
131

Chapter 6

Github

GitHub is the single largest host for Git repositories, and is the central point of collaboration for millions of developers
and projects. A large percentage of all Git repositories are hosted on GitHub, and many open-source projects use it for
Git hosting, issue tracking, code review, and other things. So while it’s not a direct part of the Git open source project,
there’s a good chance that you’ll want or need to interact with GitHub at some point while using Git professionally.

This chapter is about using GitHub effectively. We’ll cover signing up for and managing an account, creating and
using Git repositories, common workflows to contribute to projects and to accept contributions to yours, GitHub’s
programmatic interface and lots of little tips to make your life easier in general.

If you are not interested in using GitHub to host your own projects or to collaborate with other projects that are
hosted on GitHub, you can safely skip to Chapter 7.

INterFaCeS ChaNGe

It’s important to note that like many active websites, the UI elements in these screenshots are bound to change
over time. Hopefully the general idea of what we’re trying to accomplish here will still be there, but if you want
more up-to-date versions of these screens, the online versions of this book may have newer screenshots.

Account Setup and Configuration
The first thing you need to do is set up a free user account. Simply visit https://github.com, choose a user
name that isn’t already taken, provide an email address and a password, and click the big green Sign up for
GitHub button.

https://github.com/

CHapter 6 ■ GItHUb

132

The next thing you’ll see is the pricing page for upgraded plans, but it’s safe to ignore this for now. GitHub will
send you an email to verify the address you provided. Go ahead and do this, it’s pretty important (as we’ll see later).

Note ■ GitHub provides all its functionality with free accounts, with the limitation that all your projects are fully
public (everyone has read access). GitHub’s paid plans include a set number of private projects, but we won’t be
covering those in this book.

Clicking the Octocat logo at the top-left of the screen will take you to your dashboard page. You’re now ready to
use GitHub.

SSH Access
As of right now, you can connect with Git repositories using the https:// protocol, authenticating with the username
and password you just set up. However, to simply clone public projects, you don’t even need to sign up—the account
we just created comes into play when we fork projects and push to our forks a bit later.

If you’d like to use SSH remotes, you’ll need to configure a public key. (If you don’t already have one, see
“Generating Your SSH Public Key” in Chapter 4.) Open up your account settings using the link at the top-right of
the window:

Figure 6-1. The GitHub sign-up form

Figure 6-2. The Account settings link

CHapter 6 ■ GItHUb

133

From there, click the Add an SSH key button, give your key a name, paste the contents of your
~/.ssh/id_rsa.pub (or whatever you named it) public-key file into the text area, and click Add key.

Note ■ be sure to name your SSH key something you can remember. You can name each of your keys (for example,
“My Laptop” or “Work account”) so that if you need to revoke a key later, you can easily tell which one you’re looking for.

Your Avatar
Next, if you wish, you can replace the avatar that is generated for you with an image of your choosing. Go to the Profile
tab (above the SSH Keys tab) and click Upload new picture.

Then select the SSH keys section along the left-hand side.

Figure 6-3. The SSH keys link

CHapter 6 ■ GItHUb

134

We choose a copy of the Git logo that is on our hard drive and then get a chance to crop it.

Figure 6-4. The Profile link

Figure 6-5. Crop your avatar

CHapter 6 ■ GItHUb

135

Now anywhere you interact on the site, people will see your avatar next to your username.
If you happen to have uploaded an avatar to the popular Gravatar service (often used for WordPress accounts),

that avatar will be used by default and you don’t need to do this step.

Your Email Addresses
GitHub maps your Git commits to your user by email address. If you use multiple email addresses in your commits
and you want GitHub to link them up properly, you need to add all the email addresses you have used to the Emails
section of the admin section.

In Figure 6-6 we can see some of the different states that are possible. The top address is verified and set as the
primary address, meaning that is where you’ll get any notifications and receipts. The second address is verified and so
can be set as the primary if you want to switch them. The final address is unverified, meaning that you can’t make it
your primary address. If GitHub sees any of these in commit messages in any repository on the site, it will be linked to
your user.

Figure 6-6. Add email addresses

Two-Factor Authentication
Finally, for extra security, you should definitely set up Two-factor Authentication or 2FA. Two-factor Authentication is
an authentication mechanism that is recently becoming more and more popular to mitigate the risk of your account
being compromised if your password is stolen somehow. Turning it on makes GitHub ask you for two different
methods of authentication, so that if one of them is compromised, an attacker cannot access your account.

You can find the Two-factor Authentication setup under the Security tab of your Account settings.

CHapter 6 ■ GItHUb

136

Figure 6-7. 2FA in the Security Tab

If you click the Set up two-factor authentication button, it takes you to a configuration page where you can
choose to use a phone app to generate your secondary code (a time based one-time password), or you can have
GitHub send you a code via SMS each time you need to log in.

After you choose which method you prefer and follow the instructions for setting up 2FA, your account will then be
a little more secure and you will have to provide a code in addition to your password whenever you log in to GitHub.

Contributing to a Project
Now that our account is setup, let’s walk through some details that could be useful in helping you contribute to an
existing project.

Forking Projects
If you want to contribute to an existing project to which you don’t have push access, you can “fork” the project. What
this means is that GitHub makes a copy of the project that is entirely yours; it lives in your user’s namespace, and you
can push to it.

Note ■ Historically, the term “fork” has been somewhat negative in context, meaning that someone took an open
source project in a different direction, sometimes creating a competing project and splitting the contributors. In GitHub,
a “fork” is simply the same project in your own namespace, allowing you to make changes to a project publicly as a way
to contribute in a more open manner.

CHapter 6 ■ GItHUb

137

This way, projects don’t have to worry about adding users as collaborators to give them push access. People
can fork a project, push to it, and contribute their changes back to the original repository by creating what’s called
a Pull Request, which we’ll cover next. This opens up a discussion thread with code review, and the owner and the
contributor can then communicate about the change until the owner is happy with it, at which point the owner can
merge it in.

To fork a project, visit the project page and click the Fork button at the top-right of the page.

Figure 6-8. The Fork button

After a few seconds, you’ll be taken to your new project page, with your own writeable copy of the code.

The GitHub Flow
GitHub is designed around a particular collaboration workflow, centered on Pull Requests. This flow works whether
you’re collaborating with a tightly knit team in a single shared repository, or a globally distributed company or
network of strangers contributing to a project through dozens of forks. It is centered on the topic branch workflow
covered in Chapter 3.

Here’s how it generally works:

 1. Create a topic branch from master.

 2. Make some commits to improve the project.

 3. Push this branch to your GitHub project.

 4. Open a Pull Request on GitHub.

 5. Discuss, and optionally continue committing.

 6. The project owner merges or closes the Pull Request.

This is basically the Integration Manager workflow covered in Chapter 5, but instead of using email to
communicate and review changes, teams use GitHub’s web-based tools.

Let’s walk through an example of proposing a change to an open source project hosted on GitHub using this flow.

Creating a Pull Request
Tony is looking for code to run on his Arduino programmable microcontroller and has found a great program file on
GitHub at https://github.com/schacon/blink.

https://github.com/schacon/blink

CHapter 6 ■ GItHUb

138

The only problem is that the blinking rate is too fast, we think it’s much nicer to wait 3 seconds instead of 1 in
between each state change. So let’s improve the program and submit it back to the project as a proposed change.

First, we click the Fork button as mentioned earlier to get our own copy of the project. Our user name here is
tonychacon so our copy of this project is at https://github.com/tonychacon/blink and that’s where we can edit it.
We will clone it locally, create a topic branch, make the code change, and finally push that change back up to GitHub.

$ git clone https://github.com/tonychacon/blink (1)
Cloning into 'blink'...

$ cd blink
$ git checkout -b slow-blink (2)
Switched to a new branch 'slow-blink'

$ sed -i '' 's/1000/3000/' blink.ino (3)

$ git diff --word-diff (4)
diff --git a/blink.ino b/blink.ino
index 15b9911..a6cc5a5 100644
--- a/blink.ino
+++ b/blink.ino
@@ -18,7 +18,7 @@ void setup() {

Figure 6-9. The project we want to contribute to

https://github.com/tonychacon/blink
https://github.com/tonychacon/blink

CHapter 6 ■ GItHUb

139

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 [-delay(1000);-]{+delay(3000);+} // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 [-delay(1000);-]{+delay(3000);+} // wait for a second
}

$ git commit -a -m 'three seconds is better' (5)
[master 5ca509d] three seconds is better
 1 file changed, 2 insertions(+), 2 deletions(-)

$ git push origin slow-blink (6)
Username for 'https://github.com': tonychacon
Password for 'https://tonychacon@github.com':
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 340 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://github.com/tonychacon/blink
 * [new branch] slow-blink -> slow-blink

 1. Clone our fork of the project locally.

 2. Create a descriptive topic branch.

 3. Make our change to the code.

 4. Check that the change is good.

 5. Commit our change to the topic branch.

 6. Push our new topic branch back up to our GitHub fork.

Now if we go back to our fork on GitHub, we can see that GitHub noticed that we pushed a new topic branch up
and present us with a big green button to check out our changes and open a Pull Request to the original project.

You can alternatively go to the Branches page at https://github.com/<user>/<project>/branches to locate
your branch and open a new Pull Request from there.

https://github.com/
https://tonychacon@github.com/
https://github.com/tonychacon/blink
https://github.com/<user>/<project>/branches

CHapter 6 ■ GItHUb

140

If we click that green button, we’ll see a screen that allows us to create a title and description for the change we
would like to request so the project owner has a good reason to consider it. It is generally a good idea to spend some
effort making this description as useful as possible so the author knows why this is being suggested and why it would
be a valuable change for them to accept.

We also see a list of the commits in our topic branch that are “ahead” of the master branch (in this case, just the
one) and a unified diff of all the changes that will be made should this branch get merged by the project owner.

Figure 6-10. Pull Request button

CHapter 6 ■ GItHUb

141

Figure 6-11. Pull Request creation page

When you click the Create Pull Request button on this screen, the owner of the project you forked will get a
notification that someone is suggesting a change and will link to a page that has all of this information on it.

Note ■ although pull requests are used commonly for public projects like this when the contributor has a complete
change ready to be made, they are also often used in internal projects at the beginning of the development cycle.
because you can keep pushing to the topic branch even after the pull request is opened, it’s often opened early and
used as a way to iterate on work as a team within a context, rather than opened at the very end of the process.

CHapter 6 ■ GItHUb

142

Iterating on a Pull Request
At this point, the project owner can look at the suggested change and merge it, reject it, or comment on it. Let’s say
that he likes the idea, but would prefer a slightly longer time for the light to be off than on.

Whereas this conversation may take place over email in the workflows presented in Chapter 5, on GitHub this
happens online. The project owner can review the unified diff and leave a comment by clicking on any of the lines.

Figure 6-12. Comment on a specific line of code in a Pull Request

Once the maintainer makes this comment, the person who opened the Pull Request (and indeed, anyone else
watching the repository) will get a notification. We’ll go over customizing this later, but if he had email notifications
turned on, Tony would get an email like this:

Figure 6-13. Comments sent as email notifications

CHapter 6 ■ GItHUb

143

Anyone can also leave general comments on the Pull Request. In Figure 6-14 we can see an example of the
project owner both commenting on a line of code and then leaving a general comment in the discussion section. You
can see that the code comments are brought into the conversation as well.

Figure 6-14. Pull Request discusson page

Now the contributor can see what they need to do in order to get their change accepted. Luckily, this is also a
very simple thing to do. Where over email you may have to re-roll your series and resubmit it to the mailing list, with
GitHub you simply commit to the topic branch again and push.

If the contributor does that, then the project owner will get notified again and when they visit the page they will
see that it’s been addressed. In fact, because a line of code changed that had a comment on it; GitHub notices that and
collapses the outdated diff.

CHapter 6 ■ GItHUb

144

An interesting thing to notice is that if you click on the Files Changed tab on this Pull Request, you’ll get the
unified diff — that is, the total aggregate difference that would be introduced to your main branch if this topic branch
was merged in. In git diff terms, it basically automatically shows you git diff master...<branch> for the branch
this Pull Request is based on. See “Determining What Is Introduced” in Chapter 5 for more about this type of diff.

The other thing you’ll notice is that GitHub checks to see whether the Pull Request merges cleanly and provides a
button to do the merge for you on the server. This button only shows up if you have write access to the repository and
a trivial merge is possible. If you click it, GitHub will perform a “non-fast-forward” merge, meaning that even if the
merge could be a fast-forward, it will still create a merge commit.

If you would prefer, you can simply pull down the branch and merge it locally. If you merge this branch into the
masterbranch and push it to GitHub, the Pull Request will automatically be closed.

This is the basic workflow that most GitHub projects use. Topic branches are created, Pull Requests are opened
on them, a discussion ensues, possibly more work is done on the branch, and eventually the request is either closed or
merged.

Figure 6-15. Pull Request final

CHapter 6 ■ GItHUb

145

NOt ONLY FOrKS

It’s important to note that you can also open a pull request between two branches in the same repository. If
you’re working on a feature with someone and you both have write access to the project, you can push a topic
branch to the repository and open a pull request on it to the master branch of that same project to initiate the
code review and discussion process. No forking necessary

Advanced Pull Requests
Now that we’ve covered the basics of contributing to a project on GitHub, let’s cover a few interesting tips and tricks
about Pull Requests so you can be more effective in using them.

Pull Requests as Patches
It’s important to understand that many projects don’t really think of Pull Requests as queues of perfect patches that
should apply cleanly in order, as most mailing list-based projects think of patch series contributions. Most GitHub
projects think about Pull Request branches as iterative conversations around a proposed change, culminating in a
unified diff that is applied by merging.

This is an important distinction, because generally the change is suggested before the code is thought to be
perfect, which is far rarer with mailing list−based patch series contributions. This enables an earlier conversation with
the maintainers so that arriving at the proper solution is more of a community effort. When code is proposed with
a Pull Request and the maintainers or community suggest a change, the patch series is generally not re-rolled, but
instead the difference is pushed as a new commit to the branch, moving the conversation forward with the context of
the previous work intact.

For instance, if you go back and look again at Figure 6-15, you’ll notice that the contributor did not rebase his
commit and send another Pull Request. Instead they added new commits and pushed them to the existing branch.
This way if you go back and look at this Pull Request in the future, you can easily find all the context of why decisions
were made. Pushing the Merge button on the site purposefully creates a merge commit that references the Pull
Request so that it’s easy to go back and research the original conversation if necessary.

Keeping up with Upstream
If your Pull Request becomes out of date or otherwise doesn’t merge cleanly, you will want to fix it so the maintainer
can easily merge it. GitHub tests this for you and lets you know at the bottom of every Pull Request whether the
merge is trivial.

If you see something like Figure 6-16, you’ll want to fix your branch so that it turns green and the maintainer
doesn’t have to do extra work.

Figure 6-16. Pull Request does not merge cleanly

CHapter 6 ■ GItHUb

146

You have two main options to do this. You can either rebase your branch on top of whatever the target branch is
(normally the master branch of the repository you forked), or you can merge the target branch into your branch.

Most developers on GitHub will choose to do the latter, for the same reasons we just went over in the previous
section. What matters is the history and the final merge, so rebasing isn’t getting you much other than a slightly
cleaner history and in return is far more difficult and error prone.

If you want to merge in the target branch to make your Pull Request mergeable, you would add the original
repository as a new remote, fetch from it, merge the main branch of that repository into your topic branch, fix any
issues, and finally push it back up to the same branch you opened the Pull Request on.

For example, let’s say that in the “tonychacon” example we were using before, the original author made a change
that would create a conflict in the Pull Request. Let’s go through those steps.

$ git remote add upstream https://github.com/schacon/blink (1)

$ git fetch upstream (2)
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
Unpacking objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
From https://github.com/schacon/blink
 * [new branch] master -> upstream/master

$ git merge upstream/master (3)
Auto-merging blink.ino
CONFLICT (content): Merge conflict in blink.ino
Automatic merge failed; fix conflicts and then commit the result.

$ vim blink.ino (4)
$ git add blink.ino
$ git commit
[slow-blink 3c8d735] Merge remote-tracking branch 'upstream/master' \
 into slower-blink

$ git push origin slow-blink (5)
Counting objects: 6, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 682 bytes | 0 bytes/s, done.
Total 6 (delta 2), reused 0 (delta 0)
To https://github.com/tonychacon/blink
 ef4725c..3c8d735 slower-blink -> slow-blink

 1. Add the original repository as a remote named “upstream.”

 2. Fetch the newest work from that remote.

 3. Merge the main branch into your topic branch.

 4. Fix the conflict that occurred.

 5. Push back up to the same topic branch.

Once you do that, the Pull Request will be automatically updated and re-checked to see whether it merges cleanly.

https://github.com/schacon/blink
https://github.com/schacon/blink
https://github.com/tonychacon/blink

CHapter 6 ■ GItHUb

147

One of the great things about Git is that you can do that continuously. If you have a very long-running project,
you can easily merge from the target branch over and over again and only have to deal with conflicts that have arisen
since the last time that you merged, making the process very manageable.

If you absolutely want to rebase the branch to clean it up, you can certainly do so, but it is highly encouraged to
not force push over the branch that the Pull Request is already opened on. If other people have pulled it down and
done more work on it, you run into all of the issues outlined in “The Perils of Rebasing” (Chapter 3). Instead, push the
rebased branch to a new branch on GitHub and open a brand new Pull Request referencing the old one, then close
the original.

References
Your next question may be “How do I reference the old Pull Request?” It turns out there are many ways to reference
other things almost anywhere you can write in GitHub.

Let’s start with how to cross-reference another Pull Request or an Issue. All Pull Requests and Issues are assigned
numbers and they are unique within the project. For example, you can’t have Pull Request #3 and Issue #3. If you
want to reference any Pull Request or Issue from any other one, you can simply put #<num> in any comment or
description. You can also be more specific if the Issue or Pull request lives somewhere else; write username#<num> if
you’re referring to an Issue or Pull Request in a fork of the repository you’re in, or username/repo#<num> to reference
something in another repository.

Let’s look at an example. Say we rebased the branch in the previous example, created a new pull request for it,
and now we want to reference the old pull request from the new one. We also want to reference an issue in the fork of
the repository and an issue in a completely different project. We can fill out the description just like Figure 6-18.

Figure 6-17. Pull Request now merges cleanly

CHapter 6 ■ GItHUb

148

When we submit this Pull Request, we’ll see all of that rendered like Figure 6-19.

Figure 6-18. Cross references in a Pull Request

Figure 6-19. Cross references rendered in a Pull Request

CHapter 6 ■ GItHUb

149

Notice that the full GitHub URL we put in there was shortened to just the information needed.
Now if Tony goes back and closes out the original Pull Request, we can see that by mentioning it in the new one,

GitHub has automatically created a trackback event in the Pull Request timeline. This means that anyone who visits
this Pull Request and sees that it is closed can easily link back to the one that superseded it. The link looks something
like Figure 6-20.

Figure 6-20. Cross references rendered in a Pull Request

In addition to issue numbers, you can also reference a specific commit by SHA. You have to specify a full 40
character SHA, but if GitHub sees that in a comment, it will link directly to the commit. Again, you can reference
commits in forks or other repositories in the same way you did with issues.

Markdown
Linking to other Issues is just the beginning of interesting things you can do with almost any text box on GitHub.
In Issue and Pull Request descriptions, comments, code comments, and more, you can use what is called GitHub
Flavored Markdown. Markdown is like writing in plain text but which is rendered richly.

See Figure 6-21 shows an example of how comments or text can be written and then rendered
using Markdown.

CHapter 6 ■ GItHUb

150

Figure 6-21. An example of Markdown as written and as rendered

GitHub Flavored Markdown
The GitHub flavor of Markdown adds more things you can do beyond the basic Markdown syntax. These can all be
really useful when creating useful Pull Request or Issue comments or descriptions.

Task Lists
The first really useful GitHub specific Markdown feature, especially for use in Pull Requests, is the task list. A task list
is a list of checkboxes of things you want to get done. Putting them into an Issue or Pull Request normally indicates
things that you want to get done before you consider the item complete.

You can create a task list like this:

- [X] Write the code
- [] Write all the tests
- [] Document the code

If we include this in the description of our Pull Request or Issue, we’ll see it rendered like Figure 6-22.

Figure 6-22. Task lists rendered in a Markdown comment

CHapter 6 ■ GItHUb

151

This is often used in Pull Requests to indicate what you would like to get done on the branch before the Pull
Request will be ready to merge. The really cool part is that you can simply click the checkboxes to update the
comment — you don’t have to edit the Markdown directly to check off tasks.

What’s more, GitHub looks for task lists in your Issues and Pull Requests and shows them as metadata on the
pages that list them out. For example, if you have a Pull Request with tasks and you look at the overview page of all
Pull Requests, you can see how far done it is. This helps people break down Pull Requests into subtasks and helps
other people track the progress of the branch. You can see an example of this in Figure 6-23.

Figure 6-23. Task list summary in the Pull Request list

These are incredibly useful when you open a Pull Request early and use it to track your progress through the
implementation of the feature.

Code Snippets
You can also add code snippets to comments. This is especially useful if you want to present something that you could
try to do before actually implementing it as a commit on your branch. This is also often used to add example code of
what is not working or what this Pull Request could implement.

To add a snippet of code you have to “fence” it in backticks.

```java
for(int i=0 ; i < 5 ; i++)
{
   System.out.println("i is : " + i);
}
```


If you add a language name like we did there with java, GitHub will also try to syntax highlight the snippet.
In the case of the preceding example, it would end up rendering like Figure 6-24.

Figure 6-24. Rendered fenced code example

CHapter 6 ■ GItHUb

152

Quoting
If you’re responding to a small part of a long comment, you can selectively quote out of the other comment by
preceding the lines with the > character. In fact, this is so common and so useful that there is a keyboard shortcut for
it. If you highlight text in a comment that you want to directly reply to and click the r key, it will quote that text in the
comment box for you.

The quotes look something like this:

> Whether 'tis Nobler in the mind to suffer
> The Slings and Arrows of outrageous Fortune,

How big are these slings and in particular, these arrows?

Once rendered, the comment will look like Figure 6-25.

Figure 6-25. Rendered quoting example

Emoji
Finally, you can also use emojis in your comments. This is actually used quite extensively in comments you see on
many GitHub Issues and Pull Requests. There is even an emoji helper in GitHub. If you are typing a comment and you
start with a : character, an autocompleter will help you find what you’re looking for.

CHapter 6 ■ GItHUb

153

Emojis take the form of :<name>: anywhere in the comment. For instance, you could write something like this:

I :eyes: that :bug: and I :cold_sweat:.

:trophy: for :microscope: it.

:+1: and :sparkles: on this :ship:, it's :fire::poop:!

:clap::tada::panda_face:

When rendered, it would look something like Figure 6-27.

Figure 6-26. Emoji autocompleter in action

Figure 6-27. Heavy emoji commenting

Not that this is incredibly useful, but it does add an element of fun and emotion to a medium in which it is
otherwise hard to convey emotion.

CHapter 6 ■ GItHUb

154

Note ■ there are actually quite a number of web services that make use of emoji characters these days. a great cheat
sheet to reference to find emojis that express what you want to say can be found at: http://www.emoji-cheat-sheet.com.

Images
This isn’t technically GitHub Flavored Markdown, but it is incredibly useful. In addition to adding Markdown image
links to comments, which can be difficult to find and embed URLs for, GitHub allows you to drag and drop images into
text areas to embed them.

Figure 6-28. Drag and drop images to upload them and auto-embed them

If you look back at Figure 6-18, you can see a small Parsed as Markdown hint above the text area. Clicking on that
gives you a full cheat sheet of everything you can do with Markdown on GitHub.

http://www.emoji-cheat-sheet.com/

CHapter 6 ■ GItHUb

155

Figure 6-30. The New repository dropdown

Maintaining a Project
Now that you're comfortable contributing to a project, let’s look at the other side: creating, maintaining, and
administering your own project.

Creating a New Repository
Let’s create a new repository to share our project code with. Start by clicking the New repository button on the
right- side of the dashboard, or from the + button in the top toolbar next to your username as seen in Figure 6-30.

Figure 6-29. The Your repositories area

CHapter 6 ■ GItHUb

156

All you really have to do here is provide a project name; the rest of the fields are completely optional. For now, just
click the Create Repository button, and boom—you have a new repository on GitHub, named <user>/<project_name>.

Because you have no code there yet, GitHub shows you instructions for how to create a brand-new Git repository,
or connect an existing Git project. We won’t belabor this here; if you need a refresher, check out Chapter 2.

Now that your project is hosted on GitHub, you can give the URL to anyone you want to share your project with.
Every project on GitHub is accessible over HTTP as https://github.com/<user>/<project_name>, and over SSH as
git@github.com:<user>/<project_name>. Git can fetch from and push to both of these URLs, but they are access-
controlled based on the credentials of the user connecting to them.

Note ■ It is often preferable to share the Http-based UrL for a public project, since the user does not have to have
a GitHub account to access it for cloning. Users will have to have an account and an uploaded SSH key to access your
project if you give them the SSH UrL. the Http one is also exactly the same UrL they would paste into a browser to view
the project there.

Adding Collaborators
If you’re working with other people who you want to give commit access to, you need to add them as collaborators.
If Ben, Jeff, and Louise all sign up for accounts on GitHub, and you want to give them push access to your repository,
you can add them to your project. Doing so will give them push access, which means they have both read and write
access to the project and Git repository.

Figure 6-31. The new repository form

This takes you to the new repository form:

https://github.com/<user>/<project_name

CHapter 6 ■ GItHUb

157

Then select Collaborators from the menu on the left-hand side. Then, just type a username into the box, and click
Add collaborator. You can repeat this as many times as you like to grant access to everyone you like. If you need to
revoke access, just click the X on the right-hand side of their row.

Figure 6-32. The repository settings link

Figure 6-33. Repository collaborators

Click the Settings link at the bottom of the right-hand sidebar.

CHapter 6 ■ GItHUb

158

Managing Pull Requests
Now that you have a project with some code in it and maybe even a few collaborators who also have push access, let’s
go over what to do when you get a Pull Request yourself.

Pull Requests can either come from a branch in a fork of your repository or they can come from another branch
in the same repository. The only difference is that the ones in a fork are often from people where you can’t push to
their branch and they can’t push to yours, whereas with internal Pull Requests generally both parties can access
the branch.

For these examples, let’s assume you are “tonychacon” and you’ve created a new Arduino code project
named “fade.”

Email Notifications
Someone comes along and makes a change to your code and sends you a Pull Request. You should get an email
notifying you about the new Pull Request and it should look something like Figure 6-34.

Figure 6-34. Email notification of a new Pull Request

CHapter 6 ■ GItHUb

159

There are a few things to notice about this email. It will give you a small diffstat — a list of files that have changed
in the Pull Request and by how much. It gives you a link to the Pull Request on GitHub. It also gives you a few URLs
that you can use from the command line.

If you notice the line that says git pull <url> patch-1, this is a simple way to merge in a remote branch
without having to add a remote. We went over this quickly in “Checking Out Remote Branches” in Chapter 5. If you
wish, you can create and switch to a topic branch and then run this command to merge in the Pull Request changes.

The other interesting URLs are the .diff and .patch URLs, which as you may guess, provide unified diff and
patch versions of the Pull Request. You could technically merge in the Pull Request work with something like this:

$ curl http://github.com/tonychacon/fade/pull/1.patch | git am

Collaborating on the Pull Request
As we covered in section “The GitHub Flow,” you can now have a conversation with the person who opened the Pull
Request. You can comment on specific lines of code, comment on whole commits, or comment on the entire Pull
Request itself, using GitHub Flavored Markdown everywhere.

Every time someone else comments on the Pull Request you will continue to get email notifications so you know
there is activity happening. They will each have a link to the Pull Request where the activity is happening and you can
also directly respond to the email to comment on the Pull Request thread.

Figure 6-35. Responses to emails are included in the thread

Once the code is in a place you like and want to merge it in, you can either pull the code down and merge
it locally, either with the git pull <url> <branch> syntax we saw earlier, or by adding the fork as a remote and
fetching and merging.

If the merge is trivial, you can also just click the Merge button on the GitHub site. This does a “non-fast-forward”
merge, creating a merge commit even if a fast-forward merge was possible. This means that no matter what, every
time you click the Merge button, a merge commit is created. As you can see in Figure 6-36, GitHub gives you all this
information if you click the hint link.

http://github.com/tonychacon/fade/pull/1.patch

CHapter 6 ■ GItHUb

160

If you decide you don’t want to merge it, you can also just close the Pull Request and the person who opened it
will be notified.

Pull Request Refs
If you’re dealing with a lot of Pull Requests and don’t want to add a bunch of remotes or do one time pulls every time,
there is a neat trick that GitHub allows you to do. This is a bit of an advanced trick and we’ll go over the details of this
later, but it can be pretty useful.

GitHub actually advertises the Pull Request branches for a repository as sort of pseudo-branches on the
server. By default you don’t get them when you clone, but they are there in an obscured way and you can access them
pretty easily.

To demonstrate this, we’re going to use a low-level command (often referred to as a “plumbing” command,
which we’ll read about more in Chapter 10) called ls-remote. This command is generally not used in day-to-day Git
operations but it’s useful to show us what references are present on the server.

If we run this command against the blink repository we were using earlier, we will get a list of all the branches
and tags and other references in the repository.

$ git ls-remote https://github.com/schacon/blink
10d539600d86723087810ec636870a504f4fee4d HEAD
10d539600d86723087810ec636870a504f4fee4d refs/heads/master
6a83107c62950be9453aac297bb0193fd743cd6e refs/pull/1/head
afe83c2d1a70674c9505cc1d8b7d380d5e076ed3 refs/pull/1/merge
3c8d735ee16296c242be7a9742ebfbc2665adec1 refs/pull/2/head
15c9f4f80973a2758462ab2066b6ad9fe8dcf03d refs/pull/2/merge
a5a7751a33b7e86c5e9bb07b26001bb17d775d1a refs/pull/4/head
31a45fc257e8433c8d8804e3e848cf61c9d3166c refs/pull/4/merge

Of course, if you’re in your repository and you run git ls-remote origin or whatever remote you want to check,
it will show you something similar to this.

Figure 6-36. Merge button and instructions for merging a Pull Request manually

https://github.com/schacon/blink

CHapter 6 ■ GItHUb

161

If the repository is on GitHub and you have any Pull Requests that have been opened, you’ll get these references
that are prefixed with refs/pull/. These are basically branches, but since they’re not under refs/heads/ you don’t
get them normally when you clone or fetch from the server — the process of fetching ignores them normally.

There are two references per Pull Request—the one that ends in /head points to exactly the same commit as
the last commit in the Pull Request branch. So if someone opens a Pull Request in our repository and their branch
is named bug-fix and it points to commit a5a775, then in our repository we will not have a bug-fix branch (because
that’s in their fork), but we will have pull/<pr#>/head that points to a5a775. This means that we can pretty easily pull
down every Pull Request branch in one go without having to add a bunch of remotes.

Now, you could do something like fetching the reference directly.

$ git fetch origin refs/pull/958/head
From https://github.com/libgit2/libgit2
 * branch refs/pull/958/head -> FETCH_HEAD

This tells Git, “Connect to the origin remote, and download the ref named refs/pull/958/head.” Git happily obeys,
and downloads everything you need to construct that ref, and puts a pointer to the commit you want under .git/
FETCH_HEAD. You can follow that up with git merge FETCH_HEAD into a branch you want to test it in, but that merge
commit message looks a bit weird. Also, if you’re reviewing a lot of pull requests, this gets tedious.

There’s also a way to fetch all the pull requests, and keep them up to date whenever you connect to the remote.
Open up .git/config in your favorite editor, and look for the origin remote. It should look a bit like this:

[remote "origin"]
 url = https://github.com/libgit2/libgit2
 fetch = +refs/heads/*:refs/remotes/origin/*

That line that begins with fetch = is a “refspec.” It’s a way of mapping names on the remote with names in your
local .git directory. This particular one tells Git, “the things on the remote that are under refs/heads should go in my
local repository under refs/remotes/origin.” You can modify this section to add another refspec:

[remote "origin"]
 url = https://github.com/libgit2/libgit2.git
 fetch = +refs/heads/*:refs/remotes/origin/*
 fetch = +refs/pull/*/head:refs/remotes/origin/pr/*

That last line tells Git, “All the refs that look like refs/pull/123/head should be stored locally like refs/remotes/
origin/pr/123.” Now, if you save that file, and do a git fetch:

$ git fetch
...
 * [new ref] refs/pull/1/head -> origin/pr/1
 * [new ref] refs/pull/2/head -> origin/pr/2
 * [new ref] refs/pull/4/head -> origin/pr/4
...

Now all the remote pull requests are represented locally with refs that act much like tracking branches; they’re
read-only, and they update when you do a fetch. This makes it super easy to try the code from a pull request locally:

$ git checkout pr/2
Checking out files: 100% (3769/3769), done.
Branch pr/2 set up to track remote branch pr/2 from origin.
Switched to a new branch 'pr/2'

https://github.com/libgit2/libgit2
https://github.com/libgit2/libgit2
https://github.com/libgit2/libgit2.git

CHapter 6 ■ GItHUb

162

The eagle-eyed among you would note the head on the end of the remote portion of the refspec. There’s also a
refs/pull/#/merge ref on the GitHub side, which represents the commit that would result if you push the Merge
button on the site. This can allow you to test the merge before even hitting the button.

Pull Requests on Pull Requests
Not only can you open Pull Requests that target the main or master branch, you can actually open a Pull Request
targeting any branch in the network. In fact, you can even target another Pull Request.

If you see a Pull Request that is moving in the right direction and you have an idea for a change that depends on it
or you’re not sure is a good idea, or you just don’t have push access to the target branch, you can open a Pull Request
directly to it.

When you go to open a Pull Request, there is a box at the top of the page that specifies which branch you’re
requesting to pull to and which you’re requesting to pull from. If you click the Edit button at the right of that box you
can change not only the branches but also which fork.

Figure 6-37. Manually change the Pull Request target fork and branch

Here you can fairly easily specify to merge your new branch into another Pull Request or another fork of
the project.

Mentions and Notifications
GitHub also has a pretty nice notifications system built in that can come in handy when you have questions or need
feedback from specific individuals or teams.

In any comment you can start typing a @ character and it will begin to autocomplete with the names and
usernames of people who are collaborators or contributors in the project.

CHapter 6 ■ GItHUb

163

You can also mention a user who is not in that dropdown, but often the autocompleter can make it faster.
Once you post a comment with a user mention, that user will be notified. This means that this can be a really

effective way of pulling people into conversations rather than making them poll. Very often in Pull Requests on
GitHub people will pull in other people on their teams or in their company to review an Issue or Pull Request.

If someone gets mentioned on a Pull Request or Issue, they will be subscribed to it and will continue getting
notifications any time some activity occurs on it. You will also be subscribed to something if you opened it, if you’re
watching the repository, or if you comment on something. If you no longer want to receive notifications, there is an
Unsubscribe button on the page you can click to stop receiving updates on it.

Figure 6-38. Start typing @ to mention someone

Figure 6-39. Unsubscribe from an Issue or Pull Request

The Notifications Page
When we mention “notifications” here with respect to GitHub, we mean a specific way that GitHub tries to get in touch
with you when events happen and there are a few different ways you can configure them. If you go to the Notification
center tab from the settings page, you can see some of the options you have.

CHapter 6 ■ GItHUb

164

The two choices are to get notifications via Email and over Web and you can choose either, neither, or both for
when you actively participate in things and for activity on repositories you are watching.

Web Notifications

Web notifications only exist on GitHub and you can only check them on GitHub. If you have this option selected in
your preferences and a notification is triggered for you, you will see a small blue dot over your notifications icon at the
top of your screen as seen in Figure 6-41.

Figure 6-40. Notification center options

Figure 6-41. Notification center

CHapter 6 ■ GItHUb

165

If you click on that, you will see a list of all the items you have been notified about, grouped by project. You
can filter to the notifications of a specific project by clicking on its name in the left-hand sidebar. You can also
acknowledge the notification by clicking the checkmark icon next to any notification, or acknowledge all the
notifications in a project by clicking the checkmark at the top of the group. There is also a mute button next to each
checkmark that you can click to not receive any further notifications on that item.

All these tools are very useful for handling large numbers of notifications. Many GitHub power users will simply
turn off email notifications entirely and manage all their notifications through this screen.

Email Notifications

Email notifications are the other way you can handle notifications through GitHub. If you have this turned on you
will get emails for each notification. We saw examples of this in Figure 6-13 and Figure 6-34. The emails are threaded
properly, which is nice if you’re using a threading email client.

There is also a fair amount of metadata embedded in the headers of the emails that GitHub sends you, which can
be really helpful for setting up custom filters and rules.

For instance, if we look at the actual email headers sent to Tony in the email shown in Figure 6-34, we will see the
following among the information sent:

To: tonychacon/fade <fade@noreply.github.com>
Message-ID: <tonychacon/fade/pull/1@github.com>
Subject: [fade] Wait longer to see the dimming effect better (#1)
X-GitHub-Recipient: tonychacon
List-ID: tonychacon/fade <fade.tonychacon.github.com>
List-Archive: https://github.com/tonychacon/fade
List-Post: <mailto:reply+i-4XXX@reply.github.com>
List-Unsubscribe: <mailto:unsub+i-XXX@reply.github.com>,...
X-GitHub-Recipient-Address: tchacon@example.com

There are a couple of interesting things here. If you want to highlight or re-route emails to this particular project
or even Pull Request, the information in Message-ID gives you all the data in <user>/<project>/<type>/<id> format.
If this were an issue, for example, the <type> field would have been “issues” rather than “pull.”

The List-Post and List-Unsubscribe fields mean that if you have a mail client that understands those, you can
easily post to the list or unsubscribe from the thread. That would be essentially the same as clicking the mute button
on the web version of the notification or Unsubscribe on the Issue or Pull Request page itself.

It’s also worth noting that if you have both email and web notifications enabled and you read the email version of
the notification, the web version will be marked as read as well if you have images allowed in your mail client.

Special Files
There are a couple of special files that GitHub will notice if they are present in your repository.

https://github.com/tonychacon/fade

CHapter 6 ■ GItHUb

166

README
The first is the README file, which can be of nearly any format that GitHub recognizes as prose. For example, it could
be README, README.md, README.asciidoc, etc. If GitHub sees a README file in your source, it will render it on
the landing page of the project.

Many teams use this file to hold all the relevant project information for someone who might be new to the
repository or project. This generally includes things such as:

What the project is for•	

How to configure and install it•	

An example of how to use it or get it running•	

The license that the project is offered under•	

How to contribute to it•	

Because GitHub renders this file, you can embed images or links in it for added ease of understanding.

CONTRIBUTING
The other special file that GitHub recognizes is the CONTRIBUTING file. If you have a file named CONTRIBUTING
with any file extension, GitHub will show what you can see in Figure 6-42 when anyone starts opening a Pull Request.

Figure 6-42. Opening a Pull Request when a CONTRIBUTING file exists

The idea here is that you can specify specific things you want or don’t want in a Pull Request sent to your project.
This way people may actually read the guidelines before opening the Pull Request.

CHapter 6 ■ GItHUb

167

Project Administration
Generally there are not a lot of administrative things you can do with a single project, but there are a couple of items
that might be of interest.

Changing the Default Branch
If you are using a branch other than “master” as your default branch that you want people to open Pull Requests on or
see by default, you can change that in your repository’s settings page under the Options tab.

Figure 6-43. Change the default branch for a project

Simply change the default branch in the dropdown and that will be the default for all major operations from then
on, including which branch is checked out by default when someone clones the repository.

Transferring a Project
If you would like to transfer a project to another user or an organization in GitHub, there is a Transfer ownership
option at the bottom of the same Options tab of your repository settings page that allows you to do this.

Figure 6-44. Transfer a project to anther GitHub user or organization

CHapter 6 ■ GItHUb

168

This is helpful if you are abandoning a project and someone wants to take it over, or if your project is getting
bigger and you want to move it into an organization.

Not only does this move the repository along with all its watchers and stars to another place, it also sets up a
redirect from your URL to the new place. It will also redirect clones and fetches from Git, not just web requests.

Managing an Organization
In addition to single-user accounts, GitHub has what are called organizations. Like personal accounts, organizational
accounts have a namespace where all their projects exist, but many other things are different. These accounts
represent a group of people with shared ownership of projects, and there are many tools to manage subgroups of
those people. Normally these accounts are used for Open Source groups (such as “perl” or “rails”) or companies (such
as “google” or “twitter”).

Organization Basics
An organization is pretty easy to create; just click the + icon at the top-right of any GitHub page, and select New
organization from the menu.

Figure 6-45. The New organization menu item

First you’ll need to name your organization and provide an email address for a main point of contact for the
group. Then you can invite other users to be co-owners of the account if you want to.

Follow these steps and you’ll soon be the owner of a brand-new organization. Like personal accounts,
organizations are free if everything you plan to store there will be open source.

As an owner in an organization, when you fork a repository, you’ll have the choice of forking it to your
organization’s namespace. When you create new repositories you can create them either under your personal account
or under any of the organizations that you are an owner in. You also automatically “watch” any new repository created
under these organizations.

Just like your personal avatar, you can upload an avatar for your organization to personalize it a bit. Also just like
personal accounts, you have a landing page for the organization that lists all your repositories and can be viewed by
other people.

Now let’s cover some of the things that are a bit different with an organizational account.

CHapter 6 ■ GItHUb

169

Teams
Organizations are associated with individual people by way of teams, which are simply a grouping of individual user
accounts and repositories within the organization and what kind of access those people have in those repositories.

For example, say your company has three repositories: frontend, backend, and deployscripts. You’d want your
HTML/CSS/Javascript developers to have access to frontend and maybe backend, and your Operations people to have
access to backend and deployscripts. Teams make this easy, without having to manage the collaborators for every
individual repository.

The Organization page shows you a simple dashboard of all the repositories, users, and teams that are under this
organization.

Figure 6-46. The Organization page

To manage your teams, you can click on the Teams sidebar on the right-hand side of the page in Figure 6-46.
This brings you to a page you can use to add members to the team, add repositories to the team, or manage the
settings and access control levels for the team. Each team can have read only, read/write, or administrative access to
the repositories. You can change that level by clicking the Settings button in Figure 6-47.

CHapter 6 ■ GItHUb

170

When you invite someone to a team, they will get an email letting them know they’ve been invited.
Additionally, team @mentions (such as @acmecorp/frontend) work much the same as they do with individual

users, except that all members of the team are then subscribed to the thread. This is useful if you want the attention
from someone on a team, but you don’t know exactly who to ask.

A user can belong to any number of teams, so don’t limit yourself to only access-control teams. Special-interest
teams such as ux, css, or refactoring are useful for certain kinds of questions, and others such as legal and colorblind
for an entirely different kind.

Audit Log
Organizations also give owners access to all the information about what went on under the organization. You can go
to the Audit Log tab and see what events have happened at an organization level, who did them, and where in the
world they were done.

Figure 6-47. The Team page

CHapter 6 ■ GItHUb

171

You can also filter down to specific types of events, specific places, or specific people.

Scripting GitHub
So now we’ve covered all the major features and workflows of GitHub, but any large group or project will have
customizations they may want to make or external services they may want to integrate.

Luckily for us, GitHub is really quite hackable in many ways. In this section we’ll cover how to use the GitHub
hooks system and its API to make GitHub work how we want it to.

Hooks
The Hooks and Services section of GitHub repository administration is the easiest way to have GitHub interact with
external systems.

Figure 6-48. The Audit log

CHapter 6 ■ GItHUb

172

Services
First we’ll take a look at Services. Both the Hooks and Services integrations can be found in the Settings section of
your repository, where we previously looked at adding Collaborators and changing the default branch of your project.
Under the Webhooks and Services tab you will see something like Figure 6-49.

Figure 6-49. Services and Hooks configuration section

There are dozens of services you can choose from, most of them integrations into other commercial and open
source systems. Most of them are for Continuous Integration services, bug and issue trackers, chat room systems, and
documentation systems. We’ll walk through setting up a very simple one, the Email hook. If you choose “email” from
the Add Service dropdown, you’ll get a configuration screen like Figure 6-50.

Figure 6-50. Email service configuration

CHapter 6 ■ GItHUb

173

In this case, if we click the Add service button, the email address we specified will get an email every time
someone pushes to the repository. Services can listen for lots of different types of events, but most only listen for push
events and then do something with that data.

If there is a system you are using that you would like to integrate with GitHub, you should check here to see if
there is an existing service integration available. For example, if you’re using Jenkins to run tests on your codebase,
you can enable the Jenkins built-in service integration to kick off a test run every time someone pushes to your
repository.

Hooks
If you need something more specific or you want to integrate with a service or site that is not included in this list, you
can instead use the more generic hooks system. GitHub repository hooks are pretty simple. You specify a URL and
GitHub will post an HTTP payload to that URL on any event you want.

Generally the way this works is you can setup a small web service to listen for a GitHub hook payload and then do
something with the data when it is received.

To enable a hook, you click the Add webhook button in Figure 6-49. This brings you to a page that
looks like Figure 6-51.

Figure 6-51. Webhook configuration

CHapter 6 ■ GItHUb

174

The configuration for a webhook is pretty simple. In most cases you simply enter a URL and a secret key and click
Add webhook. There are a few options for which events you want GitHub to send you a payload for — the default is to
only get a payload for the push event, when someone pushes new code to any branch of your repository.

Here is a small example of a web service you may set up to handle a webhook. We’ll use the Ruby web framework
Sinatra because it’s fairly concise and you should be able to easily see what we’re doing.

Let’s say we want to get an email if a specific person pushes to a specific branch of our project modifying a
specific file. We could fairly easily do that with code like this:

require 'sinatra'
require 'json'
require 'mail'

post '/payload' do
 push = JSON.parse(request.body.read) # parse the JSON

 # gather the data we're looking for
 pusher = push["pusher"]["name"]
 branch = push["ref"]

 # get a list of all the files touched
 files = push["commits"].map do |commit|
 commit['added'] + commit['modified'] + commit['removed']
 end
 files = files.flatten.uniq

 # check for our criteria
 if pusher == 'schacon' &&
 branch == 'ref/heads/special-branch' &&
 files.include?('special-file.txt')

 Mail.deliver do
 from 'tchacon@example.com'
 to 'tchacon@example.com'
 subject 'Scott Changed the File'
 body "ALARM"
 end
 end
end

Here we’re taking the JSON payload that GitHub delivers us and looking up who pushed it, what branch they
pushed to and what files were touched in all the commits that were pushed. Then we check that against our criteria
and send an email if it matches.

To develop and test something like this, you have a nice developer console in the same screen where you set
up the hook. You can see the last few deliveries that GitHub has tried to make for that webhook. For each hook you
can dig down into when it was delivered, if it was successful and the body and headers for both the request and the
response. This makes it incredibly easy to test and debug your hooks.

CHapter 6 ■ GItHUb

175

The other great feature of this is that you can redeliver any of the payloads to test your service easily.
For more information on how to write webhooks and all the different event types you can listen for, go to the

GitHub Developer documentation at: https://developer.github.com/webhooks/.

The GitHub API
Services and hooks give you a way to receive push notifications about events that happen on your repositories, but
what if you need more information about these events? What if you need to automate something such as adding
collaborators or labeling issues?

This is where the GitHub API comes in handy. GitHub has tons of API endpoints for doing nearly anything you
can do on the website in an automated fashion. In this section we’ll learn how to authenticate and connect to the API,
how to comment on an issue, and how to change the status of a Pull Request through the API.

Figure 6-52. Webhook debugging information

https://developer.github.com/webhooks/

CHapter 6 ■ GItHUb

176

Basic Usage
The most basic thing you can do is a simple GET request on an endpoint that doesn’t require authentication. This
could be a user or read-only information on an open source project. For example, if we want to know more about a
user named schacon, we can run something like this:

$ curl https://api.github.com/users/schacon
{
 "login": "schacon",
 "id": 70,
 "avatar_url": "https://avatars.githubusercontent.com/u/70",
...
 "name": "Scott Chacon",
 "company": "GitHub",
 "following": 19,
 "created_at": "2008-01-27T17:19:28Z",
 "updated_at": "2014-06-10T02:37:23Z"
}

There are tons of endpoints like this to get information about organizations, projects, issues, commits — just
about anything you can publicly see on GitHub. You can even use the API to render arbitrary Markdown or find a
.gitignore template.

$ curl https://api.github.com/gitignore/templates/Java
{
 "name": "Java",
 "source": "*.class

Mobile Tools for Java (J2ME)
.mtj.tmp/

Package Files
*.jar
*.war
*.ear

virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml
hs_err_pid*
"
}

Commenting on an Issue
However, if you want to do an action on the website such as comment on an Issue or Pull Request or if you want to
view or interact with private content, you’ll need to authenticate.

There are several ways to authenticate. You can use basic authentication with just your username and password,
but generally it’s a better idea to use a personal access token. You can generate this from the Applications tab of your
settings page.

https://api.github.com/users/schacon
https://avatars.githubusercontent.com/u/70
https://api.github.com/gitignore/templates/Java
http://www.java.com/en/download/help/error_hotspot.xml

CHapter 6 ■ GItHUb

177

It will ask you which scopes you want for this token and a description. Make sure to use a good description so you
feel comfortable removing the token when your script or application is no longer used.

GitHub will only show you the token once, so be sure to copy it. You can now use this to authenticate in your
script instead of using a username and password. This is nice because you can limit the scope of what you want to do
and the token is revocable.

This also has the added advantage of increasing your rate limit. Without authenticating, you will be limited to
60 requests per hour. If you authenticate you can make up to 5,000 requests per hour.

So let’s use it to make a comment on one of our issues. Let’s say we want to leave a comment on a specific issue,
Issue #6. To do so we have to do an HTTP POST request to repos/<user>/<repo>/issues/<num>/comments with the
token we just generated as an Authorization header.

$ curl -H "Content-Type: application/json" \
 -H "Authorization: token TOKEN" \
 --data '{"body":"A new comment, :+1:"}' \
 https://api.github.com/repos/schacon/blink/issues/6/comments
{
 "id": 58322100,
 "html_url": "https://github.com/schacon/blink/issues/6#issuecomment-58322100",
 ...
 "user": {
 "login": "tonychacon",
 "id": 7874698,
 "avatar_url": "https://avatars.githubusercontent.com/u/7874698?v=2",
 "type": "User",
 },

Figure 6-53. Generate your access token from the Applications tab of your settings page

https://api.github.com/repos/schacon/blink/issues/6/comments
https://github.com/schacon/blink/issues/6#issuecomment-58322100
https://avatars.githubusercontent.com/u/7874698?v=2

CHapter 6 ■ GItHUb

178

 "created_at": "2014-10-08T07:48:19Z",
 "updated_at": "2014-10-08T07:48:19Z",
 "body": "A new comment, :+1:"
}

Now if you go to that issue, you can see the comment that we just successfully posted as in Figure 6-54.

Figure 6-54. A comment posted from the GitHub API

You can use the API to do just about anything you can do on the website — creating and setting milestones,
assigning people to Issues and Pull Requests, creating and changing labels, accessing commit data, creating new
commits and branches, opening, closing or merging Pull Requests, creating and editing teams, commenting on lines
of code in a Pull Request, searching the site, and on and on.

Changing the Status of a Pull Request
One final example we’ll look at since it’s really useful if you’re working with Pull Requests. Each commit can have one
or more statuses associated with it and there is an API to add and query that status.

Most of the Continuous Integration and testing services make use of this API to react to pushes by testing the
code that was pushed, and then report back if that commit has passed all the tests. You could also use this to check
whether the commit message is properly formatted, if the submitter followed all your contribution guidelines, if the
commit was validly signed — any number of things.

Let’s say you set up a webhook on your repository that hits a small web service that checks for a Signed-off-by
string in the commit message.

require 'httparty'
require 'sinatra'
require 'json'

post '/payload' do
 push = JSON.parse(request.body.read) # parse the JSON
 repo_name = push['repository']['full_name']

 # look through each commit message
 push["commits"].each do |commit|

 # look for a Signed-off-by string
 if /Signed-off-by/.match commit['message']
 state = 'success'
 description = 'Successfully signed off!'
 else
 state = 'failure'
 description = 'No signoff found.'
 end

CHapter 6 ■ GItHUb

179

 # post status to GitHub
 sha = commit["id"]
 status_url = "https://api.github.com/repos/#{repo_name}/statuses/#{sha}"

 status = {
 "state" => state,
 "description" => description,
 "target_url" => "http://example.com/how-to-signoff",
 "context" => "validate/signoff"
 }
 HTTParty.post(status_url,
 :body => status.to_json,
 :headers => {
 'Content-Type' => 'application/json',
 'User-Agent' => 'tonychacon/signoff',
 'Authorization' => "token #{ENV['TOKEN']}" }
)
 end
end

Hopefully this is fairly simple to follow. In this webhook handler we look through each commit that was
just pushed, we look for the string Signed-off-by in the commit message and finally we POST via HTTP to the
/repos/<user>/<repo>/statuses/<commit_sha> API endpoint with the status.

In this case you can send a state (success, failure, error), a description of what happened, a target URL the
user can go to for more information and a context in case there are multiple statuses for a single commit. For example,
a testing service may provide a status and a validation service like this may also provide a status — the context field is
how they’re differentiated.

If someone opens a new Pull Request on GitHub and this hook is setup, you may see something like Figure 6-55.

Figure 6-55. Commit status via the API

https://api.github.com/repos/

CHapter 6 ■ GItHUb

180

You can now see a little green checkmark next to the commit that has a “Signed-off-by” string in the message and
a red cross through the one where the author forgot to sign off. You can also see that the Pull Request takes the status
of the last commit on the branch and warns you if it is a failure. This is really useful if you’re using this API for test
results so you don’t accidentally merge something where the last commit is failing tests.

Octokit
Though we’ve been doing nearly everything through curl and simple HTTP requests in these examples, several
open-source libraries exist that make this API available in a more idiomatic way. At the time of this writing, the
supported languages include Go, Objective-C, Ruby, and .NET. Check out http://github.com/octokit for more
information on these, as they handle much of the HTTP for you.

Hopefully these tools can help you customize and modify GitHub to work better for your specific workflows.
For complete documentation on the entire API as well as guides for common tasks, check out
https://developer.github.com.

Summary
Now you’re a GitHub user. You know how to create an account, manage an organization, create and push to
repositories, contribute to other people’s projects, and accept contributions from others. In the next chapter, you’ll
learn about more powerful tools and tips for dealing with complex situations, which will truly make you a Git master.

http://github.com/octokit
https://developer.github.com/

	Chapter 6: Github
	Account Setup and Configuration
	SSH Access
	Your Avatar
	Your Email Addresses
	Two-Factor Authentication

	Contributing to a Project
	Forking Projects
	The GitHub Flow
	Creating a Pull Request
	Iterating on a Pull Request
	Advanced Pull Requests
	Pull Requests as Patches
	Keeping up with Upstream
	References

	Markdown
	GitHub Flavored Markdown
	Task Lists
	Code Snippets
	Quoting
	Emoji
	Images

	Maintaining a Project
	Creating a New Repository
	Adding Collaborators
	Managing Pull Requests
	Email Notifications
	Collaborating on the Pull Request
	Pull Request Refs
	Pull Requests on Pull Requests

	Mentions and Notifications
	The Notifications Page
	Web Notifications
	Email Notifications

	Special Files
	README
	CONTRIBUTING

	Project Administration
	Changing the Default Branch
	Transferring a Project

	Managing an Organization
	Organization Basics
	Teams
	Audit Log

	Scripting GitHub
	Hooks
	Services
	Hooks

	The GitHub API
	Basic Usage
	Commenting on an Issue
	Changing the Status of a Pull Request

	Octokit

	Summary

