
173© Todd Tomlinson 2017
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_7

CHAPTER 7

Optimizing Your Site Architecture

A poorly designed architecture will haunt you every day of your existence until you either perform major
surgery on your site or start over from scratch. Over complicating your Drupal site’s foundation will likely
result in frustrated content creators, poor performance, and maintenance nightmares. There is an easier way
and that is to focus on the right architecture from the beginning.

This chapter focuses on choosing the right approach for the foundation of your site, minimizing the
risk of complexity, security, and performance over the life of your site. The four primary areas of focus are as
follows:

•	 The content types that will be used to author and store content on your site.

•	 The taxonomy that will be used to categorize the content on your site.

•	 The location of content in an enterprise setting.

•	 Off-the-shelf versus custom development.

Content Types
One of the first rules of thumb that I learned early in my Drupal career was the fewer content types I could
have on a site the easier it was to do virtually everything on the site from content editing to page building.
I’ve walked into several situations where a site had dozens if not hundreds of content types and the poor
content editors were at their wit’s end trying to figure out which content type to use for what purpose as each
content type was nearly identical with the only elements on dozens of content types being title and body.

The site builder in those cases believed that they needed to have a different content type for every
purpose, for example a separate content type for news, company news, student news, department X news,
announcements, staff announcements, product announcements, department X announcements, articles,
whitepapers, blog postings, staff biographies, customer success stories, and so on. I’ve pored through dozens
of content types that were exactly the same with the only exception being the name of the content type
and where that content resides on the organization’s site. The mistaken belief in this case is that in order to
segregate content into different categories you need to have a separate content type. Another belief is that if
one use case calls for a field that isn’t applicable to other use cases, for example, an article content type with
just a body and title and a posting content type with a body, title, and image. The reality is that combining
the two use cases into a single content type with an image doesn’t complicate the work of the editorial staff
that maintains the content and, in the scenarios where they don’t need an image, they don’t add an image.
And with different displays, you can render that content type with or without an image.

Chapter 7 ■ Optimizing Your Site Architecture

174

Simplification is the key when it comes to defining and constructing your content types. A common
technique that will help you distill the list of required content types is to create an inventory of what you
believe the content types should be on your site during the information architecture phase of your project.
The inventory should list:

•	 The fields required to capture all of the information to be represented by that content
type, e.g., title, body, featured image

•	 What the content type will be used for, e.g., to display news articles

•	 Where that content will be rendered on the site, e.g., about us page

A spreadsheet is a great tool for capturing, sorting, and distilling the information. The examples shown
in Figure 7-1 point to the likely scenario of only needing one or at the most two content types to address all of
the requirements for a site.

Figure 7-1.  Content type analysis spreadsheet

Examining the spreadsheet, you’ll see that all of the content types have common fields with the lone
exception of events, which may warrant the use of a separate content type, as it is the only one that has date
and location fields. While not all content types may equally use each field, having a flexible general-purpose
content type outweighs the complexity of having dozens or hundreds of specific content types.

Using the examples in Figure 7-1, my recommendation is to have two content types, a general-purpose
article content type with the following fields:

•	 Title

•	 Body

•	 Featured Image

•	 Date published

•	 Author

•	 File attachment

I would also create an event content type with the same fields plus an event date and a location field.
On the article content type, I suggest adding two taxonomy-driven fields—Article Type and Where

Used. The Article Type taxonomy would include the values found in the first column of the spreadsheet,
e.g., featured news, blog post, announcement, staff biography, etc. Those values would be used to segregate
content based on the type of content. The Where Used taxonomy would be used to simplify the process
placing the content in the correct section of the site. Using the Views module, you could create generic
views that render article content based on site section from the URL and the type of content, simplifying and
minimizing the effort required to build and expand your site.

Chapter 7 ■ Optimizing Your Site Architecture

175

Simplifying the Editorial Interface
While Chapter 9 focuses on the details of improving the editorial interface in Drupal 8, it warrants a brief
discussion on the benefits of leveraging two helpful modules that we recommend installing—the Field
Group module (drupal.org/project/field_group) and the Simplify module (drupal.org/project/
simplify). The Field Group module provides the ability to logically group fields on the Node Edit form and
to arrange those groups of fields onto vertical tabs, horizontal tabs, or accordions. The Simplify module
provides the ability to hide certain fields from the Node Edit form based on user role.

After installing the Field Group module, navigate to the content types administration page (Structure ➤
Content Types) and select the Manage Form Display option in the Operations column. Note that the Add a
New Group button has been added to the top of the list of fields (see Figure 7-2).

Figure 7-2.  The list of field group options

For demonstration purposes, we create a new Tabs group by selecting the Tabs option. When you select
the Tabs option, a Label field appears. We enter Articles in the label and click Save and Continue button.
The next form that is displayed (see Figure 7-3) provides the ability to select in which direction the tabs
in this group will be displayed (Vertical or Horizontal) as well as the ability to add a CSS ID and extra CSS
classes. Let’s leave the options at their default values and click Create Group to continue the process.

Figure 7-3.  Configuring a field group

http://dx.doi.org/10.1007/978-1-4842-0253-1_9

Chapter 7 ■ Optimizing Your Site Architecture

176

After creating the Tabs container, I’ll add three individual tabs following the same process with the
exception of selecting Tab instead of Tabs and the options from the drop-down list shown in Figure 7-2.
The three tabs will be labeled Title, Taxonomy, and Content. After creating the three tabs, I will rearrange
the items on the Article Form display (Structure ➤ Content Types ➤ Article ➤ Manage Form Display), as
shown in Figure 7-4. The Articles container is the parent of all items that appear on the Article Node Edit
form. The Title, Taxonomy, and Content tabs are the next level (indented), and the fields have been moved
under their appropriate tabs. To rearrange the items on the page, simply click the + icon and drag the items
to their appropriate position and drop them on the page. After rearranging the items, click the Save button to
preserve your changes.

Figure 7-4.  Rearranging the form fields

Figure 7-5.  The revised Create Article page

After modifying the Article Node form, navigate to the Content page and click the Add Content button.
Select Article on the next page and note the arrangement of the elements on the Create Article page
(see Figure 7-5).

Chapter 7 ■ Optimizing Your Site Architecture

177

The Create Article page now has three vertical tabs titled Title, Taxonomy, and Content. Clicking
through the three tabs, you can see the fields that were placed on each tab. While the Article Content Type is
relatively simple, your editorial team will love you for arranging fields in logical order using tabs instead of a
long “river” of fields down the page.

You can also embed horizontal tabs in a vertical tab, making it even more powerful for complex content
types. In the example shown in Figure 7-6, this content type has hundreds of fields organized into 12 tabs
and on the Related tab there are several embedded horizontal tabs (shown at the bottom of the figure).

Figure 7-6.  A complicated Node Edit form

Chapter 7 ■ Optimizing Your Site Architecture

178

Removing Options from the Node Edit Form
The Node Edit form has several options that you may want to hide (see Figure 7-7).

Figure 7-7.  The node edit options

Figure 7-8.  The Simplify administration form

The Simplify module provides the ability to hide the fields shown in Figure 7-7 by simply checking the
options listed in Figure 7-8. To access the Simplify form, navigate to Configuration ➤ Simplify.

After checking the appropriate options and saving, visit the Node Edit form to see the simplified
interface.

Chapter 7 ■ Optimizing Your Site Architecture

179

Content Types versus Entity Types
Drupal 7 introduced the concept of custom entities, where a custom entity represents any structured content
that you want to define outside of Drupal’s node, comment, file, user, and taxonomy entities. Examining
each of these entity types, you can see that there are fundamental differences between each of them; for
example, a node has an author and date published whereas a user does not have either of those two fields.
While a node entity type will likely handle 99% of the use cases where you need to create a custom template
for capturing, storing, and displaying information, there may be instances where you need something
special and you don’t want to carry the weight associated with using the node entity type (e.g., permissions).
In those rare cases, a custom entity type is likely the best solution.

Creating a custom entity type in Drupal 8 requires a seemingly daunting amount of code. For example,
assume that you need to create a new custom entity called a Contact. The Contact entity type has basic
information about a person, such as their name, address, phone number, and e-mail address. To create the
custom Contact entity, you would need at minimum a:

•	 contact_entity.info.yml file to describe the entity to Drupal 8.

•	 contact_entity.routing.yml file to define the routes associated with the Contact
entity type.

•	 contact_entity.links.menu.yml file to define the menu items for the Contact
entity type.

•	 contact_entity.links.action.yml file to define the action links for the Contact
entity type.

•	 contact_entity.links.task.yml file to add the view, edit, and delete tabs on the
entity view page and the settings tab on the entity settings page.

•	 src/ContactInterface.php file to define the public access to the Contact entity.

•	 src/Entity/Contact.php file to define the Contact entity class.

•	 src/Form/ContactForm.php file, which defines the form for adding and editing
Contact entity content.

•	 src/Form/ContactDeleteForm.php file, which defines the confirmation form that is
called when deleting Contact.

•	 src/Entity/Controller/ContactListBuilder.php file, which defines the header
and row content for the Contact listing page.

•	 src/Form/ContactSettingsForm.php file, which creates a settings form for Contact.

•	 src/ContactAccessControlHandler.php file, which defines the access control
mechanisms for Contact.

When you examine the amount of code required to create a custom entity it is significant, meaning you
really need to have a valid case for why a standard custom content type that uses the node entity wouldn’t
work for your use case. But there may be a case and you fortunately have an alternative to hand-coding
hundreds of lines of code to create an entity and that option is the Drupal Console.

The Drupal Console is a tool that generates boilerplate code for Drupal, as well as provides tools for
interacting with and debugging Drupal. It will save you countless hours of coding and the high probability of
frustration, so I suggest installing it and getting to know its capabilities early in your Drupal 8 journey.

Chapter 7 ■ Optimizing Your Site Architecture

180

You can download and install Drupal Console from the web site, drupalconsole.com. There are three
methods for downloading and installing:

•	 Downloading as a new dependency:

Change directory to Drupal site
cd path-to-your-drupal8-root-directory

Download DrupalConsole
composer require drupal/console:~1.0 \
--prefer-dist \
--optimize-autoloader \
--sort-packages

•	 Downloading using DrupalComposer:

composer create-project \
drupal-composer/drupal-project:8.x-dev \
path-to-your-drupal8-root-directory \
--prefer-dist \
--no-progress \
--no-interaction

•	 Install Drupal Console Launcher:

curl https://drupalconsole.com/installer -L -o drupal.phar mv drupal.phar
/usr/local/bin/drupal chmod +x /usr/local/bin/drupal

For additional details on installing Drupal Console, visit the drupalconsole.com web site.
After installing Drupal Console, the next step is to create your new Contact entity using the Drupal

Console command for constructing all of the code required to define the skeleton of the new entity. The first
step is to create a new module that will be used as the foundation for the new Contact entity. To create the
module, enter the following command from the root directory of your Drupal 8 site:

vendor/drupal/console/bin/drupal generate:module

Drupal Console will then walk you through a series of questions about your new Drupal 8 module:

// Welcome to the Drupal module generator
 Enter the new module name:
 > mymodule
 Enter the module machine name [mymodule]:
 Enter the module Path [/modules/custom]:
 Enter module description [My Awesome Module]:
 > Creates a Customer entity
 Enter package name [Custom]:
 > Other
 Enter Drupal Core version [8.x]:
Do you want to generate a .module file (yes/no) [yes]:
Define module as feature (yes/no) [no]:
Do you want to add a composer.json file to your module (yes/no) [yes]:
Would you like to add module dependencies (yes/no) [no]:

Chapter 7 ■ Optimizing Your Site Architecture

181

Do you want to generate a unit test class (yes/no) [yes]:
Do you confirm generation? (yes/no) [yes]:

Generated or updated files

 1 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/mymodule.info.yml
 2 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/mymodule.module
 3 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/composer.json
 4 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/src/Tests/LoadTest.php

After creating the module, the next step is to create the code required to create the entity. At the
command prompt, enter the following:

vendor/drupal/console/bin/drupal generate:entity:content

Drupal console will then prompt you with the following questions:

 Enter the module name [mymodule]:
 >

 Enter the class of your new content entity [DefaultEntity]:
 > Customer

 Enter the machine name of your new content entity [customer]:
 >

 Enter the label of your new content entity [Customer]:
 >

 Enter the base-path for the content entity routes [/admin/structure]:
 >

 Do you want this (content) entity to have bundles (yes/no) [no]:
 >

 Is your entity translatable (yes/no) [yes]:
 >

 Is your entity revisionable (yes/no) [yes]:
 >

Generated or updated files
 1 - modules/custom/mymodule/mymodule.permissions.yml
 2 - modules/custom/mymodule/mymodule.links.menu.yml
 3 - modules/custom/mymodule/mymodule.links.task.yml
 4 - modules/custom/mymodule/mymodule.links.action.yml
 5 - modules/custom/mymodule/src/CustomerAccessControlHandler.php
 6 - modules/custom/mymodule/src/CustomerTranslationHandler.php
 7 - modules/custom/mymodule/src/Entity/CustomerInterface.php
 8 - modules/custom/mymodule/src/Entity/Customer.php
 9 - modules/custom/mymodule/src/CustomerHtmlRouteProvider.php

Chapter 7 ■ Optimizing Your Site Architecture

182

 10 - modules/custom/mymodule/src/Entity/CustomerViewsData.php
 11 - modules/custom/mymodule/src/CustomerListBuilder.php
 12 - modules/custom/mymodule/src/Form/CustomerSettingsForm.php
 13 - modules/custom/mymodule/src/Form/CustomerForm.php
 14 - modules/custom/mymodule/src/Form/CustomerDeleteForm.php
 15 - modules/custom/mymodule/customer.page.inc
 16 - modules/custom/mymodule/templates/customer.html.twig
 17 - modules/custom/mymodule/src/Form/CustomerRevisionDeleteForm.php
 18 - modules/custom/mymodule/src/Form/CustomerRevisionRevertTranslationForm.php
 19 - modules/custom/mymodule/src/Form/CustomerRevisionRevertForm.php
 20 - modules/custom/mymodule/src/CustomerStorage.php
 21 - modules/custom/mymodule/src/CustomerStorageInterface.php
 22 - modules/custom/mymodule/src/Controller/CustomerController.php

After constructing the module and the entity, visit your site’s modules/custom directory and you will
find all of the files generated by Drupal Console:

├── composer.json
├── customer.page.inc
├── mymodule.info.yml
├── mymodule.links.action.yml
├── mymodule.links.menu.yml
├── mymodule.links.task.yml
├── mymodule.module
├── mymodule.permissions.yml
├── src
│ ├── Controller
│ │ └── CustomerController.php
│ ├── CustomerAccessControlHandler.php
│ ├── CustomerHtmlRouteProvider.php
│ ├── CustomerListBuilder.php
│ ├── CustomerStorage.php
│ ├── CustomerStorageInterface.php
│ ├── CustomerTranslationHandler.php
│ ├── Entity
│ │ ├── Customer.php
│ │ ├── CustomerInterface.php
│ │ └── CustomerViewsData.php
│ ├── Form
│ │ ├── CustomerDeleteForm.php
│ │ ├── CustomerForm.php
│ │ ├── CustomerRevisionDeleteForm.php
│ │ ├── CustomerRevisionRevertForm.php
│ │ ├── CustomerRevisionRevertTranslationForm.php
│ │ └── CustomerSettingsForm.php
│ └── Tests
│ └── LoadTest.php
└── templates
 └── customer.html.twig

6 directories, 26 files

Chapter 7 ■ Optimizing Your Site Architecture

183

You could at this juncture enable your new module and examine the new custom Customer entity type;
however, I want to add a few fields to the entity first so that it represents the requirements that I have for a
Customer, namely the name, address, city, state, ZIP code, phone number, and e-mail address fields. For
simplicity’s sake, I’m going to add each of the fields to the entity type as simple text fields.

Let’s edit the Customer.php file in the src/Entity directory of my module’s directory and add the
following fields after the name field in the baseFieldDefinitions function. (Note: The simple way to add
all of these fields is to copy the name field and change the appropriate values to represent the new field, for
example the index in the $fields array, the setLabel and setDescription values):

 $fields['address'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Address'))
 ->setDescription(t('The address of the the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))
 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['city'] = BaseFieldDefinition::create('string')
 ->setLabel(t('City'))
 ->setDescription(t('The city of the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))
 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

Chapter 7 ■ Optimizing Your Site Architecture

184

 $fields['state'] = BaseFieldDefinition::create('string')
 ->setLabel(t('State'))
 ->setDescription(t('The state of the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))
 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['zipcode'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Zipcode'))
 ->setDescription(t('The zipcode of the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))
 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['phone'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Phone'))
 ->setDescription(t('The phone number of the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))

Chapter 7 ■ Optimizing Your Site Architecture

185

 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['email'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Email'))
 ->setDescription(t('The email of the Contact entity.'))
 ->setRevisionable(TRUE)
 ->setSettings(array(
 'max_length' => 50,
 'text_processing' => 0,
))
 ->setDefaultValue('')
 ->setDisplayOptions('view', array(
 'label' => 'above',
 'type' => 'string',
 'weight' => -4,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -4,
))
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

After adding the fields, save the Contact.php file and edit the CustomerListBuilder.php file to add the
new fields to the buildHeader and buildRow functions, as shown here. Add each of the fields.

class CustomerListBuilder extends EntityListBuilder {

 use LinkGeneratorTrait;

 /**
 * {@inheritdoc}
 */
 public function buildHeader() {
 $header['id'] = $this->t('Customer ID');
 $header['name'] = $this->t('Name');
 $header['address'] = $this->t('Address');
 $header['city'] = $this->t('City');
 $header['state'] = $this->t('State');
 $header['zipcode'] = $this->t('Zip');

Chapter 7 ■ Optimizing Your Site Architecture

186

 $header['phone'] = $this->t('Phone');
 $header['email'] = $this->t('Email');
 return $header + parent::buildHeader();
 }

 /**
 * {@inheritdoc}
 */
 public function buildRow(EntityInterface $entity) {
 /* @var $entity \Drupal\mymodule\Entity\Customer */
 $row['id'] = $entity->id();
 $row['name'] = $this->l(
 $entity->label(),
 new Url(
 'entity.customer.edit_form', array(
 'customer' => $entity->id(),
)
)
);
 $row['address'] = $entity->address->value;
 $row['city'] = $entity->city->value;
 $row['state'] = $entity->state->value;
 $row['zipcode'] = $entity->zip->value;
 $row['phone'] = $entity->phone->value;
 $row['email'] = $entity->email->value;
 return $row + parent::buildRow($entity);
 }

}

After updating the CustomerListBuilder.php file and saving it, enable your new module on the Extend
page (see Figure 7-9).

Figure 7-9.  The new customer entity module

After the module is enabled, you can create, view, and update the customer content by navigating
to the Structure page (see Figure 7-10). You will see two new links on the page—Customer Settings and
Customer List.

Chapter 7 ■ Optimizing Your Site Architecture

187

Click on the Customer List link to see a list of existing customer records. You’ll see each of the fields that
were added to the CustomerListBuilder.php file at the top of the list (see Figure 7-11).

Figure 7-10.  The Structure page

Figure 7-11.  The Customer list page

Chapter 7 ■ Optimizing Your Site Architecture

188

To add a new Customer, click on the Add Customer button and fill in the fields that were added to the
Customer entity. Click the Save button after entering the values (see Figure 7-12).

Figure 7-12.  Adding a new customer

Figure 7-13.  The new customer appears in the list

After adding a new customer, return to the Structure page and click on the Customer List link. You’ll see
the new customer in the list (see Figure 7-13).

Chapter 7 ■ Optimizing Your Site Architecture

189

For each item in the custom list, you can perform edits or deletes through the options presented in the
Operations column.

You can also perform operations on the Customer entity itself by navigating to Structure ➤ Customer
Settings. On this page you’ll find tabs to Manage Fields, Manage Form Display, and Manage Display. Each
of the operations is identical to a standard entity such as a node. You can add custom fields to your custom
entity through the Manage Fields tab (Note: Fields defined in code do not appear on this page; only custom
fields that are added through this page appear here.). Rearrange the fields on the Customer Edit form and
change the rendering of a customer through the Manage Display tab.

It’s also key to understand that customers will not appear on the Content page, similar to how users,
comments, and taxonomy terms don’t appear on that list. To view the customers, you’ll need to visit the
Structure page.

Leveraging Taxonomy
When asked what taxonomy is used for, many people shrug their shoulders and relay the common “freeform
tagging” use case as the only area where taxonomy is used on their site, making taxonomy one of the most
underutilized capabilities of Drupal’s core capabilities. While freeform tagging is a valid use case, there are
many more powerful and useful approaches for leveraging taxonomy that will help optimize and streamline
your site’s architecture.

If you are unfamiliar with taxonomy in Drupal 8, I suggest picking up a copy of Beginning Drupal 8 from
Apress and reviewing the chapter on taxonomy. This section focuses on more advanced use cases of taxonomy.

Taxonomy as an Entity
Before diving into the details of other use cases for taxonomy, it’s important to understand that taxonomy is
another entity type, like nodes, comments, and users. Because taxonomy is an entity type, Drupal provides
the ability to add fields to a taxonomy vocabulary and the terms that are contained with that vocabulary.
Having the ability to add custom fields has several benefits, for example, displaying a page banner at the
top of a list of content filtered by a taxonomy term. Typically we would have solved this use case by creating
a custom block and using block visibility to control when that block would be rendered. The problem with
this approach is when you have hundreds of taxonomy terms. In this case, you would have to have hundreds
of custom blocks. Managing hundreds of blocks and ensuring that taxonomy terms are synchronized with
custom blocks is an administrator’s nightmare. Putting the banner image on the term itself solves the
problem, and through the use of a generic view that displays the banner image based on an argument in the
URL (for example), provides a simple solution to a complex problem.

You can extend the scenarios well beyond just storing a banner image on a taxonomy term; you can
add virtually any field type to a taxonomy term. To demonstrate this capability, visit Structure ➤ Taxonomy
and click on the Add Vocabulary button. We’ll create a new vocabulary called Site Section which we’ll use to
categorize content by where it is supposed to reside on the site. After creating the vocabulary, we click on the
Manage Fields tab (see Figure 7-14). The process for creating and managing fields is identical to creating and
managing fields on a content type.

Figure 7-14.  Creating taxonomy fields

Chapter 7 ■ Optimizing Your Site Architecture

190

For demonstration purposes, we add the banner image field. After clicking on the Add Field button,
we’re presented with a list of types of fields that can be added (see Figure 7-15).

Figure 7-15.  Types of fields

Figure 7-16.  Field details

We select the Image Field type and click the Save and Continue button (which is hidden under the
drop-down list in Figure 7-15) to enter the details of the new image field (see Figure 7-16).

Chapter 7 ■ Optimizing Your Site Architecture

191

After creating the Banner Image field, we can manage where it appears on the Add Term form and
manage how it is displayed when a taxonomy term is rendered. The position of the field on the Add Term
form can be updated by clicking on the Manage Form display tab (see Figure 7-14) and dragging the new
field to the appropriate position in the list of fields. The position of the field when a term is rendered can be
updated by clicking on the Manage Display tab. You may reposition the field by dragging and dropping it in
the list of fields, you may hide the field label, and you can change the format of the field on this page.
All of these actions are identical to how fields are managed on a content type.

After updating the form and display, we add a few new Site Section taxonomy terms. Click on the List
tab and then the Add Term button. The Add Term form now has the ability to add a banner image to the
term being created (see Figure 7-17).

Figure 7-17.  Add term with the Banner image field

After creating several Site Section taxonomy terms and attaching banner images to each term,
we then update the Article Content Type to include the Site Section taxonomy term as a reference field
(see Figure 7-18). To do so, follow these steps:

	 1.	 Navigate to Structure ➤ Content Types.

	 2.	 Click the Manage Fields button in the Operations column.

	 3.	 Click the Add Field button and selected Taxonomy term from the list of possible
field types.

	 4.	 On the Configuration page for the new field, select Site Section as the source of
terms that will be presented to the content author.

	 5.	 Save the field.

	 6.	 Reposition the field to the position where you want it to appear.

	 7.	 Save the Article Content Type.

	 8.	 Then create several articles and select one of the Site Section taxonomy terms
(homepage) as the location where you want those articles to appear. See Figure 7-18.

Chapter 7 ■ Optimizing Your Site Architecture

192

After creating several articles tagged with the Homepage taxonomy term, navigate to Structure ➤ Views
and click on the Add View button to create a new view called Page Banner. On the Add View page, set the
values as follows:

•	 View name: Page Banner

•	 View Settings:

•	 Show: Taxonomy terms

•	 Of type: Site Section

•	 Sorted by: Unsorted

•	 Block Settings

•	 Create a Block: checked

•	 Block Display Settings

•	 Display format: Unformatted list of Fields

•	 Items per block: 1

After clicking the Save and Edit button, update the view’s configuration as follows:

•	 Display name: Page Banner Block

•	 Fields: Taxonomy term: Banner Image (this is the name of the field we added to the
taxonomy term)

•	 In the Advanced section, Contextual Filters: Taxonomy term: Term ID (from URL)

•	 Machine Name: page_banner_block

Then save the view.
With the block ready to place on pages, navigate to Structure ➤ Block Layout. On the Block Layout page,

click the Place Block button in the Header region and located the Page Banner: Page Banner Block. Click the
Place Block button and leave all of the default options as is on the Configure Block page. Click Save Block to
place the block in the Header region. On the Block Layout page, click the Save Blocks button at the bottom
of the page. With the taxonomy terms, content, view, and block in place, you’re ready to test the ability to use
the page banner field on the Site Section taxonomy term as the banner at the top of a page associated with
that term.

Figure 7-18.  Adding a Site Section taxonomy term to an article

Chapter 7 ■ Optimizing Your Site Architecture

193

To view the capabilities of this solution, navigate to the taxonomy term listing page for my homepage
taxonomy term, which is /taxonomy/term/1. Note: Your term ID may be different depending on which
term you have used. To find the term ID of the term you have used navigate to Structure ➤ Taxonomy and
click the List Terms link in the Operations column of the vocabulary that holds the terms you used for Site
Section. Find the term in the list and hover over the Edit link in the Operations column. In the status bar of
your browser, you should see the full URL to the edit page for that term. The term ID will appear directly after
the term/ in the URL.

After entering the correct URL in the browsers address bar and visiting the page, you’ll see the page banner
you assigned to the Homepage taxonomy term displayed at the top of the content area (see Figure 7-19).

Figure 7-19.  The page banner appears

We can make the URL more user and SEO friendly by editing the taxonomy term for Homepage
and creating a URL alias of /homepage. After updating the term, visit the page at example.com/homepage
(replacing example.com with the domain name of your site) and you’ll see the same results as you did with
/taxonomy/term/1.

Building Multipurpose Pages Using Taxonomy
Another area for leveraging taxonomy is building multipurpose pages that render content through views
based on values contained in the URL. It may be easiest to understand the concept through an example use
case. I’ll use the example of a manufacturing company that has several product lines, which each line having
multiple products. While I could create a standalone page for each product line, I could just as easily create
a single page that uses taxonomy terms in the URL to render content that is specific to that product line, for
example /products/brushes. With one page I could render an unlimited number of product line landing
pages. The only requirements are that each product line is defined by a taxonomy term, and that every
product in that product line is tagged with terms from the product line taxonomy.

Chapter 7 ■ Optimizing Your Site Architecture

194

Laying the Foundation for Multipurpose Pages
While it is possible to provide the functionality required to address this use case through custom code, I’ll
demonstrate fulfilling the requirements with off-the-shelf modules (ctools, panels, page manager, taxonomy,
and views) that require no custom development. While some of the modules used to demonstrate this
capability are in alpha or beta at the time this chapter was written, they all function as desired and will only
get better as they move to release candidates.

The list of modules that must be downloaded from drupal.org and installed are as follows:

•	 Ctools (drupal.org/project/ctools)

•	 Panels (drupal.org/project/panels)

•	 Page Manager (drupal.org/project/page_manager)

•	 Layout Plugin (drupal.org/project/layout_plugin)

•	 Panelizer (drupal.org/project/panelizer)

We assume you have Drush enabled on your site and will download the modules using the following
commands:

•	 drush dl ctools

•	 drush dl panels

•	 drush dl page_manager

•	 drush dl layout_plugin

•	 drush dl panelizer

You may then enable the modules through Drush or by visiting the Extent page and checking the box next
to each of the modules, followed by clicking on the Install button at the bottom of the page (see Figure 7-20).

Figure 7-20.  Enabling the panels-related modules

Chapter 7 ■ Optimizing Your Site Architecture

195

After enabling the modules, the steps required to achieve the desired outcome are as follows:

	 1.	 Create a new taxonomy vocabulary to house product-line taxonomy terms.

	 2.	 Create one to several product line taxonomy terms in the product line vocabulary.

	 3.	 Create a product content type with the following fields:

•	 Title

•	 Description (body)

•	 Featured Image

•	 Term reference field to the product-line vocabulary

•	 A featured product Boolean field

	 4.	 Review and update the teaser and full view modes for the product content type.

	 5.	 Create several products across multiple taxonomy terms, selecting at least one
per taxonomy term as the featured product for that product line.

	 6.	 Create a view (block) that renders a list of products, using the teaser view, filtered
by product line from the URL.

	 7.	 Create a view (block) that renders the featured products (products that are
checked as featured), using the teaser view, filtered by product line from the URL.

	 8.	 Create a panel page (two columns) that takes the product line as an argument in
the URL.

	 9.	 Place the featured product block in the right column and the product listing
block in the main content area of the page.

Creating the Product Line Vocabulary and Terms
The first step in the process is to create the product line vocabulary. Navigate to Structure ➤ Taxonomy and
click on the Add Vocabulary button. Enter Product Line in the Name field and click the Save button. Next
click on the Add Term button and add the following terms:

•	 Tools

•	 Cabinets

•	 Measurement

•	 Accessories

Chapter 7 ■ Optimizing Your Site Architecture

196

After creating the vocabulary and adding the terms, the list of terms should look similar to Figure 7-21.

Creating the Product Content Type and Product Content

With the Product Line taxonomy in place, the next step is to create the Product Content Type with the
following fields:

•	 Title

•	 Description (body)

•	 Featured image

•	 Featured product (Boolean)

•	 Product line term reference

Navigate to Structure ➤ Content Types and click the Add Content Type button to begin the process of
creating the Product Content Type. Configure the content type by:

•	 Entering Product in the Name field

•	 In the Publishing options section, unchecking the Promoted To front page option

•	 In the Display settings, unchecking the display author and date information option

•	 In the Menu settings section, unchecking the Main navigation checkbox, resulting in
no menus being checked, as we don’t want editors to add products to menu

Then click the Save and Manage Fields button to continue the process. By default Drupal creates a title
field and a Body field. The title field appeared on the previous page and was fine as is without modifications.
Let’s change the Label on the body field to read Description by clicking on the Edit button in the Operations

Figure 7-21.  The list of product line terms

Chapter 7 ■ Optimizing Your Site Architecture

197

column. Delete the value of Body in the Label field and enter Description in its place, followed by clicking
the Save Settings button at the bottom of the form. Then add the fields by clicking on the Add Field button
and selecting the appropriate types of fields.

Rearrange the fields on the form by clicking on the Manage Form Display tab and setting the order as
shown in Figure 7-23.

Figure 7-23.  The product content type form display field order

Figure 7-22.  The Product content type and fields

Chapter 7 ■ Optimizing Your Site Architecture

198

Then click on the Manage Display tab and update the default and teaser displays to only show the
Featured Image and Description fields. Set the default image size to 220X220 for the default view mode and
100X100 for the teaser view mode by clicking on the gear icon at the far right of the row for Featured Image
(see Figure 7-24).

After saving the display settings, we create several products across each of the Product Line taxonomy
terms. Navigate to the Content page and click the Add Content button to create several products across each
of the product lines in preparation for the next step.

Creating the Product Views

The requirements call for two views—one that displays the full list of products within a product line and one
that randomly displays one of the products that is checked as a featured product (randomly as more than
one may be checked as featured within a given product line). Both views use the teaser display mode and
both will be created as blocks.

Navigate to Structure ➤ Views and click on the Add View button to create the new view. We use
a single view for both blocks. On the Add View page, enter Products as the name and update the view
settings to show content of type Product sorted by Unsorted. Click the Save and Edit button to continue
(see Figure 7-25).

Figure 7-24.  The default display for the product content type

Chapter 7 ■ Optimizing Your Site Architecture

199

Within this single view, we’ll create two block displays—one to list all products by product line and one
to list a featured product from that product line. For each display we click the Add button and select Block as
the type of display.

For the product-by-product line block display, set:

•	 The Display name to Products by Product Line

•	 Show Content using the teaser display mode

•	 Sort criteria by title

•	 Under the advanced section (third column), add a contextual filter for Content:
Product Line, setting a default value to Raw value from URL, selecting 2 from the list
of Path components (second element in the URL will contain the taxonomy term for
product line)

For the featured product block display:

•	 Set the Display name to Featured product

•	 Add a Filter criteria for Content: Featured Product set to True

•	 Add a Sort criteria of Random and remove the Content: Title (asc)

•	 Use Pager: Display a specified number of items | 1 item

•	 Under the advanced section (third column), add a contextual filter for Content:
Product Line, setting a default value to Raw value from URL, selecting 2 from the list
of Path components (second element in the URL will contain the taxonomy term for
Product Line).

Figure 7-25.  Creating the product views

Chapter 7 ■ Optimizing Your Site Architecture

200

Figure 7-26.  Details of the product display

The resulting view should look similar to Figure 7-26.

Creating the Product Page

The final step in the process is to create the page where products will be displayed. Previously, we installed
and enabled the following modules and their sub-modules: Ctools, Panels, Page Manager, Panelizer, and
Layout Plugin. We’ll use a majority of these modules to assemble the generic product page.

We start by creating the page through the Page Manager module. Navigate to Structure ➤ Pages and
click on the Add Page button. On the Page Information form, set the following values:

•	 Administrative title: Products by Product Line

•	 Administrative description: A page that displays products based on product line

•	 Path: /products/{line}

•	 Variant type: Panels

The value in the Path field is set to /products/{line} where {line} is a dynamic argument that will
hold the various values for the taxonomy terms in the Product Line vocabulary. The value in the braces is
only for reference purposes and does not perform any function other than showing up in the administrative
interface. For maintenance purposes, you should use a name that is meaningful to others who may have
to make changes to this page in the future. After entering the values, you’re ready to proceed with the page
creation process. Click the Next button (see Figure 7-27).

Chapter 7 ■ Optimizing Your Site Architecture

201

The next step assigns context to the argument, {line}, in the URL (see Figure 7-28). The value that will
be passed in the URL is the taxonomy term associated with a given product line taxonomy term, so we assign
the context of Taxonomy term to the line argument by clicking on the Edit button in the operations column.
In the list of options presented, we select Taxonomy Term as the type of value that will be passed through the
URL, clicking the Update Parameter button to complete the process. The result is shown in Figure 7-28. Click
the Next button to continue the page-creation process.

Figure 7-27.  Creating the products by product line page

Figure 7-28.  Assigning context to the URL argument

Chapter 7 ■ Optimizing Your Site Architecture

202

The next page, Configure Variant, presents the opportunity to change the builder that is used to manage
the page once it has been created. The default, Standard, requires that the site administrator visit Structure
➤ Pages in order to make changes to the layout or elements placed on the page. The In-Place Editor option
provides the ability to edit the page directly while visiting that page by clicking on buttons at the bottom of
the page (e.g., Change Layout). Let’s leave the Builder set to Standard and continue with the build process by
clicking the Next button.

The next step in the process is to select the layout for the page. There are several off-the-shelf options,
including one-, two-, and three-column layouts (see Figure 7-29).

For demonstration purposes, we select the two-column layout and then click the Next button to
continue the build process.

While the off-the-shelf layouts provide a number of options, you may find situations where one of
the existing layouts does not meet your design requirements. In those cases you can create your own
custom layouts. Navigate to /modules/panels/layouts and you’ll see the existing layouts and how they are
constructed. Each layout consists of a Twig template file and CSS to style the output of the layout.

.
├── onecol
│ ├── onecol.css
│ ├── onecol.png
│ └── panels-onecol.html.twig
├── threecol_25_50_25
│ ├── panels-threecol-25-50-25.html.twig
│ ├── threecol_25_50_25.css
│ └── threecol_25_50_25.png
├── threecol_25_50_25_stacked
│ ├── panels-threecol-25-50-25-stacked.html.twig
│ ├── threecol_25_50_25_stacked.css
│ └── threecol_25_50_25_stacked.png
├── threecol_33_34_33
│ ├── panels-threecol-33-34-33.html.twig
│ ├── threecol_33_34_33.css
│ └── threecol_33_34_33.png

Figure 7-29.  The layout options

Chapter 7 ■ Optimizing Your Site Architecture

203

├── threecol_33_34_33_stacked
│ ├── panels-threecol-33-34-33-stacked.html.twig
│ ├── threecol_33_34_33_stacked.css
│ └── threecol_33_34_33_stacked.png
├── twocol
│ ├── panels-twocol.html.twig
│ ├── twocol.css
│ └── twocol.png
├── twocol_bricks
│ ├── panels-twocol-bricks.html.twig
│ ├── twocol_bricks.css
│ └── twocol_bricks.png
└── twocol_stacked
 ├── panels-twocol-stacked.html.twig
 ├── twocol_stacked.css
 └── twocol_stacked.png

Examining the two-column layout’s Twig file, you’ll note that the structure is relatively simple:

<div class="panel-2col" {% if css_id %}{{ css_id }}{% endif %}>
 <div class="panel-panel">
 {{ content.left }}
 </div>

 <div class="panel-panel">
 {{ content.right }}
 </div>
</div>

The associated CSS is just as simple:

.panel-2col {
 display: flex;
 flex-wrap: wrap;
 justify-content: space-between;
}

.panel-2col > .panel-panel {
 flex: 0 1 50%;
}

You can use this as the foundation to build your own layouts.
The next step in the process is to assign blocks to the regions that are provided by the layout. The final

step in the process is to assign the blocks that were created by the Products view in the left and right columns
of the new page. On the Content page (see Figure 7-30), enter Products into the Page title field and click the
Add New Block button to select the blocks to place on the page.

Chapter 7 ■ Optimizing Your Site Architecture

204

Figure 7-31.  The list of views

Figure 7-32.  The Add Block form

Figure 7-30.  The Content page where blocks are placed on the page

After clicking the Add New Block button, you’re presented with a list of blocks that are available for
placement on the page. Scrolling through the list, you’ll find a section called Lists (views). The two blocks
that were created by the Products view are in that list (see Figure 7-31).

Click on the Products: Product by Product Line block and on the Add block form (see Figure 7-32). Then
select the left side region and click the Add Block button.

Chapter 7 ■ Optimizing Your Site Architecture

205

Figure 7-33.  The blocks placed on the page

The final step is the click the Save button on the Page Information page. After creating the page, check
the term IDs for the various product lines. Navigate to Structure ➤ Taxonomy and list the terms for the
Product Lines vocabulary. Hovering over the Edit button for each term, you can see that term ID in the
URL in the browser’s status bar. With that information in hand, you can update the URL in the browser bar,
entering /products/8 to test the page and ensure that it is working properly. In this case, 8 happens to be the
term ID for the Accessories product line. The result is shown in Figure 7-34.

Click the Add New Block button again and select the Products: Featured Product block. Assign it to the
right side region and then click the Add Block button. With the blocks placed, it’s time to click the Finish
button (see Figure 7-33).

Chapter 7 ■ Optimizing Your Site Architecture

206

It works as expected, but there are opportunities to improve the solution beyond this basic
implementation. The following changes could make the page more visitor friendly:

•	 Create URL aliases for the products/term-id paths. For example, it would be more user
friendly to see products/accessories in the URL instead of products/8. To create that
URL alias, navigate to Configuration ➤ URL Aliases and click on the Add Alias button.
In the Existing system path, enter /products/8. In the Path alias field, enter /products/
accessories. Then save the alias and continue creating the other aliases for the other
product lines. After the aliases are in place, you can use products/accessories in the URL
and you’ll see the products that have been tagged with the accessories taxonomy term.

•	 Create a new view that lists the terms from the Product Line vocabulary. This block
view would show the term name and would have a contextual filter that is identical
to the Products block views. You could then place this block at the top of the page to
indicate which product line the page is referencing.

After making the two suggested changes, you can now see a visitor and SEO friendly URL in the
browser’s address bar, as well as an indication of what product line the page is referring to with the new title
above the list of products (see Figure 7-35).

Figure 7-34.  The Product page filtered by product line

Chapter 7 ■ Optimizing Your Site Architecture

207

The concepts presented in this section can be expanded to address a wide variety of use cases.
The solution presents a write-once-use-many-times approach, which will significantly decrease your
development and testing effort, and it provides an interesting opportunity that allows content editors to
create entirely new site sections without having to touch a single line of code or template file. All you need to
do is add new taxonomy terms to vocabularies like Site Section and you’re off and running.

The Location of Content in an Enterprise Setting
A common problem that medium-to-large organizations face is the duplication of content across various
platforms, including multiple Drupal sites, and in other applications such as enterprise resource planning
(ERP), customer relationship management (CRM), and the various marketing platforms the organization
uses. The issue often quickly becomes a problem of synchronization of content across all of these platforms,
for example, the description of an item in the product catalog in the ERP system may be updated and not
reflected on the various web sites that present that information to customers. Or a customer’s address may
be updated in CRM but never updated across the various web sites where customer’s shop online. While
the content distribution mechanisms outlined earlier in this book present an opportunity to synchronize
content across Drupal instances in the organization, it only addresses a portion of the larger problem.

Figure 7-35.  The revised product page

Chapter 7 ■ Optimizing Your Site Architecture

208

There is a solution that addresses the broader problem and that is considering a platform such as Solr
as a mechanism for integrating content across Drupal sites as well as across enterprise applications outside
the realm of Drupal.

Using Apache SOLR
A revolutionary approach for integrating content from multiple sources is one that many of us use on our
existing Drupal sites but we fall short of the true power of this solution, and that is Apache Solr. We use
Solr to index content on a single Drupal site as a more powerful replacement for Drupal’s standard search
capabilities that are inherent in core. We can use Solr’s integration with views to speed up the delivery
of content on pages, as Solr’s indexes are optimized for speed. But here’s the good new—Solr can index
multiple sources of content and present that content as a unified index, meaning we can index all of our
Drupal-based content as well as content from other sources and deliver that content through a single index.
When content is added or updated on those source systems, Solr updates the index. Solr also indexes the
content on your local site by providing a single source of enterprise-wide content.

Think of the power and flexibility of being able to access information from your:

•	 Enterprise resource planning (ERP) system for product information, including
updated product availability, and pricing

•	 Customer Relationship Management (CRM) system

•	 Product catalog solution for product images and marketing materials

•	 Digital asset management solution for product brochures and spec sheets

•	 Other Drupal sites within your organization, providing the ability to share blog
postings, articles, events, and other content that may be applicable to your site

The possibilities are virtually limitless. Just as with Solr, if you can get to the information, you can index
it and share it through the index.

What Does a Solr-Based Solution Require?
The foundation of the solution is a Solr server. You may install your own instance of Solr on your own server
or you may purchase a hosted Solr solution such as the one provided by OpenSolr (opensolr.com). If you
don’t have the skills or resources to implement Solr internally, the hosted solutions are a very cost effective
solution and provide high availability and scalability packages that would be difficult for most organizations
to build and support.

Once your Solr instance is available, implement the Search Solr API module (drupal.org/project/
search_api_solr) and the Search API module (drupal.org/project/search_api). Follow the instructions
for each module to install/enable them as some require composer to pull in various dependencies. To
configure the connection to your Solr server, visit /admin/config/search/search-api and click on Add
Server. Provide a name for the server and the connection details for your Solr server.

Next, create a new index by visiting /admin/config/search/search-api. Click on Add Index and give
the index a name and select at least one data source.

■■ Note  If you are indexing multiple sites, use the same index name for all of your sites. Otherwise each site
will have their own index without the ability to search across sites. Select the server you just created and leave
all the other default values. Then save.

Chapter 7 ■ Optimizing Your Site Architecture

209

Test the connection to your Solr index by creating some content and checking to see if that content
appears in the Index page of your Solr server. If the connection is correct and the content you just created
appears in the index, you are good to go.

Consuming Indexed Information Through Views
With all of your sites indexed through Solr you now have the ability to create views using your Solr index as
the source of content. When creating a new view, select the name of the Solr index that you created as the
source of content to display and continue building the view just as you would any other view. It’s just
that easy.

Off-the-Shelf versus Custom Development
The final section of this chapter touches on a touchy subject, do I make it or do I use something that is
already built? When I started working with Drupal back in the Drupal 3.x days, there were only a handful
of contributed modules and to do anything beyond the basics required custom development. Today,
with Drupal 8, core itself has a significant footprint of functional capabilities that meet many of the basic
requirements for developing simple to moderately complex web sites. When you throw in the 2,500 or so
contributed modules that are currently available for Drupal 8 and the requirement to “go custom” quickly
fades. It’s unlikely that someone else hasn’t already accomplished what you are trying to do in the world. So
the question is why would anyone go custom? The common answers that I’ve heard over the past 13 years of
working on nothing but Drupal include:

•	 We believe we’re unique and our requirements are so complex that nobody else on
the planet has even thought about what we’re going to do. There are a couple of red
flags in this statement. Our requirements are so complex and we’re unique. Is the
complexity a business requirement? If it is then the question becomes does the cost
of custom development have a positive return for the organization?

•	 We believe we can write better code. That statement often comes from
organizations whose IT organizations have held them hostage for decades. That’s
like saying that you can build a better car so instead of buying one off a dealer’s
showroom you’re going to build your own. Building your own is costly, and the
one responsible for maintaining it is the one who built it. There are thousands of
amazing developers in the Drupal community who have built incredible modules.
Why start from scratch?

•	 Off-the-shelf doesn’t exactly fit our requirements. While every organization
may be unique, I have yet to find a use case where when I truly understood the
requirements I couldn’t solve a majority of the requirement with one or more
contributed modules. I have had to write some custom code to address very unique
requirements, but the amount of custom code on any of the hundreds of projects
that I’ve worked on over the past dozen years has been minimal.

While there may be some cases where it appears to require custom development, my suggestion is to:

•	 Clarify the requirement. Often requirements are vague and general. When you get to
the bottom of what the organization is trying to achieve you can more often than not
solve the problem with off-the-shelf solutions.

Chapter 7 ■ Optimizing Your Site Architecture

210

•	 Review the requirements with the stakeholders. More often than not, when I’ve
discussed the requirements with stakeholders and explained that there is a way to
accomplish a slightly revised version of the requirements with off-the-shelf Drupal
modules, 99.99% of the time the stakeholders agree that the capabilities presented by
an off-the-shelf solution are actually better than what they were envisioning, but they
weren’t clear themselves on what they wanted.

•	 Clearly communicate the cost and risk. All custom solutions come at a cost. When
you identify a case for a purely custom solution, carefully calculate the true cost of
developing that solution. In nearly every case over the past dozen years, the cost
of custom development far outweighed the benefits of creating a custom solution
versus bending the requirements so they fit an off-the-shelf solution. Remember that
there are on-going costs beyond the initial development, and the burden of tracking
security issues on your own versus leaning on the Drupal community.

•	 Enter the discussion early with stakeholders when planning your new Drupal
site. When they understand the capabilities of the platform, they can then define
requirements that fit Drupal’s DNA, eliminating some if not all of the “square peg in
a round hole” syndrome.

•	 If you find a case where it appears that custom is the only option, remember
that Drupal plays well in an ecosystem of other applications, meaning that if the
capabilities can be more easily met with a solution built on AngularJS, for example,
then by all means build that capability in Angular and tie it into Drupal.

•	 If you have a use case that can almost be solved by one or more off-the-shelf
modules, look at the issue queues to see if anyone else is suggesting the capabilities
your organization is looking for. You may find others who would be willing to partner
with you to enhance an off-the-shelf module to address all of your needs. Or you
may be able to talk a module maintainer into helping you extend the capabilities of a
contributed module. The key here is to communicate and ask.

•	 Don’t “pave the cow path.” I have encountered this mindset over and over again
over the years. When looking at requirements, use cases, and designs I often find
organizations trying to take what they have and re-platform it on Drupal. While
it may seem like a valid approach, the reality is that in most “pave the cow path”
scenarios, they fall far short of leveraging Drupal’s capabilities to meet the business
objectives, and you end up with a Frankenstein-like solution that performs poorly,
is difficult to use, and ends up giving Drupal a bad reputation for not doing things as
well as the old platform did. Get to the root of the business requirements and paint
the solution using Drupal, instead of trying to “reskin” the old site using Drupal.

Every organization has to make the decision on their own as to how closely they want to fit within the
off-the-shelf DNA of Drupal. Over the past decade I’ve watched organizations spend horrendous amounts of
money developing highly custom solutions that performed poorly and ended up on the scrap heap. I’ve also
watched organizations that have pivoted their belief systems and took an “off-the-shelf” only approach with
the results being greater than they expected, simpler to maintain, and significantly less costly to build and
maintain.

If I return back to the old days of “before-the-web” there were interesting statistics about the cost
of building and maintaining systems. Typically we spend 80% of the total budget on less than 20% of the
functionality we are trying to deliver. If you look at that 20% of the overall functionality that is so costly to
build, it often has a less than 5% impact on revenue growth, profitability, competitiveness, brand loyalty, and
customer satisfaction. Interestingly enough I’ve witnessed the same statistics over the past decade when it
comes to Drupal sites.

Chapter 7 ■ Optimizing Your Site Architecture

211

Summary
There are many things to consider when optimizing your Drupal sites, but it often comes down to the basics
of what are the true business requirements that you are trying to accomplish and how you can best leverage
Drupal to address those needs. Do Drupal “the Drupal way” and you’ll find yourself spending weekends and
evenings doing the things you want to do, not battling to keep your sites alive.

The next chapter focuses on how to integrate Drupal with other systems, including creating a solution
based on “headless” Drupal.

	Chapter 7: Optimizing Your Site Architecture
	Content Types
	Simplifying the Editorial Interface
	Removing Options from the Node Edit Form
	Content Types versus Entity Types

	Leveraging Taxonomy
	Taxonomy as an Entity
	Building Multipurpose Pages Using Taxonomy
	Laying the Foundation for Multipurpose Pages
	Creating the Product Line Vocabulary and Terms
	Creating the Product Content Type and Product Content
	Creating the Product Views
	Creating the Product Page

	The Location of Content in an Enterprise Setting
	Using Apache SOLR
	What Does a Solr-Based Solution Require?
	Consuming Indexed Information Through Views

	Off-the-Shelf versus Custom Development
	Summary

