
15

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers every basic command you need
to do the vast majority of the things you’ll eventually spend your time doing with Git. By the end of the chapter, you
should be able to configure and initialize a repository, begin and stop tracking files, and stage and commit changes.
We’ll also show you how to set up Git to ignore certain files and file patterns, how to undo mistakes quickly and
easily, how to browse the history of your project and view changes between commits, and how to push and pull from
remote repositories.

Getting a Git Repository
You can get a Git project using two main approaches. The first takes an existing project or directory and imports it into
Git. The second clones an existing Git repository from another server.

Initializing a Repository in an Existing Directory
If you’re starting to track an existing project in Git, you need to go to the project’s directory and type

$ git init

This creates a new subdirectory named .git that contains all your necessary repository files—a Git repository
skeleton. At this point, nothing in your project is tracked yet. (See Chapter 11 for more information about exactly what
files are contained in the .git directory you just created).

If you want to start version-controlling existing files (as opposed to an empty directory), you should probably
begin tracking those files and do an initial commit. You can accomplish that with a few git add commands that
specify the files you want to track, followed by a git commit:

$ git add *.c
$ git add LICENSE
$ git commit -m 'initial project version'

We’ll go over what these commands do in just a minute. At this point, you have a Git repository with tracked files
and an initial commit.

Chapter 2 ■ Git BasiCs

16

Cloning an Existing Repository
If you want to get a copy of an existing Git repository—for example, a project you’d like to contribute to—the
command you need is git clone. If you’re familiar with other VCS systems such as Subversion, you’ll notice that
the command is “clone” and not “checkout.” This is an important distinction—instead of getting just a working copy,
Git receives a full copy of nearly all data that the server has. Every version of every file for the history of the project is
pulled down by default when you run git clone. In fact, if your server disk gets corrupted, you can often use nearly
any of the clones on any client to set the server back to the state it was in when it was cloned (you may lose some
server-side hooks and such, but all the versioned data would be there—see Chapter 4 for more details).

You clone a repository with git clone [url]. For example, if you want to clone the Git linkable library called
libgit2, you can do so like this:

$ git clone https://github.com/libgit2/libgit2

That creates a directory named libgit2, initializes a .git directory inside it, pulls down all the data for that
repository, and checks out a working copy of the latest version. If you go into the new libgit2 directory, you’ll see
the project files in there, ready to be worked on or used. If you want to clone the repository into a directory named
something other than libgit2, you can specify that as the next command-line option:

$ git clone https://github.com/libgit2/libgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called mylibgit.
Git has a number of different transfer protocols you can use. The previous example uses the https:// protocol,

but you may also see git:// or user@server:path/to/repo.git, which uses the SSH transfer protocol. Chapter 4 will
introduce all of the available options the server can set up to access your Git repository and the pros and cons of each.

Recording Changes to the Repository
You have a bona fide Git repository and a checkout or working copy of the files for that project. You need to make
some changes and commit snapshots of those changes into your repository each time the project reaches a state you
want to record.

Remember that each file in your working directory can be in one of two states: tracked or untracked. Tracked files
are files that were in the last snapshot; they can be unmodified, modified, or staged. Untracked files are everything
else—any files in your working directory that were not in your last snapshot and are not in your staging area. When
you first clone a repository, all your files will be tracked and unmodified because you just checked them out and
haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since your last commit. You stage
these modified files and then commit all your staged changes, and the cycle repeats.

https://github.com/libgit2/libgit2
https://github.com/libgit2/libgit2

Chapter 2 ■ Git BasiCs

17

Checking the Status of Your Files
The main tool you use to determine which files are in which state is the git status command. If you run this
command directly after a clone, you should see something like this:

$ git status
On branch master
nothing to commit, working directory clean

This means you have a clean working directory—in other words, there are no tracked and modified files. Git also
doesn’t see any untracked files, or they would be listed here. Finally, the command tells you which branch you’re on
and informs you that it has not diverged from the same branch on the server. For now, that branch is always “master,”
which is the default; you won’t worry about it here. Branches and references are discussed in detail in Chapter 3.

Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and you run
git status, you see your untracked file like so:

$ echo 'My Project' > README
$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Untracked files” heading in your
status output. Untracked basically means that Git sees a file you didn’t have in the previous snapshot (commit);
Git won’t start including it in your commit snapshots until you explicitly tell it to do so. It does this so you don’t
accidentally begin including generated binary files or other files that you did not mean to include. You do want to start
including README, so let’s start tracking the file.

Figure 2-1. The lifecycle of the status of your files

Chapter 2 ■ Git BasiCs

18

Tracking New Files
In order to begin tracking a new file, you use the command git add. To begin tracking the README file,
you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged to be
committed:

$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

You can tell that it’s staged because it’s under the Changes to be committed heading. If you commit at this point,
the version of the file at the time you ran git add is what will be in the historical snapshot. You may recall that when
you ran git init earlier, you then ran git add (files)—that was to begin tracking files in your directory. The
git add command takes a path name for either a file or a directory; if it’s a directory, the command adds all the files
in that directory recursively.

Staging Modified Files
Let’s change a file that was already tracked. If you change a previously tracked file called “benchmarks.rb” and then
run your git status command again, you get something that looks like this:

$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

The benchmarks.rb file appears under a section named Changed but not staged for commit—which means
that a file that is tracked has been modified in the working directory but not yet staged. To stage it, you run the
git add command. git add is a multipurpose command—you use it to begin tracking new files, to stage files, and
to do other things like marking merge-conflicted files as resolved. It may be helpful to think of it more as “add this
content to the next commit” rather than “add this file to the project”. Let’s run git add now to stage the benchmarks.rb
file, and then run git status again:

$ git add benchmarks.rb
$ git status
On branch master

Chapter 2 ■ Git BasiCs

19

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README
 modified: benchmarks.rb

Both files are staged and will go into your next commit. At this point, suppose you remember one little change
that you want to make in benchmarks.rb before you commit it. You open it again and make that change, and you’re
ready to commit. However, let’s run git status one more time:

$ vim benchmarks.rb
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README
 modified: benchmarks.rb

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is that possible? It turns out that
Git stages a file exactly as it is when you run the git add command. If you commit now, the version of benchmarks.rb
as it was when you last ran the git add command is how it will go into the commit, not the version of the file as it
looks in your working directory when you run git commit. If you modify a file after you run git add, you have to
run git add again to stage the latest version of the file:

$ git add benchmarks.rb
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README
 modified: benchmarks.rb

Short Status
While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short status flag so you
can see your changes in a more compact way. If you run git status -s or git status --short you get a far more
simplified output from the command.

$ git status -s
 M README
MM Rakefile
A lib/git.rb
M lib/simplegit.rb
?? LICENSE.txt

Chapter 2 ■ Git BasiCs

20

New files that aren’t tracked have a ?? next to them, new files that have been added to the staging area have an
A, modified files have an M and so on. There are two columns to the output—the left hand column indicates that the
file is staged and the right hand column indicates that it’s modified. So for example in that output, the README file is
modified in the working directory but not yet staged, while the lib/simplegit.rb file is modified and staged. The
Rakefile was modified, staged and then modified again, so there are changes to it that are both staged and unstaged.

Ignoring Files
Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as being untracked.
These are generally automatically generated files such as log files or files produced by your build system. In such
cases, you can create a file listing patterns to match them named .gitignore. Here is an example .gitignore file:

$ cat .gitignore
*.[oa]
*~

The first line tells Git to ignore any files ending in “.o” or “.a”—object and archive files that may be the product
of building your code. The second line tells Git to ignore all files that end with a tilde (~), which is used by many
text editors such as Emacs to mark temporary files. You may also include a log, tmp, or pid directory; automatically
generated documentation; and so on. Setting up a .gitignore file before you get going is generally a good idea so
you don’t accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.•	

Standard glob patterns work.•	

You can end patterns with a forward slash (/) to specify a directory.•	

You can negate a pattern by starting it with an exclamation point (!).•	

Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or more
characters; [abc] matches any character inside the brackets (in this case a, b, or c); a question mark (?) matches a
single character; and brackets enclosing characters separated by a hyphen ([0-9]) matches any character between
them (in this case 0 through 9). You can also use two asterisks to match nested directories; a/**/z would match
a/z, a/b/z,a/b/c/z, and so on.

Here is another example .gitignore file:

a comment - this is ignored
*.a # no .a files
!lib.a # but do track lib.a, even though you're ignoring .a files above
/TODO # only ignore the root TODO file, not subdir/TODO
build/ # ignore all files in the build/ directory
doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

Tip ■ Github maintains a fairly comprehensive list of good .gitignore file examples for dozens or projects and
languages at https://github.com/github/gitignore if you want a starting point for your project.

https://github.com/github/gitignore

Chapter 2 ■ Git BasiCs

21

Viewing Your Staged and Unstaged Changes
If the git status command is too vague for you—you want to know exactly what you changed, not just which files
were changed—you can use the git diff command. We’ll cover git diff in more detail later, but you’ll probably use
it most often to answer these two questions: What have you changed but not yet staged? And what have you staged
that you are about to commit? Although git status answers those questions very generally by listing the file names,
git diff shows you the exact lines added and removed—the patch, as it were.

Let’s say you edit and stage the README file again and then edit the benchmarks.rb file without staging it.
If you run your git status command, you once again see something like this:

$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

To see what you’ve changed but not yet staged, type git diff with no other arguments:

$ git diff
diff --git a/benchmarks.rb b/benchmarks.rb
index 3cb747f..e445e28 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb
@@ -36,6 +36,10 @@ def main
 @commit.parents[0].parents[0].parents[0]
 end

+ run_code(x, 'commits 1') do
+ git.commits.size
+ end
+
 run_code(x, 'commits 2') do
 log = git.commits('master', 15)
 log.size

That command compares what is in your working directory with what is in your staging area. The result tells you
the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use git diff --staged.
This command compares your staged changes to your last commit:

$ git diff --staged
diff --git a/README b/README
new file mode 100644
index 0000000..03902a1

Chapter 2 ■ Git BasiCs

22

--- /dev/null
+++ b/README
@@ -0,0 +1,4 @@
+My Project
+
+ This is my project and it is amazing.
+

It’s important to note that git diff by itself doesn’t show all changes made since your last commit—only
changes that are still unstaged. This can be confusing, because if you’ve staged all your changes, git diff will give
you no output.

For another example, if you stage the benchmarks.rb file and then edit it, you can use git diff to see the
changes in the file that are staged and the changes that are unstaged:

$ git add benchmarks.rb
$ echo '# test line' >> benchmarks.rb
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: benchmarks.rb

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

Now you can use git diff to see what is still unstaged:

$ git diff
diff --git a/benchmarks.rb b/benchmarks.rb
index e445e28..86b2f7c 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb
@@ -127,3 +127,4 @@ end
 main()

 ##pp Grit::GitRuby.cache_client.stats
+# test line

and git diff --cached to see what you’ve staged so far:

$ git diff --cached
diff --git a/benchmarks.rb b/benchmarks.rb
index 3cb747f..e445e28 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb
@@ -36,6 +36,10 @@ def main
 @commit.parents[0].parents[0].parents[0]
 end

Chapter 2 ■ Git BasiCs

23

+ run_code(x, 'commits 1') do
+ git.commits.size
+ end
+
 run_code(x, 'commits 2') do
 log = git.commits('master', 15)
 log.size

Committing Your Changes
Now that your staging area is set up the way you want it, you can commit your changes. Remember that anything that
is still unstaged—any files you have created or modified that you haven’t run git add on since you edited them—
won’t go into this commit. They will stay as modified files on your disk. In this case, let’s say that the last time you ran
git status, you saw that everything was staged, so you’re ready to commit your changes. The simplest way to commit
is to type git commit:

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR environment variable—usually
vim or emacs, although you can configure it with whatever you want using the git config --global core.editor
command as you saw in Chapter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
new file: README
modified: benchmarks.rb
#
~
~
~
".git/COMMIT_EDITMSG" 9L, 283C

You can see that the default commit message contains the latest output of the git status command commented
out and one empty line on top. You can remove these comments and type your commit message, or you can leave
them there to help you remember what you’re committing. (For an even more explicit reminder of what you’ve
modified, you can pass the -v option to git commit. Doing so also puts the diff of your change in the editor so you can
see exactly what changes you’re committing). When you exit the editor, Git creates your commit with that commit
message (with the comments and diff stripped out).

Alternatively, you can type your commit message inline with the commit command by specifying it after a -m flag,
like this:

$ git commit -m "Story 182: Fix benchmarks for speed"
[master 463dc4f] Story 182: Fix benchmarks for speed
 2 files changed, 2 insertions(+)
 create mode 100644 README

Chapter 2 ■ Git BasiCs

24

Now you’ve created your first commit! You can see that the commit has given you some output about itself: which
branch you committed to (master), what SHA-1 checksum the commit has (463dc4f), how many files were changed,
and statistics about lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area. Anything you didn’t stage is still
sitting there modified; you can do another commit to add it to your history. Every time you perform a commit, you’re
recording a snapshot of your project that you can revert to or compare to later.

Skipping the Staging Area
Although it can be amazingly useful for crafting commits exactly how you want them, the staging area is sometimes a
bit more complex than you need in your workflow. If you want to skip the staging area, Git provides a simple shortcut.
Adding the -a option to the git commit command makes Git automatically stage every file that is already tracked
before doing the commit, letting you skip the git add part:

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

no changes added to commit (use "git add" and/or "git commit -a")
$ git commit -a -m 'added new benchmarks'
[master 83e38c7] added new benchmarks
 1 file changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the “benchmarks.rb” file in this case before you commit.

Removing Files
To remove a file from Git, you have to remove it from your tracked files (more accurately, remove it from your staging
area) and then commit. The git rm command does that, and also removes the file from your working directory so you
don’t see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the “Changed but not updated”
(that is, unstaged) area of your git status output:

$ rm grit.gemspec
$ git status
On branch master
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: grit.gemspec

no changes added to commit (use "git add" and/or "git commit -a")

Chapter 2 ■ Git BasiCs

25

Then, if you run git rm, it stages the file’s removal:

$ git rm grit.gemspec
rm 'grit.gemspec'
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: grit.gemspec

The next time you commit, the file will be gone and no longer tracked. If you modified the file and added it to the
index already, you must force the removal with the -f option. This is a safety feature to prevent accidental removal of
data that hasn’t yet been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but remove it from your staging
area. In other words, you may want to keep the file on your hard drive but not have Git track it anymore. This is
particularly useful if you forgot to add something to your .gitignore file and accidentally added it, like a large log file
or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its own filename expansion in addition
to your shell’s filename expansion. This command removes all files that have the .log extension in the log/ directory.
Or, you can do something like this:

$ git rm *~

This command removes all files that end with ~.

Moving Files
Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you rename a file in Git, no metadata is
stored in Git that tells it you renamed the file; however, Git is pretty smart about figuring that out after the fact. We’ll
deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in Git, you can run something like:

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git considers it a
renamed file:

$ git mv README.md README
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Chapter 2 ■ Git BasiCs

26

However, this is equivalent to running something like this:

$ mv README.md README
$ git rm README.md
$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that way or with the mv
command. The only real difference is that mv is one command instead of three—it’s a convenience function. More
important, you can use any tool you like to rename a file, and address the add/rm later, before you commit.

Viewing the Commit History
After you have created several commits, or if you have cloned a repository with an existing commit history, you’ll probably
want to look back to see what has happened. The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit. To get the project, run

git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

$ git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

By default, with no arguments, git log lists the commits made in that repository in reverse chronological
order—that is, the most recent commits show up first. As you can see, this command lists each commit with its SHA-1
checksum, the author’s name and e-mail, the date written, and the commit message.

Many different options to the git log command are available to show you exactly what you’re looking for. Here,
we’ll show you some of the most popular.

https://github.com/schacon/simplegit-progit

Chapter 2 ■ Git BasiCs

27

One of the more helpful options is -p, which shows the difference introduced in each commit. You can also
use -2, which limits the output to only the last two entries:

$ git log -p -2
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the verison number

diff --git a/Rakefile b/Rakefile
index a874b73..8f94139 100644
--- a/Rakefile
+++ b/Rakefile
@@ -5,7 +5,7 @@ require 'rake/gempackagetask'
 spec = Gem::Specification.new do |s|
 s.platform = Gem::Platform::RUBY
 s.name = "simplegit"
- s.version = "0.1.0"
+ s.version = "0.1.1"
 s.author = "Scott Chacon"
 s.email = "schacon@gee-mail.com"
 s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb
index a0a60ae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/lib/simplegit.rb
@@ -18,8 +18,3 @@ class SimpleGit
 end

 end
-
-if $0 == __FILE__
- git = SimpleGit.new
- puts git.show
-end
\ No newline at end of file

Chapter 2 ■ Git BasiCs

28

This option displays the same information but with a diff directly following each entry. This is very helpful for
code review or to quickly browse what happened during a series of commits that a collaborator has added. You can
also use a series of summarizing options with git log. For example, if you want to see some abbreviated stats for each
commit, you can use the --stat option:

$ git log --stat
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the verison number

 Rakefile | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 lib/simplegit.rb | 5 -----
 1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 README | 6 ++++++
 Rakefile | 23 +++++++++++++++++++++++
 lib/simplegit.rb | 25 +++++++++++++++++++++++++
 3 files changed, 54 insertions(+)

As you can see, the --stat option prints below each commit entry a list of modified files, how many files were
changed, and how many lines in those files were added and removed. It also puts a summary of the information at the end.

Another really useful option is --pretty. This option changes the log output to formats other than the default.
A few prebuilt options are available for you to use. The oneline option prints each commit on a single line, which
is useful if you’re looking at a lot of commits. In addition, the short, full, and fuller options show the output in
roughly the same format but with less or more information, respectively:

$ git log --pretty=oneline
ca82a6dff817ec66f44342007202690a93763949 changed the verison number
085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test
a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

Chapter 2 ■ Git BasiCs

29

The most interesting option is format, which allows you to specify your own log output format. This is especially
useful when you’re generating output for machine parsing—because you specify the format explicitly, you know it
won’t change with updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"
ca82a6d - Scott Chacon, 6 years ago : changed the version number
085bb3b - Scott Chacon, 6 years ago : removed unnecessary test
a11bef0 - Scott Chacon, 6 years ago : first commit

Table 2-1 lists some of the more useful options that format takes.

Table 2-1. Useful Options for git log --pretty=format

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hash

%p Abbreviated parent hash

%an Author name

%ae Author e-mail

%ad Author date (format respects the –date= option

%ar Author date, relative

%cn Committer name

%ce Committer e-mail

%cd Committer date

%cr Committer date, relative

%s Subject

You may be wondering what the difference is between author and committer. The author is the person who
originally wrote the work, whereas the committer is the person who last applied the work. So, if you send in a patch
to a project and one of the core members applies the patch, both of you get credit—you as the author, and the core
member as the committer. We’ll cover this distinction a bit more in Chapter 5.

The oneline and format options are particularly useful with another log option called --graph. This option adds
a nice little ASCII graph showing your branch and merge history:

$ git log --pretty=format:"%h %s" --graph
* 2d3acf9 ignore errors from SIGCHLD on trap
* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit
|\
| * 420eac9 Added a method for getting the current branch.
* | 30e367c timeout code and tests
* | 5a09431 add timeout protection to grit

Chapter 2 ■ Git BasiCs

30

* | e1193f8 support for heads with slashes in them
|/
* d6016bc require time for xmlschema
* 11d191e Merge branch 'defunkt' into local

This type of output will become more interesting as we go through branching and merging in the next chapter.
Those are only some simple output-formatting options to git log – there are many more. Table 2-2 lists the

options we’ve covered so far, as well as some other common formatting options that may be useful, along with how
they change the output of the log command.

Limiting Log Output
In addition to output-formatting options, git log takes a number of useful limiting options—that is, options that let
you show only a subset of commits. You’ve seen one such option already—the -2 option, which shows only the last
two commits. In fact, you can do -<n>, where n is any integer to show the last n commits. In reality, you’re unlikely to
use that often, because Git by default pipes all output through a pager so you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful. For example, this command
gets the list of commits made in the last two weeks:

$ git log --since=2.weeks

This command works with lots of formats—you can specify a specific date like "2008-01-15", or a relative date
such as "2 years 1 day 3 minutes ago".

You can also filter the list to commits that match some search criteria. The --author option allows you to filter
on a specific author, and the --grep option lets you search for keywords in the commit messages. (Note that if you
want to specify both author and grep options, you have to add --all-match or the command will match commits
with either).

Another really helpful filter is the -S option that takes a string and only shows the commits that introduced a
change to the code that added or removed that string. For instance, if you wanted to find the last commit that added or
removed a reference to a specific function, you could call:

$ git log --Sfunction_name

Table 2-2. Common Options to git log

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the --stat command.

--name-only Show the list of files modified after the commit information.

--name-status Show the list of files affected with added/modified/deleted information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks ago”) instead of using the full date
format.

--graph Display an ASCII graph of the branch and merge history beside the log output.

--pretty Show commits in an alternate format. Options include oneline, short, full, fuller, and format
(where you specify your own format).

Chapter 2 ■ Git BasiCs

31

The last really useful option to pass to git log as a filter is a path. If you specify a directory or filename, you can
limit the log output to commits that introduced a change to those files. This is always the last option and is generally
preceded by double dashes (--) to separate the paths from the options.

Table 2-3 lists these and a few other common options for your reference.

Table 2-3. Options to Limit the output of git log

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date

--until, --before Limit the commits to those made before the specified date

--author Only show commits in which the author entry matches the specified string

--committer Only show commits in which the committer entry matches the specified string

--grep Only show commits with a commit message containing the string

-S Only show commits adding or removing code matching the string

For example, if you want to see which commits modifying test files in the Git source code history were committed
by Junio Hamano and were not merges in the month of October 2008, you can run something like this:

$ git log --pretty="%h - %s" --author=gitster --since="2008-10-01" \
 --before="2008-11-01" --no-merges -- t/
5610e3b - Fix testcase failure when extended attributes are in use
acd3b9e - Enhance hold_lock_file_for_{update,append}() API
f563754 - demonstrate breakage of detached checkout with symbolic link HEAD
d1a43f2 - reset --hard/read-tree --reset -u: remove unmerged new paths
51a94af - Fix "checkout --track -b newbranch" on detached HEAD
b0ad11e - pull: allow "git pull origin $something:$current_branch" into an unborn branch

Of the nearly 40,000 commits in the Git source code history, this command shows the 6 that match those criteria.

Undoing Things
At any stage, you may want to undo something. Here, we’ll review a few basic tools for undoing changes that you’ve
made. Be careful, because you can’t always undo some of these undos. This is one of the few areas in Git where you
may lose some work if you do it wrong.

One of the common undos takes place when you commit too early and possibly forget to add some files, or you
mess up your commit message. If you want to try that commit again, you can run commit with the --amend option:

$ git commit –amend

This command takes your staging area and uses it for the commit. If you’ve made no changes since your last
commit (for instance, you run this command immediately after your previous commit), then your snapshot will look
exactly the same, and all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of your previous commit. You can
edit the message the same as always, but it overwrites your previous commit.

Chapter 2 ■ Git BasiCs

32

As an example, if you commit and then realize you forgot to stage the changes in a file you wanted to add to this
commit, you can do something like this:

$ git commit -m 'initial commit'
$ git add forgotten_file
$ git commit --amend

You end up with a single commit—the second commit replaces the results of the first.

Unstaging a Staged File
The next two sections demonstrate how to wrangle your staging area and working directory changes. The nice part
is that the command you use to determine the state of those two areas also reminds you how to undo changes to
them. For example, let’s say you’ve changed two files and want to commit them as two separate changes, but you
accidentally type git add * and stage them both. How can you unstage one of the two? The git status command
reminds you:

$ git add .
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README
 modified: benchmarks.rb

Right below the “Changes to be committed” text, it says use git reset HEAD <file>... to unstage. So, let’s use
that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb
Unstaged changes after reset:
M benchmarks.rb
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

The command is a bit strange, but it works. The benchmarks.rb file is modified but once again unstaged.

Note ■ While git reset can be a dangerous command if you call it with --hard, in this instance the file in your working
directory is not touched. Calling git reset without an option is not dangerous—it only touches your staging area.

Chapter 2 ■ Git BasiCs

33

For now this magic invocation is all you need to know about the git reset command. We’ll go into much more
detail about what reset does and how to master it to do really interesting things in Git Reset.

Unmodifying a Modified File
What if you realize that you don’t want to keep your changes to the benchmarks.rb file? How can you easily
unmodify it—revert to what it looked like when you last committed (or initially cloned, or however you got it into
your working directory)? Luckily, git status tells you how to do that, too. In the last example output, the unstaged
area looks like this:

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: benchmarks.rb

It tells you pretty explicitly how to discard the changes you’ve made. Let’s do what it says:

$ git checkout -- benchmarks.rb
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

You can see that the changes have been reverted.

Important ■ it’s important to understand that git checkout -- [file] is a dangerous command. any changes you
made to that file are gone—you just copied another file over it. Don’t ever use this command unless you absolutely know
that you don’t want the file.

If you would like to keep the changes you’ve made to that file but still need to get it out of the way for now, we’ll
go over stashing and branching in Chapter 3—these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even commits that were on
branches that were deleted or commits that were overwritten with an --amend commit can be recovered (see the
section on data recovery). However, anything you lose that was never committed is likely never to be seen again.

Working with Remotes
To be able to collaborate on any Git project, you need to know how to manage your remote repositories. Remote
repositories are versions of your project that are hosted on the Internet or network somewhere. You can have
several of them, each of which generally is either read-only or read/write for you. Collaborating with others involves
managing these remote repositories and pushing and pulling data to and from them when you need to share work.
Managing remote repositories includes knowing how to add remote repositories, remove remotes that are no longer
valid, manage various remote branches and define them as being tracked or not, and more. In this section, we’ll cover
some of these remote-management skills.

Chapter 2 ■ Git BasiCs

34

Showing Your Remotes
To see which remote servers you have configured, you can run the git remote command. It lists the shortnames
of each remote handle you’ve specified. If you’ve cloned your repository, you should at least see origin—that is the
default name Git gives to the server you cloned from:

$ git clone https://github.com/schacon/ticgit
Cloning into 'ticgit'...
remote: Reusing existing pack: 1857, done.
remote: Total 1857 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.
Resolving deltas: 100% (772/772), done.
Checking connectivity... done.
$ cd ticgit
$ git remote
origin

You can also specify -v, which shows you the URLs that Git has stored for the shortname to be used when reading
and writing to that remote:

$ git remote -v
Origin https://github.com/schacon/ticgit (fetch)
Origin https://github.com/schacon/ticgit (push)

If you have more than one remote, the command lists them all. For example, a repository with multiple remotes
for working with several collaborators might look something like this.

$ cd grit
$ git remote -v
bakkdoor https://github.com/bakkdoor/grit (fetch)
bakkdoor https://github.com/bakkdoor/grit (push)
cho45 https://github.com/cho45/grit (fetch)
cho45 https://github.com/cho45/grit (push)
defunkt https://github.com/defunkt/grit (fetch)
defunkt https://github.com/defunkt/grit (push)
koke git://github.com/koke/grit.git (fetch)
koke git://github.com/koke/grit.git (push)
origin git@github.com:mojombo/grit.git (fetch)
origin git@github.com:mojombo/grit.git (push)

This means we can pull contributions from any of these users pretty easily. We may additionally have permission
to push to one or more of these, though we can’t tell that here.

Notice that these remotes use a variety of protocols; we’ll cover more about this in Chapter 4.

Chapter 2 ■ Git BasiCs

35

Adding Remote Repositories
I’ve mentioned and given some demonstrations of adding remote repositories in previous sections, but here is how
to do it explicitly. To add a new remote Git repository as a shortname you can reference easily, run git remote add
[shortname] [url]:

$ git remote
origin
$ git remote add pb https://github.com/paulboone/ticgit
$ git remote -v
origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)
pb https://github.com/paulboone/ticgit (fetch)
pb https://github.com/paulboone/ticgit (push)

Now you can use the string pb on the command line in lieu of the whole URL. For example, if you want to fetch all
the information that Paul has but that you don’t yet have in your repository, you can run git fetch pb:

$ git fetch pb
remote: Counting objects: 43, done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), done.
From https://github.com/paulboone/ticgit
 * [new branch] master -> pb/master
 * [new branch] ticgit -> pb/ticgit

Paul’s master branch is now accessible locally as pb/master—you can merge it into one of your branches, or you
can check out a local branch at that point if you want to inspect it. (We’ll go over what branches are and how to use
them in much more detail in Chapter 3).

Fetching and Pulling from Your Remotes
As you just saw, to get data from your remote projects, you can run:

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that remote project that you don’t
have yet. After you do this, you should have references to all the branches from that remote, which you can merge in
or inspect at any time.

If you clone a repository, the command automatically adds that remote repository under the name “origin.” So,
git fetch origin fetches any new work that has been pushed to that server since you cloned (or last fetched from)
it. It’s important to note that the git fetch command pulls the data to your local repository—it doesn’t automatically
merge it with any of your work or modify what you’re currently working on. You have to merge it manually into your
work when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chapter 3 for more information),
you can use the git pull command to automatically fetch and then merge a remote branch into your current branch.
This may be an easier or more comfortable workflow for you; and by default, the git clone command automatically
sets up your local master branch to track the remote master branch (or whatever the default branch is called) on the
server you cloned from. Running git pull generally fetches data from the server you originally cloned from and
automatically tries to merge it into the code you’re currently working on.

Chapter 2 ■ Git BasiCs

36

Pushing to Your Remotes
When you have your project at a point that you want to share, you have to push it upstream. The command for this
is simple: git push [remote-name] [branch-name]. If you want to push your master branch to your origin server
(again, cloning generally sets up both of those names for you automatically), then you can run this to push any
commits you’ve done back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write access and if nobody has pushed
in the meantime. If you and someone else clone at the same time and they push upstream and then you push
upstream, your push will rightly be rejected. You’ll have to pull down their work first and incorporate it into yours
before you’ll be allowed to push. See Chapter 3 for more detailed information on how to push to remote servers.

Inspecting a Remote
If you want to see more information about a particular remote, you can use the git remote show [remote-name]
command. If you run this command with a particular shortname, such as origin, you get something like this:

$ git remote show origin
* remote origin
 Fetch URL: https://github.com/schacon/ticgit
 Push URL: https://github.com/schacon/ticgit
 HEAD branch: master
 Remote branches:
 master tracked
 dev-branch tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local ref configured for 'git push':
 master pushes to master (up to date)

It lists the URL for the remote repository as well as the tracking branch information. The command helpfully tells
you that if you’re on the master branch and you run git pull, it will automatically merge in the master branch on the
remote after it fetches all the remote references. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more heavily, however, you may see
much more information from git remote show:

$ git remote show origin
* remote origin
 URL: https://github.com/my-org/complex-project
 Fetch URL: https://github.com/my-org/complex-project
 Push URL: https://github.com/my-org/complex-project
 HEAD branch: master
 Remote branches:
 master tracked
 dev-branch tracked
 markdown-strip tracked
 issue-43 new (next fetch will store in remotes/origin)
 issue-45 new (next fetch will store in remotes/origin)
 refs/remotes/origin/issue-11 stale (use 'git remote prune' to remove)

Chapter 2 ■ Git BasiCs

37

 Local branches configured for 'git pull':
 dev-branch merges with remote dev-branch
 master merges with remote master
 Local refs configured for 'git push':
 dev-branch pushes to dev-branch (up to date)
 markdown-strip pushes to markdown-strip (up to date)
 master pushes to master (up to date)

This command shows which branch is automatically pushed to when you run git push while on certain branches.
It also shows you which remote branches on the server you don’t yet have, which remote branches you have that have
been removed from the server, and multiple branches that are automatically merged when you run git pull.

Removing and Renaming Remotes
If you want to rename a reference you can run git remote rename to change a remote’s shortname. For instance,
if you want to rename pb to paul, you can do so with git remote rename:

$ git remote rename pb paul
$ git remote
origin
paul

It’s worth mentioning that this changes your remote branch names, too. What used to be referenced at pb/master
is now at paul/master.

If you want to remove a remote for some reason—you’ve moved the server or are no longer using a particular
mirror, or perhaps a contributor isn’t contributing anymore—you can use git remote rm:

$ git remote rm paul
$ git remote
origin

Tagging
Like most VCSs, Git has the ability to tag specific points in history as being important. Typically people use this
functionality to mark release points (v1.0, and so on). In this section, you’ll learn how to list the available tags, how to
create new tags, and what the different types of tags are.

Listing Your Tags
Listing the available tags in Git is straightforward. Just type git tag:

$ git tag
v0.1
v1.3

This command lists the tags in alphabetical order; the order in which they appear has no real importance.

Chapter 2 ■ Git BasiCs

38

You can also search for tags with a particular pattern. The Git source repo, for instance, contains more than
500 tags. If you’re only interested in looking at the 1.8.5 series, you can run this:

$ git tag -l 'v1.8.5*'
v1.8.5
v1.8.5-rc0
v1.8.5-rc1
v1.8.5-rc2
v1.8.5-rc3
v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5

Creating Tags
Git uses two main types of tags: lightweight and annotated.

A lightweight tag is very much like a branch that doesn’t change—it’s just a pointer to a specific commit.
Annotated tags, however, are stored as full objects in the Git database. They’re checksummed; contain the tagger

name, e-mail, and date; have a tagging message; and can be signed and verified with GNU Privacy Guard (GPG).
It’s generally recommended that you create annotated tags so you can have all this information; but if you want a
temporary tag or for some reason don’t want to keep the other information, lightweight tags are available too.

Annotated Tags
Creating an annotated tag in Git is simple. The easiest way is to specify -a when you run the tag command:

$ git tag -a v1.4 -m 'my version 1.4'
$ git tag
v0.1
v1.3
v1.4

The -m specifies a tagging message, which is stored with the tag. If you don’t specify a message for an annotated
tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git show command:

$ git show v1.4
tag v1.4
Tagger: Ben Straub <ben@straub.cc>
Date: Sat May 3 20:19:12 2014 -0700

my version 1.4

commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the verison number

Chapter 2 ■ Git BasiCs

39

That shows the tagger information, the date the commit was tagged, and the annotation message before showing
the commit information.

Lightweight Tags
Another way to tag commits is with a lightweight tag. This is basically the commit checksum stored in a file—no other
information is kept. To create a lightweight tag, don’t supply the -a, -s, or -m option:

$ git tag v1.4-lw
$ git tag
v0.1
v1.3
v1.4
v1.4-lw
v1.5

This time, if you run git show on the tag, you don’t see the extra tag information. The command just shows
the commit:

$ git show v1.4-lw
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the verison number

Tagging Later
You can also tag commits after you’ve moved past them. Suppose your commit history looks like this:

$ git log --pretty=oneline
15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch 'experiment'
a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support
0d52aaab4479697da7686c15f77a3d64d9165190 one more thing
6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch 'experiment'
0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function
4682c3261057305bdd616e23b64b0857d832627b added a todo file
166ae0c4d3f420721acbb115cc33848dfcc2121a started write support
9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile
964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo
8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

Now, suppose you forgot to tag the project at v1.2, which was at the “updated rakefile” commit. You can add it
after the fact. To tag that commit, you specify the commit checksum (or part of it) at the end of the command:

$ git tag -a v1.2 9fceb02

Chapter 2 ■ Git BasiCs

40

You can see that you’ve tagged the commit:

$ git tag
v0.1
v1.2
v1.3
v1.4
v1.4-lw
v1.5

$ git show v1.2
tag v1.2
Tagger: Scott Chacon <schacon@gee-mail.com>
Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2
commit 9fceb02d0ae598e95dc970b74767f19372d61af8
Author: Magnus Chacon <mchacon@gee-mail.com>
Date: Sun Apr 27 20:43:35 2008 -0700

 updated rakefile
...

Sharing Tags
By default, the git push command doesn’t transfer tags to remote servers. You will have to explicitly push tags to a
shared server after you have created them. This process is just like sharing remote branches—you can run git push
origin [tagname].

$ git push origin v1.5
Counting objects: 14, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (12/12), done.
Writing objects: 100% (14/14), 2.05 KiB | 0 bytes/s, done.
Total 14 (delta 3), reused 0 (delta 0)
To git@github.com:schacon/simplegit.git
 * [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the --tags option to the git push
command. This transfers all your tags that are not already there to the remote server.

$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 160 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To git@github.com:schacon/simplegit.git
 * [new tag] v1.4 -> v1.4
 * [new tag] v1.4-lw -> v1.4-lw

Now, when someone else clones or pulls from your repository, they will get all your tags as well.

Chapter 2 ■ Git BasiCs

41

Git Aliases
Before we finish this chapter on basic Git, there’s just one little tip that can make your Git experience simpler, easier,
and more familiar: aliases. We won’t refer to them or assume you’ve used them later in the book, but you should
probably know how to use them.

Git doesn’t automatically infer your command if you type it in partially. If you don’t want to type the entire text of
each of the Git commands, you can easily set up an alias for each command using git config. Here are a couple of
examples you may want to set up:

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commit
$ git config --global alias.st status

This means that, for example, instead of typing git commit, you just need to type git ci. As you go on using Git,
you’ll probably use other commands frequently as well; don’t hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should exist. For example, to correct
the usability problem you encountered with unstaging a file, you can add your own unstage alias to Git:

$ git config --global alias.unstage 'reset HEAD --'

This makes the following two commands equivalent:

$ git unstage fileA
$ git reset HEAD fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last 'log -1 HEAD'
This way, you can see the last commit easily:

$ git last
commit 66938dae3329c7aebe598c2246a8e6af90d04646
Author: Josh Goebel <dreamer3@example.com>
Date: Tue Aug 26 19:48:51 2008 +0800

 test for current head

 Signed-off-by: Scott Chacon <schacon@example.com>

As you can tell, Git simply replaces the new command with whatever you alias it for. However, maybe you want to run
an external command, rather than a Git subcommand. In that case, you start the command with a ! character. This is
useful if you write your own tools that work with a Git repository. We can demonstrate by aliasing git visual to run gitk:

$ git config --global alias.visual "!gitk"

Summary
At this point, you can do all the basic local Git operations—creating or cloning a repository, making changes, staging
and committing those changes, and viewing the history of all the changes the repository has been through. Next, we’ll
cover Git’s killer feature: its branching model.

	Chapter 2: Git Basics
	Getting a Git Repository
	Initializing a Repository in an Existing Directory
	Cloning an Existing Repository

	Recording Changes to the Repository
	Checking the Status of Your Files
	Tracking New Files
	Staging Modified Files
	Short Status
	Ignoring Files
	Viewing Your Staged and Unstaged Changes
	Committing Your Changes
	Skipping the Staging Area
	Removing Files
	Moving Files

	Viewing the Commit History
	Limiting Log Output

	Undoing Things
	Unstaging a Staged File
	Unmodifying a Modified File

	Working with Remotes
	Showing Your Remotes
	Adding Remote Repositories
	Fetching and Pulling from Your Remotes
	Pushing to Your Remotes
	Inspecting a Remote
	Removing and Renaming Remotes

	Tagging
	Listing Your Tags
	Creating Tags
	Annotated Tags
	Lightweight Tags
	Tagging Later
	Sharing Tags

	Git Aliases
	Summary

