
137© Todd Tomlinson 2017
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_6

CHAPTER 6

Leveraging Your Content

In the book titled Magazine Editing and Production, published in 1974, authors J.W. Click and Russell N. Baird
wrote that “Content is king. It is the meaning that counts. Form and technical considerations, although important,
cannot substitute for content.” While Click and Baird’s book was written nearly 20 years before the launch of the
Internet and 41 years before the launch of Drupal 8, the concept that content is king is on the minds of everyone
who is responsible for building and maintaining web sites. If content is king, how can Drupal 8 help to ensure that
the right content is in the right place, at the right time, and in the right format to entice visitors to find your site
and stay there? That is precisely the question that this chapter addresses by looking at Drupal 8’s content staging,
publishing, search, and multilingual capabilities, all of which are cornerstones in helping to ensure that content is
and remains king on your Drupal 8 web sites.

Content Staging
One of the challenges that have plagued web site developers since the first web site was built back in 1991
is how to stage new content and updates to existing content outside of the production environment so that
it may be previewed and tested prior to exposing it to the visitors who come to your site. While the very first
web site ever published on the web (Tim Berners-Lee, 1991) is relatively simple (info.cern.ch/hypertext/
WWW/TheProject.html) and looks pretty much the same as it did 25 years ago when Berners-Lee first saved
the original HTML file that generates that site, the reality is that today’s web sites are constantly changing
with new content being added and updates being published in near real time. Due to the restrictions in the
capabilities of most CMS platforms, the normal operating procedure has been to make content changes on
the live server, holding your breath as you click the Save button, hoping that your changes did not adversely
affect the site. While that has been the normal operating procedure in the past, Drupal 8 presents a new
operating model that enables staging and previewing content prior to publishing it on the live web site, and
it takes it one step further by enabling the ability to stage content and publish that content across multiple
web sites.

Content Staging and Site Preview Use Cases
Before describing the details of how content staging and site preview works, let me outline the use cases
where these capabilities come into play and why they may be important to your organization.

Use Case #1: Staging and deploying content across multiple web sites. In this use case, you want to
synchronize content from one site to another, where the first web site is a staging site where editors do all
the work of authoring and updating content. New content and updates to existing content are previewed on
the staging site and, when approved, are pushed to the production web sites. This use case can be expanded
by addressing the need to have multiple staging sites pushing to multiple production sites, creating a web of
staging and production web sites that work in harmony to address the complex organizational structures of
large enterprises.

Chapter 6 ■ Leveraging Your Content

138

Use Case #2: Content branching. In this use case, you may have a scenario where you are introducing a
new section to your web site that addresses a new division that was added to your company, a new product
line that is about to launch, or a new category of content that your web site is now incorporating into the
existing content on your site. The desire is to build out the new “branch” of your web site and to push the
updates as a whole out to your production web sites.

Use Case #3: Previewing your site. Editors and authors inherently want to see how their changes will
affect the production web site before they are visible to the general viewer audience. “No surprises” is a
common phrase that I’ve heard while walking the halls of major multinational corporations where I have
helped build massive Drupal web sites. The ability to preview not only a single article, but a whole section or
the whole site is a must-have on the list of requirements for many large organizations.

Use Case #4: Offline browsing and publishing. Not every country around the world has reliable
infrastructure and not every location on the planet has access to WiFi or a high-speed Internet connection.
You may have sales reps who walk into a customer’s building and they need access to your product
information so that they can share how your products or services address their need. Your sales rep may
need to take an order while sitting in the customer’s office and have that order saved in an offline mode and
automatically synced when the sales rep has access to the Internet.

Use Case #5: Content recovery. “Stuff happens” and when it does, having the ability to recovery lost
content or inadvertently changed content is a key desire of nearly every content editor and author. Giving
users the ability to undelete or recovery content that was inadvertently deleted from the Drupal database
would save countless hours of rework and eliminate the frustration of having to recreate content.

Use Case #6: Auditing. Many large organizations are under some form of government regulation
that requires some level of auditability of the changes made to content on their web sites for compliance
purposes. The requirement focuses on the ability to report on every change made to content on the web site
and to be able to attribute that change to a specific user.

These use cases share several common characteristics:

•	 Content needs to be kept in sync from one place to another—within a single site
(e.g., between staging and live) and between sites.

•	 A full revision history showing all changes must be kept to ensure auditability.

•	 Conflicts between revisions between environments need to be tracked and easily
remedied.

The Drupal 8 Solution for Content Staging and Synchronization
A suite of Drupal 8 core and contributed modules orchestrate the replication of content between
environments and solves the issues of keeping revisions, providing an audit trail, and using the tools
necessary to resolve conflicts when they arise. The modules required to fulfill the typical requirements are
the Deploy, Multiversion, Replication, Workspace, RELAXed Web Services, and Trash modules.

The Deploy Module
The Deploy module provides an administrative interface on top of the Workspace and Replication modules
to enable content managers with the ability to manage content deployments between workspaces on a
single site, or between workspaces across sites. The three basic modes supported by Deploy are as follows:

•	 Cross-site staging. Using RELAXed Web Services to stage content between different
Drupal sites.

•	 Single-site content staging works with the Workspace module by providing the ability
to stage content on a single site, where Workspace provides the capability to create a
separate staging workspace in which content can be previewed before deploying it to
the live workspace.

Chapter 6 ■ Leveraging Your Content

139

•	 Fully decoupled site. Using the APIs provided by the RELAXed Web Services
module, the Deploy module provides the ability to distribute content to a site that is
decoupled from the source site, meaning that synchronization of content between
the source and the destination site is purely manual and on demand.

The Multiversion Module
The Multiversion module provides four key features that play a significant role in the content staging
solution footprint:

•	 The ability to create revisions for nodes, taxonomy terms, comments, block content,
users, and other custom entities

•	 The ability to define parent revisions, providing the ability to create multiple child
revisions or branches from the parent

•	 Keeps track of conflicts in the revision tree and reports the details of those conflicts

•	 Provides an audit trail of changes made to an individual

When implemented in conjunction with the other modules described in this section, it becomes a
powerful tool for managing revisions across sites as well as providing the audit trail required to address the
reporting requirements of most organizations.

The Replication Module
Replication provides the functionality and services that support replicating content between workspaces
on a single site, or between workspaces across multiple sites using the RELAXed Web Services module.
Replication is built on top of the Multiversion module and uses information stored by Multiversion to
determine which revisions are missing from a given location and synchronizes the content across locations.

The Workspace Module
The Workspace module provides the ability to create an isolated collection of content and revisions on your
site, for example, workspaces for staging and production. This provides the ability to author content in a
controlled environment that is not visible to site visitors until an editor promotes the content to the product,
while allowing the editor to preview content as it will appear to general site visitors. The workspace module
provides the ability to create a workspace; however, it does not provide the tools to move content between
workspaces, which is where the Deploy and RELAXed Web Services modules come into play.

RELAXed Web Services Module
The RELAXed Web Services module provides a generic RESTful API for all Drupal 8 content entities,
extending the core REST APIs with better support for translations, revisions, and file attachments. It is based
on the replication.io protocol and leverages the Multiversion module to handle bidirectional replication
between two or more Drupal sites.

Chapter 6 ■ Leveraging Your Content

140

Trash Module
The Trash module provides a trash bin for all content entities. Nodes can be moved to the trash instead of
being deleted permanently, allowing for restoration of those content items at a later time. See Figure 6-1.

Staging Site Live Site

DeployDeploy

Multiversion MultiversionReplication Replication
RELAXed

Web
Services

RELAXed
Web

Services

Trash Trash

Staging
Workspace

A

Staging
Workspace

B

Workspaces Workspaces

Live Workspace

Figure 6-1. The content deployment solution

Installation, Configuration, and Use of the Content Staging
Framework
The process for installing the content staging and distribution framework begins with the installation of
the modules and their dependencies. The modules and their dependencies are Deploy, Entity Storage
Migrate API, Key-Value Extensions, Multiversion, Replication, Trash, Workspace, RELAXed Web Services,
Serialization, RESTful Web Services, and HTTP Basic Authentication. Follow the standard approach for
downloading and installing modules on your site.

Configuring Multiversion
The first module we focus on is Multiversion. When installing Multiversion, the install process does most
of the work for you. If you have existing content on your site, Multiversion will convert that content to
revisionable as part of the installation process.

To test whether Multiversion is working, we create and save a new article following the standard process
for creating nodes. Then we create a new revision by checking the Create a New Revision checkbox on the
Node Edit form and enter a comment about what we changed on the node we created. After saving, you’ll
see two new tabs at the top of the Node Edit form—Revisions and Tree (see Figure 6-2).

Chapter 6 ■ Leveraging Your Content

141

Clicking the Revisions tab lists all of the revisions that have been made to a given node, as shown in
Figure 6-3.

Figure 6-2. The Revisions and Tree tabs

Figure 6-3. List of revisions

Clicking on the Tree tab reveals the hierarchy of revisions made to the original node, as shown in
Figure 6-4.

Chapter 6 ■ Leveraging Your Content

142

Configuring Workspaces
After enabling the Workspaces module, you will see a new indicator in the right half of the admin toolbar at
the top of the page (see Figure 6-5).

Figure 6-4. A node’s revision tree

Figure 6-5. The Workspace environment indicator

The first workspace that is created and enabled automatically when the module is enabled is the Live
workspace as shown in Figure 6-5. The Workspace module also creates a Stage workspace, but the Stage
workspace is set to an inactive state by default (see Figure 6-6).

Chapter 6 ■ Leveraging Your Content

143

You may switch between the Live and Stage workspaces by clicking on the workspace indicator in the
admin toolbar. Clicking reveals a submenu where you select a workspace or add a new workspace, as shown
in Figure 6-7.

Figure 6-6. The Stage workspace

Figure 6-7. The Workspaces selector

In the example shown in Figure 6-7, the Live workspace is enabled. Note the Welcome to Drupal
8 article. You can switch to the Stage indicator by clicking the link in the toolbar. Note that in the Stage
environment the Welcome to Drupal 8 article is missing, because it was created in the Live environment and
is not yet replicated to the Stage environment. Also note that the workspace indicator in the toolbar indicates
that the current workspace is now the Stage workspace (see Figure 6-8).

Chapter 6 ■ Leveraging Your Content

144

You may create a new workspace by clicking on the Add Workspace link in the admin toolbar, or by
visiting the Structure ➤ Workspaces page and clicking on the Add Workspace link on the Workspaces page.
We’ll create a new workspace named Testing and set the default target workspace, where content will be
replicated by default (see Figure 6-9).

Figure 6-8. The Stage workspace

Figure 6-9. Creating a new workspace

The newly created workspace is now visible in admin toolbar and on the Structure ➤ Workspaces page.
With the default deployment set for the Stage workspace, we can author content in the Stage workspace

and deploy those changes to the Live workspace by clicking the Deploy link in the admin toolbar and
entering a title and description that will be used on the Deploy administration page to convey what was
deployed (see Figure 6-10).

Chapter 6 ■ Leveraging Your Content

145

After deploying the content, we can see the history of all deployments by navigating to Structure ➤
Deployments. This page lists all deployments that have been made, including the source, target, date, and
time (see Figure 6-11).

Figure 6-10. The Deploy form

Figure 6-11. The Deployments history page

Configuring RELAXed Web Services Modules
The RELAXed Web Services module handles the underlying activities of connecting two Drupal sites and
transporting the content between those sites and workspaces.

The first step is to create a new user account that will be used to connect to remote sites. While I could
use the admin account to facilitate that process, it is a best practice to set up a user account with fewer
permissions. The installation process for the RELAXed Web Services module creates a new user role named
Replicator, which has by default all of the permissions set for an account whose sole purpose is to replicate
content between sites and workspaces. You may visit People ➤ Roles to see the Replicator role. You may see
the permissions assigned to the Replicator role by clicking on the Permissions tab, where you will see that
the role has three assigned permissions:

•	 Administer workspaces

•	 Perform push replication

•	 Administer users

Chapter 6 ■ Leveraging Your Content

146

Those three roles provide access to all of the required functionality to successfully replicate content
between workspaces locally or across the wire via the RELAXed Web Services module. We need to create this
account on the target Drupal 8 sites as we will be using it in a moment to configure the interface between
sites.

Let’s follow the standard process for creating a new Drupal 8 user by visiting the People page, where we
click on the Add User button and add the user account that we’ll use for replication purposes. We’ll keep it
simple and name the replication user replicator, assigning a secure password and the role of Replicator.
We also need a valid e-mail address for the replicator account.

Next, we navigate to Configuration ➤ Relaxed Settings and enter the details of the user account we just
created as the default account for performing replications on this Drupal instance, as shown in Figure 6-12.

Figure 6-12. The default replication account settings form

The next step in the process is to set up the remote sites. Navigate to Configuration ➤ Relaxed remotes
and click the Add New Remote button. On the form, enter a meaningful name for the remote as well as the
full URL of the remote site, the user name associated with replication on the remote site, and the password of
that account. Click the Save button to finish the process (see Figure 6-13).

Chapter 6 ■ Leveraging Your Content

147

With the remote configured, we can now deploy content to remote sites and workspaces. We need to
first set up the relationship between our local workspace and the remote workspace. For demonstration
purposes, we will set the live workspace on the first site to deploy by default to the live workspace on the
target site that we just set up. Navigate to Structure ➤ Workspaces and click on the Edit link for the live
workspace on my local site. On the Edit page for the Live workspace, select My Other Drupal 8 Site: Live as
the destination and then click the Save button (see Figure 6-14).

Figure 6-13. Adding a relaxed remote

Chapter 6 ■ Leveraging Your Content

148

With the assignment complete, we can now deploy the content from our local live workspace to the
remote workspace by simply clicking the Deploy button in the administrator’s toolbar.

Search
Search is an often under utilized capability on Drupal sites. We sometimes fall back to the default search
capabilities of Drupal core and “call it good,” often because it just works without any configuration other
than turning on the module and ensuring that cron is running. While the Drupal core search capabilities are
good, there are limitations based on the underlying architecture, which is based on indexing the site and
storing that index in a MySQL table. Search then uses MySQL’s full text search feature to locate items in the
index that match the search criteria entered by the user. While it does a commendable job, there are serious
limitations with MySQL’s full text search capabilities that may hinder the desired outcome. For example,
MySQL’s full text search doesn’t handle words that are four characters in length or fewer, and MySQL’s full
text search is relatively slow. If you are concerned about performance you may want to look at an alternative
indexer and that is where Solr comes into play.

There are other limitations of core search such as configuration. In core search, it’s difficult to specify
which content types to index, and within each content type, which fields to index. It’s just not possible to
configure to that level of detail in the core search module and many organizations need that level of fine-grain
control. There is a solution to the performance and configurability issue and that is Apache Solr, which is well
supported and widely adopted in the Drupal community as the preferred search solution for Drupal sites.

Figure 6-14. Assigning the target workspace

Chapter 6 ■ Leveraging Your Content

149

What Is Apache Solr?
Apache Solr is a world class search application built by the Apache Foundation and utilized by a wide variety
of commercial and open source applications, which opens up an interesting proposition that I’ll speak about
in a bit. Solr is built on top of the Lucene indexer. Lucene is also an open source project, written in Java, and
also under the Apache Foundation umbrella. Lucene is the underlying architecture that handles the storage
of indexed content, much in the same way that MySQL stores content in Drupal, but in a fashion that is
significantly more flexible than Drupal’s core search and considerably faster as serving up the results of a
search request.

Lucene’s general approach is to store indexed content as a document made up of any number of
different fields, providing that fine grain control over which fields to index and that Drupal core’s search
does not provide. And due to its flexibility and document-centric approach, Lucene indexes nearly any
textual data that you can feed into it, including HTML, PDF, XML, Microsoft Word, and nearly any other
document format that exists in the market. If I didn’t mention it earlier, the capabilities of Lucene far outstrip
the basic capabilities of Drupal core search and the boost in performance alone is well worth the effort of
implementing Solr. It off-loads all of the search activities from the Drupal database, improving the overall
site performance since full text MySQL search taxes the database significantly.

While Lucene is the indexer, Apache itself is an HTTP API for interacting with Lucene. This API has
been utilized by several Drupal modules, making the installation and setup of Apache relatively easy on your
Drupal site.

Solr’s extensive use of XML configuration files makes it relatively easy to modify almost everything
about how Solr works without having to touch any code. This simplifies the solution as it doesn’t require any
knowledge or expertise of Java.

The three key benefits of Solr over Drupal core search are as follows:

•	 A best in class stemming and tokenization, which provides the benefit of being able
to configure what content types you want Solr to index and what fields you want to
include

•	 A high degree of scalability, both vertically and horizontally

•	 Built-in support for advanced search features such as facets, geospatial searches, and
advanced query options such as:

•	 Full text or structured queries

•	 Support for Boolean operators such as AND, NOT, OR, +, and –

•	 Boosting terms through configuration

•	 Fuzzy searches

•	 Grouping with parentheses

•	 Numeric range searches

•	 Wildcard searches

•	 And many more

There are other key features such as multi-lingual searching, search results highlighting, auto
suggestions, spell checking, support for multiple indexes, federated search across multiple sites, and many
others.

While there is effort to install and configure Solr, the benefits are significant. The next sections describe
a simplified approach for quickly adopting and installing Solr on your Drupal 8 site.

Chapter 6 ■ Leveraging Your Content

150

To Install or Not To Install
Apache Solr and Lucene are open source projects and may be downloaded from lucene.apache.org and
lucene.apache.org/solr. There is extensive documentation on how to install and configure both Lucene
and Solr on the Apache Foundation’s web site. Many organizations are choosing not to host Solr and Lucene
internally due to the complexities of adding yet another platform to their portfolio, and while they are Java
applications, there is performance and scalability considerations that may make choosing a hosted Solr and
Lucene solution a more attractive option. There are several hosted Solr providers in the market, including
the following:

•	 OpenSolr (opensolr.com)

•	 IndexDepot (indexdepot.com)

•	 WebSolr (websolr.com)

I’ll demonstrate the ease of setting up hosted Solr on a Drupal 8 site using OpenSolr.

Required Modules
There are a few modules that you will want to install on your Drupal 8 site before beginning the setup
process on opensolr.com. Those modules are as follows:

•	 Search API (composer require drupal/search_api)

•	 Search API Solr (composer require drupal/search_api_solr)

Install both modules using composer require, as there are associated libraries that are required for the
modules to function properly and installing through Drush or downloading the modules will require that
you manually install the libraries. If you have not yet used composer on your site, first ensure that composer
is functional by opening a terminal window and executing the command composer. If you receive a list of
available composer commands, you are good to go. If you do not receive a list of commands, then follow
the instructions on getcomposer.org. If you have not yet set up composer on your site, run the following
command in a terminal window:

composer config repositories.drupal composer https://packages.drupal.org/8

Then run the commands listed in the parentheses for each module.

Setting Up OpenSolr
After installing the Search API and SearchAPI Solr modules, the next step in the process is to set up an
account on OpenSolr. You may set up a temporary free account by visiting opensolr.com. Click on the Free
Trial button and register. Once you’re registered, visit your dashboard and click on the Create a New Index
link. Select the closest server to your location that supports Solr 4.0. Enter a meaningful index name and
click the Add Index button, as shown in Figure 6-15.

Chapter 6 ■ Leveraging Your Content

151

After adding the index you will be returned to your OpenSolr dashboard, where you will see your new
index (see Figure 6-16).

Figure 6-16. The newly added OpenSolr index

Figure 6-17. OpenSolr index access information

Figure 6-15. Adding a new Solr index

Click on the name of your Solr index to reveal several values that you will need to configure
(see Figure 6-17).

Chapter 6 ■ Leveraging Your Content

152

Adding the Schema.xml File OpenSolr
There is one final step in setting up OpenSolr and that is to update the schema file so that it recognizes the
fields in your Drupal content. Solr’s schema file is a configuration file that describes the types of information
that will be indexed. The default implementation of Solr is a generic schema that recognizes content in
Drupal as a general document, but it doesn’t provide the ability, for example, to query a specific field within
your content type. The process if relatively straightforward and there is excellent documentation on the
opensolr.com web site.

The Drupal Search API Solr module provides a detailed schema file and other configuration files that,
when implemented on OpenSolr, provide the information required to index individual fields across all
of your content types. You can copy those files to OpenSolr by creating a ZIP file of all of the files in
the /modules/search_api_solr/solr-conf/4.x directory (Note: If you are using a version other than 4.x
on OpenSolr, select the correct version by replacing 4.x with the version that you are using.) Once you have
zipped up the files, the next step is to upload that ZIP file to OpenSolr. On your OpenSolr dashboard, click
on the Config Uploader tab and select the ZIP file that you just created and then click the Upload File button.
When the upload has finished you should see a status message that shows that each file was saved with a
status of OK. If your file did not upload properly, ensure that you are using the correct version and that your
ZIP file was not corrupted.

With OpenSolr setup, the next task is to configure Drupal to use your OpenSolr index. Assuming you
have installed the Search API and Search API Solr modules, navigate to Extend and enable the Search API
and Search API Solr modules. After enabling the modules, navigate to Configuration ➤ Search and Metadata
➤ Search API. On this page (see Figure 6-18), click the Add Server button.

Figure 6-18. The Search API page

There are several values listed on the Add Server page; however, you only need to worry about providing
a few of the values (see Figure 6-19). The values that you need to provide to enable Solr on OpenSolr are as
follows:

•	 Server Name: Enter a value that is descriptive, such as OpenSolr.

•	 Solr Host: This value comes from the OpenSolr dashboard and the index that you
created. The value entered in this field comes from the hostname value on the
OpenSolr dashboard for your index (see Figure 6-17).

Chapter 6 ■ Leveraging Your Content

153

•	 Solr Port: This value also comes from the OpenSolr dashboard. If you are using
HTTP, enter 80, or if you are using HTTPS, enter 443.

•	 Solr Path: This value comes from the OpenSolr dashboard and is the value
associated with Path. Make sure you place a / at the front of the path value, such as
/solr/Drupal8.

All other values may be left as their default values. Click the Save button to continue. Note the Core
Connection value on the status page after saving. It should say “The Solr core could be accessed.” If it does
not say this, check the values that you entered and ensure that they match what is shown on your OpenSolr
console.

With the server successfully set up, the next task is to create the index in Drupal. Navigate back to
Configuration ➤ Search and Metadata ➤ Search API and click on the Add Index button. On the Add Search
Index form (see Figure 6-19):

•	 Enter an index name. This can be any meaningful name and only appears on
administrative pages, for example OpenSolr Index.

•	 Data sources. Select one or more sources of information that will be incorporated
into the Solr index. For demonstration purposes, we select Comment, Content,
Custom Block, and Taxonomy Term, as those are the elements of the site that we are
most interested in providing access to site visitors through search. After selecting
each data source, note that additional configuration options appear on the page.
Select the appropriate options based on what you would like to have indexed, or
what you want excluded from the index.

•	 Server. Select OpenSolr, which is the server that was just set up in the previous
section.

•	 Enabled. Ensure that the Enabled checkbox is checked.

•	 Click the Save button.

Chapter 6 ■ Leveraging Your Content

154

After saving the index, Drupal displays the Index Status page showing how many items have been
indexed and options to index all remaining content. Depending on which options you select when adding
the search index and how many of those items exist on your site, the screen shown in Figure 6-20 may differ
from your results. In the case of the example test site, all seven content items were successfully indexed.

Figure 6-19. The Add Search Index form

Chapter 6 ■ Leveraging Your Content

155

If there are remaining items that have not yet been indexed, you can click the Index Now button in the
Index Now section of the form shown in Figure 6-20. You may also queue all items for reindexing as well
as clear all indexed items. This will reset your search index back to empty and ready it for the content to be
reindexed, which is an action you may want to take if your search index has become corrupted.

Verifying That Your Content Has Been Indexed
To verify that your content has been indexed, you can perform a search on your site or you can visit your
OpenSolr dashboard and click on the Browse Data button. If content was indexed you should see a results
page similar to Figure 6-21. Note the numFound value of 57. This should match the number of items indexed
on the Index Status page in Drupal (see Figure 6-21).

Figure 6-20. The Index Status page

Chapter 6 ■ Leveraging Your Content

156

The final test is to return to the homepage and search for a word that is contained in at least one content
item on the site. After entering a search term and searching, the search results demonstrate that everything
is connected to OpenSolr and is working properly (see Figure 6-22).

Figure 6-21. Indexed items on OpenSolr

Chapter 6 ■ Leveraging Your Content

157

Integrating Views and Solr
One of the more powerful features of Solr on Drupal is the ability to use the Solr index as a source of content
for views. There are multiple benefits to using the Solr index, including:

•	 The Solr index is not stored in the Drupal database and is significantly faster to
query. With all of your content indexed in Solr, it is possible to write all of your views
against Solr, speeding up every page on your site that uses views.

•	 The Solr index can span multiple sites. If you have multiple Drupal sites across
your organization it is relatively simple to aggregate all of your content across all
sites into a single Solr index. That single Solr index may then be used with views to
display content from the local site, another Drupal site, or across all of your Drupal
sites. This opens new possibilities such as having a single Drupal site as the source
of all product information for all of your sites, making it easier to keep product
information in sync across the enterprise.

•	 Solr can index content from virtually any source as long as it is accessible via the
web. You may have enterprise content stored in other CMS platforms, or you may
have information stored in legacy applications that are difficult to integrate, but by
using Solr to index that content it is now available through views. This alone is one of
the most powerful cases for using a solution like OpenSolr to solve one of the age-old
problems of sharing content.

Figure 6-22. Search results

Chapter 6 ■ Leveraging Your Content

158

Adding Fields to Your Search Index
By default Solr indexes nodes, blocks, taxonomy, and users as a document, meaning the whole content
item is indexed and is accessible through full text search but individual fields are not exposed, as individual
values that may be queried using views. While it is an optional step, I highly suggest adding the fields that
you may want to query using views to your index.

To add fields, navigate to Configuration ➤ Search and Metadata ➤ Search API and click the Edit link
for your Solr index. On the Edit page, click the Fields tab to expose the form where fields can be added to the
index (see Figure 6-23).

Figure 6-23. Adding fields to the Solr index

Click on the Add Fields button. The Add Fields page (see Figure 6-24) lists the entities that were selected
when setting up the Solr index (see Figure 6-19). You may add fields to any of the entities by clicking the +
next to the entity.

Chapter 6 ■ Leveraging Your Content

159

Let’s add the individual fields that we want to expose to Solr and views for content (nodes). After
expanding the list of available fields by clicking the + link, we select the fields that we need to be exposed to
views. To add fields, click on the Add button (see Figure 6-25).

Figure 6-24. Adding fields to to the Solr index

Figure 6-25. Adding fields to the index

When you’ve added all the fields you want to include in the index, click the Done button, which returns
you to the main fields page. Click the Save Changes button to commit the new fields.

Chapter 6 ■ Leveraging Your Content

160

After the fields were added, return to the View page by clicking the View tab. Click the Clear All Indexed
Data link at the bottom of the page and click the Confirm button to clear the index. Click the Queue All
Content for Indexing link once the index has been cleared, then click Confirm to continue. Click the Index
Now button to reindex all of the existing content on your site, including the fields that were just added to
the index. It may take a few minutes for OpenSolr to reindex all of your content, depending on how many
content items you have on your site. You are now ready to create a view using Solr.

Creating a Solr-Based View
The Search API and Search API Solr modules provide the integration with the Views module, so no
additional modules are required. To create a view using Solr, create a new view and, in the View settings
select list, choose Index <your Solr Index name>. In the example shown in Figure 6-26, the name of the index
is OpenSolr index, as that is what we called it, as shown at the top of the page in Figure 6-20.

Figure 6-26. Creating a new Solr-based view

After selecting the OpenSolr index and clicking the Save and Edit button, you can now select the fields
that you enabled in the previous step. We added the content title as one of the fields to the search index so
that field now appears in the list of available fields that we can add to our view display (see Figure 6-27).

Figure 6-27. Adding an indexed field to a view

Chapter 6 ■ Leveraging Your Content

161

Note that there are two available fields, the value from the local entity and the title (indexed field),
which is the value contained in the Solr index. We’ll choose the indexed field and continue to build the
view just as we would using local data, choosing the fields we want to include in the output of the view, but
instead of the local versions of those fields, we’ll select the indexed version. When the view is complete, we
can render the results just as we would using a normal view, with the primary difference being the speed of
execution (see Figure 6-28).

Figure 6-29. The Facets page

Figure 6-28. Rendering content from Solr through a view

Advanced Features of Solr
Using Solr to index your content, while faster and more powerful than Drupal’s internal search engine, is
only the tip of the iceberg. There are other key features that will significantly improve the functionality of
search on your site. One of the common advanced features that many sites employ is search facets. While you
may not recognize the terminology you have likely used facets on sites such as Amazon.com where Amazon
provides a list of criteria in the left column of nearly every shopping page.

Enabling Facets
To enable facets, first download and install the Facets module (drupal.org/project/facets). After enabling
the module, navigate to Configuration ➤ Search and Metadata ➤ Facets. On this page, you’ll see that the
view that we created in the previous example is available as a source for facets that can be displayed on a
page (see Figure 6-29).

Chapter 6 ■ Leveraging Your Content

162

To add a facet to a page, click the Add Facet button and select the view that we created as the source of
the facet. When you select the view, the list of available fields from that view appears as a list of elements that
we can use as a facet. For demonstration purposes, we’ll select Content Type as the basis of the facet that will
be displayed to the site visitor and will give the facet a meaningful name (Content Type), as it will appear as
the name of the block in the block layout interface (see Figure 6-30).

Figure 6-30. Adding a new facet

Figure 6-31. Adding the Content Type block to the Sidebar first

After saving the facet, navigate to Structure ➤ Block layout and add the new block named Content Type
to the sidebar first region (see Figure 6-31). Set visibility to this block to only appear on the page where your
view appears.

After adding the block to the page, navigate to the page that is generated by the view and you’ll see the
facets that were created (see Figure 6-32).

Chapter 6 ■ Leveraging Your Content

163

You can create facets for any field that is visible through the view. This is a powerful way for site visitors
to drill down into the content that they are interested in.

Federated Solr Search
Using OpenSolr you have the ability for multiple sites to contribute content to a single index, providing cross
site searching capabilities as well as the ability to aggregate content across sites and expose that aggregate
content through views. This provides an alternative to content deployment across sites as the content in
every site is populated in the search index. This is a relatively simple approach for aggregating content and
searching across your entire enterprise.

To enable this capability, simply create a new index on a local Drupal site and use the same Solr server
and index. You may add as many sites as desired to this single index.

You may also create multiple indexes and selectively add content from specific sites to a specific index,
for example, you may have a Drupal site where all product related content resides. Instead of deploying
that content across all web sites you may choose to create a “Product Index”. All sites needing product
information would then link to that index and utilize the content that resides in that product specific index.

There are many other powerful Solr features. I suggest visiting the Apache web site as well as sites such
as OpenSolr’s web site to see the full breadth of capabilities.

Multilingual Support
We live in a world where cultural and country boundaries, while still important, are blurred by the Internet’s
capability to connect two people who are geographically thousands of miles apart and enable them to
communicate through text, voice, and video. The visitors who come to our web sites may be our next-door
neighbors or they may live half a world away. Catering to those who live beyond our region and do not share
our native tongue is now more commonplace than ever. Web site designers who break through the language
barriers on their sites may attract audiences that they never dreamed of having in the past, and Drupal 8
makes that possibility a reality through its built-in multilingual capabilities.

Figure 6-32. The facet appearing on the page

Chapter 6 ■ Leveraging Your Content

164

Getting Started with Multilingual Support
The first step in creating a web site with multilingual support is to determine which languages you want to
support. Drupal 8 provides the capability to render your site in nearly any language spoken on the planet.
Drupal does not do the actual translation of the content; rather, it facilitates the translation by providing the
mechanisms that enable visitors to select which language they want to see (from the list that you offer), and
then rendering content that has been previously translated by humans into that language.

After you determine the list of languages that you want to support, the next step is to enable the
multilingual modules that are part of Drupal 8 core. Visit the module administration page by clicking the
Manage link in the admin menu at the top of the page, followed by the Extend link in the secondary menu.
Scroll down the page until you see the list of multilingual modules that are part of Drupal 8 (see Figure 6-33).

Figure 6-33. List of multilingual modules

Configuration Translation provides the ability to translate elements of your site such as the site name,
vocabularies, menus, blocks, and other configuration related text on your site. The Content Translation
module handles all of the content-related text, such as articles. The Interface Translation module provides
an easy-to-use interface for translating elements of your site that are static strings, such as form labels. The
Language module enables the definition of which languages your site supports.

Check all of the modules in the Multilingual category and then click the Save Configuration button.

Configuring Multilingual Capabilities
The next step in the process is to configure the multilingual capabilities of Drupal 8. Start by navigating to
the Configuration page. Click the Manage link in the admin menu, followed by the Configuration link in the
secondary menu. On the Configuration page, scroll down until you see the Regional and Language section
(see Figure 6-34).

Chapter 6 ■ Leveraging Your Content

165

Specifying the Languages
To set the languages that your site will support, click the Languages link on the Configuration page in
the Regional and Language section. If you installed your Drupal 8 instance using English as the default
language, your Languages page should look like Figure 6-35.

Figure 6-34. Multilingual configuration options

Figure 6-35. Base language

To enable a new language, click the Add Language button and select a language to add to your site from
the drop-down list of available languages. Then click the Add Language button (see Figure 6-36).

Chapter 6 ■ Leveraging Your Content

166

Configuring Language Activation
After setting the list of languages that you want to support, the next step is to specify under what conditions
Drupal should switch to a different language. At the top of the Languages page, click the Detection and
Selection tab to see a list of options to specify when language switching is to occur (see Figure 6-37).

Figure 6-36. Adding a language

Figure 6-37. Language detection and selection

As shown in the Detection Method column, you have several options for specifying how Drupal decides
which language to use to display page elements:

•	 Specify specific URL patterns that apply to languages, such as http://example.com/
en for the English version and http://example.com/ru for the Russian version.

•	 Session parameters that are set by custom code and stored in a session variable.

•	 A user’s language preference as set on his user profile.

•	 The browser’s default language settings as set in the user’s browser preferences.

http://example.com/en
http://example.com/en
http://example.com/ru

Chapter 6 ■ Leveraging Your Content

167

•	 Account administration pages allow you to set a different language for the
administrative interface and the content portion of your site.

•	 A user selecting a language from a drop-down list or radio buttons in a block on
your site. Checking this option enables a block that provides the ability to select the
visitors preferred language.

For demonstration purposes, check the URL and Selected Languages options and click the Save Settings
button to continue.

Some of the options, such as URL settings, provide the ability to configure the parameters that define
how those setting will take effect. Click on the Configure button to see the parameters.

By selecting the Selected Languages option, we now have access to a block that provides the ability for
users to select which language they prefer. To place that block on a page, navigate to the Block Layout page
(Manage ➤ Structure ➤ Block layout) and you’ll see in the Place Blocks list, under the System category, a
block named Language Switcher. Click the Language Switcher link and assign the block to a region provided
by your theme. If you are using Bartik, a good choice would be one of the two Sidebar regions. After you
select the region, don’t forget to click the Save Blocks button at the bottom of the Block Layout page. After
enabling the Language Switcher block, your page should look similar to Figure 6-38.

Figure 6-38. Language switcher block

Content Translation Example
With the Language Switcher block in place, you are now ready to take the next steps of translating content.
Return to the Configuration page by clicking the Manage link in the admin menu, followed by clicking the
Configuration link on the secondary menu. Click the Languages link on the Configuration page to return to
the Languages page. After enabling the languages you want to support, you’ll see entries for each in a column
titled Interface Translation (see Figure 6-39). For each language, this column shows the number of elements
that are already translated (the first number) and total number of elements available to translate, where
elements are field labels, error messages, or other text strings that are defined in template files and modules.
As you can see from Figure 6-39, many elements have already been translated by the Drupal community.

Chapter 6 ■ Leveraging Your Content

168

Clicking any of the values in the Interface Translation column displays the list of elements, with a text
box next to each element where the person doing the translation enters the translated text for that text string
(see Figure 6-40). To filter the list to only show elements that do not have a translation, click the Search In
list in the Filter Translatable Strings section of the page and select Only Untranslated Strings. Click the Filter
button to see the list of items that are missing a translation.

Figure 6-40. Translation of source strings to alternative language

Figure 6-39. Interface translation

After entering values for some or all of the source strings, click the Save Translations button. Back on
the Languages page, the number of strings you have translated will appear in the Interface Translation
column, along with the total number of strings and the percentage of strings that have been translated for
that language. The total number of strings to be translated may increase as you install new modules, create
new forms, or create other features that have interface elements that are translatable. Check this page often
to ensure that everything has an associated translation.

Configuring Entities
The next step in the setup of multilingual support on your site is to specify which content types, taxonomy
vocabularies, user profiles, or other supported elements are translatable. Return to the Configuration
page and click the Content Language and Translation link in the Regional and Language section (refer to
Figure 6-34). On this page, you will see a list of checkboxes related to the types of elements on your site that
support translation. Simply check the box next to the elements for which you want to provide translation

Chapter 6 ■ Leveraging Your Content

169

Figure 6-41. Content language configuration

capabilities. For demonstration purposes, check the boxes for Content, Custom Menu Link, and Taxonomy
Term. As you check each box, a list of options appears where you can set the translation capabilities for that
element (see Figure 6-41).

Checking the box for the Article Content Type, for example, displays additional details as to which
elements of that item are translatable. For the Article Content Type, this includes the title, body, comment
settings, image, and tag fields. For demonstration purposes, check all the boxes for all the elements, followed
by clicking the Save button.

Chapter 6 ■ Leveraging Your Content

170

Translating Content
With the pieces in place, the next step is to author content in the site’s native language and translate it to the
various languages that your site has been configured to support. For demonstration purposes, assuming you
checked the box for Article in the previous step, create a test article in the native language set for your site.
Click the Manage link on the admin menu, the Content link in the secondary menu, and the Add Content
button on the Content page. Select Article as the type of content to create. Note that a new field appears
on the Create Article form, called the Language Select list. For demonstration purposes, select the default
language that represents the base language of your site (e.g., if you installed the English version of Drupal
8, select English from the select list). On my Drupal 8 example site, I created an Article in English using
“This is a test article” for the title, and “Hello World this is a test article in English” as the body text. Save and
publish the Article by clicking the button at the bottom of the form. After saving the article, you’ll notice a
new Translate tab at the top of the Article form (while logged in as an administrator with content-editing
permissions set). The new tab allows you instant access to the translate feature (see Figure 6-42).

Figure 6-43. Language translation status

Figure 6-42. Translate option

Clicking the Translate tab displays a list of all the languages you specified while configuring multilingual
support and shows the current translation status for each of those languages for the content item that you
are working with (see Figure 6-43).

Clicking the Add button for a specific language brings up the node edit form for that piece of content,
allowing you (or another human translator) to see the original-language version of that content item, with
the ability to override that version with the translated version. Pick one of your languages from the list and
give it a try. Here is my test article being translated into French (see Figure 6-44).

Chapter 6 ■ Leveraging Your Content

171

Figure 6-44. Translating an article into French

After you click the Save and Keep Published button, Drupal will display the article in the language that
you just used, highlighting the language in the Language Switcher block. Try completing the translation in
all of the other languages by following the preceding steps, beginning with clicking the Translate tab. After
you have translated the Article into all of the languages, test the Language Switcher block to view the article
in each translation. If you selected a left-to-right language (such as Hebrew), note that Drupal renders the
page a little differently, moving elements such as the Language Switcher block from the left to the right
(assuming you placed the block in the Sidebar First region of the Bartik theme).

If you edit a content item and change any of the fields (e.g., the title or body in an article), remember
that the other translations need to be updated to reflect the change.

Summary
This chapter demonstrated Drupal 8’s capability to handle content distribution, search, and multilingual
content. These capabilities offer feature-rich and powerful tools for leveraging the content in your Drupal 8
site. The next chapter explores creating a better administrative interface in Drupal 8.

	Chapter 6: Leveraging Your Content
	Content Staging
	Content Staging and Site Preview Use Cases
	The Drupal 8 Solution for Content Staging and Synchronization
	The Deploy Module
	The Multiversion Module
	The Replication Module
	The Workspace Module
	RELAXed Web Services Module
	Trash Module

	Installation, Configuration, and Use of the Content Staging Framework
	Configuring Multiversion
	Configuring Workspaces
	Configuring RELAXed Web Services Modules

	Search
	What Is Apache Solr?
	To Install or Not To Install
	Required Modules
	Setting Up OpenSolr
	Adding the Schema.xml File OpenSolr
	Verifying That Your Content Has Been Indexed

	Integrating Views and Solr
	Adding Fields to Your Search Index
	Creating a Solr-Based View

	Advanced Features of Solr
	Enabling Facets
	Federated Solr Search

	Multilingual Support
	Getting Started with Multilingual Support
	Configuring Multilingual Capabilities
	Specifying the Languages
	Configuring Language Activation
	Content Translation Example

	Configuring Entities
	Translating Content

	Summary

