
Chapter 13
Analysis of Variance

Many experiments examine the effects of multiple experimental conditions. When
each measured response from a subject is a single-number, the data are usually ana-
lyzed with analysis of variance (ANOVA). The name has a certain logic because, as
we will see, the technique rests on a breakdown of sums of squares (assessing varia-
tion), but the null hypothesis typically takes the theoretical means to be equal among
the experimental conditions, specifying no treatment effect, so that one may think of
the methodology as an investigation of means. The general ideas developed in Chap-
ters 10 and 11 carry over to ANOVA. One additional, very important notion involves
the structure of the experiment. This is spelled out in Section 13.1. In Section 13.2
we indicate the way standard ANOVA models may be considered special cases of
linear regression, as treated in Section 12.5. This is important conceptually and com-
putationally. In Section 13.3 we take up nonparametric methods in ANOVA and in
Section 13.4 we discuss causality and the role of randomization, which is especially
relevant in clinical studies.

13.1 One-Way and Two-Way ANOVA

ANOVA can take many forms, depending on the design of the experiment and the
resulting structure of the data. We consider here only the two simplest kinds of
ANOVA and introduce them with a pair of examples.

Example 13.1 Stimulation and development of motor control Zelazo et al.
(1972) conducted a study to see whether stimulation of infants during the first eight
weeks of life could make them walk earlier. The stimulation involved a simulation
of walking in which a parent held the baby in a manner that would make it respond
reflexively with walking-type leg movements. The data in Table 13.1 are ages in
months at which 24 infants were judged to begin walking.1 Each 1-week-old infant

1 For pedagogical simplicity, we wanted the number of subjects per group to be equal. This is
not required for ANOVA; it merely makes things a bit easier to discuss. In the original data there were
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Table 13.1 Data from motor control experiment of Zelazo et al. (1972).

Active-exercise Passive-exercise No-exercise 8-Week control
Group Group Group Group

9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00
10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 12.35

Entries are ages at which each of 24 infants began walking. The treatment group is “active-exercise”
and the other three groups served as controls
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Fig. 13.1 Display of data from Table 13.1. The age of walking is shown for each of the four
conditions, with 1 being active exercise, 2 being passive exercise, 3 being no exercise, and 4 being
the 8-week control. Each larger plotted dot indicates the presence of 2 identical values of age within
a given condition (so that for each condition there are 6 observations at 5 locations on the graph).

was assigned to one of four groups, namely, an experimental group (active-exercise)
and three control groups (passive-exercise, no-exercise, 8-week control).2 The issue
is whether the active-exercise group walked earlier than the controls. From Fig. 13.1
it may be seen that the active-exercise group infants had somewhat earlier reported

(Footnote 1 continued)
only 5 subjects in the 8-week control group. We therefore added the 12.35 value to the 8-week
control group.
2 Infants in the active-exercise group received stimulation of the walking and placing reflexes during
four 3-minute sessions that were held each day from the beginning of the second week until the end
of the eighth week. The infants in the passive-exercise group received equal amounts of gross motor
and social stimulation as those who received active-exercise, but unlike the active-exercise group,
these infants had neither the walking nor placing reflex exercised. Infants in the no-exercise group
did not receive any special training, but were tested along with the active-exercise and passive-
exercise subjects. The 8-week control group was tested only when they were 8 weeks of age; this
group served as a control for the possible helpful effects of repeated examination.
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Table 13.2 Data from finger tapping experiment of Scott and Chen (1944).

Drug Subject No.
1 2 3 4

Pl 11 56 15 6
Th 26 83 34 13
Ca 20 71 41 32

Entries are tapping rates. Each of 4 subjects received all 3 treatments (drugs): placebo, theobromine,
and caffeine

ages of walking than those in the three control groups. However, there is quite a
bit of variability, with one of the 6 infants in the active group being relatively late
(13.0) and one in the no-exercise group being quite early (9.0). Thus, it’s hard to tell
whether there is a consistent pattern. �

Notice the layout of the data in the example above: it makes sense to display them
in columns, with each column identified with a different treatment. The next example
is different.

Example 13.2 Finger tapping in response to stimulants Scott and Chen (1944)
conducted an experiment on finger tapping in response to orally-administered stimu-
lants. Four subjects were each given three different treatments and then their finger-
tapping rates were analyzed. The treatments were caffeine (Ca); 1-ethyltheobromine
(Th: the stimulant in chocolate, similar to caffeine); and a placebo (Pl). The tapping
rates (rate minus 440, with “rate” not defined but possibly taps per minute) are shown
in Table 13.2.

In this case we would be interested in comparing the three treatments. The mean
tapping rates for Pl, Th, and Ca are 22, 39, and 41. Is this evidence that theobromine
and caffeine led to increased tapping rates? �

An important distinction between the two experiments above is that in the finger
tapping experiment in Example 13.2 each subject received all of the treatments.
Thus, the 12 data values were produced by only 4 subjects in the experiment, not
12. In the motor control experiment of Example 13.1, each subject received only one
treatment, and the 24 data values came from 24 subjects. The two situations require
related but different statistical methods. Table 13.1 is sometimes called a one-way
table and is treated by one-way ANOVA while Table 13.2 is called a two-way table
and is treated by two-way ANOVA.

13.1.1 ANOVA is based on a linear model.

The one-way ANOVA model is

Yij = μ + αi + εij, (13.1)
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where Yij is the jth observation in the ith group, μ + αi is the mean for the ith group
and εij is the error for the jth observation in the ith group (the discrepancy between Yij

and μ + αi). Here, μ is the overall mean (the “grand mean”) and αi is the increment
added to that overall mean in obtaining the mean for the ith group, so that

1

I

I∑

i=1

μ + αi = μ

and this implies
I∑

i=1

αi = 0. (13.2)

We take the number of groups to be I , so that i = 1, 2, . . . , I , and write the number
of observations in group i as ni. In some places we also write the ith group mean as

μi = μ + αi.

The one-way ANOVA assumptions are

(i) the ANOVA model (13.1) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv) V(εi) = σ 2 for all i (homogeneity of error variances), and
(v) εi ∼ N(0, σ 2) (normality of the errors).

Note that these are the same assumptions as those used in linear regression (apart
from the replacement of (12.5) with (13.1); see p. 315). As a result, residual analysis
may be used in very much the same way as in regression. Indeed, mathematically,
analysis of variance may be considered a special case of linear regression. We return
to this in Section 13.2.

The purpose of this model is to provide a basis for statistical comparison of the
group means μ + αi. That is, we ask whether there is evidence that the means are
different and, if so, we can estimate how different they are. Formally, we want to test
the null hypothesis that the groups means are equal:

μ + α1 = μ + α2 = · · · = μ + αI .

The usual way the hypothesis is stated is as follows:

H0 : αi = 0 (13.3)

for all i, which implies that the group means are equal. It also satisfies the condition
that the grand mean μ remains the expectation of Yij under H0.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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13.1.2 One-way ANOVA decomposes total variability into average
group variability and average individual variability,
which would be roughly equal under the null hypothesis.

At the beginning of Section 12.5.2 we wrote the basic signal and noise decomposition
for regression,

SST = SSR + SSE.

In ANOVA we decompose the variability in the data similarly into two pieces, replac-
ing SSR with a treatment or “group” sum of squares SSgroup. To test H0 defined by
(13.3) we compute a measure of the average amount of variability due to the groups,
and an average amount of variability due to error, then compare these. Under the null
hypothesis that the group means are equal, there should be no systematic variability
due to groups, so that the variability we see in our “average variability due to groups”
is the result of background variability in the measurements themselves, that is, the
error variability. In other words, the average variability due to groups should be about
the same size as the average variability due to error. Thus, to test H0 we use a ratio of
these measures of average variability and when the ratio is much larger than 1 there
is evidence against H0, in favor of there being differences among the groups. We first
specify and illustrate the procedure and then indicate its motivation as a likelihood
ratio test.

We begin with the total sum of squares

SST =
∑

i,j

(yij − ȳ..)
2

where the double dots in the subscript on y.. indicate that the mean is being taken over
all the values of y, averaging across both rows and columns. In the infant exercise
example we average across all 24 values. We also define the error (residual) sum of
squares to be

SSE =
∑

i,j

(yij − ȳi.)
2

where the single dot in the subscript on yi. indicates that the mean is being taken
within the ith group. In the infant exercise example there would be 4 means ȳi. for
i = 1, 2, 3, 4 and each would be an average across all 6 values in the appropriate
column. The group sum of squares is then

SSgroup = SST − SSE.

We next obtain averages of the group and error sums of squares by dividing by their
respective degrees of freedom, dfgroup and dferror . Because of the constraint (13.2)
we have dfgroup = I − 1 and, with n being the total number of observations, this
leaves n − 1 − (I − 1) = n − I degrees of freedom for error, i.e., dferror = n − I .

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Table 13.3 Group means and standard deviations for the data in Example 13.1.

Group N Mean St. Dev.

Active exercise 6 10.1 1.5
Passive exercise 6 11.3 1.9
No exercise 6 11.7 1.5
8-week control 6 12.35 .86

Table 13.4 Analysis of Variance table for data in Example 13.1.

Source DF SS MS F p-value

Groups 3 15.74 5.25 2.40 0.098
Error 20 43.69 2.18
Total 23 59.43

The table lists each source of variability, the degrees of freedom for that source, and the sum of
squares. For the groups and errors sources the mean squares (given by (13.4)) are also shown, and
the F-statistic (given by (13.5)) and p-value are shown on the groups line

The resulting averages, called the group mean square and the mean squared error,
are defined by

MSgroup = SSgroup/dfgroup

MSE = SSE/dferror . (13.4)

Finally, we obtain from these the F-ratio

F = MSgroup/MSE. (13.5)

Under the null hypothesis this ratio follows an Fν1,ν2 distribution, where ν1 = dfgroup

and ν2 = dferror which is used to compute the p-value. Equations (13.4) and (13.5)
should be compared with Eq. (12.49).

Note that in a certain sense “analysis of variance” is a misnomer. We are really
analyzing several means, and determining whether there’s evidence that they are
different. However, the basic tool for doing so is a comparison of sums of squares, that
is, a comparison of different sources of variability, which explains the terminology.

Example 13.1 (continued from p. 361) The means and standard deviations for
the 4 groups are shown in Table 13.3, and the basic ANOVA breakdown is given in
Table 13.4. The pooled standard deviation is s = √

2.18 = 1.48. Because F = 2.40
on 3 and 20 d.f. with p = .098 there is no evidence of any differences among the
means. Although from the sample means it may appear that the mean age of walking
is somewhat smaller for the first group than those for the control groups, according to
the ANOVA F-test there is enough variability in the data that any differences among
the means are consistent with chance fluctuation. As we mentioned on p. 361, there

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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are a couple of points visible in Fig. 13.1 that increase the variability and, thus, the
denominator of the F-ratio. We will analyze these data further on p. 368. �

We now indicate how the F-test in (13.4) and (13.5) arises as a likelihood ratio
test by considering the simpler ANOVA problem in which σ is known. Let us write
the group means in the form μi = μ + αi. The pdf for observation yij is

f (yij) = 1√
2πσ

e− 1
2

(yij−μi)
2

σ2

and from the joint pdf

f (y11, y12, . . . , yInI ) =
∏

ij

1√
2πσ

e− 1
2

(yij−μi)
2

σ2

the loglikelihood function (after dropping the constant involving
√

2πσ ) is

�(μ1, . . . , μI ) = − 1

2σ 2

∑

i,j

(yij − μi)
2. (13.6)

Under H0 we have μi = μ, for i = 1, . . . , I and the loglikelihood function becomes

�(μ) = − 1

2σ 2

∑

i,j

(yij − μ)2. (13.7)

When we maximize the loglikelihood in (13.6) we get

μ̂i = ȳi.

and

�(μ̂1, . . . , μ̂I ) = − 1

2σ 2

∑

i,j

(yij − ȳi.)
2

= − 1

2σ 2 SSE.

When we maximize the loglikelihood in (13.7) we get

μ̂i = ȳ..

and
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�(μ̂) = − 1

2σ 2

∑

i,j

(yij − ȳ..)
2

= − 1

2σ 2 SST .

The log of the likelihood ratio LR in (11.6) is

log LR = �(μ̂) − �(μ̂1, . . . , μ̂I )

and multiplying this by −2, and combining with (13.7) and (13.6) after inserting the
MLEs we get

− 2 log LR = 1

σ 2 SST − 1

σ 2 SSE

= SSgroup

σ 2 . (13.8)

From (13.8), the likelihood ratio test will reject H0 when SSgroup is sufficiently large
relative to σ 2.

The ANOVA F-statistic (13.5) arises from3 (13.8) when we estimate σ 2 by MSE
and normalize SSgroup by its degrees of freedom, which is done for mathematical
convenience (the ratio of MSgroup to MSE follows an Fν1,ν2 distribution).

13.1.3 When there are only two groups, the ANOVA F-test reduces
to a t-test.

In the special case of only two groups with two means μ1 and μ2, the null hypothesis
H0: μ1 = μ2 may be tested with a t-test. This turns out to be equivalent to the ANOVA
F test and, in fact, the square of the t-statistic is equal to the F-statistic (compare the
similar statements about regression on p. 337).

Example 13.1 (continued from p. 366) From the pooled standard deviation s =
1.48 reported on p. 366 we get the standard error of each mean SE = s/

√
6 = .60.

Comparing the active exercise group mean with the eight-week control we have a
difference of 12.35 − 10.1 = 2.25. Using the pooled estimate s, this difference has

a standard error of SE(X̄4 − X̄1) = s
√

1
6 + 1

6 = .853 and the t ratio is

tobs = 2.25/.853 = 2.6

3 When σ is unknown the derivation is slightly different because σ must be included among the
parameters in the loglikelihood function, so its MLE must be found and the likelihood ratio is
different; but the end result is equivalent to the F-test.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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analogously with Eq. (10.19). Here, however, we are using all the data from the 4
groups to compute s, rather than only the data from two groups we are currently
comparing. Therefore, we have 20 degrees of freedom going into s and thus 20
degrees of freedom for the t-test (rather than 10 degrees of freedom if we were using
only the 2 groups). We obtain p = .017.

An alternative analysis compares the active exercise group with the other three
groups, all of which could be considered controls. In this case, we would combine
the data from the 3 control groups and thereby end up with two groups: the active
exercise group and a single control group, the latter now having 18 observations.
We would then use the “two-sample t” analysis, as in (10.21). Carrying this out,
we obtain (i) a test of the null hypothesis that the means for these two groups are
equal, which we may write as H0: μactive − μcontrols = 0, and (ii) a 95 % CI for the
difference between the means μactive − μcontrols.

First, we find the two means and standard errors to be 10.12 ± 0.59 and 11.81 ±
.34, which gives a t-ratio of 2.46 on 22 degrees of freedom and p = .022. Second,
applying the formula for the 95 % CI in Eq. (7.31) we find our 95 % CI for the decrease
in mean age of walking for the active group compared with controls to be (.26, 3.1)
months.

The conclusions from this analysis are different from those on p. 366, based on
the F-test. We summarize on p. 374. �

13.1.4 Two-way ANOVA assesses the effects of one factor while
adjusting for the other factor.

On p. 363 we described the distinction between one-way and two-way tables by
contrasting Examples 13.1 and 13.2. To introduce the two-way analysis let us first
look further at the data in Example 13.2.

Example 13.2 (continued from p. 363) Figure 13.2 displays the tapping rates for
the three drugs across the four subjects. We can see that the subjects have very
different tapping rates, but for all four of them the placebo rate is noticeably lower
than that obtained with theobromine or caffeine. Also, the comparison of rates for
theobromine and caffeine is inconsistent across subjects. The quantitative analysis,
below, will support these qualitative observations. �

The two-way ANOVA model is

Yij = μ + αi + βj + εij,

where Yij is the observation for the ith treatment on the jth subject, μ + αi + βj

is its mean, and εij is the error for the ith treatment and jth subject. Here, αi is the
increment added to the overall mean μ in obtaining the mean for the ith treatment
while βj is the increment added to overall mean in obtaining the mean for the jth
subject. We say that αi is the effect for the ith treatment and βj the effect for the

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Fig. 13.2 Tapping rates displayed with identifiers “Pl” for placebo, “Ca” for caffeine, and “Th”
for theobromine.

Table 13.5 Analysis of Variance table for data in Example 13.2.

Source DF SS MS F p-value

Drugs 2 872 436 7.88 .021
Subjects 3 5478 1826 33 .0004
Error 6 332 55.3
Total 11 6682

The form of the table is similar to that in Table 13.4, except there are now F-ratios and p-values for
both drugs and subjects

jth subject. A common terminology replaces the subjects with blocks, so that one
would say βj is the effect for the jth block. This terminology comes from the origin
of ANOVA in agricultural field trials, where it referred to a block of land in a field.

As in one-way ANOVA, in two-way models the null hypothesis of interest is
H0: αi = 0 for all i. In the two-way case it is also possible to formulate the hypothesis
that all the βj’s are zero, as well. This is not usually an object of investigation in
experiments on multiple subjects because it would typically not be plausible for
the subjects all to react the same way to the various treatments. However, statistics
packages print out F-statistics and p-values for both hypotheses, so it’s important to
keep them straight (Table 13.5).

Example 13.2 (continued from p. 369) In the ANOVA for the finger tapping data
there are two “factors” to be considered, drugs and subjects. Here, F = 7.88 on
2 and 6 d.f. with p = .021 indicates some evidence that the treatment means are
different. There is also an F-ratio for subjects, which in fact is much larger and has a
considerably smaller p-value: in this example, there is a very substantial difference
among the subjects. In particular, the second subject has a much higher tapping rate
than the others. The variability among subjects might be important to the conclusions
one would wish to draw.
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We may say something about the means, as well. For the three groups the mean
tapping rates are, respectively, 22, 39, and 41. Standard errors are found by plugging
in an estimate s of σ and again applying SE = s/

√
n. We have s = √

MSE =√
55.3 = 7.44. Since there are 4 observations per treatment group, we use n = 4 and

get 22 ± 3.7, 39 ± 3.7 and 41 ± 3.7. Clearly, the caffeine and theobromine groups
have tapping rates substantially above that for the placebo group. �

13.1.5 When the variances are inhomogeneous across
conditions a likelihood ratio test may be used.

The ANOVA F-test remains accurate for modest deviations from the homogeneity
of variance assumption, which is assumption (iv) on p. 364. A rough rule of thumb
is that as long as each ratio of pairs of standard deviations for two different groups
is less than 3, the F-test should be accurate. However, in extreme cases where group
i has a standard deviation σi that is much larger than the standard deviation σk for
group k, there will be much more information in an observation yij about μi than
in ykj about μk . In such situations the usual F-statistic fails to take account of the
differing contributions of data from different groups to the assessment of H0 and it no
longer has an F distribution. The problem may be fixed by re-deriving the likelihood
ratio statistic and applying a permutation or bootstrap test. See Behseta et al. (2007)
and references therein.

Example 4.7 (continued from p. 306) In examining directional information at each
MEG brain source Wang et al. (2010) found grossly different standard deviations for
the 4 different movement directions. They therefore applied the procedure of Behseta
et al. (2007) to get likelihood ratio test statistics at every source and every time point.
This was also used by Xu et al. (2011) within the permutation test described briefly
on p. 306. �

13.1.6 More complicated experimental designs
may be accommodated by ANOVA.

We have reviewed the fundamental ideas in ANOVA but have specified the procedures
only in the two simplest cases involving one or two experimental factors. In many
studies, especially involving human subjects, the designs can be more complicated.
Sometimes they involve multiple factors, e.g., when there are 3 factors the analysis
involves 3-way ANOVA. In Example 13.2 each subject’s tapping rate was measured
repeatedly, across 3 conditions. This is a special case of a repeated measures design.
In many situations each subject is measured for all treatment conditions, but there
is another factor, such as gender, that applies to groups of subjects. Such repeated-
measures designs require specialized ANOVA methods. An additional possibility is
that subjects, or other factors, may be considered themselves to provide an interesting
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source of variation. In this case their effects may be modeled as random variables.
This generates random-effects models and they too require specialized techniques.
We discuss random-effects models briefly in Chapter 16.

13.1.7 Additional analyses, involving multiple comparisons,
may require adjustments to p-values.

Because ANOVA involves comparison of several means, many possible hypotheses
may be of interest.

Example 13.1 (continued from p. 368) We have already looked at the data on
development of motor control in two different ways. On p. 366 we used ANOVA
to test the hypothesis of no differences among the mean age of walking, H0: μ1 =
μ2 = μ3 = μ4. Then, on p. 368, we reported two further analyses. The first used a
t-test to test the null hypothesis of no difference between the active exercise group
and the eight-week control group mean ages of walking, H0: μ1 = μ4 with a t-test.
The second used a t-test to test the null hypothesis of no difference between the
mean age of walking in the active exercise group and that in the three control groups
combined, H0: μ1 = 1

3 (μ2 + μ3 + μ4). We also could have singled out the other
control groups and tested H0: μ1 = μ2 and H0: μ1 = μ3. Furthermore, because the
p-value quantifies the rarity, or surprise, of the results, we ought to ask what other
results might have been as surprising as those we actually observed. What if the
passive exercise group had produced apparent earlier walking, similar to the active
exercise group, by comparison with the eight-week control group? Wouldn’t that
have been a result we would have found interesting? Once we admit that this, too,
would have been reported as a finding, then we realize that we were, effectively,
testing many possible null hypotheses. The problem of testing multiple hypotheses
was discussed in Section 11.3. �

As illustrated in Example 13.1, above, ANOVA often generates many plausible
null hypotheses and, in this context, the problem of multiple hypothesis testing is
also called the problem of multiple comparisons. In Section 11.3 we presented the
Bonferroni correction, which can be applied when the number of comparisons (null
hypotheses) is easily enumerated. We commented that the Bonferroni method is con-
servative, in the sense of yielding adjusted p-values that sometimes seem unnecessar-
ily large, making it relatively difficult to obtain statistically significant results. This
has spawned a large literature on multiple comparison procedures, most of which aim
to provide smaller p-values under specific circumstances, so that it becomes easier to
declare statistical significance. For example, a method due to Dunnett assumes there
is a single control group with mean μc and considers all null hypotheses of the form
H0: μi = μc, for i �= c. When there are I means, there are I −1 such null hypotheses
and, under the standard ANOVA assumptions it is possible to find an exact p-value
for this case. Similarly, when there is no single control group, a method due to Tukey
examines all pairs of means, i.e., all null hypotheses of the form H0: μi = μj for

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11


13.1 One-Way and Two-Way ANOVA 373

distinct i and j. When there are I means, this narrows the number of hypotheses down
to

(I
2

)
and, again, an exact p-value can be obtained.

We have two general comments on the problem of multiple comparisons in
ANOVA. First, permutation tests discussed in Chapter 11 can be used to obtain
p-values that take account of multiple testing procedures, as illustrated in Exam-
ple 4.7 on p. 306. In Example 13.1, for instance, we might want to compare each
of the 3 control groups to the active exercise group, using 3 t-tests. We then might
focus on the t-test having the largest t-value. To obtain a p-value for this comparison
we could create permutation pseudo-data and for each set of pseudo-data we could
test all 3 null hypotheses of equality between mean of the active exercise group and
the mean of each of the three control groups and we could store the largest of the
3 t-statistics based on the pseudo-data. A comparison of the largest t-statistic com-
puted from the real data with those computed from the pseudo-data would give us a
p-value, as in the cases examined in Section 11.2.1.

A second point is that multiple comparisons procedures in ANOVA are different
than those arising in the neuroimaging of Example 11.3, which was used to motivate
the multiple testing procedures discussed in Section 11.3.2. In neuroimaging there
are typically thousands of null hypotheses, while in ANOVA, even when considering
many possible combinations, the number is usually much smaller. The adjustments in
ANOVA, including the Bonferroni correction, are therefore less severe. Importantly,
when different multiple comparison methods lead to inconsistent conclusions it is
an indication that the results are equivocal. In fact, in many ANOVA settings a
very workable way to proceed is to begin by relying on the F test. If one obtains
a significant F-statistic there is evidence for a difference among the means, and it
therefore makes sense to go ahead and examine whichever means happen to look
interesting, without worrying much about the process of selecting them. In other
words, a widely-advocated method, sometimes called the protected least-significant
difference, is to require a significant F statistic and then to report results from the
many t tests, or any of them that seem to be of interest.

Details: A contrast among the means is a linear combination
∑

i ciμi

for which
∑

ci = 0. For example, when I = 4, the contrast vector
c = (1,−1, 0, 0) would define the contrast μ1 − μ2. Corresponding
to any contrast we have the null hypothesis that the contrast is zero,
i.e.,

H0:
I∑

i=1

ciμi = 0. (13.9)

It is possible to define a test of this null hypothesis with a p-value
that adjusts for examining all possible contrasts. In other words, the
null hypothesis being tested is that H0 in (13.9) holds for all contrast
vectors c. This is usually called the Scheffé test. In terms of linear
combinations of the means, this is a maximally protective procedure:
it guards against spurious results from examining all possible linear

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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comparisons. Under the standard assumptions, it may be shown that
the F-test is significant at level α if and only if there exists a linear
contrast for which a test of H0 defined by (13.9) is significant at level
α according to the Scheffé test. �

Example 13.1 (continued from p. 372) Where does all this leave us in this example?
We may summarize by saying that there is some evidence, but not strong evidence,
that the active group mean age of walking is a bit younger than that for the control
groups. The marginal nature of this evidence becomes clear when we ignore the
special feature that the latter three groups are all controls and look for differences
among all four groups: we find no evidence for this, according to the F-test. Given
that it may be difficult to determine exactly when a given child walks, and it is not
clear that the parents made this determination in the absence of knowledge about
what to expect based on the experimental hypothesis, some skepticism would seem
appropriate.4 �

13.2 ANOVA as Regression

13.2.1 The general linear model includes both
regression and ANOVA models.

We now return to the matrix formulation of multiple regression, discussed in
Section 12.5.3, and show how linear regression may be used to solve problems of
analysis of variance. The points are, first, it can be helpful conceptually to re-frame
ANOVA as regression and, second, statistical software typically does this.

ANOVA concerns the comparison of means among several groups, corresponding
to experimental conditions. Let us consider two simple examples. Suppose X is the
n × 1 vector of 1s

X =

⎛

⎜⎜⎜⎝

1
1
...

1

⎞

⎟⎟⎟⎠ .

We then compute XT X = n and XT Y = ∑
yi and find

(XT X)−1XT y = ȳ.

Therefore, the sample mean may be found by applying regression with this very
special version of the design matrix X.

4 On the other hand, the paper by Zelazo et al. presented an additional measure where the results
were more striking. On this subject, see Adolph (2002).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Next, consider two groups of m values y11, . . . , y1m and y21, . . . , y2m,
corresponding to two experimental conditions, having sample means ȳ1 and ȳ2. We
define

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
...

y1m

y21
...

y2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.10)

and

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
...

...

1 0
0 1
0 1
...

...

0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.11)

where the first column contains m rows of 1s followed by m rows of 0s and the
second column contains m rows of 0s followed by m rows of 1s. The first column
of X is an indicator variable, indicating membership in the first group, i.e., the ith
element of the first column of X is 1 if the ith element of y is in the first group and is
0 otherwise. The second column of X is an indicator variable indicating membership
in the second group. We compute

XT X =
(

m 0
0 m

)

XT y =
(∑

y1i∑
y2i

)

and

(XT X)−1XT y =
(

ȳ1
ȳ2

)
.

Thus, the sample means are obtained from multiple regression based on the design
matrix in (13.11). In a similar manner we may use linear regression to compute means
across several experimental conditions: for each condition we introduce an additional
indicator variable as an additional column of the design matrix. The ANOVA from
this regression becomes the same as the ANOVA table used in 1-way ANOVA. In
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this case of two conditions, the regression results would be equivalent to those from
a t-test, as described in Section 13.1.3.

Before leaving the subject of indicator variables, let us make the further point that
there are typically many reasonable choices of the way to code the columns of the
X matrix. For example, if we reconsider two groups of m values y11, . . . , y1m and
y21, . . . , y2m, we could take

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
...

...

1 1
1 −1
1 −1
...

...

1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.12)

In this case, X is no longer made up of indicator variables, but its columns span the
same space as that spanned by the indicator variables given in (13.11). That is, a
vector v is a linear combination of the columns of X using (13.12) if and only if it
is a linear combination of the columns of X using (13.11), though the coefficients of
the linear combinations will be different in the two cases. Another way to say this is
that the space of fitted values V = {Xβ∗, β∗ ∈ R2}, defined in Section 12.5.3, is the
same regardless of whether the design matrix X takes the form of (13.11) or (13.12).
Using (13.12) we obtain

XT X =
(

2m 0
0 2m

)

XT Y =
(∑

y1i + ∑
y2i∑

y1i − ∑
y2i

)

and

(XT X)−1XT Y =
(

ȳ
(ȳ1 − ȳ2)/2

)

where ȳ is the overall mean. The second component (ȳ1 − ȳ2)/2 is often called a
contrast, because it is “contrasting” the means of the groups. Generally speaking, a
contrast vector (leading to a contrast estimate) is one whose components add to zero;
see the discussion surrounding (13.9). In ANOVA settings, where there are multiple
groups, it is often of interest to define an X matrix made up of contrast vectors,
together with the vector 1vec whose components are all equal to 1.5

A different way to represent ANOVA data is also useful, especially with statistical
software. The input to software is typically a vector of data, such as represented

5 It is also convenient to require the vectors to be orthogonal to one another, in which case they are
called orthogonal contrasts. For orthogonal contrasts, each estimate is independent of the others.
This is a topic discussed in many books on regression analysis and experimental design.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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in (13.10), and the software must be informed which observations correspond to
different groups. In conjunction with the data in (13.10) we define

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...

1
2
2
...

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.13)

where the first m rows are 1s and the last m rows are 2s. The values 1 and
2 in the vector L in (13.13) are called the levels of the conditions or factor.
In the case of the finger tapping data in Example 13.2 we could define y =
(11, 26, 15, 6, 26, 83, 34, 13, 20, 71, 41, 32)T and then set

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.14)

so that the first column of the level matrix L represents the “levels” of the drugs
(1 for Placebo, 2 for Theobromine, 3 for Caffeine) and the second column represents
“levels” of the subjects (1 for first subject, etc.). Statistical software used for 1-
way or 2-way ANOVA requires some identifier of group structure, such as (13.13)
and (13.14). It is possible to produce a design matrix X from a level matrix L, and
vice-versa. ANOVA software often provides functions for this purpose.

13.2.2 In multi-way ANOVA, interactions are often of interest.

In Section 12.5.6 we described the way interactions between explanatory variables
arise in multiple regression. Interactions play an important role in many ANOVA
settings. Here we consider the simplest case of interactions between two conditions
that each have two levels and then connect the ANOVA and regression contexts.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 13.3 Hypothetical plots of mean saccadic reaction time when angular distance from fixation
to target is either −15 or −5 degrees, i.e., when the eyes fixate either 15 or 5 degrees to the right
of the target. Solid lines correspond to patients; dashed correspond to controls. In the left plot the
lines are parallel, indicating the reaction time is longer among patients by the same amount for both
angular distances; there is no interaction between angular distance and subject classification. In the
right plot the increase reaction time among patients is greater at −15 degrees than at −5 degrees, so
the lines are no longer parallel; this represents an interaction between angular distance and subject
classification.

Example 2.1 (continued) In the experiment on saccadic reaction time, Behrmann
et al. (2002) sought to characterize the way eye saccades differed among patients
with hemispatial neglect compared with control subjects.6 We use this context to
illustrate presence and absence of interaction. Let Y be saccadic reaction time, x1
represent the distance from eye fixation to target, measured in degrees of angle to
the right. When the target was on the left side of fixation, which was the neglected
side for the patients, the angle was negative. We let x1 = 1 when the target was
at −15 degrees (15 degrees to the left of fixation) and x1 = 0 when the target
was at −5 degrees. We also let x2 be an indicator variable indicating patients,
i.e., x2 = 1 for patients and x2 = 0 for control subjects. These variables define
4 mean saccadic reaction times: μ11 is the mean reaction time among patients when
the target was at −15 degrees; μ10 is the mean reaction time among controls
when the target was at −15 degrees; μ01 is the mean reaction time among patients
when the target was at −5 degrees; and μ00 is the mean reaction time among
controls when the target was at −5 degrees. If patients and controls reacted similarly,
except that patients had a fixed latency of response, then the means would satisfy

H0: μ11 − μ10 = μ01 − μ00 (13.15)

which is the null hypothesis of no interaction. The left side of Fig. 13.3 displays a
possible set of four means satisfying H0 in (13.15). On the other hand, if the patients
also moved their eyes more slowly then their mean response would be even longer
at −15 than at −5, and we would have

6 The purpose of the study was to distinguish responses based on eye-centered coordinates,
head-centered coordinates, and trunk-centered coordinates.
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μ11 − μ10 > μ01 − μ00,

as shown on the right side of Fig. 13.3. The second case, but not the first, corresponds
to the presence of an interaction effect between x1 and x2. Statistical evidence of an
interaction effect would be found by obtaining a statistically significant interaction
of x1 and x2. �

In Section 12.5.6 we said that in regression based on explanatory variables x1 and
x2 the variable defined as the product x1x2 represents the interaction between these
variables. In the equation

y = a + bx1 + cx2 + dx1x2, (13.16)

which was Eq. (12.70), we noted that when d = 0 the graphs of y versus x1 for two
different values of x2 produce two parallel lines, but when d �= 0 the two lines are no
longer parallel. Figure 13.3 displays an example of this phenomenon. In ANOVA the
variables correspond to the experimental design, as outlined briefly in Section 13.2.1,
and interaction effects are found via least-squares regression.7 We omit details. Here
is a neuroimaging example.

Example 13.3 Neural correlates of delay of gratification Successful decision
making often requires an ability to forgo immediate gain in favor of increased future
reward. Casey et al. (2011) reported fMRI results for group of individuals who had
been studied 40 years earlier, as preschool children, for their ability to delay grati-
fication. Previously it had been shown that performance on a delay-of-gratification
task during childhood predicted ability to perform on a go/no-go task as adults. The
authors imaged their subjects during go/no-go tasks. One of their findings involved
the inferior prefrontal gyrus, an area thought to be involved in impulse control during
similar tasks. Based on the childhood results, the authors categorized the subjects
has either “low” or “high” childhood ability to delay gratification. The question was
whether the two groups had different neural activity in the inferior prefrontal gyrus
40 years later, and the experimental prediction was that in the low ability group
neural activity in the inferior prefrontal gyrus would be similar on go and no-go
trials, but for the high ability group there would be much stronger activity on no-go
trials (when impulse control is operative) than on go trials. This corresponds to an
interaction between trial type (“go” vs. “no-go”) and subject group (low or high
childhood ability). Let us write the means of the neural activity in go and no-go

trials8 for the low and high ability groups as μlow
go , μlow

nogo, μ
high
go , μ

high
nogo. The null

hypothesis of no interaction would be

7 ANOVA may also be applied, as a special case of regression, when one explanatory variable is
quantitative and another variable is an ANOVA indicator variable. This is usually called analysis of
covariance or ANCOVA. Its purpose is to adjust the ANOVA for effects of the quantitative variable.
See p. 332.
8 We are here simplifying by ignoring some aspects of the experimental design.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12


380 13 Analysis of Variance

H0: μlow
nogo − μlow

go = μ
high
nogo − μ

high
go .

Casey et al. found evidence against H0, reporting a statistically significant interaction
(p = .014) between trial type and subject group. �

In Example 13.3 it was hypothesized that for one group of subjects (the low
ability group) the means under the two conditions (μgo and μnogo) would be very
close in magnitude while for the other group (the high ability group) they would
be quite different. It would be tempting to test H0 : μgo = μnogo for each of the
two groups: if the test were significant for the second group but not for the first
group one might then conclude that the two groups were different with regard to the
two conditions. In fact, such reasoning is common in neuroscience and psychology
(see Nieuwenhuis et al. 2011). Unfortunately, it is not correct. As pointed out in
Section 10.4.8, a non-significant test does not itself provide evidence for H0. Thus,
in particular, a non-significant test of H0 : μgo = μnogo does not provide evidence
that the two means are approximately the same. Instead, a confidence interval or test
for the interaction effect should be reported, as in Example 13.3.

13.2.3 ANOVA comparisons may be adjusted using analysis
of covariance.

In comparing results under two or more experimental conditions it often happens
that the subjects (or other experimental units) are not comparable with respect to
some background variable, often called a covariate. For instance, suppose we have
data under two conditions as in (13.10). As indicated in Section 13.2.1, the two means
ȳ1 and ȳ2 may be compared by performing the regression of y on the X matrix given
by (13.11), producing results that are equivalent to a t-test (and a t-based confidence
interval). Now suppose we have an additional covariate u with values given by

u =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11
...

u1m

u21
...

u2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.17)

If we regress y on both X and u we will obtain a comparison between the means under
the two conditions after adjusting for the covariate u. As explained at the beginning
of Section 12.5, this is a consequence of the regression formulation.

Example 13.4 Improving Working Memory in Children with ADHD Deficits
in working memory (WM) are associated with ADHD. Klingsberg et al. (2005)

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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reported results of a randomized, controlled double-blind trial aimed at assessing
the possible benefits of a computerized training program aimed at improving WM.
(The virtues of randomized, double-blind trials are discussed briefly in Section 13.4.)
The training program consisted of at least 25 sessions, each lasting roughly 40
minutes, in which subjects completed WM tasks. In the experimental condition the
difficulty of the WM tasks was automatically adjusted to match the current assess-
ment of the subject’s WM. In the control condition difficulty remained at an initial
low level. A total of 42 children with ADHD (ages 7–12) were randomly allocated
to one of the two conditions and completed the entire protocol.

The key outcome was “span-board” task performance, a standard assessment of
visuospatial WM. This was assessed at the subject’s initial visit and then twice after
training had been completed: both 5–6 weeks after the initial visit and, again, 3
months subsequent to this. Baseline score at the initial visit was used as a covariate,
together with age and number of days of training. The authors reported a highly
significant difference between span-board task performances under the experimental
and control conditions, after adjusting for the covariates, with p = .001 at 5–6 weeks
post initial visit and p = .002 at the second visit 3 months later. This constitutes strong
evidence that WM can be improved by training among ADHD children. �

The use of covariates to adjust comparisons in the context of ANOVA is usually
called analysis of covariance.

13.3 Nonparametric Methods

ANOVA assumption (v) on p. 364, normality, is often suspect. Because ANOVA is
a special case of regression and, under weak conditions, the least-squares estimates
are asymptotically normal according to (12.63), the ordinary ANOVA procedures
work well with large samples even for non-normal data. Sometimes, however, the
sample size may be modest while the data appear grossly non-normal. In the next
two subsections we discuss two approaches to ANOVA for non-normal data. The
first, in Section 13.3.1, is based on ranks, and the idea is to replace each data value
by its rank within the whole data set. Rank-based procedures remove the assumption
of a specific distributional form. The second approach involves permutation and
bootstrap tests, as discussed in Sections 11.2.1 and 11.2.2. We describe these very
briefly in Section 13.3.2.

The body of ANOVA methods under the assumption of normality are called
parametric, meaning that they are based on probability models characterized by a
small number of parameters. The methods in Sections 13.3.1 and 13.3.2 are nonpara-
metric. Please note, however, that all these procedures continue to make the more
consequential assumptions of additivity and independence of the errors.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 13.6 Data from Frezza
et al. (1990) on first-pass
alcohol metabolism.

Alcoholic Non-alcoholic Alcoholic Non-alcoholic
Women Women Men Men

0.6 0.4 1.5 0.3
0.6 0.1 1.9 2.5
1.5 0.2 2.7 2.7

0.3 3.0 3.0
0.3 3.7 4.0
0.4 4.5
1.0 6.1
1.1 9.5
1.2 12.3
1.3
1.6
1.8
2.0
2.5
2.9

13.3.1 Distribution-free nonparametric tests may be obtained
by replacing data values with their ranks.

To describe rank-based ANOVA we begin with an example.

Example 13.5 Alcohol metabolism among men and women Women seem to have
a lower tolerance for alcohol than men, and are more prone to develop alcohol-related
diseases. When men and women of the same size and history of drinking consume
equal amounts of alcohol, the alcohol in the bloodstream of the women tends to be
higher. In research by Frezza et al. (1990), the “first-pass” metabolism of alcohol
in the stomach was studied. The data shown in Table 13.6 come from 18 women
and 14 men who volunteered to be studied. Each subject was given two doses of
.3 g ethanol per kilogram of body weight, one orally and one intravenously on two
different days. The difference in concentrations of alcohol in the blood (at some
fixed time after administration), between the intravenous dose and the oral dose,
provides a measure of first-pass metabolism in the digestive system and liver; this
defines the response variable in the table, with units in mmols per liter per hour.
If first-pass metabolism were more effective in men than women, the difference in
levels following intravenous and oral administration would tend to be higher among
men.

We begin by ignoring the distinction between alcoholic and non-alcoholic sub-
jects. This reduces the data to two groups: women and men. The data in Table 13.6
are strikingly skewed toward high values. One possibility would be transform the
data and apply the usual t-test. Instead, we describe a rank-based analysis.
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Table 13.7 Data from
Table 13.6 together with
corresponding ranks, where
the smallest observation has
rank 1 and the largest has
rank n = 32.

Case Difference Female Rank

1 0.6 1 8.5
2 0.6 1 8.5
3 1.5 1 14.5
4 0.4 1 6.5
5 0.1 1 1.0
6 0.2 1 2.0
7 0.3 1 4.0
8 0.3 1 4.0
9 0.4 1 6.5

10 1.0 1 10.0
11 1.1 1 11.0
12 1.2 1 12.0
13 1.3 1 13.0
14 1.6 1 16.0
15 1.8 1 17.0
16 2.0 1 19.0
17 2.5 1 20.5
18 2.9 1 24.0
19 1.5 0 14.5
20 1.9 0 18.0
21 2.7 0 22.5
22 3.0 0 25.5
23 3.7 0 27.0
24 0.3 0 4.0
25 2.5 0 20.5
26 2.7 0 22.5
27 3.0 0 25.5
28 4.0 0 28.0
29 4.5 0 29.0
30 6.1 0 30.0
31 9.5 0 31.0
32 12.3 0 32.0

The data are printed out again in Table 13.7, with each rank listed at the end. The
rank goes from 1 up to 32, with the smallest value getting the rank 1 and the largest
value getting the rank 32. Ranks ending in .5 represent ties, i.e., cases in which
some data value appears twice. The women in the study have a 1 in the “females”
column. �

Rank-sum methods compare the ranks of the two groups. That is, if one group has
values of its ranks that are sufficiently much larger than those of the other group, there
will be evidence that the means of the two groups are different. More specifically, we
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Table 13.8 Four
observations from Table 13.7.

Case Difference Female Rank

1 0.6 1 1
18 2.9 1 3
19 1.5 0 2
32 12.3 0 4

may find the sum of the ranks from one of the groups and see whether it is either much
larger or much smaller than would be expected if, in fact, the two groups followed
the same distribution. Based on the null hypothesis that the probability distributions
for the two groups are the same, we can get a p-value. The test statistic W is the sum
of the ranks from one of the two groups. This is the rank-sum test. It is sometimes
called the Wilcoxon rank-sum test, and it is also often called the Mann-Whitney
test. Let us write the distribution functions for males and females as Fmales(x) and
Ffemales(x). The rank-sum test tests the null hypothesis

H0: Fmales(x) = Ffemales(x)

for all x.
To be specific about the procedure, suppose the alcohol metabolism data consisted

only of the four observations in Table 13.8. In this case we would rank the data as 1,
3, 2, 4 (0.6 is the smallest, 2.9 is the third smallest, 1.5 is the second smallest, and
12.3 is the fourth smallest). Then we would add up the values of the ranks for the
females to get the statistic W = 1 + 3 = 4.

Example 13.5 (continued) For the data in Table 13.7 we obtained the rank-sum test
statistic Wobs = 330 with p = .0002. This may be compared with the usual t-based
method gave Tobs = 3.41 with p = .0042. In this case, we get similar conclusions
and are reassured that the assumption of normality is not crucial. In fact, if we first
transform the data by taking logs, the usual t-test gives p = .0002. �

An analogous procedure for several groups is called the Kruskal-Wallis test. It
may be used in place of the usual F-statistic from an ANOVA.

Example 13.5 (continued) When all four groups are used and the data are trans-
formed by logs we find p = .003 from the usual ANOVA F-test. In fact, the residual
analysis for the log-transformed data looks pretty good and we would find little rea-
son to worry about the assumption of normality. However, using the Kruskal-Wallis
test we get p = .002, which again corroborates the conclusion.

In using this example to describe rank-based methods we have concentrated on
technique, but a more basic concern lurks here: we must wonder about the extent to
which the volunteers represent the population as a whole, and whether the particular
men and women in the study might for some reason self-select in a manner that was
related to their alcohol metabolism. We return to such considerations in Section 13.4.

�
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13.3.2 Permutation and bootstrap tests may be used to test ANOVA
hypotheses.

In Section 11.2 we described how permutation and bootstrap tests may be used as
alternatives to the t-distribution for computing a p-value in order to test H0: μ1 = μ2
based on data involving sample sizes n1 and n2. The essential method was to (i) merge
the data, then (ii) repeatedly resample the n1+n2 data values, putting them arbitrarily
into groups of size n1 and n2 to create pseudo-data, (iii) to each pseudo-data pair of
samples apply the t-statistic, and finally (iv) see what proportion of the pseudo-data
give t-statistic values greater than that observed in the real data. When the sampling
is done without replacement the method is a permutation test, and with replacement
it becomes a bootstrap test.

For one-way ANOVA the procedure is exactly analogous. For instance, with 3
conditions we would have data with sample sizes n1, n2, and n3; we would follow
step (i) then in (ii) resample the n1 + n2 + n3 data values and put them into groups
of sizes n1, n2, n3; in (iii) we would get the F-statistic, and likewise in (iv) we would
see what proportion of the pseudo-data F values exceed the F obtained for the real
data.

Two-way ANOVA is more complicated because the two-way structure must be
respected, but the concept is the same. See Manly (2007).

13.4 Causation, Randomization, and Observational Studies

13.4.1 Randomization eliminates effects of confounding factors.

Most studies aim to provide causal explanations of observed phenomena. To claim
causality, investigators must argue that alternative explanations of an observed rela-
tionship are implausible.

Example 13.6 IQ and breast milk Lucas et al. (1992) obtained IQ test scores from
300 children who had been premature infants and initially fed milk by a tube. The
children were 8 years old when they took the IQ test. The milk they had been fed by
tube was either breast milk or prepared formula, or some combination of the two. Of
interest was the relationship between IQ test scores and the proportion of milk the
infants received that was breast milk. The amount of breast milk a baby had drunk
was determined by whether or not the mother wished to feed the infant by breast
milk, and how much milk the mother was able to express. �

In Example 13.6, immediately we must be aware of possible confounding factors.
The decision to administer the treatment, i.e., to use breast milk or not, was the
mother’s; whatever might determine that decision and also be related to subsequent
IQ would affect the observed relationship between IQ and consumption of breast

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 13.9 Regression results from Lucas et al. (1992).

Explanatory variable Estimated coefficient p-Value

Social class −3.5 .0004
Mother’s education 2.0 .01
Female or not 4.2 .01
Days of ventilation −2.6 .02
Received breast milk or not 8.3 <0.0001

The increase in IQ after adjusting for the other variables was 8.3 points (with p < 0.0001)

milk. If, for example, mothers who chose to breast feed were also more likely to
provide intellectual stimulation to their young children, then the decision to breast
feed could appear to raise IQ even though it was the increased stimulation that had the
greater impact. The study would be free of these concerns if babies instead received
a randomly-determined percentage of breast milk, but few mothers would give up
this decision in order to be part of a scientific investigation.

Example 13.6 (continued) In an attempt to control confounding factors, and to
reduce variability and make the comparisons more sensitive, the researchers per-
formed a regression that included characteristics of both the mothers and the babies:
social class (ordered from 1 to 5 with 5 being highest), mother’s education (ordered
from 1 to 5 with 5 being highest), whether or not the child was a female (1 if female,
0 if male), the number of days of ventilation of the baby after birth, and whether or
not the baby received any breast milk (1 if yes, 0 if no). The results of the regression
are shown in Table 13.9.

Let us begin by interpreting the main finding. If we hold fixed social class, mother’s
education, sex of the baby, and days of ventilation, there is a highly significant effect of
whether or not the baby received breast milk, with breast milk increasing subsequent
IQ, on average, by 8.3 points. This is quite a large effect. If it were felt appropriate
to generalize from these data to the population at large, this effect would certainly
be something the pediatric professions would pay attention to.

Should we believe that early consumption of breast milk would tend to increase
IQ in the general population? �

To analyze the possibility of confounding factors it is useful to introduce some
terminology and list some basic points.

In both experiments and observational studies, we are typically interested in effects
of some explanatory variable or treatment on a response variable. A study is called an
experiment when it imposes treatment conditions on some subjects; measurements
on that subject are called the response variable. On the other hand, observational
studies examine relationships between response variables and potential explanatory
variables, which could become treatments, but there is no active administration of a
treatment. A confounding factor (or confounding variable) is one that affects both
the response variable and an explanatory variable; its effects on the response can
not be distinguished from the effects of the explanatory variable of interest on the
response.
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The particular subjects being experimented upon may have special characteristics
that make them different than those about which one may wish to draw conclusions.
In many situations, carefully designed experiments can avoid these difficulties. Ran-
domization, meaning the random allocation of the treatment to the subject provides
a way of avoiding confounding variables; double-blind experiments can avoid hid-
den biases in the response measurements. It is also important to keep in mind that
response variables and explanatory variables may not accurately capture what they
are purported to be measuring. Strict adherence to the experimental protocol can also
help avoid mismeasured variables. More generally, errors that can result from failure
to adhere to protocol have been emphasized by Simmons et al. (2011).

Well-designed, randomized experiments can support causal explanations for asso-
ciations between response and explanatory variables. More specifically, based on a
well-designed experiment, it may be possible to say that, up to some degree of statis-
tical uncertainty (represented by a standard error or confidence interval), a response
will on average increase or decrease by a particular amount when an explanatory
variable changes its value by some number of units (including being present rather
than absent, as is the case for typical treatments).

In fact, it is possible to define a causal effect, and the corresponding association
effect that would be observed in data. There is then a theorem saying that in a random-
ized experiment the causal effect is equal to the association effect (e.g., Wasserman
(2004, Chapter 16)). In other words, for a randomized experiment, association is
causation (see Section 12.4.2).

13.4.2 Observational studies can produce substantial evidence.

Although it is preferable to have data from a well-designed randomized experiment,
there are situations in which it is impossible to randomly assign subjects to treatments.
For example, one can not tell people whether they will be in “smoking” or “non-
smoking” groups. Still, very convincing evidence can accumulate from observational
studies—as in fact has happened in the case of smoking. Several observed patterns
may increase the plausibility of an explanatory variable as a cause of a response
variable:9

• The explanatory variable or treatment precedes observation of the response, and
in terms of timing can thus act as a cause.

• Large effects are observed; this makes it less likely that the association is due to
a confounding variable. One often-cited example is that mortality due to scrotum
cancer among chimney sweeps was about 200 times above the population levels
early in the 20th century.

9 A widely-cited source for many of these ideas is Hill (1971).
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• A quantitative “dose-response” relationship is observed, in which an increase in the
explanatory variable increases (or decreases) the observed response, as opposed to
simply an observation of an effect when a treatment is applied versus not applied.

• There is physiological evidence to support a theory that could explain the putative
causal relationship.

• There are no anomalous results that seem difficult to explain; anomalous results
may signal the presence of confounding variables.

• Similar results are obtained under differing experimental studies; confounding
variables are often less likely to be present in each of the different studies.

Example 13.6 (continued) Now, let us reexamine the IQ and breast milk results with
these principles in mind. First, the study is prospective, in the sense that children
received some percentage of breast milk and then were followed over time to see
what IQ score they got many years later. Second, the estimated effect is reasonably
large—8 IQ points is about half of a standard deviation in the population as a whole.
Third, there is physiological relevance: pediatricians recommend that mothers breast-
feed their babies for nutritional reasons. We have not done a careful review of the
literature, however, and do not have the expertise to comment critically on this basic
scientific issue.

Concerning the dose-response relationship, in the regression reported above the
breast milk variable merely indicates whether or not the infant received breast milk;
but the authors reported a similar regression using instead percentage breast milk
where the regression coefficient was .09, which says that holding the same variables
fixed, for every 10 % increase in breast milk the subsequent IQ would go up on
average by nearly a full point. This last result is important: by removing the decision
of whether or not to use breast milk as an explanatory variable, the confounding
variables associated with that decision are no longer a concern.10 Now we must shift
to the question of whether some confounding variables may affect both the amount
of milk a mother can express and the subsequent IQ of the child. If not, we would
be regarding the percentage breast milk actually delivered as if it were a randomly-
determined percentage. One possible confounding variable would be the health of
the mother during pregnancy: mothers who are unable to express much milk might
conceivably have been providing worse nutrition to the fetus.

As far as anomalous results are concerned, here are two possibilities: first, given the
other variables, subsequent IQ decreases as social class increases, which is surprising;
second, given the other variables, female babies have higher subsequent IQs. There
should be explanations for these outcomes. Otherwise, they raise doubts.11

Overall, from the report of this study we have given here, there is clearly a sub-
stantial association between increased administration of breast milk and increased

10 We are here assuming that the reported regression is not being driven primarily by inclusion of
lots of babies with zero percent breast milk, but rather holds among the non-zero percentage babies.
11 We do not have the full results when percentage breast milk is used, so we don’t know whether
these associations diminish or change sign in that case.
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IQ, when social class (measured in the way the authors did), mother’s education, and
days of ventilation are held fixed. However, it remains possible that some confound-
ing variables affect breast-milk expression and IQ. As we write this, 20 years has
passed since the publication of the 1992 paper. While the topic remains controversial,
subsequent research has been informative. For further information see Brion et al.
(2011) and the references therein. �
Example 13.5 (continued) Returning to the alcohol metabolism example, let us
now consider the possibility of confounding due to the use of volunteers in the
study. The chief concern is whether volunteers are different than the rest of the
population with respect to alcohol metabolism. This is at least plausible, though in
order to affect the study, the volunteer men and women would have to be differ-
ent. For example, if the women who volunteered tended to have trouble with alco-
hol metabolism (perhaps they thought the study sounded interesting because they
knew they had a high susceptibility to the effects of alcohol) but men just wanted
the money, then the differential effect would tend to be larger in this sample than
in the population. Is this kind of hypothetical scenario reasonable, or really a stretch
of the imagination? Your answer to this question determines how much faith you
will put in the results. �
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