Xamarin Mobile
Application
Development

Cross-Platform C# and Xamarin.Forms Fundamentals

BRIDGE THE GAP BETWEEN .NET, 10S
AND ANDROID FOR YOUR MOBILE APPS

Dan Hermes

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

L . XXi
Additional FOreword.ccussusssssmssmsssmsssmsssssssssssssssssssssssssssssssnsssnssssssssssssssnsssnsnns XXiii
About the AUthOr.........ccccerisnin s ————————— XXV
About the Technical ReVIEWEr........ccusesmsssssmsmmsssmsssmsssssssssssssssasssssssssssssassnsssnsnnnas Xxvii
Acknowledgments........cccuuuisssssnsmnmmmmmmssssssssssnnnnmsssssssssssssnnnnssssssssssnnnnnnnnnssssssnnnnnnns XXix
INtroduction........ccccccssn s ———————— XXXi
Chapter 1: Mobile Development Using Xamarinccccuussesnsmssssssnssssssssssssssssssssssns 1
Chapter 2: Building Mobile User Interfaces.......cccusemmmsnmmsssnsmsssnsssssnsssssnsssssasssssnnss 9
Chapter 3: Ul Design Using Layouts........cccoumsssmmnmmsssssnnmnssssnssssssssssnssssssssnssssssnnnnss 45
Chapter 4: User Interaction Using Controlsccueemmmmsssnnnmmssssssssssssssssssssssnnns 105
Chapter 5: Making a Scrollable Listcccciumemmmmsmmmmsssmmsssssmsssssmsssssssssssssssnssnss 153
Chapter 6: Navigation.........ccccuuinsmmmmmmmmmmmmmssssssssnmmmmsmssssssssssssssessssssssssssssssesssnns 217
Chapter 7: Data Access with SQLite and Data Binding.........ccussemrrnsssnnnnsssssnnnnns 297
Chapter 8: Custom Renderers........cccvuussmmmmmssssssnmsssssssnssssssssnssssssssnsssssssnssssssnnnnss 349
Chapter 9: Cross-Platform Architecture..........ccccrrmmmnnsnsnnnnnssssssnnnnsssssssnssnnns 367
Epilogue: The Art of Xamarin App Development..........cccccmmmnnssennmnsssssnnssssssnnns 387
INAEX.uerierismsnne s ————————_—————_——————_— 389

Introduction

This book is a hands-on Xamarin.Forms primer and a cross-platform reference for building native Android,
i0S, and Windows Phone apps using C# and .NET.

If you think of the Xamarin platform as a pyramid with Xamarin.Android and Xamarin.iOS at its base and
Xamarin.Forms on top, that’s what this book covers with C#. Mobile UI makes up the lion’s share of the
pyramid, and this book explores the important concepts, elements, and recipes using Xamarin layouts,
controls, and lists.

The burning question in many new Xamarin projects is this: is Xamarin.Forms right for my project?
This book covers the salient considerations in the comparison of the Xamarin.Forms option vs. a
platform-specific approach with Xamarin.Android or Xamarin.iOS.

When you've reached the limits of what Xamarin.Forms can do out of the box, you'll want to customize your
Xamarin.Forms controls by using custom renderers to leverage platform-specific features.

You'll also learn all of the key Xamarin UI navigation patterns: hierarchical and modal, drill-down lists, tabs,
navigation drawer, and others. You can use the provided navigation code to build out the skeleton of just
about any business app.

This book is a guide to SQLite data access. We'll cover the most common ways to access a SQLite database in
a Xamarin app and how to build a data access layer (DAL). Once you have a database set up, you'll want to
bind your data to your UL You can do this by hand or use Xamarin.Forms data binding to bind UT elements
to data sources. We'll cover many techniques for read and write data binding to both data models and to
view models for a Model-View-ViewModel (MVVM) architecture.

Building an app requires more than a UI and data access; you'll also need to organize your code into a
professional-grade architecture. We'll explore solution-building techniques from starter to enterprise to help
you decouple your functional layers, manage your platform-specific code, and share your cross-platform
classes for optimal code reuse, testability, and maintainability.

Who This Book Is For

If you're a developer, architect, or technical manager who can read C# examples to learn about
cross-platform mobile development using the Xamarin platform, then this book is for you. C# developers
will probably be most at home with this book because that’s what I am, but I've made an effort to point out
when Microsoft or .NET lingo is in use. The Xamarin platform has a way of bringing technologists from
different backgrounds together.

XXXi

INTRODUCTION

How to Download Code Examples

All of the code for this book, the C# and Extensible Application Markup Language (XAML) solutions, can be
found in two places online:

Apress web page for this book, on the Source Code/Downloads tab (www.apress.com/9781484202159)

GitHub at https://github.com/danhermes/xamarin-book-examples

XAML

This book was written in the same way that the Xamarin platform is built, code-first in C#, so all of the book
examples are in C#. All of the C# UI examples were ported to XAML as well, and made available in the
downloadable code. Look for the XAML boxes for tips on where to find them.

XAML The XAML version of this example can be found at the Apress web site (www.apress. com), or on GitHub
at https://github.com/danhermes/xamarin-book-examples. The Xamarin.Forms solution for this chapter is
ThisChapterSolution.Xaml.

The hardest decision I made in writing this book was not including XAML examples in the book proper.
Including XAML would have meant doing away with much or all of the material on Xamarin.Android and
Xamarin.iOS, topics that are indispensible for a complete understanding of the Xamarin platform. I chose to
adhere to my mission for this book: cross-platform C# code-first coverage of the foundations of the Xamarin
platform. That said, I understand that there is a strong need for good XAML documentation and examples.
So although I wish that there had been enough time and room to include XAML examples in the text of the
book, I'm proud to say that we were able to provide downloadable XAML equivalents for all of the C# UI
examples.

Get Started with Xamarin.Forms Right Now!

No time for reading? Browse Chapter 2 for ten minutes, and then download the navigation code for Chapter 6.
Rip off some of my Chapter 6 navigation patterns to use immediately in your app and get started coding
right now. Leave the book open to Chapter 3 so you can build some layouts inside your navigation pages.
Good luck!

Chapter Contents

All of the chapters in this book are cross-platform, weighted in favor of Xamarin.Forms. The UI chapters
(Chapters 3-6) are written with Xamarin.Forms, Xamarin.Android, and Xamarin.iOS elements side by side
in a mini-index at the beginning of the chapter to facilitate understanding of concepts across platforms, and
to make it easier to consider custom renderers when you need them. The first part of those UI chapters is
Xamarin.Forms, the second part is Xamarin.Android, and the third is Xamarin.iOS.

Chapter 1—Mobile Development Using Xamarin

An introduction to the Xamarin platform covering all the key topics in this book.

xxxii

www.apress.com/9781484202159
https://github.com/danhermes/xamarin-book-examples
www.apress.com
https://github.com/danhermes/xamarin-book-examples
www.apress.com

INTRODUCTION

Chapter 2—Building Mobile User Interfaces (Xamarin.Forms Intro)

A Xamarin.Forms primer and a comparison of Xamarin.Forms vs. platform-specific approaches, such as
Xamarin.iOS and Xamarin.Android. Covers Xamarin.Forms pages, layouts, and views.

Chapter 3—UI Design Using Layouts

Layouts help us organize the positioning and formatting of controls, allowing us to structure and design the
screens of our mobile app.

Chapter 4—User Interaction Using Controls (Views)

Pickers, sliders, switches, and other mobile UI controls facilitate user interaction and data entry that is
unique to the mobile user interface and differs from the PC/mouse interface, largely because of the use of
gestures.

Chapter 5—Making a Scrollable List
Lists are one of the simplest and most powerful methods of data display and selection in mobile apps.
Chapter 6—Navigation

Navigation lets a user traverse an app, move from screen to screen, and access features. Hierarchical, modal,
navigation drawers, drill-down lists, and other key patterns make up the core of mobile Ul navigation. State
management is the handling of data passed between screens as the user navigates through the app.

Chapter 7—Data Access with SQLite and Data Binding

SQLite is the database of choice for many Xamarin developers. Store and retrieve data locally by using
SQLite.NET or ADO.NET. Using Xamarin.Forms data binding, fuse UI elements to your data models. Use the
MVVM pattern by binding to a view model.

Chapter 8—Custom Renderers

Extend the stock Xamarin.Forms controls and take advantage of platform-specific Ul feature sets while
maintaining a cross-platform approach using custom renderers.

Chapter 9—Cross-platform Architecture

Architect your cross-platform application by managing platform-specific code. Project-level options in
Xamarin include Portable Class Libraries (PCLs) and shared projects. Cross-platform coding techniques
include conditional compilation, dependency injection (DI), and file linking.

How to Read This Book

This book covers quite a breadth of material, and there are a few ways to approach it. Here are the main
navigation paths built into this book and how to use them. If you are interested in

¢ Cross-platform Development: Xamarin.Forms, Xamarin.Android, and Xamarin.iOS
Read the book from cover to cover. Every word in this book was written for you. After
you read Chapters 1 and 2, peruse the first few pages of Chapters 3-6 to understand
the Ul material covered in the book.

e Xamarin.Forms
Read Chapters 1 and 2, and then read the first third of Chapters 3-6, which covers
Xamarin.Forms Ul Then read Chapters 7, 8, and 9 for data access, custom renderers,
and architecture.

xxxiii

INTRODUCTION

Xamarin.Android

First, make sure you are up to speed on Android basics. See “Prerequisites” later

in this Introduction. Then read Chapter 1 and the first half of Chapter 2. Read the
middle section of Chapters 3-6, which covers the Android UI. Then read Chapters 7
and 9 for data access and architecture.

Xamarin.iOS

First, make sure you are up to speed on iOS basics. See “Prerequisites” later in this
Introduction. Then read Chapter 1 and the first half of Chapter 2. Read the end
section of Chapters 3-6, which covers the iOS UI. Then read Chapters 7 and 9 for data
access and architecture.

General Reference

Read Chapter 1 and the first half of Chapter 2 to get oriented. Then peruse the
first few pages of Chapters 3-6 to understand the UI material covered in the book
and how it is organized. Use the beginning of each of these UI chapters as a cross-
reference.

So many paths to pick from. This is a choose-your-own-adventure book.

CODE COMPLETE

There is a “Cliff’s Notes” navigation path through this book too. If you just want the bottom line on a topic,
find the section you're interested in and jump right to the CODE COMPLETE section. This is a complete code
listing at the end of many (but not all) major topics. Many times all we want is a quick code recipe on a topic,
and that’s how to get it here in this book. If you need explanation about the code, turn back to the beginning
of the section and step through the detailed construction of that code.

What Platform Am | Reading About Now?

Stay oriented while reading about different platforms by using the platform headings beneath major topic
headings. Here’s what the headings look like:

This heading denotes Xamarin.Forms topics.

This heading denotes Xamarin.Android topics.

This heading denotes Xamarin.iOS topics.

This heading denotes Xamarin.Forms Windows Phone topics.

XXXiv

http://dx.doi.org/10.1007/9781484202159_1
http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_3
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_9
http://dx.doi.org/10.1007/9781484202159_1
http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_3
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_9
http://dx.doi.org/10.1007/9781484202159_1
http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_3
http://dx.doi.org/10.1007/9781484202159_6

INTRODUCTION

this heading denotes topics that are useful for Xamarin.Forms, Xamarin.iOS, and Xamarin.Android.

Look for the platform headings beneath the major topic headings and you'll always know what platform
you're reading about.

Prerequisites

If you're mainly using Xamarin.Forms, you should be able to pick up this book without much else in the
way of background, besides some C#. However, if you want to get serious about using Xamarin.Android,
Xamarin.iOS, or Xamarin.Forms custom renderers, please note the following:

This is not an Android 101 primer. Although it provides some introduction to key
topics and then moves on to “202” material, you'll need to consult other sources
for mastery of Android and Xamarin.Android fundamentals. Consult a
Xamarin.Android primer on topics such as the following:

e Creating a Xamarin.Android solution using Xamarin Studio or Visual Studio
e Xamarin Designer for Android

e Activities, XML layouts, and views

e The activity life cycle

e The basic Ul controls: TextView, EditText, Button, and ImageView

e Fragments

e Images and screen sizes

e Local resources

e Gestures

This book is not an iOS 101 primer. Although it provides some introduction to key
topics and then moves on to “202” material, you'll need to consult other sources
for mastery of iOS and Xamarin.iOS fundamentals. Consult a Xamarin.iOS primer
on topics such as the following:

e (Creating a Xamarin.iOS solution using Xamarin Studio or Visual Studio

e Xcode Interface Builder or Xamarin Designer for iOS

e Storyboards and segues

e UIViewandUIViewController

e The basic UI controls: UILabel, UITextField, UIButton, and UIImageView
e Images and screen sizes

e Local resources

e Gestures

XXXV

INTRODUCTION

What'’s Not In This Book

The Xamarin platform is a monumental project, spanning technologies and APIs of several operating
systems. Writing about all of it in enough detail to be useful would require not hundreds but thousands
of pages, which means that not everything could be addressed in one book. There is no coverage of the
following:

e Extensible Application Markup Language (XAML) for Xamarin.Forms in the book
proper, but there are complete, downloadable XAML code examples.

o Integrated development environments (IDEs) including Visual Studio and Xamarin
Studio.

e Ul Designer tools including Xcode Interface Builder, Xamarin Designer for iOS, and
Xamarin Designer for Android.

e Some introductory Xamarin.Android topics (see “Prerequisites”)

e Some introductory Xamarin.iOS topics (see “Prerequisites”)

Windows Phone

Xamarin.Forms apps will run on Windows Phone. Windows Phone projects can be built to support
Silverlight or WinRT. This book was written for Windows Phone Silverlight implementations, but much of
what is written here applies to WinRT as well (and some WinRT differences are pointed out).

System Requirements

Whether you're developing on a Mac or Windows workstation, you will need to download and run the
Xamarin unified installer at http://xamarin.com/download. This will allow you to install and configure the
Xamarin platform including the Xamarin Android SDK, Xamarin iOS SDK, Xamarin Studio, and Xamarin’s
plug-in for Visual Studio, as appropriate.

Here are the OS and software requirements for Xamarin development.

Mac

These requirements must be met to build Xamarin apps on a Mac.
e Xamarin Studio 5+ is required to use Xamarin.Forms on OS X.
e To develop iOS apps:
e Latest Xcode version
e Mac OS X 10.9.3+ (Mavericks) or 10.10+

e Windows Phone apps cannot be developed on a Mac.

XXXVi

http://xamarin.com/download

INTRODUCTION

Windows
These requirements must be met to build Xamarin apps on a Windows workstation.
e Latest Xamarin Studio or Visual Studio 2012+ (not Express)
e Windows 7+
e ForiOS development, a networked Mac is required.
e For Windows Phone development, you'll need the Windows Phone SDK.

e Touse PCLs, you'll need Visual Studio 2013+ or the Portable Reference Library
Assemblies 4.6. For PCLs using Xamarin Studio without Visual Studio, download the
Portable Library Tools 2.

Xamarin.Forms

To use Xamarin.Forms, your app builds must target the following platforms.
e i0S6.1+
e Android 4.0+

e Windows Phone 8 (at the time of this writing, and newer versions later)

Errata

The author, the technical reviewers, and many Apress staff have made every effort to find and eliminate all
errors from this book’s text and code. Even so, there are bound to be one or two glitches left. To keep you
informed, there’s an Errata tab on the Apress book page (www.apress.com/9781484202159). If you find
any errors that haven’t already been reported, such as misspellings or faulty code, please let us know by
e-mailing support@apress.com.

Customer Support

Apress wants to hear what you think—what you liked, what you didn’t like, and what you think could be
done better next time. You can send comments to feedback@apzress.com. Be sure to mention the book title
in your message.

Contacting the Author

You can follow me on Twitter at @lexiconsystems, read my blog at www.mobilecsharpcafe.com, or e-mail
me at dan@lexiconsystemsinc.com.

If you are seeking general Xamarin product support, please use the Xamarin support page at
http://xamarin.com/support orthe Xamarin forums at http://forums.xamarin.com/.

XXXVii

www.apress.com/9781484202159
http://support@apress.com
http://feedback@apress.com
www.mobilecsharpcafe.com
http://dan@lexiconsystemsinc.com
http://xamarin.com/support%20
http://forums.xamarin.com/

INTRODUCTION

Summary

That is everything you need to get started with this book: contents, prerequisites, disclaimers, trailheads,
maps, and signposts. If you're new to the Xamarin platform, welcome to the community! If you're
experienced with Xamarin, thanks for reading, and there is plenty in here for you as well.

I promise you that reading this book, understanding the concepts, and practicing the code techniques
herein will enrich your Xamarin acumen and raise your coding skills to greater heights. I also hope to give
you a deeper appreciation for the amazing accomplishment that is the Xamarin platform.

XxXxVviii

CHAPTER 1

Mobile Development Using Xamarin

Mobile development in C# is unlike anything most of us have done with the language before. We are using

it to develop apps for non-Windows platforms, namely Android and iOS. This is both an opportunity and a
challenge. The opportunity is to expose ourselves to the rich breadth of technology that comprises the new
business application ecosystem made up of phones and tablets of different platforms and sizes. The challenge
is that so much about these devices and platforms is new to many of us, and there is much to learn. Of course,
we can build Windows Phone and tablet apps in C# also. The essence of cross-platform development is
building apps that will work on more than one mobile operating system: for example, on Android and iOS; or
on iOS and Windows Phone; or on iOS, Android, and Windows Phone. Using the cross-platform techniques
covered in this book, you will be equipped to develop for all the major mobile platforms!

The most exciting/terrifying part of this journey is learning the ins and outs of several operating systems.
Lucky for us, Xamarin shields us from many of the details, wrapping platform-specific APIs and exposing
familiar .NET using C#. Conversely, exposed to us in detail are C#-wrapped user interface (UI) APIs for each
platform, giving us precise control over the visual design of our app. The trick is to understand which aspects
of each operating system are important during development and which can be left up to Xamarin. Although
it never hurts to delve deeper in our understanding, there are only so many hours in a day, and the bottom
line is that we need to ship working software.

These are the key questions: How do we approach the development of a cross-platform mobile application?
Given the history and background that we already have in C# development, how do we carry forward this
knowledge and leverage it in the mobile space? Finally, given the multitude of things to learn about these
operating systems, what do we need to get started and help solve the important challenges?

While writing apps for more than one platform, a key goal is the reuse of code. The more we reuse, the
quicker and cheaper our projects become, and the more we lower our maintenance costs. Xamarin refers to
this as the unicorn of mobile development: write once, deploy anywhere. Any quest for a unicorn begins with
a fair maiden to entice it to appear. Our fair maiden is cross-platform design.

Let’s explore how Xamarin helps us solve our mobile puzzles while pursuing cross-platform design.

What Is Xamarin?

Xamarin is a development platform that allows us to code native, cross-platform iOS, Android, and Windows
Phone apps in C#.

How does it do that? Read on.

CHAPTER 1 * MOBILE DEVELOPMENT USING XAMARIN

Wrapped Native APIs

Descended from the open source Mono Project that brought .NET to Linux, the Xamarin platform is a

port of .NET to the iOS and Android operating systems with support for Windows Phone (see Figure 1-1).
Underlying Xamarin.Android is Mono for Android, and beneath Xamarin.iOS is MonoTouch. These are

C# bindings to the native Android and iOS APIs for development on mobile and tablet devices. This gives

us the power of the Android and iOS user interface, notifications, graphics, animation, and phone features
such as location and camera—all using C#. Each new release of the Android and iOS operating systems are
matched by a new Xamarin release that includes bindings to their new APIs. Xamarin’s port of .NET includes
features such as data types, generics, garbage collection, Language-Integrated Query (LINQ), asynchronous
programming patterns, delegates, and a subset of Windows Communication Foundation (WCF). Libraries
are managed with a linker to include only the referenced components. Xamarin.Forms is a layer on top of
the other UI bindings and the Windows Phone API, which provides a fully cross-platform Ul library.

Xamarin
NET

Xamarin.Forms

Xamarin.ioS Xamarin.Android

Windows

Android Phone

Figure 1-1. Xamarin C# libraries bind to native OS SDKs as well as .NET

So we have a .NET environment with i0OS and Android C#-bound libraries with support for Windows Phone
running on the mobile OS of our choice. Fantastic. Now how do we build Uls and write code using these
libraries to build mobile apps? By using development environments and UI designers, of course.

Development Environments

Xamarin provides development environments and designers to help us build mobile apps on Windows

or Mac. The two main choices for Xamarin development environments are Xamarin Studio on Mac or
Windows, or Visual Studio on Windows with the Xamarin for Windows plug-in. A Mac is always required for
the compilation of iOS apps, even if Visual Studio is used as the development environment.

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

UI Designers

The tools we use to create mobile user interfaces are called designers. These generate Extensible Markup
Language (XML) files in their respective proprietary file formats. Two designers are available from Xamarin:

e Xamarin Designer for Android
e Xamarin Designer for iOS

With the availability of these designers, the need for the original, native XML editors has diminished.
Anything you might need to build Android or iOS Uls can be found in Xamarin’s tools. However, i0OS
developers still frequently use the Xcode Interface Builder, and Android developers (less frequently) use
XML editors such as the Android Development Tools (ADT) plug-in for Eclipse. An XML layout is an XML
layout, and the tool is largely a matter of taste and personal preference, even the decision to use a designer
tool at all. Some Xamarin developers are opting to code Uls by hand in C# for all platforms with no designer
use whatsoever. I recommend the designers to help learn the file formats, UI elements, and their properties.
At the very least, use a designer tool like training wheels until you're ready to ride freestyle.

Note This book focuses on code rather than tools. Refer to the Xamarin online docs for more information on
the designers and development environments at http://developer.xamarin.com.

What’s Old: Familiar C# and .NET Techniques

Xamarin development allows us to leverage many things that we already know about C# development.
We can use our high-level knowledge of the following:

HTML-based pages

e Extensible Application Markup Language (XAML)
e Ul controls

e Event-driven logic

e Viewlife cycles

e State management

e Databinding

e Webservices

We also can use many .NET-specific techniques directly and immediately, including these:

.NET data types

e C# classes, methods, and properties
e Lambda expressions

e WCF (asubset)

e Generics (a subset)

e Localfile access

http://developer.xamarin.com./

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

e Streams
e Async/Await
e ADO.NET (a subset)

I've named just a few, so you can see there’s plenty of familiar ground for the C# developer to help us make
the leap into this new territory.

What’s New: Mobile Development Techniques

Throughout this book, you will explore common C# techniques and patterns in mobile development. Some
of them are exactly the same as the approaches we are accustomed to in traditional .NET development,
some changed a little, and a few changed a lot. Here are the key topics:

e Mobile Ul s the largest area of new learning for C# mobile development.
Xamarin.Forms provides a cross-platform Ul toolkit containing ready-to-use forms,
pages, layouts, views, and controls. Xamarin.iOS and Xamarin.Android provide
bindings to their respective native UIs. (See Chapters 2-6 and Chapter 8.)

e The Data Access Layer in a mobile app typically binds controls and pages to data
models populated from a local database that is synced with a remote data server
using web services. (See Chapter 7.)

e Local database access via SQLite is a change from the usual database vendors,
though ADO.NET access provides a familiar inroad and the SQLite.NET component
is a featureful option. (See Chapter 7.)

e Data binding is central to Xamarin.Forms development and is often accomplished
using the Model-View-ViewModel (MVVM) pattern. (See Chapter 7.)

e Cross-platform architecture is a collection of code-sharing strategies to further our
goal of write once, run anywhere. These include Portable Class Libraries (PCLSs)
with dependency injection, shared files and projects, and conditional compilation.
(See Chapter 9.)

Let’s touch on each of these topics.

Mobile UI

You have a formidable amount of new material to absorb when moving from web development to
cross-platform mobile development, mostly in the area of the user interface. There is first the issue of new
operating system UI APIs. Xamarin helps with this by providing platform-specific C# bindings to the major
0OSs with Xamarin.Android and Xamarin.iOS, while Xamarin.Forms provides cross-platform bindings to
both of these plus Windows Phone. The other set of challenges involves the design differences between web
apps and mobile apps. The compact screen, touch sensitivity, and handheld form factor team up to offer

a fundamentally novel user experience (UX). This requires a fundamentally novel approach to design and
development, leading us to explore mobile UI design.

http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_8
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_9

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

Xamarin.Forms and Platform-Specific Ul

There are two main approaches to mobile UI development using C#, which we can use separately,
interchangeably, or in tandem:

e Xamarin.Forms is a cross-platform UI toolkit for Android, i0S, and Windows Phone.
e Platform-specific UI uses Xamarin.Android, Xamarin.iOS, and Windows Phone SDK.

Xamarin.Forms contains a fully cross-platform toolkit providing a single set of UI controls, layouts, and
pages that map cleverly to respective native UI bindings on iOS, Android, and Windows Phone. Since
Xamarin.Forms is newer than platform-specific libraries, it is also less full-featured. Each release brings us
closer to full-featured cross-platform goodness, but sometimes we need more than the

out-of-the-box Xamarin.Forms classes have to offer. In those cases, we use the platform-specific

libraries, either for the entire page or for just parts of a page using Xamarin.Forms custom renderers
called PageRenderers.

The platform-specific approach is older and more established and therefore quite detailed and full-featured.
This involves libraries that bind directly to platform-specific UI APIs: Xamarin.Android for Android,

and Xamarin.iOS for i0S. For Windows Phone, we use the Windows Phone SDK, a native API requiring

no Xamarin bindings. These platform-specific libraries give us deep access to native Uls for providing a
visually stunning, interactively rich user experience. This comes at a cost: platform-specific code requiring a
separate Ul project for each platform with little code reusability.

Note Xamarin.Forms is the thrust of this book, augmented by custom renderers, which use platform-specific Ul.
However, developers creating platform-specific Ul projects using Xamarin.iOS and Xamarin.Android without
Xamarin.Forms can make excellent use of the i0S and Android sections in Chapters 2—7. If you are taking the
platform-specific approach, be sure to consult other sources (such as the Xamarin online documentation) for
Xamarin.Android and Xamarin.iOS solution setup and fundamentals.

Mobile Ul Design

UI techniques make up the core of most mobile software development. Current hardware limitations

of small devices encourage us to leave the heavy lifting to the PCs and servers on the far end of our web
services. Most of the components running in a mobile business application are there to support the visible
user interface. Mobile business and data access layers are often abbreviated versions of their server-side
brethren. That means that what we need most often are UI components to help us design screens using
layouts, implement controls for data entry and selection, build lists and tables for data display and editing,
create user navigation, and use images for backgrounds and icons. The UI topics in this book cover the
functions used most frequently in mobile app development. In each chapter, we start with the simplest, most
cross-platform approaches available, and then delve into platform-specifics for granularity and detail. These
are the mobile Ul topics are covered in this book:

e Screens, views, or pages are similar to the web and desktop equivalents in C#, using
controls with methods and properties and firing events that we handle in our
controllers. (See Chapter 2.)

e Layouts help us organize the positioning and formatting of controls, allowing us to
structure and design the screens of our mobile app. (See Chapter 3.)

http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

e Controls facilitate user interaction and data entry which is unique to the mobile user
interface and differs substantially from the PC/mouse interface, largely due the use
of gestures. (See Chapter 4.)

e Listsare one of the most powerful methods of data display and selection in mobile
apps. (See Chapter 5.)

e Navigation lets a user traverse an app, move from screen to screen, and access
features. Hierarchical navigation, modal screens, navigation drawers, alerts,
drilldown lists, and other key patterns make up the core of mobile UI navigation.
(See Chapter 6.)

e State Management is the handling of data passed between screens as the user
navigates through the app. (See Chapter 6.)

e Images are central to the mobile experience, in menus, lists, grids, carousels, and
other layouts. (See Chapters 2, 4, 6.)

Xamarin.Forms Custom Renderers

Custom Renderers allow us to go deeper than the out-of-the-box Xamarin.Forms UI controls and take
advantage of platform-specific UI feature sets while keeping a cross-platform approach. Xamarin.Forms
applications are inherently cross-platform, running on all three major platforms using the same code base.
This works well for basic designs and using certain controls. However, many projects will develop a need
to go deeper with the UI, such as design nuances on a single control, native modal dialog boxes, additional
graphics or animations on a page, or any requirements that go beyond the scope of what Xamarin.Forms
provides in the current release. This is accomplished by subclassing native controls and implementing
PageRenderers to create custom controls that give full access to platform-specific UI functionality using
Xamarin.iOS and Xamarin.Android. These platform-specific controls can be employed within Xamarin.
Forms pages to help maintain a cross-platform architecture.

Data Access Layer

The mobile data access layer departs from the designs we are accustomed to in web apps and more closely
resembles those found in desktop apps. Approaches range in sophistication from the popular MVVM pattern
to Model-View-Controller (MVC) to basic CRUD (Create/Insert/Update/Delete). Data-bound pages typically
feed into a local database on the device, which syncs with a remote data server using web services.

Web services in C# mobile development are a foundational aspect of code reuse. Many of these service
patterns remain the same for mobile applications as what we are accustomed to when building web apps.
However, mobile web services more closely resemble those found in desktop applications, differing from
web app services primarily in the importance of data synchronization and offline use. Create, Update, and
Delete interfaces are exposed online for RESTful calls from a multitude of platforms and devices. The fairest
of maidens dwell here in mobile web service patterns, a perfect place for cross-platform, write-once code.

The server-side component of web services remains the same for mobile applications, compared to what we
are accustomed to with web apps—except for the addition of data synchronization with local mobile data
stores for both online and offline use. Offline use requires a basic data set to be kept on hand in the local
database and synced when a connection is available. Not all apps support offline use.

Recounting our experiences with data access layers in older, related technologies, we will explore the
architectural options for the data access layer in C# mobile apps.

http://dx.doi.org/10.1007/9781484202159_4
http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_4
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

Local Data Access Using SQLite

SQLite holds the title as the most stable and reliable cross-platform database product for mobile development,
an open source project that works on i0S, Android, and Windows devices. Xamarin recommends it over a
number of other third-party projects, and it is the one covered in this book. Xamarin provides access to and
creation of SQLite databases within the development environment, provisions ADO.NET with support for
SQLite. There is also a SQLite.NET Xamarin component, a C# wrapper around the C-based SQLite data layer
offering low-level access to a SQLite database which includes async transactions. All this makes it easy and
painless to connect to the database, create and index tables, and read and write rows.

Data Binding

Data binding is consistent and cross-platform when using Xamarin.Forms. Modeled after data binding in
Windows Presentation Foundation (WPF), the MVVM pattern is central to its implementation. In code we
bind control fields to our data model and the binding mechanism is automatic. A manual implementation of

a PropertyChanged event allows your code to stay in sync with the data source. Binding is done in code or in
Extensible Application Markup Language XAML and can be one- or two-way. Controls, lists, and text are tethered
to a data source or to one another's properties. A growing number of third party vendors are providing Xamarin.
Forms control suites which include data-bound charts and grids, such as Telerik, Infragistics,

Syncfusion, and DevExpress.

Data-binding is not built into Xamarin.Android and Xamarin.iOS. Platform-specific implementations of data
binding are typically achieved using open-source third party libraries such as MvvmCross and MVVM Light.

Cross-platform Development

In the same way that .NET provided a unifying infrastructure spanning many operating systems and
languages, Xamarin bridges the gaps between mobile operating systems and their respective development
languages: iOS and Objective-C, Android and Java, and Windows Phone and tablets and C#. In this way,
Xamarin extends .NET into the mobile realm, far beyond Windows operating systems. Aside from the fact
that this is eminently cool, the real value here is the opportunity to share and reuse code between and
across projects and platforms. The greatest benefits of Xamarin tools are found in the cross-platform code;
therefore, a cross-platform approach to mobile patterns will produce the highest yield. Xamarin tools have
provided us with the means to catch a glimpse of the unicorn of write once, deploy anywhere.

The greatest foe we face in our quest for cross-platform implementation is platform-specific code. This code
must be implemented differently depending on the platform, whether iOS, Android, or Windows Phone.
Cross-platform patterns are the same regardless of operating system. Cross-platform code is sometimes
referred to as shared code, or core code, as it is shared between projects for different mobile operating systems.

Xamarin.Forms addresses the thorniest cross-platform challenge: the user interface. Developers using
Xamarin have a fully cross-platform data solution, which is local data access using ADO.NET or SQLite.NET
with SQLite and then web services. Even so, there will always be platform-specific code, as follows:

e IntheUl

e Device-specific functionality, such as camera and location
e Graphics and animations

e Security, file, and device permissions

Once we've identified the platform-specific and cross-platform code, the question is then how to organize it
into a cross-platform architecture.

CHAPTER 1 © MOBILE DEVELOPMENT USING XAMARIN

We have quite a few options, ranging from PCLs, shared projects, and linked files, interfaces, abstraction,
and conditional compilation. PCLs provide the means for a C# component to be built with a limited,
platform-specific subset of the .NET library to be compiled into a Dynamic Link Library (DLL) that can be
used in a Xamarin project for any platform specified by the PCLs profile. Data access layers, client-side web
services, and platform-independent business logic live happily here. Platform-specific functionality can
still be introduced into these libraries by using dependency injection with interfaces. A looser, more flexible
approach is to use shared files or projects that contain core files recompiled for each platform. Conditional
compilation, an ancient technique well-suited to small platform-specific customizations, permits blocks of
code within a shared file to be included in a platform-specific compile.

We will delve into these techniques and their related patterns as they bear the mark of the unicorn, helping
us to maximize our code's cross-platform footprint.

Summary

Business applications are undergoing a sea change in hardware transformation; we have not seen this
magnitude of change since the commercialization of the personal computer. The momentum of consumer
mobile devices has reached a tipping point, affecting the devices upon which business applications must
now function. With the battle continuing to rage between mobile operating systems, it is no longer enough
to just get a mobile app up and working on a single platform.

We must think cross-platform from the get-go.

Within the world of .NET, Xamarin has provided us with the tools to make cross-platform development the
norm instead of a special case, so we have no excuse. If the proper approach is taken, business logic, data
access layer, and, increasingly, even the UI are mostly platform-independent. So whether you are building an
Android, Windows Phone, or iOS app, the approach can be largely the same for many components of the app.

Let's take a look at the code!

CHAPTER 2

Building Mobile User Interfaces W,

In mobile UI development using Xamarin, our screens and their controls, images, animations, and user
interactions run natively on a handheld device. Various synonyms for mobile UI screens exist, such as views
and pages, and these are used interchangeably here. A view can mean a screen but can also refer to a control
in certain contexts.

Two standard approaches apply to building mobile Uls with Xamarin:
e Xamarin.Forms is a cross-platform Ul library for Android, iOS, and Windows Phone.

e A platform-specific (or native) UI approach uses Xamarin.Android, Xamarin.iOS, and
the Windows Phone SDK.

This chapter covers both approaches and defines the platform-specific components that make up each of
them. We will talk about when Xamarin.Forms is useful and when a more platform-specific approach might
be better. Then we'll delve into building a Xamarin.Forms UI using pages, layouts, and views. We will create
a Xamarin.Forms solution containing shared projects and platform-specific ones. While adding Xamarin.
Forms controls to a project, we will touch upon basic UI concepts such as image handling and formatting
controls in a layout.

Let’s start by discussing Xamarin.Forms.

Understanding Xamarin.Forms

Xamarin.Forms is a toolkit of cross-platform UI classes built atop the more foundational platform-specific UI
classes: Xamarin.Android and Xamarin.iOS. Xamarin.Android and Xamarin.iOS provide mapped classes to
their respective native UI SDKs: iOS UIKit and Android SDK. Xamarin.Forms also binds directly to the native
Windows Phone SDK. This provides a cross-platform set of UI components that render in each of the three
native operative systems (see Figure 2-1).

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Xamarin

Xamarin.Forms

YEINMEITRION Xamarin.Android

Windows
iOS UIKit Android SDK Phone

SDK

Figure 2-1. Xamarin libraries bind to native OS libraries

Xamarin.Forms provides a cross-platform toolkit of pages, layouts, and controls and is a great place to start
to begin building an app quickly. These Xamarin.Forms elements are built with Extensible Application
Markup Language (XAML) or coded in C#, using Page, Layout, and View classes. This API provides a broad
range of built-in cross-platform mobile UI patterns. Beginning with the highest-level Page objects, it
provides familiar menu pages such as NavigationPage for hierarchical drilldown menus, and TabbedPage
for tab menus, a MasterDetailPage for making navigation drawers, a CarouselPage for scrolling image
pages, and a ContentPage, a base class for creating custom pages. Layouts span the standard formats we
use on various platforms including StackLayout, Absolutelayout, Relativelayout, Grid, ScrollView, and
ContentView, the base layout class. Used within those layouts are dozens of familiar controls, or views, such
as ListView, Button, DatePicker, and TableView. Many of these views have built-in data binding options.

Xamarin.Forms comprises platform-independent classes that are bound to their native platform-
specific counterparts. This means we can develop basic, native Uls for all three platforms with almost no
knowledge of iOS and Android Uls. Rejoice but beware! Purists warn that trying to build apps for these
platforms without an understanding of the native APIs is a reckless undertaking. Let’s heed the spirit

of their concerns. We must take a keen interest in Android and iOS platforms, their evolution, features,
idiosyncrasies, and releases. We can also wallow in the convenience and genius of the amazing cross-
platform abstraction that is Xamarin.Forms!

10

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Note Basic pages such as login screens, simple lists, and some business apps are well-suited to
out-of-the-box Xamarin.Forms at the time of this writing. Platform-specific code can be utilized in Xamarin.
Forms projects for added functionality but each subsequent release of this library will allow us to build more
complex screens without utilizing platform-specific code.

Xamarin.Forms Solution Architecture

One of the greatest benefits of Xamarin.Forms is that it gives us the ability to develop native mobile apps

for several platforms simultaneously. Figure 2-2 shows the solution architecture for a cross-platform
Xamarin.Forms app developed for iOS, Android, and Windows Phone. In the spirit of good architecture and
reusability, a Xamarin.Forms cross-platform solution often uses shared C# application code containing the
business logic and data access layer, shown as the bottom level of the diagram. This is frequently referred to as
the Core Library. The cross-platform Xamarin.Forms Ul layer is also C# and is depicted as the middle

layer in the figure. The thin, broken layer at the top is a tiny amount of platform-specific C# UI code in
platform-specific projects required to initialize and run the app in each native OS.

i0S App Android App Windows Phone App

Platform-Specific
Initialization Code

Cross-Platform
UI Layer Shared C# Code Using Xamarin.Forms

Core Library

Business Logic and Shared C# Code
Data Access Layer

Figure 2-2. Xamarin.Forms solution architecture: One app for three platforms

Figure 2-2 is simplified to communicate the fundamentals of Xamarin.Forms. The reality is that hybridization
between Xamarin.Forms and platform-specific code is possible, useful, and encouraged. It can happen

at a number of levels. First, within a Xamarin.Forms Custom Renderer, which is a platform-specific class

for rendering platform-specific features on a Xamarin.Forms page. Hybridization can also happen within
platform-specific Android activities and iOS view controllers that run alongside Xamarin.Forms pages, or
within platform-specific classes that are called as-needed to handle native functionality such as location,
camera, graphics, or animation. This sophisticated approach can lead to a more complex architecture, such as
Figure 2-3, and must be handled carefully. Note the addition of the Platform-specific UI Layer.

11

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

IOS App Android App Windows Phone App

Cross-Platform _ _
UI Layer Shared C# Code Using Xamarin.Forms

Platform-Specific '
)Yl C# Code Using § Cif Code Using

Using IVEINETRION Xamarin.Android
Custom Renderers

C# Code Using
Windows
Phone SDK

Core Library

Business Logic and Shared C# Code
Data Access Layer

Figure 2-3. Xamarin.Forms architecture with custom renderers

Note Chapter 8 provides more on the use of custom renderers and platform-specific code in Xamarin.
Forms solutions.

When are Xamarin.Forms appropriate to use and when do we consider other Xamarin options? I'll address
this key question a bit later in the chapter, but first let’s define Xamarin'’s platform-specific UI options.

Understanding the Platform-Specific Ul Approach

Before Xamarin.Forms, there were the platform-specific (or native) UI options, which consist of the
Xamarin.Android, Xamarin.iOS, and Windows Phone SDK libraries. Building screens using platform-specific
Uls requires some understanding of the native Uls exposed by these libraries. We don’t need to code directly
in i0S UIKit or Android SDK, as we're one layer removed when using Xamarin bindings in C#. Using the
Windows Phone SDK s, of course, coding natively in C# against the Windows Phone SDK, a C# library. The
advantage of using Xamarin’s platform-specific UIs is that these libraries are established and full-featured.
Each native control and container class has a great many properties and methods, and the Xamarin bindings
expose many of them out-of-the-box.

Note We’re not talking about native Ul development using Objective-C or Java here but use of Xamarin C#
platform-specific bindings to native Ul libraries. To avoid such confusion, this book favors the term platform-
specific over native when referring to Xamarin libraries but Xamarin developers will sometimes use the term
native to refer to the use of platform-specific libraries Xamarin.i0S and Xamarin.Android.

12

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Platform-specific UI Solution Architecture

Figure 2-4 shows how a platform-specific solution designed to be cross-platform shares C# application
code containing the business logic and data access layer, just like a Xamarin.Forms solution. The UI layer is
another story: It’s all platform-specific. UI C# code in these projects uses classes that are bound directly to
the native API: iOS, Android, or the Windows Phone API directly sans binding.

i0S App Android App Windows Phone App

Platform-Specific JEXELIEAISHTe
Ul Layer EEINELGRION

C# Code Using f§ C# Code Using

Xamarin.Android Windows
Phone SDK

Core Library

Business Logic and Shared C# Code
Data Access Layer

Figure 2-4. Platform-specific Ul solution architecture

If you compare this diagram to the Xamarin.Forms diagram in Figure 2-2, you'll see that there’s a lot more
coding to be done here: a Ul for every platform as opposed to one for all. Why would anyone bother to do it
this way? There are quite a few good reasons why some or even all of the code might be done better this way.
To address the burning question Which do I use, Xamarin.Forms or Xamarin platform-specific Uls?, see the
section “Choosing Xamarin.Forms or a Platform-Specific UI” later in this chapter.

But first let’s delve into the Android and iOS bindings and then look at the Windows Phone SDK.

Xamarin.Android

The Xamarin.Android C# bindings tie us into the Android API. Android apps are made up of layouts and
activities, roughly translated as views and controllers. Layouts are typically XML files (.axml) edited using
a Ul designer that define the controls displayed on a screen. An Activity is a class that typically manages
the life cycle of a single layout, although smaller layouts, called fragments, can be combined to comprise
ascreen.

Controls are called views in Android-ese: Buttons, TextViews, ListViews, and so forth. We place these

on another kind of layout, controls that contain controls, which work like <div> in HTML: LinearLayout,
Relativelayout, FramelLayout, and WebViews. These layouts, inherited from the ViewGroup class are
assembled manually or generated dynamically using data-binding classes called adapters. Inheriting from
AdapterView, widgets such as ListView and GridView are populated by data-binding.

13

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Note Android parlance uses “layout” to mean two different things: an XML file containing a Ul screen (.axml)
and a container control that houses and formats other controls, such as LinearLayout.

There are two ways to build Android layouts: using XML resource files or coding them in C# by hand. XML
files (.axml) are highly readable and elegant, which encourages direct editing of the XML code, even when
also using the Xamarin Designer for Android, the XML resource file editor. Most mobile developers prefer
Android XML resource files (.axml) to hand-coding the Ul in C#. Coding Android UI by hand in C# is not as
comfortable, because the necessary methods and parameters have been deemed by the developer community
to be clumsy and difficult to use. Additionally, most online examples of Android UI use XML resource files,
even in the Xamarin online documentation. Those are the reasons that most of the Android development
community is using XML for UI development. This practice has extended to the Xamarin development
community, not to mention that using XML resource files is the Xamarin-recommended method.

Xamarin.iOS

The Xamarin.iOS C# bindings hook us up with the iOS native UI AP], called UIKit. Views and
ViewControllers are the equivalent of views and controllers in iOS. Views are typically constructed using
a designer tool and result in an XML file (.xib or .storyboard). ViewController is a controller class that
manages the views. In iOS we work with layers: tab bar view, navigation view, and images overlaying our
main view, all nested inside a UIWindow. Controls include UILabel, UIButton, UITextField, and UISlider.
These controls reside in a view class called UIView, which is inherited to create useful data-bound views
such as UITableView for lists and UICollectionView for grids and groupings. iOS layouts are built using

a technique called AutoLayout, based on constraints between views that move and size dynamically
depending on the display context. The older layout approach, AutoSizing, involves creating frames and
masking them, also called springs and struts. This is all part of UIKit, the development framework of the iOS
user interface.

Tip Why the UT in UILabel, UIButton, UIThis, and UIThat? i0S’s Objective-C has no namespaces,
so they are concatenated with the class name.

There are two ways to build screens in iOS: the first is using a designer tool, such as the Xamarin Designer
for iOS or the Xcode Interface Builder, and the second is hand-coding in C#. The designer tools create a
storyboard XML file or . xib (pronounced and written: nib), and hand-coding is done straight in the iOS
view-controller C# classes (these are then called nib-less views). Storyboards and nibs are sometimes
difficult to read. This tightly couples them to the tools we use to construct them and discourages manual
editing. Nibs are useful for simple forms such as modals and login pages, and the storyboard is the
workhorse for prototyping, complex transitions, and multiple interconnected pages. Dynamic data-
binding, data flow between pages, and visual effects and complexity are often best accomplished with
hand-coded C#.

14

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWindow_Class/UIWindowClassReference/UIWindowClassReference.html#//apple_ref/occ/cl/UIWindow%23_self

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Important Tip The focus of this book is Xamarin.Forms and cross-platform code-first development
with some of the most useful platform-specific techniques available. That’s a lot to cover in one book,
so the discussion of some Android and i0S basics and all designer tools is out of scope. If you’re doing
platform-specific development on Android or i0S for the first time, you’ll need to consult additional sources.
See the Introduction of this book for Prerequisites and consult the Xamarin, Google, and Apple online docs or
one of the many fine platform-specific books to fill you in.

Windows Phone SDK

The Windows Phone SDK is a C# library with a built-in .NET API. Screens are defined by Frame classes that
handle navigation and contain pages, loaded and unloaded like conventional views. Within these are layout
containers called panels, such as Canvas for absolute positioning, and StackPanel and Grid for relative
layout with autosizing. There are familiar controls such as TextBox for editing and TextBlock for labels, and
Button, Image, and MediaElement for videos and music. For lists there is LongListSelector and the older
ListBox. We build the UI using C#, XAML, Blend, and/or the Visual Studio UI designer.

Tip Because the Windows Phone SDK is already using C# and .NET, the Xamarin platform is not
necessary to code a Windows Phone app in C#. Cross-platform development is the primary consideration that
brings Xamarin together with Windows Phone: A Xamarin.Forms app can run on a Windows Phone.

Xamarin.Forms currently supports Windows Phone Silverlight, WinRT and Windows Store support have
been announced.

Choosing Xamarin.Forms or a Platform-Specific Ul

As developers, we are faced with this decision:
Which do I use, Xamarin.Forms or a Xamarin platform-specific UI?

The trade-off is portability of Xamarin.Forms versus the full-featured functionality of Xamarin’s platform-
specific Uls, namely Xamarin.Android and Xamarin.iOS. At the time of this writing, the platform-specific
Xamarin APIs have considerably more features than Xamarin.Forms. The answer to our question will range
from one, to the other, to both, depending on your needs. Here are suggested guidelines:

Use Xamarin.Forms for the following:

Learning Xamarin: If you're new to mobile development using C# then Xamarin.
Forms is a great way to get started!

Cross-platform scaffolding: When building cross-platform apps, Xamarin.Forms is
useful to build out the scaffolding of your app, as a rapid-application development
toolset.

15

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Basic Business Apps: Xamarin.Forms does these things well: basic data display,
navigation, and data entry. This is a good fit for many business apps.

Basic design: Xamarin.Forms provides controls with baseline design features,
facilitating basic visual formatting.

Simple cross-platform screens: Xamarin.Forms is great for creating fully functional
basic screens. For more complex screens, leverage Xamarin.Forms custom
renderers for platform-specific details.

Use a platform-specific UI (Xamarin.iOS or Xamarin.Android) for:

Complex screens: When an entire screen (or an entire app) requires a nuanced and
complex design and Ul approach, and Xamarin.Forms isn’t quite up to the task,
go with a platform-specific UI using Xamarin.Android and Xamarin.iOS.

Consumer Apps: Platform-specific UI has everything a developer needs to create a
consumer app with complex visual design, nuanced gesture sensitivity, and
high-end graphics and animation.

High-design: This approach provides complete native UI APIs with low-level
access to design properties on each control, allowing for a high visual standard of
design. Native animation and graphics are also available with this approach.

Single-platform apps: If you're building for only one platform, and a cross-platform
approach for your app is not important in the foreseeable future (a rare case even
if you're starting with one platform), consider using a platform-specific UL

Unsupported platforms: Mac OS X, Windows Store, and WinRT apps are not
currently supported by Xamarin.Forms at this time.

However, Xamarin moves fast, and these recommendations are likely to change. Here’s how: With each
new release of Xamarin.Forms, more properties and methods will be included in the bindings, bringing this
library closer to the platform-specific ones and giving us increased control over our cross-platform UI. Also,
third-party vendors and open source projects such as Xamarin Forms Labs are swiftly extending the options
available with added controls, charts, and datagrids. Currently, there is no visual designer for Xamarin.
Forms, but I expect there will be one soon.

When complex tasks or high design are required by Xamarin.Forms, virtually anything is possible using
Custom Renderers.

Use Both Approaches with Custom Renderers

Custom Renderers provide access to the lower-level, platform-specific, screen-rendering classes called
Renderers, which use platform-specific controls to create all Xamarin.Forms screens. Any Xamarin.
Forms screen can be broken into platform-specific screens and classes using this approach. This means
we can write a Xamarin.Forms page or app, and customize it by platform whenever necessary. More
about this in Chapter 8.

Use Custom Renderers sparingly, or risk a fragmented UI code base that probably should have been written
entirely as a platform-specific Ul

In each of the following chapters, we will explore the Xamarin.Forms options and then examine platform-
specific implementations of the same functionality. You will be able to see how they compare at the time of
this writing and how to use them together using custom renderers. As time marches on, Xamarin.Forms may
progress from a scaffolding technology to fully featured building blocks for cross-platform apps. If it does

16

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

not, or until it does, the platform-specific approach will remain necessary to build highly functional apps
without heavy reliance on Xamarin.Forms custom renderers.

Yesterday’s award-winning Xamarin apps were created using the platform-specific approach, but the key
question is, What will you create today?

Let’s explore the building blocks of the C# mobile user interface.

Exploring the Elements of Mobile Uls

Xamarin is a unifying tool serving several platforms, many of which can have different names for the same
things. Here are some unifying terms, weighted heavily in the direction of Xamarin.Forms:

Screens, views, or pages in mobile apps are made up of several basic groups of
components: pages, layouts, and controls. Pages can be full or partial screens

or groups of controls. In Xamarin.Forms, these are called pages because they
derive from the Page class. In iOS, they are views; and in Android, they’re screens,
layouts, or sometimes loosely referred to as activities.

Controls are the individual Ul elements we use to display information or provide
selection or navigation. Xamarin.Forms calls these views, because a\V'iew is the class
that controls inherit from. Certain controls are called widgets in Android. More on
these shortly and in Chapter 4.

Layouts are containers for controls that determine their size, placement, and
relationship to one another. Xamarin.Forms and Android use this term, while in
i0S everything is a view. More on this in Chapter 3.

Lists, typically scrollable and selectable, are one of the most important data display
and selection tools in the mobile UI More on these in Chapter 5.

Navigation provides the user with a way to traverse the app by using menus,
tabs, toolbars, lists, tappable icons, and the up and back buttons. More on this in
Chapter 6.

Modals, dialog boxes, and alerts are usually popup screens that provide
information and require some response from the user. More on these in Chapter 6.

Now that we have context and some terminology to work with, let’s get started with Xamarin.Forms!

Using the Xamarin.Forms Ul

Pages, layouts, and views make up the core of the Xamarin.Forms UI (Figure 2-5). Pages are the primary
container, and each screen is populated by a single Page class. A page may contain variations of the Layout
class, which may then hold other layouts, used for placing and sizing their contents. The purpose of pages
and layouts is to contain and present views, which are controls inherited from class View.

17

http://dx.doi.org/10.1007/9781484202159_4
http://dx.doi.org/10.1007/9781484202159_3
http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Figure 2-5. Page, layouts, and views on a Xamarin.Forms screen

Page

The Page class is the primary container of each main screen in the app. Derived from
Xamarin.Forms.VisualElement, Page is a base class for the creation of other top-level UI classes. Here are
the primary pages:

ContentPage
MasterDetailPage
NavigationPage
TabbedPage

CarouselPage

In addition to serving as containers for layouts and views, pages provide a rich menu of prefabricated
screens with useful functionality that includes navigation and gesture responsiveness. More on these
in Chapters 6.

18

http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Layout

Views are placed and sized by their container class, Layout. Layouts come in a variety of flavors with
different features for formatting their views. These containers allow views to be formatted precisely, loosely,
absolute to the coordinate system, or relative to one another. Layouts are the soft tissue of the page, the
cartilage that holds together the solid, visible aspects of the page(views). Here are the main layouts:

e StacklLayout

e Absolutelayout
e Relativelayout
e (Grid

e Scrollview

e Frame

e ContentView

The layout’s Content and/or Children properties contain other layouts and views. Horizontal and vertical
alignment is set by the properties HorizontalOptions and VerticalOptions. Rows, columns, and cells
within a layout can be padded with space, sized to expand to fill available space, or shrunk to fit their
content. More on layouts in the next chapter.

Tip Xamarin.Forms layouts are derived from the View class, so everything contained by a page is actually
some form of a view.

View

Views are controls, the visible and interactive elements on a page. These range from the basic views like
buttons, labels, and text boxes to the more advanced views like lists and navigation. Views contain properties
that determine their content, font, color, and alignment. Horizontal and vertical alignment is set by
properties HorizontalOptions and VerticalOptions. Like layouts, views can be padded with space, sized to
expand to fill available space, or shrunk to fit their content. Later in this chapter, we’ll code some views, then
visit them again in Chapter 4 and throughout the book. These are the primary views grouped by function:

e Basic - fundamental views

e Label

e Image

e Button
e BoxView

e List - make a scrollable, selectable list
e ListView

e Text Entry - user entry of text strings using a keyboard
e Entry
e Editor

19

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Selection - user choice of a wide range of fields
e Picker
e DatePicker

e TimePicker

e Stepper
e Slider
e Switch

User Feedback - notify the user of app processing status
e ActivityIndicator

e ProgressBar

Tip Be careful not to confuse the Xamarin.Forms View class with a view meaning screen or presentation

layer. Also, iOS refers to screens as views.

Creating a Xamarin.Forms Solution

Xamarin provides templates that contain the necessary projects to create a Xamarin.Forms app.
A cross-platform solution usually contains these projects:

Xamarin.Forms: Cross-platform Ul code called by one of the platform-specific
projects. This can be accomplished using a shared project, Portable Class Library
(PCL), or shared files. The example we’ll be creating in this chapter uses a PCL.

Xamarin.Android: Android-specific code, including Android project startup.
Xamarin.iOS: i0S-specific code, including iOS project startup.

Windows Phone application: Windows Phone-specific code, including Windows
Phone project startup.

Core Library: Shared app logic such as business logic and data access layer using a
PCL, or a shared project.

Figure 2-6 shows the main projects usually found in a Xamarin.Forms solution.

20

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Xamarin.Forms Project

Windows
Phone Project

iOS Project Android Project

Core Library Project

Figure 2-6. Xamarin.Forms solution

Tip The Core Library project is not added by solution templates and must be created manually, either as a
shared project or PCL. If you are just getting started with Xamarin. Forms you can skip the core library for now
and put all your shared files in the Xamarin.Forms project.

Let’s create a simple demo app to help us explore the foundations of Xamarin.Forms and many of its
commonly-used features.

Create a Xamarin.Forms solution. In Visual Studio, create a New Solution and select project
type C# » Mobile Apps » Blank App (Xamarin.Forms Portable). In Xamarin Studio, select project
type C# » Mobile Apps » Blank App (Xamarin.Forms Portable). Name it FormsExample.

This will create multiple projects: one for Xamarin.Forms code, and then platform-specific projects
including Android, iOS, and/or Windows Phone. The platform-specific projects available depend on
whether you're on a PC or a Mac, whether you're in Visual Studio or Xamarin Studio, and the licenses you
own. A Mac with Xamarin Studio will give you an iOS project and an Android project. A PC with Xamarin
Studio will give you Android. Solutions created in Xamarin Studio do not include a Windows Phone project,
as Visual Studio is required to create that project, though projects created in Visual Studio can be browsed in
Xamarin Studio without being compiled there. A PC with Visual Studio with both iOS and Android licenses
activated will create four projects: one PCL and one for each of the three platforms.

Tip Xamarin.Forms is currently available with all licenses except the Starter license. You'll need an Indie or
higher-level purchased license or trial license to use Xamarin.Forms.

More on PCLs, shared projects, and other cross-platform solution architecture options in Chapter 9.

The following sections provide each of the projects in the solution and the code they contain.

21

http://dx.doi.org/10.1007/9781484202159_9

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Xamarin.Forms Shared Code

When using Visual Studio, the Xamarin.Forms shared code project contains App. cs (Listing 2-1), which
defines and returns the main page of the app. Xamarin.Forms 1.3 introduced the Application object which
serves as the base class of App and provides the MainPage property as well as life cycle events OnStart,
OnSleep, and OnResume.

Tip When using Xamarin Studio, the name of the file in Listing 2-1 is the same as your project name,
FormsExample.cs in this case.

Listing 2-1. App.cs in the FormsExample project

namespace FormsExample

{
public class App : Application
public App()
{
MainPage = new ContentPage
{
Content = new StacklLayout
{
VerticalOptions = LayoutOptions.Center,
Children = {
new Label {
XAlign = TextAlignment.Center,
Text = "Welcome to Xamarin Forms!"
}
}
}
b
}
protected override void OnStart()
{
}
protected override void OnSleep()
{
}
protected override void OnResume()
{
}
}
}

22

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Each platform-specific project creates an instance of App to set the main page, in this case a ContentPage
object with its Content property populated with a friendly Label, centered horizontally and vertically.
The Content property only holds one child view. Multiple views must be contained within a child Layout,
a container for views, or using a ContentPage. The MainPage property is set to the root page of the
application using an inline ContentPage class.

Soon we will replace this ContentPage with our own ContentPage class and place controls on it.

Tip Astatic Application.Current property references the current application object anywhere in your app.

The OnStart, OnSleep, and OnResume method overrides created for us are used to manage our app when it is
moved to and from the background.

Application Lifecycle Methods: OnStart, OnSleep, and OnResume

When the user clicks the Back or Home (or App Switcher) buttons on their device, an app moves into the
background. When they reselect the app again, it resumes and moves back into the foreground. The starting
of an app, the progression of the app from the foreground into a background state then back into the
foreground again, until termination, is called the application lifecycle. The Application class includes three
virtual methods to handle lifecycle events:

e OnStart - Called when the app is first started
e OnSleep - Called each time the app is moved into the background
e OnResume - Called when the app is resumed after being in the background

OnSleep is also used for normal application termination (not a crash). Any time an app moves into a
background state, it must be assumed that it may never return from that state.

Tip Use the Properties dictionary for disk persistence in these methods when an app is backgrounded.
See Chapter 6 for more on State Management.

Building Pages Using ContentPage

The ContentPage class in App.cs (Listing 2-1), inherited from Xamarin.Forms.Page, is the generic page
used in Xamarin.Forms when a page is custom-built. It contains one child, assigned to its Content property,
such as the preceding Label. Placing multiple controls on a ContentPage requires the use of a custom class
inherited from ContentPage, which contains a container such as a Layout.

ContentPage has properties that affect the appearance of the page. The Padding property creates space
around the margins of the page to improve readability and design. BackgroundImage can contain an image
that is displayed on the background of the page.

Several of ContentPage's members are useful for navigation and state management. The Title

property contains text and the Icon property contains an image that display at the top of the page when
NavigationPage is implemented. Lifecycle methods OnAppearing and OnDisappearing can be overridden
to handle initialization and finalization of a ContentPage. The ToolBarItems property is useful for creating a
drop-down menu. All of these navigation-related members are covered in Chapter 6.

23

CHAPTER 2 © BUILDING MOBILE USER INTERFACES
Xamarin.Android

The Android project contains a startup file called MainActivity.cs, which defines an activity class inherited
from Xamarin.Forms.Platform.Android.FormsApplicationActivity as seen in Listing 2-2.

Listing 2-2. MainActivity.cs in the FormsExample.Droid project

namespace FormsExample.Droid

{

[Activity(Label = "FormsExample", Icon = "@drawable/icon", MainLauncher = true,
ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
public class MainActivity : global::Xamarin.Forms.Platform.Android.
FormsApplicationActivity

{

protected override void OnCreate(Bundle bundle)

{

base.OnCreate(bundle);
global: :Xamarin.Forms.Forms.Init(this, bundle);
LoadApplication(new App());

}

In the OnCreate method, Xamarin.Forms is initialized and LoadApplication sets App as the current page.

Xamarin.iOS

The iOS project contains a startup file called AppDelegate (Listing 2-3) which inherits from
Xamarin.Forms.Platform.i0S.FormsApplicationDelegate.

Listing 2-3. AppDelegate.cs in the FormsExample.iOS project

namespace FormsExample.iOS

{
[Register("AppDelegate")]
public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.
FormsApplicationDelegate
{
public override bool FinishedLaunching(UIApplication app, NSDictionary options)
{
global: :Xamarin.Forms.Forms.Init();
LoadApplication(new App());
return base.FinishedlLaunching(app, options);
}
}
}

24

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Xamarin.Forms is initialized in the Init() method and LoadApplication sets App as the current page.

Windows Phone Application

The Windows Phone project contains a Mainpage.xaml. cs class (Listing 2-4) which inherits from
Xamarin.Forms.Platform.WinPhone.FormsApplicationPage:

Listing 2-4. MainPage.xaml.cs in the WinPhone project

namespace FormsExample.WinPhone

{
public partial class MainPage : global::Xamarin.Forms.Platform.WinPhone.
FormsApplicationPage
public MainPage()
{
InitializeComponent();
SupportedOrientations = SupportedPageOrientation.PortraitOrLandscape;
global: :Xamarin.Forms.Forms.Init();
LoadApplication(new FormsExample.App());
}
}
}

Xamarin.Forms is initialized in the Init() method and LoadApplication sets Xamarin.Forms App as the
current page.

Note Since Windows Phone applications have their own App class, use of the application namespace is
good practice when referencing the Xamarin.Forms App object.

Windows Phone apps also require a reference in the MainPage.xaml.
<winPhone:FormsApplicationPage

xmlns :winPhone="clr-
namespace:Xamarin.Forms.Platform.WinPhone;assembly=Xamarin.Forms.Platform.WP8"
el >

</winPhone:FormsApplicationPage>

25

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

All three of our platform-specific initializers, the Android MainActivity the iOS AppDelegate, and the
Windows Phone MainPage get the starting page from the Xamarin.Forms App class, which, by default, returns
a stubbed demo page.

Core Library

The core library is a project in a Xamarin.Forms solution for the business and/or data layer of an app which
should be largely platform independent. Although not explicitly created as part of the Xamarin.Forms
solution templates, a core library project is standard practice. Create one yourself and add it to your solution.
This can contain data models, shared files or resources, data access, business logic, or references to PCLs.
This is the place for platform-independent middle-tier or back-end non-UI code. It is referenced by any or
all of the other projects in the solution. Use it to optimize code reuse and to decouple the Ul projects from
the data source and business logic.

Now we need to build out the pages of our app. Time to code!

Setting the App’s Main Page

First we create a custom page in the Xamarin.Forms core project and set it to be the app’s main page. Create
a class inherited from ContentPage and call it ContentPageExample:

namespace FormsExample

{

class ContentPageExample : ContentPage

{
public ContentPageExample()

{

// views/controls will go here

Then back in the Xamarin.Forms App. c¢s, we update the App constructor to set an instance of our new
ContentPageExample class as the MainPage:

namespace FormsExample

{
public class App : Application

{
public App()
{

MainPage = new ContentPageExample();

}

Now we have the custom page class ready and can load up our ContentPageExample constructor
with controls.

26

CHAPTER 2 © BUILDING MOBILE USER INTERFACES
Adding Xamarin.Forms Views

View is the term for control in Xamarin.Forms, the smallest unit of UI construction. Most views inherit from
the View class and provide basic Ul functions, such as a label or a button. From this point on, we will use
the terms view and control interchangeably.

Tip All example code solutions, including the XAML versions of these C# examples, can be found under
the title of this book on Apress.com in the Source Code/Downloads tab, or on GitHub at
https://github.com/danhermes/xamarin-book-examples.

Let’s start simply and put some views into the ContentPageExample class.

Label View

Labels display single or multiline text. Here are some examples:

Label labellarge = new Label

{
Text = "Label",
FontSize = 40,
HorizontalOptions = LayoutOptions.Center
};
Label labelSmall = new Label
{
Text = "This control is great for\n" +
"displaying one or more\n" +
"lines of text.",
FontSize = 20,
HorizontalOptions = LayoutOptions.CenterAndExpand
};

Multiline text happens implicitly when enough text is used that it wraps, or explicitly when specifying line
breaks with \n.

A Label view has two types of alignment, view-justification and text-justification. The entire view is
justified within a layout using the HorizonalOptions and VerticalOptions properties assigned using
LayoutOptions. Label text is justified within a Label using Label’s XALign and YAlign properties, where
XAlign sets the horizontal and YAlign sets the vertical justification of text.

XAlign = TextAlignment.End

27

http://www.apress.com/9781484202159?gtmf=s
https://github.com/danhermes/xamarin-book-examples

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

The TextAlignment enumeration has three values: Start, Center, and End. In this example we use the defaults.

Next, the labels must be assigned to a layout for placement on the page.

Placing Views Using StackLayout

A Layout view acts as a container for other views. Since a ContentPage can have only one child, all the views
on our page must be placed in a single container that is made the child of the ContentPage. Here we employ
StackLayout, a subclass of Layout that can “stack” child views vertically:

StackLayout stackLayout = new StackLayout

{
Children =
{
labellarge,
labelSmall
1
HeightRequest = 1500
};

We place all the child views onto the parent view by using the Children property of this StackLayout and
set the requested height with HeightRequest. HeightRequest hasbeen setlarger than the visible page so
later we can make it scroll.

Note StackLayout child views are laid vertically unless horizontal order is specified using
Orientation = StackOrientation.Vertical.

To get the StackLayout to display on our page, we must assign it to the Content property of the ContentPage:
this.Content = stackLayout;

Compile and run the code. Figure 2-7 shows our labels on the StackLayout for iOS, Android, and Windows
Phone, respectively.

If you're using iOS and want your Xamarin.Forms projects to look more like examples in this book that have
a black background and white text, or you're using another platform and want more of an iOS look, setting
background color and font color can help you.

28

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Label Label
This control is great for 0 This control is great for
displaying one or more : h = ' d]5p|ay|ng one or more

lines of text.

lines of text.

Figure 2-7. Xamarin.Forms Labels on a StackLayout

Background Color and Font Color

Page background color and view font color can be changed using the ContentPage's BackgroundColor
property and the TextColor property found on text-based Views.

If you are working on an iOS project and want your work to look more like the book examples with black
backgrounds, add this line to your page:

this.BackgroundColor = Color.Black;

If you want it to look more classically iOS then set it to Color.White.

Text color will then be set automatically to a lighter color. However, you can control text color manually on
text controls with the TextColor property.

TextColor = Color.White,

We use fonts in many controls, so let’s do a quick overview of those.

Using Fonts

Format text on controls by using these properties:

FontFamily: Set the name of the font in the FontFamily property, otherwise, the
default system font will be used. For example, label.FontFamily = "Courier";

FontSize: The font size and weight are specified in the FontSize property using
a double value or a NamedSize enumeration. Here is an example using a double:
label.FontSize = 40;. Set a relative size by using NamedSize values such as
NamedSize.Large, using NamedSize members Large, Medium, Small, and Micro.
For example, button.FontSize = Device.GetNamedSize (NamedSize.Large,
typeof(Button));

FontAttributes: Font styles such as bold and italics are specified using the
FontAttributes property. Single attributes are set like this: 1abel.FontAttributes
= FontAttributes.Bold. FontAttribute options are None, Bold, and Italic.
Multiple attributes are concatenated using the “|’; for example,
label.FontAttributes = FontAttributes.Bold | FontAttributes.Italic;

29

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Tip Some controls support the use of different FontAttributes on different parts of a string using the
FormattedString class.

Note The FontSize property using NamedSizeo can be declared two ways:

1. button.FontSize = Device.GetNamedSize (NamedSize.large, button);

2. button.FontSize = Device.GetNamedSize (NamedSize.large, typeof(Button));

Use the second one for inline declarations.

Using Platform-Specific Fonts

Make sure your font name will work for all your target platforms, or your page may fail mysteriously.
If you need different font names per platform, use the Device.OnPlatform method, which sets the a value
according to the platform, like this:

label.FontFamily = Device.OnPlatform (
i0s: " Courier",
Android: "Droid Sans Mono",
WinPhone: " Courier New"

)5

label.FontSize = Device.OnPlatform (
30,
Device.GetNamedSize (NamedSize.Medium, label),
Device.GetNamedSize (NamedSize.lLarge, label)

)5

Tip Using Device.OnPlatform is a handy cross-platform trick that returns a platform-specific value.

Custom fonts loaded at runtime can also be used but this requires platform-specific coding covered in the
Xamarin.Forms online docs in section Working With... » Fonts(1.3).

30

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Button View

Xamarin.Forms buttons are rectangular and clickable.

Let’s add a plain ole button:

Button button = new Button

{
Text = "Make It So",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};

The Text property contains the text visible on the button. HorizontalOptions and VerticalOptions
(discussed in the next section) determine the control’s alignment and size. This NamedSize font setting
makes the font Large.

Tip Buttons can be customized using the BorderColor, BorderWidth, and TextColor properties.
The BorderWidth is defaulted to zero on iOS.

Add the button to our StackLayout.

StackLayout stackLayout = new StackLayout

{

Children =
labellarge,
labelSmall,
button

}s

HeightRequest = 1500

};

Figure 2-8 shows the new button.

Label
Label . .
This control is great for
This control is great for v b displaying one or more
displaying one or more ‘ h) lines of text.
lines of text. i})

Make It So Make It So Make It So

Figure 2-8. Xamarin.Forms Button

31

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Now let’s assign an event handler, either inline:

button.Clicked += (sender, args) =>

{
};

button.Text = "It is so!";

Or by assigning a method:
button.Clicked += OnButtonClicked;
...which is called outside the page constructor:

void OnButtonClicked(object sender, EventArgs e)
{

};

button.Text = "It is so!";

When you click the button the button text changes, as in Figure 2-9.

Ines of text.

It IS sO!

Figure 2-9. button.Clicked event fired

Tip If you assign an event handler outside the page constructor, be sure to also define your button outside
the constructor to avoid a variable undefined error.

BorderWidth assigns the weight of the line that draws the button.

32

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Setting View Alignment and Size: HorizontalOptions and
VerticalOptions

Horizontal and vertical alignment and, to a certain degree, the size of controls are managed by setting the
HorizontalOptions and/or VerticalOptions properties to a value of the LayoutOptions class, for example:

Button button = new Button
{

HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
}

Considerations in view layout are the space provided to the view by the layout and surrounding elements,
the padding space around the view, and the size of the view itself. These types of formatting are
accomplished using LayoutOptions and AndExpand.

Justification with LayoutOptions

Individual control layout is defined along a single axis by setting the HorizontalOptions or
VerticalOptions property to one of the LayoutOptions classes:

e Start left or top-justifies the control (depending upon layout Orientation)
e Center centers the control.

e End right or bottom-justifies the control.

e Fill expands the size of the control to fill the space provided.

For example:

HorizontalOptions = LayoutOptions.Start,

AndExpand Pads with Space

Setting HorizontalOptions or VerticalOptions to these LayoutOptions classes provides padding space
around the view:

e StartAndExpand left or top-justifies the control and pads around the control
with space.

e CenterAndExpand centers the control and pads around the control with space.

e EndAndExpand right or bottom-justifies the control and pads around the control
with space.

e FillAndExpand expands the size of the control and pads around the control
with space.

For example:

HorizontalOptions = LayoutOptions.StartAndExpand

33

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Tip HorizontalOptions setto Fill and FillandExpand look the same with a single control in a column.

Tip VerticalOptions setto Center or Fill is useful only if vertical space has been explicitly provided.
Otherwise, these options can appear to do nothing. LayoutOptions.Fill won’t make your control taller if
there’s no space to grow.

Tip VerticalOptions set to Expand and CenterAndExpand imposes padding space around a control in a
StackLayout.

There are more formatting examples later in this chapter and a lot more on the topic of control layout and
alignment in Chapter 3. Next let’s create some user input.

Entry View for Text Input

The following code creates a text box for user entry of a single line of text. Entry inherits from the InputView
class, a derivative of the View class.

Entry entry = new Entry

Placeholder = "Username",
VerticalOptions = LayoutOptions.Center,
Keyboard = Keyboard.Text

};
User input goes into the Text property as a String.

Note the use of the Placeholder property, an inline label for the name of the field and a common technique
in the mobile UI often preferable to space-consuming labels placed above or beside the entry control. The
Keyboard property is a member of InputView and provides a range of options for the onscreen keyboard that
appears for input, including Text, Numeric, Telephone, URL, and Email. Remember to add the entry to our
StackLayout (see Listing 2-5 later in the chapter). Figure 2-10 shows the new entry control for username.

Label Label
This control is great for This control is great for
displaying one or more displaying one or more
lines of text. lines of text.

Make It So Make It So

Username

Figure 2-10. Xamarin.Forms User Entry view

34

http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Tip Use the IsPassword property to replace entered text letters with dots.

For multiline entry, use the Editor control.

BoxView

The BoxView control creates a colored graphical rectangle, useful as a placeholder that can be later replaced
by an image or other more complex control or group of controls. This control is useful when you're waiting
on the designer to get his/her act together.

BoxView boxView = new BoxView

{
Color = Color.Silver,
WidthRequest = 150,
HeightRequest = 150,
HorizontalOptions = LayoutOptions.StartAndExpand,
VerticalOptions = LayoutOptions.Fill
};

The Color property can be set to any Color member value. The default dimensions are 40x40 pixels, which
can be changed using the WidthRequest and HeightRequest properties.

Tip Be careful when setting HorizontalOptions and VerticalOptions to LayoutOptions.Fill and
LayoutOptions.FillAndExpand, as this can override your HeightRequest and WidthRequest dimensions.

Add the BoxView to your StackLayout (see Listing 2-5 later in the chapter) and see the result here
in Figure 2-11.

Label Label

This control is great for
displaying one or more
lines of text.

Make It So

This control is great for
displaying one or more
lines of text.

Make It So

Username

Figure 2-11. Xamarin.Forms BoxView

35

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Eventually your designer will give you those promised icons and you can replace your BoxViews with

real images.

Image View

The Image view holds an image for display on your page from a local or online file:

Image image = new Image

Source = "monkey.png",

Aspect = Aspect.AspectFit,
HorizontalOptions = LayoutOptions.End,
VerticalOptions = LayoutOptions.Fill

};

Figure 2-12 shows the monkey image at the bottom right.

Label

This control is great for
displaying one or more
lines of text.

Make It So

Make It So

Figure 2-12. Image view

Let’s look at how an image is handled.

36

Label

This control is great for
displaying one or more
lines of text.

Make It So

Username

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Source Property

The Source property denotes the location of the image by using these ImageSource class members:

FromFile: Local image file, for example, ImageSource.FromFile("monkey.png").
The shortcut for this method when assigning the Source is to leave off the method
altogether: Source = "monkey.png"

FromResource: Resource ID to an EmbeddedResource in the app or PCL, for
example, ImageSource.FromResource("monkey.png").

FromUri: Online image’s URI, for example,
ImageSource.FromUri((new Uri(http://yourdomain.com/image.png))

Tip You can use a FromFile shortcut to assign a local image: Source = "monkey.png"

Local Images

Local image files have platform-specific image folders in their respective projects:

Android: In the Resources/drawable folder. Don’t use special characters in the
filename. The Build Action must be set to Android Resource.

i0S: In the /Resources folder. Provide images for Retina displays as well, double
resolution with @2x suffix on the filename before the extension. The Build Action
must be set to BundleResource.

Windows Phone: In the Windows Phone project root directory. The Build Action
must be set to Content.

Set Build Actions to configure images to compile properly by right-clicking image files in the project.

Image Sizing: Aspect Property

The Image.Aspect property determines image sizing and is set by using the Aspect enumerator—for
example, image.Aspect = Aspect.AspectFit. These are the Aspect members:

AspectFill: Scale the image to fill the view, clipping if necessary.

AspectFit: Scale the image to fit within the view maintaining the aspect ratio
with no distortion and leaving space if necessary (letterboxing).

Fill: Scale the image to fill the view entirely and exactly, possibly distorting
the image.

Those are the image formatting options. Next we will make our image clickable.

37

http://yourdomain.com/image.png)

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Making an Image Clickable with a GestureRecognizer

Tappable images and icons are common in mobile applications for actions and navigation. Like many
Xamarin.Forms views, the Image doesn’t have a click or tap event and must be wired up using the
GestureRecognizer class. A gesture recognizer is a class that can be added to many views to respond to user
interaction. It currently supports just the tap gesture. The terms click and tap are used interchangeably in
mobile UI development.

The standard gesture recognizer is declared and a handler is created to manage the Tapped event, then the
gesture recognizer is added to the target view, an image in this case. Change the image’s Opacity to .5 in the
handler, which will fade the image slightly when tapped.

var tapGestureRecognizer = new TapGestureRecognizer();

tapGestureRecognizer.Tapped += (s, e) => {
image.Opacity = .5;

1

image.GestureRecognizers.Add(tapGestureRecognizer);

Give that a try and make your monkey fade so you can see that the gesture recoginizer works.

Tip An alternative implementation of GestureRecognizer uses the Command property.

image.GestureRecognizers.Add (new TapGestureRecognizer {
Command = new Command (()=> { /*handle tap*/ }),

};

User feedback is a crucial concept in mobile UI development. Any time a user does something in the Ul
there should be some subtle acknowledgment by the app. A tap, for instance, should respond to the user
with visible feedback. Usually an image will gray out or have a white background for a sec when touched.
Let’s do that professionally using the image’s Opacity property but adding async/await to create a slight
delay in our fade without affecting the app’s performance.

Replace the Tapped handler with this one that will cause the image to fade slightly for a fraction of a second.
Remember to add using System.Threading.Tasks; to the top of your file for async/await.

tapGestureRecognizer.Tapped += async (sender, e) =>
{

image.Opacity = .5;

await Task.Delay(200);

image.Opacity = 1;

)

Tapping on the image will now fade the image slightly, then back to normal, providing a responsive
user experience.

In your own projects you'll use gesture recognizers (and async/await) to actually do something when an
image is tapped. If you want to see async/await in action in this example, bump up the Delay to 2000, then
click the “Make It So” button while it’s awaiting and you'll see that the app is still responsive. You could do
many things in this Tapped handler without interrupting the flow of the app! Often when a button or image is
pressed, the result should be backgrounded using async/await for an optimal user experience.

38

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

Tip Async/await is a standard C# technique for queuing up activities in the background for simultaneous
activity using the Task Parallel Library (TPL). Many Xamarin methods and functions are provisioned for
background processing using async/await.

Finalizing the StackLayout

Now that we have our controls in place, let’s pull this entire page together. Check that the stackLayout has all
the views in it, as shown in Listing 2-5.

Listing 2-5. Final StackLayout for this chapter’s Xamarin.Forms example in ContentPageExample.cs

StackLayout stackLayout = new StackLayout

Children =

{
labellarge,

labelSmall,
button,
entry,
boxView,
image
b
HeightRequest = 1500
};

Now, we could keep our stackLayout assigned to ContentPageExample.Content and call that a page, but we
have one more view to add, a container class to permit scrolling of our views.

ScrollView

The ScrollView layout contains a single child and imparts scrollability to its contents:

ScrollView scrollView = new ScrollView

{
VerticalOptions = LayoutOptions.FillAndExpand,

Content = stackLayout
};

Here we assign stackLayout to the Content property of this ScrollView so our entire layout of views will
now be scrollable.

39

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Tip Scrollview scrolls vertically by default but can also scroll sideways using the Orientation property.
Ex. Orientation = ScrollOrientation.Horizontal

That's it for the views on this page. Now let’s wire it up at the page level.

Assigning the ContentPage.Content Property

On the ContentPage, we must change the Content property assignment to the new container view, scrollView.
this.Content = scrollView;
The final touch will be padding around the entire page so views won’t be mashed up against the sides of

the screen.

Padding Around the Entire Page

The ContentPage's Padding property creates space around the entire page. Here’s the property assignment:
this.Padding = new Thickness(left, top, right, bottom);

This example will place padding left, right, and bottom, but not top:
this.Padding = new Thickness(10, 0, 10, 5);

This will place equal space on all four sides:

this.Padding = new Thickness(10);

This example will slide a page just below the iOS status bar while keeping the page flush to the top of the
screen for other OSes. The Device.OnPlatform method supplies different values or actions depending on
the native OS (iOS, Android, WinPhone):

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

This last Padding expression is what we use in this project and in most projects in this book.

Figure 2-13 shows a final build and run on all three platforms.

40

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

/ i 2
o —
i Carrier = 1235 PM - La bE‘l
Label This control is great for

This control is great for
displaying one or more
lines of text.

Make It So Make It So Make It So

Username

ios Android Windows Phone

Figure 2-13. Final build and run of the FormsExample solution

CODE COMPLETE: Adding Xamarin.Forms Views

Listing 2-6 provides the completed C# code for the added Xamarin.Forms views in the FormsExample
solution.

Xaml The XAML version of this example can be found under the title of this book on Apress.comin the
Source Code/Downloads tab, or on GitHub at https://github.com/danhermes/xamarin-book-examples. The
Xamarin.Forms solution for Chapter 2 is FormsExample.Xaml and the files are ContentPageExample.Xaml
and ContentPageExample.cs.

41

http://www.apress.com/9781484202159?gtmf=s
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Listing 2-6. ContentPageExample.cs in the FormsExample project

42

using System;
using Xamarin.Forms;
using System.Threading.Tasks;

namespace FormsExample

{

class ContentPageExample : ContentPage

{
public ContentPageExample()
{
Label labellarge = new Label
{
Text = "Label",
FontSize = 40,
HorizontalOptions = LayoutOptions.Center
b
Label labelSmall = new Label
{
Text = "This control is great for\n" +
"displaying one or more\n" +
"lines of text.",
FontSize = 20,
HorizontalOptions = LayoutOptions.CenterAndExpand
b
Button button = new Button
{
Text = "Make It So",
FontSize = Device.GetNamedSize(NamedSize.Large,typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
b
button.Clicked += (sender, args) =>
{
button.Text = "It is so!";
b

Entry entry = new Entry

Placeholder = "Username",
VerticalOptions = LayoutOptions.Center,
Keyboard = Keyboard.Text

};

BoxView boxView = new BoxView

{

Color = Color.Silver,
WidthRequest = 150,

CHAPTER 2 © BUILDING MOBILE USER INTERFACES

HeightRequest = 150,
HorizontalOptions = LayoutOptions.StartAndExpand,
VerticalOptions = LayoutOptions.Fill

1
Image image = new Image

Source = "monkey.png",

Aspect = Aspect.AspectFit,
HorizontalOptions = LayoutOptions.End,
VerticalOptions = LayoutOptions.Fill

};

var tapGestureRecognizer = new TapGestureRecognizer();
tapGestureRecognizer.Tapped += async (sender, e) =>
{
image.Opacity = .5;
await Task.Delay(200);
image.Opacity = 1;
1

image.GestureRecognizers.Add(tapGestureRecognizer);
StackLayout stackLayout = new StackLayout

Children =

{
labellarge,
labelSmall,
button,
entry,
boxView,
image

b

HeightRequest = 1500

};

ScrollView scrollView = new ScrollView

{
VerticalOptions = LayoutOptions.FillAndExpand,

Content = stackLayout
};

// Accomodate iPhone status bar.
this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

this.Content = scrollView;

43

CHAPTER 2 * BUILDING MOBILE USER INTERFACES

Summary

Xamarin.Forms provides a jumping-off point for cross-platform mobile app UI development, fully loaded
with stock and customizable pages, layouts, and views. A Xamarin.Forms solution typically has a separate
project for each of these three platforms: Android, iOS, and Windows Phone. A Xamarin.Forms project is
useful for housing cross-platform Uls and a core library project contains the business logic and data layer
(either can be Shared Projects or PCLs).

Developers are faced with a decision of Xamarin.Forms vs. a platform-specific UI approach with Xamarin.
Android, Xamarin.iOS, and the Windows Phone SDK. The more Xamarin.Forms releases that come out, the
less of a decision this may be, as Xamarin.Forms approaches the functionality of native UI APIs. For now,
we need to master all the options on the table and weigh our choices carefully for each page of our app, to
make sure the toolset will support our requirements. Xamarin.Forms custom renderers help us combine
the two approaches.

The platform-specific UI option provides a full-featured toolset for detailed and nuanced native UL
development. This is not a cross-platform approach to the presentation layer and requires the Ul to be
completely separated into platform-specific projects with no shared UI components. Xamarin.iOS provides
bindings to the iOS UI API called UIKit. Xamarin.Android binds to the Android SDK, exposing the most
important classes and their members, offering a native UI experience to the developer and user.

View is the Xamarin.Forms term for control, and we delved into a few of the most frequently used views:
Label, Entry, BoxView, Image, StackLayout, and ScrollView.

Because layouts are some of the most powerful tools at a developer’s disposal for crafting the design of an
app, let’s explore mobile Ul layouts next.

44

CHAPTER 3

Ul Design Using Layouts

A layout is a container for controls, images, text, and other layouts. Central to the creation of the mobile Uls,
layouts help us to design our pages by using the placement of views and as well as nested layouts (for more
views). If you've worked with HTML <div>, <table>, or <form> elements then layouts should feel familiar to
you. The purpose of a layout is to indicate the location and size of each of its child elements. This is typically
done three ways: relative to the individual controls in the layout, relative to the origin of the layout, or using
an overlaid structure such as a grid. Each layout type has a mechanism for placing child views within it,
specifying the size and location of each view, and creating space between and around the views.

In this chapter, you will build small projects to work with each of the layout types and their features.
First you'll learn about the various types of layouts and explore custom controls. Xamarin.Forms,
Xamarin.Android, and Xamarin.iOS use different types of layouts. Here is an overview of these types.

Xamarin.Forms Layouts

Xamarin.Forms layouts inherit from the View class and can contain views or other layouts. Xamarin.Forms
layouts include the following:

e StacklLayout: Stacks child views vertically or horizontally

e Relativelayout: Uses constraints that create relationships between the elements
to define the location and size of child views AbsoluteLayout: Sets the child view’s
location and size by using bounding rectangles or proportions to the overall layout

e (Grid: Creates a table-like container with rows and columns to hold views
e Frame: Draws a frame-like border around the container
Android Layouts

Android layouts inherit from the ViewGroup class and can contain views or other layouts. Android layouts
include the following:

e Linearlayout: Arranges child views vertically or horizontally

e Relativelayout: Uses constraints that create relationships between the elements to
define the location and size of child views

e Tablelayout: Creates a table-like container with rows and columns to hold views

45

CHAPTER 3 ' UI DESIGN USING LAYOUTS

e (GridlLayout: Creates another table-like container with rows and columns to hold
views with several options for view flow: row first, column first, or specific row/
column assignment

e Framelayout: Arranges child views vertically and provides nesting, swapping, sliding,
and padding, much like a traditional .NET panel, as well as control over z-order
(layer depth)

iOS Layouts

Most iOS layouts are created with designer tools such as the Xcode Interface Builder and Xamarin Designer
for iOS. i0S layouts use a simple approach from a class standpoint, using a single class called UIView with
two techniques. iOS layout techniques include the following:

e AutoLayout: Uses constraints that create flexible, relative relationships between the
elements to define the location and size of child views

e Frames: Uses bounding rectangles called frames to indicate absolute placement and
size of child views (which can be sized according to context using masks, a technique
called AutoSizing)

When building layouts, a related topic that arises is the creation of custom controls, used as components for
building layouts.

Understanding Custom Controls

Custom controls in Xamarin are partial layouts that can be included in larger layouts on an as-needed basis,

that can be created on all platforms, and that can be made to function like user controls, custom controls, or
panels in .NET. Custom controls are barely touched upon in this book, but the topic bears mentioning in the
context of constructing professional-grade layouts.

In Xamarin.Forms, ContentView is a base class for creating custom views for nesting , padding, and reuse.
Custom controls should not be confused with customized controls, which are usually individual Xamarin.Forms
views with enhanced platform-specific functionality that are built using a custom renderer (see Chapter 8).
Even so, developers will sometimes refer to a single customized control as a custom control. Also, a customized
control has the capacity to contain multiple controls and might then actually become a custom control.

In Android, we have two options for creating custom controls: subclassed views and fragments. Subclassing
views allows us to create custom views that can be added as child views to ViewGroups such as layouts.
Subclassed views are lightweight and simple to implement. Sometimes we need access to activity features
in our custom control, however, such as the navigation stack and life-cycle events. Fragments are dynamic
mini-layouts with features of activities that are built using the base class Android.App.Fragment. Because
of their strength and versatility as building-block UI classes, many Android apps are created entirely using
fragments. They are commonly used to build apps that must work well on both phones and tablets as they
help to customize the layout according to screen size.

In iOS, custom controls are often created using a designer tool, though subclassing UIView also works.

Note This chapter explores a static, manual approach to layouts. Many of these layouts, such as the
Xamarin.Forms ones, contain bindable properties and can be bound to data sources and constructed
dynamically at run-time. You'll learn about data -binding in later chapters (Chapter 5 and Chapter 7).

46

http://dx.doi.org/10.1007/9781484202159_8
http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 3 © UI DESIGN USING LAYOUTS
Using Xamarin.Forms Layouts

Layouts in Xamarin.Forms are containers that hold and format views. Each layout has its own set of
constraints and behaviors to suit a range of design needs. You can format simple pages with a few controls
quickly and easily by using StackLayout. Relativelayout is useful when you know the coordinate
relationships between controls. Use AbsolutelLayout when you know only in which quadrants and areas

of the page your controls should appear, and when you need layering. Grid provides a table-like container.
ContentView is a base class for building custom layout views, like such as custom controls, which can
contain multiple layouts and other views, useful as a reusable component. A Frame layout provides a visible,
rectangular frame around its contents.

StackLayout

Views in a StackLayout are stacked vertically unless horizontal placement is specified. StackLayout is a
quick, loose layout useful for prototyping and simple screens. You add views as children to the parent view
and arrange them by using HorizontalOptions and VerticalOptions, which can also be used to expand
views and provide spacing between views. Useful for all Xamarin.Forms layouts, the Padding property
creates space around the edges of the entire layout.

Add a StackLayout to the constructor of your ContentPage like this:

StackLayout stackLayout = new StackLayout {

Spacing = 0,
VerticalOptions = LayoutOptions.FillAndExpand,
Children = {

// Add Views here

}

};

The Spacing property creates padding of the specified size between each view. The VerticalOptions
declaration using FillAndExpand pads the end of the layout with space, pushing other views to the bottom
of the page.

Tip All example code solutions, including the XAML versions of these C# examples, can be found
on Apress.com (from the Source Code/Downloads tab, access the title of this book) or on GitHub at
https://github.com/danhermes/xamarin-book-examples.

Listing 3-1 is an inline declaration of child views assigned the Children property.

47

https://github.com/danhermes/xamarin-book-examples

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Listing 3-1. StackLayoutHorizontal.cs in LayoutExample Project

StackLayout stackLayout = new StackLayout {
Spacing = 0,
Children = {
new Label {
Text = "Start is flush left",
HorizontalOptions = LayoutOptions.Start,

b
new Label {
Text = "Center",
HorizontalOptions = LayoutOptions.Center
b
new Label {
Text = "End is flush right",
HorizontalOptions = LayoutOptions.End
}
}

};

this.Content = stackLayout;

In Figure 3-1, note the HorizontalOptions placement for LayoutOptions.Start, Center, and End.

Start is flush left Startis flush left s Tt e
Center Start is flush left

End is flush right o End is flush right Center

End is flush righy

Figure 3-1. StackLayout HorizontalOptions

Tip The inline declaration of child views by assigning the Children property used in Listing 3-1 is useful
when building layouts quickly. The Add method works just as well:

stacklLayout.Children.Add(View item);

Padding Around the Entire Layout

Much like page padding, the layout’s Padding property creates space around the entire layout. Here’s the
inline property assignment:

Padding = new Thickness(left, top, right, bottom),

The following example places padding to the left, right, and bottom, but not on top:
Padding = new Thickness(10, 0, 10, 5),

This places equal space on all four sides:

Padding = new Thickness(10),

48

CHAPTER 3 * UI DESIGN USING LAYOUTS

Stacking with Vertical Orientation

Vertical stacking, the default orientation, places each view beneath the previous one. There are four
horizontal positions: Start, Center, End, and Fill. These are fields of the LayoutOptions class.

Let’s make the default vertical orientation explicit, so you can see it, and add a few views to the first example
(Listing 3-2).
Listing 3-2. StackLayoutVertical.cs

public StackLayoutVertical ()

{
StackLayout stackLayout = new StackLayout {
Spacing = 0,
Orientation = StackOrientation.Vertical,
VerticalOptions = LayoutOptions.FillAndExpand,
Children = {
new Label {
Text = "Start is flush left",
HorizontalOptions = LayoutOptions.Start,
1
new Label {
Text = "Start 2",
HorizontalOptions = LayoutOptions.Start,
b
new Label {
Text = "Center",
HorizontalOptions = LayoutOptions.Center
b
new Label {
Text = "Center2",
HorizontalOptions = LayoutOptions.Center
)b
new Label {
Text = "End1",
HorizontalOptions = LayoutOptions.End
b
new Label {
Text = "End is flush right",
HorizontalOptions = LayoutOptions.End
}
}
this.Content = stackLayout;
};

Figure 3-2 shows how each view is placed lower than its sibling with vertical orientation and how each view
is justified horizontally using HorizontalOptions.

49

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Start is flush left Start is flush lef [Start is flush left
Start 2 S
Center &L Center
Center2 Center2
End1
End is flush right

Figure 3-2. Top-to-bottom stacking with vertical orientation

There’s a fourth horizontal position: Fill. This causes the view to consume the available area:

HorizontalOptions = LayoutOptions.Fill

End
End is flush righ

Later in this section we’ll cover the Expand layout options (such as FillAndExpand), which cause views to

expand and pad the available area around the view with space.

Tip Make sure you have enough space in your layout or these alignments won’t be visible.

If you have more than three views to be positioned horizontally, the horizontal orientation is preferable.

Stacking with Horizontal Orientation

Views can also be stacked horizontally by setting the Orientation property to StackOrientation.

Horizontal, as shown in Listing 3-3. All views are on the same horizontal axis.

Listing 3-3. StackLayoutHorizontal.cs Continued

StackLayout stackLayoutHorizontal = new StackLayout {

Spacing = 0,
Orientation = StackOrientation.Horizontal,
Children = {
new Label {
Text = "Start------ "
b
new Label {
Text = "------ Center------ "
HorizontalOptions = LayoutOptions.CenterAndExpand
}
new Label {
Text = "------ End"
}

};

Figure 3-3 shows how each view is placed to the right of its sibling.

50

CHAPTER 3 * UI DESIGN USING LAYOUTS

Startee—es —eeee Center-seses seeen End Start Center- Enc

Figure 3-3. Left-to-right stacking with horizontal orientation

Horizontal padding from the expanded LayoutOptions separates views. Setting the center view’s
HorizontalOptions to LayoutOptions.CenterAndExpand provides space to the left and right of a centered
view.

You can order views horizontally by setting Orientation to StackOrientation.Horizontal, though exact
placement is impossible. Views are stacked left to right in the order added to the Children collection, with
cues from HorizontalOptions.

Figure 3-4 shows what the StackLayout looks like if we were to add a few more views to the right of the
previous views.

Start 1 Start 2 ---Center 1---Center 2---End ---Er Start 15tart 2---Center 1---Center 2 ------End 1 ---End
=== == - - 1 Start 1 —Start 2 ——Center 1 ——Center 2 -End 1 —End 2 - -~

Figure 3-4. Six views stacked left to right

Listing 3-4 is the code with those extra views. In the online code examples, I'm moving back and forth
between StackLayoutHorizontal.cs, which contains the simpler examples, and StackLayoutVertical.cs,
which adds extra views.

Listing 3-4. StackLayoutVertical. cs with Views Using HorizontalOptions

StackLayout stackLayoutHorizontal = new StackLayout {

Spacing = 0,
Orientation = StackOrientation.Horizontal,
Children = {
new Label {
Text = "Start 1 ---"
}
new Label {
Text = "Start 2 ---"
}
new Label {
Text = "---Center 1 ---",
HorizontalOptions = LayoutOptions.CenterAndExpand
1
new Label {
Text = "---Center 2 ---",
HorizontalOptions = LayoutOptions.CenterAndExpand
}
new Label {
Text = "---End 1 "
}
new Label {
Text = "---End 2 "
}

};
51

CHAPTER 3 ' UI DESIGN USING LAYOUTS

If you want to combine your child layouts into a parent layout, consider nesting layouts.

Nesting Layouts
Layouts can contain other layouts within the Children property.

A complex page with multiple rows of horizontally oriented views is accomplished with nested StackLayouts:
this.Content = new StackLayout

Children
{

stackLayout,
stackLayoutHorizontal

};

Tip If more than one nested StackLayout is used, other layouts should be considered, such as
Relativelayout, AbsoluteLayout, or Grid, which lend themselves better to complexity.

Controlling the size of views in a layout and the spacing between them is important to formatting.

Expanding and Padding Views by Using LayoutOptions

Use the Expand layout option to cause views to expand or to pad the available area with space.
FillAndExpand causes views to grow without creating padding space around them. All other expand options
pad around the view with space.

Tip These features are easier to see if you set a background color for the view by using the
BackgroundColor property.

The following are HorizontalOptions left-to-right formatting options:

FillAndExpand expands the view to the right:
HorizontalOptions = LayoutOptions.FillAndExpand;

StartAndExpand pads to the right with space:
HorizontalOptions = LayoutOptions.StartAndExpand;

EndAndExpand - pads to the left with space:
HorizontalOptions = LayoutOptions.EndAndExpand;
e CenterAndExpand pads to the left and right with space:

HorizontalOptions = LayoutOptions.CenterAndExpand;

52

CHAPTER 3 * UI DESIGN USING LAYOUTS

The following top-to-bottom formatting options are available for VerticalOptions:
e FillAndExpand - expands the view to the bottom:
VerticalOptions = LayoutOptions.FillAndExpand;
e StartAndExpand - pads to the bottom with space:
VerticalOptions = LayoutOptions.StartAndExpand;
e EndAndExpand - pads to the top with space:
VerticalOptions = LayoutOptions.EndAndExpand
e CenterAndExpand - pads to the top and bottom with space:

VerticalOptions = LayoutOptions.CenterAndExpand;

Note Expand layout options are only useful only if there are sibling views in the layout.

CODE COMPLETE: StackLayout

Listing 3-5 shows our full StackLayout example with a vertical and horizontal layout, the use of
HorizontalOptions, and the Expand layout option, as shown in Figure 3-5.

Start is flush left Sta sh lef Start is flush left
Center Cente Center
End is flush right End is flush right End is flush right
Start------ -===--Center------ ---==-End - -enter— ——Eng ar Center En

Figure 3-5. Two StackLayouts: one vertical and one horizontal

XAML The XAML version of these examples can be found on Apress.com (from the Source Code/Downloads
tab, access the title of this book) or on GitHub at https://github.com/danhermes/xamarin-book-examples.
The Xamarin.Forms solution for Chapter 3 is LayoutExample.Xaml.

Listing 3-5. StackLayoutHorizontal.cs Code Complete

using System;
using Xamarin.Forms;

namespace LayoutExample

public class StackLayoutHorizontal : ContentPage
{

public StackLayoutHorizontal()

{
StackLayout stackLayout = new StackLayout {

Spacing = 0,

53

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Children = {
new Label {
Text = "Start is flush left",
HorizontalOptions = LayoutOptions.Start,

b
new Label {
Text = "Center",
HorizontalOptions = LayoutOptions.Center
1
new Label {
Text = "End is flush right",
HorizontalOptions = LayoutOptions.End
}
}
b
StackLayout stackLayoutHorizontal = new StackLayout {
Spacing = 0,
Orientation = StackOrientation.Horizontal,
Children = {
new Label {
Text = "Start------ "
1
new Label {
Text = "------ Center------ "
HorizontalOptions = LayoutOptions.CenterAndExpand
b
new Label {
Text = "------ End"
}
}
b

// Padding on edges and a bit more for iPhone top status bar
this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

this.Content = new StackLayout

{
Children =
{
stackLayout,
stackLayoutHorizontal
}
};

54

CHAPTER 3 * Ul DESIGN USING LAYOUTS
RelativeLayout

Relativelayout auto-scales its elements to different screen sizes. Made up of the parent layout view and
its child views, this layout is defined by the relationships between views. Each child view is tied to its sibling
views or to the parent layout view by using constraints. A constraint can bind view locations and sizes: x/y
coordinates and width/height dimensions. RelativelLayout allows us to create an interconnected web of
views that stretch like rubber bands to fit the screen, providing built-in responsive design or auto-layout.

Tip Relativelayout is useful for apps that must present well on widely varying resolutions, such as on
phones and tablets.

Let’s start with a fresh ContentPage, create a Relativelayout instance, and place a label at 0,0 in the upper-
left corner of the layout, as shown in Listing 3-6.

Listing 3-6. Starting RelativeLayoutExample.cs

public class RelativelayoutExample : ContentPage

{
public RelativelayoutExample ()

{
Relativelayout relativelayout = new Relativelayout();

Label upperLeft = new Label

Text = "Upper Left",
FontSize = 20

};

relativelayout.Children.Add (upperleft,
Constraint.Constant (0),
Constraint.Constant (0));

// add more views here

Content = relativelayout;

The Upper Left label is added with a location constraint to the parent layout; using Constraint.Constant(0)
for both x and y places the label in the upper-left corner, at the origin: 0,0. Next we want to add more views in
relation to the existing parent and child views.

55

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Setting View Location and Size

Each time we add a view to Relativelayout, we ask: Do we want to set the location of the view, the size of
the view, or both?

Specify location with this Add method:

relativelayout.Children.Add(view, xLocationConstraint,
yLocationConstraint)

Specify both size and location with this one:
relativelayout.Children.Add(view, xLocationConstraint,
yLocationConstraint, widthConstraint, heightConstraint)

All these x/y coordinates, widths, and heights ultimately become absolute values. Data typing, however,
restricts us to the use of Constraint classes. This encourages calculations based on the values of sibling and
parent views, keeping things relative.

Using Constraints

Size and location are specified by using constraints. The Constraint object has three enumerations:
e (Constant, for absolute x/y assignments of location and/or size

e RelativeToParent, for relative x/y calculations of location and/or size to the
parent layout

e RelativeToView, for relative x/y calculations of location and/or size between

child(sibling) views

The following sections discuss each in more detail.

Absolute Location and Size

Constant is used for absolute location or size.

Here is a location example, which places the upperLeft label at coordinates 0,0 within the layout:

relativelayout.Children.Add (upperleft,
Constraint.Constant (0),
Constraint.Constant (0));

This is a size example, creating a view at 100,100 with dimensions 50 units wide and 200 units high:

Label constantlLabel = new Label

{
Text = "Constants are Absolute",
FontSize = 20

};

56

CHAPTER 3 * UI DESIGN USING LAYOUTS

relativelayout.Children.Add (constantlLabel,
Constraint.Constant (100),
Constraint.Constant (100),
Constraint.Constant (50),
Constraint.Constant (200));

Tip The numeric screen units used in many Xamarin.Forms views are relative units of measure that do not
represent pixels, and their results vary according to screen size.

This new label is shown in Figure 3-6, with the text wrapping at 50 units wide.

Upper Left Upper Left
Cons
Cons tants
tants ke
are - Absol
Absol ute
ute

Figure 3-6. Label with a Constant contraint

RelativeToParent Constraint

The RelativeToParent constraint ties a view’s location/size to the parent Relativelayout view. This is
useful for placing and sizing views in relation to the entire page or section.

Instantiate another child view, such as Label, and add that to the child collection by using a
RelativeToParent constraint. This example places the location of the new child view halfway down the
length and width of the parent layout:

Label halfwayDown = new Label
{

Text = "Halfway down and across",
FontSize = 15

};

relativelayout.Children.Add (halfwayDown ,
Constraint.RelativeToParent((parent) =>

{
return parent.Width / 2;
1),

Constraint.RelativeToParent((parent) =>

{
1)

return parent.Height / 2;

);

57

CHAPTER 3 ' UI DESIGN USING LAYOUTS

These calls to RelativetoParent pass the parent view, Relativelayout, into the lambda parameter,
returning an x coordinate equal to half the width of the parent layout and a y coordinate equal to half of the
height of the layout (see Figure 3-7).

o~ = .
[] —
Carvier 1235 PM - Upper Left
Upper Left
Cons
tants
are
Absol
ute

Halfway down and across

- o 4

Figure 3-7. RelativeToParent with a Height and Width calculation

Here’s the Constraint.RelativeToParent method in the general case:

Constraint.RelativeToParent ((parent) =>

{
1)

return calculatedValue

Use parent properties X, Y, Width, and Height to calculate the returned value.
Here are examples of useful calculated values to return for location:
e parent.X + parent.Width; locates the view to the right of the parent.

e parent.X + parent.Width /2; locates the view halfway across the width of
the parent.

e parent.Y + parent.Height; locates the view below the parent.

e parent.Y + parent.Height/2; locates the view halfway down the height of
the parent.

58

CHAPTER 3 * UI DESIGN USING LAYOUTS

The following are values for size:
e parent.Width; makes the width the same as that of the parent layout.
e parent.Width / 2; makes the width half that of the parent layout.
e parent.Height; makes the height the same as that of the parent layout.
e parent.Height / 2; makes the height half that of the parent layout.

Create a BoxView halfway down the page that is half the height and half the width of the parent view by
passing RelativeToParent calculations into the Add parameters:

BoxView boxView = new BoxView {
Color = Color.Accent,
WidthRequest = 150,
HeightRequest = 150,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
b

relativelayout.Children.Add (boxView,
Constraint.Constant (0),
Constraint.RelativeToParent((parent) =>

{
1,

Constraint.RelativeToParent((parent) =>

{
H>
Constraint.RelativeToParent((parent) =>

{
1

return parent.Height / 2;

return parent.Width / 2;

return parent.Height / 2;

)5

The result looks like Figure 3-8.

59

CHAPTER 3 ' UI DESIGN USING LAYOUTS

| F ——
Cartier - 1235 PM - Upper Left
Upper Left
Cons
tants
ane
Absol
ute

Haltway down and across

.

Figure 3-8. A BoxView placed using RelativeToParent

RelativeToView Constraint

RelativeToView constrains a view’s location/size to that of another view. Instantiate another child view,
such as a Label, and add that to the child collection by using a RelativeToView constraint. This example
places the location of the new child view beneath the sibling view:

Label below = new Label

{
Text = "Below Upper Left",
FontSize = 15

};

relativelayout.Children.Add (below,
Constraint.Constant (0),
Constraint.RelativeToView(upperLeft, (parent, sibling) =>

{

3]
)s

This call to RelativetoView passes the sibling view in the first parameter, upperLeft, and then passes the
parent and sibling into the lambda parameter, returning a calculated y coordinate equal to the y value below
the sibling, as shown in Figure 3-9 (for Android).

return sibling.Y + sibling.Height;

60

CHAPTER 3 * UI DESIGN USING LAYOUTS

Upper Left
Below Upper Left

Figure 3-9. Place one label below another by using RelativetoView

Here’s the Constraint.RelativeToView method in the general case:

Constraint.RelativeToView(siblingView, (parent, sibling) =>

{
1

You now have three views: the new child view, the anchoring sibling view, and the parent view, or layout.
Use parent or sibling properties X, Y, Width, and Height to calculate the returned value to assign to the child.
Here are examples of useful calculated values to return for location:

return calculatedValue

e sibling.X + sibling.Width; locates the view to the right of the sibling.

e sibling.X + sibling.Width /2; locates the view halfway across the width of
the sibling.

e sibling.Y + sibling.Height; locates the view below the sibling.

e sibling.Y + sibling.Height/2; locates the view halfway across the height of
the sibling.

Here are similar values for size:
e sibling.Width; makes the width the same as the sibling.
e sibling.Width / 2; makes the width half that of the sibling.
e sibling.Height; makes the height the same as the sibling.

e sibling.Height / 2; makes the height half that of the sibling.

Tip The sibling and parent objects contain all of the properties available in these views. Properties other
than those mentioned here may come in handy for your calculations, so be certain to explore.

61

CHAPTER 3 ' UI DESIGN USING LAYOUTS

CODE COMPLETE: RelativeLayout

Listing 3-7 is our full code example for Relativelayout using Constraints: Constant, RelativeToParent,
and RelativeToView (see Figure 3-10).

Carries ¥
Upper Left
Below Upper Left

1235 PM -

Cons
tants

Absol
ute

iway down and across

Figure 3-10. RelativeLayoutExample.cs using all the constraint types

XAML The XAML version of these examples can be found on Apress.com (from the Source Code/Downloads
tab, access the title of this book), or on GitHub at https://github.com/danhermes/xamarin-book-examples.
The Xamarin.Forms solution for Chapter 3 is LayoutExample.Xaml.

Listing 3-7. RelativeLayoutExample.cs Code Complete

using System;
using Xamarin.Forms;
namespace LayoutExample

public class RelativelayoutExample : ContentPage

{

public RelativelayoutExample ()
{

Relativelayout relativelayout = new Relativelayout();

62

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 3

Label upperLeft = new Label

{
Text = "Upper Left",

FontSize = 20,

};

relativelayout.Children.Add (upperLeft,
Constraint.Constant (0),
Constraint.Constant (0));

Label below = new Label

{
Text = "Below Upper Left",

FontSize = 15,

};

relativelayout.Children.Add (below,
Constraint.Constant (0),

Ul DESIGN USING LAYOUTS

Constraint.RelativeToView(upperLeft, (parent, sibling) =>

return sibling.Y + sibling.Height;

3]
)5
Label constantlLabel = new Label
{
Text = "Constants are Absolute",
FontSize = 20
b

relativelayout.Children.Add (constantLabel,
Constraint.Constant (100),
Constraint.Constant (100),
Constraint.Constant (50),
Constraint.Constant (200));

Label halfwayDown = new Label
{

Text = "Halfway down and across",
FontSize = 15

};

relativelayout.Children.Add (halfwayDown ,
Constraint.RelativeToParent((parent) =>

{
return parent.Width / 2;
1,

Constraint.RelativeToParent((parent) =>

{
1)

return parent.Height / 2;

);

63

CHAPTER 3 ' UI DESIGN USING LAYOUTS

BoxView boxView = new BoxView {
Color = Color.Accent,
HorizontalOptions = LayoutOptions.Start,
VerticalOptions = LayoutOptions.StartAndExpand

};

relativelayout.Children.Add (boxView,
Constraint.Constant (0),
Constraint.RelativeToParent((parent) =>

{
return parent.Height / 2;
1,
Constraint.RelativeToParent((parent) =>
{
return parent.Width / 2;
1,
Constraint.RelativeToParent((parent) =>
{
return parent.Height / 2;
1))
)s
Content = relativelayout;
}
}
}
AbsoluteLayout

Absolutelayout is a collection of views placed at x/y coordinates ranging from 0 to 1 and bounded in size.
Positions are not typically absolute, because we seldom use device-dependent x or y coordinates. Positions
are usually relative to 0 being at the origin and 1 at the furthest point along a single axis. The layout is
absolute in that views will go exactly where you put them, even on top of other views, so this can be useful
for layering.

Using SetLayoutBounds, views in Absolutelayout are each bound to a bounding object, which can be
a point or a rectangle. Using SetLayoutFlags, bounding points can determine location, while bounding
rectangles can determine location and size.

Listing 3-8 provides an example of AbsoluteLayout.

Listing 3-8. Starting AbsoluteLayoutExample.cs

Absolutelayout absolutelLayout = new Absolutelayout
{

};

// Add Views here

VerticalOptions = LayoutOptions.FillAndExpand

this.Content = absolutelayout;

64

CHAPTER 3 * UI DESIGN USING LAYOUTS

Now we’ll add some views. First, a Label control.

Label firstLabel = new Label
{

};

Text = "FirstlLabel"

In order to assign a view to Absolutelayout, the control is added to the Absolutelayout collection and then
LayoutFlags and LayoutBounds are set to define the position and size of the view. A single statement can
accomplish all of these things. Here is the method and parameter to do it:

absolutelayout.Children.Add (firstLabel, new Rectangle (xCoordinate,
yCoordinate, xWidth, xHeight), AbsolutelayoutFlags);

The Rectangle parameters are all doubles ranging from 0 to 1, and will be discussed more in depth soon.
Here is a code example:

absolutelayout.Children.Add (firstLabel, new Rectangle (0, O,
Absolutelayout.AutoSize, Absolutelayout.AutoSize),
AbsolutelayoutFlags.PositionProportional);

This adds the label view as a child to the layout collection and defines a bounding rectangle object that
contains two pieces of information: the location and size of the view. It also ties the view to the rectangle
with LayoutFlags, to specify the relationship between the bounding box and its view. Here is the longhand
version:

absolutelayout.Children.Add(firstLabel);
Absolutelayout.SetLayoutFlags(firstlLabel,
AbsolutelayoutFlags.PositionProportional);
Absolutelayout.SetLayoutBounds(firstlLabel,
new Rectangle(0, 0, Absolutelayout.AutoSize, Absolutelayout.AutoSize));

In the longhand code, you can see the steps: add the child view to the collection, set the flags, and then set
the bounds. Figure 3-11 shows the result (for Android).

FirstLabel

Figure 3-11. Add a label to AbsoluteLayout

Tip Absolutelayout.AutoSize adjusts the height or width to the content within the view.

Note HorizontalOptions,VerticalOptions, and Expand layout options are overridden by absolute
positioning.

65

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Creating Bounding Objects with SetLayoutBounds

Views in Absolutelayout can be placed at points or bounded by rectangles (invisible ones). Points come in
handy when only a location without a sized area is needed. Rectangles and points are the bounding objects
specified in SetLayoutBounds.

Let’s continue with another rectangle example. Create a second label, add it to the layout, and then set
layout flags and bounds to place it at the bottom-left corner of the page:

Label secondLabel = new Label

{
};

absolutelayout.Children.Add(secondlLabel);
Absolutelayout.SetLayoutFlags(secondLabel,
AbsolutelayoutFlags.PositionProportional);
Absolutelayout.SetLayoutBounds(secondLabel,
new Rectangle(0, 1, AbsoluteLayout.AutoSize,
Absolutelayout.AutoSize));

Text = "SecondLabel"

Figure 3-12 shows the result.

FirstLabel

Carvier - 1235 PM -
FirstLabel
SecondLabel
| SecondLabel
|
|)
L’
_ — -.-/

Figure 3-12. secondLabel placed at the bottom of the screen with y set to 1

66

CHAPTER 3 * UI DESIGN USING LAYOUTS

Setting Location and Size by Using Rectangles

Rectangles provide Absolutelayout with the location and size of a bounded area in which to place a view.
This is the constructor of Xamarin.Forms.Rectangle:

Rectangle (double locationX, double locationY, double width, double height)
All parameters are doubles ranging from 0 to 1. Here are a few examples of instantiated rectangles and how
the parameters affect location:
e Located at the origin with maximum width and height: new Rectangle (0, 0, 1, 1)
e Horizontally centered in the space provided: new Rectangle (.5, 0, 1, 1)
e Vertically centered in the space provided: new Rectangle (0, .5, 1, 1)

¢ Horizontally and vertically centered in the space provided: new Rectangle
(.5, .5, 1, 1)

The following are examples of parameters affecting size:

Located at the origin with maximum width and height: new Rectangle (0, 0, 1, 1)

Located at the origin at 20% width: new Rectangle (0, 0, .2, 1)

Located at the origin at 20% height: new Rectangle (0, 0, 1, .2)

Located at the origin at 20% width and height: new Rectangle (0, 0, .2, .2)

Tip The Absolutelayout examples in this chapter show relative units because that is the generally
recommended cross-platform approach. Absolutelayout can also use device-specific units. Be certain you
know what you’re doing, as device-specific units can cause inconsistent results across different platforms and
devices. Specify AbsoluteLayoutFlags.None and then use device-specific units with float values greater than 1:

Absolutelayout.SetLayoutFlags(secondLabel,AbsolutelLayoutFlags.None);
Absolutelayout.SetLayoutBounds(secondLabel,
new Rectangle (250f, 250f, 200f, 50f));

Setting Location by Using Points

Points can specify the location of a view when the size is not needed. Views can be added to Absolutelayout
very simply by using a point:

absolutelayout.Children.Add (firstLabel, new Point(0,0));

Points work just like the location portion of a rectangle, defining the x and y position by using doubles
ranging from 0 to 1. Here’s the Point constructor:

Point(double locationX, double locationY)

Points and rectangles are just geometric objects until they’re bound to a view’s location or size by using
SetlLayoutFlags.

67

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Binding to the Bounding Object by Using SetLayoutFlags

Layout flags describe the relationship between the view and the bounding object in regards to location
and size. The definition of a bounding object has no impact on the associated view unless a relationship
is created using layout flags. This relationship creates a correlation between the child view and the bound
rectangle or point. The following line of code associates the firstLabel view with the location of its
bounding object:

Absolutelayout.SetLayoutFlags(firstLabel,
AbsolutelayoutFlags.PositionProportional);

Relationships between views and bounding objects are made by AbsolutelayoutFlags in the second
parameter of SetLayoutFlags. This can be done by location, by size, or by both location and size.

Tip The most commonly used layout flags are PositionProportional and All because we are usually
either placing a view or both placing and sizing it.

Tip Images size well this way:

absolutelayout.Add (image, new Rectangle (0, 0, 1, 1),
AbsolutelayoutFlags.All);

Binding Location
Bind the x/y location of the bounding object to the view by using these flags:

e PositionProportional associates a rectangle or a point’s x/y location with the
location of the view:

Absolutelayout.SetLayoutFlags(firstlLabel,
AbsolutelayoutFlags.PositionProportional);

If the rectangle or point is at 0,0, the view will be at 0,0.

e XProportional associates a rectangle or a point’s x coordinate with the location of
the view:

Absolutelayout.SetlLayoutFlags(firstLabel,
AbsolutelayoutFlags.XProportional);

e YProportional associates a rectangle or point’s y coordinate with the location of the
view:

Absolutelayout.SetLayoutFlags(firstLabel,
AbsolutelayoutFlags.YProportional);

68

CHAPTER 3 * UI DESIGN USING LAYOUTS

Binding Size
Bind the size of the bounding object to the view by using these flags:
e SizeProportional associates the rectangle size with the size of the view:

Absolutelayout.SetlLayoutFlags(firstLabel,
AbsolutelayoutFlags.SizeProportional);

If the rectangle is size .2,.5, the view will be sized to .2, .5.
e WidthProportional associates the rectangle width with the width of the view:
Absolutelayout.SetLayoutFlags(firstlLabel,
AbsolutelayoutFlags.WidthProportional);
e HeightProportional - associates the rectangle height with the height of the view:

Absolutelayout.SetLayoutFlags(firstlLabel,
AbsolutelayoutFlags.HeightProportional);

Binding Both Location and Size
Connect (or disconnect) both location and size with a rectangle or point by using ALl or None.

e All associates the rectangle or point’s x/y location and size with the location and size
of the view:

Absolutelayout.SetLayoutFlags(firstLabel,
AbsolutelayoutFlags.All);

¢ None disassociates the rectangle or point from the view:

Absolutelayout.SetLayoutFlags(firstlLabel,
AbsolutelayoutFlags.None);

CODE COMPLETE: AbsoluteLayout

Listing 3-9 uses Absolutelayout to add labels to the top and bottom of the screen shown previously in
Figure 3-12. This example uses bounding rectangles with a few different ways to add the first Label(such as
using the abbreviated Add overload and using points instead of bounding rectangles).

Listing 3-9. AbsoluteLayoutExample.cs Using Rectangles and Points

using System;
using Xamarin.Forms;

namespace LayoutExample

{

public class AbsolutelayoutExample : ContentPage

{
public AbsolutelayoutExample ()

{

69

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Absolutelayout absolutelayout = new Absolutelayout
{

};

Label firstlLabel = new Label
{

};

absolutelayout.Children.Add(firstLabel);
Absolutelayout.SetlLayoutFlags(firstLabel,
AbsolutelayoutFlags.PositionProportional);
Absolutelayout.SetLayoutBounds(firstlLabel,
new Rectangle(0, 0, Absolutelayout.AutoSize,
Absolutelayout.AutoSize));

VerticalOptions = LayoutOptions.FillAndExpand

Text = "FirstLabel"

// OR

//absolutelayout.Children.Add (firstLabel, new Rectangle (0, O,
//Absolutelayout.AutoSize, Absolutelayout.AutoSize),
//AbsolutelayoutFlags.PositionProportional);

// OR

//absolutelayout.Children.Add (firstLabel, new Point(1,0));
//Absolutelayout.SetLayoutFlags(firstLabel,
//AbsolutelayoutFlags.PositionProportional);

Label secondlLabel = new Label

{

};
absolutelayout.Children.Add(secondlLabel);
Absolutelayout.SetLayoutFlags(secondlLabel,
AbsolutelayoutFlags.PositionProportional);
Absolutelayout.SetLayoutBounds (secondLabel,
new Rectangle(o, 1,
Absolutelayout.AutoSize, Absolutelayout.AutoSize));

Text = "SecondLabel"

this.Content = absolutelayout;

XAML The XAML version of these examples can be found on Apress.com (from the Source Code/Downloads
tab, access the title of this book) or on GitHub at https://github.com/danhermes/xamarin-book-examples
The Xamarin.Forms solution for Chapter 3 is LayoutExample.Xaml.

70

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 3 ' UI DESIGN USING LAYOUTS
Grid

Grid is a table-like container of views. It is organized into rows and columns, each with a height and width,
placed at specific row/column coordinates called cells. GridUnitType provides options for sizing rows and
columns, while the grid.Children.Add method allows both single-cell and multicell views. ColumnSpacing
and RowSpacing provide padding between cells.

Tip TableView is another cell-based view but is not technically a layout. It is useful for building simple
groups of items such as settings dialog boxes and grouped menus. Chapter 6 has a Tableview example.

Create a Grid object and define a single row and column, as shown in Listing 3-10.

Listing 3-10. Starting GridExamplel.cs

Grid grid = new Grid

{
VerticalOptions = LayoutOptions.FillAndExpand,
RowDefinitions =

{
}s
ColumnDefinitions =

{
}

new RowDefinition { Height = GridLength.Auto }

new ColumnDefinition { Width = GridLength.Auto }
};

this.Content = grid;

Specify Height in each RowDefinition, and Width in each ColumnDefinition. GridLength.Auto autosizes
cells for either Height or Width.

Tip The default GridLength setting for Height and Width, GridLength(1, GridunitType.Star),
expands the dimension of a row or column as much as possible.

Add a view at column and row 0, the only cell in our table:
grid.Children.Add(new Label
Text = "I'm at 0,0",

FontSize = 30
}, 0, 0);

71

http://iosapi.xamarin.com/monodoc.ashx?link=P%3aXamarin.Forms.Grid.ColumnSpacing
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 3 ' UI DESIGN USING LAYOUTS

This is the general-case Add for single- cell views:

Grid.Children.Add(view, indexColumn, indexRow)

Now let’s crank this table up to four rows by three columns:

Grid grid = new Grid

{
VerticalOptions = LayoutOptions.FillAndExpand,
RowDefinitions =
{
new RowDefinition { Height = GridlLength.Auto },
new RowDefinition { Height = GridlLength.Auto },
new RowDefinition { Height = GridlLength.Auto },
new RowDefinition { Height = GridLength.Auto }
1
ColumnDefinitions =
{
new ColumnDefinition { Width = GridLength.Auto },
new ColumnDefinition { Width = GridLength.Auto },
new ColumnDefinition { Width = GridLength.Auto }
}
};

Then add three more views at (1,1), (2,2), and (0,3). Add a little label formatting to makes things
more exciting:

grid.Children.Add(new Label

{
Text = "Me? 1,1",
FontSize = 30,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
BackgroundColor = Color.Lime

b1, 1);

grid.Children.Add(new Label

{
Text = "2,2 here",
FontSize = 25,
FontAttributes = FontAttributes.Bold,
TextColor = Color.White,
BackgroundColor = Color.Red

b2, 2);

grid.Children.Add(new Label

{

Text = "I'm at 0,3",

FontSize = 30,

FontAttributes = FontAttributes.Bold
} 0, 3);

72

CHAPTER 3 * UI DESIGN USING LAYOUTS

Figure 3-13 shows our Grid with four labels, completing the code in GridExamplel.cs.

I'mat0,0 I'mat0,0
Me? 1,1

m .2.2 here
I'mat 0,3

I'mat0,3

Figure 3-13. Grid containing four views

GridlLength.Auto took care of column widths and row heights for us, expanding to accommodate
view content.

Tip Empty cells can impact your grid. A row set to Height = GridLength.Auto that contains no views will
have a height of zero. A column set to Width = GridLength.Auto that contains no views will have zero width.

Tip Here’s a row and column definition shortcut. The RowDefinition() and ColumnDefinition()
constructors use GridunitType.Star by default, S0 new RowDefinition { Height = GridLength(1,
GridunitType.Star) } can be accomplished by

new RowDefinition()
and new ColumnDefinition { Width = GridlLength(1, GridUnitType.Star) } isthe same as this:

new ColumnDefinition()

To follow along with the online examples, save your current example, GridExamplel.cs, and then create
anew class called GridExample2.cs. Copy the contents of the constructor from GridExamplel.cs into
GridExample2.cs and continue working with GridExample2.cs. Remember to update your application class
(such as App. cs) with the new MainPage reference to GridExample2.

Sizing Rows and Columns

The size of rows and columns is determined by GridLength. You can autosize, expand, or set specific heights
and widths on rows or columns. GridLength is defined by its GridUnitType, of which there are three:

e Autosizes the dimension of a row or column to its content.
e Absolute indicates a numeric dimension of the row or column.

e Staris the default setting, which expands the dimension of a row or column as much
as possible, pushing subsequent rows or columns to the edge.

73

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Assign a GridLength object to Height in RowDefinitions:
new RowDefinition { Height = new GridlLength(200, GridUnitType.Absolute)
or to Width in ColumnDefinition:

new ColumnDefinition { Width = GridLength.Auto }
Sizing to Fit Views

The Auto value of GridUnitType sizes the row or column to the size of the contained views. Our Grid
example is made up entirely of Auto sized rows, which we assign using a shorthand GridLength constructor:

GridLength.Auto
That returns a GridLength of type GridUnitType.Auto. Here is the longhand method:
new GridlLength(1, GridUnitType.Auto)

The first parameter, with double value 1, is ignored for GridUnitType.Auto. Now let’s add Absolute and
Star, which use the longhand GridLength method.

Tip Small views used with UnitType.Auto can make it seem like rows or columns are missing.
GridUnitType.Star is used to expand the grid to its proper proportions. See “Expanding Views Proportionally”
later in this chapter.

Setting Exact Size

The Absolute value of GridUnitType sets the exact height or width of a row or column. This is the
general- case method:

new GridLength(unitSize, GridUnitType.Absolute)
Change the second RowDefinition Height to an absolute size of 200 units:

RowDefinitions =

{

new RowDefinition { Height = GridlLength.Auto },

new RowDefinition { Height = new GridLength(200,
GridUnitType.Absolute) },

new RowDefinition { Height = GridLength.Auto },

new RowDefinition { Height = GridLength.Auto }

b

The second row is set to an absolute height of units, stretching it vertically, as shown in Figure 3-14. This
code is found in GridExample2.cs.

74

CHAPTER 3 * UI DESIGN USING LAYOUTS

I'mat 0,0 I'mat 0,0
Me? 1,1

2, 2 here

E 2,2 here

I'm at 0,3 I'mat0,3

Figure 3-14. Using GridUnitType.Absolute to set a tall row height at 1,1

Width assigned using GridUnitType.Absolute works in a manner similar to the Height assignment:

new RowDefinition { Width = new GridLength(200, GridUnitType.Absolute) }

Expanding Views to Fit Available Space

GridUnitType.Star, the default setting for both Height and Width, expands a view within rows or columns
to fill the available space. This is useful for filling the screen horizontally with columns or vertically with rows
to the edge of the screen, especially when views are small. It behaves similarly to the Fi11AndExpand layout
option, inserting padding space into the specified row or column.

Expand vertically by setting the Height of a RowDefinition. Change the third RowDefinition to use
GridUnitType.Star:

RowDefinitions =
{
new RowDefinition { Height = GridLength.Auto },
new RowDefinition { Height = new GridlLength(200, GridUnitType.Absolute) },
new RowDefinition { Height = new GridLength(1, GridUnitType.Star) },
new RowDefinition { Height = GridLength.Auto }

1

GridUnitType.Star expands to push the row beneath it all the way to the bottom of the screen, as shown in
Figure 3-15. Remember that in many of these examples, the Padding property is being used to create space
around the outside edges of the page (see Listing 3-11). This completes the code in GridExample2.cs.

75

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Va .
. e
| e+ 235 P18) . I'mat 0,0

I'mat 0,0

Me? 1,1
2,2 here
I'mat0,3

I'mat 0,3

\ /—\

N

Figure 3-15. Filling available vertical space by using GridUnitType.Star in the Height

Expand horizontally by setting the width of ColumnDefinition. Width assigned using GridUnitType.Star
works in a manner similar to the Height assignment, expanding the column to the right, pressing the grid to
the right edge of the screen:

new ColumnDefinition { Width = new GridLength(1, GridUnitType.Star) }

Expanding Views Proportionally

You can control the proportions of cell sizes to one another in GridUnitType.Star cells by using the first
parameter in GridLength. This technique is particularly useful with small views.

In this first example, the first parameters in all rows add up to 3 (1 + 2), breaking the row into three equal
parts. This results in the first row expanding to one-third of the space and the second row expanding to two-
thirds of the space:

new RowDefinition { Height
new RowDefinition { Height

new GridlLength(2, GridUnitType.Star) },
new GridLength(2, GridUnitType.Star) },

In this next example, the first parameters in all rows add up to 4 (1 + 3), breaking the row into four equal
parts. This results in the first row expanding to one-quarter of the space and the second row expanding to
three-quarters of the space:

new RowDefinition { Height = new GridlLength(1, GridUnitType.Star) },
new RowDefinition { Height = new GridlLength(3, GridUnitType.Star) },

The first parameter represents a share of the total space among the Star rows or columns. If all of these
parameters are specified as 1, the space will be evenly divided.

76

CHAPTER 3 * UI DESIGN USING LAYOUTS

Tip Large grids can run off the visible screen. Consider using GridLengthType.Star to expand only to
the available screen width paired with a vertical Scrollview. Scrolling grids vertically is commonplace, but
scrolling horizontally is rare in mobile apps without a visible indicator of offscreen content (page dots, arrows,
and so forth).

Creating Multicell Views

Single views can be sized to span multiple cells in the grid by using the Add method:

grid.Children.Add(view, indexLeftColumn, indexRightColumn,
indexTopRow, indexBottomRow)

Still using a zero-based index, span columns with a view by specifying the leftmost and rightmost column
indexes. Span rows by using the top and bottom row indexes.

Spanning Columns

Expand a view from left to right across multiple columns by using the second and third parameters of the
Add method, indexLeftColumn and indexRightColumn, to specify the columns to span.

To follow along with the online examples, save your current example, GridExample2.cs, and then create
anew class called GridExample3.cs. Copy the constructor from GridExample2.cs into GridExample3.cs
and continue with GridExample3.cs. Remember to update App.cs with the new MainPage reference to
GridExamples3.

Let’s expand our (1,1) view into the column to the right and the (2,2) cell down into the row below it. Add a
Star-typed GridLength to the second column so it will expand horizontally:

ColumnDefinitions =

{

new ColumnDefinition { Width = GridLength.Auto },
new ColumnDefinition { Width = new GridlLength(1, GridUnitType.Star) },
new ColumnDefinition { Width = GridLength.Auto }

}

Change both views to use the multicell Add method. Start with the view at (1,1):

grid.Children.Add(new Label {
Text = "Me? 1, 1",
FontSize = 30,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
BackgroundColor = Color.lLime
}» 1, 3, 1, 2);

From left to right, this view spans the left side of column 1 to the left side of column 3 - a distance of two

columns. (Yes, it’s a little strange that there is no visible column 3, but the notation requires an endpoint, and
that happens to be the beginning of the column or row we are expanding to.) See the result in Figure 3-16.

7

CHAPTER 3 ' UI DESIGN USING LAYOUTS

From top to bottom, this view spans from the top of row 1 to the top of row 2 (a distance of only one row).

Spanning Rows

Expand a view from a cell down through multiple rows by specifying rows to span in the Add method’s last
two parameters: indexTopRow and indexBottomRow.

Now change the view at (2,2):

grid.Children.Add(new Label {
Text = "2, 2 here",
FontSize = 25,
FontAttributes = FontAttributes.Bold,
TextColor = Color.White,
BackgroundColor = Color.Red
}s 25 3, 2, 4);

From left to right, this view spans the left side of column 2 to the left side of column 3. From top to bottom,
this view spans from the top of row 2 to the top of row 4 (a distance of two rows) and yields what you see in
Figure 3-16. (There’s no visible row 4; it’s just an endpoint.) This completes the code in GridExample3.cs.

/- .
. . —
| [+ 1235 PM I'mat 0,0
| [I'mato0,0
Me? 1,1
. I'mat0,3
I'm at 0,3 Lmac-s
1 h

\\ =

Figure 3-16. The cell at 1,1 spans columns, and 2,2 spans rows

78

CHAPTER 3 * UI DESIGN USING LAYOUTS

Tip View formatting within a grid cell often requires use of that view’s formatting properties in addition to
grid properties, for example, centering text in a Label view:

XAlign = TextAlignment.Center,
YAlign = TextAlignment.Center,

Consult the properties of the view you're working with to help place it precisely within the cell.

Padding Between Cells

You can add space between cells by using RowSpacing and ColumnSpacing. RowSpacing provides padding
between rows, while ColumnSpacing provides space between columns. Here’s an example that provides 20
units of padding for each:

Grid grid = new Grid

{
VerticalOptions = LayoutOptions.FillAndExpand,
RowSpacing = 20,
ColumnSpacing = 20,
CODE COMPLETE: Grid

Listing 3-11 is our Grid example shown previously in Figure 3-15 sporting four labels, two of which span
multiple rows or columns.

Listing 3-11. GridExample2.cs Code Complete
using System;

using Xamarin.Forms;
namespace LayoutExample

public class GridExample2 : ContentPage

{
public GridExample2()

{
Grid grid = new Grid
{
VerticalOptions = LayoutOptions.FillAndExpand,
RowDefinitions =

{

new RowDefinition { Height = GridlLength.Auto },

new RowDefinition { Height = new GridLength(200, GridUnitType.
Absolute) 1},

new RowDefinition { Height = new GridLength(1, GridUnitType.Star) },
new RowDefinition { Height = GridLength.Auto }

1

79

CHAPTER 3 ' UI DESIGN USING LAYOUTS

ColumnDefinitions =
{
new ColumnDefinition { Width = GridLength.Auto },
new ColumnDefinition { Width = new GridLength(1, GridUnitType.Star) },
new ColumnDefinition { Width = GridLength.Auto }
}
};

grid.Children.Add(new Label
{
Text = "I'm at 0,0",
FontSize = 30,
FontAttributes = FontAttributes.Bold,
}, 0, 0);

grid.Children.Add(new Label

{
Text = "Me? 1, 1",
FontSize = 30,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
BackgroundColor = Color.Lime

}) 1, 3,1, 2);

grid.Children.Add(new Label

{
Text = "2, 2 here",
FontSize = 25,
FontAttributes = FontAttributes.Bold,
TextColor = Color.White,
BackgroundColor = Color.Red

b2, 3, 2, 4);

grid.Children.Add(new Label

{

Text = "I'm at 0,3",

FontSize = 30,

FontAttributes = FontAttributes.Bold
}, 0, 3);

// Padding on edges and a bit more for iPhone top status bar
this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

this.Content = grid;

80

CHAPTER 3 * UI DESIGN USING LAYOUTS

XAML The XAML version of these examples can be found on Apress.com (from the Source Code/Downloads
tab, access the title of this book) or on GitHub at https://github.com/danhermes/xamarin-book-examples.
The Xamarin.Forms solution for Chapter 3 is LayoutExample.Xaml.

ContentView

The ContentView layout can act as a visual or virtual container class, like a custom control. ContentView is
designed for reuse throughout your app. It’s also useful for providing quick padding or formatting around
another view or layout.

As avisual rectangular container, ContentView provides the standard Layout class properties such as
Padding, BackgroundColor, HorizontalOptions, and VerticalOptions, much like a .NET panel control. As
avirtual container, it can house a child layout containing multiple views for swapping in and out of a page,
and for use on different pages, a lot like a .NET custom control or an Android fragment.

This is a simple ContentView, a soothing teal rectangle with a white text label:

ContentView contentView = new ContentView
{
BackgroundColor = Color.Teal,
Padding = new Thickness(40),
HorizontalOptions = LayoutOptions.Fill,
Content = new Label
{
Text = "a view, such as a label, a layout, or a layout of layouts",
FontSize = 20,
FontAttributes = FontAttributes.Bold,
TextColor = Color.White

};
ContentView can now be used like any other view and placed into a layout that is assigned to the page’s

Content property (see Listing 3-5). Figure 3-17 shows the label tucked inside ContentView. Note how
the ContentView padding creates colored space around the label.

81

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 3 ' UI DESIGN USING LAYOUTS

of=g-Roy-§-§ |

a view, such as a label, a layout, ora
layout of layouts

aview, such as a label, a
layout, or a layout of layouts

a view, such as a label, a
layout, or a layout of layouts

Figure 3-17. ContentView in action

Note If your screenshot doesn’t match Figure 3-17 and ContentView consumes the entire screen, add this
o ContentView:

VerticalOptions = LayoutOptions.StartAndExpand,

CODE COMPLETE: ContentView

Listing 3-12 is the complete ContentView code example shown in Figure 3-17. Two kinds of padding are used
here: the colored padding inside ContentView and the space around the edge of ContentPage.

Listing 3-12. ContentViewExample.cs Code Complete

class ContentViewExample : ContentPage
{
public ContentViewExample()
{
ContentView contentView = new ContentView
{
BackgroundColor = Color.Teal,
Padding = new Thickness(40),
HorizontalOptions = LayoutOptions.Fill,
Content = new Label

82

CHAPTER 3 * UI DESIGN USING LAYOUTS

{
Text = "a view, such as a label, a layout, or a layout of layouts",
FontSize = 20,
FontAttributes = FontAttributes.Bold,
TextColor = Color.White
}

};

// Padding on edges and a bit more for iPhone top status bar
this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

this.Content = new StackLayout

Children =
{
contentView
}
b

XAML The XAML version of these examples can be found on Apress.com (from the Source Code/Down-
loads tab, access this book’s title) or on GitHub at https://github.com/danhermes/xamarin-book-examples
The Xamarin.Forms solution for Chapter 3 is LayoutExample.Xaml.

Frame

The Frame layout places a visible frame around itself. The OutlineColor property specifies the color of the
frame. See Listing 3-13.

Listing 3-13. FrameExample.cs

class FrameExample : ContentPage

{
public FrameExample()
{
this.Padding = 20;
this.Content = new Frame {
Content = new Label { Text = "Framed", FontSize = 40 },
OutlineColor = Color.Red
};
}
}

83

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 3 ' UI DESIGN USING LAYOUTS

HasShadow is a Boolean property specifying a shadow effect when the platform supports it. The default
Padding value on a Frame layout is 20. The Content property can be assigned to another layout, such as
StackLayout, to contain and frame multiple views.

Figure 3-18 shows the Frame layout.

”~ .

_ e

' Framed
Framed

| /_\

Figure 3-18. Frame layout

Those are layouts in Xamarin.Forms!

At this point, you are faced with a choice. Many of these chapters cover a single topic in three ways: Xamarin.
Forms, Xamarin.Android, and Xamarin.iOS. When you're finished reading about Xamarin.Forms (like right
now), you can continue reading about the chapter topic in the other OSs (Android and iOS) or you can turn
to the next chapter to learn more about Xamarin.Forms. Here are your choices:

e Areyou ready for more Xamarin.Forms? Turn to the next chapter to read about user
interaction using Xamarin.Forms controls, which are called views.

¢ Do you want to know about Android layouts? Then read on.
e Areyouwondering about iOS layouts? Jump down to the iOS section in this chapter.

Now let’s cover platform-specific layouts, starting with Android.

84

CHAPTER 3 * UI DESIGN USING LAYOUTS

Using Android Layouts

Android layouts contain and format controls, and inherit from the Android ViewGroup class, which is similar
to the Xamarin.Forms Layout class. You can format simple pages with a few controls quickly and easily

by using LinearLayout. RelativeLayout is useful when you know the relationships between controls.
TablelLayout provides a table-like container to assign views to specific rows and columns. GridLayout is
similar to TableLayout but provides features to flow views into the table more loosely. ContentView is a base
class for building custom layout views that can contain multiple layouts and other views, useful as a reusable
component. Fragments are a layout-related topic but not technically layouts. Developers use fragments as
advanced layouts (with their own state and life cycle) to combine to build complex, interchangeable Uls.

Note The term /ayout can mean two things in Android. It can be a layout XML (. axml) file in the Resources
folder or it can be one of the control containers (used therein) to format controls, such as LinearLayout. This
book distinguishes between them by using the terms /ayout XML and /ayout.

Android layouts are similar to their Xamarin.Forms counterparts, as shown in Table 3-1.

Table 3-1. Comparison of Android and Xamarin.Forms Layouts

Android Xamarin.Forms
LinearLayout StackLayout
Relativelayout Relativelayout
TablelLayout Grid

GridLayout Grid

FramelLayout StackLayout, ContentLayout

Though the Android FrameLayout was originally designed to house and frame a single view, it is often used
as a panel-like element for multiple views where z-order can be specified, giving control over layers. It also
serves as a container to dynamically swap in and swap out fragments.

Fragments inherit from Android.App.Fragment and are not technically layouts. Mini-layouts with code-
behinds and rules of their own, fragments are often used as the foundation of an app’s layout architecture,
like custom controls, as well as in tandem with other layouts. They are a mainstay of Android mobile

app responsive design, especially when a phone app needs to look great on a tablet. We use them as
componentized Ul building blocks for creating a screen, both statically in layout XML and swapping them in
and out dynamically in real time using code.

Note The Android AbsolutelLayout option was deprecated in favor of RelativeLayout.

85

CHAPTER 3 ' UI DESIGN USING LAYOUTS

LinearLayout

LinearLayout can visually structure and arrange other elements inside it vertically or horizontally, like
<div> in web development or the Xamarin.Forms StackLayout.

Add a new Android layout XML file to your project called LinearLayoutExample.axml. LinearLayout is
declared in the view like this:

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation= "vertical"
android:layout width= "fill parent"
android:layout_height= "fill parent" >

<!-- Add views here -->
</LinearLayout>

The orientation is declared as vertical, causing views to cascade top to bottom. It could also be set to
horizontal, causing the views to cascade left to right.

Let’s add a TextView and two Buttons inside the LinearLayout tag (Listing 3-14).

Listing 3-14. LayoutExample.axml

<TextView
android:id="@+id/aTextBox"
android:text= "A TextView"
android:textSize= "20pt"
android:layout_width= "match_parent"
android:layout_height= "wrap_content"
android:layout weight= "4" />
<Button

android:id="@+id/aButtonMe"
android:text="Click Me!"
android:layout_width="match_parent"”
android:layout_height="wrap_content"
android:layout_weight= "1"

/>

<Button
android:id="@+id/aButtonOxrMe"
android:text="0r Me!"
android:layout_width="match_parentparent"
android:layout_height="wrap_content"
android:layout weight= "q"

/>

Layout_weight ascribes size ratios to the views. In this case, we want the text box to own most of the screen
and push other controls to the bottom, so we set the text box layout_weight to 4 (out of 6), and the buttons

each to 1. Six comes from the total weight: 4 + 1 + 1 = 6. Be sure not to set numeric height or width values
when using layout_weight.

Match_parent sets the view’s height or width the same as the parent layout view, minus its padding.
wrap_content autosizes the view to its own content, including padding.

86

http://schemas.android.com/apk/res/android

CHAPTER 3 * UI DESIGN USING LAYOUTS

Note Refer to the Xamarin and Android online developer docs for more detail on placement using View
properties such as layout_height, layout width, layout gravity, and layout margin.

Tip The Xamarin Android Designer can be used for laying out an Android Ul and is a great way to learn the
layout XML (. axml files). Android layout XML is highly readable and writable, however, and the XML can also
be coded by hand.

Using Activities to Display Layouts

In the contemporary Model-View-Controller (MVC) pattern, Android activities are the controllers and make
up the core executable elements in Android mobile apps. Activities display and manage the layouts, which
are the equivalent of MVC views.

Note This book is a Xamarin.Forms primer and cross-platform guide. It is not an Android primer and,
although it introduces some basic concepts, you’ll need additional sources for the Android and/or Xamarin.
Android fundamentals. If you need an intro to Xamarin.Android, consult the Xamarin online docs.

Many examples in this book use only a single activity, called MainActivity. In these simple examples, you
can load your layout XML in the OnCreate method of MainActivity, called LinearLayoutExample here,
referring to the LinearLayoutExample.axml file in the Resources/layout folder:

public class MainActivity : Activity

{
protected override void OnCreate (Bundle bundle)
{
RequestWindowFeature(WindowFeatures.NoTitle);
base.OnCreate (bundle);
SetContentView (Resource.Layout.LinearLayoutExample);
}

This RequesthWindowFeature call hides the app title from the top of the view. Now let’s run it (Figure 3-19).

87

CHAPTER 3 ' UI DESIGN USING LAYOUTS

S MiEaan

A TextView

Click Me!

Figure 3-19. LinearLayout using layout_weight

Creating Layouts in Code

Layouts can be created programmatically in C# instead of using XML but, again, we recommend the
Xamarin Android Designer for getting started in the Android UL It’s easy, fast, and accurate. Sometimes we
need to create controls (views) in code or, more commonly, change properties on them.

Listing 3-15 is a rough C# approximation of the previous layout XML. In the main activity’s OnCreate
method, create a LinearLayout element and add views to the layout. Use the SetContentView method to
assign the layout to the activity and display it.

88

CHAPTER 3 * UI DESIGN USING LAYOUTS

Listing 3-15. LinearLayoutActivity.cs Creates a LinearLayout Using C#

protected override void OnCreate (Bundle bundle)
{
RequestWindowFeature(WindowFeatures.NoTitle);
base.OnCreate (bundle);

var linearlLayout= new LinearlLayout (this);
linearLayout.Orientation = Orientation.Vertical;

var aTextView = new TextView (this);
aTextView.Text = " A TextView ";
aTextView.TextSize = 20;

var aButtonMe= new Button (this);
aButtonMe.Text = "Click Me!";

var aButtonOrMe= new Button (this);
aButtonOrMe.Text = "Or Me!";

linearLayout.AddView (aTextView);
linearLayout.AddView (aButtonMe);
linearlLayout.AddView (aButtonOrMe);

SetContentView (linearlLayout);
}

Controls are added to LinearLayout with AddView and then the layout is added as the main view with
SetContentView.

Working with Nested Layouts

Multiple LinearLayout elements can define complex groupings of elements. In the following code, nodes
are collapsed for readability:

<LinearlLayout>
<TextView/>
<LinearlLayout>
<Button/>
<Button/>
</LinearlLayout>
</LinearlLayout>

If there are too many nested LinearLayout elements, performance is compromised, and Relativelayout
should be used.

89

CHAPTER 3 ' UI DESIGN USING LAYOUTS

RelativeLayout

Relativelayout is a container of views that have a positional relationship to one another. Place views in
Relativelayout by creating constraints between individual views such a: above, below, to the right of, to the
left of, with alignment, and centering.

Add a new Android layout file to your project and create Relativelayout with our TextView and two
Buttons, as shown in Listing 3-16.

Listing 3-16. RelativeLayoutExample.axml

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent" >

<TextView
android:id="@+id/aTextBox2"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="A TextView"

/>

<Button
android:id="@+id/aButtonMe2"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Click Me!"
android:layout below="@+id/aTextBox2"
/>

<Button
android:id="@+id/aButtonOrMe"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="0r Me!"
android:layout_marginlLeft="50dip"
android:layout_alignTop="@id/aButtonMe2"
android:layout_toRightOf="@+id/aButtonMe2"

/>

</Relativelayout>
The margin is set on aButtonOrMe, using layout_marginlLeft and padding between the buttons. The tops of

both buttons are aligned by using layout_alignTop (see Figure 3-20). These controls use wrap_content to
set their size to the size of their content, text in this case.

90

http://schemas.android.com/apk/res/android

CHAPTER 3 * UI DESIGN USING LAYOUTS

Click Me!

Figure 3-20. RelativeLayout with three views

Tip LinearLayout and Relativelayout can be used to construct complex, customized views. These can,
in turn, be used to create detailed list views. You'll learn more about this in Chapter 5.

Note Refer to the Xamarin and Android online developer docs for more detail on placement using
Relativelayout layout parameters such as layout_align.

TableLayout

You can arrange views in rows and columns with TableLayout. Declare rows and fill those rows with views.
The width of a column is determined by the widest view in that column. You can stretch or shrink columns
by using TablelLayout properties applied top-down.

Listing 3-17 shows TablelLayout with two rows, the first with two TextViews and the second row with our
two Buttons.

Listing 3-17. TableLayoutExample.axml

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout_height="wrap_ content"
android:stretchColumns="*"
android:shrinkColumns="*">
<TableRow>
<TextView
android:layout_column="0"
android:text="A TextView"
android:layout_marginBottom="20dp"/>
<TextView
android:text="and Another!"
android:layout_marginBottom="20dp"/>
</TableRow>
<TableRow>
<Button

91

http://dx.doi.org/10.1007/9781484202159_5
http://schemas.android.com/apk/res/android

CHAPTER 3 ' UI DESIGN USING LAYOUTS

android:layout_column="0"
android:text="Click Me!" />
<Button
android:text="0r Me!" />
</TableRow>
</TablelLayout>

stretchColumns and shrinkColumns indicate on which columns to impart the layout’s width and height
features (fill and wrap, in this case), with asterisk meaning all columns, the same as stretchColumns="0,1".
Layout_column specifies the view’s column by using a zero-based index (Figure 3-21).

A TextView and Another!

Click Me! Or Mel!

Figure 3-21. TableLayout with two rows

The code to accomplish almost the same thing programmatically looks like Listing 3-18.

Listing 3-18. TableViewActivity.cs

protected override void OnCreate (Bundle bundle)
{
RequestWindowFeature(WindowFeatures.NoTitle);
base.OnCreate (bundle);

var tableLayout= new TablelLayout (this);

tablelayout.layoutParameters = new Tablelayout.LayoutParams(
ViewGroup.LayoutParams.MatchParent,
ViewGroup.LayoutParams.WrapContent);

TableRow tableRowl = new TableRow(this);
TableRow tableRow2 = new TableRow(this);

var aTextViewl = new TextView (this);
aTextViewl.Text = "A TextView";

var aTextView2 = new TextView (this);
aTextView2.Text = "and Another!";

tableRowl.AddView (aTextView1,0); // add view to column 0
tableRowl.AddView (aTextView2,1); // add view to column 1

92

CHAPTER 3 * UI DESIGN USING LAYOUTS

var aButtoni= new Button (this);
aButton1.Text = "Click Me!";

var aButton2= new Button (this);
aButton2.Text = "Or Me!";

tableRow2.AddView (aButtoni,0);
tableRow2.AddView (aButton2,1);

tablelLayout.AddView(tableRow1, 0); // add row 0 to layout
tablelLayout.AddView(tableRow2, 1); // add row 1 to layout

SetContentView (tablelayout);

This creates two TableRows, adds views to them with the TableRow.AddView method, and then adds each
TableRow to the TableLayout by using TableLayout.AddView. This sets the LayoutParameters property of
the TablelLayout with width and height LayoutParams. Layout parameters can be set at the layout, row, and
view level.

GridLayout

The GridLayout class builds a table-like container for views, similarly but not identical to TableLayout.
GridLayout provides the additional option of flowing views into cells as well as placing them individually.
Multicell views are created by spanning several rows or columns using layout_columnSpan and layout_
rowSpan. Dynamic image grids use another layout control called GridView.

There are three ways to place views in GridlLayout:
e Horizontal orientation (default) - flows views into cells from left to right and then top
to bottom.

e Vertical orientation flows views from top to bottom, filling each column before
moving to the right to fill the next column top to bottom.

e Specify Row/Column enables each individual view to be marked with a row and
column to occupy.

93

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Filling Rows Left to Right with Horizontal Orientation

Horizontal orientation fills a row left -to -right with views before moving to the next row below.

Using the default horizontal orientation, create a GridLayout with two TextViews and two Buttons, as
shown in Listing 3-19.

Listing 3-19. GridLayoutExample.axml

<GridlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:rowCount="2"
android:columnCount="2">
<TextView
android:text="A TextView,"
android:textSize="30dip" />
<TextView
android:text=" and another!"
android:textSize="30dip" />
<Button
android:text="Click Me!"
android:textSize="20dip" />
<Button
android:text="0r Me!"
android:textSize="20dip" />
</GridLayout>

GridLayout rowCount and columnCount define the dimensions of the grid. The default orientation is

horizontal, which fills cells in the row left to right before dropping down to the row below, as shown
in Figure 3-22.

Col0 Col1
Row0 1—>»2
Row1 3=—»14

Figure 3-22. GridLayout cells fill in a horizontal orientation

94

http://schemas.android.com/apk/res/android

CHAPTER 3 * UI DESIGN USING LAYOUTS

Figure 3-23 shows the result.

A TextView, and another!
Click Me! Or Me!

Figure 3-23. GridLayout in a horizontal orientation
Filling Columns Top to Bottom with Vertical Orientation

Vertical orientation fills a column top to bottom with views before moving to the next column to the right, as
shown in Figure 3-24.

Col0 Col1
Row0 1 3

v
Row1 2 4

Figure 3-24. GridLayout cells fill in a vertical orientation

Set the GridLayout.orientation property to vertical to fill cells top to bottom before moving to the next
column to the right:

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"”
android:layout_height="match_parent"

android:rowCount="2"

android:columnCount="2"

android:orientation="vertical"s

</GridLayout>

Figure 3-25 shows the result.

A TextView, click Me!

and another! or Me!

Figure 3-25. GridLayout in a vertical orientation 95

http://schemas.android.com/apk/res/android

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Specifying Rows and Columns

You can specify rows and columns for each and every view by removing the orientation setting and declaring
layout_row and layout_column for all views in the grid.

This example purposefully crisscrosses our TextViews and Buttons to demonstrate that position is defined
within each child view (Figure 3-26).

A TextView, click Me!

Or Me! and another!

Figure 3-26. Specify exact rows and columns in a GridLayout

Listing 3-20 shows the code to make a GridLayout with layout row and layout column declared for each
child view.

Listing 3-20. GridLayoutSpecifyRowCol.axml

<GridlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent”
android:layout_height="match_parent"
android:rowCount="2"
android:columnCount="2">

<TextView
android:
android:

text="A TextView,"
textSize="30dip"

android:layout_row="0"

android:layout_column="0"/>
<TextView

android:text=" and another!"

android:
android:
android:
<Button
android:
android:
android:
android:
<Button
android:
android:
android:
android:
</GridlLayout>

96

textSize="30dip"
layout_row="1"
layout_column="1" />

text="Click Me!"
textSize="20dip"
layout_row="0"
layout_column="1" />

text="0r Me!"
textSize="20dip"
layout_row="1"
layout_column="0" />

http://schemas.android.com/apk/res/android

CHAPTER 3 * UI DESIGN USING LAYOUTS

Creating Multicell Views

Single views can be sized to span multiple cells in the grid by setting these properties on the view.
Span columns as follows:

android:layout_columnSpan="numberOfColumnsToSpan"

Or you can span rows:

android:layout_rowSpan=" numberOfRowsToSpan"

Listing 3-21 shows an example with one of our buttons stretched to two columns.

Listing 3-21. GridLayoutMultiCellView.axml

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:rowCount="2"
android:columnCount="2">
<TextView
android:text="A TextView,"
android:textSize="30dip" />
<TextView
android:text=" and another!"
android:textSize="30dip" />
<Button
android:text="Click Me!"
android:textSize="20dip"
android:layout_columnSpan="2"
android:layout_gravity="fill"/»>
</GridLayout>

To fill both columns with one button, its layout_gravity property is set to fill. The layout’s height and
width were set to wrap_content.

Figure 3-27 shows the multicelled GridLayout.

A TextView, and another!

Click Me!

Figure 3-27. GridLayout with a multicelled button

97

http://schemas.android.com/apk/res/android

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Tip Make sure that your view fills more than one cell, or changes to layout_columnSpan and
layout_rowSpan may appear to have no effect. Use it or lose it.

Creating a Dynamic Grid of Images

The Android GridView is a two-dimensional, scrollable, grid layout useful for the display and selection of
images. All cells are the same size, and their contents are populated dynamically from an Adapter, like a list
in grid form. Chapter 7 provides more detail.

FrameLayout

FrameLayout is often used to create layered screens, because it allows the front-to-back ordering of views. It
can also swap in and swap out parts of a layout dynamically by using fragments, which are explained in the
next section.

FrameLayout was originally designed to create a single rectangular area to display a single view. However,
itis typically used to achieve complex, layered screens because FrameLayout will accept multiple children
and gives control over the view z-order (front-to-back order), placing recently added children on top. This is
useful for effects such as HUD-like elements, sliding panels, and more-complex animated transitions.

Listing 3-22 is a simple example of a declared FrameLayout containing a TextView.

Listing 3-22. FrameLayout.axml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<FramelLayout
android:id="@+id/details"
android:layout weight="1"
android:layout _width="fill parent"
android:layout_height="fill parent">
<TextView
android:text="A TextView"
android:layout_width="fill parent"
android:layout_height="wrap content" />
</FramelLayout>
</Linearlayout>

Tip Beware of multiple nested elements on different screen sizes in this layout, as overlapping children
have been reported when testing across devices.

98

http://dx.doi.org/10.1007/9781484202159_7
http://schemas.android.com/apk/res/android

CHAPTER 3 * UI DESIGN USING LAYOUTS

Fragments

The Android Fragment is a dynamic, reusable layout built to be used on demand in our pages, much like .NET
custom controls. Inherited from Android.App.Fragment, so not technically a layout, it’s more like a layout on
steroids because it has its own state and its own life cycle. Entire apps can be built effectively by using fragments.

Fragments are Android’s solution to the variable form factor problem. We develop for devices of hundreds of
different sizes, which sometimes work best with completely different layouts. Instead of building with static
views and layouts on a page, fragments give us componentized, movable, and reusable elements. They are
often used in apps that must look good and work well on both phones and tablets.

Fragments is a core Android Ul topic, but a full exploration is beyond the scope of this book. If you think
you need reusable, dynamic, custom UI components on Android, especially for phone/tablet apps, seek out
more info in the Xamarin and Android online docs. Also see Chapter 6 for a good example of fragments.

Those are the Xamarin.Android layout basics. If you want to learn more about Android (or Xamarin.Forms),
turn to Chapter 4, which covers user interaction via controls.

If you're ready for iOS layouts, read on.

Using i0S Layouts

Static layouts in iOS are primarily accomplished using the UIView class, the base container class for
iOS controls and the Vin i0S’s MVC pattern. UIViews are typically paired with a controller class, called
UIViewController, which acts like an Android activity or a Xamarin.Forms ContentPage.

Tip Most developers create i0S layouts by using designer tools such as Xcode Interface Builder and
Xamarin Designer for i0S. Since this is a code-first book and not a tool guide, there isn’t much to cover here
on this topic. | will touch on the fundamental concepts in code and refer you to the Xamarin online docs
(http://developer.xamarin.com/guides/ios/user_interface/designer/) and Apple docs for detail on
how to use the designer tools to build i0S layouts.

Views are added as subviews to UIView by using one of two techniques: AutoLayout and Frames. The
AutoLayout technique uses constraints to create relative horizontal and vertical relationships between
views. The Frames technique uses rectangles to bound the view, assigning them to the Frame property of the
view. Location and size are absolute when using Frames and relative when using AutoLayout.

Table 3-2 compares the iOS layout approaches to those of the other platforms.

Table 3-2. Layout Techniques and Classes by Platform

ioS Android Xamarin.Forms

UIView LinearLayout StackLayout
AutoLayout Relativelayout Relativelayout

Frames (deprecated) AbsoluteLayout

99

http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_4
https://developer.apple.com/library/mac/recipes/xcode_help-interface_builder/_index.html
http://developer.xamarin.com/guides/ios/user_interface/designer/
http://developer.xamarin.com/guides/ios/user_interface/designer/

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Tip AUl designer tool is strongly recommended for getting started with layouts in nibs and storyboards, the
i0S XML layout file formats. Use the Xcode Interface Builder or the Xamarin Designer for i0S. When you become
familiar with the i0S Ul, the hand-coding of i0S XML files is still not recommended because o the unreadbility of
the files, built for configuration by design tools, not human eyes. However, | can recommend the hand-coding of
C# i0S Ul and skipping the XML altogether for advanced users who prefer to go without a designer tool.

Using AutoLayout

AutoLayout is a responsive layout technique, adapting to different screen sizes automatically. Within
aUIViewController, views are assigned as subviews. Their placement and size can be determined by
constraints, which are flexible, relative relationships between views.

Note As mentioned earlier, this book is a Xamarin.Forms primer and cross-platform guide. It is not an i0S
primer and, although it introduces some basic concepts, you'll need additional sources for the i0S and/or
Xamarin.iOS fundamentals. If you need an intro to Xamarin.iOS, consult the Xamarin online docs.

In your UIViewController’s ViewDidLoad method, in Listing 3-23, instantiate a text box by using
UITextField. Then add size and location constraints to it before adding it to the parent view.

Listing 3-23. iOSLayoutExample2ViewController.cs from Solution iOSLayoutExample2

public override void ViewDidLoad ()

{
base.ViewDidLoad ();

var textView = new UITextField

{

Placeholder = "Your name",
BorderStyle = UITextBorderStyle.RoundedRect

};

Set the textView’s TranslatesAutoresizingMaskIntoConstraints property to false. That property is set to
true when converting the older autoresizing frame masks to the newer AutoLayout.

textView.TranslatesAutoresizingMaskIntoConstraints = false;

Now we add constraints to the control and to the view. This is accomplished using the AddConstraints
method of the control, which uses NSLayoutConstraint.

Specify the size of the text field. Build the constraints using the NSLayoutConstraint.Create method
specifying the NSLayoutAttribute, in this case Height and Width. The Add method adds the textView
control to the view.

100

CHAPTER 3 * UI DESIGN USING LAYOUTS

textView.AddConstraints (new[] {
NSLayoutConstraint.Create (textView , NSLayoutAttribute.Height,
NSLayoutRelation.Equal, null, NSLayoutAttribute.NoAttribute,
1, 50),
NSLayoutConstraint.Create (textView , NSLayoutAttribute.Width,
NSLayoutRelation.Equal, null, NSLayoutAttribute.NoAttribute,
1, 200),
D;
Add(textView);

Specify the location of the text field. Constrain the control to the top-level view by using the AddConstraints
method on the View. NSLayoutAttribute.Left allows us to place the textView 10 points from the left,
and NSLayoutAttribute.Top allows us to specify 30 points from the top.

View.AddConstraints (new[] {
//Location
NSLayoutConstraint.Create (textView, NSLayoutAttribute.Left,
NSLayoutRelation.Equal, View, NSLayoutAttribute.left, 1, 10),
NSLayoutConstraint.Create (textView, NSLayoutAttribute.Top,
NSLayoutRelation.Equal, View, NSLayoutAttribute.Top, 1, 30)

B;

Figure 3-28 shows the text box sized and constrained to the view.

Carrier ¥ (—):

Figure 3-28. UlTextField using AutoLayout

Tip Explore the values of NSLayoutAttribute to understand the full range of constraints available.
They include Left, Right, Top, Bottom, Leading, Trailing, Width, Height, CenterX, CenterY, LeftMargin,
RightMargin, TopMargin, BottomMargin, and others.

Add Constraints by Using Visual Format Language

Another way to add constraints in code is to use Visual Format Language (VFL), a declarative iOS syntax
for representing common constraints, including standard spacing and dimensions, vertical layout,

and constraints with different priorities. This concise, human-readable grammar can be used in the
AddConstraints method. Here are some code snippets to give you the flavor of VFL syntax.

101

CHAPTER 3 ' UI DESIGN USING LAYOUTS

This example sets a minimum width of 50 points on the text field:

var viewsDictionary = NSDictionary.FromObjectsAndKeys(new NSObject[]
{textView}, new NSObject[] { new NSString("textView")});

textView.AddConstraints(NSLayoutConstraint.FromVisualFormat
("H:|[textView(>=50)]|", 0, null, viewsDictionary));

The H: specifies the horizontal orientation. For vertical constraints, add V: to the start of the VFL string.
The colon specifies the control’s relationship to the superview (the top-level view). This button is 50.0 points
high and the standard spacing from the top of the superview.

var viewsDictionary = NSDictionary.FromObjectsAndKeys(new NSObject[]
{button}, new NSObject[] { new NSString("button")});

textView.AddConstraints(NSLayoutConstraint.FromVisualFormat
("V:|-[button(50.0)]", 0, null, viewsDictionary));

VFL also allows the creation of constraints between views. The following example creates four buttons,
setting the width of each to be the same as the width of the next by using parentheses, so they are all the
width of buttonFourth:

var viewsDictionary = NSDictionary.FromObjectsAndKeys(new NSObject[]
{buttonFirst, buttonSecond, buttonThird, buttonFourth},
new NSObject[] { new NSString("buttonFirst"),
new NSString("buttonSecond"), new NSString("buttonThird"),
new NSString("buttonFourth ")});

this.View.AddConstraints(NSLayoutConstraint.FromVisualFormat
("H:|-[buttonFirst(buttonSecond)]-[buttonSecond(buttonThird)]-[" +
"buttonThird(buttonFourth)]-[buttonFourth]-|",
NSLayoutFormatOptions.AlignAllTop |
NSLayoutFormatOptions.AlignAllBottom,
height, viewsDictionary));

The dashes indicate a standard amount of space between views, which can also have point values to specify
the exact space value. For example, [buttonFirst]-10-[buttonSecond] places 10 points between the
buttons. The syntax with brackets and dashes is meant to visually represent how the controls look on the
screen.

Tip These examples are just snippets to give you the gist of VFL. The iOS Developer Guide contains a full
VFL definition.

Using Frames

An absolute approach to iOS layout involves the specification of the bounds and center location of an iOS
view by a RectangleF assigned to the Frame property of the superview.

102

CHAPTER 3 * UI DESIGN USING LAYOUTS

Note Note AutoSizing (or autoresizing), an older approach to iOS relative layout than AutoLayout described
earlier, couples frames with UIViewAutoResizingMasks to create responsive ‘springs and struts’. AutoSizing
is not covered here because Apple has replaced it with AutoLayout using constraints. Some i0S developers feel
that AutoSizing is still preferable for simple layouts.

Here’s an example of absolute layout using Frames. Create a text field called textView and place and size it
with a RectangleF assigned to the Frame property. Then add the textView to the parent view, as shown in
Listing 3-24.

Listing 3-24. iOSLayoutExamplesViewController.cs from Solution iOSLayoutExamples

public override void ViewDidLoad ()

{
base.ViewDidLoad ();

var textView = new UITextField

{
Placeholder = "Your name",
BorderStyle = UITextBorderStyle.RoundedRect,
Frame = new RectangleF(10, 30, 200, 50)

};
Add (textView);
}

Figure 3-29 shows the result.

Carrier = ((—);

Figure 3-29. UllextField using AutoSizing

Tip Here’s a shorthand view constructor that assigns the Frame property inline:

var textView = new UITextField(new RectangleF(10, 30, 200, 50));

103

CHAPTER 3 ' UI DESIGN USING LAYOUTS

Summary

Layouts are a fine example of just how similar these different platforms can be. Names change, but concepts
don’t, and for added continuity, Xamarin strives to incorporate the most useful aspects of these various
platforms into Xamarin.Forms. Here are some of the universal terms related to layouts:

e Stacked layouts are the simplest, great for easy pages and quick prototyping and
wireframing, like Xamarin.Forms StackLayout and Android LinearLayout.

e Rectangles frame views and their size and coordinate location.

e Constraints bind views together like elastic that contextually determines size and
location.

e Relative placement gives us responsiveness to screen size at the cost of precision,
and is the norm in mobile Uls.

e Layout options handle alignment and formatting across platforms with
HorizontalOptions and VerticalOptions in Xamarin.Forms, Android
LayoutOptions, and iOS constraints.

e The custom control persists as a concept in mobile development, though it
is achieved and named differently across platforms, such as Xamarin.Forms
ContentView and Android Fragment.

e i0S rolls many of the previous concepts into one class: UIView.

e Tablesyield relativity, precision, and versatility. They are found in Xamarin.Forms
GridLayout and Android TablelLayout and GridLayout. You'll learn more about iOS
tables in Chapter 5.

Those are some of the fundamentals of mobile screen layout on all platforms. But enough design and layout,
already. Let’s move on to user interaction!

104

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 4

User Interaction Using Controls

Users choose dates, times, text, integers, doubles, and other values on mobile devices by using tactile
controls. Touch-sensitive screens have user interaction that differs slightly from mouse-driven Uls: most
is done with the thumbs and forefingers on the touchscreen. From the user’s standpoint, this results in

a hands-on control-panel interface with switches, icons, sliders, keyboards, and pickers that sometimes
look—but more important, feel—like physical mechanisms.

Chapter 2 covered some of the basic Xamarin.Forms views such as the Label, Button, and Image. In this
chapter, you'll explore additional controls available on each platform, the gestures and events that make
them work, and their outputs.

Many of the controls in this chapter are picker-style (pick a date, pick an option, pick a time, and so forth).
These controls tend to look and work better when displayed in a modal dialog box, a pop-up box that
overlays the app and maintains focus until dismissed by the user. Xamarin.Forms handles this for you by
automatically placing pickers in modals. For Android and iOS, this chapter covers platform-specific ways to
build modal picker dialog boxes.

This chapter is a gallery and a reference of the most commonly used selection controls.
Xamarin.Forms Views
Xamarin.Forms views can perform these basic input functions:

e Picker:A pop-up to select a value from a simple list

e DatePicker: A pop-up for selecting month, date, and year

e TimePicker: A pop-up for selecting hour, minute, and AM/PM

e Stepper: Increment/decrement buttons for discrete values

e Slider: Sliding input lever for continuous values

e Switch: Boolean on/off control

Android Controls
These are some of the primary Android selection widgets:
e Spinner: A simple drop-down list
e DatePicker: A control for selecting month, date, and year
e TimePicker: A control for selecting hour, minute, and AM/PM

e SeekBar: Sliding input lever for continuous values

105

http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 4 © USER INTERACTION USING CONTROLS

e CheckBox: A standard Boolean check-box control

e Switch: A Boolean on/off switch

e RadioButton: Button groups for single or multiple selection
iOS Controls
iOS controls perform a range of user interactions:

e UIPickerView: A simple drop-down list in a spinner

e UIDatePicker: A date and/or time spinner

e UIStepper: Increment/decrement buttons for discrete values

e UISlider: Sliding input lever for continuous values

e UISwitch: Boolean on/off control

Note The iOS and Android controls for label, text view, button, scroll view, and image are out of scope for
this book. Please consult an i0S or Android primer for those.

Xamarin.Forms Views

Xamarin.Forms views provide a range of controls that mimic and extend their iOS and Android counterparts.
All of the views covered here allow selection and populate at least one property with a data value specified
by the user, sometimes more. Let’s look at each view in turn.

Xamarin.Forms views often provide the selected value in two places: a handler event property (for example,
e.NewValue) provides the most recent value, and a general-use property on the view provides the selected
value for use throughout the page. You will create two labels to display both of those values: eventValue and
pageValue.

Create a new ContentPage called Controls and declare two Label views to hold the results of control
selection:

public partial class Controls : ContentPage
{

Label eventValue;

Label pageValue;

public Controls()

{
eventValue= new Label();
eventValue.Text = "Value in Handler";
pageValue = new Label();
pageValue.Text = "Value in Page";

106

CHAPTER 4 * USER INTERACTION USING CONTROLS

Create a StackLayout at the end of your Controls() constructor to assign to your page’s Content property.
Center all of the controls in the StackLayout by using HorizontalOptions = LayoutOptions.Center.

All of the Xamarin.Forms examples in this chapter can be found in the source listing Controls.cs in the
ControlExamples solution, shown in Listing 4-1 at the end of this section.

Remember to add each view to your StackLayout as you go!

Tip All example code solutions, including the XAML versions of these C# examples, can be found at the
Apress web site (www.apress.com) or on GitHub at https://github.com/danhermes/xamarin-book-examples.

Picker

The Picker view provides a pop-up to select a value from a simple list.

Note The Picker view is used for quick selection of short words, phrases, or numbers. Complex lists with
composite cells containing multiple strings and images are covered in the next chapter.

First, create the picker and give it a title:
Picker picker = new Picker
{
Title = "Option",
VerticalOptions = LayoutOptions.CenterAndExpand
};
Next, populate the list:

var options = new List<string> { "First", "Second", "Third", "Fourth" };

foreach (string optionName in options)

{
}

picker.Items.Add(optionName);

Option names are placed into the list and then added to the Items collection in the picker.

The Entry view in Figure 4-1 starts as a data entry field, similar to Xamarin.Forms.Entry displaying the value
of the Title property.

Option

Figure 4-1. Entry views often have inline labels instead of side labels

107

http://www.apress.com/
https://github.com/danhermes/xamarin-book-examples

CHAPTER 4 © USER INTERACTION USING CONTROLS
When this field is tapped, a modal dialog appears, containing the list of items (Figure 4-2).

¥ 10:59
Done

OPTION

First
Second

Second

Second

Third
Fourth

Cancel

Figure 4-2. Each picker looks a bit different, depending on the platform

The list spins when swiped, and the highlighted value becomes the selected value. The selection is
automatically populated into the original entry field so the user can see the effect of the change. The
SelectedIndexChanged event also fires, which can be assigned a handler method or handled inline like this:

picker.SelectedIndexChanged += (sender, args) =>

{
pageValue.Text = picker.Items[picker.SelectedIndex];

)

This implementation assigns the selected string to the Text property of the pageValue label.

Tip The selected index in the Picker.SelectedIndex property is a zero-based integer index. If Cancel is
selected, the SelectedIndex remains unchanged.

DatePicker

The DatePicker view creates a pop-up for selection of month, date, and year. Create a DatePicker view
like this:

DatePicker datePicker = new DatePicker

{

Format = "D",
VerticalOptions = LayoutOptions.CenterAndExpand
};

The Format property is set to D for the full month/day/year display. More date formats are provided later in
this section.

The DatePicker view starts as a data entry field (Figure 4-3), similar to Xamarin.Forms.Entry displaying the
value of the Date property.

108

CHAPTER 4 * USER INTERACTION USING CONTROLS

Tuesday, September 26, 2017 Tuesday, September 26, 2017 Tuesday, September -

Figure 4-3. DatePicker begins as an Entry view waiting for a tap

When the date field is tapped, a modal dialog appears (Figure 4-4).

CHOOSE DATE

= |

Done

25

September 26 2017) 09 26 2017

September Tuesday

Done

Figure 4-4. DatePicker is a modal dialog

Each column spins individually when swiped, and the highlighted values become the selected values. When
Done is tapped, the selected date is automatically populated into the original entry field so the user can

see the effect of the change. The DateSelected event also fires, which can be assigned a handler method or
handled inline like this:

datePicker.DateSelected += (object sender, DateChangedEventArgs e) =>
{

eventValue.Text = e.NewDate.ToString();
pageValue.Text = datePicker.Date.ToString();

};

The properties e.0ldDate and e.NewDate are available within this event to provide the old and new selected
date values. In general cases, however, the value entered by the user is stored in the Date property. All of
these properties use type DateTime.

109

CHAPTER 4 © USER INTERACTION USING CONTROLS

The format of the Date field is customizable with the Format property—for example, myDate.Format = "D".
Other values are as follows:

e D: Full month, day, and year (Monday, March 5, 2018)
e d: Month, day, and year (3/5/2018)
e M:Month and day (March 5)
e Y:Month and year (March 2018)
e yy: Last two digits of the year (18)
e yyyy: Full year (2018)
e MM: Two-digit month (03)
e MMMM: Month (March)
e dd: Two-digit day (05)
e ddd: Abbreviated day of the week (Mon)
e dddd: Full day of the week (Monday)
You set a date range for selection by using MaximumDate and MinimumDate:

datePicker.MaximumDate = Convert.ToDateTime("1/1/2019");
datePicker.MinimumDate = Convert.ToDateTime("1/1/2014");

Tip On Android, the Format and MaximumDate/MinimumDate properties affect the DatePicker entry field
but not the modal selection dialog at the time of this writing.

TimePicker

The TimePicker view creates a pop-up for selecting hour, minute, and AM/PM. Create a TimePicker view
like this:

TimePicker timePicker = new TimePicker

{

Format = "T",
VerticalOptions = LayoutOptions.CenterAndExpand
};
The Format property set to T displays the full time. More time formats follow.

The TimePicker view starts as a data entry field similar to Xamarin.Forms.Entry, displaying the value of the
Time property (Figure 4-5).

110

CHAPTER 4 * USER INTERACTION USING CONTROLS

12:00:00 AM 12:00:00 AM 12:00:00 AM

Figure 4-5. TimePicker waits for a tap

When the time field is tapped, a modal dialog appears (Figure 4-6).

CHOOSE TIME

Done

12 00 AM

Figure 4-6. TimePicker is a dialog box

Each column spins individually when swiped, and the highlighted values become the selected values. When
Done is tapped, the selected time is automatically populated into the original entry field so the user can see
the effect of the change.

There is no TimeSelected event that triggers when a value is selected. Instead, use the PropertyChanged event
in Xamarin.Forms data-binding to track changes to this view:

timePicker.PropertyChanged += (sender, e) =>

{ if (e.PropertyName == TimePicker.TimeProperty.PropertyName)
pageValue.Text = timePicker.Time.ToString();

};

The timePicker.Time property is set with the selected value as type TimeSpan.

111

CHAPTER 4 © USER INTERACTION USING CONTROLS

The format of the Time field is customizable with the Format property (for example, Format = "T"). Other

values are as follows:
e T:Full time with hours, minutes, seconds, and AM/PM (9:30:25 AM)
e t:Full time with hours, minutes, and AM/PM (9:30 AM)
e hh: Two-digit hours (09)
e mm: Two-digit minutes (30)
e ss:Two-digit seconds (25); seconds are not selectable in the dialog box

e tt: AM/PM designator (AM)

Tip Format affects the TimePicker entry field but not the dialog box at the time of this writing.

Stepper

The Stepper view creates increment and decrement buttons for discrete adjustments to the values:

Stepper stepper = new Stepper

Minimum = 0,

Maximum = 10,

Increment = 1,

HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand

};

Minimum, Maximum, and Increment properties are set for the steppable value. The start value can be set in the

Stepper.Value property. Here is a shortcut constructor:

public Stepper (Double Minimum , Double Maximum , Double StartValue,
Double Increment)

This constructor can be implemented like this:
Stepper stepper = new Stepper(o ,10 ,0 , 1);

Figure 4-7 shows what the Stepper view looks like.

Figure 4-7. Plus and minus for increment and decrement

112

CHAPTER 4 * USER INTERACTION USING CONTROLS

Tapping a plus or minus button changes the adjustable value and fires the Stepper.ValueChanged event.
It can be handled in a method or inline, like so:

stepper.ValueChanged += (sender, e) =>

eventValue.Text = String.Format("Stepper value is {0:F1}", e.NewValue);
pageValue.Text = stepper.Value.ToString();

5
The properties e.01dValue and e. NewValue are available within this event to provide the old and new

selected values. In general cases, however, the value entered by the user is stored in the Stepper's Value
property. All these properties are type Double.

Slider

The Slider view is a sliding input control providing a continuum of selection:

Slider slider = new Slider

{
Minimum = o,
Maximum = 100,
Value = 50,
VerticalOptions = LayoutOptions.CenterAndExpand,
WidthRequest = 300
};

Minimum and Maximum properties are set for the slidable value. The start value can be set in the
Slider.Value property. The value changes by increments by one-tenth of a unit (0.1) as the slider is moved.
The WidthRequest property sets the width of the view without changing minimum or maximum values. Here
is a shortcut constructor:

public Slider (Double Minimum , Double Maximum , Double StartValue)
This constructor can be implemented like this:

Slider slider = new Slider (0 ,100 ,50);

Figure 4-8 shows what the S1ider view looks like (with Value = 100).

Figure 4-8. Slider view at its max value

113

CHAPTER 4 © USER INTERACTION USING CONTROLS

Sliding the slider changes the adjustable value and fires the slider.ValueChanged event. It can be handled
inline or as a method, like so:

slider.ValueChanged += (sender, e) =>

{
eventValue.Text = String.Format("Slider value is {0:F1}", e.NewValue);
pageValue.Text = slider.Value.ToString();

5
The properties e.01dValue and e.NewValue are available within this event to provide the old and new

selected values. In general cases, the slidable value is also stored in the s1ider.Value property. All these
properties are of type Double.

Switch

The Switch view is a Boolean on/off control:
Switch switcher = new Switch
{
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
};

Figure 4-9 shows what the Switch view looks like off.

And Figure 4-10 shows what the same view looks like on.

Figure 4-10. Switch on

Figure 4-9. Switch off

Tapping the switch changes the Boolean value and fires the Switch.Toggled event. It can be handled inline
or as a method, like so:

switcher.Toggled += (sender, e) =>

eventValue.Text = String.Format("Switch is now {0}", e.Value);
pageValue.Text = switcher.IsToggled.ToString();

)

114

CHAPTER 4 * USER INTERACTION USING CONTROLS

The property e.Value is available within this event to provide the new switch value. In general cases, the
value is also stored in the Switch.IsToggled property. These properties are of type Boolean.

Scale, Rotation, Opacity, Visibility, and Focus

You can alter the appearance and behavior of Xamarin.Forms views by using members of the View
superclass, VisualElement.

You give focus to a view by using the Focus () method, which returns true if successful. This example sets
focus on an Entry view (which pops up the keyboard):

var gotFocus = entry.Focus();

Here are some key properties that can be set on a view:

e Scale: Change the size of a view without affecting the views around it. The default
value is 1.0.

switcher.Scale = 0.7;
e IsVisible: Make a view invisible, or visible again.
label.IsVisible = false;
e IsEnabled: Disable and reenable a view.
label.IsEnabled = false;
e Opacity: Fade a view in and out. The default value is 1.0.
label.Opacity = 0.5;
e Rotation: View rotation can be achieved on all axes by using the Rotation,

RotationX, and RotationY properties. These rotate the view around the point set by
AnchorX and AnchorY.

CODE COMPLETE: Xamarin.Forms Controls

Listing 4-1 contains the complete code listing for all Xamarin.Forms selection control examples in this
chapter.

XAML The XAML version of this example can be found at the Apress web site (www.apress.com), Or on
GitHub at https://github.com/danhermes/xamarin-book-examples. The Xamarin.Forms solution for
Chapter 4 is ControlExamples.Xaml.

115

http://www.apress.com/
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_4

CHAPTER 4 © USER INTERACTION USING CONTROLS

Figure 4-11 shows the full screen.

Carriar ¥ E3PM -
Slicer value is 100.0
100

Slider value is 100.0
100

Tuesday, September 26, 2017

Tuesday, September 28, 2017

12:00:00 AM 12:00:00 AM

(

Figure 4-11. Xamarin.Forms selection views

Listing 4-1. Controls.cs in the ControlExamples Project of the ControlExamples Solution

public partial class Controls : ContentPage
{

Label eventValue;
Label pageValue;

public Controls()
{

eventValue= new Label();
eventValue.Text = "Label";
pageValue = new Label();
pageValue.Text = "PageValue";

Picker picker = new Picker

{

Title = "Option",

VerticalOptions = LayoutOptions.CenterAndExpand
};

var options = new List<string> { "First", "Second", "Third", "Fourth" };

116

CHAPTER 4 * USER INTERACTION USING CONTROLS

foreach (string optionName in options)

{
picker.Items.Add(optionName);
}
picker.SelectedIndexChanged += (sender, args) =>
{
pageValue.Text = picker.Items[picker.SelectedIndex];
};
DatePicker datePicker = new DatePicker
{
Format = "D",
VerticalOptions = LayoutOptions.CenterAndExpand
};

datePicker.DateSelected += (object sender, DateChangedEventArgs e) =>

{
eventValue.Text = e.NewDate.ToString();

pageValue.Text = datePicker.Date.ToString();

};
TimePicker timePicker = new TimePicker
{
Format = "T",
VerticalOptions = LayoutOptions.CenterAndExpand
};
timePicker.PropertyChanged += (sender, e) =>
{
if (e.PropertyName == TimePicker.TimeProperty.PropertyName)
{
pageValue.Text = timePicker.Time.ToString();
};

Stepper stepper = new Stepper

Minimum = o,

Maximum = 10,

Increment = 1,

HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand

};

117

CHAPTER 4 © USER INTERACTION USING CONTROLS

118

stepper.ValueChanged += (sender, e) =>

{

eventValue.Text = String.Format("Stepper value is {0:F1}", e.NewValue);
pageValue.Text = stepper.Value.ToString();

)

Slider slider = new Slider

{
Minimum = o,
Maximum = 100,
Value = 50,
VerticalOptions = LayoutOptions.CenterAndExpand,
WidthRequest = 300
b
slider.ValueChanged += (sender, e) =>
{
eventValue.Text = String.Format("Slider value is {0:F1}", e.NewValue);
pageValue.Text = slider.Value.ToString();
s

Switch switcher = new Switch

{

HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand

1
switcher.Toggled += (sender, e) =>

eventValue.Text = String.Format("Switch is now {0}", e.Value);
pageValue.Text = switcher.IsToggled.ToString();

)

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

this.Content = new StacklLayout {

HorizontalOptions = LayoutOptions.Center,
Children = {

eventValue,

pageValue,

picker,

datePicker,

timePicker,

stepper,

slider,

switcher

};

CHAPTER 4 * USER INTERACTION USING CONTROLS

Note Again, the two labels used in this example reflect the two ways in which selection values can be
retrieved: in a handler event property (for example, e.NewValue), which provides the most recent value, orin a
general-use property on the view, which provides the selected value for use throughout the page.

That completes our tour of Xamarin.Forms views!
It's time for your choice:

e Ifyou're reading this book for Xamarin.Forms only and aren’t yet interested in a
platform-specific Ul, you may want to jump to the beginning of the next chapter to
continue reading about Xamarin.Forms.

e Ifyou are ready to delve deeper into the platform-specific approach using Xamarin.
Android and Xamarin.iOS, then read on!

Let’s start with the Xamarin.Android controls before moving on to iOS. You can use the following controls
when building Xamarin.Android platform-specific solutions or when creating Android custom renderers
inside Xamarin.Forms solutions, as described in Chapter 8.

Android Controls

Some of the selection widgets used most often on Android are Spinner, DatePicker, TimePicker, SeekBar,
CheckBox, Switch, and RadioButton. The Spinner is a simple drop-down selection picker, the SeekBar is a
slider, and the rest of these controls are exactly what they sound like.

Unlike many Xamarin.Forms controls, Android views don’t produce a modal dialog box by default, but
produce only an inline dialog. Use the techniques described in the following sections or roll your own
modals by using DialogFragments (see Chapter 6).

Create a new Android solution of type Blank App (Android) called ControlExamplesAndroid.

Spinner
A Spinner is an Android widget that provides a simple drop-down list of items to choose from.

Making a Spinner requires a few steps. You place a Spinner in your layout XML, and then create another
layout that contains a TextView for binding to an Adapter to create a list to display. Next you instantiate the
spinner in an activity, populate the list, and then bind the list to the Spinner.Adapter property and handle
selection using the Spinner.ItemSelected event.

First, place a Spinner on a LinearLayout either using a designer or coded by hand in XML and call the
layout Spinner.axml in the Resources/layout folder:

<Spinner
android:layout width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/spinner" />

A Spinner is populated from an Adapter. In this example, an ArrayAdapter based on a hand-coded string
array. An ArrayAdapter populates a list with strings, using a TextView for each list item.

119

http://dx.doi.org/10.1007/9781484202159_8
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 4 © USER INTERACTION USING CONTROLS

Create a new layout to contain a TextView (also in the Resources/layout folder) that is used as a cell in the
Spinner’s list. Name this layout TextViewForSpinner.axml:

<?xml version="1.0" encoding="UTF-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/textItem"
android:textSize="44sp"
android:layout width="fill parent"
android:layout_height="wrap content" />

Create a new activity called SpinnerActivity.cs. In the OnCreate method, point to the spinner layout by
using SetContentView, and find the spinner in the layout by using FindViewById:

SetContentView (Resource.Llayout.Spinner);
Spinner spinner = FindViewById<Spinner> (Resource.Id.spinner);

Populate a string array with selectable options and construct the ArrayAdapter:

string[] options = {"one", "two", "three", "four", "five"} ;

ArrayAdapter adapter = new ArrayAdapter (this, Resource.layout.TextViewForSpinner,
options);

spinner.Adapter = adapter;

Note how the ArrayAdapter constructor uses the TextView and the string array as parameters. The
ArrayAdapter is assigned to the Adapter property of the spinner.

Tip Use the default resource, SimpleSpinnerItem, instead of manually creating TextViewForSpinner.axml
in the Adapter declaration:

ArrayAdapter adapter = new ArrayAdapter (this, Resource.layout.SimpleSpinnerItem, options);

Tip You can also set a default drop-down style by using SetDropDownViewResource:

adapter.SetDropDownViewResource (Android.Resource.Layout.SimpleSpinnexrDropDownItem);

The spinner looks like an Entry view at first (Figure 4-12).

one

Figure 4-12. Spinner anxiously awaiting a tap

120

http://schemas.android.com/apk/res/android

CHAPTER 4 * USER INTERACTION USING CONTROLS

Tap it to display the drop-down list (Figure 4-13).

Figure 4-13. Spinner is a dialog box

Selecting an item fires the ItemSelected event, which can be handled inline or in a handler
method like this:

spinner.ItemSelected += new EventHandler<AdapterView.ItemSelectedEventArgs>
(spinner_ItemSelected);

Here is the handler method that creates a toast to display the selected item:

private void spinner ItemSelected (object sender, AdapterView.ItemSelectedEventArgs e)

{
Spinner spinner = (Spinner)sender;
string toast = string.Format ("Selection: {0}", spinner.CetItemAtPosition
(e.Position));
Toast.MakeText (this, toast, ToastLength.Long).Show ();
}

121

CHAPTER 4 © USER INTERACTION USING CONTROLS

Selecting an item pops up the toast, displaying the selected item shown in Figure 4-14.

Selection: one

Figure 4-14. A toast is Android’s way of raising a glass for an important occasion

Note Two other useful techniques for populating a spinner include an XML <string-array> and a
data-bound adapter.

CODE COMPLETE: Spinner

The full SpinnerActivity.cs is shown in Listing 4-2. Refer to the downloadable source code for the
layout XMLs.

Listing 4-2. SpinnerActivity.cs in the ControlExamplesAndroid Solution

[Activity (Label = "AndroidSelectionExamples", MainLauncher = true, Icon = "@drawable/icon")]
y p
public class SpinnerActivity : Activity
{
protected override void OnCreate (Bundle bundle)
{
base.OnCreate (bundle);
SetContentView (Resource.layout.Spinner);
Spinner spinner = FindViewById<Spinner> (Resource.Id.spinner);
spinner.ItemSelected += new EventHandler<AdapterView.ItemSelectedEventArgs>
(spinner_ItemSelected);

string[] options = {"one", "two", "three", "four", "five"} ;
ArrayAdapter adapter = new ArrayAdapter (this,
Resource.layout.TextViewForSpinner, options);

spinner.Adapter = adapter;

}

private void spinner ItemSelected (object sender, AdapterView.ItemSelectedEventArgs e)

{

Spinner spinner = (Spinner)sender;
string toast = string.Format ("Selection: {0}", spinner.GetItemAtPosition

(e.Position));
Toast.MakeText (this, toast, ToastLength.Long).Show ();

122

CHAPTER 4 * USER INTERACTION USING CONTROLS

DatePicker

The DatePicker is a spinner and/or calendar used for selecting the month, date, and year.

Note Modal dialogs are not a built-in function of Android pickers such as the DatePicker. Android pickers
are inline dialogs by default. Modals must be coded by hand, in this case by using DatePickerDialog. You'll do
this in the next section.

Add aDatePicker to your main layout by either using a designer or coding by hand in XML:
<DatePicker
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/datePicker" />

Instantiate a DatePicker in your activity. Match the widget ID name between the layout and activity:

DatePicker datePicker = FindViewById<DatePicker> (Resource.Id.datePicker);

The default DatePicker looks like Figure 4-15.

August 2017

12 3 4 5

6 7 8/9|1011 12

13141516 17 18 19

20 21 22 23 24 25 26

Figure 4-15. The default DatePicker is a spinner and calendar

Month and day columns can be scrolled and can accept a typed entry, enabling the user to search for a
month or to enter the date. The calendar at right is scrollable, and the day is selectable.

This example creates an inline DatePicker, which consumes real estate and remains on the page even after
the user is done with it. Typically, DatePickers are implemented as modal dialogs that allow the user to
select a date value to fill a particular text field, then the dialog disappears after the selection is made.

123

CHAPTER 4 © USER INTERACTION USING CONTROLS

Creating a Modal DatePicker by Using DatePickerDialog
The following example demonstrates a clickable text view that invokes the DatePicker as a modal dialog.

In a new layout called Picker.axml, add the TextViewto a LinearLayout and name it textView, with the text
"Pick Date":

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:text="Pick Date"
android:textAppearance="?android:attr/textAppearancelLarge"”
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/textView" />
</Linearlayout>

In the activity, declare a date variable. Reference the textView and create a listener for the Click event that
calls the ShowDialog method:

public class DatePickerActivity : Activity

{

DateTime date;

protected override void OnCreate (Bundle bundle)

{
base.OnCreate (bundle);

SetContentView (Resource.layout.Picker);
var textView = FindViewById<TextView>(Resource.Id.textView);
textView.Click += delegate {
ShowDialog (0);
};

date = DateTime.Today;
}

Add a method to the activity that fires when ShowDialog is called and that instantiates DatePickerDialog:

protected override Dialog OnCreateDialog (int id)

{

return new DatePickerDialog (this, HandleDateSet, date.Year, date.Month - 1,
date.Day);

124

http://schemas.android.com/apk/res/android

CHAPTER 4 * USER INTERACTION USING CONTROLS

DatePickerDialog is populated with fields from the date variable. Last, handle changes to the date in
DatePickerDialog by defining HandleDateSet:

void HandleDateSet (object sender, DatePickerDialog.DateSetEventArgs e)

{
var textView = FindViewById<TextView>(Resource.Id.textView);
date = e.Date;
textView.Text = date.ToString("d");

}

This assigns the entered Date to the date variable and formats this to be placed into the textView's Text
property. Run the solution to see the TextView in Figure 4-16.

Pick Date

Figure 4-16. textView patiently awaits a click

Tap/click the TextView to pop up DatePickerDialog (Figure 4-17).

JEQNODOD® N

Figure 4-17. DataPickerDialog modal dialog

125

CHAPTER 4 © USER INTERACTION USING CONTROLS

Spin the spinners, choose the date, and click Done. textView is updated with the selected date (Figure 4-18).

11/3/2017

Figure 4-18. The TextView displays the selected date

CODE COMPLETE: DatePickerExample

Listing 4-3 contains the activity code for the modal DatePicker dialog DatePickerDialogExample solution.
Remember to add the TextView named textView to the main screen by using a designer.
Listing 4-3. DatePickerActivity.cs in the ControlExamplesAndroid Solution

[Activity (Label = "DatePickerDialogExample", MainLauncher = true)]
public class DatePickerActivity : Activity

{
DateTime date;
protected override void OnCreate (Bundle bundle)
{
base.OnCreate (bundle);
SetContentView (Resource.layout.Picker);
var textView = FindViewById<TextView>(Resource.Id.textView);
textView.Click += delegate {
ShowDialog (0);
};
date = DateTime.Today;
}
protected override Dialog OnCreateDialog (int id)
{
return new DatePickerDialog (this, HandleDateSet, date.Year, date.Month - 1,
date.Day);
}
void HandleDateSet (object sender, DatePickerDialog.DateSetEventArgs e)
{
var textView = FindViewById<TextView>(Resource.Id.textView);
date = e.Date;
textView.Text = date.ToString("d");
}
}

126

CHAPTER 4 * USER INTERACTION USING CONTROLS

TimePicker

The TimePicker is a spinner for selecting hour, minute, and AM/PM.

Note Modal dialog boxes are not a built-in function of pickers such as the TimePicker and must be
coded manually, in this case using the TimePickerDialog class. Use the modal technique described for
DatePickerDialog in the previous section. See the full code in TimePickerActivity.cs in the
ControlExamplesAndroid solution.

Add a TimePicker called timePicker to your layout:
<TimePicker
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/timePicker" />
Create a TimePicker class in your activity. Match the widget ID name between the layout and activity:
TimePicker timePicker = FindViewById<TimePicker> (Resource.Id.timePicker);

Default time values can be set in the properties CurrentHour and CurrentMinute:

timePicker.CurrentHour = (Java.lang.Integer) 17;
timePicker.CurrentMinute = (Java.lang.Integer) 30;

The TimePicker looks like Figure 4-19.

Figure 4-19. TimePicker has columns of spinners

All rows are scrollable. Changes to the control fire the TimeChanged event, which can be handled inline
like this:

timePicker.TimeChanged += delegate(object sender, TimePicker.TimeChangedEventArgs e)

{

Toast.MakeText (this, "Hour: " + e.HourOfDay + " Minute:
Short).Show();

)

+ e.Minute, ToastLength.

127

CHAPTER 4 © USER INTERACTION USING CONTROLS

e.HourOfDay and e.Minute contain the selected time values. Figure 4-20 shows the toast.

M

Hour: 18 Minute: 30

Figure 4-20. Cheers! It’s that time

SeekBar

A SeekBar is a sliding input lever for continuous values.
Add a SeekBar to your layout:
<SeekBar
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/seekBar"/>
Create a SeekBar class in your activity:

SeekBar seekBar = FindViewById<SeekBar> (Resource.Ild.seekBar);

The SeekBar looks like Figure 4-21.

Figure 4-21. SeekBar is a slider.

Tip The minimum value of the SeekBar is zero.

When the SeekBar value is changed, the ProgressChanged event is fired, which can be handled inline like this:

seekBar.ProgressChanged += (object sender, SeekBar.ProgressChangedEventArgs e) => {
if (e.FromUser)

{
Toast.MakeText (this, "Value: " + e.Progress, ToastLength.Short).Show ();

}
};

128

CHAPTER 4 * USER INTERACTION USING CONTROLS

The selection value is found in the e.Progress property. The e.FromUser property is true if the change was
initiated by the user (not programmatically). Figure 4-22 shows the toast.

Value: 27

Figure 4-22. The toast memorializes the value

Tip The SeekBar can also be tracked with listeners by implementing the SeekBaxr.IOnSeekBarChange
Listener interface. See http://developer.xamarin.com/recipes/android/controls/seekbar/ for details.

Tip The default SeekBar range can be changed using SeekBar .Max. The default value is 100.

CheckBox

CheckBox is a standard Boolean check-box control, often deployed in groups.

Add CheckBoxes to your layout:

<CheckBox
android:text="0Option1"
android:layout width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/checkBox1" />
<CheckBox
android:text="0Option2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/checkBox2" />

These have the IDs checkBox1 and checkBox2. The Text property contains the displayed text string.
Create CheckBox classes in your activity (usually in OnCreate()):

CheckBox checkBox1 = FindViewById<CheckBox> (Resource.Id.checkBox1);
CheckBox checkBox2 = FindViewById<CheckBox> (Resource.Id.checkBox2);

Check boxes look like Figure 4-23.

129

http://developer.xamarin.com/recipes/android/controls/seekbar/

CHAPTER 4 © USER INTERACTION USING CONTROLS

v Option1

Option2

Figure 4-23. Two separate, unconnected check boxes

The Boolean selection value is stored in the CheckBox.Checked property of each CheckBox.

A Click event fires when a check box is tapped, which can be handled inline like this in the OnCreate () method:

checkBox1.Click += (o0, €) => {
if (checkBox1.Checked)
Toast.MakeText (this, "Checked", ToastLength.Short).Show ();
else
Toast.MakeText (this, "Not checked", ToastLength.Short).Show ();
};

This handler displays a toast reflecting the value of checkBox1. See the rest of the code in Listing 4-4.

Tip For CheckBoxes to behave as a group (so only one can be selected at a time, for example) they must
be coded by hand, by using each CheckBox’s Click event and setting the value of each manually. For these
situations, you should probably be considering RadioButtons, covered shortly.

Switch

A Switch is a Boolean on/off widget, often used to turn features on or off.

Add a Switch to your layout:

<Switch
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:id="@+id/switch1"
android:layout_gravity="center horizontal" />

Instantiate a Switch class in your activity:

Switch switchl = FindViewById<Switch> (Resource.Id.switchi);

A Switch looks like Figure 4-24.

Figure 4-24. Switch is on, waiting for a tap

130

CHAPTER 4 * USER INTERACTION USING CONTROLS

The Boolean value is stored in the Switch.IsChecked property. Tapping the control fires the CheckedChange
event, which can be handled like this:

switchi.CheckedChange += delegate(object sender, CompoundButton.
CheckedChangeEventArgs e)

{
var toast = Toast.MakeText (this, "Selection:" + (e.IsChecked ? "On" : "Off"),
ToastLength.Short);
toast.Show ();

b

This pops up a toast with the switch value (Figure 4-25).

Selection:On

Figure 4-25. Toast displaying Switch state

Customizing with a Title, Switch Text, and State

A text title that appears before the switch, usually a feature or question, can be added in the text property.
Default text on the switch itself can be changed by using the textOn and textOff properties (for example,
to indicate Yes/No instead of On/Off). The default switch on/off state can be changed with the checked

property:
<Switch android:text="Feature activated?"

android:id="@+id/switch1"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:checked="true"
android:textOn="YES"
android:textOff="NO" />

This results in a customized switch (Figure 4-26).
Feature activated? YES
Figure 4-26. The text property shows a label, and On/Off is now Yes/No

RadioButton

A RadioButton is a selectable button widget that can be grouped with other RadioButtons by using a
RadioGroup. This grouping makes selection mutually exclusive, so only one button can be selected at a time.

131

CHAPTER 4 © USER INTERACTION USING CONTROLS

Create a RadioGroup containing RadioButtons in your layout:

<RadioGroup
android:layout width="fill parent"
android:layout height="wrap_content"
android:orientation="vertical">
<RadioButton android:id="@+id/radio1"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:text="First" />
<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Second" />
</RadioGroup>

Here we have two RadioButtons with the IDs radiol and radio2. Their text properties are set to First and
Second, respectively, and that is the text that will appear next to the buttons.

Create RadioButtons at the top of your activity outside OnCreate:

RadioButton radioi;
RadioButton radio2;

Inside OnCreate, find the buttons:

radiol
radio2

FindViewById<RadioButton>(Resource.Id.radiol);
FindViewById<RadioButton>(Resource.Id.radio2);

Figure 4-27 shows the result.

Figure 4-27. RadioGroup of two RadioButtons

Tapping a RadioButton fires a Click event that can be handled like this:

radiol.Click += RadioButtonClick;
radio2.Click += RadioButtonClick;

Place the handler method outside the OnCreate method:

private void RadioButtonClick (object sender, EventArgs e)

{

RadioButton rb = (RadioButton)sender;
Toast.MakeText (this, rb.Text, ToastLength.Short).Show ();

132

CHAPTER 4 * USER INTERACTION USING CONTROLS

This will toast the text property of the RadioButton when tapped (Figure 4-28).

First

Figure 4-28. Cheers, First!

CODE COMPLETE: Android Controls

Listing 4-4 contains the activity code for the SeekBar, CheckBox, and Switch controls. For the DatePicker
and TimePicker examples, see Listing 4-3 and the downloadable code solution, ControlExamplesAndroid.

Figure 4-29 displays all the selection controls covered here.

v Option1

+ Option2

First

® Second

Selection:On

Figure 4-29. Android selection controls

133

CHAPTER 4 © USER INTERACTION USING CONTROLS

Listing 4-4. SelectionActivity.cs in the ControlExamplesAndroid Solution

public class SelectionActivity : Activity

{

134

RadioButton radioi;
RadioButton radio2;

protected override void OnCreate (Bundle bundle)

base.OnCreate (bundle);
SetContentView (Resource.layout.Selection);

SeekBar seekBar = FindViewById<SeekBar> (Resource.Id.seekBar);
seekBar.ProgressChanged += (object sender, SeekBar.ProgressChangedEventArgs e) =>

{

if (e.FromUser)

{
}

Toast.MakeText(this, "Value: " + e.Progress, ToastlLength.Short).Show();
};

CheckBox checkBox1 = FindViewById<CheckBox> (Resource.Id.checkBox1);
CheckBox checkBox2 = FindViewById<CheckBox> (Resource.Id.checkBox2);
checkBox1.Click += (o, e) =>

{
if (checkBox1.Checked)
Toast.MakeText(this, "Box 1 Checked", ToastLength.Short).Show();
else
Toast.MakeText(this, "Box 1 Not checked", ToastLength.Short).Show();
};
checkBox2.Click += (o, e) =>
{
if (checkBox2.Checked)
Toast.MakeText(this, "Box 2 Checked", ToastLength.Short).Show();
else
Toast.MakeText(this, "Box 2 Not checked", ToastLength.Short).Show();
};

Switch switchl = FindViewById<Switch> (Resource.Id.switchi);
switchi.CheckedChange += delegate(object sender, CompoundButton.
CheckedChangeEventArgs e)

{
var toast = Toast.MakeText(this, "Selection:" + (e.IsChecked ? "On" : "Off"),
ToastLength.Short);
toast.Show();

b

CHAPTER 4 * USER INTERACTION USING CONTROLS

radiol = FindViewById<RadioButton>(Resource.Id.radiol);
radio2 = FindViewById<RadioButton>(Resource.Id.radio2);
radiol.Click += RadioButtonClick;
radio2.Click += RadioButtonClick;

}
private void RadioButtonClick(object sender, EventArgs e)
{
RadioButton rb = (RadioButton)sender;
Toast.MakeText(this, rb.Text, ToastLength.Short).Show();
}

}

If you're ready to learn more about Android, then turn to Chapter 5 where you'll learn about lists.

For iOS controls, read on. Next let’s explore Xamarin.iOS platform-specific controls. You can use these
controls when building Xamarin.iOS platform-specific solutions or when creating iOS custom renderers
inside Xamarin.Forms solutions, as described in Chapter 8.

i0S Controls

Some of most common iOS selection controls are UIPickerView, UIDatePicker, UIStepper, UIS1lider, and
UISwitch. UIPickerView suppliesa drop-down list, UIStepper gives a plus/minus button for changing
numeric values, and the rest are self-explanatory.

Similar to Android, iOS controls don’t produce a modal dialog box by default, but produce only an inline
dialog. Use the UITextField.InputView modal dialog technique described in the following sections.

UlIPickerView

The UIPickerView control provides a drop-down list for selection of a single item, typically from a short list
of items obtained from a data model.

The UIPickerView is generally linked to a UITextField which, when tapped, pops up the picker. The picker
is data-bound to a specialized view-model class called UIPickerViewModel, which returns rows from

its contained data model and has a ValueChanged method and SelectedItem property that returns the
selected value.

Let’s build a drop-down that allows the user to pick a color.

Using the designer of your choice, add a UITextField to your layout (storyboard) and name it color. Then
prepare the data model as a class PickerModel (Listing 4-5). Place it below the ViewDidLoad method in a
UIViewController called DatePickerViewController.

135

http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 4 © USER INTERACTION USING CONTROLS

Listing 4-5. PickerModel Provides Data for UIPickerView, ValueChangedEvent, and SelectedItem

public class PickerModel : UIPickerViewModel

{
private readonly IList<string> items = new List<string>
{
"Red",
"Blue",
"Green",
"Yellow",
"Black"
s

public event EventHandler<EventArgs> ValueChanged;
protected int selectedIndex = 0;

public PickerModel()

{
}
public string SelectedItem
{
get { return items[selectedIndex]; }
}

public override nint GetComponentCount (UIPickerView picker)

{
}

return 1;

public override nint GetRowsInComponent (UIPickerView picker, nint component)

{
}

return items.Count;

public override string GetTitle (UIPickerView picker, nint row, nint component)

{
}

return items[(int)row];

public override nfloat GetRowHeight (UIPickerView picker, nint component)

{
}

return 40f;

136

CHAPTER 4 * USER INTERACTION USING CONTROLS

public override void Selected (UIPickerView picker, nint row, nint component)

{

selectedIndex = (int)row;
if (this.ValueChanged != null)

{
}

this.ValueChanged (this, new EventArgs ());

}

Components are columns in the picker. This example has only one component/column. Making a selection
fires the Selected event, which stores the selected value in selectedIndex, and then fires the ValueChanged
event, which later handles the chosen value.

Tip Nint and nfloat are native i0S data types that were added in the Xamarin.iOS Unified API for 32- and
64-bit support.

In your ViewDidLoad method, create a selectedColor string to store the chosen value. Then instantiate
the PickerModel and wire up the model.ValueChanged event, where selectedColor is populated by the
selected item:

public override void ViewDidlLoad ()

{

string selectedColor = "";

PickerModel model = new PickerModel();
model.ValueChanged += (sender, e) => {
selectedColor = model.SelectedItem;

}s

Code the UIPickerView and set its properties, including assigning the Model and setting the default value of
color.Text:

UIPickerView picker = new UIPickerView();
picker.ShowSelectionIndicator = true;
picker.BackgroundColor = UIColor.White;
picker.Model = model;

this.color.Text = model.SelectedItem;

Now let’s make that picker into a pop-up.

137

CHAPTER 4 = USER INTERACTION USING CONTROLS
Making a UlPickerView into a Pop-up

A modal dialog box can be created several ways, the most common using UITextField.InputView. The
InputView property of UITextField supports the assignment of an alternative “keyboard,” which is a
UIPickerView here. This keyboard can be decorated with additional controls, such as a toolbar with a
Done button.

Still in the ViewDidLoad method, create a UIToolbar. Then add the Done button that populates the
textField with the color when tapped:

UIToolbar toolbar = new UIToolbar();
toolbar.BarStyle = UIBarStyle.Default;
toolbar.Translucent = true;
toolbar.SizeToFit();

UIBarButtonItem doneButton = new UIBarButtonItem("Done", UIBarButtonItemStyle.Done,
(S) e) => {

this.color.Text = selectedColor;
this.color.ResignFirstResponder();
})s
toolbar.SetItems(new UIBarButtonItem[]{doneButton}, true);

The ResignFirstResponder method dismisses the keyboard from textField.

Assign the toolbar to the textField’s InputAccessoryView property.
this.color.InputAccessoryView = toolbar;

Last, associate your picker with the UITextField by using the InputView property. This causes the
UIPickerView control to become a modal pop-up when the text control is tapped.

this.color.InputView = picker;

Clicking the text view pops up the picker (Figure 4-30).

138

CHAPTER 4 * USER INTERACTION USING CONTROLS

Carrier ¥ 531 PM 1
Red
Done
Green

\

Figure 4-30. Color text field with picker pop-up

Tapping Done executes the action, which populates the text box with the selected color (Figure 4-31),
and then closes the picker by using the ResignFirstResponder () method, dismissing the keyboard from
textField.

Green

Figure 4-31. The color text field populated with the selected color

Note See Chapter 6 for more on modals.

139

http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 4 USER INTERACTION USING CONTROLS
CODE COMPLETE: UIPickerView

Listing 4-6 shows the complete code example for UIPickerView. Remember to add the UITextField called
color to your layout by using the designer tool.

Listing 4-6. PickerViewController.cs from the PickerExample solution

public partial class PickerViewController : UIViewController

{
public PickerViewController (IntPtr handle) : base (handle)
{
}

public override void ViewDidlLoad ()

{

base.ViewDidLoad ();

string selectedColor = "";

PickerModel model = new PickerModel();
model.ValueChanged += (sender, e) => {
selectedColor = model.SelectedItem;

}s

UIPickerView picker = new UIPickerView();
picker.ShowSelectionIndicator = true;
picker.BackgroundColor = UIColor.White;
picker.Model = model;

this.color.Text = model.SelectedItem;

UIToolbar toolbar = new UIToolbar();
toolbar.BarStyle = UIBarStyle.Default;
toolbar.Translucent = true;
toolbar.SizeToFit();

UIBarButtonItem doneButton = new UIBarButtonItem("Done",
UIBarButtonItemStyle.Done,
(s, e) = {
this.color.Text = selectedColor;
this.color.ResignFirstResponder();

1)
toolbar.SetItems(new UIBarButtonItem[]{doneButton}, true);

this.color.InputAccessoryView = toolbar;
this.color.InputView = picker;

140

CHAPTER 4 * USER INTERACTION USING CONTROLS

public class PickerModel : UIPickerViewModel

{

private readonly IList<string> items = new List<string>

{
"Red",
"Blue",
"Green",
"Yellow",
"Black"
s

public event EventHandler<EventArgs> ValueChanged;
protected int selectedIndex = 0;

public PickerModel()

{
}
public string SelectedItem
{
get { return items[selectedIndex]; }
}
public override nint GetComponentCount (UIPickerView picker)
{
return 1;
}

public override nint GetRowsInComponent (UIPickerView picker, nint component)

{
}

return items.Count;

public override string GetTitle (UIPickerView picker, nint row, nint component)

{
}

return items[(int)row];

public override nfloat GetRowHeight (UIPickerView picker, nint component)

{
}

return 40f;

141

CHAPTER 4 © USER INTERACTION USING CONTROLS

public override void Selected (UIPickerView picker, nint row, nint component)

{
selectedIndex = (int)row;
if (this.ValueChanged != null)
{
this.ValueChanged (this, new EventArgs ());
}
}

Tip Modal pop-ups for iOS pickers can be produced by other methods. These require manual coding using
UIViewController or UIPopover. Create a custom UIviewController class containing the picker, title label,
and a Done button. Instantiate the modal vViewController and present the view with await PresentViewCont
rollerAsync(viewController, true);.

UlIDatePicker

The UIDatePicker is a spinner-style control used to select the date and time (Figure 4-32).

Fig PhT Wy T 4 N1
UCciobe | 2016

November 2 2017

3 ~ 5 Y ¥ ~ ¥ L] M40
I_ Jecemmper O U110

Figure 4-32. UlDatePicker has columns of spinners

The UIDatePicker is typically linked to a UITextField which, when tapped, pops up the picker.

Using the designer of your choice, create a UITextField on the layout and name it textView. Enter the name
of the field in the Text property, in this case Your Birthday.

In the ViewController’s ViewDidLoad method, code the UIDatePicker and set the Mode property to Date, to
allow date-only selection:

UIDatePicker datePicker = new UIDatePicker ();
datePicker.Mode = UIDatePickerMode.Date;
datePicker.BackgroundColor = UIColor.White;

142

CHAPTER 4 * USER INTERACTION USING CONTROLS

Tip We’ll cover other modes, such as Time, DateAndTime, and CountDownTimer, in the upcoming “Specify
Which Fields to Display” subsection.

Restrict the range of entries by using the MinimumDate and MaximumDate properties:

datePicker.MinimumDate
datePicker.MaximumDate

(NSDate)DateTime.Today.AddDays(-7);
(NSDate)DateTime.Today.AddDays(7);

This example limits the date to a two-week range centered on today’s date. Dates outside this range can be
selected with the spinner, but the spinner will then spin back within the allowable range.

Next you need to make the date picker into a pop-up.

Making a UlDatePicker into a Pop-up

Like UIPickerView, a modal dialog box can be created several ways, the most common using UITextField.
InputView. The InputView property of the UITextField supports the assignment of an alternative
“keyboard” that is, in this case, a UIDatePicker. This keyboard can be decorated with additional controls,
such as a toolbar with a Done button. Create a UIToolbar and add the Done button, which populates the
textField with the date when tapped:

UIToolbar toolbar = new UIToolbar();
toolbar.BarStyle = UIBarStyle.Default;
toolbar.Translucent = true;
toolbar.SizeToFit();

UIBarButtonItem doneButton = new UIBarButtonItem("Done", UIBarButtonItemStyle.Done,
(s,) = {
DateTime dateTime = DateTime.SpecifyKind((DateTime)datePicker.Date,
DateTimeKind.Unspecified);
this.textField.Text = dateTime.ToString("MM-dd-yyyy");
this.textField.ResignFirstResponder();
1)
toolbar.SetItems(new UIBarButtonItem[]{doneButton}, true);

DateTime.SpecifyKind returns a new date/time value in the proper format. The ResignFirstResponder
method dismisses the keyboard from textField.

Assign the toolbar to the textField’s InputAccessoryView property:
this.textField.InputAccessoryView = toolbar;

Last, associate your date picker with the UITextField by using the InputView property. This causes the
UIDatePicker control to become a modal pop-up when the text control is tapped:

this.textField.InputView = datePicker;

143

CHAPTER 4 © USER INTERACTION USING CONTROLS

Clicking on the text view pops up the date picker (Figure 4-33).

P oo

Carrier ¥ 5:34 PM L
Your Birthday]
Done
November 2 2017

\

Figure 4-33. textField with popped-up datePicker

Tapping the Done option executes the action, which populates the text box with the formatted date
(Figure 4-34), and closes the picker by using the ResignFirstResponder () method to dismiss the keyboard
from textField.

11-02-2017

Figure 4-34. The textField populated with a formatted date

Various fields can appear in the UIDatePicker selection. Let’s look at those next.

144

CHAPTER 4 * USER INTERACTION USING CONTROLS

Specify Which Fields to Display

Specify the fields used in UIDatePicker with the Mode property, which uses the UIDatePickerMode
enumerator. For example, datePicker.Mode = UIDatePickerMode.Date;

Use these UIDatePickerModes to specify the indicated fields:
e Time: Select the time only
e Date: Select the date only
e DateAndTime: Select both the date and time

e CountDownTimer: Select only hours and minutes

Tip When in CountDownTimer mode, the CountDownDuration property contains the total number of
seconds of the selected time.

CODE COMPLETE: UlDatePicker

Listing 4-7 shows the complete UIDatePicker example. Remember to add textField to your layout by using
the designer tool.

Listing 4-7. DatePickerViewController.cs from the DatePickerExample solution

public partial class DatePickerViewController : UIViewController {

public override void ViewDidLoad ()

{
base.ViewDidLoad ();
UIDatePicker datePicker = new UIDatePicker ();
datePicker.Mode = UIDatePickerMode.Date;
datePicker.BackgroundColor = UIColor.White;

datePicker.MinimumDate = (NSDate)DateTime.Today.AddDays(-7);
datePicker.MaximumDate = (NSDate)DateTime.Today.AddDays(7);

UIToolbar toolbar = new UIToolbar();
toolbar.BarStyle = UIBarStyle.Default;
toolbar.Translucent = true;
toolbar.SizeToFit();

145

CHAPTER 4 © USER INTERACTION USING CONTROLS

UIBarButtonItem doneButton = new UIBarButtonItem("Done", UIBarButtonItemStyle.Done,
(s, e) = {
DateTime dateTime = DateTime.SpecifyKind((DateTime)datePicker.Date,
DateTimeKind.Unspecified);
this.textField.Text = dateTime.ToString("MM-dd-yyyy");
this.textField.ResignFirstResponder();

})s
toolbar.SetItems(new UIBarButtonItem[]{doneButton}, true);

this.textField.InputAccessoryView = toolbar;
this.textField.InputView = datePicker;

UlStepper
The UIStepper is an increment/decrement button for discrete values and is useful when slight changes to a

value are needed. Add a UIStepper to the view by using your designer of choice.

Position the button and name it stepper in the Properties view. When run, it should look like Figure 4-35.
+ |
Figure 4-35. Stepper

Set the range of values the control will accept by using the MinimumValue and MaximumValue properties:

stepper.MinimumValue = 0;
stepper.MaximumValue = 11;

Add aUILabel named stepperLabel above the stepper to display the stepper value. Tapping the control fires
the ValueChanged event, which can be handled like this:

stepper.ValueChanged += (object sender, EventArgs e) => stepperlLabel.Text =
stepper.Value.ToString ();

The value of the stepper is contained in the Value property. Run it and click the plus button, clicked up from
0 to 8, to look like Figure 4-36.

8
Figure 4-36. stepperLabel and stepper

Keep clicking plus, and the value increases to 11.

146

CHAPTER 4 * USER INTERACTION USING CONTROLS

The StepValue property will increment the stepper by the specified value. Increment by two at a time (0, 2, 4,
and so forth), like this:

stepper.StepValue = 2;

The experience of using the stepper can be tweaked by using these Boolean properties:

e AutoRepeat: If true, holding down the stepper button changes the value repeatedly.
Default = true.

stepper.AutoRepeat = true;

e Continuous: If true, all value changes fire an event. If false, the event fires only
when user interaction has stopped. Default = true.

stepper.Continuous = true;
e Wraps:Iftrue, then when the value reaches the MinimumValue, it proceeds to
MaximumValue. Conversely, when it reaches MaximumValue, further increments

change it to the MinimumValue. Default = false.

stepper.Wraps = false;

UlSlider

The UISlider is a sliding input button for selection across a range of values. Add a UIS1ider to the view by
using your designer of choice.

Position the slider and stretch it to the desired width. Name it s1ider in the Properties view. When run, it
should look like Figure 4-37.

Figure 4-37. Slider in its native habitat

The properties can be set in the Properties view or in code:

slider.MinValue = -1;
slider.MaxValue = 2;
slider.Value = 0.5f;

MinValue and MaxValue properties determine the endpoint values of the slider. The Value property is the
default value of the slider.

Add aUILabel named sliderLabel above the stepper to display the stepper value. When the slider is
moved, the ValueChanged event fires, which can be handled like this:

slider.ValueChanged += (sender,e) => sliderlLabel.Text = ((UISlider)sender).Value.
ToString ();

147

CHAPTER 4 © USER INTERACTION USING CONTROLS

When run, the slider looks like Figure 4-38, which shows the slider set at MinValue.

-1

Figure 4-38. Slider slid far left

Figure 4-39 shows MaxValue.

2

Figure 4-39. Slider slid far right

You can customize the look of the slider by using these properties:
e MinimumTrackTintColor: Color of the slider line to the left of the button.
slider.MinimumTrackTintColor = UIColor.LightGray;
e MaximumTrackTintColor: Color of the slider line to the right of the button.
slider.MaximumTrackTintColor = UIColor.Green;
e ThumbTintColozr: Color of the thumb button. However, this option doesn’t work
reliably at the time of this writing because of an Apple bug. Use the following

workaround before setting ThumbTintColor to make it work:

slider.SetThumbImage(UIImage.FromBundle("thumb.png"),UIControlState.Normal);
slider.ThumbTintColor = UIColor.Brown;

Place a small dummy image of some kind in the Resources folder corresponding to the image name.

CheckBox: Use UISwitch or MonoTouch.Dialog

i0S doesn’t have an out-of-the-box check-box control, so many developers use UISwitch, explained next.
You can also use MonoTouch.Dialog, a library that makes settings Uls easy to create for cross-platform apps.
(See https://github.com/migueldeicaza/MonoTouch.Dialog for more details.)

148

https://github.com/migueldeicaza/MonoTouch.Dialog

CHAPTER 4 * USER INTERACTION USING CONTROLS

UlISwitch

UISwitch has become the standard for the Boolean on/off control. Add UISwitch to the view by using your
designer of choice.

Position it and name it thisSwitch in the Properties view. When run, it should look like Figure 4-40.

o

Figure 4-40. UlSwitch turned on

The UISwitch.On property contains the Boolean value of the switch, which can be set or gotten. Set it to true
to create a default value or set it programmatically:

thisSwitch.On = true;
Get the state from the On property, like this:
bool state = thisSwitch.On;

Add a UILabel named switchLabel above the switch to display the switch value. When the switch is moved,
the ValueChanged event fires, which can be handled like this:

thisSwitch.ValueChanged += (sender, e) => switchLabel.Text = thisSwitch.
On.ToString();

Flip the switch on (Figure 4-41) to see the label change to True.

True

Figure 4-41. Itis true

Flip the switch off (Figure 4-42) to see the label change to False.

False

Figure 4-42. Not true at all

149

CHAPTER 4 © USER INTERACTION USING CONTROLS

You can use these properties to customize the look of the switch:

e ThumbTintColor: Color of the thumb button
thisSwitch.ThumbTintColor = UIColor.Blue;

e TintColor: Color around the edge of the switch
thisSwitch.TintColor = UIColor.Blue;

e OnTintColor : Color of the switch around the button when button is on
thisSwitch.OnTintColor = UIColor.Black;

e OnImage: Image used in place of the default thumb image when the switch is on
switch.OnImage = onImage;

e OffImage: Image used in place of the default thumb image when the switch is off

switch.0ffImage = offImage;

Note The size of the thumb image used in OnImage and OffImage must be less than or equal to 77 points
wide and 27 points tall. If you specify larger images, the edges may be clipped.

CODE COMPLETE: iOS Controls

Listing 4-8 shows the complete UIS1ider, UIStepper, and UISwitch example in the ViewDidLoad method.

Figure 4-43 shows all three selection controls.

150

\

CHAPTER 4 * USER INTERACTION USING CONTROLS

Carrier &

6:37 PM -

N

- 4

Figure 4-43. UlSlider, UlStepper, and UlSwitch

Listing 4-8. From SelectionViewController.cs in the StepperSliderSwitch solution

public override void ViewDidlLoad ()

{

base.ViewDidLoad ();

slider.
slider.
slider.
slider.
slider.
slider.
slider.
slider.

MinValue = -1;
MaxValue = 2;
Value = 0.5f;

SetThumbImage (UIImage.FromBundle("thumb.png"),UIControlState.Normal);
ThumbTintColor = UIColor.Brown;

MinimumTrackTintColor = UIColor.LightGray;

MaximumTrackTintColor = UIColor.Green;

ValueChanged += (sender, e) => sliderlabel.Text = ((UISlider)sender).

Value.ToString ();

151

CHAPTER 4 © USER INTERACTION USING CONTROLS

stepper.MinimumValue = 0;

stepper.MaximumValue = 11;

stepper.StepValue = 2;

stepper.ValueChanged += (object sender, EventArgs e) => stepperlLabel.Text =
stepper.Value.ToString ();

thisSwitch.On = false;

thisSwitch.TintColor = UIColor.Blue;

thisSwitch.OnTintColor = UIColor.Black;

bool state = thisSwitch.On;

thisSwitch.ValueChanged += (sender, e) => switchLabel.Text =
thisSwitch.On.ToString();

Summary

Many controls share a common goal: allowing the user to pick a value. Simple selection controls require us
to specify minimum and maximum values and set a default value. Pickers/spinners work best inside a modal
dialog, and we use them to select from a list or choose dates and times. Xamarin.Forms handles the modal
pop-ups for you, whereas Android and iOS require you to roll your own. Android provides some helpful out-
of-the-box components such as DatePickerDialog and TimePickerDialog, but DialogFragment also makes
a great modal. For modals in iOS, use the UITextField.InputView property (no more ActionSheets).

The selection controls in this chapter typically provide a value changed or click event of some kind to allow
your code to respond to changes in values. While indispensable, the controls in this chapter are simple ones.
In the next chapter, you'll dive deeper into the heart of mobile UI selection, where both the data and the
selection can be richer and more complex when using lists and tables.

152

CHAPTER 5

Making a Scrollable List

Choosing quickly from a long list of items is one of the key offerings of the mobile UL The limited real
estate on mobile phone screens makes data grids a challenge and leads to extensive and creative use
of lists. Grouping of items, scrolling, gesture-sensitivity, and images make lists one of the most versatile
and reuseable data-bound tools available. Lists are to mobile development what the data grid is to web
development.

This chapter covers the list classes available in each library to make a scrollable, selectable list. The primary
considerations include binding to a data model, handling item selection, customizing the look of rows,
grouping headers, and perhaps most importantly: performance.

These are the options available for creating scrollable lists on each platform:
Xamarin.Forms ListView

ListView is bound to an array or data model.

Android ListView

ListViewis bound to an array or to a data model using an Adapter.

iOS UlTableView

UITableView is bound to an array or to a data model using UITableViewSource.

Data Adapters

Android and iOS lists require separate adapters for data binding. In Android, we use BaseAdapter and in

iOS there is UITableViewSource. In Xamarin.Forms, no additional adapter class is needed. We can bind
directly to a list of Strings using the ItemsSource property with the default list template. We can also bind to
data models and use custom lists with the ListView's built-in adapter class called ItemTemplate, which is
configured using the SetBinding method.

Xamarin.Forms ListView

Lists in Xamarin.Forms are created using the ListView control bound to an array or data model. The Xamarin.
Forms ListView class provides a scrollable, selectable list. List rows are customizable using layouts, images,
and views such as buttons. ListView supports grouping, headers, footers, jump lists, and pull-to-refresh.
Deleting and applying operations to list rows are supported using Context Actions.

153

CHAPTER 5 MAKING A SCROLLABLE LIST

The lists in this chapter are read-only, which means that they are bound to a data source for viewing and
selecting, but the rows are not edited, deleted, or added. We touch on some editable list UI techniques in the
“Context Actions and Customizing List Rows” section, but do not cover changes to the data model or two-way
data binding so that these changes can be reflected in the list. For editable ListView data binding, see Chapter 7.
The starting point with a ListView is data binding it to a data source.

Binding to a List of Strings
The simplest ListView implementation is binding to a List of Strings.

Instantiate a ListView class on your page and point it to a data source using the ItemsSource property, in
this case a List of Strings. Using the default layout, each item in a ListView will be a single cell using the
TextCell template displaying a single line of text.

class ListViewStrings : ContentPage
{
public ListViewStrings()
{
ListView listView = new ListView();
List<String> items = new List<String>() {"First","Second","Third"};
listView.ItemsSource = items;
this.Content = listView;

}
}

Here’s the list in Figure 5-1.

— - . Faeet First
First i
Second Second
i Third
Third
Third
__ Sl _/.-

Figure 5-1. ListView in iOS, Android, and Windows Phone

154

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

Tip Create space around the edges of your list using the layout Padding property mentioned in Chapter 3.

Padding = new Thickness (0, Device.OnPlatform (20, 0, 0), 0, 0);

Selecting a list item fires the ItemSelected event.

Selecting an Item

There are two events for use in item selection: ItemTapped and ItemSelected. Both can happen when a
user taps a cell in the ListView. The difference between them is apparent when a list permits more than just
tapping and items can be selected and unselected. In simple lists where there is no unselection of rows (like
the example here), there is little difference between them.

ItemTapped is the simplest. It fires as a motion event when a list row is clicked.

listView.ItemTapped += async (sender, e) =>

{
};

await DisplayAlert("Tapped", e.Item.ToString() + " was selected.", "OK");
The ItemSelected event responds to a change in the state of row selection and happens when a row is
selected or unselected.

listView.ItemSelected += async (sender, e) =>

{
};

await DisplayAlert("Selected", e.SelectedItem.ToString()+ " was selected.", "OK");

Using async/await isn’t mandatory on these event handlers, but it is a good habit when any processing
is done, to avoid tying up the Ul thread. Using either ItemTapped or ItemSelected to select the First item
results in Figure 5-2.

155

http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 5 MAKING A SCROLLABLE LIST

First was selected.

Figure 5-2. The alert displays the selected item

Tip The DisplayAlert method is more informative than an Android toast. It provides a title and requires
interaction to clear it.

Clear the selected row (removing the row highlight) by setting the ListView's SelectedItem property to
null. The easiest place to do this is inside the ItemTapped handler.

listView.ItemTapped += async (sender, e) =>

{ n

await DisplayAlert("Tapped", e.Item.ToString() +
((ListView)sender).SelectedItem = null;

was selected.", "OK");
5

If you're using the ItemSelected event, be aware that changing the SelectedItem value fires the
ItemSelected event again. You therefore need to check if e. SelectedItemis null prior to responding to
the event.

listView.ItemSelected += async (sender, e) =>

{

if (e.SelectedItem == null) return;
await DisplayAlert("Selected", e.SelectedItem.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;

)

Listing 5-1 shows the complete ListView example for binding to a List of Strings, selecting an item using
async/await for backgrounding the ItemTapped event handler, and then clearing the selected row when
you're done.

156

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-1. Binding to a List of Strings in ListViewStrings.cs

class ListViewStrings: ContentPage

{
public ListViewStrings()
{
var items = new List<String>() {"First","Second","Third"};
var listView = new ListView();
listView.ItemsSource = items;
listView.ItemTapped += async (sender, e) =>
{
await DisplayAlert("Tapped", e.Item.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;
};
this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
this.Content = listView;
}
}

Tip Multiple row selection must be coded manually and is not covered here.

A List<String> is useful for demonstration, but in many real-world scenarios we bind to a data model.

Binding to a Data Model

Binding ListView to a data model is made easy in Xamarin.Forms through the use of ListView's built-in
adapter called ItemTemplate. Prepare your data model class and assign it to the ListView.ItemsSource
property. Then bind each property of your model to the list using the ItemTemplate.SetBinding method.
Create a data model, or custom class, containing the list items. Call it ListItem.

public class ListItem {
public string Title { get; set; }
public string Description { get; set; }

}

Populate it and point the ListView’s ItemsSource property to it.

listView.ItemsSource = new ListItem [] {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}

};

157

CHAPTER 5 MAKING A SCROLLABLE LIST

Format list rows using ItemTemplate. Create a DataTemplate class and pass in the cell type to display. The
standard cell type is TextCell, which will display a title for each row plus some detail text which you'll add in
a minute. Specify the property to display as the main row text by assigning it to the TextProperty of the list,
in this case Title.

listView.ItemTemplate = new DataTemplate (typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");

This will display the same list but from custom class ListIteminstead of a List of Strings (Figure 5-3).
No additional adapter needed!

Figure 5-3. This ListView looks the same as Figure 5-1 but is driven by the ListItem data model

Add a descriptive line of text to each row by binding the DetailProperty of the TextCell.
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description");

This binds the Description property of the ListItem class to the DetailProperty of the TextCell. Figure 5-4
shows the result.

First
L 1em Sel:DI‘d
Second 2nd item

Third

Figure 5-4. Title and Description properties are bound to each row using properties of TextCell

Tip TextCell’s font color can be set using its TextColor property and the detail font color can be set
using the DetailColor property.
var template = new DataTemplate (typeof(TextCell));
template.SetValue(TextCell.TextColorProperty, Color.Red);

template.SetValue (TextCell.DetailColorProperty, Color.Blue);
listView.ItemTemplate = template;

158

CHAPTER 5 MAKING A SCROLLABLE LIST

When handling the item selection, remember to use the data model.

listView.ItemTapped += async (sender, e) =>

{
ListItem item = (ListItem)e.Item;
await DisplayAlert("Tapped", item.Title.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;

};

CODE COMPLETE: Binding to a Data Model

Listing 5-2 shows the complete ListView example where we bind to a data model containing text and detail
for each row in the list, found in the ListViewExample solution.

XAML The XAML version of all the Xamarin.Forms examples in this chapter can be found on Apress.com
(from the Source Code/Downloads tab, access the title of this book) or on GitHub at https://github.com/
danhermes/xamarin-book-examples. The Xamarin.Forms XAML solution for Chapter 5 is ListViewExample.Xaml.

Listing 5-2. Binding to a Data Model ListViewDataModel.cs

class ListViewDataModel : ContentPage

{
public class ListItem
{
public string Title { get; set; }
public string Description { get; set; }
}

public ListViewDataModel()
{

var listView = new ListView();

listView.ItemsSource = new ListItem[] {

new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}

};

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description");
this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

Content = listView;

159

https://github.com/danhermes/xamarin-book-examples
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 5 MAKING A SCROLLABLE LIST

listView.ItemTapped += async (sender, e) =>

{
ListItem item = (ListItem)e.Item;
await DisplayAlert("Tapped", item.Title.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;

};

}

Tip In Model View ViewModel (MVVM) apps, the data models are typically wrapped inside screen-specific
classes called View Models (VM). See Chapter 7 for how to create view models that are data-bound to ListViews.

Adding an Image

Adding a single image to a ListViewis easy using the ImageCell cell type. Previously, we used the
TextCell cell type to display text and detail in each row. An ImageCell inherits from TextCell and adds
an ImageSource property, which contains the image filename or URIL. We use the bindable properties
ImageSource, Text, and Detail to bind to our data model. The image is displayed left-justified, as seen in
Figure 5-5.

)
2
S

Figure 5-5. ImageCell in a ListView

I'll highlight the differences from the previous TextCell data-binding example and then you can see the
final result in Listing 5-3. Add a Source property of type String to the ListItem class and populate it with
your images (filename or URI).

listView.ItemsSource = new ListItem[] {
new ListItem {Source = "first.png", Title = "First", Description="1st item"},
new ListItem {Source = "second.png", Title = "Second", Description="2nd item"},
new ListItem {Source = "third.png", Title = "Third", Description="3rd item"}

};

160

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

Instantiate a DataTemplate containing the ImageCell and assign it to the ListView’s ItemTemplate.
listView.ItemTemplate = new DataTemplate(typeof(ImageCell));

Bind the ListItem properties to the ImageCell, including text properties and image Source.

listView.ItemTemplate.SetBinding(ImageCell.ImageSourceProperty, "Source");
listView.ItemTemplate.SetBinding(ImageCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(ImageCell.DetailProperty, "Description");

Assign the listView to the Content property and that’s all there is to it.

Tip The image folder will be local to each platform project (Android: Resources/drawable, i0S: /Resources,
Windows Phone: WinPhone root folder). Remember to set the Build Actions by right-clicking on the image file in
your project (Android: AndroidResource, i0S: BundleResource, and Windows Phone: Content).

Listing 5-3 contains the complete code to add an image to a ListView using ImageCell, as shown in
Figure 5-5.

Listing 5-3. Image in a List Row in ListViewImageCell.cs

class ListViewImageCell : ContentPage

{
public class ListItem
{
public string Source { get; set; }
public string Title { get; set; }
public string Description { get; set; }
}
public ListViewImageCell()
{
var listView = new ListView();
listView.ItemsSource = new ListItem[] {
new ListItem {Source = "first.png", Title = "First", Description="1st item"},
new ListItem {Source = "second.png", Title = "Second", Description="2nd item"},
new ListItem {Source = "third.png", Title = "Third", Description="3rd item"}
};
listView.ItemTemplate = new DataTemplate(typeof(ImageCell));
listView.ItemTemplate.SetBinding(ImageCell.ImageSourceProperty, "Source");
listView.ItemTemplate.SetBinding(ImageCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(ImageCell.DetailProperty, "Description");
this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
Content = listView;
}
}

161

CHAPTER 5 MAKING A SCROLLABLE LIST

Tip A ListVview can contain four built-in cell types: TextCell, ImageCell, SwitchCell, and EntryCell.
The most useful here are TextCell and ImageCell. Although cell types can be combined using a TableView, a
TableView cannot be data-bound, so Tableviews are not useful for building ListViews.

Sooner or later you'll outgrow TextCell and ImageCell and will need greater control over the look of your
list rows. So, you'll learn to customize them.

Customizing List Rows

Customize the list rows by creating a custom row template, which is basically a custom cell containing a
Layout with Views. It begins with a custom class inherited from ViewCell. Then we place a layout on it and
add our views. Views are more versatile than the built-in cells like TextCell and expose more properties for
layout and design.

With a custom row template, you can customize your labels and add more views to your list, as shown in
Figure 5-6. These three labels have their positions, font sizes, attributes, and colors customized.

$100.00

$200.00

$300.00

Figure 5-6. Custom row template

Let’s walk through the code for this multi-line custom row example using three Label Views to display
the title, description, and price. Figure 5-6 is an example where more control was needed over fonts and
formatting than is provided for by the built-in cells.

Add Price to your ListItem data model.

public class ListItem

{
public string Source { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public string Price { get; set; }

}

162

CHAPTER 5 MAKING A SCROLLABLE LIST

In the ContentPage’s constructor, populate Price with values.

var listView = new ListView();

listView.ItemsSource = new ListItem[] {
new ListItem {Title = "First", Description="1st item", Price="$100.00"},
new ListItem {Title = "Second", Description="2nd item", Price="$200.00"},
new ListItem {Title = "Third", Description="3rd item", Price="$300.00"}

};

Overerride the default list row class called ViewCell with a custom template and return a View property from
the constructor. Place one or more controls or layouts within this custom template. For simple text fields in
different-sized fonts, create label controls and place them on a StackLayout (or Absolutelayout or Grid if
performance is an issue). Be careful when using Image views, as images can affect performance, particularly
on older devices.

Create label controls titlelLabel, descriptionLabel, and pricelabel and bind them to their respective
properties in data class listView. Place titlelLabel and descriptionLabel on a StackLayout called
viewlLayoutItem for vertical formatting and then put both the StackLayout and the pricelabel view on
another StackLayout called viewLayout. Set viewlLayout is set as the ViewCell’s main View.

class ListItemCell : ViewCell

{
public ListItemCell()
{
Label titlelLabel = new Label
{
HorizontalOptions = LayoutOptions.FillAndExpand,
FontSize = 25,
FontAttributes = Xamarin.Forms.FontAttributes.Bold,
TextColor = Color.White
};

titlelLabel.SetBinding(Label.TextProperty, "Title");

Label desclLabel = new Label

{
HorizontalOptions = LayoutOptions.FillAndExpand,
FontSize = 12,
TextColor = Color.White

};

desclabel.SetBinding(Label.TextProperty, "Description");

StackLayout viewlayoutItem = new StackLayout()

{
HorizontalOptions = LayoutOptions.StartAndExpand,
Orientation = StackOrientation.Vertical,
Children = { titleLabel, descLabel }

};

163

CHAPTER 5 MAKING A SCROLLABLE LIST

Label pricelabel = new Label

{
HorizontalOptions = LayoutOptions.End,
FontSize = 25,
TextColor = Color.Aqua

b

pricelabel.SetBinding(Label.TextProperty, "Price");

StackLayout viewlLayout = new StackLayout()

{
HorizontalOptions = LayoutOptions.StartAndExpand,
Orientation = StackOrientation.Horizontal,
Padding = new Thickness(25, 10, 55, 15),
Children = { viewLayoutItem, pricelabel }

};

View = viewlayout;

}

Note the use of the main StackLayout’s Padding on all four sides to provide proper positioning of views
within the row. LayoutOptions help with alignment (that come at a performance cost), using Start for left-
or top-justified views and End for right- or bottom-justified ones. If you're on iOS, you are about to set the
background color to black so you can see the white text.

Back in the ContentPage’s constructor, set the ListView.ItemTemplate property to ListItemCell, the
new custom template. This assigns the custom class as the template for each row in the list. Also, set the
RowHeight to accommodate the extra Views.

listView.RowHeight = 80;
listView.ItemTemplate = new DataTemplate(typeof(ListItemCell));

Tip When your list rows vary in height, use ListView’s HasUnevenRows property instead of RowHeight (for
example, listView.HasUnevenRows = true;).

Here is the complete ContentPage Constructor.

public ListViewCustom()

{

var listView = new ListView();

listView.ItemsSource = new ListItem[] {
new ListItem {Title = "First", Description="1st item", Price="$100.00"},
new ListItem {Title = "Second", Description="2nd item", Price="$200.00"},
new ListItem {Title = "Third", Description="3rd item", Price="$300.00"}

};

listView.RowHeight = 80;

listView.BackgroundColor = Color.Black;

listView.ItemTemplate = new DataTemplate(typeof(ListItemCell));

Content = listView;

}

164

CHAPTER 5 MAKING A SCROLLABLE LIST

Customizing a list can result in a beautiful, highly-functional UI feature. Is it also one of the best ways to
destroy a list’s performance, so customize with caution. Use TextCell or ImageCell as well as you can
before deciding to customize. Images and nested layouts are a challenge to optimize in Xamarin.Forms,
particularly on older devices. If you're having difficulty with performance as you test your customized list,
try the performance tips in the (Xamarin.Forms) Optimizing Performance section. If those don’t work for
you then consider using a custom renderer with platform-specific controls instead. (See the list views in the
Android and iOS sections of this chapter and then turn to Chapter 8 to read about custom renderers.)

Tip Listview row separator lines are customizable using its SeparatorVisibility and SeparatorColor
properties. Set the ListView's SeparatorVisibility property to None to hide the lines (the default value is
Default). Set the color of the separator using SeparatorColor. Remember to define these before the
ListView is loaded on Android to avoid a performance penalty.

Tip Headers and footers are supported by ListView. Use the Header and Footer properties for a simple
text or view. For more complex layouts, use HeaderTemplate and FooterTemplate.

CODE COMPLETE: Customizing List Rows

Listing 5-4 contains the complete code for the row customization example shown in Figure 5-6, with the
addition of an ItemTapped event.

Listing 5-4. Customizing List Rows in ListViewCustom.cs

class ListViewCustom : ContentPage

{

public class ListItem

{
public string Source { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public string Price { get; set; }

}

public ListViewCustom()
{
var listView = new ListView();
listView.ItemsSource = new ListItem[] {
new ListItem {Title = "First", Description="1st item", Price="$100.00"},
new ListItem {Title = "Second", Description="2nd item", Price="$200.00"},
new ListItem {Title = "Third", Description="3rd item", Price="$300.00"}

};

listView.RowHeight = 80;

listView.BackgroundColor = Color.Black;

listView.ItemTemplate = new DataTemplate(typeof(ListItemCell));
Content = listView;

165

http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 5 MAKING A SCROLLABLE LIST

listView.ItemTapped += async (sender, e) =>

{
ListItem item = (ListItem)e.Item;
await DisplayAlert("Tapped", item.Title.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;
};
}
class ListItemCell : ViewCell
{
public ListItemCell()
{
Label titlelLabel = new Label
{
HorizontalOptions = LayoutOptions.FillAndExpand,
FontSize = 25,
FontAttributes = Xamarin.Forms.FontAttributes.Bold,
TextColor = Color.White
};

titlelLabel.SetBinding(Label.TextProperty, "Title");

Label desclLabel = new Label

{
HorizontalOptions = LayoutOptions.FillAndExpand,
FontSize = 12,
TextColor = Color.White

};

descLabel.SetBinding(Label.TextProperty, "Description");

StackLayout viewlayoutItem = new StackLayout()

{
HorizontalOptions = LayoutOptions.StartAndExpand,
Orientation = StackOrientation.Vertical,
Children = { titlelabel, desclLabel }

};

Label pricelabel = new Label

{
HorizontalOptions = LayoutOptions.End,
FontSize = 25,
TextColor = Color.Aqua

};

pricelabel.SetBinding(Label.TextProperty, "Price");

166

CHAPTER 5 MAKING A SCROLLABLE LIST

StackLayout viewlLayout = new StackLayout()

{
HorizontalOptions = LayoutOptions.StartAndExpand,
Orientation = StackOrientation.Horizontal,
Padding = new Thickness(25, 10, 55, 15),
Children = { viewlayoutItem, pricelabel }

};

View = viewlayout;

Tip Changes to list properties can be reflected in the list in real-time using an implementation of the
INotifyPropertyChanged interface. See Chapter 7 for more on editable list data binding.

Among the views that can be added to a list row, Buttons require special attention due to their prevalence
and unique qualities.

Adding Buttons

Buttons can be added to a list in one of two ways: as button views and as Context Actions. Button views are
added to the custom template, while Context Actions appear when a row is swiped or long-pressed, such as
for buttons hiding behind each row, which are often used for operations on the selected row such as deletion.

Note Image Views paired with gesture recognizers (manually-coded image buttons) don’t return a property
containing their list row so they aren’t useful as buttons.

Using Button Views

Add button views to your custom template during the customization of a ListView. Add the Button View
onto a layout in a custom ViewCell and it will display on the list in every row, as shown in Figure 5-7. Set up
a Button.Clicked handler using the CommandParameter property to determine which button was clicked.

167

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

31 00.00 Buy Now

$300.00

Buy Now

Figure 5-7. Add a Button View to a ListView

Declare a Button view in your custom ViewCell. Bind a period (.) to the button’s CommandParameter
property to retrieve the clicked row.

var button = new Button

{
Text = "Buy Now",
BackgroundColor = Color.Teal,
HorizontalOptions = LayoutOptions.EndAndExpand
};

button.SetBinding(Button.CommandParameterProperty, new Binding("."));

Remember to add the Button to your custom template layout as discussed in the previous section.

Handling the Clicked event requires the use of CommandParameter, which returns the data object, ListItem
in this case, of the row in which the button was clicked.

button.Clicked += (sender, e) =>

{
var b = (Button)sender;
var item = (ListItem)b.CommandParameter;
((ContentPage) ((ListView)((StackLayout)((StackLayout)b.ParentView)
.ParentView).ParentView).ParentView).DisplayAlert("Clicked",
item.Title.ToString() + " button was clicked", "OK");

};

That long ParentView expression is for climbing back up the layout tree from the button up through the
nested layouts and through the ListView to retrieve the ContentPage.

Listing 5-5 contains the code excerpt where we add a Button View to the ListView, as shown in Figure 5-7.

Listing 5-5. Adding a Button to a List Row from ListViewButton.cs

class ListItemCell : ViewCell

{
public ListItemCell()

{
// ... custom labels and layouts...

var button = new Button

{
168

CHAPTER 5 MAKING A SCROLLABLE LIST

Text = "Buy Now",

BackgroundColor = Color.Teal,

HorizontalOptions = LayoutOptions.EndAndExpand
};
button.SetBinding(Button.CommandParameterProperty, new Binding("."));
button.Clicked += (sender, e) =>

{
var b = (Button)sender;
var item = (ListItem)b.CommandParameter;
((ContentPage) ((ListView)((StackLayout)((StackLayout)b.ParentView).
ParentView).ParentView).ParentView).DisplayAlert("Clicked", item.Title.
ToString() + " button was clicked", "OK");

};

On Android, input views like buttons have been problematic and not always selectable on Xamarin.Forms
ListViews due to a focus conflict between the input view and the row. Hopefully, this bug will be fixed by
the time this book hits the shelves. If not, the workaround requires creating a custom renderer for the input
control and setting the Focusable property to False (Control.Focusable = false). See ListViewButton.cs
and ListButtonRenderer.cs in the downloadable code for the full workaround. iOS and Windows Phone
don’t have this problem.

Tip OniOS the addition of this button can cause the title text to wrap, so set the FontSize = 20 on titlelabel.

An alternative to Button Views are Context Actions.

Using Context Actions

Context Actions are bars of buttons that appear for a particular row when the row is left-swiped on iOS or
long-pressed on Android or Windows Phone, as shown in Figure 5-8.

Q‘.1 00.00 o MORE DELETE

First

Second D I
s Second

more

delete

Third Third

Figure 5-8. The Context Action buttons More and Delete

169

CHAPTER 5 MAKING A SCROLLABLE LIST

Create a MenuItem object and place it on your ViewCell subclass while customizing your list. Set the Text
property to display on the contextual button and bind it like a ListView button using a period (.) and
CommandParameter.

var moreAction = new MenuItem { Text = "More" };
moreAction.SetBinding(MenuItem.CommandParameterProperty, new Binding("."));

Create the Clicked event and retrieve the row data class using CommandParameter.

moreAction.Clicked += (sender, e) =>

{

var mi = ((Menultem)sender);

var item = (ListItem)mi.CommandParameter;

Debug.Writeline("More clicked on row: " + item.Title.ToString());
};

Lastly, add the MenuItem to the ViewCell using ContextActions.Add
ContextActions.Add(moreAction);

For a delete button, do all the same things except set the IsDestructive flag to true. On iOS this will make
the button red. Set IsDestructive flag to true for only one of the buttons.

var deleteAction = new Menultem { Text = "Delete", IsDestructive = true };

Tip if you need to find the ContentPage inside your Clicked event in this example, use the technique
suggested in the previous Button View example, but use this code after the viewLayout is declared:
((ContentPage) ((ListView)viewLayout.ParentView).ParentView).DisplayAlert("More Clicked",
"On row: " + item.Title.ToString(), "OK");

Listing 5-6 contains the relevant excerpt of code for the Context Action example shown in Figure 5-8.

Listing 5-6. Creating Context Actions for a List, from ListViewContextAction.cs

class ListItemCell : ViewCell
{
public ListItemCell()

{

// ... custom labels and layouts...

var moreAction = new MenuItem { Text = "More" };
moreAction.SetBinding(MenuItem.CommandParameterProperty, new Binding("."));
moreAction.Clicked += (sender, e) =>

{

var mi = ((MenuItem)sender);

var item = (ListItem)mi.CommandParameter;

Debug.WritelLine("More clicked on row: " + item.Title.ToString());
};

170

CHAPTER 5 MAKING A SCROLLABLE LIST

var deleteAction = new MenuItem { Text = "Delete", IsDestructive = true };
deleteAction.SetBinding(MenuItem.CommandParameterProperty, new Binding("."));
deleteAction.Clicked += (sender, e) =>

{

var mi = ((MenuItem)sender);

var item = (ListItem)mi.CommandParameter;

Debug.WritelLine("Delete clicked on row: " + item.Title.ToString());
};

ContextActions.Add(moreAction);
ContextActions.Add(deleteAction);

Tip Adding and deleting rows from the list can be reflected in the Ul using an ObservableCollection.
See Chapter 7 for more on editable list data binding.

Grouping Headers

Long lists can be difficult to navigate and sometimes sorting just isn’t good enough. Grouping headers
create categories to help users quickly find what they’re looking for. Items can be grouped using the
IsGroupingEnabled and GroupDisplayBinding properties of a ListView.

You must first create group titles. A good way to store group headers is to create a static data model that is a
collection of groups, each of which contains a collection of data items. That is, a collection of collections is
created, with the group header field(s) defined in each group collection.

Create a group class that contains the group-by key and a collection for the items.

public class Group : List<ListItem>

{
public String Key { get; private set; }
public Group(String key, List<ListItem> items)
{
Key = key;
foreach (var item in items)
this.Add(item);
}
}

171

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

In the ContentPage constructor, populate the groups and assign them to a master model. Create as many
groups as you need with corresponding keys and their contained items. In this example there are two
groups, with keys called “Important” and “Less Important”.

List<Group> itemsGrouped = new List<Group> {

new Group ("Important", new List<ListItem>{
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},

1

new Group ("Less Important", new List<ListItem>{
new ListItem {Title = "Third", Description="3rd item"}

1))

};

Note This is a simplified, static data example for demonstration purposes. In the real world, you might
populate a sorted data model with LINQ or with a loop, inserting grouped items with their accompanying keys.

Create the ListView, setting the IsGroupingEnabled to true and assigning the GroupDisplayBinding the
property of the group-by model that contains the group header, which is the Key property here.

ListView listView = new ListView()
{
IsGroupingEnabled = true,
GroupDisplayBinding = new Binding("Key"),
ItemTemplate = new DataTemplate(typeof(TextCell))
{
Bindings = {
{ TextCell.TextProperty, new Binding("Title") },
{ TextCell.DetailProperty, new Binding("Description") }

};

Note This ItemTemplate happens to contain a Title and Description, but there is no particular
ItemTemplate required for the grouping of items.

Assign the group model to the ListView.ItemsSource property.
listView.ItemsSource = itemsGrouped;

Figure 5-9 shows the grouped list.

172

CHAPTER 5 MAKING A SCROLLABLE LIST

Carier ¥ 50 PM - A
Important Importa nt
First First

Sec.ond Second

Less Important
Third

less important

Third

Figure 5-9. This list of three items is grouped under two headings

Listing 5-7 contains all code for the ListView with group headers shown in Figure 5-9.

Listing 5-7. Grouping List Items in ListViewGrouped.cs

class ListViewGrouped : ContentPage
{
public class ListItem {
public string Title { get; set; }
public string Description { get; set; }

}

public ListViewGrouped()
{
List<Group> itemsGrouped = new List<Group> {
new Group ("Important", new List<ListItem> {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},

1,

new Group ("Less Important”, new List<ListItem>{
new ListItem {Title = "Third", Description="3rd item"}

3]
};

173

CHAPTER 5 MAKING A SCROLLABLE LIST

ListView listView = new ListView()

{
IsGroupingEnabled = true,
GroupDisplayBinding = new Binding("Key"),
ItemTemplate = new DataTemplate(typeof(TextCell))
{
Bindings = {
{ TextCell.TextProperty, new Binding("Title") },
{ TextCell.DetailProperty, new Binding("Description") }
}
}
};

listView.ItemsSource = itemsGrouped;
Content = listView;

this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

}
public class Group : List<ListItem>
{
public String Key { get; private set; }
public Group(String key, List<ListItem> items)
Key = key;
foreach (var item in items)
this.Add(item);
}
}

Customizing the Group Header

When you're ready for fancier group headers than the default ones, you can create your own in a similar
manner to customizing list rows, using a custom template class that implements a layout and controls. Set
the custom template using a custom ViewCell called HeaderCell to the GroupHeaderTemplate property.

GroupHeaderTemplate = new DataTemplate(typeof(HeaderCell)),
HasUnevenRows = true,

This GroupHeaderTemplate assignment should follow the GroupDisplayBinding declaration in your
ListView. The HasUnevenRows property helps maintain the formatting when you're handling header and
item rows of different heights. On iOS the developer must then calculate (or estimate) the height of each cell
manually.

Define HeaderCell as a custom template for the header cell. This example creates a white background with
large black text for the header group key. Bind the Group.Key field to the title Label and place the Label
inside a StackLayout.

174

CHAPTER 5

public class HeaderCell : ViewCell

public HeaderCell()

this.Height = 40;
var title = new Label

FontSize = 16,
TextColor = Color.Black,
VerticalOptions = LayoutOptions.Center

title.SetBinding(Label.TextProperty, "Key");

View = new StackLayout

{
{
{
};
{
};
}
}

HorizontalOptions = LayoutOptions.FillAndExpand,
HeightRequest = 40,

BackgroundColor = Color.White,

Padding = 5,

Orientation = StackOrientation.Horizontal,
Children = { title }

Figure 5-10 shows the list with custom headers.

Important

Figure 5-10. Custom group headings can contain one or more data-bound fields

MAKING A SCROLLABLE LIST

Tip Coding for performance in Group Headers is the same as when creating custom list row templates.
More detail on performance soon.

175

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-8 shows the ListView grouping template code from Figure 5-10.

Listing 5-8. Customizing List Group Headers in ListViewGroupingTemplate.cs
class ListViewGroupingTemplate : ContentPage
public class ListItem {

public string Title { get; set; }
public string Description { get; set; }

}
public ListViewGroupingTemplate()
{
ListView listView = new ListView()
{
IsGroupingEnabled = true,
GroupDisplayBinding = new Binding("Key"),
GroupHeaderTemplate = new DataTemplate(typeof(HeaderCell)),
HasUnevenRows = true,
ItemTemplate = new DataTemplate(typeof(TextCell))
{
Bindings = {
{ TextCell.TextProperty, new Binding("Title") },
{ TextCell.DetailProperty, new Binding("Description") }
}
}
};
List<Group> itemsGrouped = new List<Group> {
new Group ("Important", new List<ListItem> {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
1>
new Group ("Less Important"”, new List<ListItem>{
new ListItem {Title = "Third", Description="3rd item"}
H
};
listView.ItemsSource = itemsGrouped;
Content = listView;
this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
}
public class HeaderCell : ViewCell
{

public HeaderCell()

{
this.Height = 40;
var title = new Label

176

CHAPTER 5
{
FontSize = 16,
TextColor = Color.Black,
VerticalOptions = LayoutOptions.Center
};

title.SetBinding(Label.TextProperty, "Key");
View = new StackLayout

{
HorizontalOptions = LayoutOptions.FillAndExpand,
HeightRequest = 40,
BackgroundColor = Color.White,
Padding = 5,
Orientation = StackOrientation.Horizontal,
Children = { title }
b5
}
}
public class Group : List<ListItem>
{
public String Key { get; private set; }
public Group(String key, List<ListItem> items)
{
Key = key;
foreach (var item in items)
this.Add(item);
}
}

Creating a Jump List

Assign the jump list values by binding the property in the group model to the
ListView.GroupShortNameBinding property. This example binds the Group.Key property to the jump list.

listView.GroupShortNameBinding = new Binding("Key");

You'll need a fairly long grouped list to see this in action.

MAKING A SCROLLABLE LIST

Long lists can be unwieldy and require fast scrolling using a jump list, which is a list of keys on the right that
permit quick movement through the list. These are often letters corresponding to the first letter of the items.

Let’s move on to scrolling. Xamarin.Forms ListViews are automatically scrollable when they contain more
elements than can fit on the screen at one time.

177

CHAPTER 5 MAKING A SCROLLABLE LIST

ListViews Scroll Automatically

No additional coding is required to get a ListView to scroll. The ScrollView is built-in and the list will scroll
if it is longer than the space available on the page.

Add a few more rows to the ItemsSource in the original data-model-binding example.

listView.ItemsSource = new ListItem [] {
new ListItem {Title = "First", Description="1st item"},

Getting a ListView to scroll requires only putting enough data/rows into it to make it longer than the space

};

new
new

ListItem {Title
ListItem {Title

"Second", Description="2nd item"},
"Third", Description="3rd item"},

new ListItem {Title = "Fourth", Description="4th item"},
new ListItem {Title = "Fifth", Description="5th item"},

new ListItem {Title = "Sixth", Description="6th item"} ,
new ListItem {Title = "Seventh", Description="7th item"},

new

ListItem {Title

"Eighth", Description="8th item"},

new ListItem {Title = "Ninth", Description="9th item"} ,
new ListItem {Title = "Tenth", Description="10th item"},
new ListItem {Title = "Eleventh", Description="11th item"},
new ListItem {Title = "Twelfth", Description="12th item"} ,

new
new
new
new
new
new

ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title

on the screen (Figure 5-11).

178

"Thirteenth", Description="13th item"},
"Fourteenth", Description="14th item"},
"Fifteenth", Description="15th item"} ,
"Sixteenth", Description="16th item"},
"Seventeenth", Description="17th item"},
"Eighteenth", Description="18th item"}

CHAPTER 5 MAKING A SCROLLABLE LIST

Figure 5-11. ListView scrolls automatically when there are more rows than fit on the screen

Tip Listview supports a pull-to-refresh feature using its IsPullToRefreshEnabled property. Set it.
listView.IsPullToRefreshEnabled = true;

Implement the Refreshing event however you need to in order to enact a list refresh (see Chapter 7).
Call the EndrRefresh method and set IsRefreshing to false (it was true before).

Optimizing Performance

Cell reuse is built-in with Xamarin.Forms, giving you a leg up over iOS and Android lists. Even so, scrolling
lists can become slow, laggy, or janky. This is annoying to the user and makes the app feel unprofessional.

When building ListViews, a few things to watch out for are custom template ViewCells with many views,
using images on older devices, and using layouts that require a large amount of measurement calculations.

Here are some recommendations for optimizing ListView performance:
e Use the built-in cells whenever you can: TextCell and ImageCell.
e Use custom template ViewCells only when you have to.

e Useimages only when necessary and keep images as small as possible.

179

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

e Use as few elements as possible. For example, consider using a single
FormattedString label instead of multiple labels.

e UseAbsolutelayout when you can, as it does no measurements.
e Relativelayout can work well if constraints are passed directly.

e Avoid deeply nested layout hierarchies. Use AbsolutelLayout or Grid to help
reduce nesting.

e Avoid specific LayoutOptions except Fill (Fill is the cheapest to compute).
As alast resort, with a complex list, use custom renderers to create the list natively (see Chapter 8).

That’s it for ListView in Xamarin.Forms! At this point, you are faced with your choice. If you're finished
reading about Xamarin.Forms, you can continue reading about lists in the other OSs (Android and iOS) or
you can turn to the next chapter to learn more about Xamarin.Forms, where you'll read about navigation.

If you're staying with this chapter, you'll now learn about platform-specific layouts, starting with Android.

Android ListView

ListViewis a view group that displays a scrollable list of items. ListViews are bound to an Array, List, or
data model using an Adapter. They contain several built-in views containing one or two lines of text and an
image. Custom views can be constructed using LinearLayout at the expense of performance. Used in its
basic form, ListView is simple and fast.

These are the two most common ways to build a ListView:
e Usethe ListActivity class, which is an Activity containing a ListView.
e Usethe ListView tagin a layout XML, often used for customizing a list.

We'll start with the first one, ListActivity, and then talk about the second one in the “Customizing List
Rows” section.

Using ListActivity

Android provides a class called ListActivity specifically designed for displaying a list. The ListActivity
class inherits from the Activity class and contains a ListView. This is a convenient way to create a ListView
programatically and populate it using an Adapter class. In the following example, you will code a ListView
using ListActivity.

Binding to an Array of Strings
Bind a ListActivity to an array of strings to create a list.

Create an Android Activity, then change the class to inherit from ListActivity instead of Activity.
Declare and assign a 1istItems string array, as shown in Listing 5-9.

180

http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-9. List from an Array in ListActivityArray.cs from the ListViewExamplesAndroid Solution

public class MainActivity : ListActivity

{
string[] listItems;
protected override void OnCreate(Bundle bundle)
{
base.OnCreate(bundle);
listItems = new string[] { "First", "Second", "Third"};
ListAdapter = new ArrayAdapter<String>(this, Android.Resource.Layout.
SimpleListItem1, listItems);
}
}

Here you bind the list to an ArrayAdapter referring to the array of string’s listItems using the
ListActivity’s ListAdapter property. SimpleListItem1 is a built-in view containing one heading per row.
We will discuss other built-in layouts later.

This is all the code required to display a ListView bound to the string array (Figure 5-12).

First

Second

Third

Figure 5-12. This ListView is bound to a string array.

Next the user is going to want to tap one of your rows.

Selecting an Item

User selection of a list item is handled by overriding the OnListItemClick method in the ListActivity. The
selected item index is passed in through the parameter called position.

protected override void OnListItemClick(ListView 1, View v, int position, long id)

{
String SelectedItem = listItems[position];

Android.Widget.Toast.MakeText(this, SelectedItem,
Android.Widget.ToastLength.Short).Show();

}

Touching a list item will now cause a toast to appear and display the Title of the ListItem (see Figure 5-13).

181

CHAPTER 5 MAKING A SCROLLABLE LIST

4:00

First

Second

Third

Figure 5-13. Tapping “Third” will raise a Toast with that Title

Multiple Selection

Multiple row selection is built into Android using the ListView’s ChoiceMode property.
ListView.ChoiceMode = Android.Widget.ChoiceMode.Multiple;

This setting is used in tandem with another of Android’s built-in list views called
SimplelListItemMultipleChoice, which has checkmarks to the right of each row. You'll read about built-in
views soon.

Arrays are helpful for a simple list demonstration but in the real world you'll typically bind lists
to a data model.

182

CHAPTER 5 MAKING A SCROLLABLE LIST

Binding to a Data Model

Android ListView data binding requires an adapter between the model and the list. Create a list from a data
model in three steps:

1. Data Model: Create a data model containing the list items.

2. Adapter: Create a list item adapter to specify which fields in the data model to
display in the list and manage row cell reuse.

3. Activity: Populate the data model and pass it into the list adapter constructor.
Assign the resulting adapter to the ListAdapter property of the ListActivity.

Here we go.

Data Model

Create a custom data model containing list items in a separate class file called ListItem.cs, as shown in the
complete Listing 5-10.

Listing 5-10. List Data Model in ListItem.cs

public class ListItem

{
public string Title { get; set; }
public string Description { get; set; }

Adapter

To create an adapter, create a plain class called ListItemAdapter.cs (see complete Listing 5-11), which is
inherited from BaseAdapter, then override Count, GetItemId, GetItem, and GetView. Declare a private copy
of the data model List, called itemList. Create a ListItemAdapter constructor that receives the Activity
and populated data model as parameters.

Listing 5-11. List Adapter in ListitemAdapter.cs

public class ListItemAdapter : BaseAdapter
{

private List<lListItem> itemList;
private Activity context;

public ListItemAdapter(Activity context, List<ListItem> items) : base()
{

this.context = context;
this.itemlist = items;

183

CHAPTER 5 MAKING A SCROLLABLE LIST

public override int Count

{
get { return itemList.Count; }
}
public override Java.lLang.Object GetItem(int position)
{
throw new NotImplementedException();
}
public override long GetItemId(int position)
{
return position;
}
public override View GetView(int position, View convertView, ViewGroup parent)
{
View view = convertView;
if (view == null)
view = context.LayoutInflater.Inflate(
Android.Resource.layout.SimpleListItem1, null);
view.FindViewById<TextView>(Android.Resource.Id.Text1).Text =
itemList[position].Title;
return view;
}

}

GetView is the operative method here, creating individual list rows, each as a View, and returning them to
the ListActivity as needed. When a list is scrolled, this method is called to create more rows to display on
the screen. The Title property of ListItemis assigned to the Text property of the built-in TextView on the
ListActivity, Android.Resource.Id.Text1, using the built-in list row view SimpleListItem1 (more about
built-in row views soon). In GetView, always do the null cell check and use this passed-in View and Inflate
method technique to construct the cells. We do this for performance reasons and will discuss it more in
depth in a moment.

Activity

Back in the activity, the data model can now be bound to the list using the adapter. In the ListActivity’s
OnCreate method, declare listItems as data type List<ListItem>, and then populate the data model and
pass it into the ListAdapter’s constructor. Assign the resulting adapter to the ListActivity.ListAdapter
property, as shown in the complete Listing 5-12.

Listing 5-12. List Activity in ListActivityDataModel.cs

public class MainActivity : ListActivity
{

List<ListItem> listItems;
protected override void OnCreate(Bundle bundle)

{
base.OnCreate(bundle);

List<ListItemy> listItems = new List<ListItems {

184

CHAPTER 5 MAKING A SCROLLABLE LIST

new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}

}5
ListAdapter = new ListItemAdapter(this, listItems);

}

This will display the list from our data-bound model (Figure 5-14).

First

Second

Third

Figure 5-14. This ListView is a data-bound list using an adapter

Note Xamarin.Android provides several cursors to bind a list directly to a SQLite data source, including
SimpleCursorAdapter and CursorAdapter. These are explored in Chapter 7.

Optimizing Performance

When building a list adapter, it is important to code for performance which means reusing cells whenever
possible. A cell is a memory location that holds a list row. The common technique used in Xamarin.Android
apps is the null cell check, which attempts to reuse an existing cell (if it exists in memory) or creates it anew
if it doesn’t exist. Either way, the cell is populated with new data. This is so that cells can be recycled in
memory as rows scroll off of the screen rather than be thrown away.

Here’s how the null cell check works. The GetView method of the adapter constructs each row of the list as
needed, producing new rows for display when the list is scrolled. The View parameter contains an existing
row, if one exists. If it is null, a new row is created using the Inflate method. Then the row is populated with
current data. We did this earlier when creating the list item adapter in Listing 5-11.

public override View GetView(int position, View convertView, ViewGroup parent)
{
View view = convertView;
if (view == null)
view = context.LayoutInflater.Inflate(
Android.Resource.layout.SimpleListItem1, null);
view.FindViewById<TextView>(Android.Resource.Id.Text1).Text =
itemList[position].Title;
return view;

185

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 5 MAKING A SCROLLABLE LIST

Tip Further optimization can be attained using ViewHolder. See James Montemagno’s (pronounced
mahn-teh-mahn-yo) blog post on the topic at http://blog.xamarin.com/creating-highly-performant-
smooth-scrolling-android-listviews/.

Using the Built-in Row Views

There are 12 built-in row views that handle basic list layouts, found in Android.Resource.Layout.
Figures 5-15, 5-16, and 5-17 show the three most commonly used layouts: SimpleListItem1,
SimplelListItem2, and TwoLineListItem.

First

Second

Third

Figure 5-15. SimpleListltem1 shows a title only

First

Second

Third

Figure 5-16. SimpleListltem2 shows a large title and a smaller description

Figure 5-17. TwoLineListItem shows a large title and a description of equal size

186

http://blog.xamarin.com/creating-highly-performant-smooth-scrolling-android-listviews/
http://blog.xamarin.com/creating-highly-performant-smooth-scrolling-android-listviews/

CHAPTER 5 MAKING A SCROLLABLE LIST

How the built-in list layouts are implemented depends on whether the list uses an array or binds to
a data model:

Array: In the activity, when assigning an ArrayAdapter to the ListAdapter, pass the
built-in row view type as a parameter (see Listing 5-9):

ListAdapter = new ArrayAdapter<String>(this,
Android.Resource.layout.SimpleListItem1, listItems);

Data Model: In the adapter, when binding a data model and passing a ListView into
an activity, set the built-in view in the GetView method by specifying the layout in the
Inflate method (see Listing 5-11):

view = context.LayoutInflater.Inflate(
Android.Resource.layout.SimpleListItem1, null);

Customize the chosen view in the adapter by setting the view’s properties on the built-in controls: Text1 and
Text2 for text strings, and Icon for an image. Use only properties that apply to the built-in view or an error
will be thrown. For example:

view.FindViewById<TextView>(Android.Resource.Id.Text1).Text
itemList[position].Title;

view.FindViewById<TextView>(Android.Resource.Id.Text2).Text
itemList[position].Description;

view.FindViewById<ImageView>(Android.Resource.Id.Icon).

SetImageResource(itemList[position].ImageResourceld);

Here are the rest of the 12 built-in row views that are members of Android.Resource.Layout :

ActivitylistItem: Image and title

TestListItem: Small title only

SimpleSelectablelistItem: Title only supporting single or multiple selection
SimplelistItemActivated1: Title only where background color indicates selection

SimplelistItemActivated2: Alarge title and smaller description where background
color indicates selection

SimplelListItemChecked: Title only with checkmark selection

SimplelListItemMultipleChoice: Title only with checkmark selection of
multiple items

SimplelListItemSingleChoice: Title only with radio button selection of a single item

SimpleExpandablelistItem: Titles arranged in expandable groups

187

CHAPTER 5 MAKING A SCROLLABLE LIST

Customizing List Rows

If none of the 12 built-in list row views suits your needs, it’s time to create a custom list row view.

For this you will use the second method for creating Android ListViews: layout XML. This approach is
considerably different than the previous ListActivity approach. It requires two XML layouts, one for the
list page and the other for the row layout. An Activity is used instead of a ListActivity.

Create the main XML layout using an Android designer and call it HomeLayout.axml, as shown in
Listing 5-13. It should contain a TextView called headerText and a ListView called 1istItems. Place the
name of the list in headerText’s text property, here it’s called "My Items".

Listing 5-13. Layout Containing the ListView in HomeLayout.axml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:text="My Items"
android:textAppearance="?android:attr/textAppearancelarge"”
android:layout_width="match_parent"”
android:layout_height="wrap_content"
android:id="@+id/headerText" />
<ListView
android:minWidth="25px"
android:minHeight="25px"
android:layout_width="match_parent"”
android:layout_height="wrap_content"
android:id="@+id/listItems" />
</Linearlayout>

Now create another XML layout file that contains the custom row layout and name it CustomLayout.axml,
as shown in Listing 5-14. Remove the default LinearLayout. Add a Relativelayout with a LinearLayout
nested within it. Add two TextViews, one named title and the other named description. Set the
background color of the Relativelayout to white and the textColor of the TextViews to black.

Listing 5-14. Custom List Row in CustomLayout.axml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:background="#FFFFFF"
android:padding="8dp">
<LinearlLayout
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:minWidth="25px"
android:minHeight="25px">

188

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

<TextView

android:
android:
android:
android:
android:
android:

<TextView

android:
android:
android:
android:
android:
android:

</Linearlayout>
</Relativelayout>

CHAPTER 5 MAKING A SCROLLABLE LIST

text="Large Text"
textAppearance="?android:attr/textAppearancelarge"
layout_width="match_parent"
layout_height="wrap_content"

textColor="#000000"

id="@+id/title" />

text="Small Text"
textAppearance="?android:attr/textAppearanceSmall"
layout_width="match_parent"

layout_height="wrap content"

textColor="#000000"

id="@+id/description" />

Create a new Adapter called ListCustomAdapter that’s based on the previous ListViewAdapter
(see Listing 5-11). In the GetView method, assign the CustomLayout layout using Inflate.

view = context.lLayoutInflater.Inflate(Resource.Layout.CustomLayout, null);

Create a new main activity based on MainActivity (see Listing 5-12), but inherit from Activity instead
of ListActivity and name it MainCustomListActivity. Remove the ListAdapter assignment. Create a
listView variable of type ListView to hold the home layout.

ListView listView;

In the OnCreate method, use the SetContentView method to assign the XML HomeLayout screen as the main
layout, and locate the 1listItems ListView in the XML layout using FindViewById.

SetContentView(Resource.Layout.HomeLayout);
listView = FindViewById<ListView>(Resource.Id.listItems);
listView.Adapter = new ListCustomAdapter(this, listItems);

Now we have a customizable home layout and list row layout! See Figure 5-18.

My ltems

First

1st item

Second

2nd item

Third

3rd item

Figure 5-18. Customized list

189

CHAPTER 5 MAKING A SCROLLABLE LIST

Tip Add any controls you need to the main screen and list rows, including images, binding them to
properties in your data model.

Selecting an Item in a Customized Row

When the user selects a row on a customized layout, the click event works differently in the Activity than it
did in the ListActivity. Delegate an event to handle the click.

listView.ItemClick += OnListItemClick;
Then handle the event with a non-overridden method that uses e for passing variables.

void OnListItemClick(object sender, AdapterView.ItemClickEventArgs e)
{
String SelectedItem = listItems[e.Position].Title;
Android.Widget.Toast.MakeText(this,
SelectedItem, Android.Widget.ToastLength.Short).Show();

}

This will display a toast when the item is tapped.

Note When a row is touched it should be highlighted for user feedback. When a custom view specifies a
background color as CustomLayout.axml does, it also overrides the selection highlight, resulting in no visible
highlight. This is a side-effect of Android ListView row customization and the solution for it is beyond the scope
of this book.

CODE COMPLETE: Customizing List Rows

Listings 5-15 and 5-16 show the complete activity and adapter for creating custom list rows, from the
ListViewExamplesAndroid solution.

Listing 5-15. Customizing a List in MainCustomListActivity.cs

public class MainCustomListActivity : Activity

{

List<ListItem> listItems;
ListView listView;

190

CHAPTER 5 MAKING A SCROLLABLE LIST

protected override void OnCreate(Bundle bundle)

{
base.OnCreate(bundle);
listItems = new List<ListItem> {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}
};
SetContentView(Resource.Layout.HomeLayout);
listView = FindViewById<ListView>(Resource.Id.listItems);
listView.Adapter = new ListCustomAdapter(this, listItems);
listView.ItemClick += OnListItemClick;
}

void OnListItemClick(object sender, AdapterView.ItemClickEventArgs e)

{
String SelectedItem = listItems[e.Position].Title;

Android.Widget.Toast.MakeText(this, SelectedItem, Android.Widget.ToastLength.
Short). Show();

}

Listing 5-16. ListCustomAdapter.cs

public class ListCustomAdapter : BaseAdapter
{

private List<lListItem> itemList;
private Activity context;

public ListCustomAdapter(Activity context, List<ListItem> items)

: base()
{
this.context = context;
this.itemlList = items;
}
public override int Count
{
get { return itemList.Count; }
}
public override Java.lang.Object GetItem(int position)
{
throw new NotImplementedException();
}

191

CHAPTER 5 MAKING A SCROLLABLE LIST

public override long GetItemId(int position)

{
return position;
}
public override View GetView(int position, View convertView, ViewGroup parent)
{
View view = convertView;
if (view == null)
{
view = context.LayoutInflater.Inflate(Resource.Layout.CustomLayout, null);
}
view.FindViewById<TextView>(Resource.Id.title).Text =
itemList[position].Title;
view.FindViewById<TextView>(Resource.Id.description).Text =
itemList[position].Description;
return view;
}
}
Grouping Headers

Long lists sometimes require group headers so items can be located with ease.

There is no built-in approach for creating a list in Android with group headers. They must be coded by
hand by using a custom adapter and changing the GetView method to return group headers in addition to
the usual list rows. Android adapters identify rows using the index position in the list, leaving it up to the
developer as to how and when to change the cell type to a group header based on this index.

Note There are a number of different options for group list header data structures, including Dictionaries,
Lists, Collections, and Classes.

Add a Boolean IsGroupHeader indicator to ListItem.cs that will be true only if the item is a group header.

public class ListItem

{
public string Title { get; set; }
public string Description { get; set; }
public Boolean IsGroupHeader { get; set; }
}

Group headings will go into the Title property, intermingled with the other list item titles. Yes, it’s
denormalizing the data but it keeps the code simple and performance is key. Listing 5-17 shows the model
population that happens in the activity’s OnCreate method.

192

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-17. List Group Headers in MainActivityGrouped.cs

listItems = new List<ListItem> {

new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new

};

ListItem {Title

ListItem {Title =

ListItem {Title

ListItem {Title =

ListItem {Title
ListItem {Title

ListItem {Title =

ListItem {Title

ListItem {Title =

ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title
ListItem {Title

"Important”, Description="", IsGroupHeader=true},

"First", Description="1st item", IsGroupHeader=false},

"Less Important”, Description="", IsGroupHeader=true},
"Second", Description="2nd item", IsGroupHeader=false},
"Third", Description="3rd item", IsGroupHeader=false},
"Fourth", Description="4th item", IsGroupHeader=false},
"Fifth", Description="5th item", IsGroupHeader=false},

"Not Important", Description="", IsGroupHeader=true},
"Sixth", Description="6th item" , IsGroupHeader=false},
"Seventh", Description="7th item", IsGroupHeader=false},
"Eighth", Description="8th item", IsGroupHeader=false},
"Ninth", Description="9th item", IsGroupHeader=false},
"Tenth", Description="10th item", IsGroupHeader=false},
"Trivial", Description="", IsGroupHeader=true},

"Eleventh", Description="11th item", IsGroupHeader=false},
"Twelfth", Description="12th item", IsGroupHeader=false},
"Thirteenth", Description="13th item", IsCGroupHeader=false},
"Fourteenth", Description="14th item", IsGroupHeader=false},
"Fifteenth", Description="15th item" , IsGroupHeader=false},
"Sixteenth", Description="16th item", IsGroupHeader=false},
"Seventeenth", Description="17th item", IsGroupHeader=false},
"Eighteenth", Description="18th item", IsGroupHeader=false}

Tip When you create and collate lists from live data, you'll need to use loops or LINQ.

Assign the data model to the ListAdapter property of the ListActivity using a custom group adapter
called ListGroupAdapter, which you'll build in just a sec.

List

Adapter =

new ListGroupAdapter(this, listItems);

Let’s now create the custom group adapter called ListGroupAdapter. Create a new adapter identical to
Listing 5-16 in the previous example. In the getView method, use the ListItem.IsGroupHeader property to
determine the style of the row: group header or list item (see Listing 5-18).

Listing 5-18. List Group Adapter in ListGroupAdapter.cs

public override View getView(int position, View convertView, ViewGroup parent)

{

View view;

if (itemList[position].IsGroupHeader) // group header view

{

view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, null);
view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = itemList[position].Title;

}

193

CHAPTER 5 MAKING A SCROLLABLE LIST

else // list item view

{
view = context.layoutInflater.Inflate(Android.Resource.Layout.SimpleListItem2, null);
view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = itemList[position]
.Title;
view.FindViewById<TextView>(Android.Resource.Id.Text2).Text =
itemList[position].Description;

}

return view;

}

This gives us a grouped list (Figure 5-19).

Important

First

1s
Less Important

Second

2nd item

Third

3rd item

Fourth

4th item

Fifth

5th item

Not Important

Sixth

Rth item

Figure 5-19. Grouped list using conditional logic in GetView

For demonstration purposes, this group header example uses simple built-in row styles, which are difficult
to tell apart from the list item rows. Group headers look their best when the rows are customized, providing
control over font, font size, color, and background. The sky is the limit with the design of rows that have been
customized.

194

CHAPTER 5 MAKING A SCROLLABLE LIST

Note This group header example does not employ cell reuse and is not optimized for performance. Doing
a null cell check with lists containing group headers requires the determination of the row style of the recycled
view (group header or row item). This must be done by hand and is beyond the scope of this book.

Tip Expandable group headers are created using SimpleExpandableListItem, the built-in row list view.
This requires using the Activity class ExpandableListActivity and the Adapter class
BaseExpandableListAdapter. See the Xamarin GitHub example called BuiltInExpandableViews.

Those are the salient points about Android ListView. Now we’ll examine the main list class on iOS, called
UITableView.

i0S UlTableView

Lists in iOS are created using the UITableView control bound to an array or a data model. UITableView
provides groupings, headers, footers, images, and indexes. Each list requires a UITableView for the view,
an adapter subclassed from UITableSource and assigned to the UITableView. Source property, and a data
source, such as an array or data model.

Binding to an Array of Strings
Bind UITableView to an array of strings to create a list.

Create a new file of type iPhone View Controller called ListArrayViewController.cs. In this file,
instantiate UITableView and add it to a view in the ViewDidLoad method of the ViewController.

public override void ViewDidLoad()

{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
Add (table);

}

For the adapter, create a new empty class called ListSourceFromArray.cs, subclass it from
UITableViewSource, create a constructor, and override the RowsInSection and GetCell methods. Create an
array of strings called 1istItems to bind to the list’s TextLabel.Text property. The RowsInSection method
returns the length of the entire list, as shown in Listing 5-19.

195

https://github.com/xamarin/monodroid-samples/tree/master/BuiltInViews/BuiltInExpandableViews

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-19. Using the Adapter Pattern, Subclass UITableViewSource to Create ListSourceFromArray.cs

using System;
using Foundation;
using UIKit;

public class ListSourceFromArray : UITableViewSource

{
protected string[] listItems;
protected string CellId= "TableCell";
public ListSourceFromArray(string[] items)
{
listItems = items;
}
public override nint RowsInSection (UITableView tableview, nint section)
{
return listItems.Length;
}
public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)
{
UITableViewCell cell = tableView.DequeueReusableCell (Cellld);
if (cell == null) cell = new UITableViewCell (UITableViewCellStyle.Default, Cellld);
cell.TextlLabel.Text = listItems[indexPath.Row];
return cell;
}
}

Cell reuse in GetCell improves performance, thereby making scrolling faster with fewer skipped frames.
As each row is retrieved, the DequeueReusableCell method checks to see if a cell (memory location for a
row) already exists for that CellId. If it comes back null then instantiate a new cell, otherwise use it. When
a list is scrolled, this method is called to create more rows to display on the screen, recycling cells when
possible. Type NSIndexPath comes from the Foundation library in the using.

Note There are two ways to handle list row cell reuse in i0S: this older null cell check method and
the new way (i0S 6+). I've begun with the old way because it’s simpler to demonstrate, works great with the
built-in row styles, and is backward-compatible with older i0S versions. If you're targeting iOS 6+ and using
customized row-styled lists, consider using the new table and cell reuse implementation explained in the
“Optimizing Performance” section later in the chapter.

Finally, populate the data source. In the ViewController’s ViewDidLoad method, create an array of
strings and pass it into the constructor for ListSourceFromArray, and assign the new adapter to the
Source property on the table. This binds the array to the UITableView. Add the completed table to your
ViewController (Listing 5-20).

196

CHAPTER 5 MAKING A SCROLLABLE LIST

Listing 5-20. Creating a UlTableView in ListArrayViewController.cs in the iOSListExample Solution

public override void ViewDidLoad()

{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
string[] tableItems = new string[] {"First","Second","Third","Fourth","Fifth"};
table.Source = new ListSourceFromArray(tableItems);
Add (table);
}

This will display your list (Figure 5-20).

First
Second
Third
Fourth

Fifth
Figure 5-20. UlTableView list
Selecting an Item

Selection of a list item is handled by overriding the RowSelected event in the UITableViewSource subclass,
as shown in Listing 5-21.

Listing 5-21. Handling a Row Selection in ListSourceFromArray.cs

public override void RowSelected (UITableView tableView, NSIndexPath indexPath)

{
new UIAlertView("Row Selected", listItems [indexPath.Row],
null, "OK", null).Show();
tableView.DeselectRow (indexPath, true);

}

indexPath denotes the index of the row. DeselectRow removes the highlight from the selected row. Figure 5-21
shows the UIAlertView displaying the selected row.

197

CHAPTER 5 MAKING A SCROLLABLE LIST

Row Selected

Second

OK

Figure 5-21. UlAlertView with the second item selected

Multiple Selection

Multiple row selection is achieved by setting UITableView’s AllowsMultipleSelection or
AllowsMultipleSelectionDuringEditing properties to true.

tableView.AllowsMultipleSelection = true;
Retrieve the results in the IndexPathsForSelectedRows property.
Binding to a Data Model
i0S
i0OS UITableView data binding requires an adapter subclassed from UITableViewSource to bind the model to

the list. This is similar to the approach used in Listing 5-19 to bind a string array to the list with the addition
of a data model.

198

CHAPTER 5 MAKING A SCROLLABLE LIST

Create a list from a data model in three steps:
1. Data Model: Create a data model containing the list items.

2. Adapter: Create a list item adapter subclassed from UITableViewSource to specify
which fields in the data model to display in the list and manage row cell reuse.

3. View Controller: Create a UIViewController to display the list. Instantiate the
table to house the list. Populate the data model and then pass it into the list
adapter constructor. Assign the resulting adapter to the Source property of the
UIViewController.

Let’s do each step.

Data Model

Create a custom data model containing list items in a separate class file called ListItem.cs (Listing 5-22).

Listing 5-22. Data Model in ListItem.cs.

public class ListItem

{
public string Title { get; set; }
public string Description { get; set; }

Adapter

To create an adapter, create a plain class called ListSourceFromModel.cs (see Listing 5-23), inherit from
UITableViewSource, then override RowsInSection and GetCell. Declare a private copy of the data model
List, called itemList. Create a constructor that receives the populated data model as a parameter. This
code is almost identical to the previous example in Listing 5-19, which binds an array, so I've bolded the
differences for specifying a data model.

Listing 5-23. UlTableViewSource Subclass in ListSourceFromModel.cs

using System;
using System.Collections.Generic;
using Foundation;
using UIKit;

namespace iOSListExample

{

public class ListSourceFromModel : UITableViewSource

{
protected List<ListItem» listItems;
protected string Cellld= "TableCell";

public ListSourceFromModel (List<ListItem> items)

{
}

listItems = items;

199

CHAPTER 5 MAKING A SCROLLABLE LIST

public override nint RowsInSection (UITableView tableview, nint section)

{
}

public override UITableViewCell GetCell (UITableView tableView,
NSIndexPath indexPath)

return listItems.Count;

{
UITableViewCell cell = tableView.DequeueReusableCell (Cellld);
if (cell == null) cell = new UITableViewCell (UITableViewCellStyle.
Default,Cellld);
cell.TextLabel.Text = listItems[indexPath.Row].Title;
return cell;
}

}

The Title property of 1istItems is assigned to the Text property of the built-in TextLabel on the
UITableViewCell,using the built-in list row view UITableViewCellStyle.Default.

GetCell is the operative method here, creating individual list rows, each as a UITableViewCell, and
returning them to the UITableView. Cells are reused when possible using DequeueReusableCell. Ireuse for
performance reasons although the null cell check is an older implementation used here for simplicity and
backward compatibility. You'll read about the newer cell reuse approach used in iOS 6+ in the “Optimizing
Performance” section later in this chapter.

View Controller

In a UIViewController, the data model can be bound to the list using the adapter. Create a new file of type
iPhone View Controller called ListModelViewController.cs. In the UIViewController's ViewDidlLoad
method, declare 1istItems as data type List<ListItem>, declare table as a UITableView, and then populate
the data model and pass it into ListSourceFromModel’s constructor. Assign the resulting adapter to the
UITableView.Source property. Add the UITableView as a subview using the Add method (an alias for
AddSubView). Listing 5-24 shows the complete view controller.

Listing 5-24. View Controller in ListModelViewController.cs

using System;
using System.Collections.Generic;
using Foundation;
using UIKit;

namespace iOSListExample

{

public partial class ListModelViewController : UIViewController

{

public ListModelViewController () : base ("ListModelViewController", null)

{
}

List<ListItem> listItems;

200

CHAPTER 5 MAKING A SCROLLABLE LIST

public override void ViewDidLoad()

{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
listItems = new List<ListItem> {
new ListItem {Title = "First", Description="1st item"} ,
new ListItem {Title = "Second", Description="2nd item"} ,
new ListItem {Title = "Third", Description="3rd item"}
b
table.Source = new ListSourceFromModel(listItems);
Add (table);
}

}
This will display the list from the data-bound model (Figure 5-22).
First
Second

Third

Figure 5-22. Data-bound list using UlTableView

Note This is a simplified, static data example for demonstration purposes only. In the real world you might
populate a sorted data model using LINQ or a loop.

Using Built-in Row Views

The three most common built-in row styles in UITableView are Default, Subtitle, and Valuel.

Figure 5-23 shows the Default row style.

First
Second

Third

Figure 5-23. Default row style with title only

201

CHAPTER 5 MAKING A SCROLLABLE LIST

Figure 5-24 shows the Subtitle row style.

First

1st item

Second
2nd item

Third

3rd item

Figure 5-24. Subtitle row style with title and description

Figure 5-25 shows the Valuel row style.

First 1stitem
Second 2nd item
Third 3rd item

Figure 5-25. Valuel row style with title and right-justified description

Tip All three of these styles support images as well as text.

These styles are configured in the UITableViewSource adapter when a cell is instantiated in the GetCell
method (from ListSourceStyles.cs in the downloadable examples).

cell = new UITableViewCell (UITableViewCellStyle.Default, cellldentifier);
Text fields and images are also assigned in the GetCell method.

cell.TextlLabel.Text = listItems[indexPath.Row].Title;

cell.DetailTextLabel.Text = listItems[indexPath.Row].Description;

cell.ImageView.Image = UIImage.FromFile("Images/" + listItems[indexPath.Row].ImageName);

An ImageName string field must be added to the ListItems data model and populated in order to support images.

Tip Be careful not to assign to a property that is not present for a particular built-in row type or the
compiler will throw an error.

Note There is a fourth built-in row type called vValue2 with a right-justified title and left-justified detail
label. | recommend against its use because it is difficult to read.

202

CHAPTER 5 MAKING A SCROLLABLE LIST

Cell Separators
The thin line separating rows has several styles and can be turned off using the UITableView
SeparatorStyle property. Color can also be set using the SeparatorColor property.

table.SeparatorColor = UIColor.Blue;
table.SeparatorStyle = UITableViewCellSeparatorStyle.DoubleLineEtched;

These are the four SeparatorStyle settings:
e None: Turn off the separator line
e SingleLine: Default single line
o SingleLineEtched: Grouped-style line made up of two colors

e DoubleLineEtched: Grouped-style thick line made up of two colors

Note The SingleLineEtched and DoubleLineEtched styles only work with UITableStyle.Grouped.

Use the None SeparatorStyle to remove the separators (Figure 5-26).

table.SeparatorStyle = UITableViewCellSeparatorStyle.None;

First

Second

Third

Fourth

Fifth

Figure 5-26. No separators with the None SeparatorStyle

203

CHAPTER 5 MAKING A SCROLLABLE LIST

Customizing List Rows

List rows can be customized by subclassing UITableViewCell and implementing the custom cell in your
adapter’s GetCell method.

Create a new class called CustomCell. cs, as shown in Listing 5-25. Inherit from UITableViewCell and
implement these three methods:

e (Constructor: Create the controls, set their properties, and add them as subviews to
the cell

e UpdateCell: Called by UITableViewSource.GetCell to set cell properties, such as
title and description

e LayoutSubviews: Called automatically to set the location of the controls

Listing 5-25. A Custom UlTableViewCell in Customcell.cs
public class CustomCell : UITableViewCell {

UILabel titlelabel, descriptionlLabel;

public CustomCell (NSString cellld) : base (UITableViewCellStyle.Default, cellld)

{
SelectionStyle = UITableViewCellSelectionStyle.Gray;
ContentView.BackgroundColor = UIColor.FromRGB (27, 16, 117);
titleLabel = new UILabel ()
{
Font = UIFont.FromName("Helvetica-Bold", 25f),
TextColor = UIColor.White,
BackgroundColor = UIColor.Clear
s
descriptionlabel = new UILabel ()
{
Font = UIFont.FromName("Helvetica-Light", 12f),
TextColor = UIColor.FromRGB (179, 179, 186),
TextAlignment = UITextAlignment.Center,
BackgroundColor = UIColor.Clear
b
ContentView.AddSubviews (new UIView[] { titlelLabel, descriptionLabel });
}
public void UpdateCell (string title, string description)
{
titlelabel.Text = title;
descriptionlLabel.Text = description;
}

204

CHAPTER 5 MAKING A SCROLLABLE LIST

public override void LayoutSubviews ()

{
base.LayoutSubviews ();
titleLabel.Frame = new RectangleF(5, 4, (float)ContentView.Bounds.Width - 63, 25);
descriptionLabel.Frame = new RectangleF(100, 18, 100, 20);

}

}

This custom UITableViewCell sports the usual title and description labels with customized fonts and
colors, as well as a blue background for the entire list.

Tip UITableviewCellSelectionStyle indicates the background color of the selected rows:
Default (Blue),Blue, Gray, Or None.

Tip LayoutSubviews can be made to customize control location depending on the cell

Tip Don’t forget the references using Foundation and using UIKit.

Create a new adapter subclassed from UITableViewSource, which is virtually identical to the previous
data-bound adapter shown in Listing 5-23. Here is the new GetCell implementation that instantiates your
CustomCell (see Listing 5-26) with differences from the previous adapter in bold.

Listing 5-26. GetCell Method from ListSourceFromCustomCell.cs

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)
{
var cell = tableView.DequeueReusableCell (Cellld) as CustomCell;
if (cell == null)
cell = new CustomCell ((NSString)Cellld);
cell.UpdateCell (listItems [indexPath.Row].Title
» listItems [indexPath.Row].Description);
return cell;

}

Note the call to UpdateCell which we implemented in our custom UITableViewCell. It updates visible
properties in the cell.

Figure 5-27 shows the customized list rows.

Figure 5-27. A UlTableView with custom cells by subclassing UlTableViewCell

205

CHAPTER 5 MAKING A SCROLLABLE LIST

Tip Images can be added to a custom cell using UIImageView.

Grouping Headers

Items can be grouped under headers using the TitleForHeader and TitleForFooter methods in the
UITableViewSource adapter.

Group titles must first be created. One way to do it is to make a data model that is a collection of groups; each
of which contains collections of data items. This is a collection of collections with the group header fields
defined within each group collection.

Create a group class that contains the group-by key and a collection for the items (Listing 5-27).

Listing 5-27. Group Data Model in Group.cs

public class Group : List<ListItem>

{
public String Key { get; private set; }
public Group(String key, List<ListItem> items)
{
Key = key;
foreach (var item in items)
this.Add(item);
}
}

In your ViewController, hydrate the model. Populate each ListItem and assign them to the master group.
Create as many groups as you need with corresponding keys and their contained items. In this example
there are two groups, with keys named “Important” and “Less Important”.

List<Group> itemsGrouped;

public override void ViewDidLoad()
{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
itemsGrouped = new List<Group> {
new Group ("Important", new List<ListItem> {
new ListItem {Title = "First", Description="1st item"} ,
new ListItem {Title = "Second", Description="2nd item"} ,

1),

new Group ("Less Important", new List<ListItem>{
new ListItem {Title = "Third", Description="3rd item"}
)

}s

206

CHAPTER 5 MAKING A SCROLLABLE LIST

table.Source = new ListSourceFromModelGrouped(itemsGrouped);
Add (table);

}

To create headers in your UITableViewSource, override the TitleForHeader method and return the string
value relevant to each group.

public override string TitleForHeader (UITableView tableView, int section)

{
}

return group[section];

The rest of the UITableViewSource code is shown in Listing 5-28.

Note The iOS API refers to groups as sections.

Figure 5-28 shows the group headers returned by TitleForHeader.

Important

First
Second

Less Important
Third

Figure 5-28. Group headers

For footers, override the TitleForFooter method and return the string value relevant to the group.

public override string TitleForFooter (UITableView tableView, int section)

{
}

return indexedTableItems[keys[section]].Count + " items";

Let’s add group footers returned by TitleForFooter.

Figure 5-29 shows headers and footers together.

207

CHAPTER 5 MAKING A SCROLLABLE LIST

(()

Carrier ¥ 8:37 PM -

Important

First
Second

2 items
Less Important

Third

1 items

- =

Figure 5-29. Group headers and footers

Tip Consider using the Grouped table style when using headers and footers, explained later in the chapter
in the “Highlighting Groups Using Table Styles” section. It puts more graphical emphasis on the groupings than
the default P1ain table style.

208

CHAPTER 5 MAKING A SCROLLABLE LIST

CODE COMPLETE: Grouping Adapter

This is the adapter for grouping headers and footers, inherited from UITableViewSource (Listing 5-28).

Listing 5-28. Data Source for Headers and Footers in ListSourceFromModelGrouped.cs

public class ListSourceFromModelGrouped : UITableViewSource

{
List<Group> groups;
protected string cellld= "TableCell";

public ListSourceFromModelGrouped (List<Group> items)

{

groups = items;

public override nint NumberOfSections (UITableView tableView)

{

return groups.Count;
}
public override nint RowsInSection (UITableView tableview, nint section)
{

List<ListItem> list = groups [(int)section];

return list.Count;
}
public override string TitleForHeader (UITableView tableView, nint section)
{

return groups[(int)section].Key;
}
public override string TitleForFooter (UITableView tableView, nint section)
{

List<ListItem> list = groups [(int)section];

return list.Count + " items";
}
public override void RowSelected (UITableView tableView, NSIndexPath indexPath)
{

List<ListItem> list = groups [indexPath.Section];

new UIAlertView("Row Selected"

, list[indexPath.Row].Title
, null, "OK", null).Show();

tableView.DeselectRow (indexPath, true);

}

209

CHAPTER 5 MAKING A SCROLLABLE LIST

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)

{
UITableViewCell cell = tableView.DequeueReusableCell (cellld);
List<ListItem> list = groups [indexPath.Section];
ListItem item = list[indexPath.Row];
if (cell == null)
{ cell = new UITableViewCell (UITableViewCellStyle.Default, cellld); }
cell.TextlLabel.Text = item.Title;
return cell;
}

Tip Group headers and footers can be further customized by using the GetViewForHeader and
GetViewForFooter method overrides on UITableViewSource

CODE COMPLETE: Grouping View Controller

Listing 5-29 shows the UIViewController, which implements ListSourceFromModelGrouped to create a
UITableView with grouped headers and footers.

Listing 5-29. Implement Grouped Headers and Footers in ListModelGroupedViewController.cs

public partial class ListModelGroupedViewController : UIViewController
{

public ListModelGroupedViewController ()

{

}

List<Group> itemsGrouped;

public override void ViewDidLoad()
{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
itemsGrouped = new List<Group> {
new Group ("Important”, new List<ListItem> {
new ListItem {Title = "First", Description="1st item"} ,
new ListItem {Title = "Second", Description="2nd item"} ,
)
new Group ("Less Important", new List<ListItem>{
new ListItem {Title = "Third", Description="3rd item"}
1)

};

210

CHAPTER 5 MAKING A SCROLLABLE LIST

table.Source = new ListSourceFromModelGrouped(itemsGrouped);
Add (table);

Highlighting Groups Using Table Styles

Groups can be accentuated visually using the Grouped table style.

There are two table styles that can be set upon the instantiation of the UITableView: Plain and
Grouped. Plain is the default style used throughout these examples. The Grouped style causes the list to
contain more heavily shaded and bounded areas around the list items (Figure 5-30) and is set like this:

UITableView table = new UITableView(View.Bounds,
UITableViewStyle.Grouped);

Figure 5-30 shows the heavier Grouped style.

IMPORTANT

First

Second

2 items

LESS IMPORTANT
Third

1 items

Figure 5-30. Grouped table style

Figure 5-31 shows the lighter P1ain style.

211

CHAPTER 5 MAKING A SCROLLABLE LIST

Important
First
Second

2 items
Less Important

Third

1 items

Figure 5-31. Plain table style

Accessorizing List Rows

Accessories are simple icons that enhance list rows. There are four accessory list row types: Checkmazrk,
DisclosureIndicator, DetailButton, and DetailDisclosureButton. The following example is a plain list of
ungrouped items.

Checkmark can indicate the selection of the row (Figure 5-32).

First v
Second v
Third v

Figure 5-32. Checkmark accessory

DisclosureIndicator is a right arrow that typically indicates the row can be tapped (Figure 5-33).

First
Second

Third

Figure 5-33. Disclosurelndicator accessory

212

CHAPTER 5 MAKING A SCROLLABLE LIST

DetailButton is a tappable info button for additional functionality, which is different than tapping the row
(Figure 5-34).

First 0
Second (i)
Third (i)

Figure 5-34. DetailButton accessory

DetailDisclosureButton is a tappable info/right arrow button for additional functionality, which is
different than tapping the row (Figure 5-35).

First O)
Second O
Third O

Figure 5-35. DetailDisclosureButton accessory

Tip If you want the user to multi-select rows, first consider using the UITableView’s
AllowsMultipleSelection property described earlier in the “Multiple Selection” section, as that approach
has a full multiple selection functionality baked in.

Specify accessories in the GetCell method of the UITableViewSource.
cell.Accessory = UITableViewCellAccessory.Checkmark;

Clear the accessory for a particular cell using UITableViewCellAccessory.None. This can be useful for
unchecking a row.

cell.Accessory = UITableViewCellAccessory.None;

Tip Store row accessory state in your data model, not in the view, and use GetCell only for keeping your
view in sync with the data model.

213

CHAPTER 5 MAKING A SCROLLABLE LIST

Selecting an Accessory

When aDetailButton or DetailDisclosureButton is tapped, handle the event in the UITableViewSource
by overriding AccessoryButtonTapped.

public override void AccessoryButtonTapped (UITableView tableView, NSIndexPath indexPath)

{
new UIAlertView("Detail Button Tapped"

, listItems[indexPath.Row].Title , null, "OK", null).Show();
}

Accessory examples can be found in ListSourceStyles.cs in the downloadable code.

Optimizing Performance

As always, when building a list adapter, it is important to code for performance which means reusing cells
whenever possible. A cell is a memory location that holds a list row. You want cells to be recycled in memory
as rows scroll off of the screen rather than be thrown away.

A common technique used in Xamarin.iOS apps is the null cell check, like this one used in the
UITableViewSource.GetCell method in the previous examples:

if (cell == null) cell = new UITableViewCell (UITableViewCellStyle.Default, Cellld);
A new cell reuse pattern was introduced in iOS 6, doing away with the traditional null cell check. The cell

reuse examples used previously are all backward and forward compatible, but the newer technique shown
next is more efficient. This new technique is not backward compatible before iOS 6.

Note The new cell reuse pattern works best with custom cells. For built-in row styles like Default, Subtitle,
and vValuei, | recommend using the older null cell check approach. At the time of this writing there is no
straightforward way to use the newer pattern with built-in row styles.

To implement the new cell reuse approach, declare a CellId variable as a static variable at the top of your
view controller.

public static NSString Cellld = new NSString ("Cellld");

After declaring your UITableView, register the class or layout file containing the cell definition using the
UITableView methods RegisterClassForCellReuse or RegisterNibForCellReuse.

table.RegisterClassForCellReuse (typeof(CustomCell), Cellld);
Save this new UIViewController as ListModelViewControllerCellReuse.cs and change the class and

constructor name to ListModelViewControllerCellReuse. Next, make a change to your UITableViewSource
subclass.

214

CHAPTER 5 MAKING A SCROLLABLE LIST

When coding GetCell in UITableViewSource, skip the null cell check. That check is now done automatically
by DequeueReusableCell. Refer to the static CellId back in your view controller.

public override UITableViewCell GetCell (UITableView tableView,
NSIndexPath indexPath)

{
var cell = tableView.DequeueReusableCell
(ListModelViewControllerCellReuse.Cellld) as CustomCell;
cell.UpdateCell (listItems [indexPath.Row].Title
, listItems [indexPath.Row].Description);
return cell;
}

Note that the view controller class is called ListModelViewControllerCellReuse in this example.

Lastly, in your custom UITableViewCell, CustomCell.cs, replace the custom cell constructor declaration
with one that uses a pointer parameter instead of a string. Keep the rest of the constructor the same.

public CustomCell (IntPtr p):base(p)

These changes will implement the new cell reuse pattern and display the same list used in earlier
data model bindings with the custom list rows. The entire code example is available for download in
ListModelViewControllerCellReuse.cs, ListSourceFromModelCellReuse.cs, and CustomCell.cs.

An Alternative Approach to Lists: UITableViewController

The UIViewController, UITableView, and UITableViewSource classes are combined into a single class
called UITableViewController. This table mega-class handles display and data logic in a single class, with
many of the techniques familiar to developers such as GetCell. Developers disagree about the usefulness
of this class. Many use it without difficulty or complaint, while others are bothered by the violation of
Separation of Concerns (SOC), the unwieldiness of the class, and several minor design limitations over the
older, more modular approach. A UITableViewController can be used to create scrolling lists with all of the
features demonstrated in this chapter.

Summary

In mobile development, lists are the new data grid.

List views are bound to arrays, Lists, or data models and allow scrolling when there are more items than will
fit on the screen. They usually contain text string rows but some contain images or entire layouts of controls.

Selection can be accomplished with a single row or multiple rows. Multiple-row selection must be done by
hand in Xamarin.Forms. In Android, you can use ChoiceMode and iOS provides accessories like Checkmazrk.

Cell reuse is a common theme in performant lists and involves the economic use of already populated list
rows whenever possible. In Xamarin.Forms, this is built-in but is manually coded in Android and iOS.

Grouping is often required for long lists, with grouping headings to help guide a user to find what they're
looking for.

215

CHAPTER 5 MAKING A SCROLLABLE LIST

Built-in list row views give you layout options without having to build them from scratch. These provide a
range of control layouts for list rows providing titles, descriptions, and images as well as accessories such as
checkboxes and radio buttons.

Custom list rows provide versatility at the risk of slower performance. Beware when creating these, as there
are often performance trade-offs. Test for performance and follow the rules of performant customization for
each platform when using long lists.

Lists help us navigate an app. Let’s now explore other types of navigation in Chapter 6.

216

http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 6

Navigation

Navigation gives users what they need to get around an app quickly, moving from screen to screen with
confidence and ease. This may include menus, tappable icons, buttons, tabs, and list items, as well as many
types of gesture-sensitive screens to display data, information, and options to the user.

Navigation Patterns

Navigation patterns are industry-standard templates for tying an app’s screens together in an elegant and
usable way. The two most common visual design patterns in mobile navigation are hierarchical and modal.
An entire family of derivative patterns combine, enhance, and decorate these base navigation patterns

to create the full range of mobile UI patterns. Here is an exhaustive list of the most common mobile Ul
navigation patterns used in Xamarin development:

e Hierarchical: A stack-based navigation pattern enabling users to move deeper into
a screen hierarchy and then back out again, one screen at a time, by using the Up or
Back buttons.

e Modal: A screen that interrupts hierarchical navigation, often a pop-up screen with
an alert or menu that the user can complete or cancel.

e Drill-down list: Alist of tappable items selected to display item detail.

e Navigation drawer: A navigation menu that slides over from the left side at the tap
of an icon, typically three horizontal lines known as the hamburger in the upper-left
corner of the screen.

e Tabs: A bar containing several folder-like buttons at the top or bottom of the screen,
each with tappable icons or text invoking new pages.

e Springboard: Also referred to as a dashboard, this is a grid of tappable icons invoking
new pages.

e Carousel: Screen-sized panels that slide horizontally and sometimes contain
large images.

Let’s explore the two most common navigation patterns, hierarchical and modal.

217

CHAPTER 6 © NAVIGATION

Hierarchical

Hierarchical is a stack-based pattern that allows users to move down into a stack of screens and then

pop back out again, one screen at a time. This pattern typically uses a toolbar at the top of the screen to
display an Up button in the upper-left corner when a page is selected or “drilled down into” by any means.
As the user drills deeper into the menu structure, a stack is maintained, with each page pushed onto it.

Two buttons—the Back and the Up button—are used in tandem to navigate backward, popping pages off
the stack. The Back button is the curved arrow icon at the bottom of the screen (iOS doesn’t have one).

The Up button is the less-than icon in the upper-left corner. Deep navigational stacks can be traversed in this
manner, with page selection requiring the use of additional UI navigation patterns such as the navigation
drawer, drill-down list, or pop-up menu.

Modal

A modal is a single, interruptive pop-up or screen that comes in two flavors. The most common type floats
on top of the main page and is usually an alert, dialog box, or menu that the user can respond to or cancel.
Navigation reverts back to the originating page when the modal is dismissed. A modal informs users of an
important event, such as a saved record, or gives them the opportunity to provide input or direction, such as
a menu or whether to commit or cancel a transaction. The second, less common, type of modal replaces the
main page entirely, interrupting the hierarchical navigation stack.

The two most common modal menus in the mobile Ul are the navigation drawer and the action menu.

The navigation drawer typically slides in from the left and is triggered by the tapping of an icon (usually the
hamburger) in the upper-left corner of the screen and displays a list of pages to navigate to. The action menu
typically slides in or pops up on the right side of the screen, and is invoked by tapping an icon (usually three
vertical dots) in the upper-right corner of the screen and contains mostly operations (for example, Favorite
This), though less frequently some navigation pages as well. To follow this established UI pattern, remember
this rule: Nav on the left, action on the right.

Hierarchical and modal Ul navigation patterns are typically used as complementary techniques, with
hierarchical providing the skeleton of the navigational structure and modals giving the user choices for what
they want to do and where they want to go within the app as well as informational updates along the way.

In this chapter, you will explore hierarchical, modal, and the rest of the navigation patterns on each platform.
Xamarin.Forms Navigation
Xamarin.Forms provides most of the primary navigation patterns out of the box:

e Hierarchical navigation using NavigationPage

e Modal using NavigationPage, alerts, and ActionSheets

e Drill-down lists using NavigationPage, ListView, and TableView

e Navigation drawer using MasterDetailPage

e Tabs using TabbedPage

e Springboard using images with gesture recognizers

e Carousel using CarouselPage

218

CHAPTER 6 * NAVIGATION

Android Navigation

Android provides many of the primary navigation patterns out of the box:
e Hierarchical navigation using Toolbar or ActionBar
e Modal using DialogFragment, AlertDialog, and PopupMenu
e Drill-down list using ListView
e Navigation drawer using DrawerLayout

e TabsusingActionBar

iOS Navigation
iOS navigation is usually created by using designer tools, but navigation patterns can also be coded by hand.

e Hierarchical navigation using UINavigationController, the push segue, or the
PushViewController

e Modal using the modal segue, the PresentViewController, and
UIAlertAcontroller

e Drill-down list using UINavigationController
e Navigation drawer using components

e Tabsusing UITabBarController

Note The topic of Xamarin Ul navigation could fill an entire book. This chapter covers many important
navigation patterns on all platforms, exhaustively in the case of Xamarin.Forms, providing code examples when
possible as well as additional resources.

Before you dive into the patterns, one cross-cutting navigation topic needs to be addressed: state
management. As a user navigates through an app, separate screens must appear to be part of the unified
whole application, even though each screen is a separate UI with a separate controller.

State Management

State helps us maintain the illusion of consistency and continuity while the user navigates among screens,
through the sharing of data on those screens. We're no longer in the world of query strings, cookies, and
Session variables, but we must still maintain state in mobile apps. Most variables are scoped to a particular
screen, so state management usually involves the explicit passing of data back and forth between screens.
Parameter passing between screens is the encouraged method of state management on all mobile platforms,
to minimize the risk of memory abuse and to maximize app performance.

Xamarin.Forms allows us to pass parameters into a ContentPage constructor. Android uses a class called
Bundle, which is a dictionary that contains passed values, housed inside a class called Intent, which we
use to call new activities. iOS developers favor public properties on the destination view controller, but i0OS
supports passing parameters into the destination page’s constructor.

219

CHAPTER 6 © NAVIGATION

The static global class is a C# implementation of the Singleton pattern. It is available on all platforms but
must be used with caution; be mindful of mobile-device memory limitations. Disk persistence is built into
Xamarin.Forms by using the Application objects’ Properties, a dictionary using ID/object pairs.

Now that you have a way to pass values between pages, let’s begin with Xamarin.Forms navigation.

Xamarin.Forms Navigation

Navigation in Xamarin.Forms is based on the two primary navigation patterns: hierarchical and modal.

The hierarchical pattern allows the user to move down through a stack of pages, and then pop back up
through them by using the Up or Back button. This is sometimes called drill-down or breadcrumb navigation.

The modal pattern is an interruptive screen that requires a particular action from the user but can usually
be dismissed with a Cancel button. Examples include notifications, alerts, dialog boxes, and edit or new
record pages.

The most common Xamarin.Forms navigation component is NavigationPage, which is based on the
hierarchical pattern but also provides modal functionality.

XAML The XAML version of all Xamarin.Forms examples can be found at the Apress web site
(www. apress.com) or on GitHub at https://github.com/danhermes/xamarin-book-examples.
The Xamarin.Forms solution for Chapter 6 is NavigationExamples.Xaml.

Hierarchical Navigation Using NavigationPage

NavigationPage creates a first-in/last-out stack of pages. Pages can be pushed onto the stack and then
popped back off to return to the previous page. NavigationPage typically wraps the main, or home, page.
It can provide a navigation bar at the top of the screen providing a current page title, icon, and an Up (<)
button.

Figure 6-1 shows the navigation bar at the top of the screen for iOS and Android.

{ Back Hierarchical Navigation (Hierarchical Navigation

Figure 6-1. NavigationPage

The default text on the iOS up button is “Back” Windows Phone shows no navigation at the top of the screen
using NavigationPage, but the Back button will work correctly, popping pages off the stack.

Note Up and Back are different navigation buttons. Up is the less-than arrow in the top-Ileft corner of the
navigation page, and the Back button is on the bottom navigation bar provided by the OS (except in i0S).

220

http://www.apress.com/
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 6 * NAVIGATION

To use NavigationPage, in your Application class’s constructor, instantiate a NavigationPage object,
passing in the home ContentPage as a parameter, and assign it to your MainPage:

public class App : Application
public App()
{

MainPage = new NavigationPage(new HomePage());

}

As shown in Listing 6-1, create a new ContentPage called HomePage that has a label identifying itself as Home
Page and a button bringing us to the second page via the PushAsync method.

Listing 6-1. Hierarchical Navigation Home Page (in NavigationPagel.cs—See Next Tip)

class HomePage : ContentPage

{

Button homeButton;
public HomePage()

{

Title = "Hierarchical Navigation";

Label homelLabel = new Label
{

Text = "Home Page",
FontSize = 40

};

homeButton = new Button

{
};

homeButton.Clicked += async (sender, args) =>
await Navigation.PushAsync(new secondPage());

Text = "Go to Second Page"

StackLayout stacklLayout = new StackLayout

{
Children

{ homeLabel, homeButton }
};

this.Content = stacklLayout;

Tip If you're following along in the online code examples, notice that | simplified this example by renaming
NavigationPage1 to HomePage in this text to leave out the super useful but slightly off-topic drill-down
Listview home page in the downloadable code.

221

CHAPTER 6 © NAVIGATION

The home page is a simple page with your label and button, waiting to bring you to the second page, as
shown in Figure 6-2.

Home Page Home Page Home Page

Go to Second Page Go to Second Page

Figure 6-2. Home page
Listing 6-2 contains a simple ContentPage called secondPage that labels itself Second Page.

Listing 6-2. Second Page in the Hierarchy from NavigationPage2.cs

class secondPage: ContentPage

{
public secondPage()
{
Title = "Hierarchical Navigation";
Label homelLabel = new Label
{
Text = "Second Page",
FontSize = 40
b
var stackLayout = new StackLayout
{
Children = { homelLabel }
};
this.Content = stackLayout;
}
}

Now that a page is pushed onto the navigation stack, the navigation bar becomes visible, as shown in
Figure 6-3.

¢ Back Hierarchical Navigation { Hierarchical Navigation Second Page

Second Page

Figure 6-3. The second page contains a navigation bar with a Back button (except on Windows Phone)

Note that the icon in the navigation bar has been set to a blank image, as described later in the section
“Customizing the Navigation Bar

222

CHAPTER 6 * NAVIGATION

Note The navigation bar is created by NavigationPage automatically. When the Up button (<) is clicked,
the page is popped off the stack and control is returned to the previous page.

Pushing and Popping Screens on the Navigation Stack
Three methods are used to move between pages hierarchically:

e PushAsync pushes a page onto the stack and goes there:

Navigation.PushAsync(new nextPage());
A second parameter can be added to specify whether the navigation is animated:

Navigation.PushAsync(new nextPage(), bool animated);
e PopAsync pops a page off the stack and goes to the previous page:
Navigation.PopAsync();
e PopToRootAsync pops all pages off the stack and goes to the root page:

Navigation.PopToRootAsync();

Tip Two more methods, RemovePage and InsertPageBefore, which are for changing the stack without
pushing and popping.

RemovePage removes the specified page off the stack:

Navigation.RemovePage(page);
InsertPageBefore inserts a page into the stack before the specified page:

Navigation.InsertPageBefore(insertPage, beforePage);

All of these methods are generally executed inside the events of tapped icons or links, either inline, such as
on our home page in Listing 6-1:

homeButton.Clicked += async (sender, args) =>
await Navigation.PushAsync(new secondPage());

Or in delegated events:

private async void OnButtonClicked(object sender, EventArgs e)

{
}

await Navigation.PushAsync(new nextPage());

223

CHAPTER 6 © NAVIGATION

Setting the Page Title

The Page.Title property displays a title in the navigation bar:

Title = "Home";

Tip ContentPage inherits from the Page class, where a lot of the Xamarin.Forms properties discussed in
this chapter reside.

Customizing the Navigation Bar

NavigationPage has several properties accessible from any child page, all of which give access to the
navigation bar’s elements. Navigation bar properties such as Title and Icon are set in the child page and not
in the page that initiated NavigationPage. This is in keeping with native platform architectures.

In most of these Xamarin.Forms navigation examples, the icon.png file has been replaced with a blank
image, so no icon is visible. This is a lean and contemporary look. The icon.png file can also be replaced
with an appropriate graphic used to reflect the app, as shown in Figure 6-4.

n Hierarchical Navigation

Figure 6-4. The icon can be changed on the navigation bar

Tip The icon.png file is platform-specific and resides in each respective platform project. See Chapter 2
for details on images.

The navigation icon can also be set dynamically to reflect the page or user context, by using SetTitleIcon
and the Page.Icon property:

var image = "icon.png";
NavigationPage.SetTitleIcon (this, image);

Further customization of the navigation bar at the top of the screen is accomplished by using these
NavigationPage methods:

e SetHasNavigationBar shows/hides the navigation bar on the current page:
Ex. NavigationPage.SetHasNavigationBar(this, false);

e SetTitleIcon changes the title icon (Page.Icon property).

e SetHasBackButton shows/hides the Back button.

224

http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 6 * NAVIGATION

e SetBackButtonTitle changes the navigation title (the Page.Title property set on
the calling page).

e BarBackgroundColor changes the navigation bar’s color.

e BarTextColor changes the navigation bar’s text color.

Handling the Back Button

Popping pages off the stack can be accomplished by either the Up or the Back button. Up is the less-than
symbol (<) in the top-left corner of the navigation page, and the Back button is on the bottom navigation bar.

The Back button click event can be explicitly handled by overriding the page’s OnBackButtonPressed
method:

public override void OnBackButtonPressed()

{

// your code here
base.OnBackButtonPressed ();

Creating a Drop-down Menu

A drop-down menu class called ToolBarItems is built into the Page class and visible when using
NavigationPage.

Instantiate NavigationPage to invoke the toolbar ContentPage, as shown in Listing 6-3.

Listing 6-3. Drop-down Menu in DropdownMenu.cs

class DropdownMenu: ContentPage

{
public DropdownMenu()
{
ToolbarItems.Clear();
ToolbarItems.Add(new ToolbarItem {
Text = "Home",
Order = ToolbarItemOrder.Secondary,
Command = new Command(() =>
Navigation.PushAsync(new NavigationPage1()))
1;
ToolbarItems.Add(new ToolbarItem {
Text = "Second",
Order = ToolbarItemOrder.Secondary,
Command = new Command(() =>
Navigation.PushAsync(new NavigationPage2()))
D;
}
}

225

CHAPTER 6 © NAVIGATION

This creates a drop-down menu/toolbar or tab menu with the items Home and Second. Clicking either one
navigates to the respective page (see Figure 6-5). On iOS, it looks like a tab menu. On Windows Phone, it’s on
the bottom of the screen.

{ Back : home

Homa Second Home

second

Second

Figure 6-5. Toolbarltems drop-down menu

Modal

Xamarin.Forms provides three options for modal navigation:
e NavigationPage for full-page modals
e Alerts for user notifications

e Action sheets for pop-up menus

Full-Page Modal Using NavigationPage

Modal full-screen pages can be created that break the hierarchical pattern. When modal pages are raised,
the hierarchy is interrupted and the navigation bar goes away. The navigation bar comes back when the
modal is popped off the stack. These two methods are used to move between pages modally:

PushModalAsync pushes a page on the stack and goes there:
Navigation.PushModalAsync(new nextPage());
PopModalAsync pops a page off the stack and goes to the previous page:

Navigation.PopModalAsync();

Tip Four events on the Application object can help you manage your modal pages’ life cycles:
ModalPushing, ModalPushed, ModalPopping, and ModalPopped.

User Notification Using Alerts

The DisplayAlert method of the ContentPage displays a pop-up alert, as shown in Figure 6-6. This is
typically used with async/await so execution will halt until the pop-up is cleared (Listing 6-4).

226

CHAPTER 6 * NAVIGATION

Hey

Hey You really should know about this.

You really should know about this.

You really should know about this.

OK

Figure 6-6. DisplayAlert pop-up with title, message, and action button

Listing 6-4. Using DisplayAlert, from Alerts.cs

Button button = new Button { Text = "Show Alert" };
button.Clicked += async (sender, e) =>

{
};

await DisplayAlert("Hey", "You really should know about this.", "OK");

User feedback can be received by returning a value from DisplayAlert:

Button button = new Button { Text = "Show Alert" };
button.Clicked += async (sender, e) =>

{

Boolean answer = await DisplayAlert("Start",
"Are you ready to begin?", "Yes", "No");

};

The answer is returned as a Boolean, as shown in Figure 6-7.

art

Are you ready to begin?

Figure 6-7. The DisplayAlert method can return a value

Pop-up Menu Using Action Sheets
ActionSheet provides a menu of options in a pop-up. The Xamarin.Forms version returns a string as the result.

Using DisplayActionSheet, create an action sheet activated by a button click that assigns the result to a
label, as shown in Listing 6-5.

227

CHAPTER 6 © NAVIGATION

Listing 6-5. Using DisplayActionSheet from PopupMenu.cs

Button button = new Button { Text = "Show ActionSheet" };
button.Clicked += async (sender, e) =>

{
String action = await DisplayActionSheet("Options",
"Cancel", null, "Here", "There", "Everywhere");
label.Text = "Action is :" + action;
};

This displays a pop-up menu in the center of the screen containing our options (Figure 6-8).

Options
Here
ek There
e e Everywhere
There Everywhere
Everywhere o Cancel
Cancel

Figure 6-8. DisplayActionSheet is a method that can return a value

Managing State

state management is the handling and passing of data between pages as the user navigates through the

app. There are four main approaches: passing data values directly into a page’s constructor, using the

static Properties dictionary on the Application object to persist key/value pairs to disk, a static data
instance (global) available to all pages, and static properties on the Application object. Both the global and
Application object techniques use the singleton pattern, and are useful for app-wide classes such as data
access or business objects.

Pass data directly into pages whenever possible to keep the scope of variables narrow and manage memory
prudently. The Properties dictionary persists when your app is backgrounded and even after your app has
restarted!

Let’s start with the simplest technique, passing data directly into a page.

Passing Data into Page Parameters

State is typically managed in Xamarin.Forms by passing data directly into a Page using its constructor.
This approach scopes data objects to a single page, which is ideal from an architecture and memory use
standpoint.

228

CHAPTER 6 * NAVIGATION

When calling a new page, simply pass in whatever variables were defined in your page’s constructor. Define
a detail page with a ListItem class as a constructor parameter:

class DetailPage : ContentPage

{
public DetailPage(ListItem item)

{

Then pass instances of the ListItem class directly into DetailPage:
Navigation.PushAsync (new detailPage(item));

Add all the parameters in your page constructors needed to pass in data from other pages. More detail on
this example can be found in Listing 6-8 and Listing 6-10.

Data elements are sometimes used on many pages across an entire application, and passing them
individually can become cumbersome. Frequently used data elements can be placed into a static global
class so they are available app-wide.

Disk Persistence Using the Properties Dictionary

The most persistent state feature built into Xamarin.Forms is the Properties dictionary. Name/value pairs
are stored as objects to disk and retrieved on demand from anywhere within the app, even after the app has
restarted. Properties works a bit like cookies for your app.

Save a value to the Properties dictionary by using a key value, such as id:
Application.Current.Properties["id"] = 12345;
Retrieve the value by using a cast from the Properties object type:

var id = (int)Application.Current.Properties["id"];

Tip Properties are handy in the Application’s OnStart, OnSleep, and OnResume methods for saving data
between user sessions. They can also be used in a Page’s OnAppearing and OnDisappearing events, which
fire when a page is created or right before it is destroyed.

Using a Static Global Class

A static global class, a C# implementation of the Singleton pattern, can be used to store data across an entire
application.

Important Note Implementing a Singleton is a standard C# technique that can be used across all
platforms: Xamarin.Forms, Xamarin.Android, Xamarin.i0S, and Windows Phone.

229

CHAPTER 6 © NAVIGATION

Create a static class called Global and place properties within it that you desire to use across your app, such
as myData, as shown in Listing 6-6.

Listing 6-6. Static Global Class in Global.cs

public class Global

{
private Global ()

{
}

private static Global _instance;
public static Global Instance

{
get

{

if (_instance == null)

{
}

return _instance;

_instance = new Global ();

}

public String myData { get; set; }
}

Assign values to your static global class:
Global.Instance.myData = "12345";
Access the global properties from anywhere in your application:

MyData myData = Global.Instance.myData;

Caution Overuse of static global classes can tax memory and affect performance. Pass variables directly
between pages whenever you can so they go out of scope when no longer needed.

Using a Static Property on the Application Object

A singleton can be created by using a static property on the Application object:

public class App : Application
{

static Database database;
public static Database MyDatabase {

230

CHAPTER 6 * NAVIGATION

get {
if (database == null) {
database = new Database ();
}

return database;

}
Reference this database object anywhere in your app:
App .MyDatabase.DBConnect();

You'll use this approach in Chapter 7 for maintaining a database connection. (DBConnect is just an example
method on the Database object.)

Drill-down Lists

A drill-down list is a list of tappable items selected to navigate to a new page. There are many ways to build
them using Xamarin.Forms, and the following recipes cover the three most common types of drill-down
lists: by item, by page, and grouped. A drill-down list by iterm has rows that can be selected to display more
information about each item: the traditional master-detail pattern. A drill-down list by page is a menu

of pages that can be selected to navigate to different ContentPages. Both of these recipes use a ListView
to bind to a data model to provide a dynamic list of tappable items. A grouped drill-down list built using
TableView is useful for creating categorized static menu items.

ListView is one of the most versatile tools for creating drill-down lists. Short lists can, of course, be
constructed by hand by using any of the layouts filled with buttons or labels paired with gesture recognizers
to handle taps. Longer lists lend themselves to data binding using ListView.

Grouping is the same as it was in the previous chapter using ListView grouping. Both items and pages can
be grouped by using the IsGroupingEnabled and GroupDisplayBinding properties of ListView.

Lists of pages that require grouping can also be built by using TableView. This manual alternative to
ListView uses the TextCell Command and CommandParameter properties instead of data binding.

We'll begin with the data-bound ListView menus.

Using ListView by Item

Many lists contain a bunch of items that a user wants to drill down into to reach details about each item.
Use ListView to display a list of items data-bound to a data model, and then show a detail page by using
PushAsync, all wrapped in NavigationPage so the user can get back to the list.

You can create your ListView by using any of the approaches discussed in Chapter 5. This implementation
uses our list item class called DrilldownListViewByItem (see the full Listing 6-8). Instantiate that page in the
Application class’s constructor wrapped in NavigationPage (see the full Listing 6-9).

231

http://dx.doi.org/10.1007/9781484202159_7
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 6 © NAVIGATION

public class App : Application
public App()
{
MainPage = new NavigationPage(new DrilldownlListViewByItem ());

}

This creates the list shown in Figure 6-9, with a navigation bar on iOS and Android. Windows Phone doesn’t
display the navigation bar.

{ Back Drilldown List Using ListView { Drilldown List Using ListView First
First Second
Second Third
Third

Figure 6-9. ListView on a page with a navigation bar

Create a detail page called detailPage whose constructor takes ListItem as a parameter (see the full
Listing 6-10). ListItem must contain either a list item ID for a detailed lookup query or all the fields needed
to display on the detail page. This detail page displays a title and description.

class DetailPage: ContentPage
{

}

public detailPage(ListItem listID) { // display detail }

Back on the list page, when an item row is tapped, pass ListIteminto the detail page, which displays the
detail of that particular item.

listView.ItemTapped += (sender, args) => {
var item = args.Item as ListItem;
if (item == null) return;
Navigation.PushAsync (new detailPage(item));
listView.SelectedItem = null;

};

Tapping a list item row triggers the ItemTapped event, and the PushAsync call instantiates a detailPage and
passes in ListItem to display, as shown in Figure 6-10.

232

CHAPTER 6 * NAVIGATION

< Back
Third
3rd item

Figure 6-10. Detail page displaying title and description

CODE COMPLETE: Drill-down List

That was a quick summary of a drill-down list by item. Listings 6-7, 6-8, 6-9, and 6-10 show the complete
code listings of the drill-down list pattern using NavigationPage.

Listing 6-7. Listltem.cs

public class ListItem

{
public string Title { get; set; }
public string Description { get; set; }

}

Listing 6-8. DrilldownListViewByltem.cs

class DrilldownListViewByItem : ContentPage

{
public DrilldownListViewByItem()
{
Title = "Drilldown List Using ListView";
var listView = new ListView();
listView.ItemsSource = new ListItem [] {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}
};
listView.ItemTemplate = new DataTemplate (typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTapped += async (sender, args) =>
{
var item = args.Item as ListItem;
if (item == null) return;
await Navigation.PushAsync(new DetailPage(item));
listView.SelectedItem = null;
};
Content = listView;
}
}

233

CHAPTER 6 © NAVIGATION

Listing 6-9. App.cs

public class App : Application

{
public App()
{

MainPage = new NavigationPage(new DrilldownListViewByItem ());

}

Listing 6-10. DetailPage.cs

class DetailPage : ContentPage

{
public DetailPage(ListItem item)
{
Label titlelLabel = new Label
{
Text = item.Title,
FontSize = 40
};
Label descLabel = new Label
{
Text = item.Description,
FontSize = 40
};
var stacklLayout = new StackLayout
{
Children = { titlelabel, desclLabel }
};
this.Content = stackLayout;
}
}
Using ListView by Page

Navigating a list of pages is easy with ListView. Build a menu containing a list of pages, each with their own
ContentPage. Data-bind your ListView to a data model that contains ContentPages, and then drill down
into each page by using NavigationPage to give the user a way to pop back to the list.

The result of Listing 6-11 looks the same on the screen as Figure 6-9 but navigates to different ContentPage
types rather than just one (DetailPage).

234

CHAPTER 6

Listing 6-11. ListView by Page in DrilldownListViewByPage.cs

class DrilldownListViewByPage : ContentPage

public DrilldownListViewByPage()

Title = "Drilldown List Using ListView";

var listView = new ListView();
listView.ItemsSource = new ListItemPage [] {

};

new ListItemPage {Title = "First", PageType= typeof(FirstPage)},
new ListItemPage {Title = "Second", PageType= typeof(SecondPage)},
new ListItemPage {Title = "Third", PageType= typeof(ThirdPage)}

listView.ItemTemplate = new DataTemplate (typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");

listView.ItemTapped += async (sender, args) =>

{

};

var item = args.Item as ListItemPage;

if (item == null) return;

Page page = (Page)Activator.CreateInstance(item.PageType);
await Navigation.PushAsync(page);

listView.SelectedItem = null;

Content = listView;

public class ListItemPage

{
{
}
{
}
}

public string Title { get; set; }
public Type PageType { get; set; }

Using TableView for Grouping Pages

NAVIGATION

Perfect for multicategory lists of navigation items, this variation of the drill-down list pattern displays a
static list by using a view called TableView. When an item is tapped, a detail screen is shown. It also uses the
hierarchical pattern, which provides an option to use Back buttons. This hierarchical/drill-down list pattern
is used in many of the Xamarin.Forms downloadable code projects throughout the book as the solution
home page, allowing selection of the code examples in each chapter.

This recipe looks best when there are multiple categories of items to choose from, because at least one
TableSection is required, even if multiple categories aren’t needed, as shown in Figure 6-11.

235

CHAPTER 6 © NAVIGATION

P & °

v

Carnor % 53 PM (Drilldown List Using TableView
1 ¢ Back Drilldown List Using TableView
prathama
Prathama = o
dasara
Diisard
Tisard tisara
B primero
Segundo segundo
Tercera .
tercera
First .. I' 4
Second first
Third

=

Figure 6-11. Grouping a list by using TableView

If you don’t want to use categories, you can keep the TableSection title blank, but that leaves a rather large
gap at the top of the list. If you don’t need categories, consider using ListView by page, as described in the
previous section.

TableView isn’t technically a layout but works much like one. This view is made up of ViewCells arranged in
sections. Each TableSection denotes a different category of item, as shown in Listing 6-12.

Listing 6-12. Grouped List of Pages Using TableView in DrilldownTableView.cs

class DrilldownTableView : ContentPage
{
public DrilldownTableView()
{
Command<Type> navigateCommand =
new Command<Type>(async (Type pageType) =>
{
Page page = (Page)Activator.CreateInstance(pageType);
await this.Navigation.PushAsync(page);

B;

this.Title = "Drilldown List Using TableView";
this.Content = new TableView

{

Intent = TableIntent.Menu,
Root = new TableRoot

236

new TableSection("Hindi")

{

1

new

{

1

new

b

new

TextCell

Text = "Prathama",
Command = navigateCommand,
CommandParameter = typeof(FirstPage)

TextCell

Text = "Disara",

Command = navigateCommand,
CommandParameter = typeof(SecondPage)
TextCell

Text = "Tisara",

Command = navigateCommand,
CommandParameter = typeof(ThirdPage)

new TableSection("Espafiol™)

{

1

new

{

b

new

b

new

TextCell

Text = "Primero",
Command = navigateCommand,
CommandParameter = typeof(FirstPage)

TextCell

Text = "Segundo",

Command = navigateCommand,
CommandParameter = typeof(SecondPage)
TextCell

Text = "Tercera",

Command = navigateCommand,
CommandParameter = typeof(ThirdPage)

CHAPTER 6 * NAVIGATION

237

CHAPTER 6 © NAVIGATION

new TableSection("English")

{
new TextCell
{
Text = "First",
Command = navigateCommand,
CommandParameter = typeof(FirstPage)
1
new TextCell
{
Text = "Second",
Command = navigateCommand,
CommandParameter = typeof(SecondPage)
}s
new TextCell
{
Text = "Third",
Command = navigateCommand,
CommandParameter = typeof(ThirdPage)
}
}

};

Navigation Drawer Using MasterDetailPage

MasterDetailPage implements the navigation drawer pattern, which slides in a menu from the side when an
icon, usually the hamburger, is tapped.

In the main page, Listing 6-13, the master and detail pages are defined. The master page is the menu drawer
containing a list of menu options. Detail pages are raised when an option is tapped in the menu drawer.

Listing 6-13. Using MasterDetailPage in NavigationDrawer.cs

public class NavigationDrawer : MasterDetailPage

{

public NavigationDrawer()

{

Title = "Navigation Drawer Using MasterDetailPage";
string[] myPageNames = { "Home", "Second", "Third" };

ListView listView = new ListView

{

ItemsSource = myPageNames,

};

238

this.Master = new ContentPage
{
Title = "Options",
Content = listView,
Icon = "hamburger.png"

};

listView.ItemTapped += (sender, e) =>
{
ContentPage gotoPage;
switch (e.Item.ToString())
{
case "Home":
gotoPage = new HomePage();
break;
case "Second":
gotoPage = new SecondPage();
break;
case "Third":
gotoPage
break;
default:
gotoPage = new NavigationPagel();
break;

new ThirdPage();

}

Detail = new NavigationPage(gotoPage);
((ListView)sender).SelectedItem = null;
this.IsPresented = false;

};

Detail = new NavigationPage(new HomePage());

}

NAVIGATION

When a menu item is selected, the ItemTapped event sets the Detail property to the destination page.
SelectedItemis setto null to remove the highlight over the selected row, and IsPresented is setto false

to remove the menu.

Tip The Title property of the Master page is required.

Because the navigation drawer already instantiates its own navigation pages, you don’t need to create

another NavigationPage when you call it.

public class App : Application

{
public App()
{

MainPage = new NavigationDrawer ();

239

CHAPTER 6 © NAVIGATION

This example begins as the home page set as the detail page, as shown in Figure 6-12. It hard-codes the
navigation drawer pages rather than making them dynamic.

NOKIA
w1150

— : = S
w09 PM - — KXamarin.Forms Navigation

1 wm— Xamarin.Forms Navigation
—

drilldown using listview b
popup menu using actiot

Hierarchical Navigation Using NavigationP...

disk persistence using the

Dropdown Menu Using Toolbaritems

using a static global class

Modal Navigation Using NavigationPage

Alerts Using DisplayAlert drilldown usin g listview b

Drilldown Using ListView by ltem

drilldown using tableview
Popup Menu Using ActionSheet

tabs using tabbedpage

Disk Persistence Uising the Properties Dicti...

Using a Static Global Class data-bound tabs uSing te
Drilldown Using ListView by Page

springboard using grid

Drilldown Using TableView

carousel using carouselp:

S

Tabs Using TabbedPage

Data-bound Tabs Using TabbedPage

Figure 6-12. HomePage ContentPage is the initial detail page

Notice that the hamburger is at the bottom of the screen on Windows Phone.

Important Note HomePage. cs contains the HomePage ContentPage shown in Figure 6-12 and is in the
downloadable code but is not listed here. Be certain to download the code for this chapter and check it out,
because it contains some of the most project-ready examples in this book.

When the icon is clicked, the master page is shown, containing the menu and the menu icon in the upper-left
corner, as shown in Figure 6-13.

240

CHAPTER 6 * NAVIGATION

v 916

Corriee ¥ 49 PM - — Xamarin.Forms Navigation
Hoe —

Home

Second

Second
Third

Third

Hierarct §
Dropdony
Modal N
Alerts L|
Drilldow
Popup |
Disk Pes
Using a
Drilldaw
Drilldow
Tabs Us|

Data-bq]

Figure 6-13. The fly-in menu is the master page

Change the menu icon to a hamburger by using the master page’s Icon property. The icon file is taken from
the local images folder for each platform.

this.Master = new ContentPage

{
Title = "Options",
Content = listView,
Icon = "hamburger.png”

};

Clicking a menu item brings you to the specified new detail page.

Tabs Using TabbedPage

Having clickable folder-like tabs at the top or bottom of the screen is a common navigation pattern,
implemented by TabbedPage, as shown in Figure 6-14.

241

CHAPTER 6 © NAVIGATION

HOME PAGE SECOND PAGE THIRD PAGE

first page

Figure 6-14. TabbedPage makes tabs that navigate to pages

iOS tabs are at the bottom of the screen, and Android and Windows Phone tabs are at the top.

Create a class derived from TabbedPage and assign tab pages to the TabbedPage.Children property, as
shown in Listing 6-14.

Listing 6-14. Tabs in TabPage.cs

class TabPage : TabbedPage

{
public TabPage()
{
this.Title = "Tabbed Page";
this.Children.Add (new homePage());
this.Children.Add (new secondPage());
this.Children.Add (new thirdPage());
}
}

The Title property of each child page is where the tab titles come from. Remember to assign it wherever you
create the child page or inline, as shown in Listing 6-15. Compile and run it to see the result in Figure 6-14.

Tip IniOS, you can place icons on tabs by using the child pages’ Icon property. Not so on Android.

Property assignments can take place within the Add method, as in Listing 6-15.

Listing 6-15. Inline Tab Page Property Assignments

this.Children.Add (new homePage () {
Title = "Home Page",
Icon = "Home.png"

1

Creating Data-Bound Tabs

TabbedPage can be bound to a data source. Use the TabbedPage properties ItemsSource and ItemTemplate
to achieve a data-bound tabbed menu.

First create a data model to hold tab information, as shown in Listing 6-16. Name and Number are the
properties we use here.

242

CHAPTER 6 * NAVIGATION

Listing 6-16. Tabltem class from TabPageDatabound.cs
class TabItem

{
public TabItem(string name, int number)
{
this.Name = name;
this.Number = number;
}
public string Name { private set; get; }
public int Number { private set; get; }
}

Create a TabbedPage with tabs assigned by using the ItemsSource property (Listing 6-17). The page
destination is assigned by using ItemTemplate, dynamically creating the page with DataTemplate and
bindings in the NumberPage class.

Listing 6-17. Data-Bound Tabs in TabPageDatabound.cs
class TabPageDatabound : TabbedPage

{
public TabPageDatabound()
{
this.Title = "Data-bound TabbedPage";
this.ItemsSource = new TabItem[] {
new TabItem ("First", 1),
new TabItem ("Second", 2),
new TabItem ("Third", 3),
new TabItem ("Fourth", 4),
new TabItem ("Fifth", 5),
new TabItem ("Sixth", 6)
};
this.ItemTemplate = new DataTemplate(() =>
{
return new NumberPage();
D;
}
}

ItemsSource allows the properties of the TabItem class to be used for binding in the specified ItemTemplate,
in this case the NumberPage class.

Tip DataTemplate is commonly used for data-binding classes such as ListView and TableView.
Read more about it in Chapter 7.

243

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 6 © NAVIGATION

Create the data-bound NumberPage by calling SetBinding for the Name and Number properties, as shown in
Listing 6-18. This ties the TabItem.Name property to the page’s Title, and the TabItem.Number property to
the label’s Text property.

Listing 6-18. Data-Bound Destination Page in TabPageDatabound.cs

class NumberPage : ContentPage

{
public NumberPage()
{
this.SetBinding(ContentPage.TitleProperty, "Name");
Label label = new Label
{
HorizontalOptions = LayoutOptions.Center,
Font = Font.SystemFont0fSize(40)
};
label.SetBinding(Label.TextProperty, "Number");
this.Content = label;
}
}

The result is six named tabs, as shown in Figure 6-15.

FIRST SECOND THIRD FOURTH

Figure 6-15. TabbedPage with data-bound tabs

Scroll the tab bar vertically on Android and Windows Phone or tap “More” on iOS to see the sixth tab.

When a tab is tapped, the corresponding NumberPage is created and navigated to, displaying the bound Number.

Putting NavigationPages Inside a TabbedPage

Navigation pages are used within a tabbed page by assigning them as children, creating a navigation bar
when the tab is selected. Remember to assign a Title to NavigationPage to specify the name of the tab:

this.Children.Add (new NavigationPage (new homePage())
{

Title = "Home",
Icon = "Home.png"

};

244

CHAPTER 6~ NAVIGATION
Springboard

A springboard is a grid of tappable images on a home screen menu, sometimes referred to as a dashboard,
as shown in Figure 6-16.

”~< .

Camee ¥ 827 PM

| | € Back Springboard Using Grid

Springboard Using Grid

)] @ IN A

Figure 6-16. Springboard using tap-gesture recognizers added to the images

This springboard is implemented with a Grid layout and images provisioned with tap-gesture recognizers,
as shown in Listing 6-19. This code places three images on the grid and makes them tappable. The Tapped
event of each gesture handler contains a PushAsync to the requested page. I'll talk more about the tap-gesture
recognizers shortly.

Listing 6-19. Springboard.cs

class Springboard : ContentPage

public Springboard()

{
Title = "Springboard Using Grid";

Grid grid = new Grid
{
VerticalOptions = LayoutOptions.FillAndExpand,
RowSpacing = 65,
ColumnSpacing = 65,
Padding = 60,

245

CHAPTER 6 © NAVIGATION

246

RowDefinitions =
{
new RowDefinition { Height = new GridlLength(1,
GridUnitType.Star) },
new RowDefinition { Height = new GridLength(1,
GridUnitType.Star) },
new RowDefinition { Height = new GridlLength(1,
GridunitType.Star) }

1
ColumnDefinitions =
{
new ColumnDefinition { Width = new GridLength(1,
GridUnitType.Star) }
}
};
var firstImage = new Image
{
Source = "first.png",
Aspect = Aspect.AspectFit,
HorizontalOptions = LayoutOptions.FillAndExpand,
VerticalOptions = LayoutOptions.FillAndExpand
b

grid.Children.Add(firstImage, 0 , 0);

var secondImage = new Image

{

};
grid.Children.Add(secondImage, 0 , 1);

Source = "second.png"

var thirdImage = new Image

{

};
grid.Children.Add(thirdImage, 0, 2);

Source = "third.png"

var tapFirst = new TapGestureRecognizer();
tapFirst.Tapped += async (s, €) =>

await this.Navigation.PushAsync(new FirstPage());
};

firstImage.GestureRecognizers.Add(tapFirst);

var tapSecond = new TapGestureRecognizer();
tapSecond.Tapped += async (s, e) =>

{
};

secondImage.GestureRecognizers.Add(tapSecond);

await this.Navigation.PushAsync(new SecondPage());

CHAPTER 6 * NAVIGATION

var tapThird = new TapGestureRecognizer();
tapThird.Tapped += async (s, e) =>

await this.Navigation.PushAsync(new ThirdPage());
};
thirdImage.GestureRecognizers.Add(tapThird);

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0),
10, 5);
this.Content

grid;

Making Icons Tappable by Using Gesture Recognizers

The gesture recognizers added to each image in Listing 6-19 handle taps in the TapGestureRecognizer
Tapped event, using PushAsync to push the specified page onto the navigation stack. Here a tap gesture
recognizer is added to firstImage:

var tapFirst = new TapGestureRecognizer();
tapFirst.Tapped += async (s, e) =>

await this.Navigation.PushAsync(new FirstPage());

};

firstImage.GestureRecognizers.Add(tapFirst);

Tappable images should be visually responsive to touch. Use the opacity trick covered back in Chapter 2
(Listing 2-6):

var tapFirst = new TapGestureRecognizer();
tapFirst.Tapped += async (sender, e) =>

image.Opacity = .5;

await Task.Delay(100);

image.Opacity = 1;

await this.Navigation.PushAsync(new FirstPage());
};

firstImage.GestureRecognizers.Add(tapFirst);

This dims the image slightly for an instant when touched to provide user feedback and let them know that
their gesture did something. When using the Task class, remember to add the using statement:

using System.Threading.Tasks.

Carousel Using CarouselPage

Carousel pages scroll off the screen to reveal another page when a user slides left or right.

247

http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 6 © NAVIGATION

Create a carousel page and add child pages, as shown in Listing 6-20.

Listing 6-20. Carousel.cs

class Carousel :CarouselPage

{
public Carousel()
{
this.Children.Add(new FirstPage());
this.Children.Add(new SecondPage());
this.Children.Add(new ThirdPage());
}
}

This allows horizontal scrolling between child pages. Figure 6-17 shows that the home page, when slid to
the left, reveals the second page.

e Page

Go to Second Page

Figure 6-17. Sliding to the left shows the second page

When using CarouselPage as a detail page in MasterDetailPage, set MasterDetailPage.IsGestureEnabled
to false to prevent gesture conflicts between CarouselPage and MasterDetailPage.

XAML Again, the XAML version of this entire Xamarin.Forms portion of this chapter can be found on the
Apress web site at www.apress.com or on GitHub at https://github.com/danhermes/xamarin-book-examples.
The Xamarin.Forms solution for Chapter 6 is NavigationExamples.Xaml.

You are now equipped to build the navigation outline for just about any Xamarin.Forms app you can
imagine! It’s choose-your-own adventure time.

e More Xamarin.Forms? Turn to Chapter 7 to read about data binding and data access.
e Ready for Android navigation? Then read on.
¢ Wondering about iOS navigation? Jump down to the iOS section in this chapter.

Now let’s cover platform-specific navigation, starting with Android.

248

http://www.apress.com/
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 6 * NAVIGATION

Android Navigation

Activities paired with XML layouts are the building blocks of Android apps. Using the MVC pattern, the
layouts are the views, while the activities are the controllers that provide a code back end to each view.
Activities instantiate their respective layouts (in the Resources/layout project folder) using SetContentView:

SetContentView(Resource.Layout.Main);
Building apps larger than one screen requires stringing activities together. This is typically done using
Intent, a class that can create and navigate to new activities.

Hierarchical navigation is done using the toolbar, which is gradually replacing the action bar at Google’s
encouragement. Navigation buttons include the Up (or Home) button on the toolbar, at the top of the screen,
and the Back button on the navigation bar, at the bottom of the screen. Values are passed between activities
by using the Bundle class passed using Intent. A specialized layout called a fragment is used to create modals.

Here are the key Android navigation concepts covered in this section:

Intent: An abstract description of an operation to be performed, used to
instantiate and display a new screen

Toolbar/action bar: Top-of-screen navigation controls that can include a page
title, an Up button, and a pop-up menu

Navigation bar: Bottom-of-screen buttons that include the Back button
Bundle: A dictionary within an intent that maintains state between screens

Fragment: A mini-layout .axml with a code-behind class that is useful as a
component to make modals, and can be combined to make larger layouts

Let’s explore each concept in the context of Ul navigation patterns.

Starting New Activities Using Intents

Intents create and navigate to new screens on Android. Instantiate an intent with the parameter of the
desired new activity, such as IntentToActivity, and then call the Activity.StartActivity method,
passing in the intent, as shown in Listing 6-21.

Listing 6-21. From IntentActivity.cs

Intent intent = new Intent(this, typeof(IntentToActivity));
StartActivity (intent);

This can be shortened to the following:
StartActivity(typeof(IntentToActivity));

StartActivity instantiates the specified new activity class (IntentToActivity) and loads it onto the screen,
unloading the old activity.

249

CHAPTER 6 © NAVIGATION

New activities, such as IntentToActivity, are often spawned in response to a user action within an event
handler. Here, IntentToActivity is created and called upon the click of a button:

Button button = FindViewById<Button> (Resource.Id.myButton);
button.Click += delegate {
StartActivity(typeof(IntentToActivity));

};

Tip The screen can be also changed without creating a new activity by using SetContentView.

Hierarchical Navigation Using the Toolbar

Hierarchical navigation on Android is now done using the toolbar, a featureful navigation bar with an
Up button, icon, and current page name. The first page containing a toolbar usually displays a title and
sometimes a pop-up menu icon used for choosing actions, as shown in Figure 6-18.

Toolbar Home

Figure 6-18. Toolbar on a home page

Deeper in the navigation tree, the toolbar generally sports an Up (or Home) button (<), as shown in
Figure 6-19.

< Toolbar Second Page

Figure 6-19. Toolbar on a second page

The toolbar was introduced in Android 5.0 Lollipop (API level 21) and replaced the action bar. Although the
action bar still works on newer APIs, Google encourages the use of the toolbar. The toolbar can be found in
the Android Designer’s toolbox and can be dragged and dropped onto your layout. It can be used anywhere
on the screen but is most often used at the top and, less often, at the bottom.

But there’s a catch: the new Toolbar class works only for API 21+. So, I'll cover a backward-compatible
approach to implement the toolbar using the Android.Support.V7.AppCompat library available as a NuGet.
This allows us to target a range of API versions prior to Lollipop up to the present.

To recap, there are three ways to achieve up-and-back when using hierarchical navigation in Android:
e Toolbar: The new class for API 21+ (Lollipop)
e ActionBar: The older class replaced by Toolbar

e Toolbar using the Android. Support.V7.AppCompat library: Toolbar that is
backward-compatible to API 4

250

CHAPTER 6 * NAVIGATION

For backward compatibility, I'll cover the third approach, Toolbar using the Android.Support.
V7.AppCompat library, in the following example.

Tip If you're making an app with a minimum API of 21 or later, don’t use the following approach with the
Android.Support.V7.AppCompat library. Use the regular android.widget.Toolbar class covered in James
Montemagno’s blog post at http://blog.xamarin.com/android-tips-hello-toolbar-goodbye-action-bar/.

TOOL BAR VS. ACTION BAR

The action bar has been the standby navigation bar for some time now, and is built into an activity
without the need for tagging in the XML layout. Google is encouraging us to upgrade to the more
versatile, mature toolbar, which has a more focused feature set and supports the modern navigation
aesthetic: a visually distinct color scheme for the top bar rather than leaning on the application icon as
the main design element. The use of an application icon plus a title as a standard layout is discouraged
on API 21 devices and later. Now it's about the styling of the toolbar, using style.xml coupled with
liberal use of the Up button, page title, and action menu.

A couple of inconveniences are associated with the toolbar, however. First, it's not built into the activity
and must be declared in the XML layout, generally as an include of a separate toolbar layout. Second,
the standard new toolbar library works only on API 21 and later, so we're often required to use the
backward-compatible Android. Support.V7.AppCompat library and its associated Support-prefixed
keywords and methods in order to use the toolbar pre-Lollipop. If you want to heed Google's advice and
start using the toolbar rather than the action bar, but you want your app to work on older APIs, then the
Android.Support.V7.AppCompat approach is the way to go (available as a NuGet package or in the
Xamarin Component Store).

Create an XML layout containing the toolbar, as shown in Listing 6-22.

Listing 6-22. Toolbar.axml

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.Toolbaxr
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:minHeight="?attr/actionBarSize"
android:background="?attr/colorPrimary"
local:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

251

http://blog.xamarin.com/android-tips-hello-toolbar-goodbye-action-bar/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto

CHAPTER 6 © NAVIGATION

Several styles are available when using the Support Library:
e Theme.AppCompat: The “dark” theme
e Theme.AppCompat.Light: The “light” theme
e Theme.AppCompat.Light.DarkActionBar: The light theme with a dark action bar
The popupTheme here specifies ThemeOverlay.AppCompat, a dark theme, for use later with the pop-up menu.

Next, include the toolbar in your main layout, as shown in Listing 6-23. Add a button to navigate to page 2.

Listing 6-23. Main Layout in MainToolbar.axml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:layout_width="fill parent"
android:layout_height="fill parent">
<include
android:id="@+id/toolbar"
layout="@layout/toolbar" />
<Linearlayout
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:id="@+id/main_content"
android:layout_below="@id/toolbar">
<Button
android:id="@+id/nextPageButton"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Go to Second Page" />
</Linearlayout>
</Relativelayout>

Important Note In the following activities, utilize the following using statements to reference the
Android.Support.V7 library.

using Android.Support.V7.App;
using Toolbar = Android.Support.V7.Widget.Toolbar;

Create an activity, as shown in Listing 6-24, where you find the toolbar on the layout and initialize it by
calling the SetSupportActionBar method. Inherit from ActionBarActivity.

252

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto

CHAPTER 6 * NAVIGATION

Listing 6-24. Using the ToolBar in ToolBarActivity.cs

[Activity(Label = "ToolbarActivity")]
public class ToolbarActivity : ActionBarActivity
{

protected override void OnCreate(Bundle bundle)

{
base.OnCreate(bundle);

SetContentView(Resource.Layout.MainToolbar);

var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetSupportActionBar(toolbar);

SupportActionBar.Title = "Toolbar Home";

Set the toolbar’s title by using the SupportActionBar.Title property.

In order to use the toolbar as the action bar, you need to disable the décor-provided action bar. As shown
in Listing 6-25, the easiest way is to have your application theme in AndroidManifest.xml extend from
Theme.AppCompat.NoActionBar (a dark theme, or the light variant, described shortly). Later you'll look at
other ways to do this by customizing the theme.

Listing 6-25. Application Theme in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="NavigationExamplesAndroid.NavigationExamplesAndroid"
android:versionCode="1" android:versionName="1.0">
<uses-sdk android:minSdkVersion="10" android:targetSdkVersion="21" />
<application android:label="NavigationExamplesAndroid"
android:icon="@drawable/Icon" android:theme=
"@style/Theme.AppCompat.NoActionBar>
</application>
</manifest>

Compile and run the application to create the ToolbarActivity with a toolbar, as shown in Figure 6-20.

Toolbar Home

Go to Second Page

Figure 6-20. The toolbar

Now it’s time to create the second page with a toolbar and an Up button.

The second activity is virtually identical to the first, with the exception of the Up button, as shown in
Listing 6-26. Find the toolbar on the layout and initialize it by calling the SetSupportActionBar method.
Turn on the Up button with the toolbar’s SetDisplayHomeAsUpEnabled method.

253

http://schemas.android.com/apk/res/android

CHAPTER 6 © NAVIGATION

Listing 6-26. Second Activity in ToolbarActivitySecond.cs

[Activity(Label = "ToolbarActivitySecond")]
public class ToolbarActivitySecond : ActionBarActivity

{
protected override void OnCreate(Bundle bundle)
{
base.OnCreate(bundle);
SetContentView(Resource.Layout.MainToolbarSecond);
var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetSupportActionBar(toolbar);
SupportActionBar.Title = "Toolbar Second Page";
SupportActionBar.SetDisplayHomeAsUpEnabled(true);
}
}

The second XML layout, in Listing 6-27, is simpler than the first. It includes the same toolbar layout as before.

Listing 6-27. Second Layout in MainToolbarSecond.axml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:layout_width="fill parent"
android:layout_height="fill parent">
<include
android:id="@+id/toolbar"
layout="@layout/toolbar" />
</Relativelayout>

Back in the main activity, ToolbarActivity, add a handler for the next-page button click that navigates to
ToolbarActivitySecond.

var nextPageButton = FindViewById<Button>(Resource.Id.nextPageButton);
nextPageButton.Click += (sender, e) =>

{
};

StartActivity(typeof(ToolbarActivitySecond));

Now when you get deeper into a navigation, you can get back by using the Up button (Figure 6-21).

€& Toolbar Second Page

Figure 6-21. The toolbar on the second page with the Up button

254

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto

CHAPTER 6 * NAVIGATION

Tip Toolbars can also be made to stand alone anywhere on the screen, not just at the top. To do that, don’t
set Toolbar as the action bar by using SetSupportActionBar. Also, you won't need the NoActionBar theme
for this unless you also have a top toolbar.

Handling the Up Button

Popping pages off the stack can be accomplished by either the Up or the Back button. Up is the less-than
sign (<) in the top-left corner of the toolbar, and the Back button is on the bottom navigation bar. There are a
few ways to handle the clicking of the Up or Home button: finish the activity and return to the previous one,
return to a specified parent activity, or spawn a new intent and go to a specified activity. Let’s cover all three.

Finish() the Activity

An easy way to back-navigate is to handle the Up button click by overriding OnOptionsItemSelected to call
the Finish() method, which closes the current activity and returns to the previous activity (Listing 6-28).

Listing 6-28. Finish Method in ToolbarActivitySecond.cs

public override bool OnOptionsItemSelected (IMenuItem item)

{
if (item.ItemId == Android.Resource.Id.Home)
Finish();
return base.OnOptionsItemSelected (item);
}

Other clickable options are available, but in this case we’'re concerned only with the Up button, identified by
Android.Resource.Id.Home.

Using parentActivityName in AndroidManifest.xml

Specify the page that the Up button will travel to by declaring the parent of each activity in the
android:parentActivityName attribute on the <activity> element of AndroidManifest.xml (beginning in
Android 4.1, API level 16). The Up button will navigate to the parent specified on each activity.

Using an Intent

The Up button can also be manually coded to redirect to a particular page by using an intent (rather than
popping the activity off of the stack). The Up button click event on the toolbar is handled with the
OnOptionsItemSelected method:

public override bool OnOptionsItemSelected(MenuItem item){

StartActivity(typeof(NewActivity));
return true;

255

CHAPTER 6 = NAVIGATION
Adding a Pop-up Menu

The toolbar can be customized with additional menu and action icons, as shown in Figure 6-22. A pop-up menu
is added by overriding the OnCreateOptionsMenu method and inflating the menu from an XML file. This is not
hierarchical navigation. It's modal navigation, but because it’s part of the toolbar, we’ll cover it here.

Toolbar Home

Go to Second Page

Figure 6-22. Toolbar with pop-up/action menu icon

In your activity, override the OnCreateOptionsMenu, which inflates a menu called popupmenu, from
ToolbarActivity.cs:

public override bool OnCreateOptionsMenu (IMenu menu)

{
MenuInflater.Inflate (Resource.Menu.popupmenu, menu);
return base.OnCreateOptionsMenu (menu);

}

Create a menu folder and build an XML file named popupmenu (in this case), as shown in Listing 6-29.
Add your menu items and give them IDs and titles.

Listing 6-29. Menu XML File in popupmenu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/item1"
android:title="First Item" />
<item android:id="@+id/item2"
android:title="Second Item" />
<item android:id="@+id/item3"
android:title="Third Item" />
</menu>

Tap the pop-up menu icon to show the pop-up menu (Figure 6-23).

256

http://schemas.android.com/apk/res/android

CHAPTER 6

Toolbar Home First Item

Go to S¢ Second Item

Third Item

Figure 6-23. Pop-up menu on the toolbar

Back in the activity, handle the menu clicks (Listing 6-30).

Listing 6-30. Handle Menu Taps in ToolbarActivity.cs

public override bool OnOptionsItemSelected(IMenuItem item)

{

switch (item.ItemId)

{
case Resource.Id.itemi:
Toast.MakeText(this, "Item1 tapped”,
ToastLength.Short).Show();
return true;
case Resource.Id.item2:
Toast.MakeText(this, "Item2 tapped”,
ToastLength.Short).Show();
return true;
case Resource.Id.item3:
Toast.MakeText(this, "Item3 tapped”,
ToastLength.Short).Show();
return true;
}

return base.OnOptionsItemSelected(item);

NAVIGATION

Tip Right-side navigation drawers are typically used for actions, not navigation.

Customize the Toolbar

The toolbar’s colors can be customized with a custom theme. Style the toolbar’s colors in styles.xml.
In AndroidManifest.xml, change the android:theme to your custom theme name (MyTheme, in this case).

<application android:label="NavigationExamplesAndroid"

android:icon="@drawable/Icon" android:theme="@style/MyTheme">

</application>

257

CHAPTER 6 © NAVIGATION

Create a folder called values and a new file called styles.xml (Listing 6-31) with the MyTheme theme, and a
parent using one of the AppCompat themes mentioned earlier. The windowActionBar property must be set to
false, and windowNoTitle must be set to true

Listing 6-31. styles.xml in values Folder

<?xml version="1.0" encoding="utf-8" ?>
<resources>
<style name="MyTheme" parent="MyTheme.Base">
</style>
<style name="MyTheme.Base" parent="Theme.AppCompat">
<item name="android:windowNoTitle">true</item>
<item name="windowActionBar">false</item>
<item name="colorPrimary">#0066FF</item>
<item name="colorPrimaryDark">#125393</item>
<item name="colorAccent">#990000</item>
</style>
</resources>

For API 21+ devices, add a values-v21 folder and create a styles.xml file (Listing 6-32), as required by
Android. Note that this style is not compatible with the ActionBar tabs example later in this chapter.

Listing 6-32. styles.xml in values-v21 Folder

<?xml version="1.0" encoding="utf-8" ?>
<resources>
<style name="MyTheme" parent="MyTheme.Base">
<item name="android:windowContentTransitions">true</item>
<item name="android:windowAllowEnterTransitionOverlap">true</item>
<item name="android:windowAllowReturnTransitionOverlap">true</item>
<item name="android:windowSharedElementEnterTransition">
@android:transition/move</item>
<item name="android:windowSharedElementExitTransition">
@android:transition/move</item>
</style>
</resources>

Even the pop-up menu can be themed and customized by adding a popupTheme in the toolbar XML
declaration (Listing 6-33).

Listing 6-33. styles.xml in values-v21 Folder

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.Toolbar
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:minHeight="?attr/actionBarSize"
android:background="?attr/colorPrimary"
local:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"
local:popupTheme="@style/ThemeOverlay.AppCompat.Light" />

258

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto

CHAPTER 6 * NAVIGATION

Figure 6-24 shows the light-styled pop-up menu.

Toolbar Home First Item

[efR GBS Second Item

Third Item

Figure 6-24. Pop-up menu styled

In addition to back navigation being handled in the toolbar, usually at the top of the screen, back navigation
can also be handled at the bottom of the screen, in the navigation bar.

Using the Navigation Bar

The navigation bar (nav bar) shown in Figure 6-25 is the three-button bar at the bottom of the screen, or on
some older devices, actual physical buttons. The buttons are Back, Home, and App Switcher.

Figure 6-25. Android navigation bar

Hide icons on the nav bar by using the StatusBarVisibility enum (Hidden or Visible):

Handling the Back Button

The Back button default behavior is to pop back to the previous activity or, if at the top-level activity, out of
the app to the Android app menu. The Back button’s click event can be explicitly handled by overriding the
page’s OnBackPressed method:

public override void OnBackPressed()

{

// your code here
base.OnBackPressed();

259

CHAPTER 6 © NAVIGATION

Fragments

The building blocks of mature Android apps, fragments are used for everything from alerts, to modal pop-up
screens, to portions of screens, to views that can fill entire screens. Introduced in Android 3.0, fragments
work like mini-layouts or custom controls, each with their own code-behind called a Fragment class. Just like
regular Android layouts, they can be built with the UI designer and saved as .axml files. Fragment layouts
can then be included within other layout files, allowing a nesting of layout files.

Tip Swap fragments in and out of a page dynamically by using FrameLayout in your main layout along
with the FragmentTransaction Add(),Remove(), and Replace() methods in your main activity. See the tabs
example in Listing 6-60.

This example shows how to display two fragments on a single main layout. First let’s build the layouts, and
then we’ll make the code-behind classes.

Create three layouts: MainFragment (Listing 6-34), Fragment1 (Listing 6-35), and Fragment2 (Listing 6-36).
Each fragment class refers to a fragment using its namespace and fragment class name (for example,
FragmentExample.FirstFragment).

Listing 6-34. MainFragment.axml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<fragment
class="FragmentExample.FirstFragment"
android:id="@+id/FirstFragment"
android:layout_weight="1"
android:layout_width="match_parent"”
android:layout_height="match_parent" />
<fragment
class="FragmentExample.SecondFragment"
android:id="@+id/SecondFragment"
android:layout_weight="1"
android:layout_width="match_parent"”
android:layout_height="match_parent" />
</LinearlLayout>

Listing 6-35. Fragmentl.axml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:text="FirstFragment"
android:textStyle="bold"
android:textSize="20dip" />

260

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 6 * NAVIGATION

Listing 6-36. Fragment2.axml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout _width="fill parent"
android:layout_height="fill parent"
android:text="SecondFragment"
android:textSize="20dip"
android:textStyle="bold" />

Now onto the classes. Create the main activity that references the MainFragment layout, as shown in
Listing 6-37.

Listing 6-37. Begin with MainFragment Layout in FragmentsActivity.cs

public class FragmentsActivity : Activity

{
public FragmentsActivity ()
{
}
protected override void OnCreate (Bundle bundle)
{
base.OnCreate (bundle);
SetContentView (Resource.layout.MainFragment);
}
}

Last, create the fragment classes, each inheriting from the Fragment base class and inflating their respective
fragment layouts, Fragment1 and Fragment2, in their OnCreateView methods (Listings 6-38 and 6-39).

Listing 6-38. FirstFragment Inflates Fragmentl.axml Layout

public class FirstFragment : Fragment

{
public override void OnCreate (Bundle savedInstanceState)
{
base.OnCreate (savedInstanceState);
// Create your fragment here
}
public override View OnCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState)
{
return inflater.Inflate(Resource.layout.Fragment1, container);
}
}

261

http://schemas.android.com/apk/res/android

CHAPTER 6 © NAVIGATION

Listing 6-39. SecondFragment Inflates Fragment2.axml Layout

public class SecondFragment : Fragment

{
public override void OnCreate (Bundle savedInstanceState)
{
base.OnCreate (savedInstanceState);
// Create your fragment here
}
public override View OnCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState)
{
return inflater.Inflate(Resource.layout.Fragment2, container);
}
}

Running the app allows the MainFragment layout to instantiate both fragments on the screen at the same
time, one above the other (Figure 6-26).

.f;! FragmentExample

FirstFragment

SecondFragment

Figure 6-26. Two fragments shown on one main layout

262

CHAPTER 6 * NAVIGATION

Tip Fragments are particularly useful when an app must look good on widely varying screen sizes,
specifically phone and tablet, as variations of the same app can be created depending on the screen
real-estate size.

Note Several fragment class types, including ListFragment, DialogFragment, and PreferenceFragment,
are used for particular Ul functions: lists, dialog boxes, and preferences, respectively.

Tip Backward compatibility with pre-Android 3.0 devices can be achieved for most fragment functionality
by using the Android Support Library v4 component.

Modal Navigation

Modal navigation on Android is created by using a range of techniques, including the DialogFragment,
AlertDialog, and PopupMenu class. DialogFragment is a specialized type of fragment that creates a pop-up
modal that can contain a layout or wrap an AlertDialog (a dialog box containing text and/or controls).
Pop-up menus are made by using the PopupMenu class.

Creating Modals Using DialogFragment

DialogFragment is used to create many types of modal dialog boxes. DialogFragment has largely replaced
AlertDialog as the primary modal technique since Google deprecated the ShowDialog method. Create a
layout XML to comprise the modal, and then build a DialogFragment subclass that inflates this layout in the
OnCreateView method.

Create a layout XML called Modal that allows the entry of a name, using a TextView, an EditView, and a
submit Button, as shown in Listing 6-40.

Listing 6-40. Modal Layout in Modal.axml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout _width="fill parent"
android:layout_height="fill parent">
<TextView
android:text="Enter Your Name"
android:textAppearance="?android:attr/textAppearancelarge"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/nameTextView" />
<EditText
android:id="@+id/nameEditText"
android:textAppearance="?android:attr/textAppearancelarge"
android:layout width="fill parent"
android:layout_height="wrap_content"/>

263

http://schemas.android.com/apk/res/android

CHAPTER 6 © NAVIGATION

<Button
android:text="Submit"
android:layout_width="match_parent"”
android:layout_height="wrap_content"
android:id="@+id/submitButton" />
</LinearLayout>

Create a new fragment called DialogFragmentView and a subclass from DialogFragment. In the
OnCreateView method, inflate the Modal layout. Find submitButton and handle the click event by calling the
Dismiss() method to close the fragment, as shown in Listing 6-41.

Listing 6-41. Inflate Modal Layout in DialogFragmentView.cs

public class DialogFragmentView : DialogFragment

{
public override View OnCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState)
{
base.OnCreate(savedInstanceState);
var view = inflater.Inflate(Resource.Llayout.Modal,
container, false);
view.FindViewById<Button>(Resource.Id.submitButton).Click +=
(sender, args) => Dismiss();
return view;
}
}

Tip DialogFragment can be dismissed from the activity in code by using the DialogFragment.Dismiss()
method. This commits the transaction and fires the standard events in the destruction of a fragment.

In the main activity’s OnCreate method, instantiate a transaction and DialogFragmentView. Call the Show
method on the fragment and pass in the transaction and a string identifier, as coded in Listing 6-42.

Listing 6-42. Show the DialogFragment in DialogViewActivity.cs

var transaction = FragmentManager.BeginTransaction();
var dialogFragment = new DialogFragmentView();
dialogFragment.Show(transaction, "dialog_fragment");

This displays a modal that pops up over the main layout, as shown in Figure 6-27.

264

CHAPTER 6 * NAVIGATION

Enter Your Name

Submit

Figure 6-27. DialogFragment modal layout

Creating Alerts Using DialogFragment

DialogFragment can contain AlertDialog to create alerts and dialog boxes. These are built in the
OnCreateDialog method.

Create a new Fragment class called DialogFragmentAlert (Listing 6-43) and inherit from the
DialogFragment class. Inside the OnCreateDialog method, build a simple AlertDialog.

Listing 6-43. Using AlertDialog in DialogFragmentAlert.cs

public class DialogFragmentAlert : DialogFragment
{

public override Dialog OnCreateDialog(Bundle savedInstanceState)

{
var builder = new AlertDialog.Builder(Activity)

.SetMessage("This is an AlertDialog.")
.SetPositiveButton("0k", (sender, args) =>

265

CHAPTER 6 © NAVIGATION

{

H
.SetTitle("DialogFragment");
return builder.Create();

// Handles button click

}

In the OnCreate method of a main activity, such as DialogAlertActivity, instantiate and display the dialog
fragment. The DialogFragment.Show method takes a transaction and a string as parameters (Listing 6-44).
Listing 6-44. Show DialogFragment in DialogFragmentAlert.cs

var transaction = FragmentManager.BeginTransaction();
var dialogFragment = new DialogFragmentAlert();
dialogFragment.Show(transaction, "dialog fragment");

This pops up the dialog fragment on top of the main screen, until dismissed, as depicted in Figure 6-28.

Figure 6-28. AlertDialog wrapped in DialogFragment

266

CHAPTER 6 * NAVIGATION

Modal Layouts Using AlertDialog

Entire XML layouts can be created and displayed as modal dialog boxes by using AlertDialog. First, create
the modal layout XML and then code AlertDialog in the activity to inflate that layout as an alert view,
using alert.SetView.

In the activity’s OnCreate method, instantiate AlertDialog and reference the Modal.axml layout in the
alert.SetView method, and then alert.Create().Show() it. See Listing 6-45.
Listing 6-45. Inflate Modal Layout in ModalAlertActivity.cs

var alert = new AlertDialog.Builder(this);
alert.SetView(LayoutInflater.Inflate(Resource.Llayout.Modal, null));
alert.Create().Show();

This displays a modal that pops up over the main layout, as shown in Figure 6-29.

Enter Your Name

Figure 6-29. Enter Your Name dialog box using AlertDialog

267

CHAPTER 6 © NAVIGATION

Tip Create user notifications via AlertDialog that elicit a response from the user by using
SetPositiveButton and SetNegativeButton.

PopupMenu

The PopupMenu class provides a ready-made context-specific pop-up menu. Less popular than the navigation
drawer discussed in the next section, the pop-up menu is still in use. The pop-up menu is created by making
an XML menu file, using Android <menu> and <item> tags, which is placed in the Resources/menu folder.

The PopupMenu class is instantiated and anchored to a control on the screen, and the XML menu file inflated.

Tip Alot of ugly navigation has been coded using pop-up menus. Keep your navigation elegant and
consistent with industry Ul patterns by heeding the Golden Rule of Mobile Ul (du jour): Nav on the left, action
on the right.

As shown in Listing 6-46, create the menu XML file and put it in the Resources/menu folder.

Listing 6-46. Menu Layout in Popuplayout.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/item1"
android:title="First Item" />
<item android:id="@+id/item2"
android:title="Second Item" />
<item android:id="@+id/item3"
android:title="Third Item" />
</menu>

The layout can be simple, containing just a button for triggering the menu (Listing 6-47).

Listing 6-47. Main Layout in PopupLayout.axml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:minWidth="25px"
android:minHeight="25px">
<Button
android:text="Show PopupMenu"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/button" />
</Linearlayout>

268

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 6 * NAVIGATION

In your activity, find the button called button. In the button.Click event, instantiate the PopupMenu class
as a menu anchored to the button. Inflate the pop-up menu XML layout. Handle menu item clicks by using
MenuItemClick and handle dismissal of the menu with DismissEvent, which also happens on an item click.
Display the menu with the Show method (Listing 6-48).

Listing 6-48. Button to Trigger the Pop-up Menu in PopupActivity.cs (OnCreate Method)

SetContentView(Resource.Layout.PopupLayout);
Button button = FindViewById<Button>(Resource.Id.button);

button.Click += (s, e) => {
PopupMenu menu = new PopupMenu (this, button);
menu.Inflate (Resource.Menu.popupmenu);

menu.MenuItemClick += (s1, e2) => {
Console.WriteLine ("{0} Selected", e2.Item.TitleFormatted);
};

menu.Show ();

};

Clicking the Show PopupMenu button brings up the menu shown in Figure 6-30. The selected menu item
title is written as output to the console by using the input parameter’s I'tem.TitleFormatted property.

Show PopupMenu

First Item

Second Item

Third Item

Figure 6-30. Context menus using PopupMenu

Note The DismissEvent event fires when the menu closes.

Managing State Using Bundles

Android uses a dictionary called a bundle, attached to an intent in the Extras property, to save object values
and pass them between pages. Activities may not directly reference properties within one another. Bundles
are passed between activities in two ways: either populated as individual fields by using PutExtra and
GetExtra methods on the intent to pack and unpack the bundle, or as an entire bundle that is created stand-
alone and then copied onto the intent’s bundle by using putExtras. PutExtra is handy when passing a field
or two, and bundle creation is useful when many fields must be managed. Objects from custom classes can
be passed but must be serialized into strings.

269

CHAPTER 6 © NAVIGATION

Passing Strings

Pass strings to the new activity by using the PutExtra method on the second activity. In the first activity,
declare the intent and pass in the string of data, as shown in Listing 6-49.

Listing 6-49. Pass String by Using PutExtra in PassStringActivity.cs

var intent = new Intent (this, typeof(DetailActivity));
intent.PutExtra ("MyData", "A string of data");

In the destination activity, retrieve the string by using GetStringExtra:

String text = Intent.GetStringExtra ("MyData") ?? "No Data";

Tip More than 20 PutExtra overloads and a similar number of GetExtra methods exist to handle different
data types.

Passing Objects

Objects can be passed in the same manner as strings but must be serialized before passing with PutExtra.
This can be done most easily with JavaScript Object Notation (JSON) and XML serialization.
System.Runtime.Serialization and IParcelable are other options that are not covered here.

JSON is the easiest and more versatile approach, particularly using the Json.NET component in the Xamarin
Component Store (or NuGet). This allows objects such as object of type ObjectClass to be serialized into
JSON with the SerializeObject method. See Listing 6-50.

Listing 6-50. Pass Object Using PutExtra in PassObjectActivity.cs

String json = Newtonsoft.Json.JsonConvert.SerializeObject (data);
var intent = new Intent(this, typeof(PassToActivity));
intent.PutExtra("MyData", json);

StartActivity(intent);

And the objects can be deserialized with DeserializeObject in the activity called PassToActivity:

String json = Intent.GetStringExtra("MyData") ?? "No Data";
DataModel data =
Newtonsoft.Json.JsonConvert.DeserializeObject<DataModel>(json);

XML serialization is another simple way to pass an object using the standard .NET System.Xml.Serialization
library. We're not going to cover that here because it’s a well-documented .NET technique. After serializing
your object into a string via XML serialization, pass the string by using putExtra/ GetStringExtra in the
same manner as a JSON string.

System.Runtime.Serialization and IParcelable are not covered here because the [Serializable]
attribute is not supported in Portable Class Libraries (PCLs), making it unsuitable for many Xamarin
architectures. Java.I0.ISerializable is a Xamarin-recommended alternative, and examples can be found
on the Xamarin forums.

270

CHAPTER 6 * NAVIGATION

If you're not using a PCL, System.Runtime.Serializable can be implemented by using standard .NET
practice, but IParcelable implementations run many times faster. Serializable uses reflection, which is
slow and can produce many temporary objects, leading to more garbage collection. Use IParcelable

(if you must) when handling a large number of objects (hundreds or more) or when you’re concerned about
performance. The IParcelable implementation is also beyond the scope of this book but is a useful option
when performance is key and other options aren’t working.

Creating a Bundle

When you have many fields to pass to another activity and need a way to manage them, creating a bundle
can be useful. The PutExtra method used previously adds fields to a bundle that already exists on the intent.
A bundle can be created explicitly, however, and overwritten onto the intent’s bundle. It is useful to prepare
them first and then write to the intent in one step.

Create the intent and the bundle, populate the bundle, and then copy it onto the intent by using putExtras
before starting the new activity (Listing 6-51).

Listing 6-51. Build and Assign a Bundle in PassBundleActivity.cs

Bundle thisBundle = new Bundle();
thisBundle.PutString("MyData", "A string of data.");
thisBundle.PutString("MyData2", "Another string of data.");
var intent = new Intent(this, typeof(PassToBundleActivity));
intent.PutExtras(thisBundle);

StartActivity(intent);

Retrieving the bundle is exactly the same as retrieving data from PutExtra methods, using the GetExtra
methods. This happens in the destination activity, as in Listing 6-52.
Listing 6-52. Get Fields from a Bundle in PassToBundleActivity.cs

String text = Intent.GetStringExtra ("MyData") ?? "No Data";
String text2 = Intent.GetStringExtra ("MyData2") ?? "No Data";

Tip Leverage the activity events OnSaveInstanceState and OnRestoreInstanceState to populate and
read from the bundle when an activity is stopped and started.

Using Static Global Classes and StartActivityForResult

There are also a couple of other ways to pass data between activities:

e Static global classes can be used to share object instances instead of passing values,
and were discussed in the “Using a Static Global Class” in the Xamarin.Forms
section earlier.

e StartActivityForResult can be used to call an activity when return values are
needed; then SetResult is used in the called activity, and OnActivityResult is
overridden in the calling activity to handle the returned values.

271

CHAPTER 6 © NAVIGATION

Drill-down List

A drill-down list is a list of tappable items selected to navigate to a new page. The following recipes cover

the two most common types of lists: by page and by item. Lists by page contain rows of menu pages that

can be selected to navigate to different activities. Both of these recipes use ListView to bind to a data

model to provide a dynamic list of tappable items. Lists by item can be viewed and selected to display more
information about that item: the traditional master-detail pattern. In the interest of space, I'll provide details
on implementing the first recipe and then general direction on the second one.

Drill-down lists often also have a toolbar at the top of the screen for back navigation, displaying the current
screen title and action menus.

Using ListView by Page

A drill-down list in Android can be created using a ListView that binds to a data model containing the
activity page types that you want to list and navigate to. This example covers navigation to a new activity.

Create a ListItem class that contains a PageType property, as shown in Listing 6-53. PageType will contain
the activity type to navigate to.
Listing 6-53. List Data Model in ListItem.cs

public class ListItem

{
public string Title { get; set; }
public Type PageType { get; set; }

Create a list activity that populates a ListItem object with your navigation pages (Listing 6-54).

Listing 6-54. List Activity in DrilldownListActivity.cs

public class DrilldownlListActivity : ListActivity

{
List<ListItem> listItems;
protected override void OnCreate(Bundle bundle)
{
base.OnCreate(bundle);
listItems = new List<ListItem> {
new ListItem {Title = "First Page", PageType=
typeof(DrilldownActivity1)},
new ListItem {Title = "Second Page", PageType=
typeof(DrilldownActivity2)},
new ListItem {Title = "Third Page", PageType=
typeof(DrilldownActivity3)}
)
ListAdapter = new ListItemAdapter(this, listItems);
}
}

272

CHAPTER 6 * NAVIGATION

Override OnListItemClick to start the new activity by using StartActivity, passing in the activity type that
was clicked:

protected override void OnListItemClick(ListView 1, View v,
int position, long id)
{

}

StartActivity(listItems[position].PageType);

ListItemAdapter inherits from BaseAdapter and works exactly like ListItemAdapter shown in Chapter 5,
in Listing 5-11. Figure 6-31 shows the drill-down list with all three pages.

First Page

Third Page

Figure 6-31. Drill-down list using ListActivity

Tap a page in the list, and the app navigates to the respective activity/layout, as shown in Figure 6-32.

Figure 6-32. Navigate to the selected page by using StartActivity

Using ListView by Item

Users want to drill down into a list of items to display more information about that item: the traditional
master-detail pattern. Begin with the previous example of “Using ListView by Page.” Add an item ID to the
ListItem data model and remove the PageType. In the OnListItemClick StartActivity method call,
navigate to a single activity type, a detail activity that shows detail on that item, and pass in the item ID by
using the bundle on the new intent.

Using ListView with a Toolbar

Adding a toolbar above ListView requires the use of a layout XML containing ToolBar and ListView.
Combine the ListView techniques in Chapter 5 with the toolbar recipes earlier in this chapter. Add a
<ListView> tagto alayout (as shown in Listing 5-13) with an included toolbar (as in Listing 6-23), and bind
the layout’s ListView in your activity:

listView = FindViewById<ListView>(Resource.Id.listItems);
listView.Adapter = new ListCustomAdapter(this, listItems);

273

http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 6 © NAVIGATION

Navigation Drawer

The navigation drawer is the sliding side menu triggered by tapping an icon (usually the hamburger) at the
top of the screen. Like the toolbar, the drawer layout is used as part of the Support Library to support older
APIs (android.support.v4.widget.DrawerLayout). The available implementation solutions are too lengthy
to include here. The following are some recommended sources for navigation drawer implementations:

e Effective Navigation in Xamarin.Android: Part 1—Navigation Drawer at MotzCod.es
by James Montemagno

e And his GitHub example at https://github.com/jamesmontemagno/Xam.NavDrawer
Tabs Using ActionBar

Tabbed menus at the top of the screen allow switching screen content between different pages (Figure 6-33).

FIRST ITEM SECOND ITEM

Figure 6-33. Action bar tabs

Android provides this functionality in the action bar, which handles tabs, but the page flipping must be
coded manually by using fragments. There are a few steps to make this work:

1. Add aFrameLayout to the main layout XML to contain the tab fragments.

Create a fragment class and layout XML for each tab.

2
3. Inthe main activity, instantiate ActionBar and set its NavigationMode to Tabs.
4. Add tabs to the action bar by using AddTab.

5

Add event handlers for TabSelected and TabUnselected that invoke and destroy
the tab fragments.

Let’s go through the steps in detail.

Add a FrameLayout called fragmentContainer to the main layout XML, as in Listing 6-55, which will contain
the dynamically loaded tab layout XML.

Listing 6-55. Main Layout in TabMain.axml

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<FrameLayout
android:id="@+id/fragmentContainer"
android:layout width="match_parent"
android:layout_height="o0dip"
android:layout_weight="1" />
</LinearlLayout>

274

https://github.com/jamesmontemagno/Xam.NavDrawer
http://schemas.android.com/apk/res/android

CHAPTER 6 * NAVIGATION

Create a fragment class for each tab. The first one is shown in Listing 6-56.

Listing 6-56. Tab Fragment in TabFirstFragment.cs

class TabFirstFragment : Fragment
{
public override View OnCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState)
{

base.OnCreateView(inflater, container, savedInstanceState);

var view = inflater.Inflate(Resource.layout.TabFirst, container, false);
var text = view.FindViewById<TextView>(Resource.Id.text);

text.Text = "This is the first tab page.";

return view;

}

For each tag fragment, create a fragment layout that contains your tab page content, a TextView in this case
(Listing 6-57).

Listing 6-57. Tab Fragment Page Content in TabFirst.axml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:text="Large Text"
android:textAppearance="?android:attr/textAppearancelLarge"”
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/text" />

Note Remember to create the layout and fragment class for the second tab (TabSecondLayout.cs and
TabSecond.axml).

In the main activity’s OnCreate method, set the layout to TabMain.axml and set the action bar’s
NavigationMode property to Tabs (Listing 6-58).

Listing 6-58. Display TabMain Layout and Set ActionBar to Tabs in TabMenuActivity.cs

SetContentView(Resource.Layout.TabMain);
ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;

This creates a tabbed action bar, and the page below it is a frame layout ready for the tab fragments to be
added and removed.

275

http://schemas.android.com/apk/res/android

CHAPTER 6 © NAVIGATION

Note If you get a Null Object error on the action bar, make sure that you’re not using the theme called
MyTheme from earlier in this chapter, which is made for the Support Library v7 AppCompat library. Use an
explicit theme declaration for this activity if you need to, as shown in Listing 6-60. If you need both an action
bar and a toolbar in your app, consider using the Support Library v7 AppCompat library to implement both.

For each tab, instantiate the tab by using the ActionBar.NewTab() method, as coded in Listing 6-59.
Then instantiate the tab’s accompanying fragment. Use the TabSelected event to add and display the tab’s
fragment. Use the TabUnselected event for cleanup. Add the tab to the action bar by using AddTab.

Listing 6-59. Instantiate Tabs and Handle TabSelected Events in TabMenuActivity.cs

var tab = ActionBar.NewTab();
tab.SetText("First Item");
var tabFirst = new TabFirstFragment();
tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e)
{
var fragment = this.FragmentManager
.FindFragmentById(Resource.Id.fragmentContainer);
if (fragment != null)
e.FragmentTransaction.Remove(fragment);
e.FragmentTransaction.Add(Resource.Id.fragmentContainer, tabFirst);

};

tab.TabUnselected += delegate(object sender, ActionBar.TabEventArgs e)
{

};

ActionBar.AddTab(tab);

e.FragmentTransaction.Remove(tabFirst);

The null fragment check in the TabSelected event ensures that the fragment is not added twice.

Tip Remember to do this for the second tab as well, as shown in Listing 6-60.

Figure 6-34 shows the first tab selected.

276

CHAPTER 6 * NAVIGATION

FIRST ITEM SECOND ITEM

his is the first tab page.

Figure 6-34. Action bar tabs in action

Figure 6-35 shows the second tab selected.

FIRST ITEM SECOND ITEM

his is the second tab page.

Figure 6-35. Second tab selected, showing the second tab fragment layout

Icons can be added to the tabs by using SetIcon:
tab.SetIcon(Resource.Drawable.tabFirstIcon);

When using more than a few tabs, the performance of tab event handlers may suffer. Manually implement
ActionBar.ITablListener to handle each event. Xamarin.Android wraps the ActionBar.ITabListener
with events on the ActionBar.Tab class. That means that ActionBar.ITabListener is created automatically
when regular event handlers are used, but implementing it explicitly improves performance.

The tab pattern works naturally with the carousel pattern to allow sliding between tabs. Use the ViewPager
class for slidable tab contents. Note that ActionBar works with Android.App.Fragment, while ViewPager
works with Android. Support.V4.App.Fragment, so in order to rectify these two libraries, derive your main
Activity from FragmentActivity.

Tip The TabReselected event fires when a previously selected tab is selected again.

Note The action bar was introduced in Android 3.0 (API level 11). Compatibility back to Android 2.1
(API Level 7) can be achieved by using the Android Support Library v7 AppCompat.

277

CHAPTER 6 © NAVIGATION

CODE COMPLETE: TabMenuActivity.cs

Listing 6-60 shows the complete main activity for the two-tab implementation of action bar tabs. See all of
the files in the downloadable code solution NavigationExamplesAndroid.

Regarding the [Activity] attribute, an explicit declaration of this activity’s theme is necessary only if you
used the custom MyTheme theme in your app for the toolbar earlier in this chapter, which is incompatible
with ActionBar.

Listing 6-60. TabMenuActivity.cs

[Activity(Theme = "@android:style/Theme.Material”,
Label = "TabMenuActivity")]
public class TabMenuActivity : Activity

{

protected override void OnCreate(Bundle bundle)

{
base.OnCreate(bundle);
SetContentView(Resource.Layout.TabMain);

ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;

var tab = ActionBar.NewTab();

tab.SetText("First Item");

var tabFirst = new TabFirstFragment();

tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e)

{
var fragment = this.FragmentManager.FindFragmentById(Resource.
Id.fragmentContainer);
if (fragment != null)
e.FragmentTransaction.Remove(fragment);
e.FragmentTransaction.Add(Resource.Id.fragmentContainer, tabFirst);
};
tab.TabUnselected += delegate(object sender, ActionBar.TabEventArgs e)
{
e.FragmentTransaction.Remove(tabFirst);
};

ActionBar.AddTab(tab);

var tab2 = ActionBar.NewTab();
tab2 = ActionBar.NewTab();
tab2.SetText("Second Item");
var tabSecond = new TabSecondFragment();
tab2.TabSelected += delegate(object sender, ActionBar.TabEventArgs e)
{
var fragment = this.FragmentManager
.FindFragmentById(Resource.Id.fragmentContainer);
if (fragment != null)
e.FragmentTransaction.Remove(fragment);
e.FragmentTransaction.Add(Resource.Id.fragmentContainer,
tabSecond);
};

278

CHAPTER 6 * NAVIGATION

tab.TabUnselected += delegate(object sender, ActionBar.TabEventArgs e)
{

};

ActionBar.AddTab(tab2);

e.FragmentTransaction.Remove(tabFirst);

}

Using the Android navigation patterns we've covered, you should be able to build the skeleton of your app.
If you're ready to learn more about Android, turn to Chapter 7, which covers data binding and data access.

If you're ready for iOS navigation patterns, read on!

i0S Navigation

iOS pages are built using UIView and UIViewController, the views and controllers in the MVC pattern.
While UIView can be constructed by hand using code, it’s typically built using iOS designer tools such as the
Xamarin Designer for iOS or the Xcode Interface Builder in one of two ways: storyboards or nibs.

Storyboards are groups of UIView classes represented by XML layout files strung together into an application
by using a designer tool. Each storyboard screen, called a scene, is made up of a UIView and a code-

behind UIViewController. Each XML layout is typically instantiated into a UIView automatically without
requiring code in the UIViewController to do that. Storyboard constructs called segues handle transitions
to other layouts, also without code. When using storyboards, you don’t need to do much C# coding for basic
navigation in iOS.

An older method of constructing apps is using nibs (. xib files). A nib is a single XML layout file that is used
separately from other nibs and instantiated into a UIView by its accompanying UIViewController. Nibs are
typically constructed using the Xcode Interface Builder, and then a little C# coding is done to string them
together.

Important Note Most navigation in i0OS development today is done using storyboards built with a designer
tool, without much C#, leaving key aspects of i0S navigation beyond the scope of this code-first, non-tool-
oriented book. Be certain to study appropriate designer tool resources, such as the Xamarin online docs, to
learn about how that is done using Xcode Interface Builder or Xamarin Designer for i0S. This is absolutely
necessary for learning best-practice Xamarin.iOS development.

You will explore how to code navigation by hand to give you an idea of what is happening behind the scenes
and for the cases when you want more control. Use this chapter as a way to understand the underpinnings of
iOS Ul navigation and to help you out of tricky situations, but a tool-first approach is typically best practice
here, and this is a code-first book. I'll cover code-first navigation approaches useful with both storyboards
and nibs, but will mostly assume that you are using storyboards.

Now let’s dive into the basics of iOS navigation. For each example, I'll first mention the standard approach
using the designer, and then provide detail on the code-based approach.

279

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 6 © NAVIGATION

Using Storyboards, Scenes, and Segues

Storyboards are constructed of scenes and the transitions between them, called segues. Scenes are made

up of View and ViewController pairs, effectively single screens. iPhone scenes typically correspond to
screens one-to-one. However, on an iPad multiple scenes may appear on one screen. Also, modal scenes can
appear on top of other scenes. Segues define the navigation pattern, hierarchical or modal, and can handle
animation and data passed between scenes.

Use storyboards to manage events for controls in the Properties Pad in the iOS Designer. Add the event
handlers there and complete them in partial methods in the UIViewController class. Storyboards are stored
as XML files. During the build, . storyboard files are compiled into nibs, screen-specific binary files. At
runtime, nibs are initialized and instantiated to create new views.

In storyboard solution templates, storyboards are wired up to a project automatically via Options » iOS
Application » Main Interface, which is set to the storyboard name.

Storyboard screens can also be instantiated programmatically within AppDelegate, as shown in Listing 6-61,
where we instantiate the NavigationStory storyboard.
Listing 6-61. Instantiate a Storyboard in AppDelegate.cs

public partial class AppDelegate : UIApplicationDelegate

{
UIWindow window;
public static UIStoryboard Storyboard = UIStoryboard
.FromName ("NavigationStory", null);
public static UIViewController firstViewController;
public override bool FinishedlLaunching (UIApplication app,
NSDictionary options)
{
window = new UIWindow (UIScreen.MainScreen.Bounds);
firstViewController = Storyboard
.InstantiateInitialViewController () as UIViewController;
window.RootViewController = firstViewController;
window.MakeKeyAndVisible ();
return true;
}
}

This AppDelegate initializes the first scene (view/view controller) in the storyboard as the first visible page,
placed into the window’s RootViewController as firstViewController.

Segues define the navigation type, animation details, and data passed between scenes. Storyboard projects
begin, by default, with a Sourceless segue, the “lead-in” to the first scene that indicates which view the user
will see first. The most common segues are Push, Modal, and Unwind:

e Hierarchical navigation is accomplished by using the Push segue or by-hand using
the UINavigationController’s PushViewController method.

e Modals are created with the Modal segue or the UIViewController’s
PresentViewController method.

e Backnavigation can be accomplished using the Unwind segue or the
DismissViewController method.

280

CHAPTER 6 * NAVIGATION

Create a segue by holding down the Ctrl key inside a button control and click-dragging from one scene to
another; then define the segue type by choosing Root, Push, Modal, or Custom from the pop-up menu.
Unwind segues are created by using the Segue Exit button at the bottom of the scene.

Note Right-click for segues on VMware for your Windows virtual machine, or change your keyboard
preferences to left-click.

Using Nibs

Before storyboards, there were nibs (.xib files): XML files representing a single screen’s layout. You'll find
many apps still using nibs. You may find occasion to use one yourself, as sometimes a storyboard is overkill.
Whereas storyboards are groups of layouts, nibs are single XML layout files that are instantiated into
UIViews by their accompanying UIViewControllers, often in the declaration of the UIViewController as
part of the base class in quotes. ThisScreen.xib is loaded onto the screen in the UIViewController called
ThisScreen.cs.

public ThisScreen () : base ("ThisScreen", null)

Nibs are typically constructed using the Xcode Interface Builder, and then strung together into applications
using outlets or events in a designer tool or programmatically in their UIViewControllers.

Hierarchical Navigation

Hierarchical navigation in iOS uses the navigation controller, UINavigationController. Popping new pages
onto the stack is achieved by using the navigation controller’s PushViewController method and popped
back off using DismissViewController. This is accomplished in storyboards by dropping a navigation
controller onto the canvas and using the Push segue to add scenes, and then the Unwind segue to pop
scenes off the stack (with Scene Exit).

Using UINavigationController

The primary navigation component in iOS is the navigation controller, or UINavigationController.

This view controller provides a call stack and a fully customizable navigation bar with a screen title and
navigation controls (Figure 6-36). A navigation controller object manages the currently displayed screens
by using the navigation stack, which is represented by an array of view controllers. The first view controller
in the array is the root view controller. The last view controller in the array is the view controller currently
displayed.

Carrier ¥ 7:27 PM L

{ PageOne PageTwo

Figure 6-36. UINavigationController provides up navigation and titles for context

281

CHAPTER 6 © NAVIGATION

First use your designer tool to create an initial page. Assign a view controller by clicking the bottom bar of
that page in the designer and entering both the class name and view controller title as PageOne.

UINavigationController can be dragged and dropped onto a storyboard by using the designer or can be
added manually by wrapping it around another view controller.

Manually add a navigation controller in your AppDelegate.cs, as in Listing 6-62, by wrapping
it around the first view controller in your storyboard, which you can find using Storyboard.
InstantiateInitialViewController().

Listing 6-62. Instantiate the Storyboard in AppDelegate.cs FinishedLaunching Method

firstViewController = Storyboard
.InstantiateInitialViewController () as UIViewController;

UINavigationController navController = new UINavigationController
(firstViewController);

Then assign the navigation controller as the root controller of the main window by using window.
RootViewController:

window.RootViewController = navController;

Figure 6-37 shows page 1, which was created using a storyboard. The button called buttonGoToTwo was
added to navigate to the second page (which we’ll cover in a minute).

Carrier = 7:27 PM -

PageOne

Page One

Go to Page Two

Figure 6-37. Page 1 wrapped in UINavigationController

Using the Push Segue or PushViewController

The Push segue adds a view controller onto the navigation stack within the same navigation controller.
This presents a navigation bar with a Back button. The Push segue is functionally the same as using the
UIViewController.PushViewController method. The UIViewController method PushViewController
pushes a new view controller onto the stack.

First, use your designer tool to add a destination scene to your storyboard to navigate to and give it a name
(PageTwoView, in this case). Also add a UIViewController by clicking the bottom of the PageTwoView scene
and give the view controller a name, PageTwo. Set the Storyboard ID to PageTwo.

282

CHAPTER 6 * NAVIGATION

If you're building storyboards using the designer, create a Push segue in your designer by Ctrl-clicking inside
a button on the source scene and then dragging the blue line to the scene to navigate to. Then pick the Push
option from the pop-up menu.

To do the same thing by hand, add the code in Listing 6-63 to the PageOne view controller to navigate to this
second page, in the button event in this case.

Listing 6-63. Navigate Using PushViewController in the ViewDidLoad Method of PageOne.cs

PageTwo pageTwo = this.Storyboard.InstantiateViewController ("PageTwo") as PageTwo;
NavigationController.PushViewController(pageTwo,true);

Listing 6-64 shows the entire button event handler.

Listing 6-64. TouchUplnside Event Handler

buttonGoToTwo.TouchUpInside += (sender, ea) => {
PageTwo pageTwo = this.Storyboard.InstantiateViewController
("PageTwo") as PageTwo;
NavigationController.PushViewController(pageTwo,true);

};
This code instantiates the second view controller by using Storyboard.InstantiateViewController and

then pushes the second page on the stack by using NavigationController.PushViewController. Tap the
buttonGoToTwo on the first page and navigate to page 2, as shown in Figure 6-38.

Carrier = 7:27 PM -

{ PageOne PageTwo

Page Two

Figure 6-38. Navigate to the second page by using UINavigationController

UINavigationController allows the user to tap the left arrow and/or the PageOne text to return to the
first page.

Tip Back (or pop) can be coded manually with the Unwind segue or the DismissViewController method.

Customizing UINavigationController

Customizations can be made to UINavigationController directly (navController, in this case) or
by referencing the navigation controller instance in UIViewController via the UIViewController.
NavigationController property. The following customizations are made in navController directly.

The title used in the navigation bar comes from the Title property of each view controller:

navController.Title = "Page Title";

283

CHAPTER 6 © NAVIGATION

Change the style color of the navigation bar by using the BarStyle property:

navController.NavigationBar.BarStyle = UIBarStyle.Black;

Set the style back to the default:

navController.NavigationBar.BarStyle = UIBarStyle.Default;
Hide the navigation bar by using the SetNavigationBarHidden method:
navController.SetNavigationBarHidden (true, true);

Show the navigation bar:

navController.SetNavigationBarHidden (false, true);

Note The navigation bar has options for a customizable Back button icon, a right button, and a second
toolbar at the bottom of the screen. For these and other options, consult the Xamarin online documentation for
the i0S navigation controller.

Modal Navigation

There are two types of modals in iOS: full screen and pop-ups. Full-screen modals are created by using the
Modal segue or the view controller’s PresentViewController method. Pop-up modals, which include dialog
boxes, user alerts, notifications, and pop-up menus, are created using UIAlertController. UIAlertController
is a subclass of ViewController, and is displayed as a modal alert or action sheet, a pop-up menu.

Tip UIAlertController replaced both UAlertView and UIActionSheet in iOS 8. For tips on how to
handle OS versioning, see Chapter 9.

Using the Modal Segue or PresentViewController

The Modal segue creates a relationship between two view controllers with an option for animation between
the screens. The child screen will fill the entire visible page but will not provide a Back button. The Modal
segue is functionally the same as using the UIViewController.PresentViewController method.

Add a scene to your storyboard by using your designer tool to drop a view controller into it, and give it a class
name and view controller title of PageModalView. Also add a UIViewController by clicking the bottom of the
PageModalView scene, and give the view controller a name and storyboard ID of PageModal.

If you're using the designer to build storyboards, create a Modal segue in your designer by Ctrl-clicking
inside a button on the source scene and then dragging the blue line to the scene to navigate to. Then pick the
Modal option from the pop-up menu.

284

http://dx.doi.org/10.1007/9781484202159_9

CHAPTER 6 * NAVIGATION

To create a modal manually, code a button event in your source view controller, such as PageOne.cs.
The UIViewController method PresentViewController calls your view controller modally and brings it
into view, as shown in Listing 6-65.

Listing 6-65. Navigate Using PresentViewController in PageOne.cs

PageModal pageModal = this.Storyboard.InstantiateViewController
("PageModal") as PageModal;
this.PresentViewController(pageModal,true,null);

This navigates to a modal page with no navigation bar, even when UINavigationController is wrapping the
current view controller (Figure 6-39).

SRR

Carrier ¥ 7:27 PM -

Modal Page

/‘\

N/

Figure 6-39. PresentViewController in action

No, there’s no way for the user to go back in this app without clicking the Home button or restarting the app.

285

CHAPTER 6 © NAVIGATION

Tip Back can be coded manually by using the Unwind segue or programmatically by using the
DismissViewController method.

buttonClose.TouchUpInside += (object sender, EventArgs e) => {
DismissViewController(true, () => {});

};

Alerts and User Notifications Using UlAlertController

Alerts and user notifications are typically small modal pop-up dialog boxes containing real-time feedback
to the user and one or more buttons to allow the user to dismiss or choose an option in response. Using
UIAlertController, a title and message are included in the alert with the Create method, and buttons are
added with the AddAction method.

Create an alert by specifying UIAlertControllerStyle.Alert in the Create method, as shown in Listing 6-66.
Add a button to it by using AddAction, and display the alert modally with PresentViewController.

Listing 6-66. Using UlAlertController in PageOne.cs

var alert = UIAlertController.Create("Important”,
"Are you sure you want to do this irreversible thing?",
UIAlertControllerStyle.Alert);

alert.AddAction(UIAlertAction.Create("Cancel”, UIAlertActionStyle.Cancel,
alertAction => {}));

alert.AddAction(UIAlertAction.Create("Yes", UIAlertActionStyle.Default,
alertAction => {}));

this.PresentViewController(alert, true, null);

The alertAction lambda expressions here are empty (alertAction => {}) but would contain the code you
wanted to execute upon the user’s choice of actions.

This UIAlertController presents a pop-up alert with important info and a couple of options (Figure 6-40).

Important
Are you sure you want to do this
irreversible thing?

Cancel Yes

Figure 6-40. UIAlertController with the Alert style

286

CHAPTER 6 * NAVIGATION

Pop-up Menus Using UlAlertController

Pop-up menus are modal dialog boxes containing several buttons that allow a user to choose from a list of
options. This type of menu is sometimes called an action sheet.

Create an alert by specifying UTAlertControllerStyle.ActionSheet in the Create method (Listing 6-67).
Add buttons to it by using AddAction, and display the alert modally with PresentViewController.

Listing 6-67. Using UIAlertControllerStyle.ActionSheet to Create a Pop-up in PageOne.cs

var popup = UIAlertController.Create("What is your choice?", null,
UIAlertControllerStyle.ActionSheet);

var firstChoice= UIAlertAction.Create ("First Choice",
UIAlertActionStyle.Default, alertAction => {});

popup.AddAction(firstChoice);

var secondChoice= UIAlertAction.Create ("Second Choice",
UIAlertActionStyle.Default, alertAction => {});

popup.AddAction(secondChoice);

popup.AddAction(UIAlertAction.Create("Cancel”, UIAlertActionStyle.Cancel,
alertAction => {}));

this.PresentViewController(popup, true, null);

The alertAction lambda expressions here are empty (alertAction => {}) but would contain the code you
wanted to execute upon the user’s choice of actions.

This displays your pop-up menu at the bottom of the screen with a couple of choices (Figure 6-41).

First Choice

Second Choice

Cancel

Figure 6-41. UlIAlertController with the ActionSheet style

Tip It’s often a good idea to provide a Cancel option.

287

CHAPTER 6 © NAVIGATION

Managing State

State is typically managed in iOS by passing data directly into UIViewController. This is usually done

by using custom public properties on the destination view controller. When using segues, override the
PrepareForSegue method to populate these properties before the segue, similar to coding transitions

by hand by using PushViewController. Less commonly, values are passed through the view controller’s
constructor. All the approaches covered here scope data to a single view controller at a time, which is ideal
from an architecture and memory use standpoint.

Tip Static global classes can be used to share object instances instead of passing values and were
discussed in the Xamarin.Forms “Using a Static Global Class” section earlier.

Using the PrepareForSegue Method

You can use segues on your storyboard to pass values by overriding the PrepareForSegue method in the
originating view controller and updating the public properties of the destination view controller before the
segue takes place.

Add a destination view controller to the storyboard called DetailPageProperty. Add a public Item property
(Listing 6-68).
Listing 6-68. Destination View Controller in DetailPageProperty.cs

partial class DetailPageProperty : UIViewController

{
private ListItem _item;
public ListItem Item
{
get { return _item;}
set { _item = value;}
}
public DetailPageProperty (IntPtr handle) : base (handle)
{
}
public override void ViewDidlLoad ()
{
base.ViewDidLoad ();
LabelTitle.Text = item.Title;
LabelDescription.Text = _item.Description;
}
}

Create a Push segue in your designer by Ctrl-clicking inside a button on the source scene and then dragging
the blue line to the scene to navigate to. Then pick the Push option from the pop-up menu.

288

CHAPTER 6 * NAVIGATION

Override PrepareForSegue in your parent view controller and populate your destination view controller’s
public properties, as shown in Listing 6-69.

Listing 6-69. PrepareForSegue Override in PageOne.cs

public override void PrepareForSegue (UIStoryboardSegue segue,
NSObject sender)
{

ListItem item = new ListItem();
item.Title = "Item Title";
item.Description = "Detailed Information about this item";

base.PrepareForSegue (segue, sender);

var detailPage = segue.DestinationViewController
as DetailPageProperty;

if (detailPage != null) {
detailPage.Item = item;

}

}

The DestinationViewController property of UIStoryboardSegue contains the instance of the destination
view controller, and its public properties can be populated prior to the segue. After the segue is complete,
the contents of public properties of the destination view controller (detailPage.Item, in this case) can be
accessed.

Using UIViewController Public Properties

When pushing pages to the stack by hand, you can use a technique similar to the previous public property
example, but using PushViewController instead of a Push segue. In the calling view controller, instantiate
the detailPageProperty page, assign the public Item property, and push the new page to the stack,
prepopulated with data (Listing 6-70).

Listing 6-70. Navigate to Detail Page Using PushViewController in PageOne.cs

detailPageProperty detailPageProperty = this.Storyboard.InstantiateViewController
("DetailPage") as

detailPageProperty;
detailPageProperty.Item = item;
NavigationController.PushViewController(detailPageProperty,true);

When your pages are coded by hand with no storyboard, the view controller constructor parameters are
useful for passing values.

Using the UlViewController Constructor Parameters
When calling a new page in code, you can pass in the variables that are defined in your page’s constructor.

Define a destination page with a ListItem class as a constructor parameter, as shown in Listing 6-71. This
example passes in the I'tem object and uses the Item.Title property.

289

CHAPTER 6 © NAVIGATION

Listing 6-71. Define Contructor Parameters in the Destination Page in DetailPage.cs

partial class DetailPage : UIViewController

{
private ListItem item;
public DetailPage(ListItem itemPassed)
{
item = itemPassed;
}
public override void ViewDidlLoad ()
{
base.ViewDidLoad ();
Title = item.Title;
}
}

Instances of the ListItem class can then be passed directly into the page when it is called, as shown in
Listing 6-72.
Listing 6-72. Pass Item into the Destination Page in PageOne.cs

DetailPage detailPage = new DetailPage(item);
NavigationController.PushViewController(detailPage,true);

Tip C# events or callback methods with Action<string> are useful for returning data from a view
controller.

Drill-down List Using UINavigationController

While building a list using UITableView (as shown in Chapter 5), the selectable list can become a drill-down
list with hierarchical navigation.

Create a new UITableViewSource called DrilldownlListSource beginning with our UITableView list
source example from Chapter 5 (Listing 5-23). In the UITableViewSource constructor, pass in the parent
UIViewController, as shown in Listing 6-73.

Listing 6-73. UlTableViewSource Using Parent View Controller in DrilldownListSource.cs

UIViewController parentController;

public DrilldownListSource (List<ListItem> items, UIViewController parentController)

{

listItems = items;
this.parentController = parentController;

290

http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 6 * NAVIGATION

This allows the call from the parent UIViewController to pass in its own reference, allowing the list source’s
access to tNavigationController:.

table.Source = new DrilldownListSource(listItems, this);

Listing 6-74 is the full UITableViewController containing the list data population and the Source property
setting. This is based on the list pattern covered in Chapter 5, in Listing 5-24.

Listing 6-74. UlViewController for a UITableView in DrilldownList.cs

public partial class DrilldownList : UITableViewController

{
List<ListItem> listItems;
public override void ViewDidLoad()
{
base.ViewDidLoad();
UITableView table = new UITableView(View.Bounds);
listItems = new List<ListItem> {
new ListItem {Title = "First", Description="1st item"},
new ListItem {Title = "Second", Description="2nd item"},
new ListItem {Title = "Third", Description="3rd item"}
};
table.Source = new DrilldownListSource(listItems, this);
Add (table);
}
}

In the UITableViewSource subclass, instantiate the detail screen. Then use the PushViewController method
to push that screen onto the stack by using the NavigationController on the parent UIViewController, as
shown in Listing 6-75.

Listing 6-75. Navigate to the Selected View Controller by Using PushViewController in
DrilldownListSource.cs

public override void RowSelected (UITableView tableView, NSIndexPath indexPath)
{

var detail = new DetailScreen (listItems[indexPath.Row]);
parentController.NavigationController.PushViewController(detail,true);
tableView.DeselectRow (indexPath, true);

}

Use indexPath to locate the selected item in the 1istItems array, and then pass it into the detail page’s
constructor to use that Item object on the detail page. Figure 6-42 shows the resulting list.

201

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 6 © NAVIGATION

< PageOne
First
Second

Third

Figure 6-42. Drill-down list using UINavigationController

Clicking an item navigates to the specified page, passing though the item title, as shown in Figure 6-43.

< Back First

Figure 6-43. Drill-down list destination page

Tip Create a drill-down list by page type by adding a page type field to the list data model and instantiating
the detail page in the RowSelected method using that type.

Listing 6-76 is the complete code for the list source.

Listing 6-76. Drill-down List UITableViewSource in DrilldownListSource.cs

public class DrilldownListSource : UITableViewSource

{

protected List<ListItem> listItems;
protected string Cellld= "TableCell";
protected UIViewController parentController;

public DrilldownListSource (List<ListItem> items,
UIViewController parentController)

{
listItems = items;
this.parentController = parentController;
}
public override nint RowsInSection (UITableView tableview, nint section)
{
return listItems.Count;
}

292

CHAPTER 6 * NAVIGATION

public override UITableViewCell GetCell(UITableView tableView,
NSIndexPath indexPath)

{
UITableViewCell cell = tableView.DequeueReusableCell(CellId);
if (cell == null) cell = new
UITableViewCell(UITableViewCellStyle.Default, Cellld);
cell.TextlLabel.Text = listItems[indexPath.Row].Title;
return cell;
}

public override void RowSelected (UITableView tableView,
NSIndexPath indexPath)

{
var detail = new DetailPage (listItems[indexPath.Row]);
parentController.NavigationController.PushViewController(detail,true);
tableView.DeselectRow (indexPath, true);
}

Navigation Drawer Using Components

The navigation drawer is the sliding side menu triggered by tapping an icon (usually the hamburger) at the
top of the screen. Unlike Xamarin.Forms and Android, Apple provides no out-of-the-box navigation drawer
component at the time of this writing; it must be developed by hand. I suggest trying these components from
the Xamarin Component Store:

¢ Flyout Navigation by James Clancey

e Sidebar Navigation by Jack Dehlin
GitHub also has options:

e MonoTouch.SlideoutNavigation by Dillon Buchanan
These include MVVM-friendly menus:

e MonoTouch.SlidingControls by Jonathan Stoneman

e MvxSlidingPanels.Touch by Big Frank

e SlidingPanels.Touch by Patrick Laplante

Tabs Using UITabBarController

Tabs are a group of screens that a user can navigate to via a set of folder-like buttons. In iOS, each tab
screen is represented by a UIView/UIViewController pair (Figure 6-44). The tabs are at the bottom of the
screen in iOS.

293

CHAPTER 6 ~ NAVIGATION

AR

Carrier = 1:20 AM -

< PageOne

Figure 6-44. UlTabBarController

Create tabs by dragging and dropping a tab bar controller onto a storyboard, or code them by-hand using the
UITabBarController class.

When coding by hand, use UITabBarController to instantiate ViewControllers as tab menu screens and
assign them to the ViewControllers property, as shown in Listing 6-77.
Listing 6-77. Tabbed Menu Using UITabBarController

public class TabBarController : UITabBarController {

UIViewController tabFirst, tabSecond, tabThird;

public TabBarController ()

{
tabFirst = new UIViewController();

tabFirst.Title = "Purple";
tabFirst.View.BackgroundColor = UIColor.Purple;

294

CHAPTER 6 * NAVIGATION

tabSecond = new UIViewController();
tabSecond.Title = "Black";
tabSecond.View.BackgroundColor = UIColor.Black;

tabThird = new UIViewController();

tabThird.Title = "Blue";
tabThird.View.BackgroundColor = UIColor.Blue;

var tabs = new UIViewController[] {
tabFirst, tabSecond, tabThird
};

ViewControllers = tabs;

}

The result was shown earlier in Figure 6-43.

Tabs can be customized. The title and icon can be changed. Default values for these properties are available
by using the TabBarItem property and UITabBarItem constructor.

Tip Tab navigation usually appears at the bottom of the screen in iOS.

Create a Favorites tab by replacing the Title assignment of the first tab in Listing 6-77:
tabFirst.TabBarItem = new UITabBarItem (UITabBarSystemItem.Favorites, 0);

Customize the second tab by setting the Image and Title properties. This image must be an alpha-
channeled outline of an icon.

tabSecond = new UIViewController ();

tabSecond.TabBarItem = new UITabBarItem ();
tabSecond.TabBarItem.Image = UIImage.FromFile ("second.png");
tabSecond.TabBarItem.Title = "Second";

Important Add second. png to the Resources folder of the project in Xamarin Studio, along with the
high-resolution image named second@2x. png.

Badges are often used to reflect new content to be read in a tab screen. Badges may also be added to tabs by
using the BadgeValue property:

tabThird.TabBarItem.BadgeValue = "New";
Make the badge disappear by setting it to null:

tabThird.TabBarItem.BadgeValue = null;

295

CHAPTER 6 © NAVIGATION

Summary

Congratulations! You have reached the end of the longest chapter in this book.

Navigation is a key topic in the creation of mobile apps. In web and desktop apps, single screens are so large
and hold so much of the user workflow that navigation is often a small part of the user experience and is
even sometimes added as an afterthought. Because of the economy of screen real estate in mobile apps, we
must enable users to easily get around in an app in as short a time as possible. Consumer apps can engage
a user for a long period of time, but success in business apps is not measured in the amount of time a user
spends in the app but in the answer to this question: Did they find the information they were looking for?
Menus can'’t be a catchall parking lot of drop-downs at the top of the page or (just as bad) a navigation
drawer bursting with disorganized features.

The criticality of navigation in mobile apps leads us to this tenet: Mobile navigation must closely match the
user workflow. If it doesn’t, we risk confused and frustrated users.

In most of our apps, especially business apps, it is useful to try and match our user stories and use cases with
these key navigation patterns: hierarchical, modal, drill-down list, navigation drawer, and tabs.

Hopefully, this chapter provides you with the ideas and patterns to map out the skeleton of just about any
app you can imagine. The downloadable code samples can be mixed and matched to help you sketch out

your app.

Now it’s time for the foundation beneath all of our UI technique: the data. Let’s explore data access and data
binding in depth.

Please navigate to the next chapter.

296

CHAPTER 7

Data Access with SQLite
and Data Binding

Data access in Xamarin apps often involves a local database and a remote data server accessed via web
services. Local data access can be handled in many ways with many products, both open source and
proprietary, but the Xamarin-recommended mobile database is SQLite, which is built into iOS and Android.
Data can be queried from a SQLite database and manually populated into the UI, but a more sophisticated
approach is to use data binding to transfer information automatically between the UI and your data models.
In this chapter, you'll learn how to employ SQLite in your Xamarin apps as well as how to use data binding in
your Xamarin.Forms apps.

What Is SQLite?

SQLiteis a C-based relational database designed in the spring of 2000 by D. Richard Hipp for use in US Navy
guided-missile warships. It is now a standby database engine included in many operating systems, including
i0S and Android (but not in Windows Phone, so it must be shipped manually). SQLite implements most of
the SQL standard and has no stand-alone database server process but instead is linked as a library-accessed
datastore, providing an on-demand, app-specific database.

You will typically use SQLite with Xamarin in one of three ways:

e SQLite.NET: Using SQLite.NET to form CRUD transactions with Insert, Get, Delete,
Table, and Query

e ADO.NET: Using a minimal ADO.NET implementation of SQLite to execute SQL
statements with Command objects

e Third-party MVVM libraries: Data binding views to fields in the SQLite database by
using a third-party MVVM framework such as MvvmCross or MVVM Light Toolkit

Third-party MVVM libraries are beyond the scope of this book. ADO.NET is covered at the end of the
chapter, and SQLite.NET is a popular choice with developers.

297

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

What Is SQLite.NET?

To use C-based SQLite in C#, a binding library is required, which is why Frank Krueger founded SQLite.NET,
an open source SQLite library in C#. SQLite.NET is an object-relational mapping (ORM) library. ORMs allow
you to manipulate database objects instead of working with fields and tables. SQLite.NET provides both
options. We can do data-object manipulations by using methods such as Insert, Get, and Delete acting on
data classes that map to tables. We can also use SQL to query a table with the Query method and use LINQ
to operate on a table’s contents using the Table method. SQLite using SQLite.NET gives you everything you
need from a local mobile database to build consumer, business, and enterprise native mobile apps.

DATA STORAGE OPTIONS

Many successful mobile apps use nondatabase storage options. You can use file-based data storage

in addition to or even instead of using a SQLite database for data storage. This can involve serialized
data in XML or JSON, HTML, or comma-delimited fields in text files stored in local folders on the

device. Preferences is another data storage option. i0S, Android, and Windows Phone provide ways to
store preferences as key-value pairs typically used to record user settings or other small bits of data.
This chapter focuses on local database access and does not explore these or other nondatabase data
storage techniques, but | encourage you to do so in the Xamarin online docs. Also, Chapter 6 touches on
disk storage techniques involving XML serialization in the “Managing State” sections.

Data Binding

Keeping your Ul in sync with your data model can be a lot of work if you do it by hand in code. Every time
the user makes a change in the UI, you can implement event handlers (such as TextChanged) that update the
contents of the data model, and each time the data model changes in code, you can notify the UI to refresh
(by implementing PropertyChanged).

Data binding handles all of that for you by providing a framework to sync the views with a data model. Data
binding manages views that need to modify the contents of their accompanying data model and the refresh
of the UI from changes in the data model.

Data binding is built into Xamarin.Forms.

This real-time connection between the data layer and presentation layer is available to us in mobile
development, because the presentation layer and data layer reside together on a single physical tier, the
mobile device. Many similarities exist with the development of Windows Presentation Foundation (WPF)
desktop apps. The design pattern used frequently in WPF development is MVVM (Model-View-ViewModel).
MVVM and data binding involve the coupling of the presentation and data layers to create a rich, responsive
user experience.

Xamarin apps can use third-party data-binding libraries such as MvvmCross or MVVM Light. A range of
platform-specific techniques are also available. Android provides the data-binding adapter approaches
discussed in Chapter 5, such as subclassing BaseAdapter. Android also provides adapter classes for data
binding to SQLite databases by using SimpleCursorAdapter and CursorAdapter, which are beyond the
scope of this book. iOS provides adapters such as UITableViewSource, which was also covered in Chapter 5.

298

http://dx.doi.org/10.1007/9781484202159_6
http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Important Note This chapter covers cross-platform SQLite techniques such as SQLite.NET and ADO.NET,
as well as Xamarin.Forms data binding. If you need a SQLite solution set up with Xamarin.Android or
Xamarin.iOS, refer to the Xamarin online docs and recipes.

This chapter does not focus on platform-specific data access techniques, but delves into cross-platform
SQLite techniques and data binding using Xamarin.Forms.

Xamarin.Forms Data Binding

Xamarin.Forms has data binding built in, allowing you to bind views to models easily and elegantly. XAML is
often used to implement data binding in Xamarin.Forms. This chapter covers the C# approach, and you can
follow the XAML in the downloadable code examples. Xamarin.Forms data binding supports the binding

of one view to another as well as a view to a variable. This section focuses primarily on the most common
business app use case: binding a view to a data model.

Xamarin.Forms data binding is done by binding a data source property to a target Ul element property.

The target property must be a bindable property (derived from BindableObject), which can be specified by
using the view’s SetBinding method. Bindable properties are indicated in the online Xamarin.Forms API
documentation for each class. The data source can be a variable or data model class property and may be set
by using the BindingContext property on a page or view.

It's worth noting that data binding can be done manually by using a view’s PropertyChanged or TextChanged
event to synchronize with the source.

However, Xamarin.Forms data binding is largely automatic after the setup is complete. You need to
create and configure the target view and pair it with a source. You also need to prepare that source by
implementing the INotifyPropertyChanged interface to make changes to that source observable via
PropertyChanged event handlers. Xamarin.Forms lays in the remaining event handlers under the covers
to carry out the transfer of data to and from the source and target. The following examples focus on this
automatic approach, using the BindingContext property and SetBinding method.

Trivial data binding involves views that contain initial values from the data model (source), and changes to the
Ul (target) are reflected in the model. However, no refresh of the UI occurs to reflect changes to the data model.
Refreshing of the Ul requires nontrivial data binding, covered later, in “Using INotifyPropertyChanged.”

Let’s walk through a few examples of automatic data binding in Xamarin.Forms. You will begin with a trivial
example, in which the Ul updates a data model. Next you'll proceed into nontrivial examples, in which
changes to the data model are refreshed in the view. You'll explore the MVVM design pattern, wrapping your
data model in a view model (or ViewModel). Then you will revisit data-bound lists, except you will make
them editable instead of read-only.

In trivial, automatic data binding, changes to the Ul are reflected in the data model in real time. Here is a
common way (but not the only way) to approach trivial data binding in C#:

1. Specify the source data model by using the BindingContext page (or view) property:
Ex. this.BindingContext = listItem;

2. Pair the source property with the target view property by using the SetBinding method:
Ex. titleEntry.SetBinding(Entry.TextProperty, "Title");

299

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

These two steps bind the Entry view to the Title property of the Item model (1istItemis an instance of Item).

Nontrivial data binding, in which the target must be refreshed to reflect changes made to the contents of the
source in real time, requires an implementation of the INotifyPropertyChanged interface’s observer event
called PropertyChanged, which fires when the view model detects a change to the data (in a property’s Set
accessor method).

Tip Do you want to data bind using Xamarin.iOS or Xamarin.Android? Check out the third-party MVVM
data-binding libraries such as MvvmCross or MVVM Light. More-traditional data binding techniques include
BaseAdapter, SimpleCursorAdapter, and CursorAdapter on Android, and UITableViewSource on i0S. Refer
to Chapter 5 to get started with Android BaseAdapter and iOS UITableViewSource.

Let’s look at a trivial Xamarin.Forms data-binding example.
Binding to a Data Model

Using the two-step data-binding approach in the preceding section, bind an Entry view to the Title property
of a data model called Item. This is trivial binding: changes to the view result in an update to the data model.

Create a data model called Item with a Title and Description string property, as shown in Listing 7-1.

Listing 7-1. Item Data Model in Item.cs
public class Item

{
public string Title { get; set; }
public string Description { get; set; }

}

Create a ContentPage that instantiates and then populates Item (Listing 7-2). Set the BindingContext
property of the page to the item object. Create the Entry view, and then use the SetBinding method to tie its
Text property to the Title property in Item. Entry.TextProperty in the SetBinding method call is a data-
binding property that provides a reference to the Entry view’s Text property.

Listing 7-2. Bind a View to a Model in ItemPage.cs

public ItemPage()
{

var item = new Item {Title = "First", Description="1st item"};
this.BindingContext = item;

var titleEntry = new Entry()
{

};

HorizontalOptions = LayoutOptions.FillAndExpand

300

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

titleEntry.SetBinding(Entry.TextProperty, "Title");

Content = new StacklLayout {
Children = { titleEntry }
b

}

In the SetBinding call, the "Title" string parameter is used to create a Binding object.

BindingContext can be set at the page or view level. In most cases, the page-level property will suffice, but
be certain to set BindingContext at the view level if you are using more than one source. In MVVM apps, a
single source (the ViewModel) is typical. More on this in a moment.

Any value that you type into the Entry view is populated into the item.Title property because of the
binding. Prove this by adding a button view with an event handler that shows the value of the item object, as
shown in Listing 7-3.

Listing 7-3. Button Click Displays the Value of the Title Property

Button buttonDisplay = new Button

{
Text = "Display Item Value",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};

buttonDisplay.Clicked += async (sender, args) =>

await DisplayAlert("Item Object", "Title property:" + item.Title.ToString(), "OK");
};
Remember to add the new button to StackLayout:

Content = new StacklLayout {
Children = { titleEntry, buttonDisplay }
};

Fire up the app and you'll see your Entry view with data prepopulated (Figure 7-1).

Display ltem Value Display Item Value
Display Item Value

Figure 7-1. Trivial data binding populates the target with an initial source value

Change the entry value to something else and click the button to see the data binding in action, as shown
in Figure 7-2.

301

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

4 .
O em—
[Camiar = TEIPM -
Item Object
Title property-something else
something else
Display Item Value

Item Ohject

Tithe property:samething elss

Title property:something else

OK

Figure 7-2. The data-bound Entry view changes the Item property when edited

The data model was automatically updated by the user’s change to the Entry view’s Text property.
The BindingContext used here is at the page level. This could just as easily have been set at the view level:
titleEntry.BindingContext = item;

On pages with multiple views that require separate bindings, set BindingContext at the view level.

Tip If you want to see the limitations of trivial binding firsthand (not using INotifyPropertyChanged), put
the following line of code into your button.Clicked event. When you click the button, you’ll see that the Ul is
not updated by this change to the data model.

item.Title = "Trivial binding";

All of the previous examples are trivial data-binding examples; the data model and variables will reflect
changes to the Ul In order for the Ul to be refreshed from the data model, you will need to use the
INotifyPropertyChanged interface to implement nontrivial data binding.

302

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Using INotifyPropertyChanged

INotifyPropertyChanged is a .NET interface used to notify binding clients that a property value has
changed. Use INotifyPropertyChanged when your data-bound UI must refresh to reflect changes to the
data model in real time (above and beyond just displaying the initial data in the UT).

Here is the definition of the INotifyPropertyChanged interface:

public interface INotifyPropertyChanged
{

}

event PropertyChangedEventHandler PropertyChanged;

Implement INotifyPropertyChanged in a view model (or ViewModel), a class built to serve data to
a particular screen. The INotifyPropertyChanged interface is found in the System.ComponentModel
namespace, and the CallerMemberName attribute resides in the System.Runtime.CompilerServices
namespace, so remember to add them to your class:

using System.ComponentModel;
using System.Runtime.CompilerServices;

Implement INotifyPropertyChanged to create a simple view model with one property called Title, as
shown in Listing 7-4. The Set accessor on the Title property invokes the OnPropertyChanged event to notify
the Ul of a data change so it can refresh.

Listing 7-4. INotifyPropertyChanged Implementation in a View Model in TitleViewModel.cs

public class TitleViewModel : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

String title;

public string Title

{
set
{
if (!value.Equals(title, StringComparison.Ordinal))
title = value;
OnPropertyChanged("Title");
}
}
get
{
return title;
}
}

void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

var handler = PropertyChanged;

303

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}

When the Title property is set, a call is made to the OnPropertyChanged event to fire, with the calling
property passed in by the [CallerMemberName] attribute. The PropertyChangedEventHandler event is the
Xamarin.Forms mechanism for notifying the view that is bound to that property to refresh and reflect the
updated data model.

Note that this simplified approach does not use the Item data model. You'll do that soon.
Back in your ContentPage, update the binding:

var titleViewModel = new TitleViewModel();
titleViewModel.Title = "First";
this.BindingContext = titleViewModel;

Since the property name (Title) hasn’t changed, SetBinding remains basically the same as the previous
example. So you can see how the method is working, here I use an alternative overload of SetBinding, which
takes a Binding object, new Binding("Title"), instead of justa "Title" string.

titleEntry.SetBinding(Entry.TextProperty, new Binding("Title"));
In your buttonDisplay.Clicked event, change the display property to titleViewModel.Title.
Add a button to modify the data model’s property and demonstrate the nontrivial data binding:
Button buttonUpdate = new Button

{
Text = "Update the Data Model",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonUpdate.Clicked += async (sender, args) =>
{
titleViewModel.Title = "Data Model Updated";
await DisplayAlert("Item Object", "Title property:" + titleViewModel.Title.
ToString(), "OK");
b

Remember to add the new button to StackLayout:

Content = new StacklLayout
{

};

Children = { titleEntry, buttonDisplay, buttonUpdate }

304

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Figure 7-3 shows the updated ContentPage.

First First

Display ltem Value

Display Item Value

Display Item Value

Update the Data Model
Update the Data Model

Update the Data Model

Figure 7-3. ContentPage for nontrivial data binding

Click buttonUpdate to change the Title property and see that change propagated back into the Entry view
(Figure 7-4).

/ ; [] N \
Y . \

NOKILA

) L
| ZooPM - Jata Mode :
Data Model Updated
Display Item Value
Display Item Value

| |pata Model Updated
Display ltem Value | Update the Data Model
Update the Data Model Update the Data Model
Item Object
Item Object

Title property:Data Model Updated

Title property-Data Model Updated

OK

Figure 7-4. The Entry view has refreshed to match the model.

CODE COMPLETE: Using INotifyPropertyChanged

Listing 7-5 is the complete code for the INotifyPropertyChanged implementation against TitleViewModel.

XAML All of the Xamarin.Forms data-binding code solutions in this chapter, including the XAML versions of
these C# examples, can be found at Apress.com (from the Source Code/Downloads tab, access the title of this
book) or on GitHub at https://github.com/danhermes/xamarin-book-examples. The Xamarin.Forms XAML
folder for the data-binding samples in Chapter 7 is DataBindingExamples.Xaml.

305

https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-5. ItemPageUsingTitleViewModel.cs
public ItemPageUsingTitleViewModel()

{
var titleViewModel = new TitleViewModel();
titleViewModel.Title = "First";
this.BindingContext = titleViewModel;
var titleEntry = new Entry()
{
HorizontalOptions = LayoutOptions.FillAndExpand
};
titleEntry.SetBinding(Entry.TextProperty, new Binding("Title"));
Button buttonDisplay = new Button
{
Text = "Display Item Value",
FontSize = Device.GetNamedSize(NamedSize.large, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonDisplay.Clicked += async (sender, args) =>
{
await DisplayAlert("Item Object", "Title property:" + titleViewModel.Title.
ToString(), "OK");
};
Button buttonUpdate = new Button
{
Text = "Update the Data Model",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonUpdate.Clicked += async (sender, args) =>
{
titleViewModel.Title = "Data Model Updated";
await DisplayAlert("Item Object", "Title property:" + titleViewModel.Title.
ToString(), "OK");
};
Content = new StackLayout
{
Children = { titleEntry, buttonDisplay, buttonUpdate }
};
}

306

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Tip Avoid repeating boilerplate PropertyChanged code by creating a BindableBase class that implements
INotifyPropertyChanged. Then you can subclass BindableBase in your models or view models to make them
ready for nontrivial binding.

public abstract class BindableBase : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;
void OnPropertyChanged([CallerMemberName] string propertyName = null)
{
var handler = PropertyChanged;
if (handler != null)
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
}

With your implementation of INotifyPropertyChanged, your app can now notify the Ul when data has
changed, and Xamarin.Forms will refresh the UI. By creating a class that serves data to a particular view
(TitleViewModel), you have just created a view model.

Understanding ViewModels and MVVM

A ViewModel (the VM in MVVM) is a class built to serve data to a particular screen by using one or more
models (the M in MVVM, or data models). The ViewModel is decorated with view-specific properties and
bound to the view (the V in MVVM, referring to the presentation layer, or Ul, not to be confused with a
Xamarin.Forms View class). A ViewModel is like a data model except that it is customized to a particular
view (or screen) by using helper classes and handler events necessary to populate the data on that page

or manage changes to the data model. In a traditional MVVM app, you create a view model for each view
(screen), imbuing your view model with the constructors and helper methods needed to serve up and save
data on each screen.

MVVM apps typically use data models (not just a few variables added as properties to a view model). This
requires wrapping the data models within the view models with the notion that views should not use models
directly but should interact only with view models.

Binding to ViewModels and Data Models

ViewModels can implement INotifyPropertyChanged, as discussed earlier, but data models can

also implement INotifyPropertyChanged. These are the two standard approaches for implementing
INotifyPropertyChanged for nontrivial data binding, in order of popularity. There are heated arguments
for why one or the other is the only way to do things, but I'll show you both ways and let you decide. I'll also
show a third way that avoids some of the problems of the other two:

e Create a view model that implements INotifyPropertyChanged. Inherit from
INotifyPropertyChanged and encapsulate the necessary variables and data models
within your view model class and, within each editable property Set accessor, raise
the OnPropertyChanged event. This approach is strict MVVM.

307

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

e Implement INotifyPropertyChanged in your data model. Every time you use your
model in a data-binding context, it will be ready for nontrivial binding and provide
notifications to the bound Ul via its OnPropertyChanged events.

e Wrap your data model in an observable class. More on this in a moment.
The first two approaches are functionally similar but architecturally different.

The first approach, creating a view model that implements INotifyPropertyChanged, means including an
instance of the data model in the view model and wrapping the top-level model class as a property as well
as all of the data model’s properties that must be exposed in the view model. This gives complete control

to the view for instantiating, assigning, and changing the encapsulated data model and all of its relevant
properties. If the view model implements INotifyPropertyChanged, and OnPropertyChanged is called in the
Set method of each public property, this class can provide nontrivial binding. (See Listing 7-6.)

The second approach to implementing INotifyPropertyChanged happens in your data model even before
you use it in the view model. See Listing 7-7 for an example of implementing INotifyPropertyChanged in
the Item class to create an observable collection of items. For MVVM apps, this approach still requires the
extra step of embedding the resulting data model in a view model.

Some developers don'’t like the first approach because it can lead to code duplication with multiple
INotifyPropertyChanged implementations of the same properties in different view models, and some
developers don’t like the second approach because it clutters up the data model.

A third approach avoids both of those problems, and that is to wrap your data model in a class that
implements INotifyPropertyChanged to make it observable (at the cost of creating yet another subclass).
This is done for us in .NET for classes such as ObservableCollection, and you'll do it in a moment for your
Item model to create an ObservableItem. It’s a little extra work but keeps your models clean. We'll get to the
third approach in the section “Binding an Editable ListView,” in Listing 7-10.

Here are examples of each of the first two approaches:

Create a ViewModel That Implements INotifyPropertyChanged

Implement INotifyPropertyChanged in your ViewModel by using an encapsulated data model for a
straightforward MVVM approach.

Create a view model based on the Item data model, as shown in Listing 7-6. It’s basically the same as the
TitleViewModel view model in Listing 7-4 except that an I'tem class is instantiated and used to hold the
Title property value instead of a string. (This is an architectural change, not a functional one.)

Listing 7-6. View Model Based on the Item Data Model (ItemViewModel.cs)

class ItemViewModel : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

Item item;

public ItemViewModel ()
{

item = new Item();

308

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

public string Title

{
set
{
if (!value.Equals(item.Title, StringComparison.Ordinal))
{
item.Title = value;
OnPropertyChanged("Title");
}
}
get
return item.Title;
}
}
void OnPropertyChanged([CallerMemberName] string propertyName = null)
{
var handler = PropertyChanged;
if (handler != null)
{
handler(this, new PropertyChangedEventArgs(propertyName));
}
}

}

Note that you didn’t wrap the Description property, since that was not needed by the view in this case. View
models typically contain only what is needed by their view.

Implement the view model as before by using ItemViewModel:

var itemViewModel = new ItemViewModel();
itemViewModel.Title = "First";
this.BindingContext = itemViewModel;

Even the Entry view is bound the same way:
titleEntry.SetBinding(Entry.TextProperty, new Binding("Title"));
The rest of the ContentPage is the same as the previous example ItemPageUsingTitleViewModel, in

Listing 7-5, with renaming to use itemViewModel instead of titleViewModel. See the downloadable code
ItemPageUsingItemViewModel.cs for details.

The functionality of the app is exactly the same as the previous example except that instead of using the Title
string variable, you're using the Item data model, which is a more real-world implementation (and MVVM).

Now for the second approach to INotifyPropertyChanged.

309

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Implement INotifyPropertyChanged in Your Data Model

INotifyPropertyChanged can be implemented in your data model instead of in your view model. This
data model can then be bound directly to the view, as in the following example, or you can include the data
model in a view model in an MVVM app.

Create a class called ItemModel. cs, as shown in Listing 7-7. Implementing the OnPropertyChanged event
and calling it in the Set method of each property, Title and Description, ensures that changes to the list
data are reflected in the Ul in real time.

Listing 7-7. Implementing INotifyPropertyChanged in a Data Model

class ItemBindable: INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

string title;
string description;

public string Title

{
set
if (!value.Equals(title, StringComparison.Ordinal))
{
title = value;
OnPropertyChanged("Title");
}
}
get
{
return title;
}
}
public string Description
{
set
{
if (!value.Equals(description, StringComparison.Ordinal))
{
description = value;
OnPropertyChanged("Description");
}
}
get
{
return description;
}
}

310

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

void OnPropertyChanged([CallerMemberName] string propertyName = null)

var handler = PropertyChanged;
if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}

This ItemBindable class can now be implemented to bind its properties to any view:

var itemBindable = new ItemBindable();
itemBindable.Title = "First";
this.BindingContext = itemBindable;

Use the Entry view binding once again with the Title property:
titleEntry.SetBinding(Entry.TextProperty, new Binding("Title"));

This direct use of the model in the view (which I've used to simplify the demonstration) is not consistent
with the MVVM pattern, which encourages a separation between the model and the view. Include
ItemBindable within a view model to utilize the MVVM pattern.

Those are some techniques for building view models and data models for nontrivial, two-way binding in
Xamarin.Forms. Now let’s explore data binding as it applies to lists.

Binding a Read-Only ListView

Binding to a ListView was covered extensively in Chapter 5, but we did only trivial, read-only binding.
That means that the initial values of the data model are displayed in the list for viewing or selection, but

no changes to the Ul or model take place. Nontrivial, editable list binding means that the initial values of
the data model are displayed in the list, and controls are provided to allow the user to add or delete rows or
change row properties displayed in the list.

I'll begin with a review of trivial binding to a ListView before moving on to nontrivial binding.

In the ContentPage, instantiate and populate the data model as shown in Listing 7-8. Assigning the model to
the list’s ItemSource property is the equivalent of setting BindingContext. Use ItemTemplate.SetBinding to
assign each field in a row.

Listing 7-8. Trivial, Read-Only ListView Binding from Chapter 5

class ListViewPage: ContentPage

{
public ListViewPage()

{

311

http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

var listView = new ListView();

var items = new Item[] {
new Item {Title = "First", Description="1st item"},
new Item {Title = "Second", Description="2nd item"},
new Item {Title = "Third", Description="3rd item"}

};

listView.ItemsSource = items;

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description”);

listView.ItemTapped += async (sender, e) =>

{
Item item = (Item)e.Item;
await DisplayAlert("Tapped", item.Title.ToString() + " was selected."”, "OK");
((ListView)sender).SelectedItem = null;

b

this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

Content = listView;

}

This approach works well for read-only, selectable lists (and can even be extended to include editing of
data model properties in the list UI, such as Entry views, though that is beyond the scope of this book). If
you want to read more about building and customizing read-only lists by using Xamarin.Forms, turn to the
beginning of Chapter 5.

If your list needs to change dynamically, with rows added or deleted or properties changed in real time in
the code, then nontrivial data binding may be required.

Binding an Editable ListView

The standard ways that a user can edit a list are to add or delete list rows, or modify properties of list rows.
These types of list edits require nontrivial data binding, when list rows are added or deleted from an array or
collection, or when changes to list properties take place in code. We need those data model changes to be
reflected in the UL

Nontrivial list binding requires the implementation of an INotify interface to notify the UI to refresh

when changes to the model take place. There are two ways to do this: using a manual implementation of
INotifyPropertyChanged or using an ObservableCollection. ObservableCollection already implements
the INotifyCollectionChanged interface. Which approach you use (either or both) should depend on the
types of changes to the list that you want to reflect in the list UL

312

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Here are the two main list-editing scenarios and a standard way to handle them:
e Adding and deleting rows: Use an ObservableCollection as the list data source.

e Editing properties in the ListView: Create a view model implementing
INotifyPropertyChanged that exposes the editable properties in the list data model
(such as Title).

Tip If you need to replace the entire list, you'll likely need to rebind the list by reassigning ltemsSource to
get the Ul to refresh.

Let’s begin with adding and deleting rows.

Adding and Deleting Rows

Nontrivial data binding while adding and deleting rows from ListView can be handled using
ObservableCollection, which has a built-in implementation of INotifyCollectionChanged. A ListView
bound to an ObservableCollection will automatically install a handler for the CollectionChanged event.

Using ObservableCollection as the bound data type for ListItem ensures that changes to the list rows are
reflected in the Ul in real time.

Create and populate ObservableCollection, as shown in Listing 7-9. Set the ItemsSource property of
ListView to the collection.
Listing 7-9. List Binding Using an ObservableCollection (ListObservablePage.cs)

var items = new ObservableCollection<Item> {

new Item {Title = "First", Description="1st item"},
new Item {Title = "Second", Description="2nd item"},
new Item {Title = "Third", Description="3rd item"}

};

listView.ItemsSource = items;
The ListView's ItemTemplate implementation is the same as in the previous example in Listing 7-8:

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description”);

The complete code can be found in the downloadable code file ListObservablePage.cs.

Test this approach by adding a button that adds or deletes rows in the ObservableCollection called items,
and you'll see your model changes reflected immediately in the list UI.

items.RemoveAt(0);

313

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Upon execution of our RemoveAt method, the first list row is immediately deleted in the UI, as shown
in Figure 7-5. Note that without an items.Count > 0 check, our simple demo code can break with
multiple deletes.

Delete Row Delete Row

Delete Row

Second

Second
Third

Third

Figure 7-5. The deleted first item disappears from the list

This approach does not use a view model, so it is not an MVVM implementation. We'll get serious about
MVVM for editable lists soon.

Tip Adding and deleting list rows by using ObservableCollection works especially well with context
actions, the Xamarin.Forms approach for providing a Delete and/or More button on each list row. Turn to
Chapter 5 for more on context actions.

An ObservableCollection tracks only the addition or removal of rows. Reflecting changes to properties
within those rows is another matter.

Editing Properties

Editing list properties in code and reflecting those changes in the list UI can be handled in any of the three
ways discussed earlier, binding the list to one of the following:

e Create a view model that implements INotifyPropertyChanged.
e Implement INotifyPropertyChanged in your data model.
e Wrap your data model in a class that implements INotifyPropertyChanged.

The first approach is a popular choice, but since you already saw that earlier in Listing 7-6, and the second
approach in Listing 7-7, here you'll use the third approach: wrapping your data model in an observable
item class using INotifyPropertyChanged. Then bind this observable class to your list (directly or via a
view model).

Create a class called ObservableItem.cs, as shown in Listing 7-10. Implementing the OnPropertyChanged
event and calling it in the Set method of ListItems ensures that changes to the list data are reflected in the
Ul in real time. Note that this class alone isn’t MVVM unless you encapsulate it in a view model, which you'll
do in a moment.

314

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-10. Wrap Your Data Model in an Observable Class (Observableltem.cs)

class ObservableItem: INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;
Item item;
public ObservableItem()
{
item = new Item();
}
public string Title
{
set
{
if (!value.Equals(item.Title, StringComparison.Ordinal))
{
item.Title = value;
OnPropertyChanged("Title");
}
}
get
{
return item.Title;
}
}
public string Description
{
set
if (!value.Equals(item.Description, StringComparison.Ordinal))
{
item.Description = value;
OnPropertyChanged("Description");
}
}
get
{
return item.Description;
}
}
void OnPropertyChanged([CallerMemberName] string propertyName = null)
{
var handler = PropertyChanged;
if (handler != null)
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
}

315

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

This ObservableItem class can now be implemented to create a nontrivial data-bound list:

var items = new List<ObservableItem> {
new ObservableItem {Title = "First", Description="1st item"},
new ObservableItem {Title = "Second", Description="2nd item"},
new ObservableItem {Title = "Third", Description="3rd item"}

};

listView.ItemsSource = items;

The ListView's ItemTemplate implementation is the same as in the (two) previous examples covered
in Listing 7-8:

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description");

See the downloadable file ListPropertiesPage.cs for the complete ListView code listing.

Changes to any of the properties in code will be reflected in the list UI in real time. You can see this for
yourself by creating a button or context action that edits a property in the items list—the Title, for example:

items[0].Title = "First Edited";

Upon execution of this statement, the first list row is immediately updated in the UI, as shown in Figure 7-6.

First Edited
- First Edited
Second

Third a Second

3rd item

Third

Figure 7-6. The first row is edited in code, and the Ul is refreshed automatically

Note If editable views in your list rows, such as Entry views, are bound to properties in your data model,
then trivial data binding described earlier may be sufficient, and this INotifyPropertyChanged approach may
not be needed.

Binding List<ObservableItem> directly to the list didn’t use a view model either, so it’s not MVVM.

Next you will see how to use the observable item class in tandem with the observable collection to create a
view model for an editable list.

316

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Binding to a View Model

Building MVVM apps requires the use of view models. When using MVVM, it’s an antipattern to implement
data models directly in your view. You'll need to create a view model and wrap your data models inside it to
bind to your editable list.

Create a ListViewModel class that includes all the features in the previous list-binding examples. The Items
property is an ObservableCollection, so the Ul can reflect rows that are added or deleted, and the base item
class is ObservableItem, so property changes can also be reflected in the list UL See Listing 7-11.

Note Listing 7-11 is an unusual example of a view model, as there is no explicit implementation of
INotifyPropertyChanged. INotifyPropertyChanged was already implemented in all the encapsulated
models: ObservableCollection and ObservableItem. Additional implementation of INotifyPropertyChanged
in this view model would be redundant or extraneous.

Listing 7-11. ListViewModel for an Editable List in ListViewModel.cs

class ListViewModel

{
ObservableCollection<ObservableItem> items;
public ListViewModel()
{
items = new ObservableCollection<ObservableItem> {
new ObservableItem {Title = "First", Description="1st item"},
new ObservableItem {Title = "Second", Description="2nd item"},
new ObservableItem {Title = "Third", Description="3rd item"}
};
}
public ObservableCollection<ObservableItem> Items
{
set
if (value != items)
{
items = value;
}
}
get
{
return items;
}
}
}

317

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Bind the I'tems property in your view model to your list source:

var items = new ListViewModel();
listView.ItemsSource = items.Items;

The ListView's ItemTemplate implementation is the same as in previous examples and shown in Listing 7-8:

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description”);

And that is a nontrivial, fully editable list using MVVM. Add and delete rows from the list, edit properties in
code, and all will be reflected in the list Ul in real time.

Create a ContentPage demo app that includes row editing, property editing, and replacing the entire list.
Bind it to your ListViewModel. Figure 7-7 shows how this listing data-binding demo app might look.

o~ .
°
Carier ¥ 202 PM Edit Row
| Edit Row
Delete Row
Edit Row Delete Row
Replace List
Delete Row N
Replace List
Replace List
first
Second
Third
. ()

K =

Figure 7-7. Editable ListView data binding to a view model

This basic example of editable list binding is for demo purposes only. For a professional-looking UI, consider
using context actions, the Xamarin.Forms approach to providing a Delete and/or More button on each list
row. Turn to Chapter 5 for more on context actions.

See the ContentPage for this example, called ListPageUsinglListViewModel.cs, in Listing 7-12.

318

http://dx.doi.org/10.1007/9781484202159_5

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Tip Replacing the entire list requires the list to be rebound (this example is a Replace method in the
ListViewModel).

public void Replace()

{
Items = new ObservableCollection<ObservableItem> {
new ObservableItem {Title = "Primero", Description="First"},
new ObservableItem {Title = "Segundo", Description="Second"},
new ObservableItem {Title = "Tercero", Description="Third"}
};
}

CODE COMPLETE: Binding an Editable ListView

Listing 7-12 shows the complete ContentPage that binds to the view model ListViewModel in Listing 7-11.
This demonstrates row editing, property editing, and replacing the entire list.

Listing 7-12. ListPageUsingListViewModel.cs

public ListPageUsinglListViewModel()
{

var listView = new ListView();

var items = new ListViewModel();
listView.ItemsSource = items.Items;

listView.ItemTemplate = new DataTemplate(typeof(TextCell));
listView.ItemTemplate.SetBinding(TextCell.TextProperty, "Title");
listView.ItemTemplate.SetBinding(TextCell.DetailProperty, "Description");

listView.ItemTapped += async (sender, e) =>

{
ObservableItem item = (ObservableItem)e.Item;
await DisplayAlert("Tapped", item.Title.ToString() + " was selected.", "OK");
((ListView)sender).SelectedItem = null;
};
Button buttonEdit = new Button
{
Text = "Edit Row ",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonEdit.Clicked += async (sender, args) =>
{
items.Items[0].Title = "First Edited";
await DisplayAlert("Edited", "First row edited", "OK");
};

319

CHAPTER 7

}

DATA ACCESS WITH SQLITE AND DATA BINDING

Button buttonDelete = new Button

{
Text = "Delete Row ",
FontSize = Device.GetNamedSize(NamedSize.large, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonDelete.Clicked += async (sender, args) =>
{
items.Items.RemoveAt(0);
await DisplayAlert("Delete", "Row deleted", "OK");
};
Button buttonReplace= new Button
{
Text = "Replace List",
FontSize = Device.GetNamedSize(NamedSize.lLarge, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
buttonReplace.Clicked += async (sender, args) =>
{
items.Replace(); // see previous Tip
await DisplayAlert("Replace", "List replaced con Espanol”, "OK");
listView.ItemsSource = items.Items;
b

Content = new StackLayout

Children

{ buttonEdit, buttonDelete, buttonReplace, listView }
};

this.Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

buttonReplace invokes Replace(), a method added to ListViewModel and not shown here. Replace() is
shown in the previous tip, is viewable in the downloadable code ListViewModel.cs, and replaces the list
with Spanish rows before the list must be rebound to reflect the changes.

Views can also be bound to other views.

Binding a View to Another View

The focus of this book is data-driven applications, which means binding views to models and view models.
However, views can be bound to one another. A slider can be bound to a label. A switch can be bound to an
entry view, and so forth.

320

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

The target of a data binding must be backed by a BindableProperty object, and most Xamarin.Forms views
have many properties that fit this requirement. Explore the Xamarin API documentation to learn about
these. Many view properties are also bindable as sources.

Single views are easily bound, as each view must have one BindingContext. Multiple views require mapping
using the BindingModes: OneWayToSource and TwolWay, which are beyond the scope of this book. Refer to the
Xamarin online docs for details.

Although data binding is platform-specific, database access is truly cross-platform in Xamarin development.
Using SQLite is basically the same regardless of what platform you're developing for.

Using SQLite.NET

Data models are often populated from and synchronized with a local database. SQLite.NET is the mobile,
cross-platform database library of choice for many Xamarin developers using Xamarin.Forms,
Xamarin.Android, or Xamarin.iOS.

Xamarin.Forms is used in the Ul portion of the following SQLite.NET examples for the sake of
demonstration, but these techniques can be used equally well in Xamarin.Android and Xamarin.iOS apps.
SQLite.NET is a cross-platform technology.

How you install SQLite.NET in your solution depends on the solution type. A PCL setup differs from a shared
project setup:

PCL Setup: The best option for using SQLite.NET with PCLs is the NuGet package
called SQLite.NET PCL. There are a few of these with similar names, so be certain
to use the package with these attributes:

e Name: SQLite-Net PCL

e Created by: Frank A. Krueger
e ID:sqlite-net-pcl

¢ NuGetlink: sqlite-net-pcl

Install SQLite-Net PCL in the projects where you'll need it, usually most if not
all of them in your solution. Do not manually add the SQLite.cs file to your
project(s). See the downloadable code solution SQLiteNetPCL.

Shared project setup: Add a file to your shared project called SQLite.cs

from the sqlite-net GitHub project by downloading it and then clicking your
application solution and selecting Add File. See the downloadable code solution
SQLiteNETSharedProject.

Many of the SQLite.NET examples in this section use a PCL because it’s clearer in a demonstration, but I'll
cover shared projects too. PCL and shared project SQLite.NET implementations are similar except for how
they handle platform-specific implementations of the database path and connection. More about that in the
section “Building the Database Path.

Now that you have SQLite.NET installed in your solution, reference the library in your data access layer
classes with a using statement:

using SOQLite;

321

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Constructing a data access layer using SQLite.NET requires the creation of a database connection, a locking
object, and CRUD transaction methods (get, insert, update, and delete) that are specific to your table data.

Important Note Inserting, getting, updating, and deleting rows should be done using locks in order to
avoid conflicts. The following examples exclude the lock for simplicity until the section “Locking Rows.” Review
the code with locks in Listing 7-19 or Listing 7-22.

Installing SQLite on Windows Phone

The SQLite database engine ships with iOS and Android but not with Windows Phone, so you must ship it with
your own app. Download the Precompiled Binaries for Windows Phone 8 (sqlite-wp80-winrt-xxxxxx.vsix)
from sqlite.org. Install this Visual Studio extension and restart Visual Studio. Add this reference to your
project: the Windows Phone Extension called SQLite for Windows Phone.

Now that SQLite.NET is installed, let’s create a SQLite database.

Creating a Database

Create a new SQLite database by establishing a database connection to a database filename that includes
the folder path. You can open a SQLite connection and use it throughout your app without closing it.

First locate the folder that the database should go into and create the database folder path:

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
databasePath = Path.Combine(documents, "ItemsSQLite.db3");

Create a database connection by specifying the database path and name:
var database = new SQLite.SQLiteConnection(databasePath);

No check is needed to see if the file already exists. It will be created if it does not yet exist; otherwise, it will
simply be opened.

Tip Avoid using a single connection on different threads. Using locks helps avoid conflicts, as described in
the section “Locking Rows.”

In real apps, building database paths is often the only platform-specific code in the data access layer.

Building the Database Path
The database path is typically platform-specific, requiring an implementation for each platform to retrieve it.

The implementation of the database path and database connection is the primary difference between

the PCL approach and shared project approach to building a data access layer. In PCLs, use dependency
Injection (DI) to create platform-specific implementations of the database path and connection. In shared
projects, create the database path by using conditional compilation, which is a way to implement platform-
specific code at compile-time.

322

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Tip For more detail on cross-platform architecture approaches such as conditional compilation and DI,
see Chapter 9.

Let’s begin with the shared projects database connection implementation before moving on to PCLs.

Connect by Using Shared Projects

The trick with SQLite database connections in Xamarin apps is that the database path is usually platform-
specific. For example, i0S iCloud requirements specify that files not created by the user should not reside in
the personal documents folder, but can reside in a subfolder such as /Library.

In a shared project, use conditional compilation as in Listing 7-13 to specify platform-specific folders.

Listing 7-13. Database Path in a Shared Project

string databasePath {

get {
var dbName = "ItemsSQLite.db3";
#if 105

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);

folder = Path.Combine (folder, "..", "Library");

var databasePath = Path.Combine(folder, dbName);

#else

#if _ ANDROID

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);

var databasePath = Path.Combine(folder, dbName);

#else

// WinPhone

var databasePath = Path.Combine(Windows.Storage.ApplicationData.Current.
LocalFolder.Path, dbName);;

#endif

#endif

return databasePath;

Tip Shared projects can’t have references added to them, so you’ll need to add the SQLite.cs code from
GitHub.

323

http://dx.doi.org/10.1007/9781484202159_9

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Connect by Using Portable Class Libraries

In a PCL, acquiring a connection to your SQLite database will require dependency injection (DI), which can
be done using the Xamarin.Forms DependencyService.

In the Xamarin.Forms project, create an interface for platform-specific database functionality called
IDatabase containing a connection method, DBConnect:

public interface IDatabase {
SQLiteConnection DBConnect();
}
To connect to the SQLite database, call out to the connection method, DBConnect, using DependencyService:
database = DependencyService.Get< IDatabase > ().DBConnect ();

The rest of the examples in this section on SQLite will use this database connection type in a PCL.

Next you need to implement the IDatabase interface on each platform.

Tip PCLs require a special SQLite.NET NuGet library installed called SQLite-NET PCL that was created by
Frank A. Krueger with an ID of sqlite-net-pcl. Do not manually add the SQLite.cs file to your project(s).

Connect in Android

Create a database path for Android in the Android project by implementing the IDatabase interface in a
class called Database_ Android (Listing 7-14). Begin the class with an [assembly] attribute declaring the
class as a dependency injection for use in a DependencyService back in the PCL project. Set the folder name
to System.Environment.GetFolderPath (System.Environment.SpecialFolder.Personal).

Listing 7-14. Database Path in the Android Project of a PCL Solution

[assembly: Dependency(typeof(Database Android))]
namespace SQLiteNetPCL.Android

{
public class Database Android : IDatabase
{
public Database Android() { }
public SQLiteConnection DBConnect()
{
var filename = "ItemsSQLite.db3";
string folder =
System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal);
var path = Path.Combine(folder, filename);
var connection = new SQLiteConnection(path);
return connection;
}
}
}

324

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Connect in i0S

Create a database path for iOS in the iOS project by implementing the IDatabase interface in a class called
Database_i0S (Listing 7-15). Meet iCloud requirements of not placing files directly in the user’s personal
folder by finding the user’s /Library folder. Start with the user’s personal folder at System.Environment.
GetFolderPath (System.Environment.SpecialFolder.Personal) and locate /Library.

Listing 7-15. Database Path in the iOS Project of a PCL Solution

[assembly: Dependency(typeof(Database i0S))]
namespace SQLiteNetPCL.iOS

{
public class Database_iOS : IDatabase
{
public Database i0S() { }
public SQLiteConnection DBConnect()
{
var filename = "ItemsSQLite.db3";
string folder =
Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string libraryFolder = Path.Combine (folder, "..", "Library");
var path = Path.Combine(libraryFolder, filename);
var connection = new SQLiteConnection(path);
return connection;
}
}
}

Now for the Windows Phone implementation of IDatabase.

Connect in Windows Phone

Create a database path for Windows Phone in the Windows Phone project by implementing the IDatabase
interface in a class called Database_ WinPhone (Listing 7-16). Set the folder name to ApplicationData.
Current.LocalFolder.Path.

Listing 7-16. Database Path in the Windows Phone Project of a PCL Solution

[assembly: Dependency(typeof(Database WinPhone))]
namespace SQLiteNetPCL.WinPhone
{

public class Database WinPhone : IDatabase
{
public Database WinPhone () { }
public SQLiteConnection DBConnect()
{
var filename = "ItemsSQLite.db3";
string folder =
ApplicationData.Current.LocalFolder.Path;
var path = Path.Combine(folder, filename);

325

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

var connection = new SQLiteConnection(path);
return connection;

}

Once you get your implementations of IDatabase wired up correctly, your call to retrieve the SQLite
database connection will work: DependencyService.Get< IDatabase > ().DBConnect ().Ifyou're
running into difficulty, check your references and using statements. Platform-specific solutions need to
reference the PCL project containing your data access layer, and using statements (or direct namespace
references) are needed when referring to those libraries. Once in a while, Visual Studio appears to fail when
adding new libraries, and it’s then helpful to close and reopen the solution.

The rest of this chapter uses a PCL instead of a shared project, for simplicity of demonstration only, but the
code is basically the same between these approaches except for the database path and initial connection.
If you want to understand the basic differences in a SQLite.NET implementation between PCL and shared
project, refer back to the section “Building the Database Path.”

Once the connection to your SQLite database is made, you can add tables to our new database and start
inserting, getting, updating, and deleting rows.

Creating a Table

Create a new table in a database by defining the table in a data model and then using the database’s
CreateTable method. Use attributes such as [PrimaryKey, AutoIncrement] to specify keys, max lengths,
and other properties of the table and its fields (Listing 7-17).

Define the Item data model. Using the PrimaryKey and AutoIncrement attributes, specify an integer primary
key to help facilitate queries. Unless specified otherwise (using attributes), SQLite will use the class name as
the table name and the property names as column names.

Listing 7-17. Table Class Declaration Using SQLite Attributes (Item.cs)

public class Item {
[PrimaryKey, AutoIncrement]
public int ID { get; set; }
[MaxLength(15)]
public string Name { get; set; }
[MaxLength(50)]
public string Description { get; set; }
}

Create the table by using the CreateTable method:
database.CreateTable<Item>();

The table now exists and is ready for rows to be inserted. CreateTable won'’t overwrite an existing table
(use DropTable to drop a table).

The bracketed attributes tell SQLite.NET how to regard the properties in the data model in relation to the
database table.

326

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Using Attributes
The following commonly used attributes for SQLite data models help you define the table in the database:

e [Primary Key]: Specifies the table’s primary key when applied to an integer property
(no composite keys).

e [AutoIncrement]: Automatically increments an integer property when each object is
inserted into the database.

e [Column(name)]: Specifies the column name. Useful for when it should differ from
the property name.

e [Table(name)]: Specifies the table name. Useful for when it should differ from the
data model class name.

e [Ignore]: SQLite.NET will disregard this property. Useful for properties that cannot
be stored in the database.

e [MaxLength(value)]:Limit the size of a text field on inserts and updates by rejecting
longer text objects. Remember to validate the length before committing text to this
field.

Once the table is created and fields defined, you can add data to the database.

Inserting and Deleting Rows
Insert a new row into a table by populating the data model and then calling the Insert method.
Populate the Item data model with data:
var item = new Item { Name = "First" , Description = "This is the first item"};
Call the database connection’s Insert method to attempt to add a row to the table:
database.Insert (item);

Delete rows by using the Delete method:

database.Delete<Item>(id);

Tip SQLite supports transactions using the SQLiteTransaction object with the BeginTransaction,
Commit, and Rollback methods.

Getting Rows

Retrieve rows from a table by using the Get, Table, or Query methods. Get returns a single row, Table returns
the entire table, and Query returns multiple rows using SQL.

Pass the integer key ID into the Get method to return a row from the Item table:

var item = database.Get<Item>(1);

327

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Return the entire table by using the Table method:

var itemList = database.Table<Item>();
Use SQL to filter the table’s contents by using the Query method:

var firstItem = database.Query<Item>("SELECT * FROM Item WHERE Name = 'First' ");
Use LINQ to filter the table’s contents:

var firstItem = from i in database.Table<Item>()
where i.Name == "First"
select i;

Or to specify parameters in the FirstOrDefault method to filter:
var itemList = database.Table<Item>().FirstOrDefault(x => x.ID == id);

Updating Rows
Update rows in the table by using the Update method. This changes data on an existing row.
First populate the Item data model with data:
var item = new Item { Name = "First" , Description = "This is the first item"};
Call the Update method to populate the new data in the existing row:
database.Update(item);
Check whether the ID exists so you know whether you should update or insert a new row:

if (item.ID != 0) {
database.Update(item);
return item.ID;
} else {
return database.Insert(item);
}

If you're not sure that the row exists, use a combination Insert/Update. The Insert method will return a
nonzero value if it fails, allowing the Update to proceed.

if (database.Insert(item) != 0)
database.Update(item);

Locking Rows
To avoid database collisions, all transactions should be locked. Use the lock keyword against a static object.
Here’s a locking example using the Delete method:

static object locker = new object ();

lock (locker) {
database.Delete<Item>(id);

}

To avoid a deadlock, do not lock a method that calls another method that creates a lock.

328

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Those are all the basic techniques you need to use the SQLite. NET ORM! Now you're ready to build a data
access layer (DAL) for your app by using these techniques. Since it’s not good architectural form to use
SQLite.NET inside your Ul layer, you can encapsulate SQLite.NET calls in the repository pattern to create a
more elegant and decoupled architecture.

Creating the Data Access Layer

The data access layer (DAL) is an industry-standard architecture for data access in a C# app. This group of
classes encapsulates the data layer, and includes the database connection, the database path, and the CRUD
transactions, exposing data access methods that reflect the specific data in a particular app (for example,
GetItem, SaveItem methods). Depending on the level of architectural rigor, the data access layer can offer

a simple group of loosely arrayed access classes and methods to a highly structured and decoupled layer
with limited access points (which often uses the repository pattern). This approach decouples the data layer
implementation from the business and presentation layer of your app.

Note Create, read, update, and delete (CRUD) transactions running against a local database typically make
up the foundation of mobile application data. Some apps don’t require local database access and run entirely
using web services, but I'm not covering those in this book.

Creating a Repository

At the heart of many enterprise-grade Xamarin data access layers is an implementation of the repository
pattern. This abstraction placed between the business layer and the data layer (the SQLite.NET ORM)
provides app-specific CRUD methods using object collections, without exposing details of data source
implementations (databases, XML, JSON, flat files, and so forth). Use this pattern to abstract away the
details of SQLite implementation, including locking. Later you can couple your repository with the singleton
pattern to maintain the database connection.

Note The definition of the repository pattern has evolved since its inception. It was originally intended as an
abstraction to decouple the data layer implementation (for example, SQLite) from the rest of the app with
the added benefit of providing in-memory data-object collections. Over the years, many C# apps needed the
decoupling but not the in-memory data objects, so those collections have evolved to become data objects
returned by methods in many cases, not kept in repository properties. This is true in most Xamarin apps as well.

Create table-specific data access methods (GetItems, SaveItem, and so forth) that encapsulate and employ
the generalized SQLite CRUD methods described earlier (Get, Insert, Update, and so forth.):

public IEnumerable<Item> GetItems ()
public IEnumerable<Item> GetFirstItems ()
public Item GetItem(int id)

public int SaveItem(Item item)

public int DeleteItem(int id)

public void DeleteAllItems()

329

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Make methods that are specific to the kind of data you're using, the Item table in this case. Avoid generic
methods like Get and Insert and instead employ data-specific methods like GetItem and InsertItem
(generic-sounding but specific to your Item table). There is a place for generic repository components, and
we'll get to that soon.

A basic repository that represents a single database with a single table will typically look like the class outline
in Listing 7-18.
Listing 7-18. Repository Class Outline (ItemDatabaseBasic.cs)

Public Class ItemDatabaseBasic

{
protected static object locker = new object ();
protected SQLiteConnection database;
public ItemDatabaseBasic()
{
database = DependencyService.Get<IDatabase>().DBConnect();
database.CreateTable<Item>();
}
public IEnumerable<Item> GetItems () { ... }
public IEnumerable<Item> GetFirstItems () { ... }
public Item GetItem(int id) { ... }
public int SaveItem(Item item) { ... }
public int DeleteItem(int id) { ... }
public void DeleteAllIltems() { ... }
}

Create a Portable Class Library (PCL) solution for this example called SQLiteNetPCL. See the earlier section
“Connect by Using Portable Class Libraries” for implementations of DBConnect () and IDatabase.

Tip If you want to create a repository using a shared project, virtually everything is identical to what
you would do with a PCL except the initial connection. For details on shared project implementations, see the
earlier section “Connect by Using Portable Class Libraries,” and the downloadable solution example
SQLiteNETSharedProject.

Listing 7-19 shows the full code for this basic repository based on the outline in Listing 7-18. Create a static
locker object that is used within the data access methods for avoiding concurrency issues on different
threads, as discussed earlier. Encapsulate the SQLiteConnection object and instantiate it in the constructor.
The databasePath is created using the method described earlier in “Connect by Using Portable Class
Libraries.”

330

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-19. Single-Table Repository in ItemDatabaseBasic.cs

public class ItemDatabaseBasic

{

protected static object locker = new object ();
protected SQLiteConnection database;

public ItemDatabaseBasic()

{
database = DependencyService.Get<IDatabase>().DBConnect();
database.CreateTable<Item>();
}
public IEnumerable<Item> GetItems ()
{
lock (locker) {
return (from i in database.Table<Item>() select i).TolList();
}
}
public IEnumerable<Item> GetFirstItems ()
{
lock (locker) {
return database.Query<Item>("SELECT * FROM Item WHERE Name = 'First'");
}
}
public Item GetItem(int id)
{
lock (locker) {
return database.Table<Item>().FirstOrDefault(x => x.ID == id);
}
}
public int SaveItem(Item item)
{
lock (locker) {
if (item.ID != 0) {
database.Update(item);
return item.ID;
} else {
return database.Insert(item);
}
}
}
public int DeleteItem(int id)
{
lock (locker) {
return database.Delete<Item>(id);
}
}

331

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

public void DeleteAllItems()

lock (locker) {
database.DropTable<Item>();
database.CreateTable<Item>();

Important Tip This basic repository works for only a single table: Item. You can access additional tables
either by adding more methods to this repository or by refactoring the class using generics, both of which you’ll
do in a moment in the section “Adding Methods to the Repository.”

Let’s get back to the database connection.

Managing the Repository

In Xamarin apps using SQLite, the database connection is often kept in memory so it can be reused
throughout the user session. Because static classes remain in memory, they are a likely candidate for
helping to build a repository and store the connection. You can also open and close the connection for
each transaction, but because SQLite is a serverless database, there is less of a need, and keeping a single
connection open is common practice.

The connection is typically handled in one of two ways, either encapsulated in the repository, or passed in
as a parameter. In these examples, the SQLite database connection is encapsulated in the repository. (You
may want to move the connection out of the repository and pass it in as a parameter if you wish to have
more control over the connection instance, for testability, for instance.) Since the connection resides in our
repository in this example, we need to keep the repository in memory.

A common location to maintain a repository is in a static property on the Application class, as shown in
Listing 7-20. The following code references the earlier ItemDatabaseBasic repository in Listing 7-19.
Listing 7-20. Static Database Property Declared in the Application Object

public class App : Application

{
static ItemDatabaseBasic database;
public static ItemDatabaseBasic Database {
get {
if (database == null) {
database = new ItemDatabaseBasic ();
}
return database;
}
}
}

332

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Use this self-instantiating repository by referring to it via the Application object:
App.Database.SaveItem (item);
The ContentPage Ul is found in downloadable code files App.cs and DataAccessPageDatabase.cs.

Often, you have to access more than one table in your database, or you have multiple data sources, such as
files, XML, JSON, or multiple databases. These situations warrant a more advanced repository approach.

Adding Methods to the Repository

Accessing multiple tables or multiple data sources requires some thinking about how the DAL architecture
should grow to accommodate that. Here are the two common options for multisource repositories:

e Add data access methods directly to your repository class.
e Refactor your repository into a repository class and a generic database access class.

The first option is quick and dirty, whereas the second option is more suitable for enterprise-grade business
apps. Let’s look at each option.

Add data access methods directly to your repository class. If you want to access a new table, a Person table,
for example, you need to create GetPerson and SavePerson methods somewhere. You could just add these
methods to your repository.

public Person GetPerson (int id) { ... }
public IEnumerable<Person> GetPeople () { ... }
public int SavePerson(Person person) { ... }
public int DeletePerson(int id) { ... }

public int DeleteAllPeople() { ... }

That will work just fine. It's even moderately testable. Use it if it works for you.

The problem with this approach is all the code that’s not shown: the implementation of these methods is
virtually identical for every table. This approach smells of code duplication. If you need to access a third or
fourth table, you’ll wind up with dozens of methods that look more or less like this:

public int GetOrSaveOrDeleteSomething(int id)
{
lock (locker) {
return database.GetOrSaveOrDelete<TableName>(id);
}

}

Very smelly, indeed. If you're lucky, that’s all that will be in there. In some cases, a mash-up of table-specific
logic and SQLite implementation will provide additional smells. It’s time for a refactoring, and the second
option is the obvious choice.

Refactor your repository into a repository class and a generic database access class.

A more advanced approach to the repository pattern separates the repository class from the DAL
implementations. This approach is useful if you have multiple tables, or mixed types of data access, such
as file-based, XML, and JSON, as well as a SQLite data layer, or multiple databases (rare). Each data source
can have its own implementation; then the repository ties them all together with one interface. SQLite
implementations can all be encapsulated into a single generic database class.

Create a generic database class that handles the SQLite data layer and then create an advanced repository
class that handles all the data access calls to that generic database and to other sources.

333

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Begin with the generic database class, as shown in Listing 7-21. Take your original ItemDatabaseBasic class,
make a copy, and call it ItemDatabaseGeneric. cs. Replace all references to specific tables, data models, and
data classes such as I'temor Person with T. In a liberal use of generics, create methods that could transact
with any table, depending on the data type passed into them.

Listing 7-21. Generic Database Class (ItemDatabaseGeneric.cs)

public class ItemDatabaseGeneric
{
static object locker = new object ();

SQLiteConnection database;

public ItemDatabaseGeneric()

{
database = DependencyService.Get<IDatabase>().DBConnect();
database.CreateTable<Item>();
database.CreateTable<Person>();
}
public IEnumerable<T> GetObjects<T> () where T : IObject, new ()
{
lock (locker) {
return (from i in database.Table<T>() select i).Tolist();
}
}
public IEnumerable<T> GetFirstObjects<T> () where T : IObject, new ()
{
lock (locker) {
return database.Query<T>("SELECT * FROM Item WHERE Name = 'First'");
}
}
public T GetObject<T> (int id) where T : IObject, new ()
{
lock (locker) {
return database.Table<T>().FirstOrDefault(x => x.ID == id);
}
}
public int SaveObject<T> (T obj) where T : IObject
{
lock (locker) {
if (obj.ID != 0) {
database.Update(obj);
return obj.ID;
} else {
return database.Insert(obj);
}
}
}

334

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

public int DeleteObject<T> (int id) where T : IObject, new ()

lock (locker) {
return database.Delete<T> (id);
}

}

public void DeleteAllObjects<T> ()

lock (locker) {
database.DropTable<T>();
database.CreateTable<T>();

}
Since the ID field is needed in these methods, it must be added as a constraint to the type parameters of
some of the methods. This means you need to upgrade to your data model(s) with an interface that requires
an ID (Listing 7-22).
Listing 7-22. Generic Model Interface That Includes an ID Field (IObject.cs)

public interface IObject
{

}

Apply the interface to your models, inheriting from I0Object:

int ID { get; set; }

public class Item : IObject
You already have an ID field in the Item class, so there’s no need for further changes to it.

Add a Person class as a new data model, inheriting from IObject and including an ID field to implement
IObject (Listing7-23).

Listing 7-23. Person Data Model Class (Person.cs)

public class Person : IObject

{
[PrimaryKey, AutoIncrement]
public int ID { get; set; }
[MaxLength(25)]
public string FirstName { get; set; }
[MaxLength(25)]
public string LastName { get; set; }

}

Create an advanced repository class that consumes the generic database class. Use methods that are
specific to the types of data being handled, as shown in Listing 7-24. Avoid any SQLite implementation in
this repository, as the purpose of this class is to act as a layer between the business logic and the data access
implementation.

335

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-24. Advanced Repository Calls Generic Database Class Methods (ItemRepository.cs)

public class ItemRepository {
TtemDatabaseGeneric itemDatabase = null;

public ItemRepository()

{
itemDatabase = new ItemDatabaseGeneric();
}
public Item GetItem(int id)
{
return itemDatabase.GetObject<Items(id);
}
public IEnumerable<Item> GetFirstItems ()
{
return itemDatabase.GetObjects<Items();
}
public IEnumerable<Item> GetItems ()
{
return itemDatabase.GetObjects<Item>();
}
public int SaveItem (Item item)
{
return itemDatabase.SaveObject<Item>(item);
}
public int DeleteItem(int id)
{
return itemDatabase.DeleteObject<Item>(id);
}
public void DeleteAllItems()
{
itemDatabase.DeleteAllObjects<Item>();
}
public Person GetPerson(int id)
{
return itemDatabase.GetObject<Person>(id);
}
public IEnumerable<Person> GetPeople ()
{
return itemDatabase.GetObjects<Person>();
}

336

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

public int SavePerson (Person person)

{
return itemDatabase.SaveObject<Person>(person);
}
public int DeletePerson(int id)
{
return itemDatabase.DeleteObject<Person>(id);
}
public void DeleteAllPeople()
{
itemDatabase.DeleteAllObjects<Person>();
}

}

Three components are in this more advanced repository: the generic database instance, the item methods,
and the person methods. Item objects are passed into the item methods, and Person objects appear in the
person methods. The generic database class resolves all of its SQLite.NET methods by using those data types
via generics, deciding which tables to read and write to/from.

That is how to refactor your basic repository into an advanced repository, using generics and a data model
interface.

If you're looking at the repositories in this chapter and asking where the model properties and caching
mechanisms are, you're asking the right questions. Using a repository to maintain in-memory data models
is a common technique in web development, but it can be risky given the limited memory of mobile devices
and is beyond the scope of this book. The repositories shown here are basic ones designed only to create an
app-specific abstraction around the SQLite ORM.

Note A third option exists for adding methods to a repository: create a generic repository. This is similar to
the second option, the generic database class, but without the encapsulating repository class. This exposes a
generic DAL interface to your views and view models and is considered by many to be lazy coding and a leaky
abstraction.

CODE COMPLETE: Creating a DAL by Using SQLite.NET

Listings 7-21, 7-22, 7-23, 7-24, 7-25, 7-26, and 7-27 contain the complete data access layer code for the
advanced repository example invoking the generic database class. The Application object containing the
static Repository property is found in Listing 7-25. This example uses the advanced repository we refactored
in Listing 7-24 instead of the basic database repository (Listing 7-18).

The ContentPage demo Ul in Listing 7-26 walks through various methods in the DAL. The List data model
with I0bject implemented is in Listing 7-27.

This example is a PCL Xamarin.Forms project, which uses dependency injection for retrieving the database
connection with the DBConnect () method as described in “Connect by Using Portable Class Libraries” and
as seen in the downloadable code solution called SQLiteNetPCL.

337

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

If you're using a shared project instead, skip the DI and use conditional compilation to create DatabasePath,
as mentioned earlier in “Connect by Using Shared Projects” and as seen in the downloadable code solution
called SQLiteNETSharedProject.

Listing 7-25. App.cs Using a Static Application Property for the Repository

public class App : Application

{
static ItemRepository repository;
public static ItemRepository Repository {
get {
if (repository == null) {
repository = new ItemRepository ();
}
return repository;
}
}
public App()
{
MainPage = new NavigationPage(new HomePage());
}
}

Figure 7-8 shows the Ul output of the ContentPage called DataAccessPageRepository (Listing 7-26), a quick
demo of the data access layer using the advanced repository.

Database Created Using SQLite.NET
Using an Advanced Repository

First item added.
Firstitem at ID 1

Deleted item at ID 1
First: This is the first item
Second: This is the second item

Third: This is the furd item

Oops, | meant: Third: This is the third item

Figure 7-8. Ul display in the demo data access page shown in Listing 7-27

338

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-26. DataAccessPageRepository.cs Is a Xamarin.Forms ContentPage That Uses ItemsRepository

public class DataAccessPageRepository : ContentPage
{

public DataAccessPageRepository()

{
var label = new Label { Text = "Database Created Using SQLite.NET\n" };

label.Text += " Using an Advanced Repository\n\n";
App.Repository.DeleteAllItems (); // clear out the table to start fresh

var item = new Item { Name = "First" , Description = "This is the first item"};
App.Repository.Saveltem (item);

var firstItem = App.Repository.GetFirstItems();
label.Text += firstItem.First().Name + " item added.\n";

var id = 1;
item = App.Repository.GetItem (id);
label.Text += item.Name + " item at ID " + id.ToString () + "\n\n";

App.Repository.DeleteItem(id);
label.Text += "Deleted item at ID " + id.ToString () + "\n\n";

item = new Item { Name = "First" , Description = "This is the first item"};
App.Repository.Saveltem (item);

item = new Item { Name = "Second" , Description = "This is the second item"};
App.Repository.Saveltem (item);

item = new Item { Name = "Third" , Description = "This is the furd item"};
App.Repository.Saveltem (item);

var items = App.Repository.GetItems ();
foreach (var i in items) {

label.Text += i.Name +
}

+ i.Description + "\n";

label.Text += "\n Oops, I meant: ";

item.Description = "This is the third item";
App.Repository.Saveltem(item);

id = 4;
item = App.Repository.GetItem (id);

label.Text += item.Name + ": " + item.Description + "\n";

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

339

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Content = new StackLayout

Children = {
label
}

};
}

Listing 7-27. Ttem.cs Contains the Item Class Implementing IObject

public class Item : IObject

{
[PrimaryKey, AutoIncrement]
public int ID { get; set; }
[MaxLength(15)]
public string Name { get; set; }
[MaxLength(50)]
public string Description { get; set; }

Using ADO.NET

Xamarin provides an ADO.NET implementation of SQLite that provides all of the necessary SQL
transactions using the familiar ADO.NET Command and DataReader objects (mapped to SqliteCommand and
SQLiteDataReader).

Create an ADO.NET database by using the SqliteConnection object. Take care to open and close the
connection for every use, just as you're used to with ADO.NET. Use ADO.NET Command objects for the
creation and execution of SQL statements. Create Command objects by using the connection’s CreateCommand
method, and then assign SQL to the command by using its CommandText property.

First, add these references to your platform-specific project and to your database class:

using System.Data;
using Mono.Data.Sqlite;

Important Note A Xamarin ADO.NET implementation is not supported by PCLs, as they do not offer
System.Data Or Mono.Data. Sqlite. The Xamarin project options available with ADO.NET are using a shared
project or using a PCL, but implement the data layer almost entirely in platform-specific projects (for example,
Android and i0S), which is a less-than-ideal architecture. Certain third-party libraries, such as MvvmCross,
provide these missing libraries for use in a PCL.

340

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Determine the database path by using techniques described earlier in this chapter. Here is the shared
projects approach again:

var dbName = "ItemsSQLite.db3";

#if _ I0S

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);

folder = Path.Combine (folder, "..", "Library");

var databasePath = Path.Combine(folder, dbName);

#else

#if _ ANDROID _

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);

var databasePath = Path.Combine(folder, dbName);

#else // Windows Phone

var databasePath = Path.Combine(Windows.Storage.ApplicationData.Current.LocalFolder.
Path, dbName);

#endif

#endif

Next, create the database.

Creating a Database

Create a new database by using the CreateFile method. You may need to check whether the file exists first
(using File.Exists) because this statement will overwrite an existing database.

Mono.Data.Sqlite.SqliteConnection.CreateFile (databasePath);

Once the database is created, you'll need to establish a connection to it. Instantiate a SqliteConnection
object and call the Open method:

var connection = new SqliteConnection (“"Data Source=" + databasePath);
connection.Open();

Conduct your SQL operations and then close the connection:
connection.Close();
As mentioned earlier, a connection should never be reused across threads.

Now you can use SQL to create tables, insert and delete their rows, and query the data.

Creating a Table

Create a new table by using ADO.NET with SQLite; use the CREATE TABLE statement in SQL with a command
object and call its ExecuteNonQuery method.

341

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Create a Command object by using the connection’s CreateCommand method, and then assign the CREATE TABLE
SQL to the command by using its CommandText property. Create an I'tems table containing Name and Description
fields. Use the command'’s ExecuteNonQuery to execute the SQL, because you don’t want a data result.

using (var command = connection.CreateCommand ()) {
command. CommandText = "CREATE TABLE [Items] ([ID] INTEGER" +
" PRIMARY KEY AUTOINCREMENT, [Name] ntext, [Description] ntext)";
var rowcount = command.ExecuteNonQuery ();

}

The ID field is created to AUTOINCREMENT so SQLite can create and maintain this value.

Populate your table with data by creating an array of SQL INSERT statements. Loop through them with a
foreach, creating a Command object for each one:

var sqlStatements = new [] {
"INSERT INTO [Items] ([Name], [Description]) VALUES ('First', 'The first row')",
"INSERT INTO [Items] ([Name], [Description]) VALUES ('Second', 'the second row')",
"INSERT INTO [Items] ([Name], [Description]) VALUES ('Third', 'the third row')"
};
foreach (var sqlStatement in sqlStatements) {
using (var command = connection.CreateCommand ()) {
command.CommandText = sqlStatement;
var rowcount = command.ExecuteNonQuery ();

}

Now that there is data in the table, you can query it by using SELECT statements.

Executing SQL Statements

Execute SQL statements by assigning them to the command’s CommandText property and calling one of three
methods: ExecuteNonQuery for nondata results, ExecuteReader for queries, and ExecuteScalar to return a
single numeric value.

Create a command object and populate it with a SQL query. This SELECT statement queries the Items table
for ID, Name, and Description:

using (var command = connection.CreateCommand ()) {
command.CommandText = "SELECT [ID], [Name], [Description] from [Items]";
var results = command.ExecuteReader();
while (results.Read ())
rows += String.Format ("\t ID={0}\t Name={1}\t Desc={2}\n",
results ["ID"].ToString (),
results ["Name"].ToString (),
results ["Description"].ToString ());
}

The command.ExecuteReader () call returns a SqliteDataReader populated with data in the results
variable. rows is a string containing the results for display.

The using statement keeps the scope of the Command object brief and on an as-needed basis. This approach
encourages good data access layer design and cuts down on memory-hogging data classes.

342

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

Here are the three ways to execute ADO.NET commands containing SQL. Which you use will depend on the
nature of your SQL and what you want to return:

. ExecuteNonQuery: Writes operations to the table, such as CREATE, INSERT, or DELETE,
and returns a count of the number of rows affected:

using (var command = connection.CreateCommand ()) {
command.CommandText = "CREATE TABLE [Items] ([ID] INTEGER" +
" PRIMARY KEY AUTOINCREMENT, [Name] ntext, [Description] ntext)";
var rowcount = command.ExecuteNonQuery ();

}

. ExecuteReader: Executes read-only SQL statements, such as SELECT, and returns a
SqliteDataReader object populated with data:

command.CommandText = "SELECT [ID], [Name], [Description] from [Items]";
var dataReader = command.ExecuteReader ();

Other useful properties of the SqliteDataReader include RowsAffected, a count
of affected rows, and HasRows, a Boolean specifying whether any results were
returned.

e ExecuteScalar: Reads a single value of type object from a SQL statement, such as a
row count or a single field value:

command.CommandText = "SELECT COUNT(*) FROM [Items]";
count = "There are " + command.ExecuteScalar().ToString() +

rows.";

The following section contains all the ADO.NET examples deployed in a single Xamarin.Forms ContentPage.

CODE COMPLETE: Using ADO.NET

Listing 7-28 contains all the previous ADO.NET examples placed inside a Xamarin.Forms ContentPage
called ConnectionPage.cs in a shared project. The Ul displays a single label view that gives simple status
updates of all the ADO.NET operations. Figure 7-9 shows the output of the ConnectionPage ADO.NET demo.

Database Created Using ADO.NET
Rows added to database
SQL query result:
ID=1 Name=First Desc=The first row
ID=2 Name=Second Desc=the second row
ID=3 Name=Third Desc=the third row
There are 3 rows.

Figure 7-9. ADO.NET demo called ConnectionPage

343

CHAPTER 7

DATA ACCESS WITH SQLITE AND DATA BINDING

Listing 7-28. ADO.NET Implemented in Xamarin.Forms (ConnectionPage.cs)

344

public class ConnectionPage : ContentPage

public ConnectionPage ()

var dbName = "ItemsSQLite.db3";

#if I0S

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
folder = Path.Combine (folder, "..", "Library");

var databasePath = Path.Combine(folder, dbName);

#else

#if _ ANDROID _

string folder = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
var databasePath = Path.Combine(folder, dbName);

#else // Windows Phone

var databasePath = Path.Combine(Windows.Storage.ApplicationData.Current.
LocalFolder.Path, dbName);

#endif

#endif

Mono.Data.Sqlite.SqliteConnection.CreateFile (databasePath);
var connection = new SqliteConnection ("Data Source=" + databasePath);

connection.Open();
using (var command = connection.CreateCommand ()) {
command. CommandText = "CREATE TABLE [Items] ([ID] INTEGER" +
" PRIMARY KEY AUTOINCREMENT, [Name] ntext, [Description] ntext)";
var rowcount = command.ExecuteNonQuery ();

}

connection.Close();
var label = new Label { Text = "Database Created Using ADO.NET\n" };

connection.Open ();
var sqlStatements = new [] {
"INSERT INTO [Items] ([Name], [Description]) VALUES ('First', 'The first row')",
"INSERT INTO [Items] ([Name], [Description]) VALUES ('Second', 'the second row')",
"INSERT INTO [Items] ([Name], [Description]) VALUES ('Third', 'the third row')"
};
foreach (var sqlStatement in sqlStatements) {
using (var command = connection.CreateCommand ()) {
command.CommandText = sqlStatement;
var rowcount = command.ExecuteNonQuery ();
}
}

connection.Close ();
label.Text += "Rows added to database\n";

var rows = "SOL query result:\n";

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

connection.Open ();
using (var command = connection.CreateCommand ()) {
command.CommandText = "SELECT [ID], [Name], [Description] from [Items]";
var results = command.ExecuteReader();
while (results.Read ())
rows += String.Format ("\t ID={0}\t Name={1}\t Desc={2}\n",
results ["ID"].ToString (),
results ["Name"].ToString (),
results ["Description"].ToString ());
}

connection.Close ();

label.Text += rows;

var count = "";

connection.Open ();

using (var command = connection.CreateCommand ()) {
command.CommandText = "SELECT COUNT(*) FROM [Items]";
count = "There are " + command.ExecuteScalar().ToString() +

rows.";

}

connection.Close ();
label.Text += count;

Content = label;

}

This implementation is for concise demo purposes only. The mingling of a presentation layer with a data
access layer is not recommended in a professional-grade app.

Database Creation Options

The three most common options for creating your SQLite database are as follows:

e Use SQLite.NET: Use the SQLite.NET API to create the database and tables as
described in “Creating a Database” in the section “Using SQLite.NET Use SQL for
features not covered in the ORM, such as foreign keys and indexes.

e Use SQL: Create your database and tables when the app first runs, using SQL as
described in “Creating a Database” in the section “Using ADO.NET”

e Include a database: You can include a fully created database with your app, a good
option if you want complete control over details of the tables and their relationships.
Use a tool such as the MonoDevelop database editor or the SQLite Manager Firefox
extension. Then remember to have your app copy the database into a writable
directory before using it with code like this:

if (!File.Exists (databasePath))

{
File.Copy (dbName, databasePath);

345

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

SQLite provides a local database to help you maintain state between user sessions and have important data
on demand. Many apps also require interaction with a server-side data source, such as a SQL server or other
data source on a remote data server.

Web Services

Web services facilitate communication with a remote data store and synchronization with the local SQLite
database. They allow the Xamarin app to pull down data from the remote data source and push it back up
when needed.

Many options are available for building web services when using the Xamarin platform, but here are a few of
the most common:

e REST: A common approach, RESTful services can use HttpWebRequest, WebClient,
or one of many third-party libraries, including RestSharp, Hammock, or ServiceStack
often coupled with JSON or LINQ.

¢ Windows Communication Framework (WCF): The standard Microsoft web service
approach is supported in a limited fashion by using BasicHttpBinding in the
Silverlight library.

e SOAP: An older, standards-based approach for data transmission over the Web,
Xamarin supports SOAP 1.1, Microsoft’'s SOAP implementation, and ASP.NET Web
Services (ASMX), albeit with an incomplete implementation.

Detailed exploration of web services is beyond the scope of this book, but the fundamentals are similar to
web services used in web, and especially desktop, apps. If you're interested in how the data access layer fits
into mobile app architecture, you'll find more on that topic in Chapter 9.

There are heavier-weight options that provide out-of-the box data solutions, handle the fine points of
security, and can save on development time. These enterprise cloud data solutions are the industrial-grade
platforms for remote data integration.

Enterprise Cloud Data Solutions

A range of enterprise solutions provide authentication, security, cloud storage, data synchronization, push
notifications and a host of other features. Here are a few of the most popular.

Microsoft Azure

The Azure Mobile Services Xamarin component provides a way to get started with Microsoft’s premiere
cloud platform for mobile data storage, authentication, and push notifications. Mobile Services, including
the SQL Database and Push Notifications, are configurable on the Azure portal without any coding.
Authentication, including Single Sign-On (SSO), is available using Azure Active Directory (AAD). Offline data
sync saves changes locally and then uploads them to the cloud database when the app is back online. These
features are accessible using the Microsoft.WindowsAzure.MobileServices namespace in the Azure Mobile
Services Xamarin component. Azure services can also be coded by hand on the server to give greater control
and broaden the features available. Consume REST or Web API cloud services and use OAuth authentication
and authorization to access any required functionality in an Azure service. The newer Azure App Services
provide an additional platform for configuring services for use in Xamarin apps and includes Mobile Apps
(in preview at the time of this writing). You can find more information at azure.microsoft.com/mobile.

346

http://dx.doi.org/10.1007/9781484202159_9
http://C:\\Users\\Mald01\\Downloads\\azure.microsoft.com\\mobile

CHAPTER 7 © DATA ACCESS WITH SQLITE AND DATA BINDING

IBM MobileFirst Platform Foundation

The IBM MobileFirst SDK in the Xamarin Component Store provides a bridge into IBM’s enterprise-grade
mobile application platform product as part of a suite of enterprise mobile solutions. IBM MobileFirst
Platform Foundation (formerly IBM Worklight) provides a range of mobile app development features
including security, cloud data access, enterprise integration, and application management. MobileFirst
Platform Foundation security offerings include secure authentication using SSO and multi-factors.
Transactions can use SSL encryption, local data can be encrypted, and there is some protection against
reverse-engineering. The platform's cloud data access feature set provides remote data access, storing

user preferences, and data synchronization. Enterprise integration features include unified push, SMS
notifications, and optimized access to enterprise services, such as Web Services, REST Services, SAP, and
more. Application management functionality provides a full range of app release management features
including distribution, versioning, analytics, push notifications, remote disabling of apps, and error logging.
These are some of these features available using the WL.Client namespace in the IBM MobileFirst SDK. You
can find more information at xamarin.com/ibm.

Amazon Web Services (AWS)

Use Amazon services for authentication (Amazon Cognito), cloud storage (Amazon S3), and other features.
Get started with AWS Mobile SDK at AWSLabs (in beta at the time of this writing). The SDK provides access
to features such as authentication, Amazon S3 cloud data storage, user preference persistence, NoSQL
database service, push notifications, and encryption. You can find more information at aws .amazon.com.

Those are a few of the enterprise-grade options available for cloud data services in Xamarin apps. Other
popular options include Couchbase and Parse.

Summary

Xamarin.Forms data binding was built upon the foundation and experience of the third-party MVVM libraries
used with Mono for years, MvvmCross and MVVM Light Toolkit, and was also inspired by WPF XAML data
binding. Although it’s a relatively young product, in this way, Xamarin.Forms is an advanced and mature API.

Data binding gets data into and out of your data model through your views. Moving that data into and out
of your database can be accomplished with SQLite.NET or ADO.NET. Some Xamarin developers prefer
SQLite.NET because of the ease of the built-in ORM. The SQLite. NET ORM wraps all the standard CRUD
transactions in handy LINQ-friendly methods. The ADO.NET approach is bare-bones but functional.
Neither option supports foreign keys, and those have to be done in SQL or in an included database.

That’s everything you'll need to populate your data models and couple them with a local SQLite database.

In the next chapter, we will return to the mobile UI for the final and catalyzing topic in Xamarin.Forms
development: custom renderers. Custom renderers allow you to use almost all of the UI functionality
covered in this book (and more) within the context of a Xamarin.Forms app. You can include platform-
specific code, which employs Xamarin.iOS and Xamarin.Android, in your Xamarin.Forms pages by using
custom renderers.

Turn to Chapter 8 to see how to use custom renderers.

347

http://xamarin.com/ibm
http://aws.amazon.com/
http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 8

Custom Renderers

When you're ready to extend the capability of Xamarin.Forms views beyond their out-of-the-box
functionality, then it’s time to start customizing them using custom renderers. Platform-specific controls
and layouts have scores of features unavailable using only the Xamarin.Forms abstraction. Fortunately,
Xamarin.Forms exposes the mechanism whereby cross-platform views are made into platform-specific
views, called renderers. By creating your own custom renderers, you get full access to platform-specific
features buried deep within each view!

Custom renderers are a bridge between Xamarin.Forms and Xamarin platform-specific libraries,
Xamarin.iOS, Xamarin.Android, as well as the Windows Phone SDK.

Xamarin.Forms controls are drawn on the screen using two primary components: elements and renderers.
Throughout this book you've been working with the elements: views, pages, or cells defined within
Xamarin.Forms. The renderers take a cross-platform element and draw it on the screen using the
platform-specific Ul library. All Xamarin screens use renderers! For example, if you create a Label view using
Xamarin.Forms, this element is rendered in i0S using UILabel, in Android using TextView, and in Windows
Phone using TextBlock. However, Xamarin.Forms provides only a partial binding to these platform-specific
views. If you want to gain access to all of the properties and methods within platform-specific elements
(such as UILabel, TextView, and TextBlock), then you need to create a custom renderer.

Think of a custom renderer as a way to access and extend the binding between Xamarin.Forms and the
platform-specific elements.

Tip You can create custom renderers for these elements: Views, Cells, and Pages.

At the end of this chapter I'll list most of the Xamarin.Forms elements covered in this book, their platform-
specific equivalents, and which renderers to use when customizing them.

When to Use a Custom Renderer

When might you want to use a custom renderer?

You may want to make a slight change to a view and Xamarin.Forms isn’t obliging you. For example, you
know for a fact that iOS does text decorations or shadows on a particular view and this isn’t available in
Xamarin.Forms, so you create a custom renderer to access a Xamarin.iOS control. Use a custom control
when you need direct access to an element’s platform-specific properties and methods or when you need to
replace a Xamarin.Forms element with your own custom platform-specific element.

349

CHAPTER 8 © CUSTOM RENDERERS

Note A Xamarin.Forms customized control uses a custom renderer to access native functionality in a single
control. A custom control is typically a group of controls composited into a single reusable component using
ContentView (Chapter 3) (but you can also create a custom control using a custom renderer and replace the
view with a group of views). Sometimes developers will say “custom control” to refer to a customized control.

Let’s explore how to create a custom renderer for Android, i0S, and Windows Phone.

Creating and Using a Custom Renderer

A custom renderer is created to implement the visual representation of a custom element. You create a
custom element class that inherits from a standard Xamarin.Forms element, such as Button. Then you
use that custom element in the UL You can implement the custom renderer for each platform to use
platform-specific members of that element, such as Android’s SetBackgroundColor method, or the i0OS
BackgroundColor property.

There are several steps in the creation and implementation of a custom renderer, but I'll break them into two
tasks: preparing the custom element in the Xamarin.Forms project and creating a custom renderer in each
platform-specific project.

Prepare the custom element in your Xamarin.Forms project by creating an element subclass and then using
it in your UI. The following steps only happen once.

1. Create an element subclass. Create an empty subclass of the element you want to
customize, such as Button, in your Xamarin.Forms project.

public class CustomButton : Button {}

2. Use the element. Use the subclassed element, such as this CustomButton, in a
layout in your Xamarin.Forms project.

Create a custom renderer in each of your platform-specific projects (i0S, Android, Windows Phone) using
these three steps. The following steps occur once for each platform.

1. Create a custom renderer. Add a custom renderer class to each platform-specific
project where you want to make customizations.

public class CustomButtonRenderer : ButtonRenderer

2. Add [assembly]. Add the [assembly] attribute outside of the namespace
declaration to declare the new renderer.

3. Addusing. Add using statements to the renderer class so that the renderer types
are resolved.

That’s the upshot for creating a custom renderer.

In the next example, you will create a custom button that has custom renderers for each platform. Start by
preparing your custom view in the Xamarin.Forms project before moving onto the renderers.

350

http://dx.doi.org/10.1007/9781484202159_3

CHAPTER 8 © CUSTOM RENDERERS

Preparing the Custom Element

A custom renderer first requires a custom Xamarin.Forms element, which can be a View, a Cell, or a Page.

In this example, you will use custom renderers to change the background color of a button view to some

variant of orange, as this is not possible using the Xamarin.Forms Button view at the time of this writing. The

custom view will be called CustomButton and inherit from the Button view.

Now, to make your CustomButton orange...

Create a Xamarin.Forms PCL solution called CustomRenderer; then I'll go through these steps in more detail.

1. Create an element subclass. Create an empty subclass of the element you want to
customize, the Xamarin.Forms Button in this case, and place it in CustomButton.

¢s in your Xamarin.Forms project.

public class CustomButton : Button {}

2. Use element. Use the subclassed element, such as this CustomButton, in a layout

in your Xamarin.Forms project.

Create a new ContentPage in a file called Mainpage. cs. Instantiate an instance of the CustomButton view,

create a click handler, and place the button on a Stacklayout, as shown in Listing 8-1.

Listing 8-1. Invoke the CustomButton in Mainpage.cs (in the Forms Project)

public class MainPage : ContentPage

{
public MainPage()
{
CustomButton button = new CustomButton
{
Text = "Custom Button",
FontSize = Device.GetNamedSize(NamedSize.large, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
button.Clicked += (sender, args) =>
{
DisplayAlert("Congratulations”,
"This button was rendered in a platform-specific class.", "OK");
};
Content = new StackLayout
{
VerticalOptions = LayoutOptions.Center,
Children = {
button
}
};
}
}

351

CHAPTER 8 © CUSTOM RENDERERS

Remember to assign this MainPage class to the MainPage property of your Application constructor.
In the StackLayout, your use of the custom view, CustomButton, is exactly the same as the use of a regular
Xamarin.Forms Button view.

Creating the Custom Renderer

Now that you have created a custom element and used it in your UI, you'll need to create the custom
renderer. You'll need to determine the name of the renderer for your element, and I'll show you how to do
that later in this chapter in the section “Which Renderer and View Do You Customize?” In this example,
you'll use ButtonRenderer.

There are two main ways to customize a control: by property or by replacing the entire control. Customizing
a control’s properties involves accessing platform-specific properties unavailable via the Xamarin.Forms
view (such as a button’s background color). A Xamarin.Forms control can also be completely replaced by a
platform-specific control of the developer’s choice. I'll cover property customization in depth in this chapter
and touch upon control replacement in the notes.

Here are the custom renderer’s key methods:

e OnElementChanged: This main method fires upon changes to the element and is used
for control initialization. Set the initial control value and its properties.

e OnElementPropertyChanged: This method fires upon changes to element properties
and is useful for data binding.

e SetNativeControl: Call this method manually to replace the entire element
with a custom platform-specific control. (such as SetNativeControl (new
YourCustomizedControl());)

Here are the custom renderer’s important properties:

e Control: A reference to the platform-specific element (such as UIButton) displayed
by the renderer. Platform-specific properties are available here. This object can also
be replaced with an entirely new (and customized) platform-specific control.

e Element: A reference to the Xamarin.Forms subclassed element (such as
CustomButton). Xamarin.Forms element properties are available here.

Customize controls and their properties by using the Control property within the OnElementChanged method.

Implement data-bound customized controls by assigning Control properties from their corresponding
Element properties in the OnElementPropertyChanged method.

Now create a custom renderer on each platform. Begin with the Android platform, then do iOS and Windows
Phone.

Android Custom Renderer

Renderers realize a view on the native platform. Create your own renderer by inheriting from the standard
renderer, such as ButtonRenderer. Then call into the native view’s platform-specific API to customize the
view using the renderer’s Control property. In OnElementChanged, you'll assign your Control’s background
color property.

352

CHAPTER 8 = CUSTOM RENDERERS

Do the first of three platform-specific steps.

1. Create a custom renderer. Add a custom renderer class to the platform-specific
project, which is ButtonRenderer in this case.

Tip Refer to the section “Which Renderer and View Do You Customize?” at the end of this chapter to help
you determine the renderer and platform-specific control(s) to use for the element you want to customize.

Create CustomButtonRenderer.cs as a class in the Droid project. Inherit from the ButtonRenderer class
and modify the Control property to affect your button as needed. The platform-specific view is assigned
to the Control property, in this case an Android Button control, and its native properties and methods
are made available. Listing 8-2 shows an Android renderer where the background color is set using the
SetBackgroundColor method.

Listing 8-2. Customized ButtonRenderer in CustomButtonRenderer.cs (in the Droid Project)

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged (ElementChangedEventArgs<Button> e)
{
base.OnElementChanged (e);
if (Control != null) {
Control.SetBackgroundColor (global::Android.Graphics.Color.Chocolate);
}
}
}

Tip OnElementChanged is where to replace the entire control with your own customized platform-specific
control.

if (Control != null) {
SetNativeControl(new YourCustomizedControl());
}

Note If you don’t add a platform-specific renderer, the default Xamarin.Forms renderer will be used.

Complete the final two platform-specific steps. In order to make the custom renderer visible to the Xamarin.
Forms project, an attribute on the class is required. Then add the using statements.

2. Add the [assembly] attribute outside of the namespace declaration to declare
the new renderer.

[assembly: ExportRenderer (typeof (CustomButton), typeof (CustomButtonRenderer))]

353

CHAPTER 8 © CUSTOM RENDERERS

3. Addusing statements to the renderer class so that the renderer types are
resolved.

using Xamarin.Forms.Platform.Android;
using Xamarin.Forms;

using CustomRenderer;

using CustomRenderer.Droid;

Figure 8-1 shows the result: a “chocolate”-colored button that looks orange. Setting a button’s background
color is only possible using a custom renderer with the current version of Xamarin.Forms.

' Custom Button

Figure 8-1. Orange CustomButton via an Android custom renderer

Tip Color is close-captioned in this chapter for all of you black-and-white print readers.

354

CHAPTER 8 = CUSTOM RENDERERS

CODE COMPLETE: Android Custom Renderer

Listings 8-3, 8-4, and 8-5 contain the complete code listing for the Android custom button renderer. Listing 8-3,
CustomButton.cs, and Listing 8-4, MainPage.cs, are in the Xamarin.Forms project and Listing 8-5,
CustomButtonRenderer.cs, is from the Droid project in the same solution, CustomRenderer.

XAML The XAML version of this example can be found at the Apress web site (www.apress.com), Or on
GitHub at https://github.com/danhermes/xamarin-book-examples. The Xamarin.Forms solution for
Chapter 8 is CustomRenderer.Xaml.

Listing 8-3. CustomButton.cs
public class CustomButton : Button {}
Listing 8-4. MainPage.cs

public class MainPage : ContentPage

{
public MainPage()
{
CustomButton button = new CustomButton
{
Text = "Custom Button",
FontSize = Device.GetNamedSize(NamedSize.large, typeof(Button)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Fill
};
button.Clicked += (sender, args) =>
{
DisplayAlert("Congratulations”,
"This button was rendered in a platform-specific class.", "OK");
};
Content = new StackLayout
{
VerticalOptions = LayoutOptions.Center,
Children = {
button
}
};
}
}

355

http://www.apress.com/
https://github.com/danhermes/xamarin-book-examples
http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 8 © CUSTOM RENDERERS

Listing 8-5. CustomButtonRenderer.cs (Droid Project)

using Xamarin.Forms.Platform.Android;

using Xamarin.Forms;

using CustomRenderer;

using CustomRenderer.Droid;

[assembly: ExportRenderer (typeof (CustomButton), typeof (CustomButtonRenderer))]

namespace CustomRenderer.Droid

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged (ElementChangedEventArgs<Button> e)
{
base.OnElementChanged (e);
if (Control != null) {
Control.SetBackgroundColor (global::Android.Graphics.Color.Chocolate);
}
}
}

}

Now we’ll do an orange button in iOS.

i0S Custom Renderer

Creating an iOS renderer for the Button view is similar to making the Android one. Create a custom renderer
that inherits from a standard renderer, such as ButtonRenderer. Then call into the native view’s platform-
specific API to customize it using the renderer’s Control property. In OnElementChanged, you'll assign your
Control’s background color property.

Begin with the first platform-specific step.

1. Create a custom renderer. Create CustomButtonRenderer.cs as a class in the
iOS project. Inherit from the ButtonRenderer class and modify the Control
property to affect your button as needed. The platform-specific view is assigned
to the Control property, in this case an iOS UIButton control, and its native
properties and methods are available. Listing 8-6 shows an iOS renderer where
the background color is set using the UIButton's BackgroundColor property.

356

CHAPTER 8 © CUSTOM RENDERERS

Listing 8-6. Customized ButtonRenderer in CustomButtonRenderer.cs (i0S Project)

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged (ElementChangedEventArgs<Button> e)
{
base.OnElementChanged (e);
if (Control != null) {
Control.BackgroundColor = UIColor.Brown;
}
}
}

Next, do the final two steps. In order to make the custom renderer visible to the Xamarin.Forms project, you
need to add an attribute on the class and the two using statements.

2. Add [assembly]. Add the [assembly] attribute outside of the namespace
declaration to declare the new renderer.

[assembly: ExportRenderer (typeof (CustomButton), typeof (CustomButtonRenderer))]

3. Addusing statements to the renderer class so that the renderer types
are resolved.

using Xamarin.Forms.Platform.iOS;
using Xamarin.Forms;

using UIKit;

using CustomRenderer;

using CustomRenderer.iOS;

Figure 8-2 displays the result: another orange button (orangish-brown), only possible using a custom
renderer with the current version of Xamarin.Forms.

357

CHAPTER 8 © CUSTOM RENDERERS

& : ™\

} Carrier ¥ 9:37 PM -

\

Figure 8-2. Orange CustomButton via an iOS custom renderer

CODE COMPLETE: iOS Custom Renderer

Listing 8-7 shows the complete code listing for the iOS custom button renderer. This goes with Listings 8-3
and 8-4 in the Xamarin.Forms project.

Listing 8-7. CustomButtonRenderer.cs for the i0S Project

using Xamarin.Forms.Platform.iOS;
using Xamarin.Forms;

using UIKit;

using CustomRenderer;

using CustomRenderer.iOS;

[assembly: ExportRenderer (typeof (CustomButton), typeof (CustomButtonRenderer))]

namespace CustomRenderer.iOS
{
358

CHAPTER 8 = CUSTOM RENDERERS

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged (ElementChangedEventArgs<Button> e)
{
base.OnElementChanged (e);
if (Control != null) {
Control.BackgroundColor = UIColor.Brown;
}
}
}

}

Now let’s make the button orange in Windows Phone.

Windows Phone Custom Renderer

A Windows Phone custom renderer is also a renderer class inheriting from a standard renderer with an
[assembly] tag and platform-specific implementation of views. Here's the detail for customizing the Button
view renderer.

Note The following Windows Phone custom renderer is made using the Silverlight API, not WinRT. WinRT
namespaces will differ slightly but the approach remains the same.

Begin with the custom renderer, as usual:

1. Create a custom renderer. Create CustomButtonRenderer.cs as a class in the
WinPhone project. Inherit from the ButtonRenderer class and modify the Control
property to affect your button as needed. The platform-specific view is assigned to
the Control property, in this case a Windows Phone Button control, and its native
properties and methods are made available. Listing 8-8 shows a Windows Phone
renderer where the background color is set using the Button’s Background property.

Listing 8-8. Customized ButtonRenderer in CustomButtonRenderer.cs (WinPhone Project)

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
{
base.OnElementChanged(e);
if (e.OldElement == null)
{
var customButton = (System.Windows.Controls.Button)Control;
customButton.Background = new SolidColorBrush(Colors.Orange);
}
}
}

359

CHAPTER 8 © CUSTOM RENDERERS

Note In the null check, the 01dElement property is used instead of Control on Windows Phone.

Note For WinRT, use Windows.UI.Xaml instead of System.Windows.

Now complete the two final steps. Add the [assembly] attribute to make the custom renderer visible to the
Xamarin.Forms project then add the using statements.

2. Add [assembly]. Add the [assembly] attribute outside of the namespace
declaration to declare the new renderer.

[assembly: ExportRenderer (typeof (CustomButton), typeof (CustomButtonRenderer))]

3. Addusing statements to the renderer class so that the renderer types are
resolved.

using System;

using System.Windows.Media;

using Xamarin.Forms.Platform.WinPhone;
using Xamarin.Forms;

using CustomRenderer;

using CustomRenderer.WinPhone;

Note Here are the WinRT using statements.

using Windows.UI;

using Windows.UI.Xaml.Media;

using Xamarin.Forms;

using Xamarin.Forms.Platform.WinRT;

Figure 8-3 shows a Kool-Aid-orange-colored button, on a Windows Phone this time.

360

CHAPTER 8 © CUSTOM RENDERERS

Figure 8-3. Orange CustomButton via a Windows Phone custom renderer

CODE COMPLETE: Windows Phone Custom Renderer

Listing 8-9 shows the complete code listing for the Windows Phone custom button renderer. This goes with
Listings 8-3 and 8-4 in the Xamarin.Forms project.

Listing 8-9. CustomButtonRenderer.cs for the WinPhone Projectusing System;

using System.Windows.Media;

using Xamarin.Forms.Platform.WinPhone;
using Xamarin.Forms;

using CustomRenderer;

using CustomRenderer.WinPhone;

[assembly: ExportRenderer(typeof(CustomButton), typeof(CustomButtonRenderer))]

361

CHAPTER 8 © CUSTOM RENDERERS

namespace CustomRenderer.WinPhone

public class CustomButtonRenderer : ButtonRenderer

{
protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
{
base.OnElementChanged(e);
if (e.OldElement == null)
{
var customButton = (System.Windows.Controls.Button)Control;
customButton.Background = new SolidColorBrush(Colors.Orange);
}
}
}

}

That’s how to build a custom renderer on all three mobile OS platforms!

The first trick in building a custom renderer is figuring out what the renderer is called and the native element
name. Here’s a quick guide to help with that.

Which Renderer and View Do You Customize?

Table 8-1 shows most of the Xamarin.Forms elements covered in this book, their renderers, and their
platform-specific equivalents that can be customized.

362

CHAPTER 8 = CUSTOM RENDERERS

(panu1juo9)
uo3ngaT83o] Y23IMSIN Y231IMS I2I3pUayyd3TMS Y231IMS
I9pTTS ISpTTSIN Iegya3s ISI3PUIYISPTTS ISpTTS
uojang
uoling ‘i1apiog 19dda1s1n ‘3nofAe1eaut I219puayraddals 19ddals
swa1Iu0}INgIegIn ‘PTITIIXALIN 3oreTQ3IRTY
95egIaNDTJaWT]dlkeq ‘IeqTOO0LIN ‘INDTdaIeqIn ‘MITAIXSL IDISPUIYISNITJAWT | INDITJaWT]
swa1uolIngregIn ‘praT4IXaLINn doteTQ1IaTY
95egIdNITJaWT31eq ‘IeqTO001IN ‘IdNITd1eqIn ‘MITAIXDL IDISpUIYIDNIT4areq INDT4d1eq
PTST4IXALIN ‘SWIITU0IINGIRGIN 193214 I3qunN
‘1egT00LIN TIPOWMITAIDNITAIN ‘goTeIQIISTY
INITJIST MITAIITJIN ‘MITAIX3L T9ISpURYINITd I
¥ 191dey)
JUBWRTIIN MITAIN aTqeme1q ISIapuayauwer swerd
¢ 1ydey)
ISMITATTOIOS MITATTOIOSIN MITATTOIOS IDISPUIYMITATTOIOS MITATTOIOS
(dM) 1919pUIYMITAXOg
aT8ue10ay 1X33U0)DN) dnoxnMaTp ‘IaI3puUayxog MaTAXOg
adeut MaTASSewIIN MaTASSewT IaI3puayaSeuwt a8eut
X0g3x3 | 3uoyd PTRI4IX31IN IX3131p3 T213pusyA13u3 A13u3
uoying uolINgIn uoying I2I9puUaxYu0IINg uoying
A20Tg3x3] T39e11IN MITAIX3L I913puUayTaqeT] T29e7
Toued MITAIN dnoxnMaTp I21I2pudyaSed a8eqiuaiuo)
¢ ddey)H
auoyd SMOpPUIM SO! ploipuy Jalapuay swo4 uriewey

SjuaUA]q 21f102dS-ULIOfiv]d PUD ‘S119pUdy 10y, ‘Sudwad]g *I-8 2191,

363

http://dx.doi.org/10.1007/9781484202159_2
http://dx.doi.org/10.1007/9781484202159_3
http://dx.doi.org/10.1007/9781484202159_4

CHAPTER 8 © CUSTOM RENDERERS

wajTeweroued MITATTOIOSIN MITA IDI2pudyadedTasnore) a8ed1asnoxe)
saded (dm) 1219pUayadedpaqqgel
JOATY MITAIN ‘ISTTOIIUOIMITAIN MITA UM SUON ‘1213pUaypaqqel a3edpaqqe]
(V)I319pusyT3pORMITATGRL
1032979535T73u07 MITASTQELIN MITA ‘MITAIST] € 19I3puUaYMITAST e MITASTqeL
(PedT)ISTTOI3U0IMITAITTASIN (pedt)1213puayTIRISCIa} S}
Taued ¢(suoydt)woysnd 1noAeq1amerq 9qel ‘ISISPUIYTILIDCIDISEN a8edTTR19QIa1SEY
SIUSWIT I TOMIWe I Ieqrool1In saded (dM)I913puayadeduoriedTaey
)M QUON ¢ ISTTOIIUOIUOTIESTABNIN MITA J}IM dUON ¢ 19139pudyuoTIe3TALN a8eduotiedineN
9 131dey)
MITAS3ew]
o1etdwajeieq o8ewIIn ‘ITOIMOIASTGELIN ‘MITAIXSL IDISpUIYT TSt T19)98ewt
91eTdwajeyeq Yo3IIMSIN ‘TTOIMSTIASTGeLIN Yo3IMS I9IDPUIYTTIIYDIIMS TT9JY231IMS
1X3131p3
‘MITAIXDL
ajerdwseieq PTRT4IX3LIN ‘TTIIMITASTGELIN 3noferesut 1213pudyTT20A13u3 112341303
matpaSewT
‘MITAIXSL
o1eTdwajeieq TT9IMITASTGeLIN ‘3noAe1esaut II9pUIYTTIIX3L TI9)3X3L
10329795351 718uU07 MITASTQeLIN d[qe[reae 194 JON I9IDPUIYMITAIST] MITAIST]
¢ 131dey)
auoyd SMOpPUIpM So! ploipuy Jalspuay SWLI04 ullewey

(ponunuod) °1-g a1quy,

364

http://dx.doi.org/10.1007/9781484202159_5
http://dx.doi.org/10.1007/9781484202159_6

CHAPTER 8 = CUSTOM RENDERERS

(A) = Android
(WP) = Windows Phone
Xamarin.Forms Layout renderers are not exposed for customization at the time of this writing.

The Windows Phone classes listed in Table 8-1 are from the Silverlight API and many (not all) are unchanged
in WinRT.

That should be sufficient to get you started with custom renderers.

Summary

Custom renderers complete the Xamarin.Forms picture, extending the reach of Xamarin.Forms deep
into the platform-specific APIs using Xamarin.iOS, Xamarin.Android, and the Windows Phone SDK. The
Xamarin.Forms abstraction provides immeasurable value as a cross-platform tool, but the platforms do
differ, and developers need a way to bridge the gap. The custom renderer is that bridge.

It is time that the design of the book you are reading be laid bare (although I'm fairly certain you had this
figured out already):

This entire book is architected around Xamarin.Forms and how to extend it using custom renderers. That is
partly why so many of the chapters begin with the Xamarin.Forms approach, and then continue with the
Android and iOS equivalents.

For that reason, this chapter on custom renderers is the bow on your present. A big orange bow. Hopefully
you've found this gift to be useful, as it is drawing to its end.

If you recall the Xamarin.Forms versus platform-specific implementation discussion in Chapter 2, you
should now have a thorough understanding of the decisions to be made when setting out to build a Xamarin
app and the options available to help you do it using Xamarin.Forms, Xamarin.Android, and Xamarin.iOS.

Custom renderers are the main approach used in platform-specific Ul in Xamarin.Forms apps. There are,
however, a number of other ways to slice and dice platform-specific bits of code in the data access layer,
business logic, and other non-UI functionality. This brings you to Xamarin application architecture.

In the next and final chapter, you'll look at how to architect cross-platform apps.

365

http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 9

Cross-Platform Architecture

At the outset of this book, I mentioned the unicorn of mobile development: write once, deploy anywhere.
In the quest for this unicorn, the fair maiden that might entice this beast to appear is cross-platform design.

The entirety of the Xamarin platform already provides a foundation of cross-platform design, but you can
further the cause by understanding and thoughtfully implementing cross-platform architecture.

What is cross-platform architecture?

It begins with two kinds of code.

Shared Code and Platform-Specific Code

A Xamarin app can be broken down into the two types of code found in it:

e Shared code: Used by all platforms in the app solution; also called
cross-platform code.

e Platform-specific code: Used by one OS platform in the app solution, such
as iOS or Android, but not both.

There are a number of ways to divide an application solution between shared and platform-specific code.

It can be done top-down by project, or bottom-up using individual lines of code; then there are middle
ways using specific files or classes. Many good apps are divided into shared and platform-specific code at all
these levels.

The options available for slicing and dicing an application top-down are Portable Class Libraries (PCL),
projects compilable into a single DLL used by multiple platforms, and Shared Projects, which are recompiled
in different platform contexts. Bottom-up options include conditional compilation, which is a platform-
specific compilation demarcation around small blocks of code in a Shared Project. Conditional compilation
is not available in a PCL, since the DLL is pre-compiled, so Dependency Injection (DI) can be used instead
to create platform-specific classes against a common interface. Custom renderers, covered in Chapter 8, use
DI to split out platform-specific UI classes in a Xamarin.Forms solution. File linking is used to share specific
files between projects.

All of these techniques are used to solve the problem of platform-specific differences in a cross platform app,
which is called divergence.

367

http://dx.doi.org/10.1007/9781484202159_8

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Handling Divergence

Divergence describes the need for platform-specific implementations in a cross-platform app because
platform-specific differences cause their implementations to diverge from the main code in a solution.
Examples include custom renderers in Xamarin.Forms apps where platform-specific UI diverges from the
cross-platform approach, and when networking or push notifications implemented in a core library reach a
point where they require local OS API access.

The following are the primary techniques for handling divergence in a cross-platform application at different
levels of granularity.

e Atthe project level, use platform-specific projects.
e Atthe filelevel, use file linking, sometimes with partial classes or methods.

e Atthe classlevel, use dependency injection in PCLs. In Shared Projects you have
more options, including DI, partial classes, and conditional compilation.

e Atthe method level, use partial methods.

e Atthe codelevel, use conditional compilation for individual lines of
platform-specific code.

Due to their encapsulated nature, PCLs can only use a couple of the preceding techniques without
recompiling a new DLL for each platform: platform-specific projects and dependency injection.
Recompiling a cross-platform PCL DLL for each platform implementation is not recommended. If you
must recompile, consider using a Shared Project. Shared Projects can use all of the previously mentioned
techniques as they are designed to be recompiled for each platform. I'll say more about PCLs and Shared
Projects shortly.

Tip There is also divergence within single platforms due to variations between platform versions, such as
Android API or iOS release versions, for example. Version divergence may include divergence between screen
sizes or features in APIs that are added or deprecated.

These techniques lead to a few standard architectures for Xamarin cross-platform apps that you'll look at
now. With the acknowledgment that architecture overlaps but isn’t the same as solution structure, let’s begin
with the Xamarin.Forms solution.

Xamarin.Forms Solution Architecture

Xamarin.Forms apps have a base solution pattern that was mentioned in Chapter 2. These are the main
projects.

Xamarin.Forms: Cross-platform Ul code in a PCL or Shared Project, which is
called by one of the platform-specific projects.

Xamarin.Android: Android-specific code, including Android project startup.

Xamarin.iOS: i0S-specific code, including iOS project startup.

368

http://dx.doi.org/10.1007/9781484202159_2

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Windows Phone application: Windows Phone-specific code, including Windows
Phone project startup.

Core Library: Shared code such as Business Logic Layer (BLL) and DAL using
a PCL or Shared Project. (A core library may not be necessary in a small or
prototype app since shared code can reside in the Xamarin.Forms project.)

All these projects can be created automatically by the project template except the core library, which must
be added manually when needed. Figure 9-1 shows the projects in question.

Xamarin.Forms Project

Windows
Phone Project

iOS Project Android Project

Core Library Project

Figure 9-1. Xamarin.Forms solution projects

Figure 9-2 shows another way of looking at the Xamarin.Forms solution that includes the app and
architecture layer axes.

iOS App Android App Windows Phone App

Cross-Platform : '
UI Layer Shared C# Code Using Xamarin.Forms
Platform-Specific]
1) JIESPYl C# Code Using i Ci# Code Using

ISPl Xamarin.iOS Xamarin.Android
Custom Renderers

C# Code Using
Windows
Phone SDK

Core Library

Business Logic and Shared C# Code
Data Access Layer

Figure 9-2. Xamarin.Forms solution architecture of iOS, Android, and Windows Phone apps
369

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

There are two types of shared code in a Xamarin.Forms solution: the shared UI code in the Xamarin.Forms
project and the DAL and BLL in the Core Library project.

The platform-specific projects (Xamarin.Android, Xamarin.iOS, and Windows Phone) house startup code,
custom renderers, and other platform-specific functionality such as services, notification, sensors, or
networking. In a Xamarin.Forms solution, most of the Ul is housed in the Xamarin.Forms project and only
in platform-specific projects when there are custom renderers. Platform-specific projects handle divergence
at the project level.

Note on Windows Phone Projects Creating a Xamarin.Forms Solution on Windows will not create a
Windows Phone project without having the Windows Phone SDK installed. Windows Phone apps cannot be
developed using a Mac. Xamarin Studio does not support the creation of Windows Phone projects and these
must be created in Visual Studio.

Note on i0S Projects Creating a Xamarin.Forms Solution on a Windows machine will create an iOS project,
but it will not be usable without a Mac build host.

Entirely platform-specific solutions keep most or all of the UI in platform-specific projects.

Platform-Specific Solution Architecture

Platform-specific apps have a base solution that looks similar to a Xamarin.Forms solution, minus the
Xamarin.Forms project, and all the platform-specific projects contain a lot more code. Here are the projects
in a typical platform-specific solution.

Xamarin.Android: Android-specific code.
Xamarin.iOS: i0S-specific code.
Windows Phone application: Windows Phone-specific code.

Core Library: Shared app logic such as BLL and DAL using a PCL or a Shared
Project. (For a lighter-weight solution without a core library, you can use file
linking to connect shared code that resides in a single platform’s project to each of
the other platform’s projects.)

Figure 9-3 shows the Xamarin projects for a platform-specific solution.

370

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

iOS Project Android Project Windows
Phone Project

Core Library Project

Figure 9-3. Xamarin projects in a platform-specific solution

Figure 9-4 shows another way of looking at the platform-specific solution that includes the app and
architecture layer axes.

iOS App Android App Windows Phone App

Platform-Specific NeAELAVEE
UI Layer B ENMERIOS

C# Code Using
Xamarin.Android

C# Code Using
Windows
Phone SDK

Core Library

Business Logic and Shared C# Code
Data Access Layer

Figure 9-4. Xamarin solution architecture for Xamarin.iOS, Xamarin.Android, and Windows Phone apps

The platform-specific projects here (all projects except Core Library) handle divergence at the project level.
In many situations, these are created one at a time. For example, first the iOS version of an app is written,
then the Android version. This is a useful way to build an app because the core library can be tested with

a single platform and the UI can be worked out entirely on one platform before adding a second or third
platform.

371

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

MVVM AND MVC

Xamarin.Forms is strongly modeled after the MVVM pattern with built-in data binding (as discussed in
Chapter 7). For MVWM with platform-specific apps, there are open source options such as MvvmCross
and MVVM Light. Both MvvmCross and MVVM Light can be used with Xamarin.Forms. However, many
features of MvvmCross overlap with Xamarin.Forms, providing diminishing returns on using them together.

Regarding MVC in platform-specific solutions, Xamarin apps are largely MVC-ish. You create data
models by-hand (M in MVC), which are bound as data sources to fields and lists. XML layouts make up
the View (the V in MVC), and Android Activities and iOS UIViewControllers can act as controllers;
however, due to native 0S Ul architectures, the lines between the View and Controller can be somewhat
blurry. Although i0S is touted as MVC-based, if you are accustomed to the strict separation of concerns
(SOC) found in an ASP.NET MVC solution, you may find i0S’s idea of MVC to be diluted. Since storyboard-
generated UIViews define mainly static aspects of the screen, the logic defining dynamic content

is pushed down into the UIViewController (the Controller, or C, in MVC). Much of the storyboard-
generated UIView is about as View-like as .aspx files were before the release of ASPNET MVC, that is,
not very View-like at all. There isn’t an equivalent of Razor in native mobile development (building HTML
templates in Xamarin using Razor notwithstanding). The same is true of Android development. Layout
XML files create largely static layouts and leave the job of populating the dynamic content into the page
to the Activity, which can become enmeshed with business logic. Xamarin’s mission is to provide
direct access to these APIs, not to change their fundamental pattern. So, for a lot of us, i0S and Android
development will be a step back architecturally from stricter MVC.

Having this knowledge, however, is power. It is up to you to impose SOC in your own apps. You can
use your UIViewControllers and Activities to hold primarily view-related logic, and separate out
business logic into true controllers of your own construction. Don’t let the toolset hold you back. That’s
what classes are for, after all. This is the advantage of getting to do all this in C#!

Core Library

The core library is a dedicated project in your solution where the DAL, BLL, and other non-UI platform-
independent code can reside. Enterprises use the core library for professional-grade code separation,
decoupling the presentation layer from the BLL and DAL, and to facilitate team development. The core
library isn’t necessary for some prototype apps, small projects, or small teams. All of the content in the core
library project could instead be placed in the Xamarin.Forms project to simplify the solution.

Tip If you're just starting out with Xamarin.Forms, consider putting your data access, business logic, and
shared code in the Xamarin.Forms Ul project, and hold off on using a core library for now. You can use folders
inside the Xamarin.Forms project to organize your non-Ul code (for example, /data, /utilities, etc.) If you're just
starting out with platform-specific apps, you can use file linking (explained later in this chapter) as a lightweight
alternative to a core library.

372

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

In large-scale and/or enterprise-grade apps, non-UI shared code should go into a core library project,
separate from the UI projects. Core libraries are typically implemented using PCLs or Shared Projects. Here’s
what you might put in the core library:

e DAL: Data access layer that may include SQLite access, data models, view models,
repositories, cloud data access, and web services. See Chapter 7.

e BLL: Business logic that cuts across and is independent of platforms.

e Miscellaneous: Utilities, interfaces, cross-platform resources, and sundry necessities.
The core library is a cross-platform catch-all for non-UI files, folders, and classes.

In a nutshell, put platform-independent, non-UI code in your core library.

It is natural for core library components to be moved into platform-specific projects if it becomes clear that
they are not sharable. There are quite a few functions, such as certain types of local file access or OS services,
which are platform-specific functions that must be placed in the platform-specific projects. If only a few
lines of code in the core library need to be platform-specific, then conditional compilation can be employed
in Shared Projects or dependency injection in PCLs. File linking is also a useful option in Shared Projects for
creating partial classes with platform-specific files. More on these shortly.

Core libraries are sometimes created using shared libraries or, less commonly, using file linking in platform-
specific apps instead of creating a dedicated core library project (usually by sharing BLL or DAL files from a
platform-specific project to all the other platform-specific projects). An increasing number of core libraries
and Xamarin.Forms projects use PCLs.

Portable Class Libraries (PCL)

PCLs are code projects that provide a built-in subset of the .NET Framework based on the selection of target
platforms, such as Xamarin.Android and Xamarin.iOS (or .NET 4.5 or even Xbox!). PCLs can be compiled
into a DLL once and then run on all target platforms, so they are ideal for cross-platform code sharing.

Shared code in a solution—such as a Xamarin.Forms project, business logic, or data access code—can be
compiled into a PCL DLL for use with platform-specific projects or in other solutions altogether. Because
of its decoupled nature, the PCL is particularly useful when it is distributed to other developers rather than
used by a single developer.

Create a PCL in Visual Studio while on the Add New Project screen by selecting the Portable Class Library
option. In Xamarin Studio, on the New Project screen, select the Portable Library option.

PCLs are configured at compile-time in Visual Studio or Xamarin Studio to target particular platforms using
a profile. Profiles are configured to allow a PCL to run with Xamarin.iOS, Xamarin.Android, or Windows
phone, as well as with other platforms. PCLs allow you to target these platforms:

e Microsoft .NET Framework

e Silverlight

e Windows Phone

e .NET for Windows Store apps
e Xamarin.Android

e Xamarin.iOS

e Xbox

373

http://dx.doi.org/10.1007/9781484202159_7

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

PCLs provide a convenient, decoupled component for holding shared code in a solution. The cost of using
a PCL is that once the DLL is compiled, platform-specific customization requires a bit of extra work.

Important Note In a PCL, you cannot add or link files nor use partial classes, partial methods, or
conditional compilation for platform-specific implementations.

Because PCLs are constructed to avoid recompiling, platform-specific customization is usually done outside
of the PCL in the platform-specific projects using dependency injection.

Dependency Injection

Dependency Injection (DI) is a design principle that helps developers include platform-specific
functionality into an otherwise cross-platform class using Inversion of Control (IoC). IoC patterns are
framework calls to specific implementations of general classes provided by the application. DI does this by
passing the implementation into a constructor/setter.

DI is useful for platform-specific functions such as custom renderers, file handling, background services,
and sensors. In your shared code (usually a PCL, but this will also work in a Shared Project or file), create
an interface to define the methods and patterns to be implemented in each platform. Implement platform-
specific subclasses of the base class in each respective platform-specific project. Then you can inject these
platform-specific implementations into your shared code. DI handles divergence at the class level.

There are a few ways to implement the DI design principle, including interfaces, abstract classes,
and inheritance. Built into Xamarin.Forms is a DI implementation called DependencyService, which
implements DI using interfaces.

Note DI is a way to implement the Gang of Four (GoF) Strategy and/or Bridge patterns. Microsoft added to
this in Windows Presentation Foundation (WPF) and called it the Provider pattern. Xamarin.Forms implements a
variation of the Provider pattern in DependencyService.

Using DependencyService

Xamarin.Forms provides a built-in DI implementation called DependencyService that allows you to create
a base interface, and then build platform-specific implementation classes to be invoked in shared code.
This involves three steps:

1. Interface: An interface in the shared code declares the class for platform-specific
implementation.

2. Implementation: Platform-specific implementations of the interface are
registered using [assembly] tags.

3. Invocation: The platform-specific code is invoked from the shared code using
DependencyService.Get<InterfaceName>.MethodName.

374

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE
Let’s look at an example that passes a simple string into a custom class, concatenates the name of the OS

onto the beginning, and returns the string to the shared code caller.

I'll begin with the interface.

Creating an Interface

Using DependencyService first requires an interface of the functionality you want to implement. Interfaces
help to create a consistent architecture for specifying cross-platform feature sets with platform-specific
implementations.

Create an interface for your cross-platform class, ICustomClass, with a GoNative method.

public interface ICustomClass

{
}

string GoNative(string param);

The second step is to create platform-specific implementations.

Important Note Remember to provide an implementation of your interface in all platform-specific
projects. The DependencyService.Get method requires this in order to resolve the reference; otherwise,
a NullReferenceException error will be thrown at runtime.

Let’s begin with Android.

Android Implementation

In your Android project, create a platform-specific implementation of ICustomClass called CustomClass_
Android. cs. This version of the CustomClass.GoNative returns the value "Android".

class CustomClass_Android : ICustomClass

{
public CustomClass Android() { }
public string GoNative(string param)
{
return "Android " + param;
}
}

Register the class for use in DependencyService above the CustomClass_Android and namespace
declarations.

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass Android))]

375

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Remember to reference the current project to resolve CustomClass_Android.
using DependencyServiceExample.Android;

Now for the i0S implementation.

i0S Implementation

In the iOS project, create a platform-specific implementation of CustomClass called CustomClass_1i0S.cs.
This version of the CustomClass.GoNative returns the value "i0S".

class CustomClass_iOS : ICustomClass

{
public CustomClass i0S() { }
public string GoNative(string param)
{
return "i0S " + param;
}
}

Register the class for use in DependencyService above the CustomClass_Android and namespace
declarations.

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass i0S))]
Remember to reference the current project to resolve CustomClass_i0S.

using DependencyServiceExample.iOS; And next is the Windows Phone version.

And next is the Windows Phone version.

Windows Phone Implementation

Lastly, in your Windows Phone project, create a platform-specific implementation of CustomClass called
CustomClass_WindowsPhone.cs. This version of the CustomClass.GoNative returns the value "Windows
Phone".

class CustomClass_WindowsPhone : ICustomClass

{
public CustomClass WindowsPhone () { }
public string GoNative(string param)
{
return "Windows Phone " + param;
}
}

376

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Register the class for use in DependencyService above the CustomClass_WindowsPhone and namespace
declarations.

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass WindowsPhone))]
Remember to reference the current project to resolve CustomClass_WindowsPhone.
using DependencyServiceExample.WinPhone;

Now you'll use these platform-specific implementations in the shared code.

Invocation of the Platform-Specific Class

Invoke the platform-specific implementation in your Shared Project or PCL.

var text = DependencyService.Get<ICustomClass>()
.GoNative("platform-specific implementation complete!");

Create a button on your main page and use this DI invocation in the button’s Clicked event.

class MainPage : ContentPage

{
public MainPage()
var button = new Button
{
Text = "Go Native!",
VerticalOptions = LayoutOptions.CenterAndExpand,
HorizontalOptions = LayoutOptions.CenterAndExpand,
};
button.Clicked += (sender, e) =>
{
var text = DependencyService.Get<ICustomClasss()
.GoNative("platform-specific implementation complete!");
DisplayAlert("GoNative Called", text, "OK");
};
Content = button;
}
}

Figure 9-5 shows the button waiting to call CustomClass.GoNative.

377

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

' L]
L
Carrior ¥ B35 AM -
Go Mative!
I /_‘\
\ — 4

Figure 9-5. Button ready to call platform-specific implementations using DependencyService

When the button is clicked, DependencyService calls the platform-specific GoNative method of the
ICustomClass implementation, passing in the text "platform-specific implementation complete!".
The registered platform-specific version of CustomClass takes the text param, adds the name of the OS at
the beginning of the passed-in text string, and returns it to the calling class in shared code. The calling class
then displays the entire string in a DisplayAlert, as shown in Figure 9-6.

378

4 L
L]
Camer ¥ B35 AM
GoNative Called
105 platicem-spociic implsnantation
complete!
OK
I /_\
\
\\ =

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Android platform-specific

implementation complete!

oK

Figure 9-6. Platform-specific implementations of CustomClass

Tip Other ways to implement Dependency Injection include abstract classes and inheritance.

CODE COMPLETE: Using DependencyService

Listings 9-1, 9-2, 9-3, 9-4, and 9-5 contain the complete code for this DependencyService example.

Listing 9-1 contains the interface. Listing 9-2 contains the callout to the platform-specific implementation

of CustomClass.GoNative using DependencyService. Listings 9-3, 9-4, and 9-5 contain the OS-specific
implementations of ICustomClass.

This example can be found in the downloadable code in the DependencyServiceExample solution.

Listing 9-1. The Interface Resides in CustomClass.cs in the Xamarin.Forms Project

public interface ICustomClass

{

string GoNative(string param);

}

379

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Listing 9-2. The DependencyService Callout Is in MainPage.cs in the Xamarin.Forms Project

class MainPage : ContentPage

{
public MainPage()
{
var button = new Button
{
Text = "Go Native!",
VerticalOptions = LayoutOptions.CenterAndExpand,
HorizontalOptions = LayoutOptions.CenterAndExpand,
};
button.Clicked += (sender, e) =>
{
var text = DependencyService.Get<ICustomClass>()
.GoNative("platform-specific implementation complete!");
DisplayAlert("GoNative Called", text, "OK");
5
Content = button;
}
}

Listing 9-3. The Android Implementation Is in CustomClass_Android.cs in the Android Project

using System;
using DependencyServiceExample.Droid;

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass Android))]
namespace DependencyServiceExample.Droid

class CustomClass_Android : ICustomClass

{
public CustomClass Android() { }
public string GoNative(string param)
{
return "Android " + param;
}
}

}

Listing 9-4. The iOS Implementation Is in CustomClass_iOS.cs in the iOS Project

using System;
using DependencyServiceExample.iOS;

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass i0S))]

380

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

namespace DependencyServiceExample.i0S

{
class CustomClass_iOS : ICustomClass
{
public CustomClass i0S() { }
public string GoNative(string param)
{
return "i0S " + param;
}
}
}

Listing 9-5. The Windows Phone Implementation Is in CustomClass_WindowsPhone.cs in the Windows
Phone Project

using System;
using DependencyServiceExample.WinPhone;

[assembly: Xamarin.Forms.Dependency(typeof(CustomClass WindowsPhone))]

namespace DependencyServiceExample.WinPhone

{
class CustomClass_WindowsPhone : ICustomClass
{
public CustomClass WindowsPhone() { }
public string GoNative(string param)
{
return "Windows Phone " + param;
}
}
}

There are third-party alternatives to using DependencyService and to coding your own DI implementation.

Third-Party and Open Source DI Containers

A number of useful third-party and open source DI containers exist to help you do Dependency Injection.
Here are a few of them used by many developers:

e TinyIoC: Simple open source IoC solution
e Unity: Microsoft’s DI solution

e AutoFac: Another useful open source IoC solution

Tip Dependency Injection (DI) is a subset of the Inversion of Control (loC) design principle.

When more flexibility is required in the shared code than a PCL affords, a Shared Project can be useful.

381

https://github.com/grumpydev/TinyIoC
https://msdn.microsoft.com/en-us/library/ff647202.aspx?f=255&MSPPError=-2147217396
http://autofac.org/

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Shared Projects

Shared Projects contain shared code that can be recompiled into different applications (in the same solution
or in different ones). Like the PCL, this is where a core library or Xamarin.Forms project can be housed

for use in different platform contexts. The Shared Project is particularly useful when it is used by a single
developer, as it produces only a shareable code project, nota DLL.

Create a Shared Project in Visual Studio by navigating to File » New Solution and choosing a name for the
project and solution. In Xamarin Studio, navigate to File » New Solution and choose a name.

Tip The Shared Project solution template requires Visual Studio 2013 Update 2 (or Xamarin Studio).

There are many techniques available for handling divergence in Shared Projects: Dependency
Injection (DI), conditional compilation, file linking, partial classes, and partial methods. I've already
discussed D], so let’s look at the rest of these common approaches:

e Conditional compilation: Compiler directives for small, code-level amounts of
divergence

e Filelinking: Project file include for file or class-sized levels of divergence
e Partial classes: Using the partial keyword for class divergence
e Partial method: Using the partial keyword for method divergence

These approaches can be used loosely, as needed, without much structure. Use them carefully, because
implementations of any of them can become an anti-pattern, tightly linking cross-platform and platform-
specific classes without proper organization.

An architecturally disciplined approach might instead use the Strategy pattern with the Bridge pattern. The
Strategy pattern encapsulates the various platform behaviors in a class to abstract away the platform-specific
implementations. The Bridge pattern is used to decouple the class or method declarations in the shared code
from the platform-specific implementations using an interface, abstract classes, or inheritance. You can also
use DI, as discussed earlier.

Let’s look at each of the techniques in turn, starting with conditional compilation. The Shared Project is an
ideal place to put code that requires slight variations between platforms using conditional compilation.

Conditional Compilation

When shared code requires slight platform-specific variations (that cannot be accounted for using the
Xamarin.Forms OnDevice command), you can create compiler directives that compile code conditionally by
platform. This is a useful way to inject small pieces of platform code into an otherwise shared block of code.
This is a way to handle divergence at the smallest granularity: line-by-line.

Xamarin solution templates predefine three compilation symbols: __I0S_, ANDROID ,and _ MOBILE _
(two underscores before and after each term). Use these compilation symbols with the #if/#endif compiler
directives to include and exclude code based on the project platform.

382

http://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Specify an i0S-specific block of code using #if _ I0S__

#if 10S__
// 1i0S-specific code
#endif

Specify Android using #1f __ ANDROID .

#if _ ANDROID
// Android-specific code
#endif

Specify either iOS or Android using #if _ MOBILE .

#if MOBILE _
// 1i0S or Android-specific code
#endif

Android API level can also be specified in the conditional. This is a way to manage platform-version
divergence.

#if _ ANDROID 22
// code for Android API 22 or newer
#endif

Conditional compilation is useful for platform-specific exceptions in a cross-platform class. If there are too
many exceptions, you should divide your features into platform-specific implementations and put them

into their respective projects, that is, in the Xamarin.iOS project. You can do this in an architecturally sound
manner by using interfaces to define the feature set before creating platform-specific implementations using
the Strategy and/or Bridge pattern (or DI).

File Linking

You can bring individual files into projects from other projects using file linking. This can be used to bring
platform-specific implementations into Shared Projects or shared code into platform-specific projects.

Simply right-click a project and choose Add (in Xamarin Studio) or Add Files (in Visual Studio). Pick the
desired file or folder and choose Link when prompted to virtually include it in your current project.

A common use of file linking is for small or prototype platform-specific apps where a lightweight alternative

to a core library is needed. You can put all of your shared files (business logic, data access, utilities, and so on)
into a single project (such as the Android or Xamarin.Forms projects), and then link to those files from the
other platform-specific projects (such as the iOS and/or Windows Phone projects). File linking instead of a core
library is a quick and dirty approach that probably shouldn’t be used on enterprise-grade or team projects.

Tip Overuse of bottom-up, fine-grained approaches such as file linking and conditional compilation
can lead to architecturally undisciplined code, so consider your top-down alternatives first (like PCLs and
Shared Projects).

383

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

Partial Classes and Methods

Partial classes are useful for extending a shared, cross-platform class with platform-specific functionality.
Partial methods are useful for implementing platform-specific functionality at the method level, though
without a base cross-platform implementation. These techniques work in Shared Projects and linked files,
but not PCLs.

Create a partial class in your Shared Project.

public partial class Utility

{
public void DoCrossPlatformThing()
{
}

}

Then extend that class in your platform-specific project.

public partial class Utility

{
public void DoPlatformSpecificThing()

{
}
}

Partial methods are similar to partial classes, although they don’t provide a cross-platform implementation,
only a platform-specific one.

Define a partial method in your Shared Project, but do not provide an implementation.
partial void DoThing();
Then implement that method in your platform-specific projects.

partial void DoThing()

{
}

Partial classes are a common method for architecting for divergence in Shared Projects and linked files.
Divergence isn’t just for platforms, though; it happens with OS versions as well.

Handling Version Divergence

As new releases of mobile OSs take place and new devices are released, changes such as screen size and
feature deprecation must be accounted for. Old features must be gracefully deprecated and new features are
eagerly embraced. All this can happen on a single platform, such as iOS or Android, creating a process called
version divergence.

In order to account for this type of divergence, your apps must be aware of the active OS version in certain
situations and respond accordingly. This requires version detection. Here are a few ways to do that.

384

CHAPTER 9 © CROSS-PLATFORM ARCHITECTURE

On Android, you can use the following:
if (((int)Android.0S.Build.Version.SdkInt) >= 22)

// code for Android API 22 or newer

}

And when using conditional compilation, there is an option on Android.

#if _ ANDROID 22
// code for Android API 22 or newer
#endif

On iOS, you use CheckSystemVersion.

if (UIDevice.CurrentDevice.CheckSystemVersion(8, 0))

{

// code for iOS version 8.0 or newer

}

Those are some techniques for handling OS version divergence. Remember to gracefully degrade deprecated
functions and provide a lowest-common denominator functionality when necessary.

Summary

After you've decided whether you're going with Xamarin.Forms or a platform-specific approach, you need to
craft an architecture. Split your cross-platform apps into two types of code: shared and platform-specific. Divide
your app into these two groups starting with the largest divisions and working down toward the smaller ones.

A core library is useful in a professional-grade Xamarin app for holding your BLL, DAL, utilities, interfaces,
and other back-end, non-U], cross-platform classes.

Platform-specific code should go into its respective platform-specific projects—into a Xamarin.Android project,
for example. Custom renderers in Xamarin.Forms projects are placed in these platform-specific projects.

Cross-platform projects include Xamarin.Forms projects and core libraries. These are typically built using
Portable Class Libraries (PCL) or Shared Projects. PCLs result in pre-compiled cross-platform DLLs, which
are ideal for sharing between developers. Shared Projects produce shared code projects designed to be
recompiled for each platform and are generally more useful for a single developer.

Plenty of cross-platform classes call for platform-specific code and the decision must be made as to how to
handle these exceptions. Granularities that are smaller than an entire project require special treatment in the
handling of shared versus platform-specific code. Useful design principles include Dependency Injection (DI)
and Inversion of Control (IoC). Useful design patterns include the Provider, Strategy, and Bridge patterns.

When using cross-platform PCLs, Dependency Injection (DI) is the platform-specific weapon of choice,
and Xamarin.Forms provides a handy DependencyService class for easy DI implementation. Because
Shared Projects are more tightly coupled to platform-specific projects than PCLs and must be recompiled
per platform, they afford more options, including DI, conditional compilation, partial classes and methods,
and file linking. These techniques can be used to create loosely-constructed explicit implementations of
platform-specific tasks, so be on the lookout for anti-patterns when using Shared Projects.

Those are the fundamental principles, patterns, and divergence-handling techniques in Xamarin mobile
app architecture. I hope you find everything you need here to go forth and build!

385

EPILOGUE

The Art of Xamarin App
Development

“The Latin phrase Gradus ad Parnassum means “Steps to Parnassus.” The name Parnassus
was used to denote the loftiest part of a mountain range in central Greece, a few miles
north of Delphi, of which the two summits, in Classical times, were called Tithorea and
Lycoreia. In Greek mythology, one of the peaks was sacred to Apollo and the nine Muses,
the inspiring deities of the arts, and the other to Dionysus. The phrase has often been used
to refer to various books of instruction, or guides, in which gradual progress in literature,
language instruction, music, or the arts in general, is sought.”

Wikipedia entry for “Gradus ad Parnassum”

For many of us, software development is a calling as well as a vocation. We labor to create things of beauty even
as we deliver functional code. In this way, Xamarin mobile application development is an art form.

Respectable art forms require tremendous dedication and skill to master. Step-by-step, we practice each
little technique and seek to comprehend minor concepts until we incorporate them into our repertoire,
then on to more complex techniques and loftier concepts, and on and on as we ascend each step up the
mountain of mastery.

The notion that we are pursuing knowledge and skill in our ascent toward mist-veiled peaks is a very old one,
as evidenced by the reference to Parnassus, the home of the Muses. While climbing, we might not expect

to reach the summit, but along the way we become more knowledgeable and more skilled developers and
architects, and we afford ourselves the opportunity to build better mobile apps. There is also the simple
pleasure of the climb, and the stopping now and again to enjoy the view.

The first steps toward mastery of the Xamarin platform involve creating basic solutions in Xamarin.Forms,
Xamarin.iOS, and Xamarin.Android. Next, we must explore the mobile UI using layouts, building screens
using views, and placing them in relation to one another. Data-bound lists are the mainstay of the mobile
app data Ul, so we need to understand how to bind lists to our data models and customize the look and
feel of the list. Our users must move between screens and this requires navigation, during which we must
manage state. Displaying and editing data is the purpose of many apps, so data access and binding are

387

EPILOGUE ' THE ART OF XAMARIN APP DEVELOPMENT

a necessity. The catalyzing technique in Xamarin.Forms Ul is the custom renderer, which allows us to
customize our cross-platform views by using the platform-specific libraries. Lastly, we must understand
cross-platform architecture in order to manage the use of shared and platform-specific code.

Those are the steps in this book, which was crafted with the intent of giving you most of what you require
most of the time while building your apps, with emphasis on C# and the mobile UL

I sincerely hope that I have helped you to climb just a bit closer to the peaks most important to you and to
write your next Xamarin killer app.

388

Index

A

Action menu, 218
ADO.NET
ConnectionPage, 343-344
database creation, 341
platform-specific project, 340
shared projects approach, 341
SqliteConnection object, 340
SQL statements, 342-343
table creation, 341-342
Amazon Web Services (AWS), 347
Android 5.0 Lollipop, 250
Android controls
CheckBox, 129
DatePicker
DatePickerActivity.cs, 126
default DatePicker, 123
Picker.axml, 124
TextView, 125
RadioButton, 131
SeekBar, 128
SelectionActivity.cs, 134
spinner
adapter property, 120
ArrayAdapter, 119
drop-down list, 121
SpinnerActivity.cs, 122
toast, 122
switch, 130
text property, 131
TimePicker, 127
Android Development Tools (ADT), 3
Android layouts
custom controls, 46
GridLayout
creating multicell views, 97
fragments, 99
FrameLayout, 98
horizontal orientation, 94
specify row/column, 96
vertical orientation, 95

LinearLayout
code creation, 88
display activities, 87
Layout_weight, 86
Match_parent, 86
nested layouts, 89
wrap_content, 86
RelativeLayout, 90
TableLayout, 91
Android ListView
built-in row views, 186
customizing list rows
customLayout.axml, 188
HomeLayout.axml, 188
item selection, 190
MainCustomListActivity.cs, 190
data binding
activity, 184
adapter, 183
data model, 183
grouping headers, 192
ListActivity, 180
optimizing performance, 185
selecting item, 181
string array, 180
Android navigation, 219
ActionBar
action bar tabs, 277
fragments, 274
second tab fragment layout, 277
tabbed menus, 274
TabFirst.axml, 275
TabFirstFragment.cs, 275
TabMain.axml, 274
TabMenuActivity.cs, 275, 278
TabSelected Events, 276
back button, 259
bundle, 249
drill-down list
toolbar adding, 273
DrilldownListActivity.cs, 272
ListActivity, 273

389

INDEX

Android navigation (cont.)
Listltem.cs, 272
ListView, 272
StartActivity, 273
fragments
Fragmentl.axml, 260
Fragmentl.axml layout, 261
Fragment2.axml, 261
Fragment2.axml layout, 262
FragmentsActivity.cs, 261
MainFragment.axml, 260
main layout, 262
swap fragments, 260
hierarchical navigation
AndroidManifest.xml, 253
MainToolbar.axml, 252
MainToolbarSecond.axml, 254
popupmenu.xml, 256
styles.xml, 258
support library, 252
ToolbarActivity.cs, 250, 253, 257
ToolbarActivity
Second.cs, 250, 254
Toolbar.axml, 250-251
toolbar vs. action bar, 249, 251
IntentActivity.cs, 249
modal navigation, 271
ActionSheet style, 287
AlertDialog, 265, 267
alerts and user notifications, 286
DialogFragmentAlert.cs, 266
DialogFragmentView.cs, 264
DialogViewActivity.cs, 264
menu layout, 268
Modal.axml layout, 263, 265
pass objects, 270
pass strings, 270
PassToBundleActivity.cs, 271
PopupActivity.cs, 269
PopupMenu class, 268, 287
PresentView
Controller, 284-285
StartActivityForResult, 271
static global classes, 271
navigation bar, 249, 259
navigation drawer, 274
up button, handling, 255
Android’s SetBackgroundColor
method, 350
AppDelegate file, 24
Azure Active
Directory (AAD), 346

390

BindableProperty object, 321

C

Core code, 7
Cross-platform

architecture, 4, 7
divergence, 368
platform-specific code, 367
platform-specific project
(see Platform-specific project)
shared code, 367
shared projects
conditional compilation, 383
divergence, 384
file linking, 383
partial classes, 384
partial methods, 384
Xamarin.Forms project
(see Xamarin.Forms project)

Custom controls, 46
Custom renderers

Android
[assembly] attribute, 353
chocolate-colored button, 354
CustomButton.cs, 355
CustomButtonRenderer.cs, 353, 356
MainPage.cs, 355
statements, 354
Control property, 352
creation and implementation, 350
custom element preparation, 351
definition, 349
iOS
[assembly] attribute, 357
complete code, 358
CustomButtonRenderer.cs, 357
orange CustomButton, 358
statements, 357
OnElementPropertyChanged method, 352
platform-specific controls and layouts, 349
property and control repalcement, 352
SetNativeControl method, 352
Windows Phone
[assembly] attribute, 360
complete code, 361
CustomButtonRenderer.cs, 359
Kool-Aid-orange-colored button, 360
statements, 360
Xamarin.Forms elements, 349, 362
Xamarin.iOS control, 349

D

Data access layer (DAL)
application object, 337-338
C# app, 329
ContentPage, 338-339
Item.cs, 340
repository
application class, 332
CRUD methods, 329
GetPerson and SavePerson
methods, 333
ID field, 335
ItemDatabaseBasic.cs, 330-332
ItemDatabaseGeneric.cs, 334
ItemRepository.cs, 336
multisource, 333
person class, 335
Data adapters, 153
Data binding, 4, 7
definition, 298
Xamarin.Forms
BindableProperty object, 299, 321
BindingModes, 321
Editable ListView
(see Editable ListView)
INotifyPropertyChanged
(see INotifyPropertyChanged interface)
item data model, 300-302
MVVM, 307
nontrivial data binding, 300
read-only ListView, 311-312
trivial data binding, 299
DatePickerViewController, 135
Device.OnPlatform method, 30
DisplayAlert method, 226
Drill-down/breadcrumb navigation, 220
Dynamic Link Library (DLL), 8

E

Editable ListView
adding rows, 313-314
ContentPage demo app, 318
items property, 317-318
ListPageUsingListView
Model.cs, 319-320
ListViewModel.cs, 317
MVVM, 317
ObservableCollection, 312
properties, 314-316
row deletion, 313-314
Extensible Application Markup
Language (XAML), 3

INDEX

FG

Fragments, 13, 85, 99, 260-262

H

HasShadow, 84

,J,K
IBM MobileFirst Platform Foundation, 347
Init() method, 25
INotify interface, 312
INotifyPropertyChanged interface
ContentPage, 304-305
creation, 308-309
definition, 303
entry view, 305
implementation, 308, 310-311
ItemPageUsingTitleViewModel.cs, 306-307
TitleViewModel.cs, 303-304
wrap data model, 308
iOS controls
UlIDatePicker
DatePickerViewController.cs, 145
defintion, 142
ResignFirstResponder() method, 143-144
UlDatePickerModes, 145
ViewDidLoad method, 142
UlIPickerView
defintion, 135
PickerModel, 136
PickerViewController.cs, 140
ResignFirstResponder() method, 138-139
ViewDidLoad method, 135, 137
UlSlider, 147
UlStepper, 146
UlISwitch, 149
iOS layouts
AutoLayout
AddConstraints method, 100
NSLayoutConstraint.Create method, 100
VFL, 101
ViewDidLoad method, 100
custom controls, 46
frames, 102
platform classes, 99
i0S navigation, 219
drill-down list, 290
hierarchical navigation
AppDelegate.cs, 282
buttonGoToTwo, 282
PushViewController, 282-283
TouchUplInside event handler, 283
UlNavigationController, 281, 283

391

INDEX

i0S navigation (cont.)
navigation drawer, 293
nibs, 281
scenes and segues, 280
state management
constructor parameters, 289
DetailPageProperty.cs, 288
PageOne.cs, 289
public properties, 289
storyboards, 279-280
tabs, 293
iOS UlTableView
accessories, 212
built-in row views, 201
cell separators, 203
customizing list rows, 204
data binding
adapter, 199
data model, 199
view controller, 200
grouped table style, 211
grouping headers
data model, 206
ListModelGroupedViewController.cs, 210
ListSourceFromModelGrouped.cs, 209
TitleForFooter method, 207
item selection, 197
optimizing performance, 214
string array, 195
UlTableViewController, 215

L

Language-Integrated Query (LINQ), 2
ListViewModel class, 317

Mobile development
C# development, 3
cross-platform architecture, 4, 7
data binding, 4, 7
development environments, 2
local database access, SQLite, 4
mobile UI, 387
definition, 4
design, 5
Xamarin.Forms and platform-specific UI, 5
native Android and iOS APIs, 2
.NET-specific techniques, 3
SQLite, local data access, 7
Ul designers, 3
Xamarin, definition, 1
Model-View-Controller (MVC), 87
Model-View-ViewModel (MVVM), 4

392

N

Navigation drawer, 218, 274

(0

Observableltem class, 316
OnElementChanged method, 352
OnElementPropertyChanged method, 352
OnPropertyChanged event, 310

PQR

PageRenderers, 5-6
Platform-specific project
android-specific code, 370
dependency injection
android implementation, 375
callout, 380
CustomClass_Android.cs, 380
CustomClass_iOS.cs, 380
CustomClass_WindowsPhone.cs, 381
interface, 375, 379
invocation, 377
iOS implementation, 376
third-party/open source, 381
Windows Phone implementation, 376
fonts, 30
i0S-specific code, 370
Windows Phone-specific code, 370
Platform-specific Ul solution
architecture, 13
custom renderers, 16
features, 15-16
Windows Phone SDK, 15
Xamarin.Android, 13-14
Xamarin.iOS, 14
Portable Class Libraries (PCLs), 4, 324, 373

S

Scrollable lists
Android ListView (see Android ListView)
data adapters, 153
i0S UlTableView (see iOS UlTableView)
Xamarin.Forms ListView (see Xamarin.Forms

ListView)

SetNativeControl method, 352

Shared code, 7

Springboard, 245

SQLite database, 4, 7, 345

SQLite.NET, 298
DAL (see Data access layer (DAL))
database creation, 322, 345
database path

Android project, 324
implementation, 322
i0S, 325
PCL connection, 321, 324
shared project, 323
Windows Phone, 325-326
installation, 322
shared project setup, 321
table creation
attributes, 327
Delete method, 327
Get method, 327
Insert method, 327
Item data model, 326
lock keyword, 328-329
Update method, 328
web services, 346
State management, 219
application object, 230
disk persistence, 229
global properties, 230
page parameters, 228
static global class, 229-230

T

TextAlignment enumeration, 28

U

User interaction (UI) controls
android controls (see Android controls)
i0S Controls (see iOS controls)
Xamarin.Forms views, 105

controls.cs, 116
DatePicker, 108

focus, 115

general-use property, 106
handler event property, 106
opacity, 115

picker, 107

rotation, 115

scale, 115

selection views, 116
slider, 113

stepper, 112

switch, 114

TimePicker, 110

visiblity, 115

Vv

Visual Format Language (VFL), 101

INDEX

w

Web services, 346
Windows Communication
Foundation (WCF), 2

X,Y,Z

Xamarin.Android, 24, 387
Xamarin.Forms, 387
architecture, 11-12
BoxView control, 35
button view, 30-32
ContentPageExample.cs, 40-43
creation
application class, 23
ContentPage class, 23
ContentPageExample
constructor, 26
core library, 26
cross-platform solution, 20
FormsExample project, 22-23
projects, 21
Windows Phone
application, 25-26
Xamarin.iOS, 24
custom renderers, 16
entry view, text property, 34
features, 15
FontAttributes property, 29
font color, 29
FontFamily property, 29
FontSize property, 29
HorizontalOptions property, 32-34
image view
GestureRecognizer class, 38
Image.Aspect property, 37
local image, 37
monkey image, 36
source property, 37
label view, 27-28
layouts, 10, 19
(see also Xamarin.Forms layouts)
operative systems, 9-10
padding property, 40
page background color, 29
page class, 10, 18-19
platform-specific UI solution
(see Platform-specific UI solution)
ScrollView layout, 39-40
StackLayout, 28, 39
terminology, 17
VerticalOptions property, 32-34
View classes, 10, 19-20

393

INDEX

Xamarin.Forms layouts
AbsoluteLayout
adding label, 65
binding bounding object, 68
bounding objects creation, 66
rectangles and points, 69
ContentView, 81
custom controls, 46
frame, 83
grid
adding space, 79
fit views, 74
GridUnitType, 71
multicell view, 77
rows and columns, 71, 73, 79
setting exact size, 74
vertical space, filling, 75-76
RelativeLayout
absolute location and size, 56
code example, 62
RelativeToParent constraint, 57
RelativeToView constraint, 60
setting view location and size, 56
upper-left corner, 55
StackLayout
expanding and
padding views, 52
HorizontalOptions, 48, 53
horizontal orientation, 50
nesting layouts, 52
padding property, 48
vertical orientation, 49
Xamarin.Forms ListView
adding image, 160
automatically scrolls, 178
binding data model, 157
binding strings, 154
buttons
add button views, 167
context actions, 169
customizing list rows
complete code, 165
ContentPage constructor, 164
custom template, 162
StackLayout, 163
group headers, 174
GroupDisplayBinding, 171
IsGroupingEnabled, 171
item selection, 155
jump list, 177
optimizing performance, 179
Xamarin.Forms navigation, 218
carousel page, 248

394

drill-down list
App.cs, 234
DetailPage.cs, 234
DrilldownTableView.cs, 236
Listltem.cs, 233
ListView, 232, 235
TableView, 236
title and description, 233
hierarchical navigation
Back button click event, 225
drop-down menu class, 225
home page, 221-222
InsertPageBefore, 223
navigation bar, 220
navigation buttons, 220
navigation icon, 224
PageTitle, 224
PopAsync pops, 223
PopToRootAsync pops, 223
PushAsync, 223
RemovePage, 223
second page, 222
MasterDetailPage, 238
modal
ActionSheet, 227
DisplayAlert method, 226
full-page modal, 226
springboard, 245
state management
application object, 230
disk persistence, 229
global properties, 230
page parameters, 228
static global class, 229-230
TabbedPage
data-bound NumberPage, 244
data-bound tabs, 243-244
iOS tabs, 242
navigation pages, 244
property assignments, 242
TabPage.cs, 242
TabPageDatabound.cs, 243

Xamarin.Forms project

android-specific code, 368

core library, 369, 372

i0S-specific code, 368

MVC, 372

MVVM, 372

PCLs, 373

platform-specific solution, 370
Windows Phone-specific code, 369

Xamarin.Forms UI, 388
Xamarin.iOS, 387

Xamarin Mobile
Application
Development

Dan Hermes

ApPress’

Xamarin Mobile Application Development: Cross-Platform C# and Xamarin.Forms Fundamentals
Copyright © 2015 by Dan Hermes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0215-9
ISBN-13 (electronic): 978-1-4842-0214-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: James DeWolf

Technical Reviewer: Ed Snider

Developmental Editor: Anne Marie Walker

Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Kezia Endsley and Sharon Wilkey

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media LLC is a California LLC and the sole member (owner) is
Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
atwww.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To Kristina, for her unwavering love, dedication, and support

Contents

/

FOr@WOI. . coeeeeussrrennssssrnnnnssssnnnnsssssnnnssssnnnnnsssssnnnnsssnnnnnssssnnnnnssnnnnnnsssnnnnnnssnnnnnnnsnnnnnnnss XX

Additional FOrEWOI. ...oueeeeuiirsennasssssnnssssssnnsssssssnsssssssnsssssnsnnnsssssnnnsssssnnnnsssssnnnnssnnnns XXiil
AboUt the AULNOK........ccoiieeeiiirrenerirrnnesrr s nss s nss s s s nnssssnnnnnsssnnnnnsssssnnnnnnsnnnnn XXV

About the Technical ReVIEWE..........ccurrremmmmmssssssssmmsssssnsssssssssnssssssssssssssssssssnsnnsssss XXViI

AcknowIedgmENtS.......cceerrmssssssmsmsnnmmmsssssssssssssssssssssssssssssnnssssssssssssnnnnnnsssssssssssnnnnns XXiX
INtroduction ... —————————————————— XXXi
Chapter 1: Mobile Development Using Xamarincccusesmsssesmsssssssssssssssssssssnsssssnnss 1
What IS XaMaNNTccooeeeeiiecrereeress s sss s sesas s sassnnens 1
Wrapped NALIVE APIScoceieeieirie ettt a s e e se e e e e se e e e e s e e e e e e e e na e e e e e sannannen 2
Development ENVIFONMENTS.........coiiiiiiirire s sas e s s s sas e e e s saesassassassassassassansnns 2

UL D2 LT [0 =] 3 3
What'’s Old: Familiar C# and .NET TEChNIQUESccecereerrerrerrersercer s sne e 3
What’s New: Mobile Development TEChNIQUES.......ccvveererveerierreersersee e seesee e seessesssesaess 4
11001 4
Xamarin.Forms and Platform-Specific Ul 5

Mobile Ul Design 5
Xamarin.Forms Custom Renderers 6

DA ACCESS LAYETvceveereeseeseesesressessessesssesssssssssessessssssssssssessssssssssssessssssssssssessssssssesssessesssssssssessssssssssanes 6

Local Data AcCesS USING SALITEcovverrerereerererereresrereeseresersesesessssessesessssessessssessssesssssssssessessssesssssaes 7

D L B 3T o1 o 7
Cross-platform DEVEIOPMENL...........ccoviererererre s reres s rae e raeres e sae e sesesaesesserassesaeesaenesaesesaesassesasnenans 7
1T TR SRS 8

vii

CONTENTS

Chapter 2: Building Mobile User Interfaces.......ccccuuseemmmmsssssnmmssssssnssssssssssssssssssnnnss 9

Understanding Xamarin.FOrmS.........cccccoererereseresesssss e ssssssssesssssssssssssssssssssssssssssssssses 9
Xamarin.Forms Solution ArchiteCture.........c.cocuvnnnnnnnn s —————— 11
Understanding the Platform-Specific Ul Approach..........ccooeeeveeececececscecer e, 12
Platform-specific Ul Solution ArChiteCIUNEcvececeirieeceerr e 13
D210 LT 04 o (o] T 13
XAMANLIOS ... s 14
WINAOWS PRONE SDK ... 15
Choosing Xamarin.Forms or a Platform-Specific Ul.........cccoceverenerrrrvsrrserresres e 15
Use Both Approaches with Custom RENUEIENScveververeerereererererereserseseraesersesessesassessesessesesassanaens 16
Exploring the Elements of Mobile UIS............coovvnmnnnnsssssss s 17
Using the Xamarin.FOrms Ul...........co e sse s s s s s s s s nnas 17
o 1o - TSP SRSP 18
I 1 | OSSPSR 19
VIBW . 19
Creating a Xamarin.Forms SOIULIONccoeveverercrr e 20
Xamarin.Forms Shared COUE..........ouimniniininnin 22
Application Lifecycle Methods: OnStart, OnSleep, and OnResume 23

Building Pages Using ContentPage 23
XamarinANGrOidcovrerisisismsisinss s —————————————————— 24
XAMAINLIOS .o ———————————————————————————————— 24
Windows Phone APPlICALIONcevereireerr ettt se et sa s sn s sa e e sa e e sa s e nn s 25
COTE LIDIAIY ... s a s s e e p e bR e e e e R et e Re e neneeRennnnnas 26
Setting the App’s MaiN PAGEccccceeerreeiierne e s sn s s r e r e 26
Adding Xamarin.FOrms VIEWScccceeeeereneieresie e sse e ssesss s sssssssssssssssssssssssssssssssnnns 27
LADEIVIBW ... 27
Placing Views USing STACKLAYOULccoeceeerirnnencrrsseesesesesesesss s sss e sessssnns 28
Background Color and FONt COIOKcovueeeecrirnecrereeesess e ses 29

0L T N 0] 1R 29
Using Platform-SpecifiC FONLSccccorreienrecc s 30
BULION VIBW ... 31

viii

CONTENTS

Setting View Alignment and Size: HorizontalOptions and VerticalOptionscccccveevvveververenrereenenens

Justification with LayoutOptions

AndExpand Pads with Space

Entry VIew fOr TEXE INPULcveeceeeee et
270 O

IMAGE VIBW ...ttt a e a et esr e e e e nnn s

Source Property

Local Images

Image Sizing: Aspect Property

Making an Image Clickable with a GestureRecognizer

Finalizing the StaCKLAYOULcccveeererrerecre st se e sa e sae e ae e sae e s sas e sae e saesesaenannens
L3110 LT N
Assigning the ContentPage.Content ProPeItYcccveeeverererereserseressessssessesessesessssessessssessssessssesssnssaes
Padding Around the ENtire PAQEcccceveririninenenene e sse s ssessesssssesassaessessssasssssassssenns
CODE COMPLETE: Adding Xamarin.FOrMS VIEBWScccceerererererieressersssessesessesessessssessssessesesssssssesansens

114 1] 112 SRS

Chapter 3: Ul Design Using Layouts.........cccusssemnnmsssssnnssssssssssssssssssssssssssnsssssssnnnees 49

Understanding Custom Controls...........ccceeierenesesesese e see e ssesnsssssnssnssnennas

Using Xamarin.FOrms LAYOULScccccevererennnnrrrerse s ssesse e sss s s ssssssssssssssssasssssens
STACKLAYOULeoveeccrrcreecsiss e sa s s e e s e e e e s e e s ae e e e s se e e e nrnnn s

Padding Around the Entire Layout

Stacking with Vertical Orientation

Stacking with Horizontal Orientation

Nesting Layouts

Expanding and Padding Views by Using LayoutOptions

CODE COMPLETE: StackLayout

REIALIVELAYOULeceeeereeeerisreecre s a s a s e s e ae e s e e e e nnn s

Setting View Location and Size

Using Constraints

CODE COMPLETE: RelativeLayout

ADSOIULELAYOUL ...t s e ae e s e s e e e e r e e nn e nns
Creating Bounding Objects with SetLayoutBounds

Binding to the Bounding Object by Using SetLayoutFlags

CODE COMPLETE: AbsoluteLayout

CONTENTS

£ o 4l
Sizing Rows and Columns 73
Sizing to Fit Views 74
Setting Exact Size 74
Expanding Views to Fit Available Space 75
Expanding Views Proportionally 76
Creating Multicell Views 77
Padding Between Cells 79
CODE COMPLETE: Grid 79

0] 1 02T 14O 81
CODE COMPLETE: ContentView 82

L 11 83

USing ANdroid LAYOULS........coeeeeeeeererreec e see e ssessessessesnssnesnesnssnesnssnssnssnssnssnsssssnsssnnnes 85

[T Tc T T T OO 86
Using Activities to Display Layouts 87
Creating Layouts in Code 88
Working with Nested Layouts 89

REIALIVELAYOUL ...ttt e e nenn s 90

TaADIBLAYOUL ...ttt e e s e e R e e R e e nns 91

6T 0| T OO 93
Filling Rows Left to Right with Horizontal Orientation 94
Filling Columns Top to Bottom with Vertical Orientation 95
Specifying Rows and Columns 96
Creating Multicell Views 97
Creating a Dynamic Grid of Images 98

L2111 0 1 | TR 98

L2101 1T 99

USING I0S LAYOULSeevvereereereereereeseersessessesaessessessesassssssessssassassassassssssssasssssssssssssssssssssssens 99

USING AULOLAYOUL.......ooerierierirerie s s s s sa e e e s a e s sa e e e e e e e e e b e e e e e b e se e e e a e e e nn e e e s 100
Add Constraints by Using Visual Format Language 101

USING FrAMES....ccovirieerrrsssesesessssesesessssssesessssssssesssss s e e sssss e e ssssasesesssssssssssssssssssssssssssssssssessnsssnssssnsnsns 102

31111 P2 7S 104

CONTENTS

Chapter 4: User Interaction Using Controlsccscmmmnsssennsmsssssssssssssssssssssssnnss 109

Xamarin.FOrms VIBWS.......ccourminmis s s s s ssssss s 106
PICKE ..t ———————————— 107
DALEPICKET ... 108
TIMEPICKEN ...ttt 110
B (=T 0] 0T SRS 112
3] 111 PP 113
3] (v TP 114
Scale, Rotation, Opacity, Visibility, and FOCUScccucerrrererrecrnesse e sessesessssssssssssens 115
CODE COMPLETE: Xamarin.FOrms VIBWS..........covuvnmnmnmnmnmnmnmnmsssssssssssssssssssssssssssssssssss s ssssssssns 115

Android CoNtrols..........ccoriicniiicn s ——————— 119
3] 011110 PSRRI 119

CODE COMPLETE: Spinner 122
DALEPICKE ... ————— 123
Creating a Modal DatePicker by Using DatePickerDialog 124
CODE COMPLETE: DatePickerExample 126
LT ST 127
R T< =142 128
03T 129
331 (v 1 PP 130
Customizing with a Title, Switch Text, and State 131
RAIOBULLONc.ccciiiiiiii i s 131
CODE COMPLETE: ANAroid CONTIOIScucereuceeueerensereusesesessessesessssessssessssessssessessssssessssssssssssssssessssens 133

L1030 110 135

UIPICKEIVIBW. ... e 135
Making a UlPickerView into a Pop-up 138
CODE COMPLETE: UlPickerView 140

01D L o 142
Making a UlDatePicker into a Pop-up 143
Specify Which Fields to Display 145
CODE COMPLETE: UlDatePicker 145

xi

CONTENTS

133 0 0T 146
UISTUET «...vueeceereressessssesessssseses s s s e b s s e s bR e p e pnn s 147
CheckBox: Use UISwitch or MonOTOUCK.DIAI0QGcceeverererererereesereeserseseseresersesessesessesessesassesssnenes 148
UISWILCH c.ucecectctcccssssese e s s s s s s e e e p e s s 149
CODE COMPLETE: i0S CONTIOISccceeeeeeeeseeseseseseessseseesssasanas 150
1111 112 SRS 152
Chapter 5: Making a Scrollable Listccccuusemmmmnnsnsmmnnssssnmmssssssssssssssssssssssnsns 153
Data AdAPIEIS.......cvcerirereri s n e n e n e nn e nnenen 153
Xamarin.Forms LIStVIEW ... 153
Binding t0 @ List 0f SIHNQS ..ccccorieecc e 154
SEIECTING AN IBIM ... 155
Binding 10 @ DAta MOccoueueoererrreecriree et nas 157
CODE COMPLETE: Binding to a Data Model 159

AddING AN IMAGE ... e e s s e e e s s e e e s s e s e e nrans 160
CuSOMIZING LiST ROWS ...ttt ss s s s e sssss s s sssssssssssssssssssnssssnsnnns 162
CODE COMPLETE: Customizing List Rows 165

AdAING BULIONS ... s s s s e s sn s s nn s sss e nsssssssssnnsnns 167
Using Button Views 167

Using Context Actions 169
GrOUPING HBAABKSccveeeeceririccir e ae e s ae e e s ne e e e ne e e e 171
Customizing the Group HEAUEcceeeererrriererrrrseese e sssss s sesssss e s ssssssssssssssssssssssssasnnes 174
Creating @ JUMP LIStcocvcerrererererererereresersesersesesaesessesassessssesassessesessesassesassessssesassesassassesassesasnenes 177
ListViews Scroll AUtOMALICallYcccceverieverrerererererereseressersesessesessesessesassesssessssessssessssassesassesssnenes 178
Optimizing PErfOrMANCEcccoeeeieeeierire s s n s r e s n e sn e s n e s pe s 179
ANAroid LISEVIBWoeeeeeeeeeeccrcctecte e sse s s e s s s saesne s s s sns s s snssnssns e sns s s 180
USING LISTACHVITYveecceeececsesisieescs e ne s nnns 180
Binding 10 an Array 0f STHNGS.......ccoereererireieserirse s e 180
SEIECTING AN HEIM ... re e e e n e e 181
Multiple Selection 182

xii

Summary

CONTENTS

Binding t0 @ Data MOMELccoereriiecereere e sa et s r e a e e e n e nn s 183
Data Model 183
Adapter 183
Activity 184

Optimizing PErfOrMANCEceccvvevereerererererensersssersesessesessesessessesessesessesessssassesassessesesssssssssassesassesssneres 185

Using the Built-in ROW VIBWScoeiiiiiirinincnn s sse s s ssesassssssssssssssssssssasssssssssssssses 186

CUSTOMIZING LISt ROWS ...c.eeerercreeireeserereseresersesersssesassassesassessssessssessesessssassessssessssssssssssenassesassesassenes 188
Selecting an Item in a Customized Row 190
CODE COMPLETE: Customizing List Rows 190

GrOUPING HBAABKSc.ceeecerirecere ettt s e esne e e 192

10S UITADIEVIBW ...t sse e saesaesaesaesassn e sa s sn s snesa e sn e sa e sa s sn e sn e snenns 195

Binding t0 an Array 0f SEHNGS.......ccovierererrirsiesesrssese e e sss e e ssssssnsnnnes 195

SEIECTING AN HEIM ...t enre e e s r e e pnnn s 197
Multiple Selection 198

Binding 10 @ DAta MOcccouieiceeeceecriree et 198
Data Model 199
Adapter 199
View Controller 200

USing BUilt-in ROW VIBWSccovieicireieccrisse et 201

L LT o T (0] OO RS RS 203

CuStOMIZING LIST ROWS ...ttt 204

GrOUPING HBAABKS ..ottt s e e e ne e e 206
CODE COMPLETE: Grouping Adapter 209
CODE COMPLETE: Grouping View Controller 210

Highlighting Groups Using Table SYIESccceirennrnccse s sssssssenns 211

ACCESSONIZING LIST ROWScovirieecririniecsesssessesssssse s e e e ssss e s s e s sssssssssssssssssssssssssssssssssnsssnsns 212
Selecting an Accessory 214

Optimizing PErfOIMANCEccovoeeeerereccree et 214

An Alternative Approach to Lists: UITableViewCGontrollercoovrivninnnnssnesesenesessssesesennns 215

.. 215

xiii

CONTENTS

Chapter 6: Navigation...........ccciunsemmmmmnssnmnmnssssssnmmsssssnmsssssssssssssssssssssssssssssssnnns 217

Navigation Patterns.........c.o i 217
Ly T=T =1 (3T | T 218
MOT@L......cccee e R AR e e R 218
State ManAgEMENT ... r e e R e e ae s 219

Xamarin.Forms Navigation...........ccocceiernnnnnnsesssne s ssssnsnens 220
Hierarchical Navigation Using NavigationPage.............cccooceeerrenenenennnencsessesesesesssseses e sesesssseeens 220

Pushing and Popping Screens on the Navigation Stack 223
Setting the Page Title 224
Customizing the Navigation Bar 224
Handling the Back Button 225
Creating a Drop-down Menu 225
MO@L.......cie 226
Full-Page Modal Using NavigationPage 226
User Notification Using Alerts 226
Pop-up Menu Using Action Sheets 227
1T 10T T = L 228
Passing Data into Page Parameters 228
Disk Persistence Using the Properties Dictionary 229
Using a Static Global Class 229
Using a Static Property on the Application Object 230
DIlI-AOWN LISTS ...t a e n s nannn s e e 231
Using ListView by ltem 231
CODE COMPLETE: Drill-down List 233
Using ListView by Page 234
Using TableView for Grouping Pages 235
Navigation Drawer Using MasterDetailPage..........cccooevrerricnnncnnncncsse s sssenns 238
Tabs Using TADDEAPAQGE...........ccorererirecirerir s s r e r e s s p s n s s p e nrenas 241
Creating Data-Bound Tabs 242
Putting NavigationPages Inside a TabbedPage 244
SPHNGDOAIA ... 245
Making Icons Tappable by Using Gesture Recognizers 247
Carousel USing CarOUSEIPAQE.cccceuerrrerrnierrsserse e sessesssessssessssessesesssssssessssessssessssssssssssessssessaneens 247

xiv

CONTENTS

ANdroid NaVIgation..........c.ccoveeennerenssesesssesesse e sse e sss s ssesssssssesssssssssssnes 249
Starting New Activities USING INTENTS ..o 249
Hierarchical Navigation Using the TOOIDAceeeeerncieninneescsere e 250

Handling the Up Button 255
Adding a Pop-up Menu 256
Customize the Toolbar 257
Using the Navigation Bar ... sassssnsnnns 259
Handling the Back Button 259
FRAgMENTS ... e e AR e R e R e R e R e e 260
Modal NaVIgAtioN..........ccceierrcrncre e e bt e e e np e p e s 263
Creating Modals Using DialogFragment 263
Creating Alerts Using DialogFragment 265
Modal Layouts Using AlertDialog 267
PopupMenu 268
Managing State USINg BUNGIES........cceererereriereerereenersesersesessessssessssessesessessssessssessesessssssssssssesassessenenes 269
Passing Strings 270
Passing Objects 270
Creating a Bundle 271
Using Static Global Classes and StartActivityForResult. 271
D101 T 272
Using ListView by Page 272
Using ListView by ltem 273
Using ListView with a Toolbar 273
NaVIgAtiON DIAWETcovevieeceerireeer e ae e s ne e e e nn e e e 274
Tabs USING ACLIONBATcccourrrecrerirecsesis s se s s ssr e na s e s e nsans 274
CODE COMPLETE: TabMenuActivity.cs 278

L1031 T U0 ST 279
Using Storyboards, SCenes, and SEQUESccccovrererirerenerisesee s sesssesssssssssnes 280
USING NIDS ... ae e s g nn e 281
Hierarchical NaVIgationc.cccocerrenenernnsescsssse s se s s e s s s e sssssssnsnens 281

Using UINavigationController 281
Using the Push Segue or PushViewController 282
Customizing UINavigationController 283

XV

CONTENTS

00 L Lo 0] OSSR 284
Using the Modal Segue or PresentViewController 284

Alerts and User Notifications Using UlAlertController 286

Pop-up Menus Using UlAlertController 287

1T 10T T L O 288
Using the PrepareForSegue Method 288

Using UlViewController Public Properties 289

Using the UlViewController Constructor Parameters 289
Drill-down List Using UINavigationCONTIOIIE...........cccvereriereriererrereesersesessesesesssessesessssesssssssessssessenenes 290
Navigation Drawer USing COMPONENTScceeereerereererrrereresersssessssessesesssssssesssessesesssssssssessessssessenenes 293
Tabs Using UITabBarCONTIOIIEYccceverererrererrerreseresessesesessssessesessssessesassessssesssssssssssssssssessssssssssaes 293
1111 112 SRS 296
Chapter 7: Data Access with SQLite and Data Binding.......c.ccuseensrnsssnnnssssssnnnns 297
What IS SQLILE?cecererirersere st sn s sn s sn s sn s nn e nn e nn e n s 297
What IS SQLILE.NET?ceeeeecereeeserre s ssesesse e e sss e sss s sse e e sss s ssessssessssessessssssssnsnnens 298
(D7 L 5 o 1 o PSSR 298
Xamarin.Forms Data Bindingcccvevvrvensnsssssesssr s sns e e e e 299
Binding 10 @ DAta MOccouiuecieeeccreree et 300
Using INotifyPropertyChanged.............cococeururencririnecsisesceseses s 303
CODE COMPLETE: Using INotifyPropertyChanged.............ccccovurenenerernnencresenesesesesee e sesesssseenens 305
Understanding ViewModels and MUVM ... sssss s sessssssnens 307
Binding to ViewModels and Data MOEIS ..o 307
Create a ViewModel That Implements INotifyPropertyChanged 308
Implement INotifyPropertyChanged in Your Data Model 310
Binding @ Read-0nly LISTVIEWccccveererrrriienerenrsssesesessssesesss s sessssssssessssssssssssssssssssssssssssssssssssssnes 311
Binding an EAitable LISTVIEWcccoveeeerrnrnsenesssrsssesesessseseses s sessssssssessssssssssssssssssssssssssssssssssssssnes 312
Adding and Deleting Rows 313

Editing Properties 314

Binding to a View Model 317

CODE COMPLETE: Binding an Editable ListView 319
Binding a View t0 ANOINEI VIBW ...t 320

xvi

CONTENTS

USING SQLILE.NETcerererereercrte e r e res s e sa s s sa s sae e sas e sae e s 321
Installing SQLite 0n WindOWS PRONEcov it 322
Creating @ DAtADASEcccocrererercrerreeer e 322
Building the Database Path ... nnes 322

Connect by Using Shared Projects 323
Connect by Using Portable Class Libraries 324
Connect in Android 324
Connect in i0S 325
Connect in Windows Phone 325
L0 1T 1= T 0 326
Using Attributes 327
Inserting and Deleting Rows 327
Getting Rows 327
Updating Rows 328
Locking Rows 328
Creating the Data ACCESS LAYET........c.cccecrerurecresisee e se s se s se s sa s se s s snnas 329
Creating a Repository 329
Managing the Repository 332
Adding Methods to the Repository 333
CODE COMPLETE: Creating a DAL by Using SQLIte.NET.........ccccevrrrrrrnrrrersenn e 337

USING ADOLNET ... rs s s s s s s sae s saesn e saesa e sa e sa e sn s sn e sn e nn s snennennenans 340
Creating @ DAtADASEcccoceerrrrercrerireeere e 341
Creating @ TADIE ..o 341
Executing SQL STAtEMENTScvcueceieereeccrrr ettt a s sa e e sasa e nes 342
CODE COMPLETE: USING ADO.NETcoveerererenersensesesssesssssssssessssessssesssnns 343

Database Creation OPtioNS.........cccccveevieerinieersirreersesssesssssesssessesssessesssessessssssssssssessenns 345

WED SEIVICES......coviiiirrii i —————— 346

Enterprise Cloud Data SoIUtiONS..........ccoceeeverererc e sen e 346
MICTOSOTE AZUIE........c.ccecicce e 346
IBM MobileFirst Platform FOUuNdation ... 347
AMAzon Web SErviCeS (AWS).......ccovreererereeresesssesesessssesesesssssssssssssssesssans 347

E3 1111 1P 7SR 347

xvii

CONTENTS

Chapter 8: Custom Renderers......ccccuuummmmmmmsssssssssmmssnns 349
When to Use @ Custom RENUEIET..........ccovvenerncnmrneserese s ses e sesenns 349
Creating and Using a Custom RENdErercoeoeeererenesenec s e ssssee s sssssssnssssenns 350
Preparing the Custom Element ... e e seneens 351
Creating the Custom ReNdErerccooeeeeerereee e sre e ssesnesse e snesnesnesnennnns 352
Android Custom RENUEIENccceveerrieresiserissesesssse s ss s sassnssessnnens 352
CODE COMPLETE: Android CUStOmM RENAEIEccceeeerereeererereesesesssesesessssssesesssssssesessssssesesssssnsnns 355
(O RT3 (0] 0 I 31T 10 =T) 356
CODE COMPLETE: i0S CUSTOM RENUEIENccoeeeeeeceeeeeeeesesesese e se e seesesee e e e s e sesesessssseneas 358
Windows Phone Custom RENAEIErcccerrvcnmrnncnerensesesssss s sessssesessesesenns 359
CODE COMPLETE: Windows Phone Custom RENdErercocornerinencrenneeserssssesese e 361
Which Renderer and View Do You CUSTOMIZE?ccovverenmniersnnsennssesssssesessessssennens 362
E3 1111 P2 7SS 365
Chapter 9: Cross-Platform Architecture...........ccccussmminsssemnmnssssssnmnnsssssnsssssnnns 367
Shared Code and Platform-Specific COUEceevrrrrmrrerirrrrierseesesssesseessessessessnessenns 367
Handling DIVEIGENCEccccvcereercererses s s s s s e sn s snssn s snssn s snssnesn e sasnnennennennans 368
Xamarin.Forms Solution ArchiteCtureccovvreniinnsrcrrr s 368
Platform-Specific Solution ArchiteCtUrecvvevirreri e 370
COE LIDIArYceeeeeeeecceesesese s sessesse e sesse s ssessessesnessesnesnesnessesnesnesnesnesnessssnessessansans 372
Portable Class LiDraries (PCL)ccccovernneressssessssssessssesssssssssssssssssssssssssssssssssesssssnes 373
Dependency INJECHION.........coce i s 374
USING DEPENUENCYSEIVICEeeuereeereeereereraeresersssersesersesessesessessssessesessesessessssessssessesessenssssssssesasserssneres 374
Creating an Interface 375

Android Implementation 375

i0S Implementation 376
Windows Phone Implementation 376
Invocation of the Platform-Specific Class 377

CODE COMPLETE: Using DependencyService 379
Third-Party and Open Source DI CONTAINETS.........c.coceeeererererererererereseresenes 381

xviii

CONTENTS

Shared ProjECES.....ccccvicrerercr et 382
Conditional COMPIIALION........cccoieeererrreererrsse e e e s s e sn e nnes 382

File LINKINGveeeceeieescsesessesesesssse e ssesss s s s s se s s e s ss e s ssesessssssassssssssssssssssssssssnssssssnsnssns 383
Partial Classes and MEthOdScccoveeeeririiieserrresesrre e 384
Handling Version DIVEIgENCE.........c.ccvvrrerrersersersersesses s sessessessessessesssssesssssssssssassssssssnnns 384
L1 11 R RPS 385
Epilogue: The Art of Xamarin App Development..........ccccccmmmmnssennmmmsssssnnssssssnnns 387
1 389

Xix

Foreword

Dan Hermes' extraordinary book is the most intelligent work on cross-platform mobile development I've
seen. He focuses on Xamarin.Forms but provides a comprehensive guide as well to Xamarin.Android and
Xamarin.iOS. This puts Xamarin.Forms in context, and explains the underlying native code for those who
want to know not only how to write with Xamarin.Forms but why it works and what’s under the hood. I learned
a lot from these parts of this excellent book.

Dan made the decision to write all the examples in C#. While I prefer writing much of the UI in Extensible
Application Markup Language (XAML), his approach does make clear what is actually being created. Most
important, you can download all the examples in both C# and XAML, and all the code samples are complete,
well commented, and ready to run.

Another helpful feature is that the illustrations show the running example code on all three platforms

(i0S, Android, and Windows Phone). I have railed and ranted against samples that are overly complex and
designed to show how clever the author is, rather than making the issue crystal clear. Dan, thank goodness,
gets it, and his examples are well explained and focused.

The book starts out simple, but he takes you through the fundamentals and then on to more-advanced topics
such as custom control rendering to extend the Xamarin.Forms capabilities.

Code patterns can help you avoid reinventing the wheel, and Dan uses and explains in detail some of the
most important patterns for mobile development, including hierarchical and modal windows, drill-down
lists, tabs, creating a navigation drawer, and a good deal more.

He then tackles one of the trickier but extremely important topics in mobile development: persistence. Dan
covers the three most important approaches: using SQLite, using ADO.NET, and using the repository pattern
with a data access Layer (DAL). He dives into data binding and discusses Model -View- ViewModel (MVVM),
perhaps the most important pattern in mobile development.

With the depth of coverage of Xamarin.iOS, Xamarin.Android, and Xamarin.Forms, you will be well placed
to decide which technology to use for your particular project.

Xamarin novices will benefit greatly from this book, but don’t underestimate how useful it will be for
Xamarin veterans as well.

—Jesse Liberty
Director of New Technology Development, Falafel Software
Xamarin Certified Developer / Xamarin MVP

xxi

Additional Foreword

The first time I saw Xamarin.Forms, it was hardly recognizable as the powerful cross-platform framework it is
today. I was visiting our San Francisco office, it was late at night, Jason Smith (the creator of Xamarin.Forms)
was busily coding away, and I was packing some stuff up for the evening. I heard a sudden exclamation from
Jason, and a huge grin was pasted on his face: “Wanna see something really cool?” he queried. “Absolutely,’
Iresponded. I walked around the desk to see what he wanted to show me. On his screen was an iOS
simulator with a box displayed on it.

Not wanting to dampen his enthusiasm for what was obviously a really impressive feat—I mean, we're
talking advanced stuff here, a box (note: sarcasm)—I replied something to the effect of, “Fantastic. What
am Ilooking at?” I knew of Jason’s project; Nat Friedman and I had knocked our heads about to solve a
fundamental challenge to cross-platform mobile development, the Ul layer, and Jason was doing some
prototyping work to investigate the feasibility of doing a cross-platform UI framework the right way.

Xamarin was already awesome. I loved MonoTouch (the former product name of Xamarin.iOS) so much that
before Xamarin was a company (and consequently, I was part of the executive team, driving it along with
Nat, Miguel de Icaza, and Joseph Hill), I had penned the book on it. How cool was it that you could use the
same language, C# (my favorite language on the planet), to build native mobile apps for iOS and Android
(Windows Mobile was still in its infancy at that point), share all of your back-end and logic code, and do it all
from a Mac (my OS of choice by then)? It was super awesome. But it wasn’t without a huge opportunity; you
could share a lot of code with Xamarin, but even with the MVVM frameworks, unifying your UI code was still
a big challenge.

“This is a canvas drawing a box using the native UI toolkits on both iOS and Android; here’s the code,” said
Jason. Sure enough, the same code was being used by both an iOS and an Android project to render the box.
And thus Xamarin.Forms was born. We used the code name Duplo before settling on the Xamarin.Forms
brand, and at the time it was fitting; Xamarin.Forms was a child’s building-block toy. You could build some
basic toy apps, nothing sophisticated, but even then, the value of what Jason had created was apparent.
Xamarin.Forms quickly evolved to the frame that now barely resembles the prototype framework Jason
showed me late that evening nearly two years ago.

Today Xamarin.Forms is an incredibly powerful framework. By extending it via custom renderers to provide
native, platform-specific functionality, there’s very little you can’t do at a Ul level.

And now, you hold in your hands (either physically or virtually), the first non-Xamarin book on Xamarin.
Forms (don’t worry, it also covers Xamarin.iOS and Xamarin.Android so you can get down and dirty with a
bare-metal native UI).

I'm really excited about this book. When Dan first contacted me a year ago about the book, he told me

his vision for it: a thorough, deep dive with a quality narrative in the same spirit of my original (and now
woefully outdated) MonoTouch book. Something that did the platform justice. And after reading it, I think
you'll agree that Dan’s unique voice and clear appreciation for the platform has come through in a practical
way; he’s created a solid handbook for working with Xamarin that I think you'll come to appreciate, whether
you're a brand-new Xamarin developer or an old hat at it.

xxiii

ADDITIONAL FOREWORD

This weighty book gives clear guidance that will help you build quality apps, starting with architectural
considerations, and then jumping into practical code strategies. It leads with Xamarin.Forms, but it also
teaches you how to punch through into the native UI toolkits, and explains not just the how of things, but
the why.

And with that, I leave you in adept hands and wish you a fun journey through building apps with Xamarin
via Dan’s competent guidance.

—Bryan Costanich
Vice President
Xamarin

XXiv

About the Author

Dan Hermes is a software consultant and founder of Lexicon Systems, an award-winning
Xamarin and .NET consulting firm. His clients include dozens of software-building
organizations, such as Fidelity Investments, EDS, Blue Cross Blue Shield of
Massachusetts, and Computerworld magazine. He speaks at conferences and teaches

' £ Xamarin, C#, and mobile development at developer user groups, colleges, and corporate
. rf.‘is.‘ training facilities. He and his company build .NET, iOS, and Android applications in
1__ ciaalf sectors sfuch as biotech, finance, healthcare, retail, transportation, advertising, and
\y sports; for blue chips and startups; and especially for software companies. Dan conducts
- / - Xamarin code reviews, delivers Xamarin workshops, and he and his team build

d acclaimed Xamarin apps.

Dan is a contemporary Renaissance Man who is also active in the arts. His music compositions have aired
on National Public Radio (NPR). He has taught his music curriculum at the Boston Conservatory. His digital
fine art exhibits internationally, resides in cataloged private collections, and has been cited by Forbes and
Reuters. He has written art reviews published by Media-N and MIT Press and he served as a founding
director of Art Technology New England (ATNE).

Dan mixes arguably authentic tiki cocktails and has a blue-fronted Amazon parrot named Chicken.

Firms who are passionate about serving their customers through software development call upon Dan to
help lead them into the fast-growing world of mobile devices using Xamarin.

XXV

About the Technical Reviewer

Ed Snider is a senior software developer at InfernoRed Technology, a speaker, and a
Xamarin MVP based in the Washington, DC/Northern Virginia area. He has a passion
for mobile development, regularly speaking at local user groups and community
events, and is the founder and organizer of the Northern VA Mobile C# Developers
Group. Ed is primarily focused on building mobile solutions on the Windows, iOS,
and Android platforms for small and large organizations and has been working with
.NET for over 10 years. Ed blogs at www.edsnider.net and can be found on Twitter at
www.twitter.com/edsnider.

xxvii

www.edsnider.net
www.twitter.com/edsnider

Acknowledgments

Forming a group of smart, dedicated people is a good way to get a big thing done. Some call it a collective
or a mastermind, and others call it open sourcing. I want to share with you our collective for this book and
thank them publicly.

James DeWolf, my senior editor at Apress, is one of the most accomplished leaders I've seen in any field.
Thank you, Jim, for this opportunity and for your unfailing and well-calibrated follow-through. Anne Marie
Walker, each of your developmental edits not only helped make this a better book, but also helped teach me
how to write. Melissa Maldonado, thank you for your patience with my copious special requests, for keeping
the trains running on time, and for herding this book home to publication. And to all the rest of the Apress
editors, formatters, and staff, thank you!

Thank you thrice Ed Snider, tech reviewer and Xamarin MVP, for combing through every one of these code
examples and offering your sage advice. It's a worlds-better book for it. If any errors are left in here, it’s
because I snuck them in after your review.

There are over 200 C# code examples in this book. All of the UI examples were also built in XAML and are
available for download. Many, many thanks to the XAML developers Jason Awbrey and Alex Blount for
making this possible.

The folks at Xamarin are upbeat, brilliant, and incredibly helpful in every way. They brought us a great
product suite and also bring us a positive and inspiring attitude, every day. Thank you, Mike Bluestein, for
stressing the importance of Xamarin.iOS and Xamarin.Android; and thank you, Bryan Costanich, for saying
that Xamarin.Forms was the way forward—I followed both of your advice. Jason Smith, tech lead of Xamarin.
Forms, having lunch with you at Evolve in Atlanta gave this book focus and grounding. Joseph Hill, thank you
for your advice and encouragement. Thank you, Spencer Montgomery, Erik Polzin, and Matt Mason for your
partner support. Thank you, James Montemagno, Mark Smith, Pierce Boggan, and many others.

And thank you, Miguel de Icaza, for cofounding Xamarin and for being your brilliant self. I am honored to be
part of your collective.

Great bloggers give us guidance and humor. This book owes a debt to the great bloggers and Xamarin forum
contributors who help set direction and confirm details on many topics: James Montemagno at motzcod.es,
Adam Wolf (a.k.a. AdamKemp) at syntaxismyui.com, Jim Bennett at jimbobbennett.io, Tomasz Cielecki
(ak.a. Cheesebaron), Kevin Ford at magenic.com, Jesse Liberty at jesseliberty.com, and many others.

So many brilliant people looked at these chapters and offered their thoughts to make this a better book.
Here are a few of them: Mike Bluestein, Jim Bennett, Mark Allan, Adam Wolf, David Ortineau, Jesse Liberty,
William Grand, Michael Lant, and Ed Hubbell.

At Microsoft, I want to thank Dan Stolts, Mark Eisenberg, Donna Malayeri, and Michael Cummings for
bringing me clarity regarding the Azure integration with Xamarin.

At IBM, thank you, Craig Porter and Philip Sacchitella, for setting me straight on IBM MobileFirst.

XXix

http://syntaxismyui.com
http://magenic.com
http://jesseliberty.com

ACKNOWLEDGMENTS

At iTexico, thank you, Abhijeet Pradhan and Mathieu Clerici, for your fop-notch Xamarin development.

Thanks to everyone here at Lexicon Systems! That means you, Jonathan LaMaster, Tom Ruane, and everyone
else who'’s had a hand in this. Thank you, Margo Chevers, for steeling my resolve to make this

book possible. And thanks to David Alexander for editing and formatting until a publisher stepped in to give
you a rest.

Thanks to my parents and family for your steady and enthusiastic support.

Thanks most of all to my sweetheart, Kristina. You went above and beyond in your support of this effort, and
I am grateful.

And lest I forget, a special thanks to the semicolon. Without your stalwart delimitation at the end of
almost every line of the C# in this book, and, indeed, in all of our solutions, would be an unparseable blur of
commands, keywords, symbols, and objects; thank you, semicolon.

Last, thanks to all of you not listed here who had a hand in or offered a word of advice or support for
this book!

XXX

	Contents at a Glance
	Contents
	Foreword
	Additional Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Mobile Development Using Xamarin
	What Is Xamarin?
	Wrapped Native APIs
	Development Environments
	UI Designers

	What’s Old: Familiar C# and .NET Techniques
	What’s New: Mobile Development Techniques
	Mobile UI
	Xamarin.Forms and Platform-Specific UI
	Mobile UI Design
	Xamarin.Forms Custom Renderers
	Data Access Layer
	Local Data Access Using SQLite
	Data Binding
	Cross-platform Development

	Summary

	Chapter 2: Building Mobile User Interfaces
	Understanding Xamarin.Forms
	Xamarin.Forms Solution Architecture

	Understanding the Platform-Specific UI Approach
	Platform-specific UI Solution Architecture
	Xamarin.Android
	Xamarin.iOS
	Windows Phone SDK

	Choosing Xamarin.Forms or a Platform-Specific UI
	Use Both Approaches with Custom Renderers

	Exploring the Elements of Mobile UIs
	Using the Xamarin.Forms UI
	Page
	Layout
	View

	Creating a Xamarin.Forms Solution
	Xamarin.Forms Shared Code
	Application Lifecycle Methods: OnStart, OnSleep, and OnResume
	Building Pages Using ContentPage

	Xamarin.Android
	Xamarin.iOS
	Windows Phone Application
	Core Library
	Setting the App’s Main Page

	Adding Xamarin.Forms Views
	Label View
	Placing Views Using StackLayout
	Background Color and Font Color
	Using Fonts
	Using Platform-Specific Fonts
	Button View
	Setting View Alignment and Size: HorizontalOptions and VerticalOptions
	Justification with LayoutOptions
	AndExpand Pads with Space

	Entry View for Text Input
	BoxView
	Image View
	Source Property
	Local Images
	Image Sizing: Aspect Property
	Making an Image Clickable with a GestureRecognizer

	Finalizing the StackLayout
	ScrollView
	Assigning the ContentPage.Content Property
	Padding Around the Entire Page
	CODE COMPLETE: Adding Xamarin.Forms Views

	Summary

	Chapter 3: UI Design Using Layouts
	Understanding Custom Controls
	Using Xamarin.Forms Layouts
	StackLayout
	Padding Around the Entire Layout
	Stacking with Vertical Orientation
	Stacking with Horizontal Orientation
	Nesting Layouts
	Expanding and Padding Views by Using LayoutOptions
	CODE COMPLETE: StackLayout

	RelativeLayout
	Setting View Location and Size
	Using Constraints
	Absolute Location and Size
	RelativeToParent Constraint
	RelativeToView Constraint

	CODE COMPLETE: RelativeLayout

	AbsoluteLayout
	Creating Bounding Objects with SetLayoutBounds
	Setting Location and Size by Using Rectangles
	Setting Location by Using Points

	Binding to the Bounding Object by Using SetLayoutFlags
	Binding Location
	Binding Size
	Binding Both Location and Size

	CODE COMPLETE: AbsoluteLayout

	Grid
	Sizing Rows and Columns
	Sizing to Fit Views
	Setting Exact Size
	Expanding Views to Fit Available Space
	Expanding Views Proportionally

	Creating Multicell Views
	Spanning Columns
	Spanning Rows

	Padding Between Cells
	CODE COMPLETE: Grid

	ContentView
	CODE COMPLETE: ContentView
	Frame

	Using Android Layouts
	LinearLayout
	Using Activities to Display Layouts
	Creating Layouts in Code
	Working with Nested Layouts
	RelativeLayout
	TableLayout
	GridLayout
	Filling Rows Left to Right with Horizontal Orientation
	Filling Columns Top to Bottom with Vertical Orientation
	Specifying Rows and Columns
	Creating Multicell Views
	Creating a Dynamic Grid of Images

	FrameLayout
	Fragments

	Using iOS Layouts
	Using AutoLayout
	Add Constraints by Using Visual Format Language

	Using Frames

	Summary

	Chapter 4: User Interaction Using Controls
	Xamarin.Forms Views
	Picker
	DatePicker
	TimePicker
	Stepper
	Slider
	Switch
	Scale, Rotation, Opacity, Visibility, and Focus
	CODE COMPLETE: Xamarin.Forms Controls

	Android Controls
	Spinner
	CODE COMPLETE: Spinner

	DatePicker
	Creating a Modal DatePicker by Using DatePickerDialog
	CODE COMPLETE: DatePickerExample

	TimePicker
	SeekBar
	CheckBox
	Switch
	Customizing with a Title, Switch Text, and State

	RadioButton
	CODE COMPLETE: Android Controls

	iOS Controls
	UIPickerView
	Making a UIPickerView into a Pop-up
	CODE COMPLETE: UIPickerView

	UIDatePicker
	Making a UIDatePicker into a Pop-up
	Specify Which Fields to Display
	CODE COMPLETE: UIDatePicker

	UIStepper
	UISlider
	CheckBox: Use UISwitch or MonoTouch.Dialog
	UISwitch
	CODE COMPLETE: iOS Controls

	Summary

	Chapter 5: Making a Scrollable List
	Data Adapters
	Xamarin.Forms ListView
	Binding to a List of Strings
	Selecting an Item
	Binding to a Data Model
	CODE COMPLETE: Binding to a Data Model

	Adding an Image
	Customizing List Rows
	CODE COMPLETE: Customizing List Rows

	Adding Buttons
	Using Button Views
	Using Context Actions

	Grouping Headers
	Customizing the Group Header
	Creating a Jump List
	ListViews Scroll Automatically
	Optimizing Performance

	Android ListView
	Using ListActivity
	Binding to an Array of Strings
	Selecting an Item
	Multiple Selection

	Binding to a Data Model
	Data Model
	Adapter
	Activity

	Optimizing Performance
	Using the Built-in Row Views
	Customizing List Rows
	Selecting an Item in a Customized Row
	CODE COMPLETE: Customizing List Rows

	Grouping Headers

	iOS UITableView
	Binding to an Array of Strings
	Selecting an Item
	Multiple Selection

	Binding to a Data Model
	Data Model
	Adapter
	View Controller

	Using Built-in Row Views
	Cell Separators
	Customizing List Rows
	Grouping Headers
	CODE COMPLETE: Grouping Adapter
	CODE COMPLETE: Grouping View Controller

	Highlighting Groups Using Table Styles
	Accessorizing List Rows
	Selecting an Accessory

	Optimizing Performance
	An Alternative Approach to Lists: UITableViewController

	Summary

	Chapter 6: Navigation
	Navigation Patterns
	Hierarchical
	Modal
	Xamarin.Forms Navigation
	Android Navigation
	iOS Navigation

	State Management

	Xamarin.Forms Navigation
	Hierarchical Navigation Using NavigationPage
	Pushing and Popping Screens on the Navigation Stack
	Setting the Page Title
	Customizing the Navigation Bar
	Handling the Back Button
	Creating a Drop-down Menu

	Modal
	Full-Page Modal Using NavigationPage
	User Notification Using Alerts
	Pop-up Menu Using Action Sheets

	Managing State
	Passing Data into Page Parameters
	Disk Persistence Using the Properties Dictionary
	Using a Static Global Class
	Using a Static Property on the Application Object

	Drill-down Lists
	Using ListView by Item
	CODE COMPLETE: Drill-down List
	Using ListView by Page
	Using TableView for Grouping Pages

	Navigation Drawer Using MasterDetailPage
	Tabs Using TabbedPage
	Creating Data-Bound Tabs
	Putting NavigationPages Inside a TabbedPage

	Springboard
	Making Icons Tappable by Using Gesture Recognizers

	Carousel Using CarouselPage

	Android Navigation
	Starting New Activities Using Intents
	Hierarchical Navigation Using the Toolbar
	Handling the Up Button
	Finish() the Activity
	Using parentActivityName in AndroidManifest.xml
	Using an Intent

	Adding a Pop-up Menu
	Customize the Toolbar

	Using the Navigation Bar
	Handling the Back Button

	Fragments
	Modal Navigation
	Creating Modals Using DialogFragment
	Creating Alerts Using DialogFragment
	Modal Layouts Using AlertDialog
	PopupMenu

	Managing State Using Bundles
	Passing Strings
	Passing Objects
	Creating a Bundle
	Using Static Global Classes and StartActivityForResult

	Drill-down List
	Using ListView by Page
	Using ListView by Item
	Using ListView with a Toolbar

	Navigation Drawer
	Tabs Using ActionBar
	CODE COMPLETE: TabMenuActivity.cs

	iOS Navigation
	Using Storyboards, Scenes, and Segues
	Using Nibs
	Hierarchical Navigation
	Using UINavigationController
	Using the Push Segue or PushViewController
	Customizing UINavigationController

	Modal Navigation
	Using the Modal Segue or PresentViewController
	Alerts and User Notifications Using UIAlertController
	Pop-up Menus Using UIAlertController

	Managing State
	Using the PrepareForSegue Method
	Using UIViewController Public Properties
	Using the UIViewController Constructor Parameters

	Drill-down List Using UINavigationController
	Navigation Drawer Using Components
	Tabs Using UITabBarController

	Summary

	Chapter 7: Data Access with SQLite and Data Binding
	What Is SQLite?
	What Is SQLite.NET ?
	Data Binding
	Xamarin.Forms Data Binding
	Binding to a Data Model
	Using INotifyPropertyChanged
	CODE COMPLETE: Using INotifyPropertyChanged
	Understanding ViewModels and MVVM
	Binding to ViewModels and Data Models
	Create a ViewModel That Implements INotifyPropertyChanged
	Implement INotifyPropertyChanged in Your Data Model

	Binding a Read-Only ListView
	Binding an Editable ListView
	Adding and Deleting Rows
	Editing Properties
	Binding to a View Model
	CODE COMPLETE: Binding an Editable ListView

	Binding a View to Another View

	Using SQLite.NET
	Installing SQLite on Windows Phone
	Creating a Database
	Building the Database Path
	Connect by Using Shared Projects
	Connect by Using Portable Class Libraries
	Connect in Android
	Connect in iOS
	Connect in Windows Phone

	Creating a Table
	Using Attributes
	Inserting and Deleting Rows
	Getting Rows
	Updating Rows
	Locking Rows

	Creating the Data Access Layer
	Creating a Repository
	Managing the Repository
	Adding Methods to the Repository

	CODE COMPLETE: Creating a DAL by Using SQLite.NET

	Using ADO.NET
	Creating a Database
	Creating a Table
	Executing SQL Statements
	CODE COMPLETE: Using ADO.NET

	Database Creation Options
	Web Services
	Enterprise Cloud Data Solutions
	Microsoft Azure
	IBM MobileFirst Platform Foundation
	Amazon Web Services (AWS)

	Summary

	Chapter 8: Custom Renderers
	When to Use a Custom Renderer
	Creating and Using a Custom Renderer
	Preparing the Custom Element
	Creating the Custom Renderer
	Android Custom Renderer
	CODE COMPLETE: Android Custom Renderer

	iOS Custom Renderer
	CODE COMPLETE: iOS Custom Renderer

	Windows Phone Custom Renderer
	CODE COMPLETE: Windows Phone Custom Renderer

	Which Renderer and View Do You Customize?
	Summary

	Chapter 9: Cross-Platform Architecture
	Shared Code and Platform-Specific Code
	Handling Divergence
	Xamarin.Forms Solution Architecture
	Platform-Specific Solution Architecture
	Core Library
	Portable Class Libraries (PCL)
	Dependency Injection
	Using DependencyService
	Creating an Interface
	Android Implementation
	iOS Implementation
	Windows Phone Implementation
	Invocation of the Platform-Specific Class
	CODE COMPLETE: Using DependencyService

	Third-Party and Open Source DI Containers

	Shared Projects
	Conditional Compilation
	File Linking
	Partial Classes and Methods

	Handling Version Divergence
	Summary

	Epilogue: The Art of Xamarin App Development
	Index

