
Chapter 17
Multivariate Analysis

17.1 Introduction

Much of this book has been devoted to describing relationships among multiple noisy
variables, yet we have until now managed to avoid a general discussion of multi-
variate co-variation. The regression and generalized regression models discussed in
Chapters 12, 14, and 15 involved a response variable y that was related to one or
more explanatory variables x and this asymmetry of response and explanatory vari-
ables allowed us, for the most part, to ignore the co-variation among the whole set
of measured variables. In some contexts, however, there are advantages to analyz-
ing multiple measurements together. For instance, in Example 4.7 (p. 100), which
involved decoding of wrist movement from MEG signals, the signals came from 87
MEG sensors and it made sense to analyze these collectively, as an 87-dimensional
vector at each time point. In this chapter we provide a short overview of methods that
have been developed for such purposes, which fall under the heading of multivariate
analysis, and we return to Example 4.7 on p. 494.

The starting point is the sample mean and sample variance matrix (see
Section 4.3.1), while the theory is based largely on the theoretical mean and variance
of a random vector (see Section 4.3.1) together with the multivariate normal distri-
bution (see Section 5.5). Section 17.2 reviews the multivariate extensions of t-tests
and one-way ANOVA, which are special cases of the general class of methods called
multivariate analysis of variance (MANOVA). MANOVA balances two competing
tendencies. On the one hand, when several variables respond similarly to a change in
experimental conditions there is stronger evidence for differential response in their
combined data than would be provided if each variable were considered separately.
This was the idea behind the method of combining p-values from independent tests of
the same null hypothesis, described in Section 11.3.1; in Example 11.2 we found that
five separate p-values of .02 led to a combined p-value of 2.5 × 10−5. On the other
hand, if the multiple variables are correlated, the assessment must take account of the
correlation, and this tends to decrease the effect: in the extreme case of perfect cor-
relation, observing multiple variables becomes the same thing as observing a single
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variable. MANOVA incorporates correlation by comparing multivariate co-variation
across conditions to that within conditions.

Section 17.3 reviews the main ideas behind dimensionality reduction. When the
multiple variables are, collectively, so highly correlated that a variance matrix is no
longer of full rank, i.e., no longer positive definite (see p. 618 of the Appendix),
some formulas are voided. A solution to this problem is to define a smaller set of
new variables that are linear combinations of the original variables, the process of
which is called “dimensionality reduction” (though, in general, the combinations do
not have to be linear). Dimensionality reduction is also useful for data simplification.
For example, data are often displayed by plotting with x and y axes that are suitably
defined by a reduction to 2 dimensions.

Section 17.4 returns to the problem of classification, introduced in Section 4.3.4.
We first show how Bayes classifiers take a nice form when the classes are defined by
multivariate normal distributions, and then go on to describe two commonly-applied
alternative methods of classification. In Section 17.4.3 we discuss the concept of
clustering, which involves putting observations into classes when the classes have
not yet been defined and must be estimated or1 learned from the data.

Multivariate analysis uses more advanced mathematics than univariate analysis,
and many theoretically-inclined students find in the subject a majestic elegance.
While nearly all the methods presented in our synopsis here were developed more
than 50 years ago, it is a very active area of continuing research.

17.2 Multivariate Analysis of Variance

17.2.1 MANOVA provides a multivariate extension of ANOVA.

The one-way ANOVA model, given in Eq. (13.1), involves a set of random variables
Yij. We repeat Eq. (13.1) here as Eq. (17.1). The model is

Yij = μ + αi + εij, (17.1)

for i = 1, . . . , I and j = 1, . . . , ni and the usual assumptions are

(i) the ANOVA model (13.1) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv-1D) V(εi) = σ2 for all i (homogeneity of error variances), and
(v-1D) εi ∼ N(0,σ2) (normality of the errors).

1 The term “learning” tends to be used interchangeably with “estimation,” i.e., the process of
determining a parameter value from data. Because it may sometimes refer to significance testing,
learning is somewhat broader, and it is often associated with techniques used heavily in the field of
machine learning. See Hastie et al. (2009).
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In Eq. (17.1) each εij is a random variable, and μ and each αi are numbers. If we
instead take all Yij and εij to be p-dimensional random vectors, and μ and all αi to
be vectors, then the model becomes

Yij = μ + αi + εij, (17.2)

which is identical to (17.1) when p = 1. The usual assumptions (i–iii) have the same
form for (17.2) as for (17.1) while the assumptions we labeled (iv-1D) and (v-1D)
become

(iv) V(εi) = � for all i;
(v) εi ∼ N(0, �).

Equation (17.2) together with these multivariate assumptions (i–v) then becomes a
multivariate analysis of variance (MANOVA) model. Note that in this section we are
using Yij to denote our generic random vector, while in the rest of this chapter we
use X.

The idea behind one-way ANOVA is to test the null hypothesis

H0 : αi = 0 (17.3)

by, first, decomposing the total sum of squares

SST =
∑

i,j

(yij − ȳ..)
2 (17.4)

using the error sum of squares

SSE =
∑

i,j

(yij − ȳi.)
2 (17.5)

as
SST = SSgroup + SSE (17.6)

where SSgroup is defined from (17.6) by subtraction and, second, considering
whether2 SSgroup is improbably large relative to SSE under H0. The same idea may
be applied in the multivariate case: formulas (17.4) and (17.5) become

SST =
∑

i,j

(yij − ȳ..)(yij − ȳ..)
T (17.7)

and

2 In constructing the F-statistic, the values of SSgroup and SSE are first standardized by dividing by
their respective degrees of freedom, but that is for the convenience of judging the ratio relative to
the number 1.
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SSE =
∑

i,j

(yij − ȳi.)(yij − ȳi.)
T (17.8)

and then (17.6) may be applied. In addition, under the homogeneity of variance
assumption (iv), an estimate of � is the pooled sample variance matrix

Spooled = 1

N − I
SSE (17.9)

where

N =
I∑

i=1

= ni.

On p. 367 we outlined the way the usual one-way ANOVA F-test arises as a
likelihood ratio test. This suggests applying a likelihood ratio test in the multivariate
setting. The result rejects the null hypothesis of (17.3) when SST is large relative to
SSE, where “large” now refers to a matrix and is measured by the determinant (see
the appendix, p. 616). Equivalently, the test rejects when the quantity

� = |SSE|
|SST| (17.10)

is small. The test was derived by Wilks (1932) and the value � is usually called
Wilks’ lambda. An F statistic may be defined in terms of � (the expression is not
very intuitive; we omit it) and this statistic has, approximately, an F distribution
under H0. The results are usually displayed in a table, much like the ANOVA table
given as Table 13.4.

Example 17.1 Functional Specialization of Mouse Visual Areas Because of the
potential for genetic manipulation, there is great interest in mouse models of brain
function. Cortical areas in the primate visual system can be distinguished according
to their differing neural responses. Marshel et al. (2011) sought to provide a sim-
ilar characterization of mouse visual areas. Specifically, they examined the tuning
properties of individual neurons with respect to direction, orientation, spatial fre-
quency, and temporal frequency, across seven visual areas. For each tuning property
they devised a measure of sensitivity, yielding a 4-dimensional vector for each neu-
ron. The authors then applied MANOVA to look for differential neural responses in
these 4-dimensional vectors across the seven areas. They found the seven areas to
be distinguishable using MANOVA, and then proceeded to provide more detailed
comparisons for each metric. �

Example 4.7 (continued from p. 100) In their study of decoding wrist movement
from MEG sensor recordings, Wang et al. used Bayes classifiers to produce the
results in Fig. 4.4. They also evaluated the classification accuracy after averaging the

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Fig. 17.1 Normalized MEG sensor signals from one subject in the Wang et al. study, averaged
across trials. Four traces are shown for a single sensor, corresponding to the four directions of
movement. The shadowed gray region is the optimal time window found by MANOVA. Adapted
from Wang et al. (2010).

sensor recordings across 200 ms time windows. To compute classification accuracy,
leave-one-out cross-validation was used. For each subject, and for each trial i, the
movement direction on trial i was predicted after the remainder of the trials were
used as training data. Using the training data, first an optimal time window for each
subject was chosen and then a Bayes classifier was defined (it was assumed that sensor
measurements were multivariate normal and the mean and variance parameters were
estimated for each of the four directions of movement; see p. 506). The optimal
time window of length 200 ms was chosen from 150 possible windows, centered at
150 time points spaced 10 ms apart. To select the optimal time window the authors
applied MANOVA in each of the 150 windows, then found the window that produced
the largest F statistic. See Fig. 17.1. �

In Section 13.1.3 we said that in the case of two groups, one-way ANOVA reduces
to the usual t-test. Similarly, in the case of two groups, MANOVA may be reduced to a
simpler form. Let us assume there are n1 observations in group 1 and n2 observations
in group 2. The pooled sample variance matrix of Eq. (17.9) becomes

Spooled = 1

n1 + n2 − 2

⎛

⎝
n1∑

j=1

(y1j − ȳ1)(y1j − ȳ1)
T +

n2∑

j=1

(y2j − ȳ2)(y2j − ȳ2)
T

⎞

⎠

(17.11)
which is analogous to the univariate S2

pooled defined in Section 10.3.4. Let us change
the notation x used in Section 10.3.4 to y as used here and then write the t-statistic
(10.19) in the squared form

t2
obs = (ȳ1 − ȳ2)

(
(

1

n1
+ 1

n2
)s2

pooled

)−1

(ȳ1 − ȳ2). (17.12)

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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The standard test statistic for testing H0 : α1 − α2 = 0 in the multivariate case is

T2 = (ȳ1 − ȳ2)
T

(
(

1

n1
+ 1

n2
)Spooled

)−1

(ȳ1 − ȳ2), (17.13)

where Spooled is defined above, which is a generalization of (17.12). The statistic T2

is usually called Hotelling’s T2. In this case, under H0 and the assumptions following
Eq. (17.2), including the normality assumption (v), the approximate F distribution
of the MANOVA F statistic found by the likelihood ratio test becomes exact and3

we have
n1 + n2 − p

(n1 + n2 − 1)p
T2 ∼ Fp,n1+n2−p.

We have discussed one-way MANOVA here, but similar ideas apply to multivariate
extensions of two-way ANOVA and more complicated ANOVA designs.

17.2.2 When the variance matrices across conditions
are unequal, the likelihood ratio test may be applied.

It sometimes happens that the homogeneity assumption (iv) in the multivariate model
(17.2) is violated. The likelihood ratio test may still be used, and p-values may be
obtained by simulation.

Example 17.2 Testing Equality of Time-Varying Firing Rates One way to com-
pare the responses of a neuron across two or more experimental conditions is to pick
a window of time, compute the spike counts within that window for each of many
trials, and then apply a t-test or ANOVA or, possibly, a generalized version of these as
in Table 14.7. Sometimes, however, the firing rate may fluctuate across the recorded
time interval and it may not be clear what time window would be most appropriate.

Behseta and Kass (2005) and Behseta et al. (2007) suggested, instead, testing the
null hypothesis that the firing rate, as a varying function of time, remains the same
across the two or more conditions. The situation is illustrated in Fig. 17.2. In the
two upper left panels are PSTHs for a motor cortical neuron under two experimental
conditions together with smoothed versions of the PSTHs, obtained by methods
similar to those of Example 1.1 on p. 422.

The smooth curves in Fig. 17.2 may be considered estimated firing-rate functions,
which vary across time. Section 19.3.3 spells this out by defining what is called
the marginal intensity function λ(t) (Eq. (19.23), which is the trial-averaged firing

3 Here we are using T2 both as an observed value of a statistic based on data and as a random
variable that has a probability distribution. To be consistent with earlier notation, in using T2 as a
random variable we should replace ȳ1 and ȳ2 in (17.13) and (17.11) with Ȳ1 and Ȳ2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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Fig. 17.2 Left Responses of two motor cortical neurons. Shown are PSTHs together with smoothed
versions (black curves) obtained from BARS (Section 15.2.6). In the two upper panels are the
estimated firing-rate functions of neuron 1 under two different experimental conditions; for this
neuron the firing-rate functions look very similar. In the lower two panels are the corresponding
estimated firing-rate functions of neuron 2, which look clearly different. Adapted from Behseta
and Kass (2005). Right Responses of two neurons from the supplementary eye field during eye
movements in eight different directions. The first neuron has nearly flat firing-rate functions in all
directions, while the second neuron has modulated firing-rate functions which look clearly different.
Adapted from Behseta et al. (2007).

rate function (Eq. (19.25)) and, as explained there, the PSTH may be considered an
estimate of λ(t). To avoid confusion with our use, in this chapter, of λ to denote
an eigenvalue, we will here write the trial-averaged firing-rate function instead as
g(t). In the case of two firing-rate functions g1(t) and g2(t) under two experimental
conditions, the null hypothesis becomes H0 : g1(t) = g2(t) for all t.The smooth
curves in the left panels of Fig. 17.2 become estimates ĝ1(t) and ĝ2(t). Behseta and
Kass (2005) showed how a version of the T2 test in (17.13) could be defined from
the smooth curves ĝ1(t) and ĝ2(t), together with their estimated variance matrices
that come from the smoothing algorithm. As would be expected from Fig. 17.2, the
test was not significant for the firing-rate curves in the two upper left panels but was
highly significant for the firing-rate curves in the two lower left panels.

Behseta et al. (2007) went on to derive a likelihood ratio test for the more general
case in which there are I conditions (I ≥ 2) and the null hypothesis becomes H0 :
g1(t) = g2(t) = · · · = gI(t) for all t. This applies to the right-hand panels of
Fig. 17.2, which display smoothed firing-rate functions from a pair of supplementary
eye field neurons for eye movements in eight directions (I = 8). To treat this situation,
Behseta et al. 2007 had to allow for the possibility that the variance matrices in each
group might be different. Again, the test was not significant for the curves shown
for the first neuron but was highly significant for the curves shown for the second
neuron. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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17.3 Dimensionality Reduction

17.3.1 A variance matrix may be decomposed into principal
components.

The variability of an m-dimensional random vector X is summarized by4 its variance
matrix �. According to the spectral decomposition (see p. 617 of the Appendix), we
may decompose � in the form

� = PDPT (17.14)

where D is an m × m diagonal matrix and P is an m × m orthogonal matrix. As
discussed on p. 618, the equation xT �x = 1 defines an m-dimensional ellipse (or
ellipsoid) the axes of which are defined by the columns of P, which are eigenvec-
tors of �. The lengths of these axes are twice the square-root of the corresponding
eigenvalues, which are the diagonal elements of D.

Using (12.59) together with the orthogonality relationships PTP = PPT = Im,
where Im is the m-dimensional identity matrix, the transformed random vector

Y = PT X (17.15)

has variance matrix
V(Y) = PT (PDPT )P = D. (17.16)

Let us assume that the columns of P and diagonal elements of D have been ordered
so that D11 ≥ D22 ≥ · · · ≥ Dmm. These diagonal elements, which are eigenvalues
of �, are usually written λj = Djj, so that

λ1 ≥ λ2 ≥ · · · ≥ λm.

Then, if colj(P) is the jth column of P (the jth eigenvector of �) the jth component
Yj of Y is given by

Yj = colj(P)T X (17.17)

and its variance is
V(Yj) = colj(P)T X = λj. (17.18)

Also, when i �= j, Yi and Yj are uncorrelated. If X is multivariate normal, then Yi and
Yj are independent.

Now for any unit vector u we have

4 This assumes that the variance matrix is well-defined in the sense that every linear combination
aT X has finite variance. There exist multivariate distributions for which nonzero linear combinations
aT X have infinite variance. We do not consider these here.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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V(uTX) ≤ λ1. (17.19)

Details: Let w = PT u. Notice that

wT w = uT PPT u = uT u = 1

so that w is also a unit vector. We compute V(uT X):

V(uT X) = uT PDPT u = wT Dw =
m∑

j=1

w2
j λj

and because λj ≤ λ1, we get

m∑

j=1

w2
j λj ≤ λ1

m∑

j=1

w2
j = λ1.

�
Meanwhile, from (17.18) we have that the special case u = col1(P) gives

V(Y1) = λ1. (17.20)

Together, (17.19) and (17.20) show that Y1 is the linear combination of components
of X that maximizes the variance, among all linear combinations scaled so that
the coefficients define a unit vector. In this sense, colj(P), the first eigenvector of
�, defines the direction of maximal variation of the random vector X. The linear
combination Y1 is called the first principal component of � or, more loosely, the first
principal component of the distribution of X. Sometimes the term “first principal
component” is applied to the first eigenvector col1(P).

A similar argument shows that Ym is the linear combination of components of
X that minimizes the variance, among all linear combinations scaled so that the
coefficients define a unit vector. With a little more algebra it may also be shown
that among all unit vectors u that are perpendicular to col1(P), the variance V(uT X)

is maximized by u = col2(P). Similarly, colj(P) maximizes the variance V(uT X)

among all unit vectors u that are perpendicular to all of col1(P), col2(P), . . . , colk(P),
where k = j−1. The linear combination Yj is called the jth principal component of �.

To summarize, the transformation (17.15), based on the eigenvectors of �, pro-
duces a new version of X consisting of its principal components. The principal
components, given by (17.17), are rotated versions of the components of X that are
uncorrelated. If X is multivariate normal, then the principal components are mutually
independent. Furthermore, the principal components indicate directions of maximal
variation of X in the sense outlined above: the first principal component is in the direc-
tion of maximal variation of X, the second principal component is in the direction of
maximal variation of X subject to being orthogonal to the first principal component,
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the third principal component is in the direction of maximal variation of X subject
to being orthogonal to the first two principal components, and so on.

Similar analysis may be applied to the sample variance matrix S, defined on p. 90.
In this case, we speak of the principal components of S, or of the data vector. This
assumes S is of full rank m, i.e. it is positive definite (see p. 617 of the Appendix).

On p. 131 we noted that when a variance matrix � is less than full rank, some
of its eigenvalues are equal to 0. Suppose there are k positive eigenvalues. Then,
as noted on p. 131, � may be decomposed instead in terms of the first k eigenvec-
tors, corresponding only to the k positive eigenvalues. These eigenvectors define a
k-dimensional subspace in which the variation of X is concentrated. In the case of
a sample variance matrix S, which may be considered a noisy estimate of a theo-
retical variance matrix �, the smallest eigenvalues may not be numerically equal to
0 but several may be very close to 0. If we choose a suitable cutoff value c, below
which we will say that the smallest eigenvalues are, for practical purposes, the same
as 0, then we have effectively determined that there are k positive eigenvalues and
the data vector lies in a k-dimensional space. This is the starting point for the idea
of dimensionality reduction via principal components: to reduce the dimensionality
of a random vector we consider the subspace (the set of linear combinations of its
components) corresponding to the positive eigenvalues of its covariance matrix.

Example 17.2 (continued from p. 496) The analysis of Behseta and Kass (2005)
involved picking a grid of time values t1, . . . , tm at which to evaluate ĝ1(t) and ĝ2(t).
This produced m-dimensional data vectors (ĝ1(t1), . . . , ĝ1(tm)) and (ĝ2(t1), . . . , ĝ2
(tm)) that could be compared based on estimated variance matrices S1 and S2 that
came from the smoothing method. The authors showed how a statistic similar to T2

could be defined by replacing the matrix representing the variance of the difference
of means, ( 1

n1
+ 1

n2
)Spooled, with W = S1 + S2, where

S1 = V
(
(ĝ1(t1), . . . , ĝ1(tm))

)

S2 = V
(
(ĝ2(t1), . . . , ĝ2(tm))

)

which, by independence of the data under the two conditions, satisfies

W = V
(
(ĝ1(t1), . . . , ĝ1(tm)) − (ĝ2(t1), . . . , ĝ2(tm))

)
.

Specifically, letting

U1 = (ĝ1(t1), . . . , ĝ1(tm))

U2 = (ĝ2(t1), . . . , ĝ2(tm))

they wished to use a statistic T2
curves given by

T2
curves = (U1 − U2)

T W−1(U1 − U2). (17.21)
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However, because the grid comprised many time points (m was relatively large), the
matrix W was less than full rank, so that (17.21) could not be applied. The authors
therefore reduced dimensionality by choosing a suitable small positive number c
and retained only the eigenvalues λj of W for which λj > c. (The value of c will
be discussed below p. 501.) Let us suppose there were k retained eigenvalues, let
Dk be the k × k diagonal matrix having λj as its jth diagonal element, and let Pk
be the corresponding matrix of the first k eigenvectors of W . Although the matrix
W = PDPT was not of full rank, the k × k matrix Wk defined by

Wk = PkDkPT
k

was of full rank k and the new version of the statistic

T2
curves = (U1 − U2)

T W−1
k (U1 − U2)

was well-defined. �
The choice of the cutoff c, below which the remaining eigenvalues are treated

as equal to 0, is important. As c increases, additional eigenvalues are set to 0 and
dimensionality is further reduced. For a given theoretical variance matrix � we may
identify the eigenvalues that are zero and then consider the subspace corresponding
to the positive eigenvalues. But if all we have is a sample variance matrix S, which
we view as a noisy estimate of �, it may be difficult to determine how many of
the corresponding theoretical eigenvalues of � are 0. This gives rise to a dramatic
extension of the idea of dimensionality reduction: instead of finding a cutoff for
which the remaining eigenvalues are nearly 0, the value c could represent a cutoff
for which “most of the variation” in the data occurs in the remaining subspace. For
this purpose, a standard procedure is to compute the eigenvalues λ̂1, λ̂2, . . . , λ̂m of
S (which are considered to be estimates of λ1,λ2, . . . ,λm) and to declare that the
subspace corresponding to the first k eigenvalues contains a proportion q of the
variability in the data, where q is defined by

q = λ̂1 + λ̂2 + · · · + λ̂k

λ̂1 + λ̂2 + · · · λ̂k + λ̂k+1 + · · · + λ̂m
.

Data analysts often pick k such that 90 or 95 % of the variability is, in this sense,
contained in the subspace defined by the first k principal components.

Example 17.3 Postural Hand Synergies Santello et al. (1998) asked subjects to
shape their hand as if grasping and using many familiar objects. The authors defined
hand shape using 15 joint angles formed when the subjects were in a static grasp
position. The authors reported that roughly 90 % of the variability in these hand
shape vectors was accounted for by the first three principal components. They inter-
preted the 3-dimensional representation to be defined by “synergies,” meaning shape
combinations resulting from the redundancies in hand movement. �
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Fig. 17.3 Top left A segment of an extracellular electrode voltage recording. Top right A plot
overlaying the many waveforms from a well-isolated neuron. Bottom Three clusters, with cluster
boundaries, plotted using axes defined by the first two principal components. The boundaries sepa-
rating the clusters are defined by K−means clustering (see Section 17.4.3). Adapted from Lewicki
(1998).

Principal components are also used to visualize data. Let us write the data vectors
as x1, x2, . . . , xN . Typically, plots are made of the first two principal components,
that is, of the data pairs (col1(P)T xi, col2(P)T xi), for i = 1, . . . , N .

Example 17.4 Spike sorting Forebrain Recordings In Example 4.1 we described
the problem of spike sorting. Lewicki (1998) reviewed methods and issues and, to
illustrate, used a recording from a Zebra finch forebrain. An extracellular electrode
records voltage impulses from many different neurons, but each neuron contributes
waveforms that are very similar in shape. Several waveforms, apparently from the
same neuron, are overlaid in the left panel of Fig. 17.3. Spike sorting attempts to
put similar waveforms together into groups or clusters, under the assumption that
those within a given cluster are likely to emanate from a particular neuron. This
poses the statistical machine learning problem of clustering, which we discuss in
Section 17.4.3.

A spike waveform has a duration of roughly 1.5 ms. If voltage is sampled at 40 kHz
(kilohertz) each waveform is a vector of length 60. The data are then all of the wave-
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forms in a recording session, represented as vectors of length 60. Some methods of
clustering (including the mixture-of-Gaussians method discussed in Section 17.4.3)
have difficulty in high dimensions and it is advantageous to reduce dimensionality. In
addition, it can be useful to visualize the data in a two-dimensional space. Principal
components may be used for these purposes. The bottom panel of Fig. 17.3 displays a
set of the Zebra finch forebrain data plotted using the first two principal components.
Three distinct clusters appear, corresponding to waveforms that become identified
as coming from three distinct neurons. �

The use of principal components for any purpose is usually called principal com-
ponent analysis (PCA).

17.3.2 Methods other than PCA may be used to reduce
dimensionality.

Principal component analysis can be very effective in reducing dimensionality of
multivariate data that are more-or-less normally distributed. The assumption is that a
substantial fraction of the variation lies in a linear subspace, which may be obtained
from the principal components corresponding to the large eigenvalues of the variance
matrix. Alternatives include methods that attempt to find latent factors, possibly
while assuming the data to be non-normal, and methods that assume variation is
concentrated in nonlinear subspaces (concentrated in subspaces known5 as smooth
manifolds). We do not discuss methods aimed at finding smooth manifolds on which
the variation of X is concentrated, which come under the rubric manifold learning.
We very briefly describe two other approaches to dimensionality reduction.

The usual factor analysis model for an m-dimensional random vector X is given
in terms of an m × p matrix A and a p-dimensional random vector S, with p < m, by

X = AS + ε

where the components of S and ε satisfy Si ∼ N(0, 1) and εi ∼ N(0,σ2
i ), all

independently, for i = 1, . . . , m. (In this section we are using S to stand for a vector
“source” of variation, rather than a sample variance matrix.) The intuition is that
the variation of X is driven by a set of p latent factors, which are the unobserved
(thus, latent, as in Section 16.2) components of S, plus independent noise, and the
rows of the matrix A contain the coefficients, called factor loadings, that define the
combination of factors determining each component of X. Because a fit of the model
to data will produce latent factors, and the factor loadings become interpretable,
this conception is very appealing. It suffers, however, from a serious difficulty: the

5 A subspace N of Rm is a smooth manifold if at every point x ∈ N there is a local coordinate
representation in which all points near x in N have the form (u, v) where v = 0. In other words,
everywhere in N there is a local coordinate system that makes N look like a linear subspace. See
Appendix A of Kass and Vos (1997).

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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unknown parameters are the components of the variance matrix V(X) = � and for
any orthogonal matrix P, if we define B = AP, using (12.59) and PPT = Im we have

V(BS + ε) = BV(S)BT + Im = APImPTAT + Im

= AAT + Im

= �.

In other words, we obtain the same variance matrix using both B and A, so an
interpretation of factor loadings based on B would be neither more or less valid than
an interpretation based on A. There are thus infinitely many equivalent interpretations.
Various methods have been used to specify a unique factor loading matrix, but there
often remains a degree of arbitrariness that leaves many practitioners wary of resulting
interpretations.6

A related, but different approach is to begin by allowing the latent vector S to be
non-normal, but with independent components, in the linear latent variable model

X = AS,

where S and X are both m-dimensional and A is taken to be orthogonal. The idea is
that the independent components in S would drive the vector X through the linear
combinations in A. If S is assumed to be normally distributed, then so is X, and the
solution is given by PCA, i.e., S consists of the principal components. However, if S
is allowed to be non-normal it can be quite different.

Let us assume the data vector X = x has been standardized (or pre-whitened, see
p. 557) so that its sample variance matrix is the m-dimensional identity. We wish to
find A and s such that x = As. By orthogonality AT A = Im so that AT x = s. The
matrix A may be defined to minimize the mutual information among the components
of s = AT x, where mutual information is the Kullback-Leibler divergence between
the joint pdf and the independence pdf (estimated from the data), as in (4.28). That is,
the components of s are taken to be as close to independent as possible, in the sense
of mutual information. The resulting procedure is called independent components
analysis (ICA). It turns out that minimizing mutual information in AT s has the effect
of making the distribution of s as far from normal as possible (measured in terms of
entropy).

Example 17.4 Efficient coding of natural sounds Lewicki (2002) used ICA to
find components of auditory signals. Some of the components he found from human
speech are shown in Fig. 17.4. For comparison, response properties of cochlear
neurons are also displayed. There is a qualitative resemblance between the ICA
components and the neural response functions. Lewicki argued that ICA may capture
an efficient representation of auditory input. �

6 The most famous example is Spearman’s general intelligence index g, which is obtained from
factor analysis. See, e.g., Gould (1996); Devlin et al. (1997).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Fig. 17.4 Left panel components determined by ICA from human speech. Right panel response
functions from cochlear neurons. The latter used linear regression of the binary spike train (see
Chapter 19) on the input signal at multiple time lags (see p. 530). Adapted from Lewicki (2002).

17.4 Classification and Clustering

17.4.1 Bayes classifiers for multivariate normal distributions take a
simple form.

Suppose each of many m-dimensional observation vectors X = x comes from one of
K classes C1, C2, . . . , CK , and when it comes from class k the random vector X has
pdf fk(x), for k = 1, . . . , K . The problem of classification (see Section 4.3.4) is to
determine, for each observation X = x, the class to which x belongs. As we showed
in Section 4.3.4, the expected number of classification errors is minimized by using
a Bayes classifier. For each x the Bayes classifier finds the class Ck that maximizes
the posterior probability given by Eq. (4.38), which we repeat here:

P(C = Ck |X = x) = fk(x)πk∑m
i=1 fi(x)πi

. (17.22)

In the special case where, for each class k, we have X ∼ Nm(μk, �) for some μk
and �, the solution takes a simple form. If we write the ratio of posterior probabilities
for two classes j and k by plugging the pdfs given by Eq. (5.17) into (17.22), and take
logs, after some algebra we obtain

log
P(C = Cj|X = x)

P(C = Ck |X = x)
= log

fj(x)

fk(x)
+ log

πj

πk

= δj(x) − δk(x) (17.23)

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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where, for i = j, k

δi = xT �−1μi − 1

2
μT

i �−1μi + log πi. (17.24)

In other words, we have P(C = Cj|X = x) > P(C = Ck |X = x) if and only if
δj(x) > δk(x), so that the posterior probability is maximized by selecting the class
k that maximizes δi(x). The function δi(x) is a linear function of x. It is called the
linear discriminant function. Classification based on the linear discriminant function
is optimal when the classes are defined by multivariate normal distributions all having
the same variance matrix.

A similar argument may be applied to the case in which the classes continue to
be defined by multivariate normal distributions but the variance matrices are allowed
to be different. In this case the linear discriminant functions δi(x) are replaced by
quadratic functions of x, which are then called quadratic discriminant functions.

In practice, we do not know πk , μk or �k , even when the latter is assumed to
satisfy �1 = · · · = �K = �. Assuming we have preliminary data arising from
known classes from which to train the classifier (such data being called training
data), each prior probability πk may be estimated by the proportion of training data
vectors that fall in class k, i.e., number of training vectors within class k divided by
the total number of training data vectors; and we may replace the theoretical means
and variance matrices μk and �k by the corresponding sample mean and variance
calculated within class k. When, for simplicity, it is assumed that �1 = · · · = �K =
� the sample variance matrix is pooled across classes as in MANOVA, i.e., the matrix
Spooled defined in (17.9) is used, where the groups become the classes. The resulting
classification method is called linear discriminant analysis (LDA).

Example 4.7 (continued from p. 494) To classify movement directions based on the
MEG sensor signals within a 200 ms time window (see Fig. 17.1), Wang et al. used
LDA. With this approach the authors reported 4-direction classification accuracies
(with chance being 25 %), among nine subjects, ranging from 51.3 to 88.6 % (with
a mean of 67 %) for overt movement and 39.6–95 % (with a mean of 62.5 %) for
imagined movement. �

LDA often performs well for noisy data, even when the variation is strikingly
non-normal. However, for highly structured data alternative methods can do better.
See Section 17.4.2.

17.4.2 Bayes classifiers are not always practical.

The optimal performance of Bayes classifiers depends on the use of the pdf fk(x)
that generates the m-dimensional random vector X when it comes from class k. In
practice, fk(x) must be estimated from training data which, as m increases, becomes
a hard problem unless strong assumptions are made, such as multivariate normality.
Even with multivariate normality there are m(m+1)/2 parameters to be estimated in
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the variance matrix �, and for large m the data may be insufficient to get good esti-
mates. Sometimes � is assumed to be diagonal, so that the components of X become
independent. The resulting Bayesian classification procedure is then called näive
Bayes, which is fast and sometimes effective but it excludes potentially important
correlation among the components of X. In general, as the match of the estimated pdfs
to the variation in the data deteriorates, the performance of any Bayes classifier may
decline. This leads to the problem of designing alternative methods of classification.
We describe two popular approaches.

When the data vector satisfies X ∼ N(μk, �) for each class Ck , with k = 1, . . . , K ,
Eqs. (17.23) and (17.24) give the form of the Bayes classifier in terms of the linear
discriminant function. Let us consider, first, the case of binary classification, where
k = 1, 2. Examining (17.23) and (17.24), if we combine the terms that do not depend
on x we may write (17.23) in the alternative form

log
P(C = C1|X = x)

P(C = C2|X = x)
= α0 + xT α

where α = �−1(μ1 − μ2) is an m-dimensional vector. Because, in this binary case,
P(C = C2|X = x) = 1 − P(C = C1|X = x), we have

log
P(C = C1|X = x)

1 − P(C = C1|X = x)
= α0 + xT α. (17.25)

Equation (17.25) puts the linear discriminant function in the form of a logistic regres-
sion model for binary data, as given by Eq. (14.6), i.e., we could rewrite (17.25) as

log
P(C = C1|X = x)

1 − P(C = C1|X = x)
= β0 + xT β (17.26)

and this suggests solving the binary classification problem using logistic regression.
More specifically, given training data, the parameters β0 and β may be estimated
using logistic regression applied to the training data to get ML estimates β̂0 and β̂
(as outlined in Section 14.1.2) and then observations may be classified by replacing
β0 and β with β̂0 and β̂ in (17.26) and then assigning an observation to class 1 when-
ever the function in (17.26) is positive. This method is called a logistic regression
classifier. The method may be extended to multiple classes using a multi-category
generalization of logistic regression, often called polytomous regression or multino-
mial logistic regression.

The model in (17.25) looks the same as the model in (17.26) but according to
Section 17.4.1, in applying LDA using (17.25) we would estimate the parameters
using the sample means and pooled variance matrix. On the other hand, logistic
regression would estimate the parameters using maximum likelihood, which is dif-
ferent. The distinction is that logistic regression does not make the assumption of
multivariate normality and, instead, treats the x values as fixed.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_14


508 17 Multivariate Analysis

The general wisdom is that logistic regression classifiers often perform similarly
to LDA classifiers. See Hastie et al. (2009) for additional discussion. Although the
form of the right-hand side of (17.26) is linear, logistic regression can accommodate
complicated nonlinear relationships using the methods discussed in Chapter 15.

A different idea lies behind the support vector machine (SVM) classifier, which we
explain briefly by first describing the perceptron neural network model. A perceptron
model is a function that takes a set of input variables x1, . . . , xm and performs a linear
computation followed by binary thresholding:

ν = φ(u)

u =
(

m∑

i=1

wixi

)
− b (17.27)

where w1, . . . , wm are a set of weights associated with that specific perceptron, and
φ(u) = 1 when u ≥ 0 and φ(u) = −1 when u < 0. This is a binary classifier in the
sense that a vector x = (x1, . . . , xm) is put into class 1 when φ(x) = 1 and into class
2 when φ(x) = −1.

Let us now consider the performance of the perceptron classifier when the data
may be separated cleanly into two classes.

Suppose w is an m-dimensional vector. The set {x ∈ Rm : 〈x, w〉 = 0} is the
(m − 1)-dimensional plane perpendicular to the vector w. It separates two halves of
Rm, namely the sets {x ∈ Rm : 〈x, w〉 > 0} and {x ∈ Rm : 〈x, w〉 < 0}. It is thus
called a separating hyperplane. The hyperplane S0 = {x ∈ Rm : 〈x, w〉 = 0} passes
through the origin, i.e., the m-dimensional 0 vector is in this hyperplane (0 ∈ S0). If
v ∈ Rm we can define Sv = v + S0 to be the set of all vectors in S0 added to v. This
Sv is another separating hyperplane: it may be written

Sv = {x ∈ Rm : 〈x − v, w〉 = 0} = {x ∈ Rm : 〈x, w〉 = b}

where b = 〈v, w〉 and it separates the sets {x ∈ Rm : 〈x, w〉 > b} and {x ∈ Rm :
〈x, w〉 < b}.

The separating hyperplane concept applies to data when one set of data vectors lies
in a set {x ∈ Rm : 〈x, w〉 > b} and another set of data lies in a set {x ∈ Rm: 〈x, w〉 < b}.
See Fig. 17.5. If two such sets of data come from two distinct classes, then the
classifier defined by (17.27) would perfectly classify such data.

The original perceptron learning rule attempted to estimate or “learn” the weights
w1, . . . , wm from data in order to perform classification. The simple method we have
described would be considered ineffective for general-purpose classification, partly
because data are not usually perfectly separated in this way and partly because there
is not a unique solution: as seen in Fig. 17.5, there are infinitely many separating
hyperplanes that fall in the shaded region.

Both of these problems are overcome by classifiers known as support vector
machines (SVMs). Lack of uniqueness is solved by finding the separating hyperplane
that maximizes the distance to the closest point in each class. This is found in terms

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 17.5 Optimal classification boundary and support vectors for a problem with separable classes.
Hypothetical data from two classes are indicated by x and o. The dark black line is defined by an
optimal classifier that separates the two classes of data. However, any parallel line falling within the
gray region would produce the same classification of the given data. The points labeled “support
vectors” lie on the boundary of this gray region. The optimal classifier is then determined by
maximizing the distance from the separating line to each of the two boundaries of the gray region,
which are determined by the support vectors.

of the support vectors, which are illustrated in Fig. 17.5. Separation of data vectors
is improved by using transformations to higher-dimensional spaces, analogously to
what is done in regression when one transforms a single variable x to a polynomial
(see Section 12.5.4) or a spline (see Section 15.2). Such transformations take the
form h(x) = (h1(x), h2(x), . . . , hM(x)). As the space gets larger, it becomes easier
to separate the data vectors from the two classes. One might expect difficulties in
implementation, and problems with over-fitting, but there is a so-called kernel trick
that makes the method7 practical. It turns out that all of the required computations
can be carried out in terms of a kernel function K(u, v) that specifies an inner product
between m-dimensional vectors u and v,

K(u, v) = 〈h(u), h(v)〉. (17.28)

For example, if we assume m = 2, so that u = (u1, u2) and v = (v1, v2), and we
define

K(u, v) = (〈u, v〉)2

then (17.28) is satisfied when h(x) (for x = (x1, x2)) is defined by

h(x) = (x2
1,

√
2x1x2, x2

2).

This simplification allows theory and implementation to be developed.

7 This use of “kernel” is different than that in Section 15.3.1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 17.5 Predicting Reading Improvement in Dyslexic Children from
fMRI To see whether fMRI or diffusion tensor imaging (DTI) might predict future
gains in reading ability among dyslexic children, Hoeft et al. (2011) followed 20
such subjects for 2.5 years. The authors split the subjects into two groups based
on their improvement in single-word reading skill across the period of observation
(high improvement vs. low improvement). They then applied SVM to whole-brain
fMRI, and also DTI, to see whether these imaging modalities could be used to pre-
dict outcome. They reported 92 % classification accuracy from leave-one-out cross-
validation, based on the fMRI data. �

In many situations SVM classifiers behave similarly to logistic regression classi-
fiers, but they are in principle very flexible and sometimes outperform other methods.
See Hastie et al. (2009) for additional discussion.

17.4.3 Multivariate observations may be clustered into groups.

In Section 17.4.1 we showed that when a data vector X in class k satisfies X ∼
Nm(μk, �), the Bayes classifier takes the simple form of linear discriminant analysis,
given in (17.23) and (17.24). Under the multivariate normality assumption, together
with homogeneity of the variance matrices, linear discriminant analysis solves the
problem of optimally assigning observations to classes. This, however, requires that
the class parameters are known—or that they can be estimated from training data
and then treated as known. Estimating parameters from training data is an instance
of supervised learning because the knowledge of class membership in the training
data could be considered a form of supervision. The corresponding unsupervised
problem of putting data into classes with no prior knowledge of class structure is
called clustering, and the resulting empirically-defined classes are called clusters.
We provided an illustration of clustering in Example 17.4 on p. 502.

To discuss the problem in generality, let us assume there are K classes, that X is
drawn from class k with probability πk , and that, conditionally on X being drawn
from class k, X follows an m-dimensional multivariate normal distribution with mean
μk and variance matrix �k . We could write this latter statement as X|C = k ∼
Nm(μk, �k). We then have a two-stage distribution for X, the first stage involving the
distribution of class membership C and the second stage involving the multivariate
normal distribution. Taking account of both of these, the marginal distribution of X
(after marginalizing over the distribution of C) has pdf found by averaging over C:

f (x) =
K∑

k=1

πkfk(x;μk, �k) (17.29)

where fk(x;μk, �k) is the Nm(μk, �k) pdf given by (5.17). This is a mixture model
in the sense that the K multivariate normal distributions are “mixed” according to

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the prior probabilities π1, . . . ,πK . The distribution defined by (17.29) is a mixture
of Gaussians model, as in the illustration in Section 8.4.5. Mixture of Gaussians
clustering applies ML estimation to the collection of observations x to estimate
the parameters μ1, . . . ,μK , �1, . . . , �K and the prior probabilities π1, . . . ,πK , and
then uses the resulting Bayes classifier to assign each observation x to a cluster. As
discussed in Section 8.4.5, ML estimation in mixture of Gaussian models is often
implemented using the EM algorithm. Because, in practice, the number of clusters is
not known in advance, the model is typically fitted for several different values of K
and then a model selection procedure such as AIC or BIC is used (see Section 12.5.7).

In mixture of Gaussians clustering the variance matrices �1, . . . , �K must be
estimated from the data, and sometimes the data are too sparse to get good estimates
of the many variance and covariance parameters. In this case the variance matrices
are often assumed8 equal, �1 = · · · = �K . A more extreme assumption is to take
�1 = · · · = �K = σ2Im for some σ, i.e., to assume all the variance matrices are
equal to a multiple of the m-dimensional identity matrix. This turns out to be closely
related to another method, known as K-means clustering.

In K-means clustering it is assumed there are K clusters, with the kth cluster
having a mean μk . The idea is to put the data vector x into the cluster having its mean
closest to x. Thus, after the procedure is applied, so that the clusters are determined
and the means μk are fixed (by setting them equal to estimated values), every data
vector x in cluster j will satisfy

||x − μj|| = min
k=1,...,K

||x − μk ||. (17.30)

However, initially the clusters are not known. They are determined iteratively. After
an arbitrary initialization that assigns each data vector to one of K clusters, the
following steps are iterated:

1. For k = 1, . . . , K , the mean vectors μk is set equal to the sample mean x̄k of the
vectors assigned to cluster k;

2. Each x is assigned to the cluster that minimizes distance as in (17.30).

At each iteration, this algorithm will reduce the sum of squared distances ||x −μj||2,
summed over all data values, with μj being the mean of the cluster to which x
is assigned. The algorithm converges to a local minimum of the sum of squared
distances (it may not be the global minimum).

Example 17.4 (continued from p. 502) The three clusters in the bottom panel of
Fig. 17.3 were identified by K-means clustering (here, with K = 3). Three boundary
lines are also drawn in Fig. 17.3. Each line is equally distant from the sample means
in two of the clusters. �

The relationship of K-means clustering to mixture-of-Gaussian clustering is
spelled out in many sources (e.g., Hastie et al. 2009). If it is assumed that �1 =

8 Each matrix �k has m(m + 1)/2 parameters so there are Km(m + 1)/2 parameters when the
matrices are allowed to be different and only m(m + 1)/2 if they are assumed to be equal.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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· · · = �K = σ2Im for some σ, and we write the ith data vector as xi, for i = 1, . . . , n,
then the maximum likelihood estimate of μk in the mixture-of-Gaussians model, for
k = 1, . . . , K , is given by

μ̂k =
∑n

i=1 γikxi
∑n

i=1 γik
(17.31)

where γik is the posterior probability that observation xi is in class k (see Eq. (8.48)),
and is estimated from the data (see p. 217). This is not the same estimate as the
sample mean x̄k over the observations within cluster k. However, when the posterior
probabilities become close to 0 and 1 we get

μ̂k ≈ x̄k .

This occurs when the data form highly distinct clusters or, equivalently, when σ is
close to 0 relative to the distance between the means of the clusters.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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