
Chapter 18
Time Series

18.1 Introduction

In the analysis of neural data, time is important. We experience life as evolving, and
neurophysiological investigations focus increasingly on dynamic features of brain
activity. If we wish to understand the signals produced by nervous system processes
we must use an analytical framework that is built for time-varying observations.

From a mathematical point of view, time is a number with an arbitrarily-chosen
origin, the value t = 0 typically representing an experimental or behavioral marker
such as the onset of a visual cue. We may work backward in time by taking t to be
negative. Although measurements are always made with some resolution of temporal
accuracy, often determined by a sampling rate (such as 20 KHz, giving a precision
of �t = .05 ms), mathematically we allow t to be any real number, such as t = π

2 s.
When measurements depend on time we may think of them as functions of time, as
in y = f (t), and when we acknowledge that the measurements are noisy we might
write

Y = f (t) + ε

where ε is a random variable representing noise and Y is written as a capital
letter to emphasize that it, too, is a random variable. Given n observation pairs
(t1, y1), . . . , (tn, yn) we might write

Yi = f (ti) + εi, (18.1)

and this returns us to the usual nonparametric regression model of Chapter 15, in
which the variables ε1, . . . , εn are assumed independent. While at first glance (18.1)
may seem natural, this kind of formulation does not yet go far enough in dealing with
measurements that vary across time because it does not take account of the sequential
nature of the argument t. In (18.1) the values i = 1, 2, . . . , n are generally no longer
arbitrary labels but rather important and meaningful indications of temporal ordering
with t1 < t2 < · · · < tn. If time matters, then even the noise variables ε1, . . . , εn may
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be related to one another, and thus no longer independent. In this case, specialized
methods can produce powerful results. The term time series, refers both to data
collected across time and to the large body of theory and methods for analyzing such
data.

Let us switch over to the general notation for random variables and write a the-
oretical sequence of measurements as X1, X2, . . ., and a generic random variable in
the sequence as Xt . Another way to say the Xt variables are dependent is that know-
ing X1, X2, . . . , Xt−1 should allow us to predict, at least up to some uncertainty, Xt .
Predictability plays an important role in time series analysis.

Example 2.2 (continued from p. 27) On p. 27 we displayed several EEG spec-
trograms taken under different stages of anesthesia. We noted earlier that both the
roughly 10 Hz alpha rhythm and the 1–4 Hz delta rhythm are visible in the time series
plot. In this scenario we can say a lot about the variation among the EEG values based
on their sequence along time: in the time bin at time t the EEG voltage is likely to
be close to that at time t − 1 and from the voltage in multiple time bins preceding
time t we could produce a good prediction of the value at time t. �
The spectrograms in Example 2.2 display the rhythmic, wave-like features of the EEG
signals contrasting them across phases of anesthesia. They do so by decomposing
the signal into components of various frequencies, using one of the chief techniques
of time series analysis. The decompositions are possible in this context because the
EEGs may be described with relatively simple and standard time series models,
but this is not true of all time series. The EEG series are, in a sense, very special
because their variation occurs on a time scale that is substantially smaller than the
observation interval. By contrast, if we go back to Fig. 1.5 of Example 1.6 we see
another time series where the variation is on a longer time scale. The EPSC signal
drops suddenly, and only once, shortly after the beginning of the series, then recovers
slowly throughout the remainder of the series. In other words, the variation in the
EPSC takes place on a time scale roughly equal to the length of the observation
interval. Another way to put this is that the EEG at time xt may be predicted reasonably
well using only the preceding EEG values xt−1, xt−2, . . . , xt−h, going back h time
bins, where h is some fairly small integer, but a prediction of the EPSC at xt based
on earlier observations would require nearly the entire previous series and still might
not be very good. The most common time series methods, those we describe here,
assume predictability on relatively short time scales.

So far we have said that the EEG at time xt may be predicted using the preceding
EEG values xt−1, xt−2, . . . , xt−h, but we did not specify which value of t we were
referring to. Part of the point is that it doesn’t much matter. In other words, it is
possible to predict almost any xt using the preceding h observations. (We say “almost”
any xt because we have to exclude the first few xt observations, with t ≤ h, where
there do not exist h preceding observations from which to predict.) Furthermore, the
formula we concoct to combine xt−1, xt−2, . . . , xt−h in order to predict xt may be
chosen independently of t. This is a very strong kind of predictability, one that is
stable across time, or time-invariant. The notion of time invariance is at the heart of
time series analysis.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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We now begin to formalize these ideas. Let Xt be the measurement of a series at
time t, with t = 1, . . . , n. Let μt = E(Xt) and �ij = Cov(Xi, Xj). As soon as we
contemplate estimation of this mean vector and covariance matrix we are faced with a
serious difficulty. For simplicity consider time t and the problem of estimating μt and
σ2

t = �tt . If we have many replications of the measurements at time t (as is usually
the case, for example, with evoked potentials) we can collect all the observations
across replications at time t and compute their sample mean and sample variance.
However, if we have only one time series, and therefore one observation at t, we
do not have a sample from which to compute the sample mean and variance. The
only way to apply any kind of averaging is by using observations at other values of
time. Thus, we can only get meaningful estimates of mean and covariance by making
assumptions about the way Xt varies across time. Let us introduce a theoretical time
series, or discrete-time stochastic process {Xt; t ∈ Z}, Z being the set of all integers.
We are now in a position to define the kinds of time invariance we will need. We
say that the series Xt is strictly stationary if it is time-invariant in the sense that the
joint distribution of each set of variables {Xt, Xt+1, . . . , Xt+h} is the same as that
of the variables {Xs, Xs+1, . . . , Xs+h} for all t, s, h. Because the time index takes all
possible integer values it is an abstraction (no experiment runs indefinitely far into
the past and future) but it is an extremely useful one. A standard notation in the
time series context is γ(s, t) = �st . The function γ(s, t) is called the autocovariance
function and the autocorrelation function (ACF) is defined by

ρ(s, t) = γ(s, t)√
γ(s, s)γ(t, t)

.

The prefix “auto,” which signifies here that we are considering dependence of the
time series on itself, is a hint that one might instead consider dependence across
multiple time series, where we would instead have “cross-covariance” and “cross-
correlation” functions (which we discuss in Section 18.5). A time series is said to be
weakly stationary or covariance stationary if (i) μt is constant for all t and (ii) γ(s, t)
depends on s and t only through the magnitude of their difference |s− t|. This weaker
sense of stationarity is all that is needed for many theoretical arguments. Under either
form of stationarity we follow the convention of writing the autocovariance function
in terms of a single argument, h = t − s, in the form γ(h) = γ(t − h, t). Note that
γ(0) = V(Xt). It is not hard to show that γ(0) ≥ |γ(h)| for all h, and γ(h) = γ(−h).
In the stationary case the autocorrelation function becomes

ρ(h) = γ(h)

γ(0)
. (18.2)

Illustration: The 3-point moving average process

Xt = 1

3
(Ut + Ut−1 + Ut−2)
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where the Ut variables are independent, with E(Ut) = 0 and V(Ui) = σ2
U , is a

stationary process with autocovariance and autocorrelation

γ(0) = σ2
U

3

γ(±1) = 2σ2
U

9

ρ(±1) = 2

3

γ(±2) = σ2
U

9

ρ(±2) = 1

3
γ(±h) = ρ(h) = 0, for |h| ≥ 3. �

Having defined what it means for a process to be stationary, and also having
defined the autocorrelation function, let us return to the distinction we were trying
to draw between the EEG and EPSC time series. The EEG series may be modeled as
stationary, and furthermore its variation is consistent with what is called short-range
dependence. A theoretical time series exhibits short-range dependence when its cor-
relation function ρ(h) vanishes quickly as h becomes infinite. For the most common
time series models the correlation function vanishes exponentially fast (i.e., there
is a positive number a for which ρ(h)ea|h| → 0 as h → ±∞). On the other hand,
it is questionable whether one would want to model the EPSC time series as sta-
tionary and, if so, it would be necessary to use a model that assumes long-range
dependence, where the correlation function dies out slowly as h becomes infinite.
Time series analysis is concerned with variation across time while being cognizant
of the role of stationarity. Much time series theory explicitly assumes stationarity.
There is also considerable interest in non-stationary series, but the theoretical devel-
opments involve particular kinds of non-stationarity or modifications of methods that
apply to stationary series. In contrast, nonparametric regression does not consider
time-invariance arguments at all. In (18.1) the usual nonparametric assumption is
E(εt) = 0, and we have μt = E(Yt) = f (t). In other words, instead of a constant
mean required by stationarity, the nonparametric problem focuses on the evolution
of the mean as a function of time. In fact, many investigations involve a mix of these
two possibilities: there is a stimulus that produces a time-varying mean component of
the response, but there is also a wave-like time-invariant component of the response.
From a practical point of view, it is very important to consider these components
separately.

Example 15.2 (continued) For illustrative purposes we analyze here a small record
of an LFP, which was recorded for 30 s (seconds) and sampled at 1 KHz as part of the
experiment described briefly on p. 421. We confine our attention to the first second
and the last second (each consisting of 1,000 observations), and will consider whether
the signal appears consistent across these two time periods in the sense of containing
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Fig. 18.1 LFP and smoothed versions representing slowly-varying trends. Top First second of aver-
age LFP. Bottom Last (thirtieth) second of average LFP. Smoothing was performed using regression
splines with a small number of knots, as described on p. 421.

the same delta-wave content. Figure 18.1 displays these two time series, together with
smoothed versions of the average LFP in these two periods. When we focus on a
single second of observation time, the slow-wave activity shows up as slowly-varying
mean signals, or trends, represented by the smoothed versions of the two LFP traces
in the figure. Even though the slowly-varying trends could be considered roughly
oscillatory on a longer time scale, at this time scale they can not be represented as
oscillatory and are, instead, sources of long-range dependence or non-stationarity
akin to that in Fig. 1.5. In order to capture the higher-frequency, stationary activity
in these plots (with short-range dependence) we must first remove the slow trends.
We analyze these data further in subsequent sections. �
In motivating stationarity we brought up the problem of estimating the mean and
covariance functions, pointing out that in the absence of replications some assump-
tions must be made. Under stationarity the value of the constant mean μt = μ may
be estimated by the sample mean and an obvious estimator of the autocovariance
function is the sample autocovariance function

γ̂(h) = 1

n

n−h∑

t=1

(xt+h − x)(xt − x) (18.3)

for h = 0, 1, . . . , n − 1 and then γ̂(−h) = γ̂(h).We then have the sample autocor-
relation function (sample ACF),

ρ̂(h) = γ̂(h)

γ̂(0)
(18.4)

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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which is an estimator of the autocorrelation function (18.2).
In this chapter we provide an overview of key concepts in time series analysis.

Section 18.2 describes the two major approaches to time series analysis. Section 18.3
gives some details on methods used to decompose time series into frequencies,
as in Example 2.2. There are several important subtleties, and we discuss these
as well. Section 18.4 discusses assessing uncertainty about frequency components,
and Section 18.5 reviews the way these methods are adapted to assess dependence
between pairs of simultaneous time series.

18.2 Time Domain and Frequency Domain

In discussing Example 2.2, on p. 514, we alluded to the decomposition of the signal
into frequency-based components. In general, time series analysis relies on two
complementary classes of methods. As the name indicates, time domain methods
view the signal as a function of time and use statistical models that describe temporal
dependence. Frequency domain methods decompose the signal into frequency-based
components, and describe the relative contribution of these in making up the signal.
In this section we provide a brief introduction to these two approaches, starting with
frequency-based analysis. Here are two examples.

Example 18.1 Gamma oscillations in MEG during learning Cortical oscillatory
activity in the gamma band (roughly 30–120 Hz) has been associated with many
cognitive functions. Chaumon et al. (2009) used MEG imaging to investigate the
role of gamma oscillations during unconscious learning. They used a paradigm in
which subjects were to find the letter “T” within a set of distractors and determine
its orientation. On some trials, which they called “predictive,” the distractors were
repeated and the location of the “T” remained the same. On other trials, which they
called “nonpredictive,” the distractors changed configurations and the location of the
“T” changed. The subjects were shown many blocks containing 12 trials of each type.
Although they remained unaware of the information provided by the configuration
type, their reaction time decreased faster across blocks for the predictive trials than
for the nonpredictive trials. The authors were interested in whether this unconscious
learning was associated with changes in gamma band activity recorded with MEG.

�

Example 18.2 fMRI BOLD signal and neural activity To investigate the neural
basis of the fMRI BOLD signal, Logothetis et al. (2001) recorded local field potential
(LFP) and multi-unit activity (MUA) together with fMRI from a region in primary
visual cortex across 29 experimental sessions using 10 macaque monkeys. The stim-
ulus involved rotating checkerboard patterns. In examining the relationship between
LFP and BOLD, the authors focused on gamma band activity from 40 to 130 Hz. �

We now introduce another example, which we will use repeatedly in several parts of
this chapter to demonstrate analytical techniques.



18.2 Time Domain and Frequency Domain 519

Time (Hours)

Te
m

pe
ra

tu
re

 (
°C

)

0 24 48 72 96

37
37

.5
38

Fig. 18.2 Core temperature on a human subject, recordings taken every 20 min; y-axis in units of
degrees Celsius (data shown with a solid line). Overlaid on the data is the least-squares fit of a
cosine (shown with a dashed line), having a period of 24 h (hours).

Example 18.3 The circadian rhythm in core temperature Human physiology,
like that of other organisms, has adapted to the cycle of changing environmental
conditions, and resulting levels of activity, across each day and night. The result
is a clear day/night pattern in hormone levels in the blood, and other indicators
of the body’s attempt to maintain homeostasis. In a study of methodology used to
characterize circadian rhythms, Greenhouse et al. (1987) analyzed core temperatures
of a human subject measured every 20 min across several days. Figure 18.2 displays
the data. There is an obvious daily cycle in the temperatures. Figure 18.2 also shows
a cosine curve, with a 24 h period, that has been fitted to the data using ordinary
least-squares regression. �

The cosine curve in Fig. 18.2 was obtained by applying linear regression. We dis-
cussed fitting a cosine curve previously, in Example 12.6, in the context of directional
tuning. Here, we begin with a cosine function cos(2πω1t), where ω1 is the frequency
(in cycles per unit time), then introduce an amplitude Ramp, an offset average value
μavg, and a phase φ to put it in the functional form

f (t) = μavg + Ramp cos(2π(ω1t − φ)). (18.5)

Details: The function Ramp cos(2πω1t) varies between a minimum
of −Ramp and a maximum of Ramp, and its average on [0, 1] is 0.
Adding the constant μavg makes the cosine oscillate around μavg with
minimum μavg − Ramp and maximum μavg + Ramp. It is also worth
mentioning that the regression in Example 12.6 was set up slightly
differently because the explanatory variable of interest was not time
but rather the angle θ = 2π(ωt − φ). �
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Based on (18.5) the statistical model for observations y1, . . . , yn at time points
t1, . . . , tn is then

Yi = μavg + Ramp cos(2π(ω1ti − φ)) + εi

where, for the core temperature data, ω1 = 1/72 cycles per 20 min is the frequency
corresponding to 1 cycle per day (a 24 h period). To simplify fitting, this model may
be converted to a linear form, i.e., a form that is linear in the unknown parameters.
Using

cos(u − v) = cos u cos v + sin u sin v (18.6)

with u = 2πω1ti and v = 2πφ we have

Ramp cos(2π(ω1ti − φ)) = A cos(2πω1ti) + B sin(2πω1ti) (18.7)

where A = Ramp cos(2πφ) and B = Ramp sin(2πφ). We may therefore rewrite the
statistical model as

Yi = μavg + A cos(2πω1ti) + B sin(2πω1ti) + εi, (18.8)

which has the form of a linear regression model, and may be fitted using ordinary
linear regression. Specifically, we do the following:

1. Assume the data (t1, . . . , tn) and (y1, . . . , yn) are in respective variables time
and temp.

2. Define

cosine = cos(2πtime/72)

sine = sin(2πtime/72).

3. Regress temp on cosine and sine.

For future reference we note that the squared amplitude of the cosine function in
(18.7) is

R2
amp = A2 + B2 (18.9)

and the phase is

φ = 1

2π
arctan(

B

A
). (18.10)

In the core temperature data of Example 18.3 there is a clear, dominant periodicity,
which is easily described by a cosine function using linear regression. We may do
a bit better if we allow the fitted curve to flatten out a little, compared to the cosine
function. This is accomplished by introducing a second frequency, ω2 = 2ω1 to
produce the model
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Fig. 18.3 Plot of core temperature, as in Fig. 18.2, together with fit of (18.8), shown in the black
dashed line, using the fundamental frequency ω1 = 1/72 (one oscillation every 72 data points, i.e.,
every 24 h ), and fit of (18.11), shown in red dashed line. The latter improves the fit somewhat in
the peaks and troughs.

Yi = μavg + A1 cos(2πω1ti) + B1 sin(2πω1ti)

+ A2 cos(2πω2ti) + B2 sin(2πω2ti) + εi. (18.11)

Example 18.3 (continued from p. 519) Least-squares regression using model
(18.11) yields a highly significant effect for the second cosine–sine pair (p < 10−6)
and Fig. 18.3 displays a modest improvement in fit. �
Model (18.8) was modified in (18.11) by introducing the additiona1 cosine–sine pair
corresponding to the frequency ω2. In principle this process could be continued by
introducing frequencies of the form ωk = kω1 for k = 3, 4, . . .. Here, ω1 is called
the fundamental frequency, the additional frequencies ωk are harmonic frequencies,
and the resulting regression model is often called harmonic regression. For the core
temperature data it turns out that k = 2 is a satisfactory choice (see Greenhouse
et al. 1987) but, in general, one might use linear regression to fit many harmonics
and ask how much variation in the data is explained by each cosine–sine pair. For
this purpose one might use contributions to R2, which is the germ of the idea behind
one of the main topics in time series, spectral analysis. Spectral analysis can be a
very effective way to describe wave-like behavior, as seen in the EEG signals of
Example 2.2.



522 18 Time Series

18.2.1 Fourier analysis is one of the great achievements
of mathematical science.

Spectral analysis, otherwise known as Fourier analysis,1 decomposes an oscillatory
signal into trigonometric components. Because many physical phenomena may be
described by applying this technique (and it is at the heart of quantum mechanics),
the physicist Richard Feynman called2 the ability to create such decompositions
“probably the most far-reaching principle in mathematical physics.” From a practical
point of view, our world has been changed dramatically by applications of Fourier
analysis.

The argument may be broken into several steps.

1. The signal may be represented by a smoothly varying function f (t), for values of
t (usually thought of as time) in a suitable interval [a, b], which, for convenience,
we may take3 to be [0, 1].

2. If we pick n values of t spaced evenly across the interval, say, t1, t2, . . . , tn, then
f (t) may be determined to a close approximation by its values at these points, i.e.,
by f (t1), f (t2), . . . , f (tn), for sufficiently large n. That is, if f (t) varies smoothly
then, for practical purposes, interpolation will suffice to reproduce it from its
values f (t1), f (t2), . . . , f (tn).

3. The cosine and sine functions cos(2πt) and sin(2πt) are periodic, completing a
single cycle on [0, 1], and thus having frequency 1 (per unit time). This is the fun-
damental frequency and the corresponding harmonic frequencies are 2, 3, 4, . . ..
The cosine and sine functions at harmonic frequencies may be considered prim-
itive functions—meaning building blocks of other functions—on [0, 1]. When
we evaluate a sufficiently large number of primitive functions at t1, t2, . . . , tn,
and take linear combinations of them, we are able to reproduce f (t) at the val-
ues t1, t2, . . . , tn, which, according to step 2, suffices for reconstructing f (t)
throughout [0, 1]. That is, we can decompose f (t) into harmonic trigonomet-
ric components. This has the potential to provide the appealing interpretation
that f (t) is “made up” of particular harmonic components in particular amounts,
according to the linear combinations.

4. In order to have this interpretation make sense, the “particular amount” of each
component given by the decomposition in step 3 must not depend on the number
of components being considered, for that would make the interpretation self-
contradictory. In non-orthogonal decompositions the amount, or weight, given to
a particular component does depend on the other components being considered,
but for orthogonal decompositions it does not. (See the discussion in Chapter 12,

1 The term “spectral analysis” sometimes connotes statistical analysis, rather than purely mathe-
matical analysis, but for now we are ignoring any noise considerations.
2 Feynman et al. (1963 Volume I, p. 49–1).
3 The argument we sketch here makes the most sense for functions that are periodic on [0, 1], mean-
ing that they satisfy f (0) = f (1). In Section 18.3.6 we discuss what happens when this condition
fails to hold.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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p. 351.) Harmonic trigonometric functions are orthogonal, so the interpretation
is internally consistent.

These steps all involved major conceptual breakthroughs for mathematics.4 Taken
together they suggest that a signal represented by a smoothly varying function f (t)
may be decomposed into cosine and sine harmonic components. This is what Fourier
analysis accomplishes.

To be a little more specific, suppose that f (t) is a function on the interval [0, 1]
and let us consider time points tj = j

n for j = 1, 2, . . . , n where, for simplicity, we
assume n is odd so that (n − 1)/2 is an integer. If we evaluate f (t) at the time points
tj we get an n-dimensional vector

y = (f (t1), f (t2), . . . , f (tn))
T . (18.12)

Now define the harmonic trigonometric functions fk(t) = cos(2πkt) and gk(t) =
sin(2πkt), for k = 1, 2, . . . , (n−1)/2. By evaluating these functions at t1, t2, . . . , tn
we form vectors fk = (fk(t1), fk(t2), . . . , fk(tn))T and gk = (gk(t1), gk(t2), . . . , gk
(tn))T and, it turns out, the collection of vectors

1vec, f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2

are orthogonal, where 1vec = (1, 1, . . . , 1)T . (This follows from straightforward
algebraic manipulation, together with properties of sines and cosines, see Bloomfield
2000). They therefore form an orthogonal basis for Rn (see Section A.9), which means
that any vector y, such as in (18.12), may be written in the form

y = μavg1vec + A1f1 + · · · + A(n−1)/2f(n−1)/2

+ B1g1 + · · · + B(n−1)/2g(n−1)/2. (18.13)

If we define

pn(t) = μavg + A1f1(t) + · · · + A(n−1)/2f(n−1)/2(t)

+ B1g1(t) + · · · + B(n−1)/2g(n−1)/2(t) (18.14)

4 The first requires the notion of function, which emerged roughly in the 1700s, especially in the work
of Euler (the notation f (x) apparently being introduced in 1735). The second may be considered
intuitively obvious, but a detailed rigorous understanding of the situation did not come until the
1800s, particularly in the work of Cauchy (represented by a publication in 1821) and Weierstrass (in
1872). The notion of harmonics was one of the greatest discoveries of antiquity, and is associated
with Pythagoras. The third and fourth steps emerged in work by D’Alembert in the mid-1700s, and
by Fourier in 1807. Along the way, representations using complex numbers were used by Euler (his
famous formula, given below, appeared in 1748), but they were considered quite mysterious until
their geometric interpretation was given by Wessel, Argand, and Gauss, the latter in an influential
1832 exposition. A complete understanding of basic Fourier analysis was achieved by the early
1900s with the development of the Lebesgue integral. Recommended general discussions may be
found in Courant and Robbins (1996), Lanczos (1966), and Hawkins (2001).
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then we have
f (t) = pn(t) (18.15)

for t = tj for j = 1, . . . , n and, by interpolation we get the approximation

f (t) ≈ pn(t), (18.16)

for all t ∈ [0, 1], which may be considered a decomposition of f (t) into trigonometric
components based on the n data values f (t1), f (t2), . . . , f (tn). The constants
μavg, A1, . . . , Ak, B1, . . . , Bk are called the Fourier coefficients of f (t). By analogy
with the approximate representation of functions by polynomials, the expression
pn(t) in (18.14) is often called a trigonometric polynomial. With reference to (18.7),
we may say that Akfk and Bkgk together determine the component of f (t) having
frequency k.

We now consider the magnitude of y. Using the orthogonality of the component
vectors, Eq. (18.13) gives

||y||2 = ||μavg1vec||2 + ||A1f1||2 + · · · + ||A(n−1)/2f(n−1)/2||2
+ ||B1g1||2 + · · · + ||B(n−1)/2g(n−1)/2||2

and re-writing this we get

||y||2 = ||μavg1vec||2 +
(n−1)/2∑

k=1

||Akfk||2 + ||Bkgk ||2. (18.17)

Equation (18.17) decomposes the squared magnitude of y into magnitudes corre-
sponding to its trigonometric components. Using (18.15) we say that any vector of
function evaluations may be written in terms of the trigonometric basis vectors, and
its squared length is equal to the sum of squares of its trigonometric components.
From (18.16) we see that an analogous statement should hold for functions on [0,1].

We can also use (18.17) to give a nice interpretation of the Fourier decomposition
in terms of least-squares regression. We begin by considering (18.13) to be a noiseless
regression equation. If we regress y on the variables f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2
we obtain the coefficients A1, B1, . . . , A(n−1)/2, B(n−1)/2. Furthermore, because the
trigonometric vectors are orthogonal, the coefficient found by regressing y on all the
variables f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2 is the same as the coefficient of fk (or gk)
in the regression of y on fk (or gk) alone. Thus, it makes sense to say that Akfk and
Bkgk together uniquely represent the component of y corresponding to frequency
k. Because (18.13) provides an exact fit of y, if we regress y on all the variables
f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2 we get R2 = 1. The regression of y on 1vec gives
μavg = ȳ and μavg1vec = ȳ1vec has squared length nȳ2 so that (18.17) may be
rewritten in terms of the total sum of squares
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||y||2 − nȳ2 =
(n−1)/2∑

k=1

||Akfk ||2 + ||Bkgk ||2

and, dividing both sides by ||y||2 − nȳ2 while using R2 = 1 we get

R2 =
(n−1)/2∑

k=1

R2
k , (18.18)

where

R2
k = ||Akfk||2 + ||Bkgk ||2

||y||2 − nȳ2 , (18.19)

which is the proportion of variation in y, and therefore f (t), at frequency k. In
other words, this trigonometric representation, using sines and cosines at harmonic
frequencies, has the wonderful property that it decomposes the variability of the
function f (t) into frequency-based components, the magnitudes of which add to
the total variation in f (t). The decomposition (18.18) into components (18.19) is
the starting point for spectral analysis.

18.2.2 The periodogram is both a scaled representation
of contributions to R2 from harmonic regression
and a scaled power function associated with the discrete
Fourier transform of a data set.

We now apply to data x1, x2, . . . , xn the spectral analysis decomposition discussed in
Section 18.2.1. We write y = (x1, x2, . . . , xn) and use (18.13). We may get a rough
idea of the relative contributions to the variability in the data due to the harmonic
frequency components simply by plotting R2

k , defined in Eq. (18.19), against the
frequency k. A scaled plot of R2

k against frequency is known as the periodogram,
with the precise definition appearing in Eq. (18.25). The periodogram, together with
some important modifications of it, is enormously useful in practice.

Example 18.3 (continued from 521) The periodogram for the core temperature
data (introduced on p. 519) is shown in Fig. 18.4. Note the dominant contribution to
R2 corresponding to the roughly daily cycle. �
The coefficients Ak and Bk in (18.13) and (18.19) turn out to be
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Fig. 18.4 Periodogram of core body temperature data. There is a peak at the frequency representing,
very nearly, daily oscillation and this peak is much higher than the remainder of the periodogram.

μavg = 1

n

n∑

j=1

xj

Ak = 2

n

n∑

j=1

xj cos(2kπj/n) (18.20)

Bk = 2

n

n∑

j=1

xj sin(2kπj/n) (18.21)

for k = 1, . . . , (n −1)/2. Because the cosine and sine terms always occur in pairs, it
is often simpler to represent expressions (18.20) and (18.21) instead in exponential
form via Euler’s formula,

eiθ = cos θ + i sin θ, (18.22)

which is also Eq. (A.31) in the Appendix. This formula is extremely helpful in
Fourier analysis. On the one hand, it provides a kind of “book-keeping” of cosine
and sine terms within a complex exponential while, on the other hand, it simplifies
many manipulations because multiplication becomes addition of exponents. Apply-
ing Euler’s formula (18.22), we have

n∑

j=1

xj cos(2kπj/n) + i
n∑

j=1

xj sin(2kπj/n) =
n∑

j=1

xje
2kπij/n

and then (18.20) and (18.21) may be replaced with
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Ak + iBk = 2

n

n∑

j=1

xje
2πikj/n

for k = 1, . . . , (n − 1)/2. By convention the equivalent form

Ak − iBk = 2

n

n∑

j=1

xje
−2πikj/n (18.23)

for k = 1, . . . , (n − 1)/2, is used instead. Aside from the multiplier, the right-hand
side of (18.23) is the discrete Fourier transform. Specifically, for a data sequence
x1, . . . , xn, we let

ωj = j/n

denote frequency, for j = 0, . . . , n − 1. Then the discrete Fourier transform (DFT)
is given by

d(ωj) = 1√
n

n∑

t=1

xte
−2πiωj t (18.24)

and the periodogram is
I(ωj) = |d(ωj)|2. (18.25)

Here we are interested only in the first (n − 1)/2 frequencies (if n is odd; otherwise,

the first n/2 frequencies). From (18.23) we have d(ωj) =
√

n
2 (Aj − iBj), and because

||Aj + iBj||2 = A2
j + B2

j , we get

|d(ωj)|2 = n

4
(A2

j + B2
j ).

According to the definition in Eq. (18.19), A2
j + B2

j is proportional to R2
j (meaning

that the constant multiple does not depend on j) and so we arrive at

I(ωj) ∝ R2
j ,

which justifies the interpretation of the periodogram we gave on p. 525. Algorithms
for computing the DFT are based on the fast Fourier transform, which had a huge
impact on signal processing following a 1965 publication of the method by James
Cooley and John Tukey. The DFT also has an interpretation using the terminol-
ogy of signal processing. If we return to the interpretation of x1, . . . , xn as func-
tion values f (t1), . . . , f (tn) as in Eq. (18.16), then ||y||2 = ||(f (t1), . . . , f (tn))||2 is
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(approximately, by (18.16)), the power of the function f (t) on [0, 1] and I(ωj) is
(approximately5) proportional to the power of f (t) at frequency ωj.

Unfortunately, in spectral analysis, the various notational conventions that get
invoked are not consistent across authors. In particular, we have introduced the
Fourier frequencies ωj = j/n for j = 0, 1, . . . , n − 1. Because we divided the
harmonic integers by n, the Fourier frequencies are restricted to the interval [0, 1]. In
fact, because we use only the first (n − 1)/2 frequencies (if n is odd and the first n/2
frequencies if n is even) they are restricted to [0, 1

2 ]. In some texts j = 1, . . . , n is
used. Furthermore, the multiplier of the complex exponential sum we used in (18.24)
to define the DFT is also not universal. For some purposes one must pay attention to
the definitions being used by a particular book or piece of software.

It is also important to notice that the Fourier frequencies we have defined on [0, 1]
(or [0, 1

2 ]) have units of cycles per observation. If the units of time (such as seconds)
involve m observations (such as m observations per second) then mωj will be in
cycles per unit time. See the legend to Fig. 18.6.

With some additional mathematics, these concepts carry over to infinite-
dimensional vector spaces with inner products. The infinite-dimensional
representation is analogous: periodic functions (actually, square-integrable periodic
functions) form a vector space for which the harmonic trigonometric functions pro-
vide an orthogonal basis. The resulting infinite-dimensional harmonic trigonometric
expansion is called a Fourier expansion, and the coefficients are the Fourier coef-
ficients.6 In mathematics, Fourier analysis concerns infinite-dimensional function
spaces, but in statistics and engineering these terms are also applied, as here, to the
finite-dimensional setting involving data.

The DFT and its inverse are finite versions of the usual Fourier transform and its
inverse, which is used extensively in mathematical analysis and signal processing,
including theoretical studies of stationary time series. We discuss stationary time
series in Section 18.3.1. We also discuss, in the remainder of Section 18.3, several
practical issues that arise when using and interpreting the periodogram. We have
already mentioned one of these in our discussion of Example 15.2.

Example 15.2 (continued from p. 421) Fig. 18.5 displays the log periodogram for
the first second of average LFP, which was plotted previously in the top portion of
Fig. 18.1. In Section 18.3.6 we explain why the log transform is used. The point, for
now, is that the periodogram does not have a peak corresponding to delta range or
other frequencies. This is quite common in series that have slowly varying trends.
In contrast, after we remove the trends seen in Fig. 18.1 from the two series (by
subtraction, so that the residuals are analyzed instead) the peaks of interest become
visible, as seen in Fig. 18.6. �

5 The approximation becomes exact when f (t) is periodic, f (t)2 has a finite integral, and the
expansion involves all of the infinitely many harmonics.
6 With appropriate mathematics (especially the theory of Lebesgue integration) it may be shown
that every square-integrable function on [0,1] may be represented, equivalently, by its set of Fourier
coefficients, and its integrated squared magnitude is equal to the sum of squares of the coefficients.
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Fig. 18.5 Log periodogram for the first second of average LFP data in Example 15.2.
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Fig. 18.6 Periodograms and smoothed periodograms from LFP detrended series. Top First second
of average LFP. Bottom Last second of average LFP. Notice that the frequency units are cycles per
observation. To get cycles per second (Hz) we must multiply by the number of observations per
second, which is 1,000. Thus, the first peak of power in these plots is centered roughly at .005,
which corresponds to 5 Hz.

The contrast between Figs. 18.5 and 18.6 illustrates the importance of checking
time series for slowly-varying trends, and removing them from the data before per-
forming spectral analysis. This is often called detrending the series.
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18.2.3 Autoregressive models may be fitted by lagged regression.

As we have indicated, time series are special among kinds of data because of their
serial dependence, e.g., the value of Xt is likely to depend on the value of Xt−1. The
simplest form of dependence is linear dependence, as in the autoregressive model
given by

Xt = φXt−1 + εt .

This says that Xt has a regression on Xt−1, and otherwise is determined by noise. For
consistency with later notation let us write the noise variables as7 Wt :

Xt = φXt−1 + Wt . (18.26)

The natural generalization,

Xt =
p∑

i=1

φiXt−i + Wt, (18.27)

is called an autoregressive model of order p, written AR(p). The Wt variables are
usually assumed to be i.i.d. N(0,σ2). Model (18.26) then becomes the standard
AR(1) model. The parameter φ in (18.26) is usually assumed to satisfy |φ| < 1,
and analogous, but more complicated constraints are assumed for the parameters in
(18.27).

Some details: It may be shown that the case of (18.26) with φ = 1,
known as a random walk model (confer p. 126), is non-stationary. This
makes it unsuitable for most auto-regressive modeling methodology.
φ = −1 is also non-stationary. The case |φ| > 1 is somewhat more
subtle, and it turns out to be non-causal in the sense that Xt depends
on Wt+i for i > 0. The condition |φ| < 1 restricts the AR(1) so that
it is neither non-stationary nor non-causal. Additional explanation is
provided in time series texts such as Shumway and Stoffer (2006).

�
Because the AR(p) model (18.27) has the form of an ordinary linear regression model,
we may apply it to data x = (x1, . . . , xn) using ordinary least squares regression after
first defining suitable lagged variables. In the simplest case, with p = 1, we begin
by defining a pair of variables y and xB1, each of length n − 1:

7 W is often used to represent time series noise out of deference to Norbert Wiener, a major figure
in the development of time series theory.
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y =

⎛

⎜⎜⎜⎝

y1
y2
...

yn−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

x2
x3
...

xn

⎞

⎟⎟⎟⎠

xB1 =

⎛

⎜⎜⎜⎝

xB1,1
xB1,2

...

xB1,n−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

x1
x2
...

xn−1

⎞

⎟⎟⎟⎠ .

We use the subscript B1 for “back 1” because xB1,t = yt−1 (xB1 “lags” behind y
and is often called the lag-1 version of y). We then fit the AR(1) model (18.26)
by performing least-squares regression of y on xB1, without using an intercept. The
resulting regression coefficient becomes the estimate φ̂ of the AR(1) parameter φ.

More generally, to fit an AR(p) model using ordinary least squares we begin by
defining yn−p = xn, yn−p−1 = xn−1, . . . , y1 = xn−p+1 and then also defining xB1 to
be the lag-1 version of y, xB2 to be the analogous lag-2 version of y, etc., until we
reach xBp. We then regress y on the variables xB1, xB2, . . . , xBp.

It is often unclear what order p should be used in the AR(p) model. Sometimes
the model selection criteria AIC or BIC are used (see Section 11.1.6). One simple
idea is to pick a relatively large value of p, perform the regression, and examine the
coefficients from first to last to see when they become non-significant. A similar idea
is to use the sample autocorrelation function (ACF), which was defined in (18.4),
and the partial autocorrelation function (PACF). Under fairly general conditions, if
X1, . . . , Xn are i.i.d. with finite variance, and the sample ACF is computed for the
random variables Xt , then √

nρ̂(h)
D→ N(0, 1).

Based on this result, the sample ACF is usually plotted together with horizontal
lines drawn at ±2/

√
n. If the series were i.i.d., then roughly 95 % of the sample

autocorrelation coefficients would fall between theses lines. The ACF coefficients
outside these lines are considered significant, with p < .05, approximately, for large
n. This is illustrated for Example 18.3 below.

A difficulty with the sample ACF plot, however, is that it is based on the indi-
vidual correlations of each lagged variable with the original data. That is, its results
come from many single-variable regressions, of y on xBk for various values of k. A
significant regression of y on xB2, for example, could be based on the correlation
between xB1 and xB2 and may reflect a relationship between y and xB1. An alternative
is to perform the multiple linear regression of y on both xB1 and xB2 and examine
whether the coefficient of xB2 is significant, which assesses the explanatory power of
xB2 after including xB1 in the model. The sample PACF at lag h is the sample partial
correlation, defined by (5.22), between the time series and itself at lag-h given the
lag-1 through lag-h−1 series. The lag-h partial autocorrelation coefficient measures

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the lag-h correlation after adjusting for the effects of lags 1 through h − 1, adjusting
as in multiple linear regression. It may be computed as the normalized lag-h regres-
sion coefficient found from an AR(h) model, normalized by dividing the series by
the sample variance γ̂(0).

A detail: Suppose Xt is a mean-zero stationary Gaussian series. Then
the theoretical PACF is given by φ11 = Cor(Xt, Xt+1) and for h ≥ 2,

φhh = Cor(Xt, Xt+h|Xt+1, Xt+2, . . . , Xt+h−1).

More generally, for any mean-zero stationary series let Xh−1
t =∑h−1

j=1 βjXt−j where the coefficients β1, . . . ,βh−1 minimize E((Xt −
∑h−1

j=1 αjXt−j)
2) over the αjs. Then, for h ≥ 2,

φhh = Cor(Xt − Xh−1
t , Xt+h − Xh−1

t+h ). �

Once again, using large-sample theory, horizontal lines may be drawn on the
sample PACF to indicate where the coefficients stop being significant. The sample
PACF is often used to choose the order of the autoregressive model.

Example 18.3 (continued from p. 525) Let us consider an AR(p) model for the core
temperature residuals following the cosine regression reported on p. 519, and then
detrending (using BARS, see Section 15.2.6). We take p = 22. The fitted coefficients
are plotted in Fig. 18.7. Here is an abbreviated table of coefficients:

Variable Coefficient Std. Err. t-ratio p-value

xB1 .906 .057 15.9 < 10−15

xB2 −.205 .077 −2.7 .008
xB3 −.147 .078 −1.9 .06
xB4 .005 .078 .1 .95
xB5 −0.154 .078 −1.9 .05
xB6 .115 .078 .9 .35
. . .

xB21 −.031 .076 −.4 .69
xB22 .011 .057 −.2 .84

Only the first two lagged variables have large t statistics, so it appears that only
the first two lagged variables are likely to be helpful in predicting the response
variable. Also shown in Fig. 18.7 is the sample ACF, together with horizontal lines
drawn at ±2/

√
n. The PACF in Fig. 18.7 has nonzero lag-1 and lag-2 coefficients, but

the remaining coefficients are not distinctly different from zero relative to statistical
uncertainty. Using an AR(2) fit to the residuals added to the fitted 24 h cycle produces
the overall fit to the temperature data shown in Fig. 18.8. �
In general, autoregressive models may be fit by maximum likelihood. We now connect
ML estimation with lagged least-squares regression (p. 531), by writing down the

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 18.7 Autoregressive model of order p = 22 for core temperature residuals. Top
Coefficients φ̂i as a function of lag i. Middle The sample autocorrelation function. Bottom The
sample partial autocorrelation function.

likelihood function for the AR(1) model, assuming Xt is Gaussian with mean zero
and |φ| < 1. We have X1 ∼ N(0,σ2

1) where

σ2
1 = σ2

W/(1 − φ2). (18.28)

We also have Xt |Xt−1 = xt−1 ∼ N(φxt−1,σ
2
W ) for t = 2, . . . , n. The joint pdf is

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2|X1(x2|X1 = x1) · · · fXn|Xn−1(xn|Xn−1 = xn−1)

= 1

σ1
fZ(

x1

σ1
)

n∏

t=2

1

σW
fZ(

xt − φxt−1

σW
)

where fZ(z) is the N(0, 1) pdf. The factors in the product above may be written

1

σW
fZ(

xt − φxt−1

σW
) = 1√

2πσW
exp(− (xt − φxt−1)

2

2σ2
W

)

= 1√
2πσW

exp(− (yt−1 − φxB1,t−1)
2

2σ2
W

).



534 18 Time Series

Time (Hours)

Time (Hours)

0 24 48 72 96

0 24 48 72 96

37
37

.5
38

37
37

.5
38

T
em

pe
ra

tu
re

 (
°C

)
T

em
pe

ra
tu

re
 (

°C
)

Fig. 18.8 Core temperature data together with fit. Top plot of temperature data. Bottom Plot of
temperature data together with fit (in red) based on the sum of an AR(2) fit to residuals and the fitted
24 h cycle.

This final form of each factor is the same as would appear in the likelihood for
the regression of y on xB1, with no intercept. Thus, if we ignore x1, maximizing
the likelihood L(φ,σW ) amounts to solving the ordinary least-squares problem in
the regression of y on xB1. This maximization is called conditional maximum likeli-
hood because we act as if the distribution of X1 is given, i.e., it involves no unknown
parameters. Because σ1 in (18.28) is a function of φ and σW , when we include the
factor due to X1, which is fZ(x1/σ1)/σ1, the maximization problem changes and it
is no longer solvable by least squares. Thus, the MLE must be found by an iterative
method, but it is likely to be very close to the conditional MLE. Similar considerations
hold also for AR(p) models: the likelihood is nonlinear in the autoregressive parame-
ters, but if we condition on the first p values then ML estimation reduces to ordinary
least squares lagged regression. Statistical software for fitting autoregressive models
typically either uses ML estimation, or a method that is very nearly equivalent. (The
Kalman filter, described in Section 16.2.5, is sometimes used to obtain ML estimates
in time series models.) For large samples, the fitted coefficients are essentially the
same as those obtained using lagged regression.

The fit to the core temperature data in the bottom panel of Fig. 18.8 combines the
fitted 24 h cycle and the AR(2) fit to the residuals. This is an example of regression

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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with time series errors. As mentioned on p. 346, a general approach to regression
with time series errors may be based on weighted least squares. Specifically, the
model (12.64) may be used with the variance matrix R defined by the AR(p) process
and a fit, together with confidence intervals and significance tests, may be obtained8

from the following steps:

1. Fit the regression variables X to the response variable Y using ordinary least
squares;

2. Fit an AR(p) model to the residuals from step 1;
3. Re-fit the regression variables X to the response variable Y using weighted least

squares (see p. 345), based on the estimated R matrix found from the fitted
auto-regressive model in step 2.

In practice, steps 1-3 may be adequate but, in addition, steps 2 and 3 could be iterated,
or ML estimation could be applied once the AR(p) model is determined in Step 2
(e.g., Greenhouse et al. 1987). Statistical software for regression with time series
errors is usually based on ML estimation.

18.3 The Periodogram for Stationary Processes

18.3.1 The periodogram may be considered an estimate
of the spectral density function.

The DFT is relatively easy to use without thinking about its continuous analogue.
However, to understand the way the DFT behaves, and to derive statistical assess-
ments of uncertainty, we must consider the analogous object defined for a theoretical
stationary time series {Xt; t ∈ Z}.

Assume σ2
t = V(Xt) < ∞ and let μt = E(Xt). Recall that the autocovariance

function is given by

γ(h) = E((Xt − μt)(Xt+h − μt+h)).

Under the summability condition

∞∑

h=−∞
|γ(h)| < ∞ (18.29)

general results give the existence of a spectral density function f (ω) for which

8 The fit in Fig. 18.8 avoided step 3, and would not change very much if step 3 were included, but
the statistical inferences involving confidence intervals and significance tests do require step 3.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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γ(h) =
∫ 1

2

− 1
2

e2πiωhf (ω)dω (18.30)

and

f (ω) =
∞∑

h=−∞
γ(h)e−2πiωh. (18.31)

From (18.31) it follows immediately that the spectral density is positive, f (ω) =
f (−ω), f (ω) is periodic with period 1, and

γ(0) =
∫ 1

2

− 1
2

f (ω)dω. (18.32)

Equation (18.32) says that the total variability V(Xt) is the integral of the spectral
density function. This is a continuous analogue of the discrete decomposition (18.18).

Note that (18.29) rules out pure sinusoids. Signals that have purely periodic (com-
posite sinusoidal) components have “mixed” spectra consisting of “line spectra”
representing the pure sinusoids and spectral densities representing everything else.

Returning to the periodogram, defined in Equation (18.25), some manipulations
(which we omit) show that it may be written in the form

I(ωj) =
n−1∑

h=−(n−1)

γ̂(h)e−2πiωjh (18.33)

where γ̂(h) is the sample autocovariance function defined in (18.3). Comparing
(18.33) with (18.31), we see that the periodogram may be considered an estimator of
the spectral density. In addition, using γ̂(−h) = γ̂(h), Equation (18.33) shows that
the periodogram is proportional to the DFT of the sample covariance function.

Further manipulations show that the periodogram may also be written as

I(ωj) = 1

n

n−1∑

h=−(n−1)

n−|h|∑

t=1

(xt+|h| − μ)(xt − μ)e−2πiωjh

for j �= 0 and if we replace xt and xt+|h| with their theoretical counterparts Xt and
Xt+|h|, and then take the expectation, we get

E(I(ωj)) =
n−1∑

h=−(n−1)

(
n − |h|

n

)
γ(h)e−2πiωjh.
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Let us consider what happens9 when ωj → ω as n → ∞. Assuming the summability
condition (18.29) holds we get

E(I(ωjn)) →
∞∑

h=−∞
γ(h)e−2πiωh,

that is,
E(I(ωjn)) → f (ω). (18.34)

This result forms a connection between the data-based periodogram and the the-
oretical spectral density: when the periodogram is considered an estimator of the
spectral density, for large samples it is approximately unbiased. However, as we will
see in Section 18.3.3, the periodogram only becomes a reasonable estimator after
smoothing is applied.

18.3.2 For large samples, the periodogram ordinates computed
from a stationary time series are approximately independent
of one another and chi-squared distributed.

In Section 18.3.1 we showed that the periodogram may be considered an estimator
of the spectral density function, but we ended with the remark that it only becomes
reasonable after smoothing. We develop this important observation in Section 18.3.3.
Here we first review some basic results on the large-sample distribution of the DFT
and periodogram. These allow us to get confidence intervals for quantities based on
the periodogram, including smoothed periodograms.

The starting point is to imbed the data x1, . . . , xt in a hypothetical infinite sequence
of random variables Xt , where t is taken to run through all integers, including nega-
tive integers. The assumptions needed for the distributional results are (1) the time
series {Xt} is stationary; (2) for sufficiently large h, the variables {Xt, t < t0} are
nearly independent of the variables {Xt, t > t0 + h} (for any, and therefore—under
stationarity—every, t0); and (3) the spectral density f (ω) exists. These conditions
allow application of the Central Limit Theorem(CLT) to the sum that defines the
DFT. We are being deliberately vague in the statement of (2). For technical discus-
sion see Lahiri (2003a).

To get asymptotic variances and covariances, and the asymptotic distribution of
the periodogram, let us replace xt by Xt in (18.20) and (18.21) and consider the
large-sample distribution of the coefficients

9 To get a sequence of Fourier frequencies ωj that converge to ω, define ωjn = jn/n with jn a
sequence of integers for which jn/n → ω.
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Ak = 2

n

n∑

j=1

Xj cos(2kπj/n)

Bk = 2

n

n∑

j=1

Xj sin(2kπj/n).

To simplify a little, let us write

dc(ωk) = 1√
n

n∑

j=1

Xj cos(2kπj/n)

ds(ωk) = 1√
n

n∑

j=1

Xj sin(2kπj/n).

We assume that the expectation of Xt is zero (if not, we can subtract E(Xt) from each
variable). By the CLT, dc(ωj) and ds(ωj) are approximately normally distributed. In
addition, we have E(dc(ωk)) = E(ds(ωk)) = 0 and, it turns out, for the large-sample
variances we have

V(dc(ωk)) ≈ 1

2
f (ωk) (18.35)

V(ds(ωk)) ≈ 1

2
f (ωk) (18.36)

while the covariances are approximately zero: for j �= k,

Cov(dc(ωj), dc(ωk)) ≈ 0 (18.37)

Cov(ds(ωj), ds(ωk)) ≈ 0 (18.38)

and for all j, k,
Cov(dc(ωj), ds(ωk)) ≈ 0. (18.39)

The asymptotic independence in (18.37)–(18.39) greatly simplifies statistical infer-
ence based on the DFT.

The periodogram is related to dc(ωk) and ds(ωk) by

I(ωk) = dc(ωk)
2 + ds(ωk)

2.

From the CLT together with (18.35) and (18.36), we have
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√
2

f (ωk)
dc(ωk)

D→ N(0, 1)

√
2

f (ωk)
ds(ωk)

D→ N(0, 1).

By (18.39) these two random variables are approximately independent. Recalling
that if Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1), independently, then Z2

1 + Z2
2 ∼ χ2

2 we
therefore have

2I(ωk)

f (ωk)
is approximately χ2

2 (18.40)

which we may also write as

I(ωk) is approximately
f (ωk)

2
χ2

2.

Furthermore, from (18.37)–(18.39), we have that I(ωj) and I(ωk) are approximately
independent for j �= k.

The limiting distribution in (18.40) is a beautifully convenient result, making it rel-
atively easy to get confidence intervals for quantities derived from the periodogram.
We describe the methods in Section 18.4.1.

18.3.3 Consistent estimators of the spectral density function result
from smoothing the periodogram.

As we discussed in Chapter 8, in large samples the distribution of an estimator T
should become concentrated near the quantity θ it is estimating. While (18.40) gives
a nice way to assess uncertainty about the periodogram, it also shows that the large-
sample distribution of the periodogram does not become concentrated around the
spectral density: its variance does not decrease with the sample size. In statistical
parlance, the periodogram is not a consistent estimator. However, under conditions
analogous to those used for consistency of linear smoothers in nonparametric regres-
sion, as discussed in Section 15.3.3, smoothed versions of the periodogram will be
consistent. This is strong theoretical motivation for smoothing the periodogram.

In the statistical and neuroscientific literatures there are five main approaches to
smoothing the periodogram. The first is to apply a smoother, such as a Gaussian
kernel smoother to the sequence of values I(ωk). Kernel smoothers were discussed
in Section 15.3.1 in the context of nonparametric regression and Section 15.4.1 in the
context of density estimation. Because kernel smoothers compute linear combina-
tions of the data they are linear smoothers or linear filters. We make some further
comments about linear filters in Section 18.3.4. When applied to time series Gaussian
kernel smoothers are usually called Gaussian filters.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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The second method of smoothing a periodogram is to split the time domain into
a set of many long intervals (long enough to capture low frequencies of potential
interest), estimate the spectral density within each interval, and average the resulting
estimates. With this method it may be shown that it is advantageous to allow the
intervals to have some overlap (Welch 1967). The estimator based on such averag-
ing is sometimes known by the acronym WOSA for weighted overlapping segment
averaging or Welch’s method.

The third approach applies a simple generalized linear model based on the asymp-
totic distribution of the periodogram in (18.40). Recall that the χ2

2/2 distribution is
the same as the standard exponential distribution Exp(1). We may then write

I(ωk)
·∼ f (ωk)Exp(1) (18.41)

or
I(ωk)

·∼ Exp(λk) (18.42)

where

λk = 1

f (ωk)
.

This says that the periodogram ordinates form, approximately, a generalized linear
model and therefore may be smoothed using the technology in Section 15.2.3, adapted
for exponential regression. The likelihood function based on (18.42) is called the
Whittle likelihood.

The fourth class of methods for smoothing the periodogram again uses the
asymptotic distribution in the form of (18.41) but instead deals with the log ordinates.
Letting Yk = log I(ωk), (18.41) may be written

Yk ≈ log f (ωk) + εk (18.43)

where the εk variables are independently distributed as log X where X ∼ Exp(1). This
provides a standard nonparametric regression model, and the log of an exponential
random variable is reasonably close to being normal. However, E(εk) �= 0, so there
is some bias introduced into the estimation process. Nonetheless, in many cases the
bias is small relative to the variation in the log periodogram.

The fifth way to smooth a periodogram is to assume the data follow an autore-
gressive model, and then use the resulting form of the spectral density. Specifically,
calculations show that the AR(p) model (18.27) has spectral density

fX(ω) = σ2
W

|1 − φ1e−2πiω − φ2e−4πiω − · · · − φpe−2pπiω|2 .

In addition, a more concise class of models, known as autoregressive moving average
or ARMA models, is often used, and these too have closed-form expressions for their
spectral densities.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 18.9 Spectral density estimates for the BARS-detrended residuals from the core body tem-
perature data, after removing the fitted 24 h cycle. The tapered periodogram is highly variable; the
Whittle smoothed version is overlaid in blue; and the estimate from the AR(3) model is overlaid in
red.

Example 18.3 (continued from p. 525) We obtained smooth versions of the peri-
odogram for the core temperature data after first removing the trend. (Recall our
discussion of Example 15.2 on p. 528; to fit the trend we used the nonparametric
regression methodas described briefly in Chapter 15). The AR(3) spectral density
estimate is shown in Fig. 18.9. Note that it is very smooth. (An AR(2) based estimate
gives similar results.) The Whittle smoothed periodogram is shown for comparison,
and agrees reasonably well. There appears to be a peak near ωj = .1. To interpret
this, we need units. The temperature was sampled every 20 min, and there were 352
observations. If ωj = .1, then the frequency is .1 per time unit (or 35.2 per 352 time
units). To get frequency per day we multiply by 72 and get roughly 7. There appears
to be a roughly oscillatory component with a period of about 3.5 h. �
We elaborate briefly on linear smoothing in Section 18.3.4 but otherwise omit details
on smoothing periodograms.10 Smoothing is typically handled in spectral analysis
software. Regardless of the method used, the most important point is that some
smoothing is essential.

18.3.4 Linear filters can be fast and effective.

We indicated in Section 18.3.3 that kernel smoothers are linear filters. In this section
we say what we mean by a linear filter, and indicate why linear filters are widely
applied.

10 A reference advocating methods three and four, above, is Fan and Kreutzberger (1998).

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Suppose we have time series data x1, . . . , xn. A linear filter is a set of numbers
(coefficients) {ar, ar+1, . . . , as} and its application to the series xt results in the
filtered series

yt =
s∑

h=r

ahxt−h (18.44)

where, typically, s − r is much less than n. For example, the result of applying the
five-point filter with coefficients (1, 2, 3, 2, 1)/9 would be

yt = 1

9
(xt−2 + 2xt−1 + 3xt + 2xt+1 + xt+2) (18.45)

for t = 3, . . . , n − 2. A Gaussian filter would be similar but would instead use a
normal (Gaussian) pdf to define the coefficients.

It may be shown that the DFT of {yt} is related to the DFT of {xt} according to

dy(ω) = √
nda(ω)dx(ω) (18.46)

where da(ω) is the Fourier transform of {ar, ar+1, . . . , as, 0, 0, . . . , 0}, with the
zeroes being added to fill up the rest of the n data values. (This is called “padding”
the sequence.) The quantity

√
nda(ω) is called the transfer function and its squared

magnitude is the power transfer function. Expression (18.46) makes it possible to
analyze easily the effects of linear filters. This, coupled with their simplicity and the
high speed with which they may be computed makes them a very common method
of choice for smoothing a time series and the resulting periodogram.

Example 18.3 (continued) We applied the 5-point linear filter described above to
the residuals from the core temperature data following simple harmonic regression,
yielding a series of the form (18.45). The top panel of Fig. 18.10 shows the residual
series and the middle panel shows the power transfer function. The power transfer
function decreases to nearly zero as the frequency increases so that high-frequency
components have been essentially eliminated from the filtered series. The resulting
series is shown in the bottom panel of Fig. 18.10. The filtered series is smoother than
the original series. This 5-point linear filter is predominantly a high frequency filter
but, as the middle panel of Fig. 18.10 shows, its effects are not restricted to the highest
frequencies: there is a gradual squelching of middle-range frequencies as well. �
We have just found that the 5-point linear filter used in (18.45), and applied above to
the data from Example 18.3, acts mostly as a high-frequency filter but also displays
some gradual mid-range filtering. This might be considered undesirable and one
might consider trying to use an ideal high-frequency (or low-pass) filter that has a
power transfer function of the form

H(ω) =
{

1 for 0 ≤ |ω| ≤ ωc

0 for ωc < |ω| ≤ 1
2
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Fig. 18.10 Top Core temperature data after removing dominant 24 h effect, i.e., the residuals after
simple harmonic regression. Middle The power transfer function of the five-point linear filter with
coefficients (1, 2, 3, 2, 1)/9, showing a strong diminution of the higher frequency components. Bot-
tom Core temperature data after applying the five-point linear filter with coefficients (1, 2, 3, 2, 1)/9.

which would remove all components with frequencies ω > ωc and leave all other
components of the series unchanged. One might then, in principle, try to find a filter
that corresponds to this power transfer function. This approach turns out to introduce
certain technical problems associated with Fourier transforms of discontinuous func-
tions. In practice, time series software typically provides some option for low-pass
filtering based on a linear filter, or a combination of linear filters, which aims to
approximate the effect of the ideal power transfer function. Similarly, most software
provides options for high-pass filtering, which approximates an ideal filter that would
remove frequencies ω < ωc for some ωc, and band-pass filtering, which approxi-
mates an ideal filter that would remove frequencies outside some interval (ωa,ωb);
the range (ωa,ωb) then becomes the frequency band that is retained by the band-pass
filter. We illustrated a form of high-pass filtering when we detrended the LFP series



544 18 Time Series

in Example 15.2, with our discussion surrounding Fig. 18.6 (see p. 528), and then
again filtered the data in Example 18.3 before fitting the auto-regressive model on
p. 532. In the latter case, the detrending method was nonlinear. The advantage of
linear filters in practice is the speed with which results may be computed.

All of these remarks about linear filters have theoretical counterparts.

Some details: Suppose {Xt; t ∈ Z} is a stationary process with spectral
density fX(ω) and the series {ah; h ∈ Z} satisfies

∞∑

h=−∞
|ah| < ∞.

If we let

A(ω) =
∞∑

h=−∞
ahe−2πiωh,

then the filtered process {Yt; t ∈ Z} defined by

Yt =
∞∑

h=−∞
ahXt−h

is stationary with spectral density

fY (ω) = |A(ω)|2fX(ω).

Here, the series of coefficients {ah; h ∈ Z} is known as the impulse
response function. �

18.3.5 Frequency information is limited by the sampling rate.

While the Fourier frequencies ωk = k/n are defined for k = 1, . . . , n, the resulting
cosine functions are constrained by the important restriction

cos(2π
k

n
t) = cos(2π

n − k

n
t) (18.47)

for every integer t.

Details: In (18.6) put u = 2πt and v = 2π k
n t to get

cos(2π
n − k

n
t) = cos(2πt) cos(2π

k

n
t) + sin(2πt) sin(2π

k

n
t)
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Fig. 18.11 A plot illustrating aliasing of two frequencies for n = 10. Two cosine functions are
plotted: cos(2πω1t) and cos(2πω2t) for ω1 = 2/10 and ω2 = 8/10. At all the values t = 1, . . . , 10
these cosine functions agree, so that the frequencies ω1 and ω2 are aliased. Note that the time
interval between peak and trough corresponding to the second frequency is less than the sampling
interval of 1 (equivalently, ω2 > 1/2) so that, in a sense, the second cosine is oscillating too fast
to be determined at this sampling rate. Simple harmonic regression fits for any data sampled at
t = 1, . . . , 10 will be the same using ω2 as using ω1.

and when t is an integer sin(2πt) = 0 while cos(2πt) = 1. �
Thus, any cosine with a frequency 1

2 < ωk < 1 will have precisely the same values
at all integers t as the cosine with frequency 1 − ωk . This is known as aliasing: it
is not possible to distinguish a cosine function having frequency ω∗ > 1

2 from
another cosine with a frequency in (0, 1

2 ). By sampling xt = cos(2πωt) at points
t = 1, . . . , n, the fastest visible oscillations occur at the frequency ω = 1

2 , for which
xt = cos(πt) = (−1)t . (When multiplied by n to get back to the original units of
time, this fastest visible frequency of oscillation is called the Nyquist frequency.) The
situation is illustrated in Fig. 18.11. Corresponding to (18.47) we also have

sin(2π
k

n
t) = − sin(2π(

n − k

n
)t).

These aliasing relations have analogues in the DFT. They imply that11 the second
half of the components of the DFT, those for which ωk > 1

2 , are redundant with
the first. Plots of the periodogram therefore correspond to frequencies only up to
ωk = 1

2 .

11 This assumes the data are real numbers. It is occasionally useful, instead, to examine data that
consist of complex numbers.
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18.3.6 Tapering reduces the leakage of power from non-Fourier to
Fourier frequencies.

The intuitive description of Fourier analysis in Section 18.2.1 left out an important
fact. If we consider the fundamental cosine and sine functions cos(2πt) and sin(2πt),
these are functions not only on [0, 1] but on the whole real line. They and all of
the resulting cosine and sine functions at harmonic frequencies, i.e., the functions
cos(2πkt) and sin(2πkt) for k = 1, 2, . . ., will be periodic on the interval [0, 1]. So
that all of these functions satisfy

f (0) = f (1). (18.48)

The rough arguments we gave in Section 18.2.1 make the most sense for functions
that satisfy (18.48). When this constraint does not hold, it turns out that the Fourier
approximation (18.16) suffers from a failure to adequately represent f (t), which is
known as the Gibbs phenomenon. The corresponding effect when applying the DFT
to data is known as leakage.

To describe the problem of leakage, let us consider the periodogram of the cosine
function xt = cos(2πωt), for t = 1, . . . , n. Calculation shows that this periodogram
(for each Fourier frequency ωj) is given by

I(ωj) = n|Dn(ω − ωj)|2 (18.49)

where

Dn(φ) = sin(πnφ)

n sin(πφ)

is known as the Dirichlet kernel. If ω is a Fourier frequency, then I(ωj) has a single
spike at ωj = ω and is zero at all other Fourier frequencies ωj. In other words, in this
case the periodogram correctly finds the sole cosine component.

Details: Note that as φ → 0, Dn(φ) → 1
n (by L’Hopital’s rule), so

Dn(φ) at φ = 0 is defined to be Dn(0) = 1
n . Thus, when ωj = ω

we have I(ωj) = 1
n . If ω is a Fourier frequency then ω − ωj has the

form k
n for some integer k and Dn(ω − ωj) = 0 for all j except when

ωj = ω. �
On the other hand, when ω is not a Fourier frequency the Dirichlet kernel cre-

ates “side lobes,” as shown in Fig. 18.12, where Dn(ω − ωj) will be nonzero even
for frequencies ωj that are not immediately non-adjacent to ω. As a consequence,
the power at frequency ω will “leak” to other frequencies in the periodogram, so the
periodogram indicates misleadingly that those other frequencies are present in the
data.
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Fig. 18.12 Top The Dirichlet kernel D100(j/100), here plotted for values of j ranging from −6 to
6. A continuous curve was generated by taking non-integer values of j. Bottom The periodogram
I(j/100) = 100|D100(j/100)|2, after scaling by dividing by 100.

The problem of leakage is very dramatic when the dynamic range of the data is
large. Dynamic range refers to the ratio of the largest to smallest positive periodogram
values (usually measured on the log10, or decibel, scale).

Illustration: As an illustration, consider

xt = 20 cos(2πω1t) + cos(2πω2t) (18.50)

where n = 100, ω1 = .05 and ω2 = .15. Its periodogram is shown in the top panel
of Fig. 18.13. To see the second frequency it is necessary to use a log scale to plot the
periodogram, as shown in the bottom panel of Fig. 18.13. Log periodogram plots are
used as defaults in many contexts. Now consider the leakage-prone variant where
we take ω1 = 1/22 rather than 1/20. Its periodogram is shown in Fig. 18.14. In this
case leakage obscures the second peak almost entirely, and if the periodogram were
noisy (as it is with real data) it would be extremely difficult to see the second peak
at all. �

Leakage is also a problem when there are trends, which cause large low-frequency
coefficients in the periodogram.

Example 15.2 (continued from p. 528) We previously showed the log periodogram
for the LFP data in Fig. 18.5. The very low frequency trends cause leakage, which
obscures the higher frequencies of interest. �
The standard solution to the problem of leakage is to force the data to satisfy (18.48)
by applying tapering. Tapering decreases bias due to leakage in spectral density
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Fig. 18.13 Top Periodogram of xt = 20 cos(2πω1t) + cos(2πω2t), where n = 100, ω1 = .05 and
ω2 = .15. Bottom Log periodogram of xt . In the log scale the second peak becomes visible.

estimation by damping down the ends of the series toward zero, forcing the series
to have period equal to its length (and thus satisfying (18.48)). This is accomplished
in standard spectral analysis software. Because the beginning and end of the tapered
series have values close to zero, however, this reduces the effective sample size of
the series and therefore loses some information. It has been shown that the use of
the mean of multiple tapers can recover this information.12 Multi-taper estimation is
used as a default in some software.

18.3.7 Time-frequency analysis describes the evolution
of rhythms across time.

Up until this point, Section 18.3 has presented powerful methods for spectral analysis
of time series under the assumption of stationarity. We have emphasized that time
series should not be considered stationary when there are slowly varying trends, as
displayed in Fig. 1.5 of Example 1.6 and Fig. 18.1 of Example 15.2. In many cases,
however, a different kind of non-stationarity is present and, in fact, may be of great
interest: the frequency content of a signal may change across time.

Example 2.2 (continued from p. 514) The spectrograms in Fig. 2.2 on p. 27 dis-
played nicely some changes in the frequency content of EEGs across the course of

12 See Mitra and Pesaran (1999), Percival and Walden (1993), and Thomson (1982).

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2


18.3 The Periodogram for Stationary Processes 549

0.0 0.1 0.2 0.3 0.4 0.5

0
50

10
0

15
0

20
0

frequency

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

5
0.

5
1.

5

frequency

Fig. 18.14 Top Periodogram of xt = 20 cos(2πω1t) + cos(2πω2t), where n = 100, ω1 = 1/22
and ω2 = .15. Bottom Log periodogram of xt . Due to leakage, the second peak is obscured.

the experiment. Specifically, the alpha rhythm appeared during an epoch in which
the subject’s eyes closed, and during induction of anesthesia. �

Spectrograms, such as that in Example 2.2, may be created by segmenting the
observation time interval [0, T ] into a set of subintervals [0, T1], [T1, T2], . . . , [Tk, T ],
and then computing spectral density estimates within each interval. The estimated
spectrum is then plotted on the y-axis for every time interval, with time labeled
along the x-axis. The intervals must be chosen to be long enough so that there are
substantial series from which to estimate the spectrum, yet short enough that the series
may be considered stationary within each interval. Some spectrogram software takes
as a default 512 observations per interval (with corrections to this to allow for T
not being divisible by 512). Some smoothing (and tapering) of the spectral density
estimates across time is often incorporated. One way to smooth across time, which
is available as an option in most spectrogram software, is to choose the analysis
intervals to be overlapping. In some experiments there are repeated trials, in which
case the spectrograms may be averaged across trials.

Example 18.2 (continued from p. 518) To display the LFP response to the stimulus
Logothetis et al. (2001) used a spectrogram that incorporated tapering and was aver-
aged across trials and across subjects. It showed strong power in the gamma range
after onset of the stimulus. �

Time-frequency analysis is often performed using wavelets (Section 15.2.8).
Because of the scaling property (the narrowing range) in the definition (15.9), wavelet
regression provides a representation that is localized in both time and frequency, with
frequency here defined by the scale of the wavelets. See Percival and Walden (2000).

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 18.1 (continued from p. 518) In their study of MEG oscillatory activ-
ity during learning, Chaumon et al. (2009) used Morlet wavelets (see p. 429) to
decompose MEG sensor signals across time and frequency. They analyzed the log-
transformed power within a 30–48 Hz, band at time 100–400 ms after target onset,
from one group of sensors over the occipital lobe and another group of sensors over
the frontal lobe. They found that during the learning phase (the first few blocks) of
the experiment this gamma band power in the sensors over the occipital lobe was
higher for the predictive trials than for the nonpredictive trials (p < .005 based on an
across-subject paired t-test, using 16 subjects) with the power for the predictive trials
being elevated above baseline. On the other hand, during the same learning period,
the gamma band power in the sensors over the frontal lobe was depressed for the
nonpredictive trials (p < .0001), but not for the predictive trials (with the predictive
and nonpredictive gamma band power being different, p < .01). �

18.4 Propagation of Uncertainty for Functions
of the Periodogram

18.4.1 Confidence intervals and significance tests may be carried
out by propagating the uncertainty from the periodogram.

The large-sample result described by (18.41) together with the approximate inde-
pendence of I(ωj) and I(ωk), for j �= k, provide uncertainty about the estimate of the
spectral density and also make it easy to propagate this uncertainty. Importantly, this
result holds in the same form for periodograms computed with suitable tapers. (See
the brief discussion in Percival and Walden (1993, p. 190), which cites Brillinger
(1981, p. 107).)

Now suppose we have computed some feature of the periodogram and we want
a 95 % confidence interval associated with that feature. For example, we may have
smoothed the periodogram and may want bands to represent our uncertainty. Let
m = (n−1)/2 if n is odd; n/2 if n is even. For a range of ω values, write the smoothed
version at frequency ω in the form gω(I(ω1), . . . , I(ωm)). That is, the operation that
produced the smooth value at frequency ω is being written as a function gω of the
periodogram values. We would say that gω(I(ω1), . . . , I(ωm)) is an estimator of f (ω).
To apply propagation of error we do the following.

1. For j = 1 to J:

For i = 1, . . . , m:
generate observations Yi from an Exp(1) distribution;
define U(j)

i = f̂ (ωi)Yi, where f̂ (ωi) is an estimate of f (ωi) (based on a
smoothed periodogram).

Compute W (j) = gω(U(j)
1 , U(j)

2 , . . . , U(j)
m ).
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Fig. 18.15 Smoothed periodogram and approximate, pointwise 95 % confidence bands, from the
beginning-period LFP detrended series.

2a. Set W = 1
J

∑
W (j) and then SE2 = 1

J−1

∑
(W (j) − W)2 is the squared standard

error of gω(I(ω1), . . . , I(ωm)).
2b. Let W.025 and W.975 be .025 and .975 quantiles in the sample W (1), . . . , W (J).

Then (W.025, W.975) is an approximate 95 % confidence interval (for f (ω)) asso-
ciated with gω(I(ω1), . . . , I(ωm)).

In practice, we would compute a whole set of W (j) values for different gω functions,
corresponding to different values of ω. This would give us approximate pointwise13

confidence bands on the smoothed periodogram.
In step 1 of the algorithm above an estimate f̂ (ωi) (based on the smoothed peri-

odogram) is used in place of f (ωi), because the latter is unknown and so can’t be
computed. This is usually called a bootstrap, analogously to the bootstrap procedures
in Chapter 9.

Example 15.2 (continued from p. 528) Returning to the pair of 1 s average LFP
recordings, we noted previously, in Figs. 18.1 and 18.5, the need to detrend the
time series before looking for periodicities under the assumption of stationarity.
Figure 18.6 displayed the smoothed periodograms of the detrended series. Pointwise
95 % confidence bands together with the smoothed periodogram for the first period,
obtained by propagation of uncertainty, are shown in Fig. 18.15.

We next consider whether the first and last periods have the same spectral density
(an indication of stationarity). Figure 18.16 shows the two smoothed periodograms
overlaid. A significance test may be based on the integrated squared difference
between the two smooth curves. Specifically, if f̂1(ω) and f̂2(ω) are the two spectral

13 By pointwise we mean that at any given frequency ω the bands would provide an approximate
95 % confidence interval. An alternative is to compute approximate simultaneous confidence bands,
meaning bands that provide approximate 95 % confidence simultaneously for all ω. This may be
accomplished with a suitable adaptation of the algorithm.

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 18.16 Smoothed periodograms from beginning and end periods, overlaid.

density estimates, then we use

tobs =
∑

k

(f̂1(ωk) − f̂2(ωk))
2

as the test statistic. To compute a p-value under H0 = f1(ω) = f2(ω) for all ω, we
take as a “pooled” estimate

f̂ (ωk) = 1

2
(f̂1(ωk) + f̂2(ωk))

for k = 1, . . . , m. We then generate a pseudo-sample of pairs of periodograms using
f̂ (ω) as the spectral density, and for each generated pair of periodograms, apply
smoothing and compute t. We then see what fraction of the generated t values is
greater than tobs. This is our approximate p-value. In this case, we obtained p =
0.53, indicating no evidence that the spectra from the two recording intervals are
different. �

18.4.2 Uncertainty about functions of time series may be obtained
from time series pseudo-data.

The method above propagates the uncertainty from the asymptotic distribution of the
periodogram to anything computed from it. If, however, an analytical technique by-
passes the periodogram a different method must be used to propagate uncertainty. A
more general idea is to use the approximate normal distributions on the coefficients,
in order to propagate the uncertainty from the DFT itself. In other words, one may
begin with the uncertainty in the DFT obtained from the data, and then apply an
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inverse DFT to generate time series that behave the same as the original series in
the sense of having (approximately) the same spectrum. The resulting time series
pseudo-data are sometimes called surrogate data.

An efficient method of carrying out such simulations (based on “circulant embed-
ding”) is described in Percival and Constantine (2006). Code by these authors is avail-
able in the CRAN library of R packages, within the package fractal. See below.
As described in the Percival and Constantine paper, the method is closely related
to surrogate time series, e.g., Schreiber and Schmitz (2000). Additional “bootstrap”
resampling methods for spectral analysis, with an emphasis on theoretical results, are
discussed in Chapter 9 of Lahiri (2003b). We omit detailed discussion of this topic
and note only that the pseudo data generated by this approach are normal (Gaussian),
and so do not reflect any sources of uncertainty arising from substantial non-normal
variation in the data.

18.5 Bivariate Time Series

Suppose x1, x2, . . . , xn and y1, y2, . . . , yn are sequences of observations made across
time, and the problem is to describe their sequential relationship. For example, an
increase in yt may tend to occur following some increase or decrease in a linear
combination of some of the preceding xt values. This is the sort of possibility that
bivariate time series analysis aims to describe.

Example 18.4 Beta oscillations during a sensorimotor task. Brovelli et al. (2004)
recorded local field potentials from multiple sites simultaneously while a subject
(a rhesus monkey) performed a Go/No-Go visuomotor task. Results were reported
for two monkeys. The task required the subject hold down a lever during an interval
having a randomly determined length while a stimulus appeared. On Go trials, a
reward was given if the monkey released the lever within 500 ms. The purpose of
the study was to look for coordinated rhythmic activity across the recording sites
during a task that required focused attention. Of particular interest was the range of
frequencies identified as beta oscillations, which the authors took to be 14–30 Hz.
The specific question was whether local field potentials in sensory and motor regions
exhibit co-ordinated patterns within the beta range of frequencies. �

The theoretical framework of such efforts begins, again, with stationarity. A joint
process {(Xt, Yt), t ∈ Z} is said to be strictly stationary if the joint distribution of
{(Xt, Yt), . . . , (Xt+h, Yt+h)} is the same as that of {(Xs, Ys), . . . , (Xs+h, Ys+h)} for
all integers s, t, h. The process is weakly stationary if each of Xt and Yt is weakly
stationary with means and covariance functions μX , γX(h) and μY , γY (h), and, in
addition, the cross-covariance function

γXY (s, t) = E((Xs − μX)(Yt − μY ))

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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depends on s and t only through their difference h = t − s, in which case we write
it in the form

γXY (h) = E((Xt−h − μX)(Yt − μY )).

Note that γXY (h) = γYX(−h). The cross-correlation function of {(Xt, Yt)} is

ρXY (h) = γXY (h)

σXσY

whereσX = √
γX(0) and similarly for Yt . The cross-correlationρXY (h) is the ordinary

correlation between the random variable Xt−h and Yt . Just as the ordinary correlationρ
may be interpreted as a measure of linear association between two random variables,
the cross-correlation ρ(h) may be interpreted as a measure of linear association
between two stationary processes at lag h. The cross-covariance and cross-correlation
functions are estimated by their sample counterparts:

γ̂XY (h) = 1

n

n−h∑

t=1

(xt − x̄)(yt+h − ȳ)

with γ̂XY (−h) = γ̂YX(h), and

ρ̂(h) = γ̂XY (h)

σ̂X σ̂Y
.

The univariate Eqs. (18.29)–(18.31) have immediate extensions to the bivariate
case: if ∞∑

h=−∞
|γXY (h)| < ∞

then there is a cross-spectral density function fXY (ω) for which

γXY (h) =
∫ 1

2

− 1
2

e2πiωhfXY (ω)dω (18.51)

and

fXY (ω) =
∞∑

h=−∞
γXY (h)e−2πiωh.

The cross-spectral density is, in general, complex valued. Because γYX(h) =
γXY (−h) we have

fYX(ω) = fXY (ω) (18.52)

i.e., fYX(ω) is the complex conjugate of fXY (ω). In Section 18.3.1 we said that a
smoothed periodogram could be considered an estimator of the theoretical spectral
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density, and we based that interpretation on a finite-sample expression (18.33), which
gave the periodogram as a scaled DFT of the sample covariance function. Similarly,
an estimate f̂XY (ω) of fXY (ω) may be obtained by smoothing a scaled DFT of the
sample cross-covariance function γ̂XY (h). In Section 18.5.1 we discuss the important
concept of coherence, which is defined in terms of the cross-spectral density.

18.5.1 The coherence ρXY(ω) between two series X and Y
may be considered the correlation of their ω-frequency
components.

There is a very nice way to decompose into frequencies the linear dependence
between a pair of stationary time series. This frequency-based measure of linear
dependence forms an analogy with ordinary correlation which, as we noted in
Section 4.2.1, may be interpreted as a measure of linear association. To substan-
tiate this interpretation for the ordinary correlation ρ between two random variables
Y and X we provided on p. 81 a theorem concerning the linear prediction of Y from
α + βX, giving the formula for α and β that minimized the mean squared error of
prediction, E

(
(Y − α − βX)2

)
and showing that when these optimal values of α and

β are plugged in, the minimum mean squared error became

E
(
(Y − α − βX)2

)
= σ2

Y (1 − ρ2), (18.53)

which was Eq. (4.11).
In Eq. (18.53) we considered the linear prediction of Y based on X, meaning

the prediction of Y based on a linear function of X. The analogous problem for
{(Xt, Yt), t ∈ Z} is to assume

Yt =
∞∑

h=−∞
βhXt−h + Wt, (18.54)

where Wt is a stationary process independent of {Xt}, with E(Wt) = 0 and V(Wt) =
σ2

W , and to minimize the mean squared error

MSE = E

⎛

⎝Yt −
∞∑

h=−∞
βhXt−h

⎞

⎠
2

. (18.55)

Some manipulations show that the solution satisfies

min MSE =
∫ 1

2

− 1
2

fY (ω)(1 − ρXY (ω)2)dω (18.56)

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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where

ρXY (ω)2 = |fXY (ω)|2
fX(ω)fY (ω)

(18.57)

is the squared coherence. Thus, in analogy with (18.53), fY (ω)(1 − ρXY (ω)2) is the
ω-component of the minimum-MSE fit of (18.54). In (18.56) we have MSE ≥ 0 and
fY (ω) ≥ 0, which together imply that 0 ≤ ρXY (ω)2 ≤ 1 for all ω, and when

Yt =
∞∑

h=−∞
βhXt−h

we have ρXY (ω)2 = 1 for all ω. These facts, together with (18.56), give the interpreta-
tion that the squared coherence is a frequency-based analogue to squared correlation
between two theoretical time series.

Additional details: The interpretation of coherence in terms of corre-
lation may be pushed further, but is somewhat subtle. In defining the
cross-spectral spectral density we mentioned that it is complex valued.
Let θ(fXY (ω)) be the phase of fXY (ω), which we may write in terms of
the real and imaginary parts of fXY (ω),

θ(fXY (ω)) = arctan
Im(fXY (ω))

Re(fXY (ω))

so that
fXY (ω) = |fXY | exp (iθ(fXY (ω))) .

The function θ(fXY (ω)) is often called the phase coherence. The coher-
ence is then the complex-valued function defined by

ρXY (ω) = fXY (ω)√
fX(ω)fY (ω)

.

This complex-valued coherence contains phase information, which is
necessary when considering the tendency of two signal components
at frequency ω to vary together. The magnitude of the coherence is
often considered to be a measure of phase-locking of the two signals,
but it also depends on the relationship of their amplitudes.
A more complete explanation of coherence is beyond the scope of our
presentation here.14 �

From a pair of observed time series the squared coherence may be estimated by

14 One helpful fact is that an average coherence across a given frequency band may be shown to be
equal to the complex-valued correlation between band-pass filtered versions of the two series; see
Ombao and Vanbellegem (2008).
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ρ̂2
XY (ω) = |f̂XY (ω)|2

f̂X(ω)f̂Y (ω)
(18.58)

where, again, f̂XY (ω) is a smoothed version of the DFT of γ̂XY (h). However, the
smoothing in this estimation process is crucial. The raw cross-periodogram IXY (ω)

satisfies the relationship
|IXY (ω)|2 = IX(ω)IY (ω)

so that plugging the raw periodograms into (18.58) will always yield the value 1.
Thus, again, it is imperative to smooth periodograms before interpreting them.

Example 18.4 (continued from p. 553) Brovelli et al. collected approximately
900 successful Go trials, using data from 90 ms prior to stimulus onset to 500 ms
after onset. They subtracted out the trial-averaged signals to produce approximately
stationary multiple time series. To look for the presence of beta oscillations in sen-
sorimotor cortex they recorded from six sites in one animal and four in another. The
sites are shown in Fig. 18.17. The sites shown in part A of the figure appear to be in
(1) the arm area of primary motor cortex (M1), (2) the arm area of sensory cortex
(S1), (3) anterior intraparietal cortex (AIP, object and hand shape representation),
(4) lateral intraparietal cortex (used in guiding saccades and identifying visual loca-
tions), (5) ventral premotor cortex, (6) dorsal premotor cortex. In part B of the figure
the sites appear to be in (1) the wrist area of M1 or ventral premotor cortex, (2) the
wrist area of S1, (3) AIP, (4) medial intraparietal cortex (related to goals or targets
of intended reach).

The authors computed squared coherence for each pair of sites, as in (18.57), with
ω in the beta range, then found the maximum squared coherence across all values of
ω, and performed a permutation significance test (see Section 11.2.1) to see whether
that maximum was sufficiently large to form clear evidence of underlying coherence
in LFP across brain regions. Their results are depicted on the left side of Fig. 18.17.
The authors found that primary motor cortex (M1, site 1 in both monkeys), primary
sensory cortex (S1, site 2), and anterior intraparietal cortex (AIP, site 3) were all
engaged in coherent oscillatory activity during the task. �

18.5.2 In examining cross-correlation or coherence of two time
series it is advisable first to pre-whiten the series.

In Section 12.2.3 we highlighted the importance of the assumption of independent
errors in linear regression: we showed that the squared correlation between two
independent AR(1) time series is likely to be statistically significant, erroneously
indicating association. A similar phenomenon occurs for the cross-correlation, and
for coherence. To avoid it, the serial dependence should be removed from the two
series before the cross-correlation or coherence is computed. For example, if we
have two series x1, . . . , xn and y1, . . . , yn we could fit appropriate AR models to each

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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(a)

(b)

Fig. 18.17 Figure adapted from Brovelli et al. showing coherence and Granger causality among six
recording sites in one monkey (part A) and four in another (part B). On the left are lines representing
statistically significant coherence between a pair of sites (p < .005 based on a permutation test
with a correction for multiple comparisons), with thickness indicating the magnitude of coherence
as shown on the scale graphic in the middle of the figure. On the right are lines, some of which have
arrows, representing statistically significant Granger causality, with magnitudes again indicated by
line thickness as shown on the scale graphic in the middle of the figure. Recording sites are shown
above and below the scale graphic.

series and then work instead with the residuals obtained from subtracting the AR fits.
An alternative procedure involves fitting an AR (or ARMA) model then applying a
suitable filter that removes the serial dependence. See Box et al. (2008) for discussion
of this approach.
Example 18.2 (continued from p. 518) In their study Logothetis et al. (2001)
reported the distribution of R2 values between15 LFP and BOLD signals across
trials, which were generally substantial, with a mean of .52. Before computing these
correlations, however, they pre-whitened the series using AR(10) models. �

15 Actually, they reported R2 between stimulus-based impulse response functions (see p. 544) found
from the LFP and BOLD signals.
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18.5.3 Granger causality measures the linear predictability
of one time series by another.

The squared coherence provides a frequency-based measure of linear association
between two time series. Just as the correlation Cor(X, Y) is symmetrical in its argu-
ments X and Y , so too is the squared coherence. In contrast, regression is directional.
We now develop a simple directional assessment of linear predictability of one time
series from another.

The idea is very simple. In ordinary regression we assess the influence of a variable
(or set of variables) X2 on Y in the presence of another variable (or set of variables)
X1 by examining the reduction in variance when we compare the regression of Y on
(X1, X2) with the regression of Y on X1 alone. If the variance is reduced sufficiently,
then we conclude that X2 helps explain (predict) Y . Here, we replace Y with Yt ,
replace X1 with {Ys, s < t} and X2 with {Xs, s < t}. In other words, we examine
the additional contribution to predicting Yt made by the past observations of Xs after
accounting for the autocorrelation in {Yt}. The “causality” part comes when the past
of Xs helps predict Yt but the past of Ys does not help predict Xt .

Let us begin by defining what it means for {(Xt, Yt), t ∈ Z} to follow a joint
AR(p) process. Working by analogy with the definition (18.27), we write

(
Xt

Yt

)
=

p∑

i=1

(
φXX

i φXY
i

φYX
i φYY

i

) (
Xt−i

Yt−i

)
+

(
WX|XY

t

WY |XY
t

)
(18.59)

where WX|XY
t and WY |XY

t are independently N(0,σ2
X|XY ) and N(0,σ2

Y |XY ). The nota-
tional superscripts and subscripts X|XY and Y |XY are used to indicate variables
or variances for the joint AR(p) model (18.59), in which both X1, . . . , Xt−p and
Y1, . . . , Yt−p appear on the right-hand side. This is in contrast to the usual univariate
AR(p) models for {Yt, t ∈ Z},

Yt =
p∑

i=1

φY
i Yt−i + WY

t , (18.60)

where WY
t are independently16 N(0,σ2

Y |Y ), and for {Xt, t ∈ Z},

Xt =
p∑

i=1

φX
i Xt−i + WX

t , (18.61)

where WX
t are independently N(0,σ2

X|X). We may now say that {Xt, t ∈ Z} is pre-
dictive of {Yt, t ∈ Z} if σY |XY < σY |Y . In this situation, {Xt, t ∈ Z} is also said to be

16 Here σ2
Y |Y is a constant; the notation is intended only to indicate that it is the error variance when

Y appears on both the left-hand side and the right-hand side of the model.
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Granger causal of {Yt, t ∈ Z}. Similarly, we say {Yt, t ∈ Z} is predictive (Granger
causal) of {Xt, t ∈ Z} if σX|XY < σX|X . This kind of predictability is often quantified
by the Granger causality measure

FX→Y = 2 log
σY |Y
σY |XY

.

Theoretical analysis of this approach was given by Geweke (1982), based on earlier
work by Granger (1969).17

In applications, to evaluate whether a time series xt , t = 1, . . . , n is predictive of
yt , t = 1, . . . , n, the basic procedure is to (1) fit a bivariate AR(p) model, then (2) test
the hypothesis H0 : φYX

i = 0 for all i, which is equivalent to testing H0 : FX→Y = 0.

Illustration As an illustration, we simulated a bivariate time series of length 1,000
using the model

Xt = .5Xt−1 + Ut

Yt = .2Yt−1 + .5Xt−1 + Vt

where Ut ∼ N(0, (.2)2) and Vt ∼ N(0, (.2)2), independently. We then fit a linear
regression model of the form

Yt = β0 + β1Yt−1 + β2Xt−1 + εt

and, similarly, fit another model of the same form but with the roles of X and Y
reversed. The results for the two regressions are shown in the following table.

Variable Coefficient Std. Err. t-ratio p-value

Intercept −.001 .006 −.211 .83
xt−1 .496 .012 42.7 <10−15

yt−1 .192 .018 10.7 <10−15

Intercept .008 .016 .536 .59
xt−1 .508 .029 17.1 < 10−15

yt−1 −.055 .045 −1.3 .228

As expected, the first fit indicates that Xt−1 provides additional information beyond
Yt−1 in predicting Yt , while the second fit shows that Yt−1 does not provide additional
information beyond Xt−1 in predicting Xt . This is sometimes summarized by saying

17 In addition, Geweke (1982) defined a spectral measure fX→Y (ω) representing the ω-component
of Granger causality in the sense that

FX→Y =
∫ 1

2

− 1
2

fX→Y (ω)dω.
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Xt is causally related to Yt , but we must keep in mind that “causal” is used in a
predictive, time-directed sense. �
This illustration sweeps under the rug the selection of auto-regressive order p in part
of the problem, in step (1) above. In applications this is non-trivial, and care should
be taken to make sure interpretations do not depend on choices of p that involve
substantial uncertainty.

Example 18.4 (continued from p. 556) Results of Brovelli et al. based on coher-
ence analysis were discussed on p. 556 and were displayed on the left-hand side
of Fig. 18.17. Those authors went on to fit an AR(10) model to the data from both
monkeys, noting that AR(5) and AR(15) gave consistent results, and that AIC (see
Section 11.1.6) would select AR(15) (they considered AR(p) models up through order
p = 15). They then applied Granger causality18 analysis, which allowed them to
produce the additional directional interpretations shown on the right-hand side of
Fig. 18.17. In particular, beta rhythms in primary sensory cortex (site 2 in both mon-
keys) were predictive of the rhythms in other locations, while primary motor cortex
(site 1) tended to be predicted by both sensory and AIP signals and was itself only
weakly predictive of signals at other sites. �

18 They used the spectral decomposition mentioned in the footnote on p. 559 to plot the frequency
representation of Granger causality, found its peak, and performed a permutation test analogously
to what they had done in analyzing coherence.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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