
213© Todd Tomlinson 2017
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_8

CHAPTER 8

Integrating Drupal 8

In many organizations Drupal web sites often provide and consume content and services to and from
external systems. Those systems may be other web sites, enterprise applications, or third-party services.
Drupal has historically provided the ability to integrate with external systems through a combination of
contributed modules, which have often been fraught with complexities that made it difficult at best to
integrate with Drupal. Drupal 8 changes all of that with the inclusion of RESTful web services in core and
they work beautifully.

This chapter focuses on

•	 Enabling and configuring RESTful web services in Drupal 8

•	 Using views to expose content to external sources

Using RESTful Web Services in Drupal 8
Before venturing into the RESTful web services in Drupal 8, I first describe what RESTful web services are
and why you may be interested in using them on your Drupal site. Representational state transfer (REST), or
RESTful web services, is one way of providing interoperability between computer systems on the Internet,
such as a Drupal web site, and other systems that may interact with Drupal. REST-compliant web services
allow requesting systems to access and manipulate resources stored in a system using a uniform and
predefined set of stateless operations. Other forms of web services exist, and they expose their own arbitrary
sets of operations such as WSDL and SOAP, but Drupal has standardized on REST as the preferred means of
supporting web services.

Web resources were first defined on the World Wide Web as documents or files identified by their
URLs, but today they have a much more generic and abstract definition encompassing everything or entity
that can be identified, named, addressed, or handled, in any way whatsoever, on the Web. Images, videos,
documents, and content are just a few examples of resources that may be accessed, updated, created, or
deleted through a web service. In a RESTful web service, requests made to a resource’s URI elicit a response
that may be in formatted as XML, HTML, JSON, or other defined formats. The response may confirm that
some alteration has been made to the stored resource, and it may provide links to other related resources
or collections of resources. The operations provided by a RESTful web service align with the standard HTTP
verbs of GET, POST, PUT, and DELETE. By making use of HTTP, which is a stateless protocol, and HTTP’s
standard operations, REST systems aim for fast performance, reliability, and the ability to grow. They employ
reused components that can be managed and updated without affecting the system as a whole, even while it
is running.

https://en.wikipedia.org/wiki/Web_service#Web service
https://en.wikipedia.org/wiki/Internet#Internet
https://en.wikipedia.org/wiki/Stateless_protocol#Stateless protocol
https://en.wikipedia.org/wiki/WSDL#WSDL
https://en.wikipedia.org/wiki/URL#URL

Chapter 8 ■ Integrating Drupal 8

214

RESTful web services in a Drupal environment provide the ability to:

•	 Query Drupal for content (nodes, taxonomy, users, and comments) stored on a site

•	 Create new content

•	 Update existing content

•	 Delete content

Due to the nature of the actions, as a site administrator you can choose whether to restrict access to
RESTful services through standard HTTP authentication methods, such as requiring a user ID and password
of a user who has an account on the Drupal site in order to perform any or all operations.

The benefits of RESTful web services on Drupal is that it opens the door to a virtually unlimited number
of opportunities to provide information to external systems as well as the ability to create and maintain
content that is sourced from systems outside of Drupal. For example, a manufacturing company that uses
an ERP system as the definitive source of truth for information related to products might use a RESTful web
service to update product descriptions, inventory levels, and pricing on its Drupal site where they sell their
products. Conversely, an organization that sells products through a network of distributors could provide a
RESTful web service that provides real-time access to current product information. The opportunities are
limitless; it only requires that the external system support REST.

RESTful Modules in Drupal 8 Core
Drupal 8 ships with the basic modules required to support RESTful web services. All you need to do is enable
the modules and configure them to support the types of transactions you want to support on your site. The
modules provided in core are as follows:

•	 HAL: Serializes entities using Hypertext Application Language

•	 HTTP Basic Authentication: Provides the HTTP Basic authentication provider

•	 RESTful Web Services: Exposes entities and other resources as the RESTful web API

•	 Serialization: Provides a service for (de)serializing to and from formats such as JSON
and XML

To enable the modules, navigate to Extend and scroll down until you see the web services section. For
demonstration purposes, we enable all four modules (see Figure 8-1).

Figure 8-1.  The RESTful modules in core

Drupal core provides the basic architectural components required to support RESTful web services;
however, as of when this chapter was written, there is not a user interface for configuring and managing the
services created by the core modules. There is a contributed module that provides these capabilities, called
the REST UI module (drupal.org/project/restui). To facilitate the creation and management of RESTFul
web services, download and enable the module.

Chapter 8 ■ Integrating Drupal 8

215

After enabling the module, navigate to the Configuration page and you’ll see a new entry in the web
services section called Rest. Click on the link and you will see a page that describes the enabled services as
well as the other available services that may be enabled (see Figure 8-2).

Figure 8-2.  The list of available off-the-shelf services

Retrieving Content Through REST
With the basics in place, this section demonstrates retrieving a node through a web service before
configuring additional capabilities. To demonstrate accessing the services via REST, we need a tool that
allows us to make HTTP GET requests. The Chrome Postman extension (getpostman.com) is an easy-to-use
tool for performing REST operations. There are dozens of other tools for Chrome, Safari, and Firefox. Use the
tool that you’re most comfortable with. I’ll use Postman throughout this chapter.

To execute a GET request, we use a node on the Drupal 8 instance, e.g., node/1, and in Postman, we use
the URL of node/1?_format=hal_json to retrieve the JSON-formatted output from the RESTful web service.
The result after executing the GET request is shown in Figure 8-3.

Chapter 8 ■ Integrating Drupal 8

216

Creating a Node Through REST
With the ability to connect to REST on Drupal 8 and retrieve content through the RESTful services, let’s take
the next step and configure REST to accept POST requests so that we can create and update content on the
site.

The first step is to enable POST on the Content resource. By default, POST is disabled to protect the
resources on your site from potentially unauthorized access. To enable POST, navigate to Configuration ➤
Services ➤ REST and, on the REST resources page, click on the Edit button for the Content Resource (see
Figure 8-2). On the Settings for Resource Content page, check the box for POST and the boxes for hal_json,
json, and xml in the Accepted Request Formats section, as well the basic_auth box in the Authentication
Providers section (see Figure 8-4). Then click the Save Configuration button at the bottom of the page to
complete the process.

Figure 8-3.  The JSON results of a GET request

Chapter 8 ■ Integrating Drupal 8

217

With POST enabled, it’s time to create a new article node. Using Postman, we can set the following
values:

•	 Authorization: Basic Auth and we use the user ID and password of a test user that we
set up on the Drupal 8 site that has the administrator role.

•	 Headers:

•	 Authorization is automatically set up for you when you enabled basic
authorization in the previous step.

•	 X-CSRF-TOKEN with a value that can be found by visiting example.com/rest/
session/token (replace example.com with the domain name of your site). This
is a secure token that provides another level of security on your site to external
resources performing updates via REST.

•	 Content-Type should be set to a value of application/hal+json (valid options
are hal+json, json, or xml, depending on what you enabled when you set up
POST on admin/confg/services/rest.

Figure 8-4.  Enabling POST

Chapter 8 ■ Integrating Drupal 8

218

•	 The Body value will be a valid JSON-formatted object that maps to the fields required
to create an article. For demonstration purposes, we create an article with a title
and body:

{
 "_links": {
 "type": {
 "href":"http://127.0.0.1/drupal8/rest/type/node/article"
 }
 },

 "title":[{
 "value":"My new article created through REST"
 }],

 "body":[{
 �"value": "This is an article body that was created through the REST POST

method"
 }],

 "type":[{
 "target_id":"article"
 }]
 }

We paste the JSON object into the body field on Postman.
The next step is to perform the post. Select POST from the list of available methods and enter the URL on

the site that is used by REST to create a new node. In this case:

http://127.0.0.1/drupal8/entity/node?_format=hal_json

Note the addition of ?_format=hal_json to the end of the URL. This instructs REST on Drupal to
process the incoming POST as a hal+json request.

After you click the Send button, Postman responds with the status (in this case 201 Created) and the
results that were returned from the POST (see Figure 8-5).

http://127.0.0.1/drupal8/entity/node?_format=hal_json

Chapter 8 ■ Integrating Drupal 8

219

To verify that the article was successfully created, navigate to Content to see if the new node is listed. As
shown in Figure 8-6, it appears in the list with the title that we created through the POST.

Figure 8-5.  Creating a node through Postman

Figure 8-6.  The new article appears in the list

Chapter 8 ■ Integrating Drupal 8

220

If you view the new article, you’ll see that the body content was also successfully created (see Figure 8-7).

Figure 8-7.  The new article was created through REST with a title and body

Figure 8-8.  Enabling PATCH

Updating and Deleting a Node Through REST
You can also update existing nodes and delete nodes using REST. To perform updates, you need to enable the
PATCH method on the REST configuration page for content. Navigate to Configuration ➤ REST and, on the
REST Resources page, click on the Edit button for the Content resource. On the Setting for Resource Content,
check the boxes for PATCH and the Request Formats and Authentication Providers, as shown in Figure 8-8.

With PATCH enabled, the next step is to return to Postman to specify the changes that you want to make
to your article. We can update both the title and body fields by changing the word “added” to the word
“updated,” as shown in the following JSON object.

{
 "_links": {
 "type": {
 "href":"http://127.0.0.1/drupal8/rest/type/node/article"
 }
 },

 "title":[{
 "value":"My new article updated through REST"
 }],

Chapter 8 ■ Integrating Drupal 8

221

 "body":[{
 "value": "This is an article body that was updated through the REST POST method"
 }],

 "type":[{
 "target_id":"article"
 }]
 }

Now update the URL in the Postman interface to reflect that we want to update the node with a node ID
of 6 and change the method to PATCH, as shown in Figure 8-9.

Figure 8-9.  Using PATCH in Postman to update an existing node

Figure 8-10.  The updated article

After clicking the Send button, visit your Drupal 8 site and view the existing node. You can see that the
changes were successfully made (see Figure 8-10).

To delete an existing content item, first navigate to Configuration ➤ REST and update the Content
Resource to accept the Delete method. Follow the same steps as we did for PATCH, checking the same set of
options.

After enabling Delete, return to Postman and simply change the method from PATCH to Delete, leaving
the URL as it was for PATCH. You should clear out the body field in Postman, as no values are required. Click
the Send button and then visit your Drupal 8 site, where you’ll see that the node you previously created is
now deleted.

Chapter 8 ■ Integrating Drupal 8

222

Using REST for Other Entity Types
The examples in the previous section focused on using the REST interface to perform actions on content.
You may also use REST to perform similar actions on other entities and objects on a Drupal 8 site. Visit
the admin/config/services/rest page to see a list of all the other available resources, such as taxonomy
terms, comments, blocks, menus, etc., that may be accessed through REST. To use REST to query, update,
and delete taxonomy terms, for example, enable the Resource taxonomy term and configure the various
methods.

Generating Lists of Content Using Views and REST
The previous sections demonstrated using GET to retrieve a single content item from Drupal through REST.
Retrieving a single content item is a valid use case; however, a more common use case is to retrieve a list of
content items, for example, a list of all articles on a Drupal site. The process for creating a list-based RESTful
web service is to employ views as the mechanism for generating the list and for responding to the web
services request.

For demonstration purposes, we use the Devel module to generate 50 articles on our Drupal 8 site.
If you haven’t used the Devel module and its content-creation tools, I suggest that now would be a good
time to try it out. Download and install Devel and all of its submodules from drupal.org/project/
devel. After downloading and enabling the Devel and Devel Generate modules, navigate to Configuration
➤ Development ➤ Generate content. Check the box to Generate Articles and leave the defaults for the
remainder of the options. Finish the process by clicking the Generate button at the bottom of the page. You
can verify that the articles were created by visiting the Content page, where you’ll see a long list of articles.

With the content in place, it’s time to create the view. Navigate to Structure ➤ Views and click on the
Add View button. We name the view RESTful Article List and update the settings to Show Content of type
Article and sorted by Unsorted. Leave the options Create a Page and Create a Block unchecked. Check the
Provide a REST export option at the bottom of the page and enter rest/articles/list in the REST export
path. You can continue the process by clicking the Save and Edit button (see Figure 8-11).

Chapter 8 ■ Integrating Drupal 8

223

On the RESTful article list (content) page, you can already see that the view is generating JSON objects
for the articles on the Drupal 8 site, but there are a few changes that we need to make before saving the view
and testing it through Postman. The first change is to enable basic authentication so that access is restricted
to those who have permissions to view articles through REST. To enable authentication, click the No
Authentication Is Set option in the second column of the view in the Path Settings section. After clicking the
list, Drupal displays the available authentication methods—basic_auth and user. For this example, we click
the basic_auth option and then save the changes by clicking the Apply button.

The second change that we need to make is to remove the limit of only 10 articles returned by the view.
Click the Display a Specified Number of Items option in the Pager section, selecting Display All Items in the
List of Options. Then click the Apply button to update the view. The practice site has a limited number of
articles, so returning all articles won’t create a performance issue. If you have a site with a large number of
articles, you may want to consider limiting the number returned by the view.

After making the changes, click the Save button. The view at this point is ready to use and is configured,
as shown in Figure 8-12.

Figure 8-11.  The articles list REST View

Chapter 8 ■ Integrating Drupal 8

224

Return to the Postman tool and leave the authorization and header values as they were in previous
examples. (Note: If you left the Postman tool and are returning, you’ll need to re-enter the values for
authorization and headers before continuing the process. See the previous example for creating a POST
request for an article for the appropriate values.) We need to update the URL to reflect the URL set in the
view, which is in this case is http://127.0.0.1/drupal8/rest/articles/list?_format=hal_json (replace
http://127.0.0.1/drupal8 with the appropriate value for your site). Then we update the method to GET
and click the Send button to retrieve the values from the view (see Figure 8-13).

Figure 8-12.  The article listing RESTful web services view

http://127.0.0.1/drupal8/rest/articles/list?_format=hal_json
http://127.0.0.1/drupal8

Chapter 8 ■ Integrating Drupal 8

225

You can expand on the capabilities of this view by adding contextual filters to restrict the list of nodes to
specific criteria. For example, I could update the view to accept a contextual filter of the content ID and limit
the response only to that node with that ID. To do so, you add a contextual filter of ID, as shown in Figure 8-14.

Figure 8-13.  The results of executing the article listing RESTful view

Chapter 8 ■ Integrating Drupal 8

226

After updating the view, return to the Postman interface and update the URL to include a node ID of an
article on the Drupal 8 site. We execute the request by clicking the Send button and we will see in the results
that only the node with an ID of 8 was returned in the results (see Figure 8-15).

Figure 8-14.  Adding a contextual filter to the RESTful view

Chapter 8 ■ Integrating Drupal 8

227

You could expand on this example to restrict the list to articles tagged with a specific taxonomy term
or any other criteria that your use case requires. You may also create views to generate lists of other content
types, as well as any other lists you can create using views.

Generating Output in Other Formats
In the previous examples, we used hal_json as the format that was returned by the RESTful web service.
Views also provide the ability to export results in JSON and XML. To change the format, visit the view and
click on the Settings link in the Format section. Check the boxes shown on the Rest Export: Style Options
page (see Figure 8-16).

Figure 8-15.  Executing a limited search through the RESTful view

Figure 8-16.  Other supported output formats

After changing the supported formats, return to Postman and update the URL to reflect the different
formats. We can test the XML output first by changing the end of the URL from _format=hal_json to
_format=xml. The resulting output is shown in Figure 8-17.

Chapter 8 ■ Integrating Drupal 8

228

Using Views to Expose Content to External Sources
The previous section demonstrated using views and REST to expose lists of content to a REST client through
a RESTful web service. While REST is a prevailing standard and is supported by nearly every platform in the
market, there may be instances where REST isn’t possible and a simplified approach for consuming content
from your Drupal 8 site is required. The solution in this case has been around for years and that is generating
RSS or OPML feeds with views. with RSS (Rich Site Summary or Really Simple Syndication) and OPML
(Outline Processor Markup Language). The client imply needs to be able to consume the output generated
by visiting a URL.

Creating an RSS or OPML-based view is relatively simple. Go to Structure ➤ Views and click on the Add
View button. On the Add View page, we enter feeds as the name of the view and leave the rest of the page set
to the default values. Click the Save and Edit button to continue.

On the feeds (content) page, we have to make only a few changes in order to generate an RSS feed:

•	 In the Displays section, click the Add button and select Feed from the list of options.

•	 In the Feed Settings section, update the path by clicking on the No Path Is Set option.
For demonstration purposes, we enter feeds/content.

•	 We change the page from Display a Specified Number of Items |10 items to Display
All Items then save the changes.

After saving the view, we visit the URL we entered in the path settings and will see the output of the view
(see Figure 8-18).

Figure 8-17.  Output from the view as XML

Chapter 8 ■ Integrating Drupal 8

229

To generate an OPML-based feed, simply change the Format value from RSS Feed to OPML.
You may also want to explore the views data export module (drupal.org/project/views_data_export)

as an alternative to REST, RSS, and OPML. Views data export provides the ability to generate CSV, XLS, DOC,
TXT, and XML files from views.

Creating Custom RESTful APIs
The previous examples demonstrated using off-the-shelf Drupal modules for providing RESTful APIs.
There may be instances where the Drupal 8 Core REST modules and views do not provide you with the
functionality you need and custom development is the only option. This simple example demonstrates
how to create a custom RESTful web service that responds to a GET request. While a simple example, it
demonstrates the skeleton of a custom module that you could then expand upon to meet your specific
needs.

Creating the Custom Module
We create the new custom module, demo_rest_api, in the /modules/custom directory on our Drupal 8 site.
Set up the directory structure as follows:

└── demo_rest_api
 └── src
 └── Plugin
 └── rest
 └── resource

Figure 8-18.  The output of an RSS feed-based view

Chapter 8 ■ Integrating Drupal 8

230

The first file that we create is the .info.yml file for the module. In the module’s root directory, create a
file named demo_rest_api.info.yml and, in that file, place the following code:

name: demo_rest_api
type: module
description: A demo module that creates a REST endpoint
core: 8.x
package: Custom

The next file that we create is a plugin to handle the REST API that the module will provide. A plugin is a
small piece of functionality that may be swapped in and out of your Drupal site. Plugins that perform similar
functionality are called plugin types. For more information on plugins, visit drupal.org/docs/8/api/plug-api.

Plugins are stored in the src/Plugin directory and are grouped by plugin type. In this case, the plugin
that we’re creating is for REST so we’ll create a subdirectory in the Plugin directory named rest. In the src/
Plugin/rest directory, we’ll create a resource directory, which is where the actual plugin code will reside.
We call this plugin DemoResource and define it in a file named DemoResource.php.

Place the following code in the src/Plugin/rest/resource/DemoResource.php file:

<?php

namespace Drupal\demo_rest_api\Plugin\rest\resource;

use Drupal\rest\Plugin\ResourceBase;
use Drupal\rest\Plugin\ResourceInterface;
use Drupal\rest\ResourceResponse;

/**
 * Provides a Demo Resource
 *
 * @RestResource(
 * id = "demo_rest",
 * label = @Translation("Demo Rest endpoint"),
 * uri_paths = {
 * "canonical" = "/demo/rest"
 * }
 *)
 */

class DemoResource extends ResourceBase {

 /**
 * Responds to entity GET requests.
 * @return \Drupal\rest\ResourceResponse
 */
 public function get() {
 $response = ['myresponse' => 'Hello, this is a rest service response from Drupal 8'];
 return new ResourceResponse($response);
 }
}

Chapter 8 ■ Integrating Drupal 8

231

The code is relatively straightforward:

•	 We specify the namespace so Drupal knows where the DemoResource class resides.

•	 We include the components that we need to construct the class from Drupal\rest\.

•	 Next, in the docblock, we specify the ID of my RestResource, which is the label that
appears in the RestUI interface, and the path that the RESTful API can be accessed
from.

•	 The class DemoResource extends the base class of ResourceBase, which is part of the
REST architecture included with Drupal core.

•	 The single function that we provide is get(). This function does one thing, it formats
a response message that is sent back to the client that called the function. We could
also provide other functions such as delete and patch.

After saving the files, navigate to the Extend page and enable the module. After enabling the module,
assuming you have installed the RestUI module, go to Configuration ➤ REST. Scan through the list of
resources until you find your Demo REST endpoint (as defined in the docblock in the DemoResource.php
file). Enable it and then configure the endpoint, as shown in Figure 8-19.

Figure 8-19.  Configuring the Demo REST endpoint

With the RESTful API enabled and configured, you’re ready to test it. We use Postman as the means for
testing the endpoint. Set up the headers by specifying the Content-Type as application/json and set up
basic authorization where you specify the user name and password from your Drupal 8 site. Then enter the
appropriate URL—in this case example.com/demo/rest?_format_json (replace example.com with your site’s
domain name). Choose GET from the list of methods to execute and send the request. The results of this test
are shown in Figure 8-20. The response is "myresponse" with the value as set in the GET function.

Chapter 8 ■ Integrating Drupal 8

232

While it is a simple example, it demonstrates the minimum viable code required to create a custom
RESTful API in Drupal 8. You may use this as a template to create custom services that meet your specific
requirements.

Other Integration Options
There are other integration options that provide you with the capabilities required to support unique needs,
such as importing content into your new site through a module such as the Feeds module (drupal.org/
project/feeds). While commonly used to import content during the process of migrating a site to Drupal,
the Feeds module also provides the ability to run periodic imports of content from external third-party
services (via URL and a structured feed such as XML, or via a comma-separated value—CSV—file).

If Feeds does not meet your needs, you may also consider writing a custom module that consumes as
RESTful web service from another source and performs the required transformations on that information
before storing it in the Drupal database.

Summary
Drupal 8’s off-the-shelf RESTful web services capabilities provide an easy-to-use approach for integrating
your Drupal site with other web sites, enterprise applications, mobile applications, and third-party services.
You may choose to use the off-the-shelf capabilities of Drupal core or you may want to write your own
custom web services using the capabilities in Drupal core as the foundation for your custom module. The
options and opportunities are virtually limitless.

The next chapter explores improving the user experience for your site administrators and content
authors, often referred to as the forgotten users. They are typically left to the end of the project when there is
little budget, time, and resources. Creating a usable backend offers a payback of potentially huge dividends
over the life of your web site.

Figure 8-20.  The response from the Get request

	Chapter 8: Integrating Drupal 8
	Using RESTful Web Services in Drupal 8
	RESTful Modules in Drupal 8 Core
	Retrieving Content Through REST
	Creating a Node Through REST
	Updating and Deleting a Node Through REST

	Using REST for Other Entity Types
	Generating Lists of Content Using Views and REST
	Generating Output in Other Formats

	Using Views to Expose Content to External Sources
	Creating Custom RESTful APIs
	Creating the Custom Module

	Other Integration Options
	Summary

