0991747
    1               4             0.0817065        initial simplex
    2               6             0.0630496        expand
    3               7             0.0630496        reflect
    4               9             0.0133862        expand
    5               10            0.0133862        reflect
    6               11            0.0133862        reflect
    7               13            0.0133862        contract outside
    8               15            0.0133862        contract inside
       ...
    49               87          2.1869e-05        contract inside
    50               89          2.1869e-05        contract outside
 
Exiting: Maximum number of iterations has been exceeded
         - increase MaxIter option.
         Current function value: 0.000022

For additional insight, you can add a plot function to be called at every iteration. MATLAB provides 
some default plot functions; for example, optimplotfval plots the cost function value at every iteration. You 
have to actually open optimplotfval in an editor to learn the necessary syntax. We add the function to the 
optimization options like this

p = optimset('TolFun',tol,'PlotFcns',@optimplotfval);
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Figure 11-4 is generated from the first iteration of the demo.

You can see that the cost value was nearly constant on this plot, for the final 100 iterations. You can add 
additional plots using a cell array for PlotFcns, and each plot will be given its own subplot axis automatically 
by MATLAB. For tough numerical problems, you might want to generate a surface and trace the iterations 
of the optimization. For our problem, we add our custom plot function PlotIteration, and the results look 
like Figure 11-5.

p = optimset('TolFun',tol,'PlotFcns',{@optimplotfval,@PlotIteration});

Figure 11-4.  Function value plot using optimplotfval
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We wrote two functions: one to generate the surface and a second to plot the iteration step. MATLAB 
sets the iteration value to zero during initialization, so in that case, you generate the surface from the given 
initial state. For all other iteration values, you plot the cost on the surface using an asterisk.

% Plot an iteration of the numerical search
function stop = PlotIteration (u0,optimValues,state,varargin)
 
stop = false;
x0 = varargin{1};
d = varargin{2};
switch state
    case 'iter'
        if optimValues.iteration == 0
          a = PlotSurf( x0, u0, d );
        end
        plot3(u0(1),u0(2),optimValues.fval,'k*');
end
 
% Plot a surface using the given initial state for a range of controls.
% MATLAB will already have an empty axis available for plotting.
function a = PlotSurf( x0, u0, d )
 

Figure 11-5.  Custom optimization plot function using a surface
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u1 = linspace(max(u0(1)-1000,0),u0(1)+1000);
u2 = linspace(0,max(2*u0(2),0.1));
u3 = u0(3);
cvals = zeros(100,100);
 
for m = 1:100
  for l = 1:100
    cvals(l,m) = Cost( [u1(m);u2(l);u3], x0, d );
  end
end
 
s = surf(u1,u2,cvals);
set(s,'edgecolor','none');
a = gca;
set(a,'Tag','equilibriumcontrol');
hold on;
xlabel('Thrust')
ylabel('Angle˽of˽Attack')

Finally, note that to see the default set of options that MATLAB uses for fminsearch, call optimiset with 
the name of the optimization function.

>> options = optimset('fminsearch')
 
options =
        Display: 'notify'
    MaxFunEvals: '200*numberofvariables'
        MaxIter: '200*numberofvariables'
         TolFun: 0.0001
           TolX: 0.0001
    FunValCheck: 'off'
      OutputFcn: []
       PlotFcns: []

You see that the default tolerances are equal, at 0.0001, and the number of function evaluations and 
iterations is dependent on the number of variables in the input state x.

11-3. Designing a Control System for an Aircraft
Problem
You want to design a control system for an aircraft that will control the trajectory and allow for  
three-dimensional motion. 

Solution
You will use dynamic plant inversion to feedforward the desired controls for the aircraft. Proportional 
controllers will be used for thrust, angle of attack, and roll angle to adjust the nominal controls to account for 
disturbances such as wind gusts. You will not use feedback control of the roll angle to control the heading, y. 
This is left as an exercise for you.
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How It Works
Recall from the dynamic model in Recipe 11-1 that our aircraft state is

	
v x y h

Tg y[ ] 	 (11.9)

where v is the velocity, g  is the flight path angle, y is the heading, x and y are the coordinate in the flight 
plane, and h is the altitude. The control variables are the roll angle, f; angle of attack, a; and thrust, T.

The controller is of the form

	
T T k v vs T s= + -( ) 	 (11.10)

	
a a g g= + -( )s a sk 	 (11.11)

If the state is at s, then the controls should be at the values T
s
, a

s
, f

s
, which are the equilibrium controls. 

The gains k
T
 and k

a
 push the states in the right direction. The gains are a function of the flight condition.  

You need to expand the first two dynamical equations from equation 11.2.
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Linearize and drop the terms not involving the controls.
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You want the time constants tg and t
v
 so that the equations become
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Therefore
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The control system is implemented in the function AircraftControl.

function [T, alpha] = AircraftControl( s, d, tauGamma, tauV, vSet, gammaSet )
 
u       = EquilibriumControl( s, d );
v       = s(1);
gamma   = s(2);
h       = s(6);
rho     = feval(d.density,h);
qS      = 0.5*d.s*rho*vˆ2;
kV      = d.m/tauV;
kGamma  = (d.m*v)/(qS*cos(d.phi)*d.cLAlpha*tauGamma);
T       = u(1) + kV *(vSet - v);
alpha   = u(2) + kGamma*(gammaSet - gamma);

The performance of the control system is shown in the simulation recipe (11-5). The function requires 
information about the flight conditions, including the atmospheric density. It first uses EquilibriumControl 
to find the controls that are needed at the current state s. The aircraft data structure is required. Additional 
inputs are the time constants for the controllers and the set points. You compute the atmospheric density in 
the function using feval and the input function handle. This should be the same computation as is done in 
RHSAircraft.

11-4. Plotting a 3D Trajectory for an Aircraft
Problem
You want to plot the trajectory of the aircraft in three dimensions and show the aircraft axes and times along 
the trajectory. 

Solution
You use the MATLAB plot3 function with custom code to draw the aircraft axes and times at select points on 
the trajectory. The resulting figure is shown in Figure 11-6.
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How It Works
You use plot3 to draw the 3D display. The function Plot3DTrajectory.m allows for argument pairs via 
varargin.

%% PLOT3DTRAJECTORY Plot the trajectory of an aircraft in 3D.
%% Form:
%   Plot3DTrajectory( x, varargin )
%% Description
%   Plot a 3D trajectory of an aircraft with times and local axes.
%
%% Inputs
%   x      (6,:) State vector [v;gamma;phi;x;y;h]
%   varargin {:} Parameters
%

Figure 11-6.  Demo of aircraft trajectory function
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We skip the demo code for now and show the drawing code next. There are similarities with our 2D 
plotting function, PlotSet. We use text to insert time labels and a patch object to draw the ground.

% Draw the figure
h = figure;
set(h,'Name',figTitle);
plot3(x(4,:),x(5,:),x(6,:));
xlabel(xLabel);
ylabel(yLabel);
zlabel(zLabel);
 
% Draw time and axes
if( ˜isempty(t) && ˜isempty(tIndex) )
   [t,˜,tL] = TimeLabel(t);
   for k = 1:length(t)
      s = sprintf('t=%3.0f(%s)',t(k), tL);
      i = tIndex(k);
      text(x(4,i),x(5,i),x(6,i),s);
      DrawAxes(x(:,i),alpha(1,i),phi(1,i));
   end
end
 
% Add the ground
xL = get(gca,'xlim');
yL = get(gca,'ylim');
v = [xL(1) yL(1) 0;...
     xL(2) yL(1) 0;...
     xL(2) yL(2) 0;...
     xL(1) yL(2) 0];
 
patch('vertices',v,'faces',[1 2 3 4],'facecolor',[0.65 0.5 0.0],'edgecolor',[0.65 0.5 0.0]);
grid on
rotate3d on
axis image
zL     = get(gca,'zlim');
set(gca,'zlim',[0 zL(2)],'ZLimMode','manual');

The plot commands are straightforward. If a time array is entered, it draws the times along the track 
using sprintf and text. We use TimeLabel to get reasonable units. It also draws the aircraft axes using the 
nested function DrawAxes.

%%% Plot3DTrajectory>DrawAxes subfunction
%% DrawAxes
function DrawAxes( x, alpha, phi )
 
gamma = x(2);
psi = x(3);
% Aircraft frame is x forward, y out the right wing and z down
u0    = [1 0 0;0 1 0;0 0 -1];
 
cG    = cos(gamma+alpha);
sG    = sin(gamma+alpha);
cP    = cos(psi);
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sP    = sin(psi);
cR    = cos(phi);
sR    = sin(phi);
 
u     =  [cP -sP 0;sP cP 0; 0 0 1]...
        *[cG 0 -sG; 0 1 0;sG 0 cG]...
        *[1 0 0;0 cR sR; 0 -sR cR]*u0;
 
% Find a length for scaling of the axes
xL    = get(gca,'xlim');
yL    = get(gca,'ylim');
zL    = get(gca,'zlim');
 
l     = sqrt((xL(2)-xL(1))ˆ2 + (yL(2)-yL(1))ˆ2 + (zL(2)-zL(1))ˆ2)/20;
 
x0    = x(4:6);
for k = 1:3
  x1    = x0 + u(:,k)*l;
  c     = [0 0 0];
  c(k)  = 1;
  line([x0(1);x1(1)],[x0(2);x1(2)],[x0(3);x1(3)],'color',c);
end

This function draws an axis system for the aircraft, x out the nose, y out the right wing, and z down. It 
uses the state vector, so needs to convert from g and y to rotation matrices. The axis system is in wind axes.

The function takes parameter pairs to allow the user to customize the plot. The parameter pairs are 
processed here:

xLabel = 'x(m)';
yLabel = 'y(m)';
zLabel = 'z(m)';
figTitle = 'Trajectory';
t = [];
tIndex = [];
alpha = 0.02*ones(1,size(x,2));
phi = 0.25*pi*ones(1,size(x,2));
 
for k = 1:2:length(varargin)
  switch lower(varargin{k})
    case 'xlabel'
      xLabel = varargin{k+1};
    case 'ylabel'
      yLabel = varargin{k+1};
    case 'zlabel'
      zLabel = varargin{k+1};
    case 'figuretitle'
      figTitle = varargin{k+1};
    case 'time'
      t = varargin{k+1};
    case 'time index'
      tIndex = varargin{k+1};
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    case 'alpha'
      alpha = varargin{k+1};
    case 'phi'
      phi = varargin{k+1};
    otherwise
      error('%sisnotavalidparameter',varargin{k});
    end
end

We use lower in the switch statement to allow the user to input capital letters and not have to worry 
about case issues. Most of the parameters are straightforward. The time input could have been done in many 
ways. We chose to allow the user to enter specific times for the time labels. As part of this, the user must 
enter the indices to the state vector.

The function includes a demo. You can type Plot3DTrajectory and get the example trajectory shown 
in Figure 11-6. In the case of a graphics function, the demo literally shows the user what the graphics should 
look like and provides examples about how to use the function.

% Demo
if( nargin < 1 )
  l = linspace(0,1e5);
  x = [200*ones(1,100);...
       (pi/4)*ones(1,100);...
       (pi/4)*ones(1,100);l;l;l];
  t = [200 300 400 500 600];
  k = [20 40 60 80 100];
  Plot3DTrajectory( x, 'time', t, 'time˽index', k, 'alpha',0.01*ones(1,100) )
  return;
end

11-5. Simulating the Controlled Aircraft
Problem
You want to simulate the motion of the aircraft with the trajectory controls. 

Solution
You will create a script with the control system and flight dynamics. The dynamics will be propagated by 
RungeKutta. This is a fourth-order method, meaning the truncation errors go as the fourth power of the 
timestep. Given the typical sample time for a flight control system, fourth-order is sufficiently accurate for 
flight simulations. We will display the results using our 3D plotting function Plot3DTrajectory described in 
the previous recipe.

How It Works
The simulation script, AircraftSim.m, reads the data structure from RHSAircraft and changes values to match 
an F-35 fighter. The model only involves the thrust and drag, and even these are very simple models. The initial 
flight path angle and velocity are set. We turn on the control and establish the set points and time constants for 
the velocity and flight path angle states. For output, we plot the states, control, and a 3D trajectory.
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%% A trajectory control simulation of an F-35 aircraft.
% The dynamics of a point mass aircraft is simulated.
%% See also
% RungeKutta, RHSAircraft, PDControl, EquilibriumControl

The script begins with obtaining our default data structure from the RHS function.

%% Data structure for the right hand side
d           = RHSAircraft;

%% User initialization
d.m         = 13300.00; % kg
d.s         = 204.00; % mˆ2
v           = 200; % m/sec
fPA         = pi/6; % rad
 
% Initialize duration and delta time
tEnd        = 40;
dT          = 0.1;
 
% Controller
controlIsOn = true;
tauV        = 1;
tauGamma    = 1;
d.phi       = 0;
vSet        = 220;
gammaSet    = pi/8;
 
%% Simulation
% State vector
x           = [v;fPA;0;0;0;0];
 
% Plotting and number of steps
n           = ceil(tEnd/dT);
xP          = zeros(length(x)+2,n);
 
% Find non-feedback settings
[˜,D,LStar] = RHSAircraft(0,x,d);
thrust0     = D;
alpha0      = d.m*d.g/LStar;
 
% Run the simulation
for k = 1:n
  if( controlIsOn )
    [d.thrust, d.alpha] = AircraftControl( x, d, tauGamma, tauV, vSet, gammaSet );
  else
    d.thrust = thrust0;
    d.alpha = alpha0;
  end
 
  % Plot storage
  xP(:,k) = [x;d.thrust;d.alpha];
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  % Right hand side
  x = RungeKutta(@RHSAircraft,0,x,dT,d);
end
 
%% Plotting
[t,tL] = TimeLabel((0:(n-1))*dT);
 
yL = {'T(N)', '\alpha (rad)'};
s = 'AircraftSim:Controls';
PlotSet(t,xP(7:8,:),'xlabel',tL,'ylabel',yL,'plottitle',s, 'figuretitle',s);
 
yL = {'v' '\gamma' '\psi' 'x' 'y' 'h'};
s = 'AircraftSim:States';
PlotSet(t,xP(1:6,:),'xlabel',tL,'ylabel',yL,'plottitle',s,'figuretitle',s);
 
k = floor(linspace(2,n,8));
t = t(k);
Plot3DTrajectory( xP, 'time', t, 'timeindex', k, 'alpha', xP(8,:) );

If the control is off, set the thrust and angle of attack to constant values to balance drag and gravity.  
The set points for velocity and flight path angle are slightly different than the initial conditions. This allows 
you to demonstrate the transient response of the controller.

The states are shown in Figure 11-7. The velocity and flight path angle converge to their set points.

Figure 11-7.  Velocity and flight path angle converge to their desired values
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The controls are shown in Figure 11-8. The controls reach their steady values. Thrust and angle of attack 
change as the plane climbs. Thrust drops because the drag drops and angle of attack increases to maintain 
the lift/gravity balance.

Figure 11-8.  The controls converge to the steady-state values and then change slowly to accommodate the 
decrease in atmospheric density as the aircraft climbs

The 3D trajectory is shown in Figure 11-9. As expected, it climbs at a nearly constant angle at a  
constant velocity.
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Figure 11-9.  The trajectory

Summary
This chapter demonstrated how to write the dynamics for a point mass aircraft. You learned how to find the 
equilibrium control state using a search algorithm. This includes utilizing the debug output available from 
MATLAB for its optimization algorithms and adding custom plotting for each search iteration. You learned 
how to design a control system to maintain a desired velocity, bank angle and flight path angle. You learned 
how to make 3D plots with annotations of both text and other drawing objects. You also learned how to pass 
function handles to other functions to make functions more versatile. Table 11-1 lists the code developed in 
the chapter.
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Table 11-1.  Chapter Code Listing

File Description

RHSAircraft Six degree of freedom RHS for a point mass aircraft.

AtmosphericDensity Atmospheric density as a function of altitude from an exponential model.

EquilibriumControl Find the equilibrium control for a point mass aircraft.

AircraftControl Computes the angle of attack and thrust for a 3D point mass aircraft.

Plot3DTrajectory Plot a 3D trajectory of an aircraft with times and local axes.

AircraftSim A trajectory control simulation of an aircraft.



273© Stephanie Thomas and Michael Paluszek 2015 
S. Thomas and M. Paluszek, MATLAB Recipes, DOI 10.1007/978-1-4842-0559-4_12

Chapter 12

Spacecraft

Spacecraft pointing control is an essential technology for all robotic and manned spacecraft. A control system 
consists of sensing, actuation, and the dynamics of the spacecraft itself. Spacecraft control systems are of many 
types, but this chapter is only concerned with three-axis pointing. Reaction wheels are used for actuation.

Reaction wheels are used for control through the conservation of angular momentum. The torque on 
the reaction wheel causes it to spin one way and the spacecraft to spin in the opposite direction. Momentum 
removed from the spacecraft is absorbed in the wheel. Reaction wheels are classified as momentum 
exchange devices. You can reorient the spacecraft using wheels and without any external torques. Before 
reaction wheels were introduced, thrusters were often used for orientation control. This would consume 
propellant, which is undesirable since when you run out of propellant, the spacecraft can no longer be used.

The spacecraft is modeled as a rigid body except for the presence of three reaction wheels that rotate 
about orthogonal (perpendicular) axes. The shaft of the motor attached to the rotor of the wheel is attached 
to the spacecraft. Torque applied between the wheel and spacecraft cause the wheel and spacecraft to move 
in opposite angular directions. We will assume that we have attitude sensors that measure the orientation of 
the spacecraft. We will also assume that our wheels are ideal with just viscous damping friction.

12-1. Creating a Dynamic Model of the Spacecraft
Problem
The spacecraft is a rigid body with three wheels. Each wheel is connected to the spacecraft, as shown in 
Figure 12-1.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0559-4_12) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0559-4_12


Chapter 12 ■ Spacecraft

274

Solution
The equations of motion are written using angular momentum conservation. This produces a dynamical 
model known as the Euler equations with the addition of the spinning wheels. This is sometimes known as a 
gyrostat model.

How It Works
The spacecraft model can be partitioned into dynamics, including the dynamics of the reaction wheels,  
and the kinematics of the spacecraft. If you assume that the wheels are perfectly symmetric, are aligned with 
the three body axes, and have a diagonal inertia matrix, you can model the spacecraft dynamics with the 
following coupled first-order differential equations.

	
I I I I Tw w w w
  w w w w w w w+ + +( )( ) + +( ) =×

	 (12.1)

	
I Tw w w
 w w+( ) = 	 (12.2)

Spacecraft

Wheel Disk

Electric Motor
Shaft

Figure 12-1.  A reaction wheel. The reaction wheel platter spins in one direction and the spacecraft spins in the 
opposite direction
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I is the 3 × 3 inertia matrix; it does not include the inertia of the wheels.
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The matrix is symmetric, so I I I I I Ixy yx xz zx zy yz= = =, , . w is the angular rate vector for the spacecraft seen 
in the spacecraft frame.
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 is the angular rate of the reaction wheels for wheels 1, 2 and 3.
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1 is aligned with x, 2 with y, and 3 with z. In this way, the reaction wheels form an orthogonal set and 
can be used for three-axis control. T is the external torque on the spacecraft, which can include external 
disturbances such as solar pressure or aerodynamic drag, and thruster or magnetic torquer coil torques.  
T

w
 is the internal torque on the wheels. I

w
 is the scalar inertia of the wheels (we assume that they all have the 

same inertia). You can substitute the second equation into the first to simplify the equations.

	
I I I T Tw w w
w w w w w+ + +( )( ) + =×

	 (12.6)

	
I Tw w w
 w w+( ) = 	 (12.7)

This term

	
T I I he w w= + +( )( ) ××w w w w w≡ 	 (12.8)

is known as the Euler torque. If the angular rates are small, you can set this term to zero and the equations 
simplify to

	 I T Tw
w + = 	 (12.9)

	
I Tw w w
 w w+( ) = 	 (12.10)

For kinematics, we use quaternions. A quaternion is a four-parameter representation of the orientation 
of the spacecraft with respect to the inertial frame. We could use angles since we really only need three 
states to specify the orientation. The problem with angles is that they have singularities—that is, certain 
orientations where an angle is undefined, and therefore, are not suitable for simulations. The derivative of 
the quaternion from the inertial frame to the body frame is
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The term w×  is the skew symmetric matrix that is the equivalent of the cross product and is
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The wheel torque is a combination of friction torque and control torque. Reaction wheels are usually 
driven by DC motors in which the back electromotive force is cancelled by current feedback within the 
motor electronics. The total reaction wheel torque is therefore

	
T T Tw c f= + 	 (12.13)

where T
c
 is the commanded reaction wheel torque and T

f
 is the friction torque. A simple friction model is

	
T kf d k= − w 	 (12.14)

k
d
 is the damping coefficient and w

k
 is the angular rate of the kth wheel. If k

d
 is large, you may have to 

feedforward it to the controller. This requires careful calibration of the wheel to determine the damping 
coefficient.

First, you define the data structure for the model that is returned by the dynamics right-hand-side 
function if there are no inputs. The name of the function is RHSSpacecraftWithRWA.m. Use RWA to mean 
Reaction Wheel Assembly. We say “assembly” because the reaction wheel is assembled from bearings, 
wheel, shaft, support structure, and power electronics. Spacecraft are built of assemblies.

The default unit vectors for the wheel are along orthogonal axes, such as x, y, and z. The default inertia 
matrix is the identity matrix, making the spacecraft a sphere. The default reaction wheel inertias are 0.001. 
All of the non-spinning parts of the wheels are lumped in with the inertia matrix.

% Default data structure
if( nargin == 0 )
   xDot = struct('inr',eye(3), 'torque',[0;0;0],'inrRWA', 0.001*[1;1;1],...
                 'torqueRWA',[0;0;0],'uRWA',eye(3), 'damping',[0;0;0]);
   return
end

The dynamical equations for the spacecraft are given in the following lines of code. You need to 
compute the total wheel torque because it is applied both to the spacecraft and the wheels. We use the 
backslash operator to multiply the equations by the inverse of the inertia matrix. The inertia matrix is 
positive definite symmetric, so specialized routines can be used to speed computation. It is a good idea to 
avoid computing inverses, as they can be ill-conditioned—meaning that small errors in the matrix can result 
in large errors in the inverse.

Save the elements of the state vector as local variables with meaningful names to make reading the code 
easier. This also eliminates unnecessary multiple extraction of submatrices.

You will notice that the omegaRWA variable reads from element 8 to the end of the vector using the end 
keyword. This allows the code to handle any number of reaction wheels. You might just want to control one 
axis with a wheel or have more than three wheels for redundancy. Be sure that the inputs in d match the 
number of wheels. Since we also input unit vectors, the wheels do not have to be aligned with x, y, and z. 
Note the use of the backslash operator to solve the set of linear equations for w, omegaDotCore.
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% Save as local variables
q        = x(1:4);
omega    = x(5:7);
omegaRWA = x(8:end);
 
% Total body fixed angular momentum
h = d.inr*omega + d.uRWA*(d.inrRWA.*(omegaRWA + d.uRWA'*omega));
 
% Total wheel torque
tRWA = d.torqueRWA - d.damping.*omegaRWA;
 
% Core angular acceleration
omegaDotCore = d.inr\(d.torque - d.uRWA*tRWA - Cross(omega,h));

Note that uRWA is an array of the reaction wheel unit vectors; that is, the spin vectors. In computing h, 
you have to transform w into the wheel frame using the transform of uRWA, and then transform back before 
adding the wheel component to the core component, Iw. The wheel dynamics are given in these lines.

% Wheel angular acceleration
omegaDotWheel      = tRWA./d.inrRWA - d.uRWA'*omegaDotCore;

The total state derivative is in these lines:

% State derivative
sW   = [       0 -omega(3) omega(2);...
         omega(3)       0 -omega(1);...
-omega(2) omega(1) 0]; % skew symmetric matrix qD = 0.5*[0, omega';-omega,-sW];
xDot = [qD*q;omegaDotCore;omegaDotWheel];

The total inertial angular momentum is an auxiliary output. In the absence of external torques, it should 
be conserved so it is a good test of the dynamics. A simple way to test angular momentum conservation is to 
run a simulation with angular rates for all the states, and then rerun it with a smaller timestep. The change in 
angular momentum should decrease as the timestep is decreased.

% Output the inertial angular momentum
if ( nargout > 1 )
   hECI = QTForm( q, h );
end

12-2. Computing Angle Errors from Quaternions
Problem
You want to point the spacecraft to a new target attitude (orientation) with the three reaction wheels or 
maintain the attitude given an external torque on the spacecraft.

Solution
Make 3 PD controllers, one for each axis. You need a function to take two quaternions and compute the 
small angles between them as input to these controllers.
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How It Works
If you are pointing at an inertial target and wish to control about that orientation, you can simplify the rate 
equations by approximating w as q , which is valid for small angles when the order of rotation doesn’t matter 
and the Euler angles can be treated as a vector.

	
q w= 	 (12.15)

You will also multiply both sides of the Euler equation (equation 12.9) by I −1  to solve for the derivatives. 

Note that T
w

, the torque from the wheels, is equivalent to Ia
w

, where a is acceleration. Our system equations 
now become

	
q + =a aw 	 (12.16)

	
I Tw w w
 w w+( ) = − 	 (12.17)

The first equation is now three decoupled second-order equations, just as in Chapter 6. You can 
stabilize this system with our standard PD controller.

You need attitude angles as input to the PD controllers to compute the control torques. Our examples 
will only be for small angular displacements from the nominal attitude. You can pass the control code a 
target quaternion and it will compute D angles or you can impose a small disturbance torque.

In these cases, the attitude can be treated as a vector where the order of the rotations doesn’t matter.  
A quaternion derived from small angles is
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You find the required error quaternion, qD, by multiplying the target quaternion, q
T
, with the transpose 

of the current quaternion

	 q q qT TD = 	 (12.19)

This algorithm to compute the angles is implemented in the following code. The quaternion 
multiplication is made a subfunction. This makes the code cleaner and easier to see how it relates to the 
algorithm. QMult is written to handle multiple quaternions at once, so the function is easy to vectorize. QPose 
finds the transpose of the quaternion. Both of these functions would normally be separate functions, but in 
this chapter they are only associated with the error computation code, so they are in the same file.

function deltaAngle = ErrorFromQuaternion( q, qTarget )
 
deltaQ         = QMult( QPose(q), qTarget );
deltaAngle     = -2.0*deltaQ(2:4);
 
%% Multiply two quaternions.
% Q2 transforms from A to B and Q1 transforms from B to C

http://dx.doi.org/10.1007/978-1-4842-0559-4_6
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% so Q3 transforms from A to C.
function Q3 = QMult( Q2,Q1 )
 
Q3 = [Q1(1,:).*Q2(1,:) - Q1(2,:).*Q2(2,:) - Q1(3,:).*Q2(3,:) - Q1(4,:).*Q2(4,:);...
     Q1(2,:).*Q2(1,:) + Q1(1,:).*Q2(2,:) - Q1(4,:).*Q2(3,:) + Q1(3,:).*Q2(4,:);...
     Q1(3,:).*Q2(1,:) + Q1(4,:).*Q2(2,:) + Q1(1,:).*Q2(3,:) - Q1(2,:).*Q2(4,:);...
     Q1(4,:).*Q2(1,:) - Q1(3,:).*Q2(2,:) + Q1(2,:).*Q2(3,:) + Q1(1,:).*Q2(4,:)];
 
%% Transpose of a quaternion
% The transpose requires changing the sign of the angle terms.
function q = QPose(q)
 
q(2:4,:) = -q(2:4,:);

The control system is implemented in the simulation loop with the following code.

% Find the angle error
angleError = ErrorFromQuaternion( x(1:4), qTarget );
if (controlIsOn )
   u = [0;0;0];
   for j = 1:3
      [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
   end
else
   u = [0;0;0];
end

12-3. Simulating the Controlled Spacecraft
Problem
You want to test the attitude controller and see how it performs.

Solution
The solution is to build a MATLAB script in which you design the PD controller matrices, and then simulate 
the controller in a loop, applying the calculated torques until the desired quaternion is attained or until the 
disturbance torque is cancelled.

How It Works
Build a simulation script for the controller, SpacecraftSim. The first thing to do with the script is check 
angular momentum conservation by running the simulation for 300 seconds at timesteps of 0.1 and 1 second, 
and comparing the magnitude of the angular momentum in the two test cases. The control is turned off by 
setting the controlIsOn flag to false. In the absence of external torques, if our equations are programmed 
correctly, the momentum should be constant. You will, however, see growth in the momentum due to error 
in the numerical integration. The growth should be much lower in the first case than the second case, as the 
smaller timestep makes the integration more exact. Note that we give the spacecraft random initial rates in 
both omega and omegaRWA and a nonspherical inertia, to help catch any bugs in the dynamics code.
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tEnd                = 300;
dT                  = 0.1;
controlIsOn         = false;
qECIToBody          = [1;0;0;0];
omega               = [0.01;0.02;-0.03]; % rad/sec
omegaRWA            = [5;-3;2]; % rad/sec
d.inr               = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2

Figure 12-2 shows the results of the tests. Momentum growth is four orders of magnitude lower in the 
test with a 0.1-second timestep indicating that the dynamical equations conserve angular momentum,  
as they should. The shape of the growth does not change and will depend on the relative magnitudes of the 
various angular rates.

Figure 12-2.  Angular momentum conservation for 1 second and 0.1 second time steps. The growth is four 
orders of magnitude lower in the 0.1 second test, to le 13−  from le 9−

You initialize the script by using the data structure feature of the RHS function. This is shown next 
with parameters for a run with the control system on. The rates are now initialized to zero and you use the 
timestep of 1 second, which showed sufficiently small momentum growth in the previous test.

%% Data structure for the right hand side
d            = RHSSpacecraftWithRWA;
%% User initialization
% Initialize duration, delta time states and inertia
tEnd         = 600;
dT           = 1;
controlIsOn  = true;
qECIToBody   = [1;0;0;0];
omega        = [0;0;0]; % rad/sec
omegaRWA     = [0;0;0]; % rad/sec
d.inr        = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
qTarget      = QUnit([1;0.004;0.0;0]); % Normalize
d.torque     = [0;0;0]; % Disturbance torque
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The control system is designed here. Note the small value of wN and the unit damping ratio. The 
frequency of the disturbances on a spacecraft are quite low, and the wheels have torque limits, leading to a 
wN much smaller than the robotics example. All three controllers are identical.

%% Control design
% Design a PD controller
dC            = PDControl( 'struct' );
dC(1).zeta    = 1;
dC(1).wN      = 0.02;
dC(1).wD      = 5*dC(1).wN;
dC(1).tSamp   = dT;
dC(1)         = PDControl( 'initialize', dC(1) );
 
% Make all 3 axis controllers identical
dC(2)         = dC(1);
dC(3)         = dC(1);

The simulation loop follows. As always, initialize the plotting array with zeros. The first step in the loop 
is finding the angular error between the current state and the target attitude. Next, the control acceleration 
is calculated or set to zero, depending on the value of the control flag. The control torque is calculated 
by multiplying the control acceleration by the spacecraft inertia. Compute the momentum for plotting 
purposes, and finally, integrate one timestep.

%% Simulation
% State vector
x = [qECIToBody;omega;omegaRWA];
 
% Plotting and number of steps
n  = ceil(tEnd/dT);
xP = zeros(length(x)+7,n);
 
% Find the initial angular momentum
[˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
 
% Run the simulation
for k = 1:n
    % Find the angle error
    angleError = ErrorFromQuaternion( x(1:4), qTarget );
    if (controlIsOn )
        u = [0;0;0];
       for j = 1:3
          [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
       end
    else
       u = [0;0;0];
    end
 
  % Wheel torque is on the left hand side
  d.torqueRWA = d.inr*u;
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  % Get the delta angular momentum
  [˜,hECI]   = RHSSpacecraftWithRWA(0,x,d);
  dHECI      = hECI - hECI0;
  hMag       = sqrt(dHECI'*dHECI);
 
  % Plot storage
  xP(:,k)    = [x;d.torqueRWA;hMag;angleError];
 
  % Right hand side
  x          = RungeKutta(@RHSSpacecraftWithRWA,0,x,dT,d);
 
end

The output is entirely two-dimensional plots. We break them up into pages with one to three plots  
per page. This makes them easily readable on most computer displays.

%% Plotting
[t,tL] = TimeLabl((0:(n-1))*dT);
 
yL      = {'q_s', 'q_x', 'q_y', 'q_z'};
PlotSet( t, xP(1:4,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'Attitude', 'figuretitle', 'Attitude');
 
yL      = {'\omega_x', '\omega_y', '\omega_z'};
PlotSet(t, xP(5:7,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'BodyRates', 'figuretitle', 'BodyRates');
 
yL      = {'\omega_1', '\omega_2', '\omega_3'};
PlotSet( t, xP(8:10,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'RWARates', 'figuretitle', 'RWARates');
 
yL      = {'T_x(Nm)', 'T_y(Nm)', 'T_z(Nm)'};
PlotSet( t, xP(11:13,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'ControlTorque', 'figuretitle', 'ControlTorque');
 
yL      = {'\DeltaH(Nms)'};
PlotSet( t, xP(14,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'InertialAngularMomentum', 'figuretitle', 'InertialAngularMomentum');
 
yL      = {'\theta_x(rad)', '\theta_y(rad)', '\theta_z(rad)'};
PlotSet( t, xP(15:17,:), 'xlabel', tL, 'ylabel', yL,...
  'plottitle', 'AngularErrors', 'figuretitle', 'AngularErrors');

Note how PlotSet makes plotting much easier to set up and its code easier to read than using 
MATLAB’s built-in plot and supporting functions. You do lose some flexibility. The y-axis labels use LaTeX 
notation. This provides limited LaTeX syntax. You can set the plotting to full LaTeX mode to get access to all 
LaTeX commands.

Note that we compute the angle error directly from the target and true quaternion. This represents 
our attitude sensor. In a real spacecraft, attitude estimation is quite complicated. Multiple sensors, such as 
combinations of magnetometers, GPS, and earth and sun sensors are used, and often rate-integrating gyros 
are employed to smooth the measurements. Star cameras or trackers are popular for three-axis sensing and 
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require converting images in a camera to attitude estimates. You can’t use gyros by themselves because they 
do not provide an initial orientation with respect to the inertial frame.

Run two tests. The first shows that our controllers can compensate for a body fixed disturbance torque. 
The second is to show that the controller can reorient the spacecraft.

The following is the initialization code for the disturbance torque test. The initial and target attitudes 
are the same, a unit quaternion, but there is a small disturbance torque in d.torque.

% Initialize duration, delta time states and inertia
tEnd        = 600;
dT          = 1;
controlIsOn = true;
qECIToBody  = [1;0;0;0];
omega       = [0;0;0]; % rad/sec
omegaRWA    = [0;0;0]; % rad/sec
d.inr       = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
qTarget     = QUnit([1;0;0.0;0]);
d.torque    = [0;0.0001;0]; % Disturbance torque (N)

We are running the simulations to 600 seconds to see the transients settle out. The disturbance torque 
is very small, which is typical for spacecraft. We make the torque single-axis to make the responses clearer. 
Figure 12-3 shows the complete set of output plots.

The disturbance causes a change in attitude around the y axis. This offset is expected with a PD controller. 
The control torque eventually matches the disturbance and the angular error reaches its maximum.

The y wheel rate grows linearly, as it has to absorb all the momentum produced by the torque. We don’t 
limit the maximum wheel rate. In a real spacecraft, the wheel would soon saturate, reaching its maximum 
allowed speed. Our control system would need to have other actuators to desaturate the wheel. The inertial 
angular momentum also grows linearly as is expected with a constant external torque.

We now do an attitude correction around the x axis. The following is the initialization code.

% Initialize duration, delta time states and inertia
tEnd        = 600;
dT          = 1;
controlIsOn = true;
qECIToBody  = [1;0;0;0];
omega       = [0;0;0]; % rad/sec
omegaRWA    = [0;0;0]; % rad/sec
d.inr       = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
qTarget     = QUnit([1;0.004;0.0;0]); % Normalize
d.torque    = [0;0;0]; % Disturbance torque

We command a small attitude offset around the x axis, which is done by changing the second element in 
the quaternion. We unitize the quaternion to prevent numerical issues. Figure 12-4 shows the output plots.

In this case, the angular error around the x axis is reduced to zero. The inertial angular momentum 
remains “constant,” although it jumps around a bit due to truncation error in the numerical integration. 
This is expected and it is good to keep checking the angular momentum with the control system running. 
If it doesn’t remain nearly constant, the simulation has issues. Internal torques do not change the inertial 
angular momentum. This is why reaction wheels are called momentum exchange devices. They exchange 
momentum with the spacecraft body, but aren’t added to the inertial angular momentum total.

The attitude rates remain small in both cases so that the Euler coupling torques are small. This justifies 
our earlier decision to treat the spacecraft as three double integrators. It also justifies our quaternion error to 
small angle approximation.
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Figure 12-3.  Controlling a suddenly applied external torque
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Figure 12-4.  Commanding a small attitude offset about the x-axis
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12-4. Performing Batch Runs of a Simulation
Problem
You’ve used the simulation script to verify momentum conservation and test the controller, but note how 
you have to change lines at the top by hand for each case. This is fine for development, but can make it very 
difficult to reproduce results; you don’t know the initial conditions that generated any particular plot. You 
may want to run the simulation for a whole set of inputs and do Monte Carlo analysis.

Solution
Create a new function based on the script with inputs for the critical parameters. A new data structure will 
store both the inputs and the outputs, so you can save individual runs to mat-files. This makes it possible to 
replot the results of any run in the future, or redo runs from the stored inputs; for example, if you find and fix 
a bug in the controller.

How It Works
Start from the simulation script copied into a new file. Add a function signature. Replace the initialization 
variables with an input structure. Perform the simulation, and then save the input structure along with your 
generated output. The resulting function header is shown next. The input structure includes the RHS data, 
controller data, and simulation timing data.

%% SpacecraftSimFunction Spacecraft reaction wheel simulation function
% Perform a simulation of a spacecraft with reaction wheels given a
% particular initial state.
%% Form
% d = SpacecraftSimFunction( x0, qTarget, input )
%% Inputs
% x0       (7+n,1) Initial state
% qTarget (4,1) Target quaternion
% input       (.) Data structure
%                     .rhs (.) RHS data
%                     .pd (:) Controllers
%                     .dT (1,1) Timestep
%                     .tEnd (1,1) Duration
%                     .controlIsOn Flag
%% Outputs
%     d       (.) Data structure
%                     .input
%                     .x0
%                     .qTarget
%                     .xPlot
%                     .dPlot
%                     .tPlot
%                     .yLabel
%                     .dLabel
%                     .tLabel
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Now, you can write a script that calls the simulation function in a loop. The possibilities are endless: 
you can test different targets, vary the initial conditions for a Monte Carlo simulation, or apply different 
disturbance torques. You can perform statistical analysis on your results, or identify and plot individual runs 
based on some criteria. In this example, you will find the maximum control torque applied in each run.

%% Multiple runs of spacecraft simulation
% Perform runs of SpacecraftSimBatch in a loop with varying initial
% conditions. Find the max control torque applied for each case.
%% See also
% SpacecraftSimFunction
 
sim = struct;
%% Control design
% Design a PD controller
dC            = PDControl( 'struct' );
dC(1).zeta    = 1;
dC(1).wN      = 0.02;
dC(1).wD      = 5*dC(1).wN;
dC(1).tSamp   = dT;
dC(1)         = PDControl( 'initialize', dC(1) );
 
% Make all 3 axis controllers identical
dC(2)         = dC(1);
dC(3)         = dC(1);
 
sim.pd = dC;
 
%% Spacecraft model
% Make the spacecraft nonspherical; no disturbances
rhs     = RHSSpacecraftWithRWA;
rhs.inr       = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
rhs.torque    = [0;0;0]; % Disturbance torque
sim.rhs = rhs;
 
%% Initialization
% Initialize duration, delta time states and inertia
sim.tEnd        = 600;
sim.dT          = 1;
sim.controlIsOn = true;
 
% Spacecraft state
qECIToBody  = [1;0;0;0];
omega       = [0;0;0]; % rad/sec
omegaRWA    = [0;0;0]; % rad/sec
x0 = [qECIToBody;omega;omegaRWA];
 
% Target quaternions
qTarget     = QUnit([1;0.004;0.0;0]); % Normalize
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%% Simulation loop
clear d;
for k = 1:10;
  % change something in your initial conditions and simulate
  x0(5)  = 1e-3*k;
  thisD  = SpacecraftSimFunction( x0, qTarget, sim );
 
  % save the run results as a mat-file
  thisDir = fileparts(mfilename('fullpath'));
  fileName = fullfile(thisDir,'Output',sprintf('Run%d',k));
  save(fileName,'-struct','thisD');
 
  % store the run output
  d(k) = thisD;
end
 
%% Perform statistical analysis on results
% ... as you wish
for k = 1:length(d)
  tMax(k) = max(max(d(k).dPlot(2:4,:)));
end
figure;
plot (1:length(d),tMax);
xlabel ('Run')
ylabel ('Torque˽(Nm)')
title ('Maximum˽Control˽Torque');
 
% Plot a single case
kPlot = 4;
PlotSpacecraftSim( d(4) );

Figure 12-5 shows the maximum torque results.
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An individual run’s output is shown here.

>> d(1)
ans =
 
      input:   [1x1 struct]
      x0:      [10x1 double]
      qTarget: [4x1 double]
      xPlot:   [10x600 double]
      dPlot:   [7x600 double]
      tPlot:   [1x600 double]
      tLabel:  'Time (min)'
      yLabel:   {1x10 cell}
      dLabel:   {1x7 cell}

As another interesting example, you can give the spacecraft a higher initial rate and see how the 
controller responds. From the command line, change the initial rate around the x axis to 0.2 rad/sec and call 
the simulation function with no outputs, so that it generates the full suite of plots. You see that the response 
takes a long time, over 20 minutes, but the rate does eventually damp out.

Figure 12-5.  Maximum control torque over 10 simulation runs
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The full simulation function is shown next. The built-in demo performs an open-loop simulation of 
the default spacecraft model with no control, as with the momentum conservation test performed in the 
previous recipe (Figure 12-2).

Figure 12-6.  Control response to a large rate in x. The rate does damp out, eventually!

function d = SpacecraftSimFunction( x0, qTarget, input )
 
%% Handle inputs
if nargin == 0
   % perform an open loop simulation
   input = struct;
   input.rhs = RHSSpacecraftWithRWA;
   input.pd = [];
   input.dT = 1; % sec
   input.tEnd = 600; % sec
   input.controlIsOn = false;
   x0 = [1;0;0;0;1e-3*randn(6,1)];
   SpacecraftSimFunction( x0, [], input );
   return;
end
 
if isempty(x0)
    qECIToBody = [1;0;0;0];
    omega = [0;0;0]; % rad/sec
    omegaRWA = [0;0;0]; % rad/sec
    x0 = [qECIToBody;omega;omegaRWA];
end
 
if isempty(qTarget)
   qTarget = x0(1:4);
end
 
%% Simulation
% State vector
x = x0;
nWheels = length(x0)-7;
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% Plotting and number of steps
n = ceil(input.tEnd/input.dT);
xP = zeros(length(x),n);
dP = zeros(7,n);
 
% Find the initial angular momentum
d = input.rhs;
[˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
 
% Run the simulation
for k = 1:n
   % Control
   u = [0;0;0];
   angleError = [0;0;0];
   if( input.controlIsOn )
      % Find the angle error
      angleError = ErrorFromQuaternion( x(1:4), qTarget );
      % Update the controllers individually
      for j = 1:nWheels
        [u(j), input.pd(j)] = PDControl('update',angleError(j),input.pd(j));
      end
   end
 
   % Wheel torque
   d.torqueRWA = d.inr*u;
 
   % Get the delta angular momentum
   [˜,hECI] = RHSSpacecraftWithRWA(0,x,d);
   dHECI = hECI - hECI0;
   hMag = sqrt(dHECI'*dHECI);
 
   % Plot storage
   xP(:,k) = x;
   dP(:,k) = [hMag;d.torqueRWA;angleError];
 
   % Right hand side
   x = RungeKutta(@RHSSpacecraftWithRWA,0,x,input.dT,d);
end
 
[t,tL] = TimeLabl((0:(n-1))*input.dT);
 
%% Store data
% Record initial conditions
d = struct;
d.input = input;
d.x0 = x0;
d.qTarget = qTarget;
d.xPlot = xP;
d.dPlot = dP;
d.tPlot = t;
d.tLabel = tL;
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y = cell(1,nWheels);
for k = 1:nWheels
   y{k} = sprintf('\\omega_%d',k);
end
d.yLabel = {'q_s','q_x','q_y','q_z','\omega_x','\omega_y','\omega_z',y{:}};
d.dLabel = {'\DeltaH(Nms)','T_x(Nm)', 'T_y(Nm)', 'T_z(Nm)', ...
'\theta_x(rad)', '\theta_y(rad)', '\theta_z(rad)'};
 
if nargout == 0
  PlotSpacecraftSim( d );
end

The plotting code is put into a separate function that accepts the output data structure. Create and save 
the plot labels in the simulation function. This allows you to replot any saved output. Add a statement to 
check for non-zero angle errors before creating the control and angle errors plots, since they are not needed 
for open-loop simulations.

■■ Tip   Use the fields in your structure for plotting without renaming the variables locally, so you can  
copy/paste individual plots to the command line after doing a run of your simulation.

%% PlotSpacecraftSim Plot the spacecraft simulation output
%% Form
% PlotSpacecraftSim( d )
%% Inputs
% d (.) Simulation data structure
 
%% Copyright
% Copyright (c) 2015 Princeton Satellite Systems, Inc.
% All rights reserved.
 
function PlotSpacecraftSim( d )
 
t = d.tPlot;
 
yL = d.yLabel(1:4);
PlotSet( d.tPlot, d.xPlot(1:4,:), 'xlabel', d.tLabel, 'ylabel', yL,...
  'plottitle', 'Attitude', 'figuretitle', 'Attitude');
 
yL = d.yLabel(5:7);
PlotSet(d.tPlot, d.xPlot(5:7,:), 'xlabel', d.tLabel, 'ylabel', yL,...
  'plottitle', 'BodyRates', 'figuretitle', 'BodyRates');
 
yL = d.yLabel(8:end);
PlotSet( t, d.xPlot(8:end,:), 'xlabel', d.tLabel, 'ylabel', yL,...
  'plottitle', 'RWARates', 'figuretitle', 'RWARates');
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yL = d.dLabel(1);
PlotSet( d.tPlot, d.dPlot(1,:), 'xlabel', d.tLabel, 'ylabel', yL,...
  'plottitle', 'InertialAngularMomentum',...
  'figuretitle', 'InertialAngularMomentum');
 
if any(d.dPlot(5:end,:)˜=0)
  yL = d.dLabel(2:4);
  PlotSet( d.tPlot, d.dPlot(2:4,:), 'xlabel', d.tLabel, 'ylabel', yL,...
    'plottitle', 'ControlTorque', 'figuretitle', 'ControlTorque');
  yL = d.dLabel(5:end);
  PlotSet( d.tPlot, d.dPlot(5:end,:), 'xlabel', d.tLabel, 'ylabel', yL,...
    'plottitle', 'AngularErrors', 'figuretitle', 'AngularErrors');
end

An interesting exercise for you would be to replace the fixed disturbance input, d.torque, with a 
function handle that calls a disturbance function. This forms the basis of spacecraft simulation in our 
Spacecraft Control Toolbox, where the disturbances are calculated from the spacecraft geometry and space 
environment as it rotates and moves along its orbit.

Summary
This chapter demonstrated how to write the dynamics and implement a simple control law for a spacecraft 
with reaction wheels. Our control system is only valid for small angle changes and will not work well if the 
angular rates on the spacecraft get large. In addition, we do not consider the torque or momentum limits 
on the reaction wheels. You also learned about quaternions and how to implement kinematics of rigid body 
with quaternions. We showed you how to get angle errors from two quaternions. Table 12-1 lists the code 
developed in this chapter.

Table 12-1.  Chapter Code Listing

File Description

RHSSpacecraftWithRWA RHS for spacecraft with reaction wheels.

ErrorFromQuaternion Spacecraft simulation script.

SpacecraftSim Spacecraft simulation script.

SpacecraftSimBatch Spacecraft simulation function.

BatchSimRuns Multiple runs of the spacecraft simulation.

PlotSpacecraftSim Plot the simulation results.

QTForm Transform a vector opposite the direction of the quaternion.

QUnit Normalize a quaternion.
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