
Chapter 12
Linear Regression

Regression is the central method in the analysis of neural data. This is partly because,
in all its guises, it is the most widely applied technique. But it also played a crucial
historical role1 in the development of statistical thinking, and continues to form a
core conceptual foundation for a great deal of statistical analysis. We introduced
linear regression in Section 1.2.1 (on p. 10) by placing it in the context of curve-
fitting, reviewing the method of least squares, and providing an explicit statement of
the linear regression model. This enabled us to use linear regression as a concrete
example of a statistical model, so that we could emphasize a few general points,
including the role of models in expressing knowledge and uncertainty via inductive
reasoning. The linear regression model is important not only because many noisy
relationships are adequately described as linear, but also—as we tried to explain in
Section 1.2.1—because the framework gives us a way of thinking about relation-
ships between measured variables. For this reason, we began with the more general
regression model in Eq. (1.2), i.e.,

Yi = f (xi)+ εi, (12.1)

and only later, in Eq. (1.4), specified that f (x) is taken to be linear, i.e.,

f (x) = β0 + β1x. (12.2)

Equation (1.2), repeated here as (12.1), gave substance to the diagram in Eq. (1.1),
i.e.,

Y ←− X. (12.3)

To incorporate multiple explanatory variables we replace f (x) in (12.1) with
f (x1, . . . , xp), and to extend beyond the additive form of noise in (12.1) we replace
the diagram in (12.3) with

1 See the appendix of Brown and Kass (2009).

R. E. Kass et al., Analysis of Neural Data, 309
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_12,
© Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1


310 12 Linear Regression

Y ←−
{

noise
f (x1, . . . , xp).

(12.4)

This diagram is supposed to indicate a variety of generalizations of linear regression
which, together, form the class of methods known as modern regression.

In this chapter we provide a concise introduction to linear regression. In
Sections 12.1–12.4 we treat the simple linear regression model given by

Yi = β0 + β1xi + εi (12.5)

for i = 1, . . . , n, where εi is a random variable. The adjective “simple” refers to the
single x variable on the right-hand side of (12.5). When there are two or more x vari-
ables on the right-hand side the terminology multiple regression is used instead. We
go over some of the most fundamental aspects of multiple regression in Section 12.5.
That section also lays the groundwork for modern regression. Generalizations are
described in Chapters 14 and 15.

12.1 The Linear Regression Model

To help fix ideas, as we proceed we will refer to several examples.

Example 12.1 Neural correlates of reward in parietal cortex Platt and
Glimcher (1999) suggested that cortical areas involved in sensory-motor processing
may encode not only features of sensation and action but also key inputs to decision
making. To support their claim they recorded neurons from the lateral intraparietal
(LIP) region of monkeys during an eye movement task, and used linear regression to
summarize the increasing trend in firing rate of intraparietal neurons with increasing
expected gain in reward (volume of juice received) for successful completion of a
task. Figure 12.1 shows plots of firing rate versus reward volume for a particular LIP
neuron following onset of a visual cue. �

Example 2.1 (continued from p. 24) In their analysis of saccadic reaction time in
hemispatial neglect, Behrmann et al. (2002) used linear regression in examining the
modulation of saccadic reaction time as a function of angle to target by eye, head, or
trunk orientation. We refer to this study in Section 12.5. �

In Chapter 1 we used Example 1.5 on neural conduction velocity to illustrate
linear regression. Another plot of the neural conduction velocity data is provided
again in Fig. 12.2.

Before we begin our discussion of statistical inference in linear regression, let us
recall some of the things we said in Chapter 1 and provide a few basic formulas.

Given n data pairs (xi, yi), least squares finds β̂0 and β̂1 that satisfy
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Fig. 12.1 Plots of firing rate (in spikes per second) versus reward volume (as fraction of the maximal
possible reward volume). The plot represents firing rates during 200 ms following onset of a visual
cue across 329 trials recorded from an LIP neuron. The 329 pairs of values have been reduced to
7 pairs, corresponding to seven distinct levels of the reward volume. Each of the 7 yi values in
the figure is a mean (among the trials with xi as the reward volume), and error bars representing
standard errors of each mean are also visible. A least-squares regression line is overlaid on the plot.
Adapted from Platt and Glimcher (1999).

n∑
i=1

(
yi − (β̂0 + β̂1xi)

)2 = min
β∗0 ,β∗1

n∑
i=1

(
yi − (β∗0 + β∗1 xi)

)2 (12.6)

where we use β∗0 and β∗1 as generic possible estimates of β0 and β1. The least-squares
estimates (obtained by calculus) are

β̂1 =
∑

i(yi − ȳ)(xi − x̄)∑
i(xi − x̄)2 (12.7)

and
β̂0 = ȳ − β̂1x̄. (12.8)

The resulting fitted line
y = β̂0 + β̂1x (12.9)

is the linear regression line (and often “linear” is dropped).

Details: To be clear what we mean when we say that the least-squares
estimates may be found by calculus, let us write

g(β0, β1) =
n∑

i=1

(yi − (β0 + β1xi))
2 .

The formulas (12.8) and (12.7) may be obtained by computing the
partial derivatives of g(β0, β1) and then solving the equations
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Fig. 12.2 Plot of the Hursh conduction velocity data set, for 5 < x < 15, with data points in gray
except for a particular point (xi, yi) which is shown in black to identify the corresponding fitted
value ŷi. The ith residual is yi − ŷi. The regression line also passes through the point (x̄, ȳ), as
indicated on the plot.
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The least-squares fitted values at each xi are

ŷi = β̂0 + β̂1xi (12.10)

and the least-squares residuals are

ei = yi − ŷi. (12.11)

See Fig. 12.2. If we plug (12.8) into (12.9) we get

y− ȳ = β̂1(x − x̄) (12.12)

which shows that the regression line passes through the point (x̄, ȳ), as may be seen
in Fig. 12.2. Also, when we plug into (12.12) the (x, y) value (xi, yi) we get
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yi − ȳ = β̂1(xi − x̄)

or
yi = ȳ − β̂1(xi − x̄). (12.13)

A few more lines of algebra show that using (12.13) in (12.11) gives

n∑
i=1

ei = 0, (12.14)

which is useful as a math fact, and also can be important to keep in mind in data
analysis: linear least squares residuals fail to satisfy (12.14) only when a numerical
error has occurred.

Details: We have

n∑
i=1

ei =
n∑

i=1

(yi − ȳ + ȳ− ŷi). (12.15)

Because
∑

yi = nȳ we have

n∑
i=1

(yi − ȳ) = 0 (12.16)

and, similarly,
n∑

i=1

(xi − x̄) = 0. (12.17)

Combining (12.13) with (12.17) gives

n∑
i=1

(ŷi − ȳ) = 0. (12.18)

Finally, using (12.16) with (12.18) in (12.15) gives (12.14). �
It is worth drawing attention to one other interesting feature of the linear regression

model. While (12.1) and (12.4) emphasize potential nonlinearity in the way a variable
x, or multiple variables x1, . . . , xp may influence y, it turns out that linear regression
may be used to fit some nonlinear relationships. This is discussed in Section 12.5.4.
Here is a particularly simple, yet important additional example.

Example 12.2 BOLD hemodynamic response in fMRI In Fig. 1.3 of Example
1.3 we displayed fMRI images from a single subject during a simple finger-tapping
task in response to a visual stimulus. As we said there, fMRI detects changes in

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 12.3 The hemodynamic response function defined by Eq. (12.19).

blood oxygenation and the measurement is known as the BOLD signal, for Blood
Oxygen-Level Dependent signal. The typical hemodynamic response that produces
the signal is relatively slow, lasting roughly 20 s (seconds). Many experiments have
shown, however, that it has a reasonably stable form (see Glover 1999). Software for
analyzing fMRI data, such as BrainVoyager (see Goebel et al. 2006; Formisano et
al. 2006), often uses a particular hemodynamic function. Figure 12.3 displays a plot
of such a theoretical hemodynamic response function h(t) defined by

h(t) =
(

t

d1

)a1

exp(− t − d1

b1
)− c

(
t

d2

)a2

exp(− t − d2

b2
) (12.19)

where a1, b1, d1, a2, b2, d2 and c are parameters that have default values in the soft-
ware. Using this function the fMRI data at a particular voxel (a particular small
rectangular box in the brain) may be analyzed using linear regression. Let us sup-
pose we have an on/off stimulus, as is often the case, and let uj = 1 when the stimulus
is on and 0 otherwise, j = 1, . . . , T . The effect at time i of the stimulus being on
at time j is assumed to follow the hemodynamic response function, i.e., the effect is
determined by h(t) where t = i− j is the delay between the stimulus and the response
time i. It is also assumed that the effects of multiple “on” stimuli at different times
j produce additive effects at different time lags i − j. Therefore, the total stimulus
effect at time i is2

xi =
∑
j<i

h(i − j)uj. (12.20)

2 This expression is known as the convolution of the hemodynamic response function h(t) with the
stimulus function uj .
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The linear regression model (12.5) may then be fitted, and the coefficientβ1 represents
the overall magnitude of the increased BOLD response due to the activity associated
with the stimulus. �

12.1.1 Linear regression assumes linearity of f (x) and
independence of the noise contributions at the various
observed x values.

The model (12.1) is additive in the sense that it assumes the noise, represented by εi

is added to the function value f (xi) to get Yi. This entails a theoretical relationship
between x and y that holds except for the “errors” εi. Linear regression further
specializes by taking f (x) to be linear as in (12.2) so that we get the model (12.5).
The εi’s are assumed to satisfy

E(εi) = 0

for all i, so that E(Yi) = β0 + β1xi. In words, the linear relationship y = β0 + β1x
is assumed to hold “on average,” that is, apart from errors that are on average zero.
Additivity of the errors and linearity of E(Yi) are the most fundamental assumptions
of linear regression. In addition, the errors εi are assumed to be independent of each
other. In Section 12.2.3 we show how lack of independence can distort statistical
inferences about the regression model. The independence assumption may be vio-
lated when observations are recorded sequentially across time, in which case more
elaborate time series methods are needed. These are discussed in Chapter 18.

Important, though less potentially problematic, additional assumptions are that the
variances of the εi’s are all equal, so that the variability of the errors does not change
with the value of x, and that the errors are normally distributed. These latter two
assumptions guarantee that the 95 % confidence intervals discussed in Section 12.3.1
have the correct probability .95 of covering the coefficients and the significance tests
in Section 12.3.2 have the correct p-values. In sufficiently large samples the normality
assumption becomes unnecessary, as the confidence intervals and significance tests
will be valid, approximately (see (12.37)).

To summarize, the assumptions of linear regression may be enumerated, in order
of importance, as follows:

(i) the linear regression model (12.5) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv) V(εi) = σ 2 for all i (homogeneity of error variances), and
(v) εi ∼ N(0, σ 2) (normality of the errors).

To repeat, the crucial assumptions are the first three: there is, on average, a linear rela-
tionship between Y and x, and the deviations from it are represented by independent
errors.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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12.1.2 The relative contribution of the linear signal to the total
response variation is summarized by R2.

As shown in Fig. 12.2, in Example 1.5 linear regression provides a very good repre-
sentation of the relationship between x and y, with the points clustering tightly around
the line. In other cases there is much more “noise” relative to “signal,” meaning that
the (xi, yi) values scatter more widely, so that the residuals tend to be much larger.
In this section we describe two measures of residual deviation.

The error standard deviation σ (see item (iv) in the assumptions in Section 12.1.1)
represents the average amount of deviation of each εi from zero. Thus, σ tells us how
far off, on average, we would expect the line to be in predicting a value of y at any
given xi. It is estimated by s = √s2 where

s2 = 1

n− 2
SSE (12.21)

and

SSE =
n∑

i=1

(yi − ŷi)
2 (12.22)

is the sum of squares for error or the residual sum of squares. (Here ŷi is defined
by (12.10).) The variance estimate s2 is then also called the residual mean squared
error and we often write

MSE = s2. (12.23)

This definition of s makes it essentially the standard deviation of the residuals, except
that n− 2 is used in the denominator instead of n− 1; here there are two parameters
β0 and β1 being estimated so that two degrees of freedom are lost from n, rather than
only one.

The other quantity, R2, is interpreted as the fraction of the variability in Y that is
attributable to the regression, as opposed to error. We begin by defining the total sum
of squares

SST =
n∑

i=1

(yi − ȳ)2. (12.24)

This represents the overall variability among the yi values. We then define

R2 = 1− SSE

SST
. (12.25)

The fraction SSE/SST is the proportion of the variability in Y that is attributable to
error, and R2 is what’s left over, which is attributable to the regression line. The value
of R2 is between 0 and 1. It is 0 when there is no linear relationship and 1 when there
is a perfect linear relationship. If we define the sum of squares due to regression as
the difference
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SSR = SST − SSE (12.26)

then we can re-write R2 in the form

R2 = SSR

SST
. (12.27)

From this version we get the interpretation of R2 as “the proportion of variability
of Y that is explained by X.” In different terminology, we may think of SSR as the
signal variability (often called “the variability due to regression”) and SSE as the
noise variability. Then R2 = SSR/(SSR + SSE) becomes the relative proportion
of signal-to-noise variability. (The ratio of signal-to-noise variabilities3 would be
SSR/SSE.)

In (12.26) we defined the sum of squares due to regression by subtraction. There is
a different way to define it, so that we may see how total variability (SST ) is decom-
posed into regression (SSR) and error components (SSE). The derivation begins with
the values yi, ŷi, and ȳ, as shown in Fig. 12.2, where ŷi = β̂0 + β̂1xi. Writing
yi − ȳ = yi − ŷi + ŷi − ȳ, we have

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

2(yi − ŷi)(ŷi − ȳ)+
n∑

i=1

(ŷi − ȳ)2

but after plugging in the definition of ŷi from (12.10) some algebra shows that the
cross-product term vanishes and, defining

SSR =
n∑

i=1

(ŷi − ȳ)2, (12.28)

we have
SST = SSR+ SSE. (12.29)

As we mention again in Section 12.5.3, the vanishing of the cross-product may
be considered, geometrically, to be a consequence of the Pythagorean theorem.
Equation (12.29) is important in understanding linear regression and analysis of vari-
ance: we think of the total variation as coming from different additive components,
whose magnitudes we compare.

The estimated standard deviation s has the units of Y and is therefore interpretable
—at least to the extent that the Y measurements themselves are interpretable. But
R2 is dimensionless. Unfortunately, there are no universal rules of thumb as to what
constitutes a large value: in some applications one expects an R2 of at least .99 while

3 The signal-to-noise ratio is a term borrowed from engineering, where it refers to a ratio of the
power for signal to the power for noise, and is usually reported in the log scale; under certain
stochastic models it translates into a ratio of signal variance to noise variance.
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in other applications an R2 of .40 or less would be considered substantial. One gets
a feeling for the size of R2 mainly by examining, and thinking about, many specific
examples.

12.1.3 Theory shows that if the model were correct then
the least-squares estimate would be likely to be
accurate for large samples.

In presenting the assumptions on p. 315 we noted that they were listed in order of
importance and, in particular, normality of the errors is not essential. The following
theoretical result substantiates the validity of least-squares for non-normal errors in
large samples.

Theorem: Consistency of least squares estimators For the linear regression model
(12.5) suppose conditions (i)–(iv) hold and let x1, x2, . . . , xn, . . . be a sequence of x
values such that

n∑
i=1

(xi − x̄)2 →∞ (12.30)

as n→∞. Then the least-squares estimator defined by (12.7) satisfies

β̂1
P→ β1

β̂0
P→ β0. (12.31)

In other words, under these conditions β̂1 and β̂0 are consistent estimators of β1 and
β0.

Proof: This is essentially a consequence of the law of large numbers in a non-i.i.d.
setting, where linear combinations of the Yi values are being used according to
(12.7) and (12.8). We omit the proof and refer the interested reader to Wu (1981),
which examines a more general problem but provides extensive references and
discussion. �

Note that to fit a line we must have at least 2 distinct values, so that not every
observation can be made at the same x value. The condition (12.30) fails when, for
all sufficiently large i and j, xi = xj. In other words, it rules out degenerate cases
where essentially all the observations (i.e., all but finitely many of them) are made at
a single x value.4 We may interpret this asymptotic statement as saying that for all
situations in which there is any hope of fitting a line to the data, as the sample size
increases the least-squares estimator of the slope will converge to the true value.

4 In fact, the results cited in Wu (1981) show that (12.30) is necessary and sufficient for (12.31).
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12.2 Checking Assumptions

12.2.1 Residuals should represent unstructured noise.

In examining single batches of data, in Chapter 2, we have seen how the data may
be used not only to estimate unknown quantities (there, an unknown mean μ) but
also to check assumptions (in particular, the assumption of normality). This is even
more important in regression analysis and is accomplished by analyzing the residuals
defined in (12.11). Sometimes the residuals are replaced by standardized residuals.
The ith standardized residual is ei/SD(ei), where SD(ei) is the standard deviation of
ei. Dividing by the standard deviation puts the residuals on a familiar scale: since
they are supposed to be normal, about 5 % of the standardized residuals should be
either larger than 2 or smaller than −2. Standardized residuals that are a lot larger
than 2 in magnitude might be considered outliers.

A detail: There are two different ways to standardize the residuals. We
have here taken SD(ei) to be the estimated standard deviation of ei.
The formula for SD(ei) involves the xi values. An alternative would
be to compute the sample variance of the residuals

s2
e =

1

n− 1

∑
(ei − ē)2

and take its square root. The standardization using SD(ei), which
allows the n residual standard deviations to be different, is often called
studentization (by analogy with the ratio that defines Student’s t dis-
tribution, see p. 129). The statistical software packages we are most
familiar with use SD(ei) to standardize the residuals. �

Two kinds of plots are used. Residual versus fit plots are supposed to reveal (i)
nonlinearity, (ii) inhomogeneity variances, or (iii) outliers. Plots having structure of
the kind that would indicate these problems are shown in Fig. 12.4. The first plot
is typical of data with no systematic variation remaining after linear regression: the
pattern is “random,” specifically, it is consistent with errors that are independent
and normally distributed, all having the same distribution. The second plot shows
departure from linearity; the third indicates more variability for large fitted values
than for smaller ones. The last plot has an outlier, indicating a point that is way off
the fitted line.

Histograms and Q-Q plots of the residuals are also used to assess assumptions.
These are supposed to (i) reveal outliers and (ii) check whether the errors may be
described, at least approximately, by a normal distribution.

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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Fig. 12.4 Residual plots: the Top Left plot depicts unstructured noise while the latter three reveal
structure, and thus deviations from the assumptions.

12.2.2 Graphical examination of (x, y) data can yield crucial
information.

As we tried to emphasize in Chapters 1 and 2, it is important to examine data with
exploratory methods, using visual summaries where possible. The following illus-
tration gives a nice demonstration of how things can go wrong if one relies solely on
the simplest numerical summaries of least-squares regression.

Illustration Figure 12.5 shows a striking example in which four sets of data all have
the same regression equation and R2, but only in the first case (data set 1) would the
regression line appropriately summarize the relationship. In the second case (data
set 2) the relationship is clearly nonlinear, in the third case there is a big outlier
and removing it dramatically changes the regression. In the fourth case the slope of
the line is determined entirely by the height of the point to the right of the graph;
therefore, since each point is subject to some random fluctuation, one would have to
be very cautious in drawing conclusions. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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Fig. 12.5 Plots of four very different data sets all having the same fitted regression equation
Y = 3+ .5x and R2 = .667. These were discussed in Anscombe (1973).

This illustration underscores the value of plotting the data when examining linear
or curvilinear relationships.

12.2.3 Failure of independence among the errors
can have substantial consequences.

In stating the assumptions of linear regression on p. 315 we stressed the importance
of independence among the errors εi. To be concrete, we now consider how inference
about the strength of the linear relationship between x1, . . . , xn and y1, . . . , yn, as
measured by R2, can be badly misled when the data are correlated. To do this we use
a simple model of serial dependence: we put

Ut = ρUt−1 + δt (12.32)

Wt = ρWt−1 + ηt (12.33)

for t = 2, 3, . . . , n where

δt ∼ N(0, 1)

ηt ∼ N(0, 1)

U1 ∼ N(0, 1)

W1 ∼ N(0, 1)
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all independently of each other. Models (12.32) and (12.33) are both examples of
first-order autoregressive models, which we discuss further in Chapter 18, with auto-
correlation coefficient ρ. According to these models the observations Ut and Wt are
likely to be close to the respective values Ut−1 and Wt−1, but with noise added. The
variation in experimental data observed across time may often be described well
using autoregressive models. Note that Ut and Wt are independent for all t. We sim-
ulate values u1, . . . , un and w1, . . . , wn from (12.32) and (12.33), using n = 100,
and we then define

xi = ui

yi = wi

for i = 1, . . . , n and compute R2 from the regression of y on x. We could say that
the correct linear model in this case is

Yi = εi

where εi follows the autoregressive model (12.33), so that in principle we should find
R2 = 0. Figure 12.6 gives the results from 100 simulations (each using n = 100).
When the autocorrelation coefficient is zero, we get values of R2 that deviate from
0 according to the null distribution so that about 5 % of the values are above the
threshold corresponding to p < .05 and about 1 % of the values are above the
threshold corresponding to p < .01. However, as the magnitude of the autocorrelation
coefficient increases we find many values of R2 that are substantial, many more than
would be predicted by the null distribution—thus, the p-values are no longer accurate.
In fact, for magnitudes of the autocorrelation that are close to 1 it becomes highly
probable to get what would look like a “significant” correlation in the data, even
though the x and y data were computer-generated to be independent.

This phenomenon may be appreciated further by contrasting the variation in inde-
pendent normal data with data generated from model (12.32) with ρ = .9. As seen
in the right-hand side of Fig. 12.7, data following this autoregressive model tend to
have patches of values that are all either above 0 or below 0. If we imagine two such
series, there are likely be patches of time where both series are very different from
0 and this will often lead to a substantial magnitude of the correlation coefficient
computed across time.

The point is that one must be very careful about the assumption of independence
in linear regression. When regression or correlation analysis is to be performed on
data recorded across time, where dependence among errors is likely, the standard
advice is to first pre-whiten the data by removing temporal structure (for instance,
by fitting auto-regressive models and then analyzing the residuals) as discussed in
Section 18.5.2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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and (12.33), with n = 100. The x-axis of the plot gives the value of the autocorrelation coefficient
ρ. The usual p-values, obtained from applying the t-distribution to (12.38), accurately represent the
probability of deviation as large as the observed R2 only when ρ = 0.
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Fig. 12.7 Plots of artificial data against a variable representing time, which takes on values
1, 2, . . . , 100. The data values have been connected with lines. Left plot of 100 independent N(0, 1)

random values. Right plot of 100 values from an autoregressive model, as in (12.32) with ρ = .9.
The independent values fluctuate without trends, while the autoregressive values show excursions
of several successive values that are consistently positive or negative.

12.3 Evidence of a Linear Trend

12.3.1 Confidence intervals for slopes are based on SE, according
to the general formula.

When reporting least-squares estimates, standard errors should also be supplied. That
is, one reports either β̂1± SE(β̂1) or a confidence interval. Standard errors are given
as standard output from regression software. The general formula for standard errors
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in linear regression appears in Eq. (12.61). To get an approximate 95 % confidence
interval for β1 based on β̂1 and SE(β̂1), we again use the general form given by (7.8),
i.e.,

approx. 95 % CI = (β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)). (12.34)

An alternative, in small samples, is analogous to the small sample procedure in (7.31)
used to estimate a population mean: we substitute for 2 the value t.975,ν , where now
ν = n− 2 because we have estimated two parameters (intercept and slope) and thus
have lost two degrees of freedom. Thus, we would use the formula

95 % CI = (β̂1 − t.025,n−2 · SE(β̂1), β̂1 + t.025,n−2 · SE(β̂1)). (12.35)

Example 1.5 (continued, see p. 11) Using least squares regression we found β̂1 =
6.07 and SE(β̂1) = .14. We would report this by saying that, on average, action
potential velocity increases by 6.07± .14 m/s for every micron increase in diameter
of a neuron. Applying (12.34), an approximate 95 % CI for the slope of the regression
line is 6.07± 2(.14) or (5.79, 6.35). For these data there were n = 67 observations,
so we have ν = 65 and t.975,n−1 = 2.0. Thus, the CI based on (12.35) is the same as
that based on (12.34). �

Formula (12.34) may be justified by an extension of the theorem on the consis-
tency of β̂1 in (12.31), which we present next.

Theorem: Asymptotic normality of least squares estimators For the linear regres-
sion model (12.5) suppose conditions (i)–(iv) hold and let x1, x2, . . . , xn, . . . be a
sequence of x values such that

1

n

n∑
i=1

(xi − x̄)2 → c (12.36)

for some positive constant c, as n → ∞. Then the least-squares estimator defined
by (12.7) satisfies

β̂1 − β1

SE(β̂1)

D→ N(0, 1)

β̂0 − β0

SE(β̂0)

D→ N(0, 1) (12.37)

where SE(β̂1) and SE(β̂0) are the standard errors given by (12.61).

Proof: This is a consequence of the CLT, but requires some algebraic manipulation.
We omit the proof and again refer the interested reader to Wu (1981) for references.

�

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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The condition (12.36) implies (12.30). It would be satisfied if we were drawing
xi values from a fixed probability distribution.5 In the context of a particular set of
data, the xi values, even when selected by an experimenter, are somehow spread out
and thus could be conceived as coming from some probability distribution (one that
is not concentrated on a single value). On the other hand, the Anscombe example
in Section 12.2.2 is a reminder that sensible interpretations require the fitted line
to represent well the relationship between the xi and yi values. In the theoretical
world this is expressed by saying that the model assumptions (i)–(iv) are satisfied. In
practice we would interpret the theorems guaranteeing consistency and asymptotic
normality of least-squares estimators, according to (12.31) and (12.37), as saying
that if the regression model does a good job in describing the variation in the data,
and the sample size is not too small, then the approximate confidence interval in
(12.34) will produce appropriate inferences. We typically do not need normality of
the errors, as specified in assumption (v). What we need is normality of the estimator,
as in (12.37).

12.3.2 Evidence in favor of a linear trend can be obtained
from a t-test concerning the slope.

In Examples 1.5 and 12.1 it is obvious that there are linear trends in the data. This
kind of increasing or decreasing tendency is sometimes a central issue in an analysis.
Indeed, in Example 12.1 the quantitative relationship, meaning the number of addi-
tional spikes per second per additional drop of juice, is not essential. Rather, the main
conclusion involved the qualitative finding of increasing firing rate with increasing
reward. In problems such as this, it makes sense to assume that y is roughly linear in x
but to consider the possibility that in fact the slope of the line is zero—meaning that y
is actually constant, on average, as x changes; that is, that y is really not related to x at
all. We formalize this possibility as the null hypothesis H0: β1 = 0 and we test it by
applying the z-test discussed in Section 10.3.2. In the one-sample problem of testing
H0: μ = μ0, considered in Section 10.3.3, the z-test is customarily replaced by a
t-test, which inflates the p-value somewhat for small samples and is justified under
the assumption of normality of the data. Similarly, in linear regression, the z-test may
be replaced by a t-test under the assumption of normality of errors (assumption (v)
on p. 315). The test statistic becomes the t-ratio,

t-ratio = β̂1

SE(β̂1)
. (12.38)

For large samples, under H0, this statistic has a N(0, 1) distribution, but for small
samples, if assumption (v) is satisfied, under H0 the t-ratio has a t distribution on
ν = n − 2 degrees of freedom. This is the basis for the p-value reported by most

5 Beyond (12.30), condition (12.36) says that the xi values do not diverge extremely quickly, which
would make β̂1 converge faster than 1/

√
n.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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statistical software. Here, the degrees of freedom are n− 2 because two parameters
β1 and β0 from n freely ranging data values yi. Generally speaking, when the mag-
nitude of the t-ratio is much larger than 2 the p-value will be small (much less than
.05, perhaps less than .01) and there will be clear evidence against H0: β1 = 0 and
in favor of the existence of a linear trend.

Example 1.5 (continued, see page 11) For the conduction velocity data, testing
H0: β1 = 0 with (12.38) we obtained p < 10−15. Keeping in mind that very extreme
tail probabilities are not very meaningful (they are sensitive to small departures from
normality of the estimator) we would report this result as very highly statistically
significant with p << .0001, where the notation << is used to signify “much less
than.” �
Example 12.1 (continued from p. 310) For the data shown in Fig. 12.1 the authors
reported p < .0001. �

In the data reported in Fig. 12.1 there are only 7 distinct values of xi, with many
firing rates (across many trials) corresponding to each reward level. Thus, the 329
data pairs have been aggregated to 7 pairs with the mean value of yi reported for
each xi. It turns out that the fitted line based on means is the same as the fitted line
based on all 329 values considered separately. However, depending on the details of
the way the computation based on the means is carried out, the standard error may
or may not agree with the standard error obtained by analyzing all 329 values. To
capture the full regularity and variation in the data, the hypothesis test should be
based on all 329 values.

12.3.3 The fitted relationship may not be accurate outside
the range of the observed data.

We have so far ignored an interesting issue that arises in Example 1.5. There, the fitted
line does not go through the origin (0, 0). In fact, according to the fitted line, when
the diameter of the nerve is 0, the conduction velocity becomes negative! Should we
try to fix this?

It is possible to force the line through (0, 0) by omitting the intercept in the
fitting process. Regression software typically provides an option for leaving out the
intercept. However, for this data set, and for many others, omission of the intercept
may be unwise. The reason is that the relationship may well be nonlinear near the
origin, and there are no data to determine the fitted relationship in that region. Instead,
we would view the fitted relationship as accurate only for diameters that are within
the range of values examined in the data. Put differently, when the linear regression
model does a good job of representing the regularity and variability in the data it
allows us to interpolate (predict values within the range of the data) but may not be
trustworthy if we try to extrapolate (predict values outside the range of the data).
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12.4 Correlation and Regression

Sometimes the “explanatory variable” x is observed, rather than fixed by the exper-
imenter. In this case the pair (x, y) is observed and we may model this by consid-
ering a pair of random variables X and Y and their joint distribution. Recall (from
Section 4.2.1) that the correlation coefficient ρ is a measure of linear association
between X and Y . As we discussed in Section 4.2.1, the best linear predictor β0+β1X
of Y satisfies

β1 = σY

σX
· ρ (12.39)

as in Eq. (4.9). Also, the theoretical regression of Y on X is defined (see Section 4.2.4)
to be E(Y |X = x), which is a function of x, and it may happen that this function is
linear:

E(Y |X = x) = β0 + β1x.

In Chapter 4 we noted that the regression is, in fact, linear when (X, Y) has a bivariate
normal distribution and then (12.39) holds. This linearity, and its interpretation, was
illustrated in Fig. 4.3. However, the right-hand plot in Fig. 4.3 concerns data, rather
than a theoretical distribution, and there is an analogous formula and interpretation
using the sample correlation r, which was defined in (4.7). Under the assumption of
bivariate normality, it may be shown that the sample correlation r is the MLE of ρ.

The sample correlation is related to the relative proportion of signal-to-noise
variability R2 by R2 = r2. Important properties are the following:

• −1 ≤ r ≤ 1 with r = 1 when the points fall exactly on a line with positive slope
and r = −1 when the points fall exactly on a line with negative slope;
• the value of r is unitless and does not change when either or both of the two

variables are linearly rescaled (e.g., when x is replaced by ax + b);
• just as ρ measures linear association between random variables X and Y , so too

may r be considered a measure of linear association.

As we said in discussing R2, there are no general guidelines as to what constitutes a
“large” value of the correlation coefficient. Interpretation depends on the application.

12.4.1 The correlation coefficient is determined by the regression
coefficient and the standard deviations of x and y.

Equation (12.39) gives the relationship of the theoretical slope β1 to the theoretical
correlation coefficient ρ. For data pairs (xi, yi) we have the analogous formula

β̂1 = sY

sX
· r.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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As a consequence, if x and y have about the same variability, the fitted regression
slope becomes approximately equal to the sample correlation. In some contexts it
is useful to standardize x and y by dividing each variable by its standard deviation.
When that is done, the regression slope will equal the sample correlation.

12.4.2 Association is not causation.

There are numerous examples of two variables having a high correlation while no one
would seriously suggest that high values of one causes high values of the other. For
instance, one author (Brownlee 1965) looked at data from many different countries
and pointed out that the number of telephones per capita had a strong correlation with
the death rate due to heart disease. In such situations there are confounding factors
that, presumably, have an effect on both variables and thus create a “spurious” cor-
relation. Only in well-performed experiments, often using randomization,6 can one
be confident there are no confounding factors. Indeed, discussion sections of articles
typically include arguments as to why possible confounding factors are unlikely to
explain reported results.

12.4.3 Confidence intervals for ρ may be based
on a transformation of r.

The sample correlation coefficient r may be considered an estimate of the the-
oretical correlation ρ and, as we mentioned on p. 327, under the assumption of
bivariate normality r is the MLE of ρ. To get approximate confidence intervals the
large-sample theory of Section 8.4.3 may be applied.7 If we have a random sample
(X1, Y1), . . . , (Xn, Yn) we may compute its sample correlation Rn, which is itself a
random variable (so that when X1 = x1, Y1 = y1, . . . , Xn = xn, Yn = yn we compute
the sample correlation Rn = r based on (x1, y1), . . . , (xn, yn)). Now, if we consider
a sequence of such samples from a bivariate normal distribution with correlation ρ

it may be shown that √
n(Rn − ρ)

(1− ρ2)

D→ N(0, 1)

6 Randomization refers to the random assignment of treatments to subjects, and to the process of
randomly ordering treatment conditions; we discuss this further in Section 13.4.
7 The usual derivation of the limiting normal distribution of r begins with an analytic calculation
of the covariance matrix of (Vx, Vy, C) where Vx = V(X), Vy = V(Y), and C = Cov(X, Y), in
which (X, Y) is bivariate normal. That calculation provides an explicit formula for the covariance
matrix in the limiting joint normal distribution of (Vx, Vy, C), and then propagation of uncertainty
is applied as in Section 9.1.2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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as n → ∞. This limiting normal distribution could be used to find confidence
intervals. However, Fisher (1924) showed that a transformation of the correlation
Rn = r improves the limiting normal approximation. This is known as Fisher’s z
transformation (z because it creates a nearly N(0, 1) distribution) defined by

zr = 1

2
log

(
1+ r

1− r

)
. (12.40)

For the theoretical statement we again consider a sequence of bivariate normal ran-
dom samples with sample correlations Rn and define

ZR = 1

2
log

(
1+ Rn

1− Rn

)

and

ζ = 1

2
log

(
1+ ρ

1− ρ

)

to get √
n− 3(ZR − ζ )

D→ N(0, 1) (12.41)

as n → ∞ (see8 p. 43 in DasGupta 2008). Consequently, we can define the lower
and the upper bounds of an approximate 95 % confidence interval for the theoretical
quantity ζ by

Lz = zr − 2

√
1

n− 3

Uz = zr + 2

√
1

n− 3
. (12.42)

To get an approximate 95 % confidence interval for ρ we apply the inverse transfor-
mation

ρ = exp(2ζ )− 1

exp(2ζ )+ 1

to L and U in (12.42) to get

L = exp(2Lz)− 1

exp(2Lz)+ 1

U = exp(2Uz)− 1

exp(2Uz)+ 1
. (12.43)

8 The z-transformation may be derived as a variance-stabilizing transformation, as on p. 232,
beginning with the limiting result mentioned in footnote 7. More general results are given by
Hawkins (1989).
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Confidence interval for ρ

Suppose we have a random sample from a bivariate normal distribution with
correlation ρ and Rn = r is the sample correlation. Then an approximate 95 %
confidence interval for ρ is given by (L, U) where L and U are defined by
(12.43), (12.42), and (12.40).

The result (12.41) may also be used to test H0:ρ = 0, which holds if and only if
H0: β1 = 0. The procedure is to apply the z-test in Section 10.3.2 using

zobs =
√

n− 3zr,

which is zr divided by its large-sample standard deviation 1/
√

n− 3, and is thus a
z-ratio.

12.4.4 When noise is added to two variables, their correlation
diminishes.

When measurements are corrupted by noise, the magnitude of their correlation
decreases. The precise statement is given in the theorem below, where we begin
with two random variables U and W and then add noise to each, in the form of
variables ε and δ. The noise-corrupted variables are then X = U+ε and Y = W+δ.

Theorem: Attenuation of Correlation Suppose U and W are random variables
having correlation ρUW and ε and δ are independent random variables that are also
independent of U and V . Define X = U + ε and Y = W + δ, and let ρXY be the
correlation between X and Y . If ρUW > 0 then

0 < ρXY < ρUW .

If ρUW < 0 then
ρUW < ρXY < 0.

Proof details: We assume that V(ε) > 0 and V(δ) > 0 and we begin
by writing

Cov(X, Y) = Cov(U + ε, W + δ)

= Cov(U, W)+ Cov(U, δ)+ Cov(W , ε)+ Cov(ε, δ).

Because of independence the last 3 terms above are 0. Therefore,
Cov(X, Y) = Cov(U, W), which shows that ρXY and ρUW have the
same sign. Suppose ρUW > 0, so that Cov(U, W) > 0. Then we have

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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ρXY = Cor(U + ε, W + δ)

= Cov(U, W)√
V(U + ε)V(W + δ)

= Cov(U, W)√
(V(U)+ V(ε))(V(W)+ V(δ))

<
Cov(U, W)√

Var(U)Var(W)
= ρUW .

If ρUW < 0 then Cov(U, W) < 0 and the inequality above is
reversed. �

The theorem above indicates that when measurements are subject to substantial
noise a measured correlation will underestimate the strength of the actual correlation
between two variables. In the notation above, we wish to find ρUW but the corrupted
measurements we observe would be (X1, Y1), . . . , (Xn, Yn), and if we compute the
sample correlation r based on these observations it will tend to be smaller than
ρUW even for large samples. Thus, it is often the case that the sample correlation
will underestimate an underlying correlation between two variables. However, if the
likely magnitude of the noise is known it becomes possible to correct the estimate.
Such corrections for attenuation of the correlation can be consequential.

Example 12.3 Correction for attenuation of the correlation in SEF
selectivity indices Behseta et al. (2009) reported analysis of data from an experiment
on neural mechanisms of serial order performance. Monkeys were trained to perform
eye movements in a given order signaled by a cue. For example, one cue carried the
instruction: look up, then right, then left. Based on recordings of neural activity in
frontal cortex (the supplementary eye field, SEF) during task performance, Behseta
et al. reported that many neurons fire at different rates during different stages of the
task, with some firing at the highest rate during the first, some during the second
and some during the third stage. These rank-selective neurons might genuinely be
sensitive to the monkey’s stage in the sequence. Alternatively, they might be sensitive
to some correlated factor. One such factor is expectation of reward. Reward (a drop
of juice) was delivered only after all three movements had been completed. Thus as
the stage of the trial progressed from one to three, the expectation of reward might
have increased.

To see whether rank-selective neurons were sensitive to the size of the anticipated
reward, the same monkeys were trained to perform a task in which a visual cue
presented at the beginning of the trial signaled to the monkey whether he would
receive one drop or three drops of juice after a fixed interval. The idea was that
neuronal activity related to expectation of reward would be greater after the promise of
three drops than after the promise of one. Spike counts from 54 neurons were collected
during the performance of both the serial order task and the variable reward task, and
selectivity indices for rank in the serial order task and size of the anticipated reward
in the variable reward task were computed. The rank selectivity index was Irank =
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(f3−f1)
(f3+f1)

, where f1 and f3 were the mean firing rates measured at the times of the first and
third saccades respectively, the mean being taken across trials. Similarly, the reward
selectivity index was Ireward = (fb−fs)

(fb+fs)
where fb and fs were the mean firing rates

during the post-cue delay period on big-reward and small-reward trials respectively.
The selectivity indices Irank and Ireward turned out to be positively correlated, but the
effect was smaller than expected, with r = .49. The correlation between the rank
and reward indices was expected to be larger because, from previous research, it was
known that (a) the expectation of reward increases over the course of a serial order trial
and (b) neuronal activity in the SEF is affected by the expectation of reward. Behseta
et al. speculated that the correlation between the two indices had been attenuated
by noise arising from trial-to-trial variations in neural activity, and they applied a
correction for attenuation discussed in Chapter 16. This gave a dramatically increased
correlation, with the new estimate of correlation becoming .83. Results given by
Behseta et al. showed that the new estimate may be considered much more reliable
than the original r = .49. �

12.5 Multiple Linear Regression

The simple linear regression model (12.5) states that the response variable Y arises
when a linear function of a single predictive variable x is subjected to additive noise
ε. The idea is easily extended to two or more predictive variables. Let us write the
ith observation of the jth predictive variable as xji. Then, for p predictive variables
the linear regression model becomes

Yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi (12.44)

where the εi’s have the same assumptions as in (12.5).
Let us start with the case p = 2. Just as y = β0+β1x1 describes a line, the equation

y = β0+ β1x1+ β2x2 describes a plane. When only a single variable x1 is involved,
the coefficient β1 is the slope: β1 = �y/�x. For example, if we increase x by �x = 2
then we increase y by �y = 2β1. In the case of the equation y = β0+β1x1+β2x2, if
we increase x1 by �x1 = 2 and ask what happens to y, the answer will depend on how
we change x2. However, if we hold x2 fixed while we increase x1 by �x1 = 2 then we
will increase y by �y = 2β1. When p = 2, β1 is interpreted as the change in y for a
one-unit change in x1 when x2 is held fixed. If p > 2 then β1 becomes the change in y
for a one-unit change in x1 when x2, . . . , xp are all held fixed. Thus, linear regression
is often used as a way of assessing what might happen if we were to hold one or
more variables fixed while allowing a different variable to fluctuate. Put differently,
regression allows us to assess the relationship between x1 and y after adjusting for the
variables x2, . . . , xp. In this context x2, . . . , xp are often called covariates, because9

they co-vary with x1 and y.

9 See also “analysis of covariance,” mentioned in the footnote on p. 379.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Example 12.4 Developmental change in working memory from fMRI Many
studies have documented the way visuospatial working memory (VSWM) changes
during development. Kwon et al. (2002) used fMRI to examine neural correlates of
these changes. These authors studied 34 children and young adults, ranging in age
from 7 to 22. Each subject was given a VSWM task while being imaged. The task
consisted of 12 alternating 36-s working memory (WM) and control epochs during
which subjects viewed items on a screen. During both the WM and control versions
of the task the subjects viewed the letter “O” once every 2 s at one of nine distinct
locations on the screen. In the WM task the subjects responded when the current
location was the same as it was when the symbol was presented two stimuli back.
This required the subjects to engage their working memory. In the control condition
the subjects responded when the “O” was in the center of the screen.

One of the y variables used in this study was the maximal BOLD activation (as a
difference between WM and control) among voxels within the right prefrontal cortex.
They were interested in the relationship of this variable with age (x1). However, it
is possible that Y would increase due to better performance of the task, and that
this would increase with age. Therefore, in principle, the authors wanted to “hold
fixed” the performance of task while age varied. This is, of course, impossible. What
they did instead was to introduce two measures of task performance: the subjects’
accuracy in performing the task (x2) and their mean reaction time (x3). �

Example 12.1 (continued, see p. 310) The firing rates in Fig. 12.1 appear clearly
to increase with size of reward, and the analysis the authors reported (see p. 326)
substantiated this impression. Platt and Glimcher also considered whether other vari-
ables might be contributing to firing rate by fitting a multiple regression model using,
in addition to the normalized reward size, amplitude of each eye saccade, average
velocity of saccade, and latency of saccade. This allowed them to check whether
firing rate tended to increase with normalized reward size after accounting for these
eye saccade variables. �

Equation (12.6) defined the least squares fit of a line. Let us rewrite it in the form

n∑
i=1

(yi − ŷi)
2 = min

β∗

n∑
i=1

(yi − y∗i )2 (12.45)

where ŷi = β̂0+ β̂1xi, y∗i = β∗0 +β∗1 xi and β∗ = (β∗0 , β∗1 ). If we now re-define y∗i as

y∗i = β∗0 + β∗1 x1i + · · · + β∗p xpi

withβ∗ = (β∗0 , β∗1 , . . . , β∗p ), Eq. (12.45) defines the least-squares multiple regression
problem. We write the solution in vector form as

β̂ = (β̂0, β̂1, . . . , β̂p), (12.46)
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where the components satisfy (12.45) with the fitted values being

ŷi = β̂0 + β̂1x1i + · · · + β̂pxpi. (12.47)

We interpret the multiple regression equation in Section 12.5.1 and discuss the
decomposition of sums of squares in Section 12.5.2. In Section 12.5.3 we show how
the multiple regression model may be written in matrix form, which helps in demon-
strating how it includes ANOVA models as special cases, and in Section 12.5.4 we
show that multiple regression also may be used to analyze certain nonlinear relation-
ships. In Section 12.5.5 we issue an important caveat concerning correlated explana-
tory variables; in Section 12.5.6 we describe the way interaction effects are fitted by
multiple regression; and in Section 12.5.7 we provide a brief overview of the way
multiple regression is used when there are substantial numbers of alternative explana-
tory variables. We close our discussion of multiple regression in Section 12.5.8 with
a few words of warning.

12.5.1 Multiple regression estimates the linear relationship
of the response with each explanatory variable,
while adjusting for the other explanatory variables.

To demonstrate multiple regression in action we consider a simple example.

Example 12.5 Toxicity as a function of dose and weight In many studies of
toxicity, including neurotoxicity (Makris et al. 2009) a drug or other agent is given
to an animal and toxicity is examined as a function of dose and animal weight. A
relatively early example was the study of sodium arsenate (arsenic) in silkworm
larvae (Bliss 1936). We reanalyzed data reported there. The response variable (y)
was log(w/1,000) where w was minutes survived, and the two predictive variables
were log weight, in log grams, and log dose, given in 1.5 plus log milligrams. A
plot of log survival versus log dose is given in Fig. 12.8. Because there were two
potential outliers that might affect the slope of the line fitted to the plotted data we
have provided in the plot the fitted regression lines with and without those two data
pairs. The results we discuss were based on the complete set of data.

The linear regression of log survival on log dose gave the fitted line

log survival = .140(±.057)− .704(±.078)log dose

which says that survival decreased roughly .704(±.078) log 1,000 min for every log
milligram increase in dose. The regression was very highly significant (p = 10−12),
consistently with the obvious downward trend.

The linear regression of log survival on both log dose and log weight gave the
fitted line
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Fig. 12.8 Plot of log survival time (log(w/1,000) where w was minutes survived) versus log dose
(1.5 plus log milligrams) of sodium arsenate in silkworm larvae; data from Bliss (1936). Lines are
fits based on linear regression: solid line used the original data shown in plot; dashed line after
removing the two high values of survival at low dose.

log survival = .140(±.057)− .734(±.058)log dose+ 1.07(±.16)log weight.

In this case, including weight in the regression does not change very much the
relationship between dose and survival: the slope is nearly the same in both cases. �

12.5.2 Response variation may be decomposed into signal
and noise sums of squares.

As in simple linear regression we define the sums of squares SSE and SSR, again
using (12.22) and (12.28) except that now ŷi is defined by (12.47). If we continue to
define the total sum of squares as in (12.24) we may again decompose it as

SST = SSR+ SSE

and we may again define R2 as in (12.25) or, equivalently, (12.27). In the multi-
ple regression context R2 is interpreted as a measure of the strength of the linear
relationship between y and the multiple explanatory variables.
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With p variables we may again use the sum of squares of the residuals to estimate
the noise variation σ 2 but we must change the degrees of freedom appearing in
(12.21). Because we again start with n− 1 degrees of freedom in total, we subtract
p to get n− 1− p degrees of freedom for error, and we have

s2 = 1

n− 1− p
SSE (12.48)

where SSE is defined by (12.22). In multiple regression the hypothesis of no linear
relationship between y and the x variables is H0: β1 = β2 = · · · = βp = 0. To test
this hypothesis we define and compare suitable versions of MSR and MSE, the idea
being that under H0, with no linear relationship at all, MSR and MSE should be about
the same size because both represent fluctuation due to noise. With p explanatory
variables there are p degrees of freedom for regression. We therefore define the mean
squared error for regression

MSR = SSR

p
.

We use (12.48) in (12.23) for the mean squared error. We then form10 the F-ratio

F = MSR

MSE
. (12.49)

In words, F is the ratio of the mean squared errors for regression and error, which
are obtained by dividing the respective sums of squares by the appropriate degrees
of freedom. Under the standard assumptions, if H0 holds this F-ratio follows an F
distribution, which will be centered near 1.

To state the result formally we must define a theoretical counterpart to (12.49). Let
Ŷi be the random variable representing the least-squares fit under the linear regression
assumptions on p. 315, i.e., it is the theoretical counterpart of (12.47). We define

UMSE = 1

p

n∑
i=1

(Yi − Ŷi)
2 (12.50)

and

UMSR = 1

n− 1− p

n∑
i=1

(Ŷi − Ȳi)
2. (12.51)

10 The letter F was chosen (by George Snedecor in 1934) to honor Fisher, who had first suggested
a log-transformed normalized ratio of sums of squares, and derived its distribution, in the context
of ANOVA, which we discuss in Chapter 13.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Fig. 12.9 Orthogonal projection of the vector y onto the vector subspace V resulting in the vector ŷ
in V . The residual vector y− ŷ is orthogonal to ŷ, which gives the Pythagorean relationship (12.57).
This corresponds to the total sum of squares (the squared length of y) equaling the sum of the
regression sum of squares (the squared length of ŷ) and the error sum of squares (the squared length
of y − ŷ).

Result: F-Test for Regression
Under the linear regression assumptions on p. 315, with (12.44) replacing (12.5),
if H0: β1 = β2 = · · · = βp = 0 holds then the F-statistic

F = UMSR

UMSE
(12.52)

follows an Fν1,ν2 distribution, where ν1 = p and ν2 = n− 1− p.

Proof outline: If H0 is true, it may be shown that

∑
(Ŷi − Ȳ)2 ∼ χ2

ν1

and ∑
(Yi − Ŷi)

2 ∼ χ2
ν2

where ν2 = n− 1− p is the degrees of freedom for error, and it may be shown that
these are independent. Therefore, the random variable F defined by (12.52) is a ratio
of independent chi-squared random variables divided by their degrees of freedom,
which, by the definition on p. 129 has an Fν1,ν2 distribution. �

We provide a geometrical interpretation of the sum of squares decomposition
below, in Fig. 12.9 and Eq. (12.57).

In simple linear regression, where there is only one explanatory variable, ν1 = 1
and F is equal to the square of the t-ratio. Because the square of a tν distributed
random variable has an F1,ν distribution, it follows that the t-test and the F-test of
H0: β1 = 0 are identical. In multiple regression, hypotheses may also be tested about
the individual coefficients, e.g., H0 : β2 = 0, using t-tests.
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Table 12.1 Simple linear regression results for Example 12.5.

Variable Coefficient SE tobs p-value

(Intercept) .120 .057 2.1 .038
Log dose −.704 .078 −9.1 10−12

Table 12.2 Multiple regression results for Example 12.5.

Variable Coefficient SE tobs p-value

(Intercept) −.140 .057 −2.49 .017
Log dose −.734 .058 −12.6 2× 10−16

Log weight 1.07 .16 6.8 6× 10−9

Example 12.5 (continued) Returning to the toxicity data, the results for the regres-
sion of log survival on log dose are given in Table 12.1. We also obtained s = .17
and R2 = .59. The F-statistic was F = 82 on 1 and 58 degrees of freedom, with
p = 10−12 in agreement with the p-value for the t-test in Table 12.1. The results for
the regression of log survival on both log dose and log weight are in Table 12.2 and
here s = .13 and R2 = .77, which is a much better fit. The F-statistic was F = 97
on 2 and 57 degrees of freedom, with p = 2× 10−16.

We would interpret the t ratios and F-statistics as follows: there is very strong
evidence of a linear relationship between log survival and a linear combination of
log dose and log weight (F = 97, p << 10−5); given that log weight is included in
the regression model, there is very strong evidence (t = −12.6, p << 10−5) that log
survival has a decreasing linear trend with log dose; similarly, given that log dose is
in the model, there is very strong evidence (t = 6.8, p << 10−5) that survival has
an increasing linear trend with log weight. �

Example 12.4 (continued from p. 333) Recall that in one of their analyses Kwon
et al. defined Y to be the maximal BOLD activation (as a difference between WM
and control) among voxels within the right prefrontal cortex, and they considered its
linear relationship with age (X1), accuracy (X2) and reaction time (X3). They then
performed multiple linear regression and found R2 = .53 with β1 = .75(±.20),
p < .001, β2 = −.21(±.19), p = .28, and β3 = −.15(±.17), p = .37. They inter-
preted the results as showing that the right PFC tends to become much more strongly
activated in the VSWM task as the subjects’ age increases, and that this is not due
solely to improvement in performance of the task. �

Example 12.1 (continued from p. 333) Platt and Glimcher fit a multiple regression
model to the firing rate data using as explanatory variables normalized reward size,
amplitude of each eye saccade, average velocity of saccade, and latency of saccade.
They reported the results of the t-test for the normalized reward size coefficient
as p < .05, which indicates that firing rate tended to increase with normalized
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reward size even after accounting for these eye saccade variables. A plot showing
the coefficient with SE makes it appear that actually p << .05, which is much more
convincing. �

The distributional results for the statistic F in (12.52) are based on the assump-
tion of normality of the errors. For sufficiently large samples the p-values for the
F-statistic, and the t-based p-values and confidence intervals, will be approximately
correct even if the errors are non-normal. This is due to the theorems on con-
sistency (p. 318) and approximate normality (p. 324), which extend to multiple
regression (p. 344). However, the independence assumption is crucial. The stan-
dard errors and other distributional results generally may be trusted for reasonably
large samples when the errors are independent, but they require correction other-
wise. The assumptions should be examined using residual plots, as in simple linear
regression.

12.5.3 Multiple regression may be formulated concisely
using matrices.

Mathematical manipulations in multiple regression could get very complicated. A
great simplification is to collect multiple equations together and write them as single
equations in matrix form. We start by writing the n random variables Yi as an n× 1
random vector

Y =

⎛
⎜⎜⎜⎝

Y1
Y2
...

Yn

⎞
⎟⎟⎟⎠

and then similarly write

β =

⎛
⎜⎜⎜⎝

β0
β1
...

βp

⎞
⎟⎟⎟⎠

ε =

⎛
⎜⎜⎜⎝

ε1
ε2
...

εn

⎞
⎟⎟⎟⎠
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and

X =

⎛
⎜⎜⎜⎝

1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

...

1 xn1 xn2 . . . xnp

⎞
⎟⎟⎟⎠ .

The linear regression model may then be written in the form

Y = Xβ + ε (12.53)

where it is quickly checked that both left-hand side and right-hand side are n × 1
vectors. The usual assumptions may also be stated in matrix form. For example, we
have

ε ∼ Nn(0, σ 2 · In) (12.54)

which says that ε has a multivariate normal distribution of dimension n, with mean
equal to the zero vector and variance matrix equal to σ 2 times the n-dimensional
identity matrix, i.e.,

V(ε) = σ 2 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 · · · 0
...

. . .
...

0
. . . 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Equation (12.53), together with the assumptions, is often called the general linear
model. It accommodates not only multiple regression but also a large variety of
models11 that compare experimental conditions, which arise in analysis of variance
(Chapter 13). For example, a standard approach to the analysis of fMRI data is based
on a suitable linear model.

Example 12.2 (continued from p. 313) In Eq. (12.20) we defined a variable xi

that could be used with simple linear regression to analyze the BOLD response due
to activity associated with a particular stimulus, according to an assumed form for
the hemodynamic response function.12 Suppose there are two stimuli with uj = 1
corresponding to the first stimulus being on, with uj = 0 otherwise, and vj = 1
corresponding to the second stimulus being on, with vj = 0 otherwise. We then
define

11 Sometimes when someone refers to the general linear model they may also allow the variance
matrix to be different, or they may allow for non-normal errors.
12 Before regression is applied various pre-processing steps are usually followed to make the
assumptions of linear regression a reasonable representation of the variation in the fMRI data.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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xi1 =
∑
j<i

h(i − j)uj

xi2 =
∑
j<i

h(i − j)vj

and set the X matrix equal to

X =

⎛
⎜⎜⎜⎝

1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

⎞
⎟⎟⎟⎠ .

If we apply (12.53) with β = (β0, β1, β2)
T the coefficient β1 will represent the

magnitude of the effect of the first stimulus on the BOLD response, the coefficient
β2 will represent the magnitude of the effect of the second stimulus on the BOLD
response, and the coefficient β0 will represent the baseline BOLD response. �

Because X often reflects the design of an experiment, as in Example 12.2 above, it
is called the design matrix. The assumptions associated with (12.53) are essentially
the same as those enumerated (i)–(v) for simple linear regression, where (i) becomes
the validity of Eq. (12.53) and (ii)–(v) refer to the components of ε.

In matrix form we may write the least-squares fit as ŷ according to

||y− ŷ||2 = min
β∗
||y− y∗||2

y∗ = Xβ∗

where ||w|| is used to indicate the length of the vector w. We assume here that XT X
is nonsingular (see the Appendix for a definition). The solution is found by solving
the equations

XT Xβ = XT y (12.55)

numerically (by numerically stable methods) and the solution may be written in the
form13

β̂ = (XT X)−1XT y. (12.56)

Formula (12.56) may be obtained by a simple geometrical argument. We begin by
thinking of y as a vector in n-dimensional space and we consider the subspace V
consisting of all linear combinations of the columns of X. We say that V is the linear
subspace spanned by the columns of X, which is the set of all vectors that may be
written in the form Xβ∗ for some β∗, i.e.,

13 The equations are not solved merely by inverting the matrix XT X; this can lead to grossly incorrect
answers due to seemingly innocuous round-off error. See Section 12.5.5.
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V = {Xβ∗, β∗ ∈ Rp+1}

(see the Appendix). The subspace V is the space of all possible fitted vectors. The
problem of least squares, then, is to find the closest vector in V to the data vector
y, i.e., the problem is to minimize the Euclidean distance between y and V . The
solution to this minimization problem is the fitted vector ŷ = Xβ̂. See Fig. 12.9. This
geometry also gives us the Pythagorean relationship

||y||2 = ||ŷ||2 + ||y− ŷ||2 (12.57)

which is the basis for the decomposition SST = SSR+ SSE.

Details: Euclidean geometry says that ŷ must be obtained by orthog-
onal projection of y onto the subspace spanned by the columns of X
and, as a result, the residual y− ŷ must be orthogonal to the subspace
spanned by the columns of X, which means that y− ŷ must be orthog-
onal to Xβ for every β. This, in turn, may be written in the following
form: for all β,

〈Xβ, y − ŷ〉 = 0 (12.58)

where 〈u, v〉 = uT v is the inner product of u and v. Substituting ŷ = Xβ̂

we have
〈Xβ, y − Xβ̂〉 = 0

for all β, and rewriting this we find that

βT XT y = βT XT Xβ̂

for all β, which gives us Eq. (12.55). Equation (12.55) is sometimes
called the set of normal equations (presumably using “normal” in the
sense of “orthogonal”; and plural because (12.55) is a vector equation
and therefore a set of scalar equations). Because (12.58) holds for all
β, it holds in particular for β = β̂, i.e.,

〈ŷ, y − ŷ〉 = 0

which, as illustrated in Fig. 12.9, gives (12.57).
For the SST decomposition we introduce the n × 1 vector having all
of its elements equal to 1, which we write 1vec = (1, 1, . . . , 1)T . In
the argument above we replace y by the residual following projection
of y onto 1vec,

ỹ = y − < y, 1vec >

< 1vec, 1vec >
1vec

= y − ȳ1vec
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(which is the vector of residuals found by regressing y on 1vec) and
similarly for all j = 2, . . . , p + 1 replace the j column of X by its
residual following projection onto 1vec (which produces the vectors
of residuals found by regressing each x variable on 1vec). When we
repeat the argument with these new variables we get a new fitted vector
ˆ̃y and everything goes through as before. We then obtain the version
of (12.57) needed for the decomposition:

||ỹ||2 = ||ˆ̃y||2 + ||y− ŷ||2.

It may be verified that this is the same as SST = SSR + SSE. For
example, ||ỹ||2 =∑

(yi − ȳ)2. �
The variance matrix of the least-squares estimator is easy to calculate using a

generalization of Eq. (4.26): with a little algebra it may be shown that if W is a p× 1
random vector with variance matrix V(W) = 
 and A is a k × p matrix, then the
variance matrix of AW is

V(AW) = A
AT . (12.59)

Using (12.59) we obtain

V(β̂) = ((XT X)−1XT )σ 2In((X
T X)−1XT )T

= σ 2 · (XT X)−1XT X(XT X)−1

= σ 2 · (XT X)−1.

This variance matrix summarizes the variability of β̂. For instance, we have

V(β̂k) = σ 2 · (XT X)−1
kk ,

which is the kth diagonal element of the variance matrix. To use such formulas with
data, however, we must substitute s for σ . We then have the estimated variance matrix

V̂(β̂) = s2 · (XT X)−1 (12.60)

and the standard errors are given by

SE(β̂k) =
√

s2 · (XT X)−1
kk . (12.61)

For example, (12.61) is the formula that was used to produce the standard errors
in Table 12.2, and to get the standard errors and t-ratios, and thus the p-values, in
Example 12.4 reported on p. 338. For problems involving propagation of uncertainty
(Section 9.1) to a function of β̂, the variance matrix in (12.60) would be used.

The estimator (12.60), and resulting inferences, may be justified by the analogue
to (12.37).

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Theorem: Asymptotic normality of least squares estimators For the linear regres-
sion model (12.53) suppose conditions (i)–(iv) hold and let X1, X2, . . . , Xn, . . . be a
sequence of design matrices such that

1

n
XT X → C (12.62)

for some positive definite matrix C, as n → ∞. Then the least-squares estimator
defined by (12.56) satisfies

1

s
(XT

n Xn)
1/2(β̂ − β)

D→ Np+1(0, Ip+1). (12.63)

Proof: See Wu (1981) for references. �

A Detail: It is also possible to use the bootstrap in regression, but this
requires some care because under the assumptions (i)–(iv) the random
variables Yi have distinct expected values,

E(Yi) = (1, xi1, . . . , xip)β

and so are not i.i.d. The usual approach is to resample the studentized
residuals (see p. 319), which are approximately i.i.d. See Davison
and Hinkley (1997, page 275). Alternatively, when each vector xi =
(xi1, . . . , xip) is observed, rather than chosen by the experimenter, it
is possible to treat xi as an observation from an unknown multivariate
probability distribution, and thus (xi, yi) becomes an observation from
an unknown distribution, and the data vectors ((x1, y1), . . . , (xn, yn))

may be resampled.14 This was the bootstrap procedure mentioned in
Example 8.2 on p. 241. For additional discussion see Davison and
Hinkley (1997). �

There are many conveniences of the matrix formulation of multiple regression
in (12.53) together with (12.54). One is that the independence and homogeneity
assumptions in (12.54) may be replaced. Those assumptions imply

V(ε) = σ 2In,

as in (12.54). The analysis remains straightforward if we instead assume

V(ε) = R (12.64)

14 Here, Eq. (9.27) becomes

F̂n(x, y)
P→ F(X,Y)(x, y)

where F̂n is the empirical cdf computed from the random vectors ((X1, Y1), . . . , (Xn, Yn)).

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 12.10 MEG gradiometer background noise covariance matrix. The light blue corresponds to
zero elements and darker blue, yellow, and red indicate non-zero elements. (Figure furnished by
Gustavo Sudre.)

where R can be any n×n variance matrix (i.e., a positive definite symmetric matrix).
Example 1.2 (continued from p. 5) We previously noted that MEG imaging requires
sensor data to be obtained first from background scanner noise, meaning the sen-
sor data must be obtained with nothing in the scanner. We displayed on p. 54
a histogram of such data, from a single sensor, as an example of a normal dis-
tribution. The separate sensor readings are not independent but are, instead, cor-
related. Figure 12.10 displays a representation of the background noise variance
matrix from 204 gradiometer sensors in a MEG scanner. MEG analysis is based on
(12.53) together with (12.64), with R being based on the background noise variance
matrix. �

Given a matrix R in (12.64), and assuming it is positive definite, the least-squares
problem may be reformulated. Letting U = R−1/2Y and W = R−1/2X we have

R−1/2(Y − Xβ) = R−1/2ε ∼ Nn(0, In),

so that the new model
U = Wβ + δ,

where δ = R−1/2ε, satisfies the usual assumptions in (12.53) together with (12.54).
Therefore, to fit the model (12.53) with (12.64) we may first transform Y and X by pre-
multiplying with R−1/2 and then can apply ordinary least squares to the transformed
variables. This is called weighted least squares and it arises in various extensions of
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multiple regression. On p. 212 we showed that the least-squares estimator was also
the MLE under the standard assumptions of regression, including normality of the
errors. More generally, the weighted least squares estimator of β is the MLE under
(12.53) with (12.64).

Example 1.2, above, provides a case in which the non-independence of the com-
ponents of ε is due to the spatial layout of the sensors, and the resulting dependence
among the magnetic field readings at different sensors. Neuroimaging also typically
generates temporal correlation in the measurements, i.e., the measurements are time
series with some dependence across time. Using auto-regressive time series models
described in Section 18.2.3 the variance matrix may be determined from the data and
this furnishes an R matrix in (12.64). The model (12.53) with (12.64) then leads to
regression with time series errors.

12.5.4 The linear regression model applies to polynomial
regression and cosine regression.

In many data sets the relationship of y and x is mildly nonlinear, and a quadratic in x
may offer better results than a line. Even though a quadratic is nonlinear, a neat trick
allows us to fit quadratic regression via multiple linear regression. The trick is to set
w1 = x and to define a new variable w2 = x2. Then, when y is regressed on both
w1 and w2 this amounts to fitting a general quadratic of the form y = a+ bx + cx2,
where now a = β0, b = β1 and c = β2. To be clear, we define the vector w1 as

w1 =

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ (12.65)

and the vector w2 as

w2 =

⎛
⎜⎜⎜⎝

x2
1

x2
2
...

x2
n

⎞
⎟⎟⎟⎠ (12.66)

and then we regress y = (y1, . . . , yn) on w1 and w2.

In quadratic regression there are several possibilities. First, there may be evidence
of a linear association between y and x (from the simple linear regression), but the
relationship appears nonlinear and there is also evidence of a linear association
between y and both x and x2 combined. This latter evidence would come from
the combined regression output of (i) a statistically significant F-ratio and (ii) a

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 12.11 Plot of action potential width against length of previous ISI, together with quadratic
fitted by linear regression.

significant t-ratio for the coefficient of x2. This case is illustrated below. Note that it
is possible for the coefficient of x in the combined regression to be non-significant.
This should not necessarily be taken to mean that there is no linear component to
the relationship: it is generally preferable to use the general form y = a+ bx+ cx2,
which requires the bx term and thus the x variable. Actually, it is possible for the
coefficients of both x and x2 to be non-significant while the F-ratio is significant;
this occurs when the two variables are themselves so highly correlated that neither
adds anything to the regression when the other is already used.

As a second possibility, there may be evidence of a linear association between
y and x (from the simple linear regression), but there is no evidence of a quadratic
relationship. The latter would be apparent from (i) an OK (not curved) residual plot in
the simple linear regression and (ii) a non-significant t-ratio for the coefficient of x2.
The third possibility is that there may be no evidence of a relationship between y and
either x by itself or x combined with x2. This would be evident from an insignificant
t-ratio in the simple linear regression and an insignificant F-ratio in the combined
regression.

Let us now turn to an example.

Example 8.2 (continued from p. 193) On p. 193 we examined spike train data
recorded from a barrel cortex neuron in slice preparation, which was part of a study
on the effects of seizure-induced neural activity. Figure 8.5 displayed the decreas-
ing width of action potentials with increasing length of the interspike interval.
Figure 12.11 shows a plot of many action potential widths against preceding inter-
spike interval (ISI), where the data have been selected to include only ISIs of length

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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less than 120 ms. In the plot, the downward trend begins to level off near 100 ms,
and a quadratic curve fitted by linear regression is able to capture the leveling off
reasonably well within this range of ISI values. In this case the linear and quadratic
regression coefficients were both highly significant (p = 6 × 10−6 and p = .0017,
respectively, with the overall F-statistic giving p = 8× 10−14) and R2 = .61. �

In quadratic regression, illustrated in Example 8.2 above, we defined w1 = x and
w2 = x2. To fit cubic and higher-order polynomials we may continue the process
with w3 = x3, etc. An important caveat, however, is that the variables x1, x2, and x3
defined in this way are likely to be highly correlated, which may cause difficulties
in interpretation and, in extreme cases, may cause the matrix XT X to be singular
(non-invertible), in which case least-squares software will fail to return a useful
result. We discuss this issue further in Section 12.5.5.

A second nonlinear function that may be fitted with linear regression is the cosine.

Example 12.6 Directional Tuning in Motor Cortex In a well-known set of exper-
iments, Georgopoulos, Schwartz and colleagues showed that motor cortex neurons
are directionally “tuned.” Figure 12.12 shows a set of raster plots for a “center-out”
reaching task: the monkey reached to one of eight points on a circular image, and
this neuron was much more active for reaches in some directions than for others. The
bottom part of Fig. 12.12 shows a cosine function that has been fitted to the mean
firing rate as a function of the angle around the circle, which indicates the direction
of reach. For example (and as is also shown in the raster plots), reaches at angles
near 180◦ from the x-axis produced high firing rates, while those at angles close to
0◦ (movement to the right) produced much lower firing rates. The angle at which
the maximum firing rate occurs is called the “preferred direction” of the cell. It is
obtained from the cosine function.

To fit a cosine to a set of spike counts, multiple linear regression is used.
Let v = (v1, v2) be the vector specifying the direction of movement and let
d = (d1, d2) be the preferred direction for the neuron. Both v and d are unit vec-
tors. Assuming cosine tuning, the firing depends only on cos θ , where θ is the angle
between v and d. We have

cos θ = v · d = v1d1 + v2d2.

Letting μ(v) be the mean firing rate in a given interval of time when the movement
is in direction v, if we let the minimal firing rate be Bmin and the maximal firing rate
be Bmax , then cosine tuning may be written as the requirement that

μ(v) = Bmin + Bmax − Bmin

2
+ Bmax − Bmin

2
cos θ.

(Recall that the minimal value of the cosine is −1, and its maximal value is 1.) If
we now define β1 = Bmax−Bmin

2 d1, β2 = Bmax−Bmin
2 d2, and β0 = Bmin + Bmax−Bmin

2 we
obtain the linear form

μ(v) = β0 + β1v1 + β2v2. (12.67)
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Fig. 12.12 Directional tuning of motor cortex neurons (adapted from Georgopoulos et al. 1982).
Top displays raster plots (spike trains across five trials) for each of eight reaching directions. Bottom
displays corresponding mean firing rates.

Taking Ci(v) to be the spike count for the ith trial in direction v across a time interval
of length T , the observed spike count per unit time is
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Yi(v) = 1

T
Ci(v).

and we have
Yi(v) = μ(v)+ εi(v). (12.68)

Together, Eqs. (12.68) and (12.67) define a two-variable multiple linear regression
model from which the tuning parameters may be obtained. �

12.5.5 Effects of correlated explanatory variables
cannot be interpreted separately.

On p. 347 we used Example 8.2 to illustrate quadratic regression, and we then issued
a note of caution that x and x2 are often highly correlated. High correlation among
explanatory variables may cause numerical and inferential difficulties. Let us first
describe the numerical issue.

The least-squares solution (12.56) to Equation (12.55) results from multiplying
both sides of Equation (12.55) by (XT X)−1, under the assumption that XT X is non-
singular, i.e., that its inverse exists, which occurs when the columns of X are linearly
independent (see the Appendix). Linear independence fails when it is possible to
write some column of X as a linear combination of the other columns; in this case a
regression of that dependent column on the other columns would produce R2 = 1,
i.e., perfect multiple correlation. When the columns of X are very highly correlated,
even if they are mathematically linearly independent, they may be numerically essen-
tially dependent; for example, a regression of any one column on all the others might
produce R2 that is very nearly equal to 1 (e.g., R2 = .999). Because of this and related
considerations the details of the methods used to compute the least-squares solution
are important, as indicated in the footnote on p. 341. In the quadratic regression of
Example 8.2 on p. 347, for instance, the correlation between ISI and its square was
r = .98. An easy way to reduce correlation is to subtract the mean of the x variable
before squaring, i.e., take w1 = x and w2 = (x − x̄)2. With w1 and w2 defined in
this way for x = ISI in Example 8.2 we obtained r = −.08. Good numerical meth-
ods use general procedures that effectively transform the x variables to reduce their
correlations.

A deeper issue involves interpretation of results. The potential confusion caused
by correlated explanatory variables may be appreciated from the following concocted
illustration.

Illustration: Quadratic regression To demonstrate the interpretive subtlety when
explanatory variables are correlated we set x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and then
defined

yi = xi + ui
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Table 12.3 Quadratic regression results for the artificial data in the illustration.

Variable Coefficient SE tobs p-value

(Intercept) −2.4 2.5 −.95 .37
x 1.86 1.04 1.8 .12
x2 −.067 .092 −.73 .487

where ui ∼ N(0, 4). We then defined w1 and w2 using (12.65) and (12.66) and
regressed y = (y1, . . . , yn) on both w1 (representing x) and w2 (representing x2).
We obtained the results shown in Table 12.3, with R2 = .77, s = 2.1 and F = 11.9
on 2 and 7 degrees of freedom, yielding p = .0056. From Table 12.3 alone this
regression might appear to provide no evidence that y was linearly related to either
x or x2. However, regressing y on either x or x2 alone produces a highly significant
linear regression. Furthermore, the F-statistic from the regression on both variables
together is highly significant. These potentially puzzling results come from the high
correlation of explanatory variables: the correlation between x and x2 is r = .975.
Keep in mind that the t-statistic for x2 in Table 12.3 reflects the contribution of x2

after the variable x has been used to explain y and likewise the t-statistic for x reflects
the contribution of x after the variable x2 has been used to explain y. �

Let us consider this phenomenon further. Suppose we want to use linear regression
to say something about the degree to which a particular variable, say x1, explains y
(meaning the degree to which the variation in y is matched by the variation in the fit
of x to y) but we are also considering other variables x2, . . . , xp. We can regress y on
x1 by itself. Let us denote the resulting regression coefficient by b. Alternatively we
can regress y on x1, . . . , xp and, after applying Eq. (12.56), the relevant regression
coefficient would be β̂1, the first component of β̂. When the explanatory variables
are correlated, it is not generally true that b = β̂1 and, similarly, the quantities that
determine the proportion of variability explained by x1, the squared magnitudes of
the fitted vectors, are not generally equal. Thus, when the explanatory variables are
correlated, as is usually the case, it is impossible to supply a unique notion of the
extent to which a particular variable explains the response—one must instead be
careful to say which other variables were also included in the linear regression.

This lack of uniqueness in explanatory power of a particular variable may be
considered a consequence of the geometry of least squares.

Details: Let us return to the geometry depicted in Fig. 12.9. As in that
figure we take V to be the linear subspace spanned by the columns
of X. Because the columns of X are vectors, let us write them in the
form v1, . . . , vp, and let us ignore the intercept (effectively assum-
ing it to be zero, as we did when we related the SST decomposition
to the Pythagorean theorem). The observations on the first explana-
tory variable x1 then make up the vector v1. The extent to which x1
“explains” the response vector y now becomes the proportion of y that
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lies in the direction v1. This is the length of the projection of y onto
v1 divided by the length of y. However, length of the projection of y
onto v1 depends on whether we do the calculation using v1 by itself or
together with v2, . . . , vp. Let us write the projection as cv1 for some
constant c. If we consider v1 in isolation, we find

c = 〈v1, y〉
〈v1, v1〉 = b. (12.69)

If we consider v1 together with v2, . . . , vp, we must first project y
onto V , and then find the component in the direction v1. The result is
c = β̂1. The exception to this bothersome reality occurs when v1 is
orthogonal to the span of v2, . . . , vp (i.e., 〈v1, v〉 = 0 for every vector
v that is a linear combination of v2, . . . , vp). In this special case of
orthogonality we have b = β̂, and we regain the interpretation that
there is a proportion of y that lies in the direction of v1. Specifically,
in this orthogonal case we may write the projection of y onto V as
ŷ = c1v1 + v for some v in the span of v2, . . . , vp. We then have

〈v1, ŷ〉 = 〈v1, c1v1 + v〉 = c1〈v1, v1〉

so that the projection is c1v1 where

c1 = 〈v1, ŷ〉
〈v1, v1〉 .

On the other hand, we may reconsider the value c in (12.69). Because
y − ŷ is orthogonal to V when we write

〈v1, y〉 = 〈v1, ŷ + (y − ŷ)〉

we have 〈v1, y − ŷ〉 = 0. Therefore,

〈v1, ŷ〉 = 〈v1, y〉

so, in this case, c = c1. Thus, in this orthogonal case, b = β̂1. �

12.5.6 In multiple linear regression interaction effects
are often important.

We saw earlier that it is possible to fit a quadratic in a variable x using linear regression
by defining a new variable x2 and then performing multiple linear regression on x and
x2 simultaneously. Now suppose we have variables x1 and x2. The general quadratic
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in these two variables would have the form

y = a+ bx1 + cx2 + dx2
1 + ex1x2 + fx2

2 .

Thus, we may again use multiple linear regression to fit a quadratic in these two
variables if, in addition to defining new variables x2

1 and x2
2 we also define the new

variable x1 · x2. This latter variable is often called the interaction between x1 and x2.
To see its effect consider the simpler equation

y = a+ bx1 + cx2 + dx1x2. (12.70)

Here, for instance, we have �y/�x1 = b + dx2. That is, the slope for the linear
relationship between y and x1 depends on the value of x2 (and similarly the slope for
x2 depends on x1). When d = 0 and we graph y versus x1 for two different values of
x2 we get two parallel lines, but when d 
= 0 the two lines are no longer parallel.

Interaction effects are especially important in analysis of variance models, which
we discuss in Chapter 13.

12.5.7 Regression models with many explanatory variables
often can be simplified.

When one considers multiple explanatory variables it is possible that some of them
will have very little predictive benefit beyond what the others offer. In that eventu-
ality one typically removes from consideration the variables that seem redundant or
irrelevant, and then proceeds to fit a model using only the variables that help pre-
dict the response. When the number of variables p is small it is not difficult to sort
through such possibilities quickly, but sometimes there are much larger numbers of
variables, particularly if combinations of them, defining interactions as described in
Section 12.5.6, are considered. In this case choosing a suitable collection of variables
to fit is called the problem of model selection, and is based on model comparison
procedures such as those discussed in Section 11.1.6.

Example 12.7 Prediction of burden of disease in multiple sclerosis Li et al. (2006)
investigated the relationship between a measure of severity of multiple sclerosis,
known as burden of disease (BOD), and many clinical assessments. The response
variable, BOD, was based on MRI scans, and 18 different clinical measurements were
used as potential explanatory predictors, including such things as disease duration,
age at onset, and symptom types, as well as an important variable of interest the
Expanded Disability Status Scale (EDSS). One of their main analyses examined
data from an initial set of 1,312 patients who had been entered into 11 clinical trials
in multiple centers. The problem they faced was to determine the variables to use as
predictors from among the 18, together with possible interactions. Note that there
are

(18
2

) = 153 possible pairwise interaction terms. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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There is a huge literature on model selection in multiple regression. We very
briefly describe the ideas behind a few of the major methods, and then offer some
words of caution.

Let us begin with variables x1, x2, . . . , xp and the aim of selecting some subset
that predicts the response y well. Here, some of the x variables could be defined as
interaction terms. For example, if we had variables x1, . . . , xk and wanted to consider
all possible interaction effects, as defined in Section 12.5.6, then we would end up
with p = (k

2

)
variables in total. A very simple variable-selection algorithm is as

follows:

1. Regress y on each single variable xi and find the variable xa that gives the best
prediction (using R2).

2. Regress y on all two-variable models that include xa as one of the variables and
find the variable xb such that xa together with xb gives the best prediction.

3. Continue in this way: for k ≥ 3 and some set of variables we label xa1 , xa2 , . . . ,

xak−1 that have already been selected in previous steps, consider all regression
models that include, in addition, each of the remaining variables; find xj such that
(1) xa1 , xa2 , . . . , xak−1 , xj gives the best prediction and (2) the coefficient of xj is
statistically significant.

Note that criterion (2) provides a way of stopping the process with k < p.

This algorithm is an example of forward selection. It is also called a greedy algorithm
(because at every step in the process it is taking an apparently best next step). In the
form given above it is not yet completely specified because the level of significance,
or the value of the t-ratio, must be chosen; this will determine the number of vari-
ables k that are selected. It is also possible to reverse the process by starting with a
regression based on all variables x1, . . . , xp and then choosing, analogously to step
1 above, one variable to drop, and then repeatedly finding variables to drop until a
satisfactory model is found in which all variables are statistically significant. This
is called backward elimination. An algorithm that alternates between forward and
backward steps is called stepwise regression.

Within model selection algorithms, including forward selection, backward elimi-
nation, or stepwise regression, it is also possible to use criteria such as AIC and BIC
(see Section 11.1.6) to evaluate alternative regression models. (In regression, AIC is
very similar to another popular criterion known as Mallow’s Cp.) In principle, one
would examine all possible models and pick the one that is optimal with respect to
the chosen criterion, such as AIC. However, because each variable may be either
included in a model, or excluded from the model, there are 2p possible models and
it quickly becomes prohibitive to examine all possible models as p grows. Model
selection algorithms, therefore, provide search strategies but can not guarantee that
the optimal model is found.

Example 12.7 (continued) In their study, Li et al. used a stepwise procedure based
on AIC to select variables for predicting BOD. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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An additional, widely-used criterion for model selection is cross-validation. The
idea begins by considering the prediction of y by each model. Let us define an
observation from all the variables x1, . . . , xp to be a vector x. Then we are predicting
y by some function f (x). In the case of linear regression,

f (x) = β0 +
p∑

j=1

βjxj

where each model fixes some of the coefficients βj to be 0 (these are the coefficients
corresponding to variables excluded from the model). The corresponding theoretical
problem is to predict Y by some function f (x) of a random vector X, and we may
evaluate the prediction using mean squared error (MSE), E((Y− f (X))2). According
to the prediction theorem on p. 89 the MSE is minimized by the conditional expec-
tation E(Y |X = x), and we would, in principle, find this conditional expectation
through model selection and fitting. One possibility would be to attempt to choose
the model that gives the smallest MSE. However, because the MSE will depend on
unknown values of the coefficients, we must estimate it from the data. If we use the
same data both to fit models and to evaluate how well the models fit, we necessarily
obtain an overly optimistic answer for the MSE: we will have optimized the fit for
the particular data values at hand; if we were to get new data we probably would
not do as well. In other words, the estimated MSE will tend to be too small; it will
be downwardly biased. Furthermore, the amount of downward bias in the estimated
MSE will vary with the model, so the estimated MSE will not be a reliable model
comparison procedure.

Cross-validation attempts to get around the problem of optimistic MSE assessment
by splitting the n observations yi into a set of K groups, each group having the same
number of observations, or nearly the same number. Let us label the kth group Gk .
Then, for k = 1, . . . , K , we pick group Gk and call its observations “test data”
and the remainder of the observations “training data.” We use the training data to
fit models and we use the test data to evaluate the fits. Specifically, an observation
yi ∈ Gk is predicted by the fit from the training data in the K − 1 groups containing
all yi /∈ Gk . Letting ŷi,CV denote the fit of yi based on the training data that excludes
group Gk , the cross-validated estimate of MSE is

̂MSE = 1

n

K∑
k=1

∑
yi∈Gk

(yi − ŷi,CV )2.

This represents the quality of “out of sample” fit; conceptually, MSE is the average
squared error we would expect, theoretically, if we were to apply the fit on entirely
new data collected under precisely the same conditions. The model with the best
cross-validation performance ̂MSE is the model selected by K-fold cross-validation.
Cross-validation should, in principle, provide good estimates of MSE as K gets large
(so that the estimates of MSE will have good statistical properties). For any given
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sample size n the largest possible value of K is K = n. This results in leave-one-out
cross validation, a method recommended by Frederick Mosteller and John Tukey in
an influential book (Mosteller and Tukey 1968). Here is an example.

Example 12.8 Prediction of fMRI face selectivity using anatomical connectiv-
ity Saygin et al. (2011) used anatomical connectivities established from diffusion-
weighted imaging to predict differential responses to faces and objects in fMRI.
It is highly intuitive that functional activity in the brain, as measured by fMRI,
should depend on anatomical structure. Saygin et al. examined fMRI responses in
the fusiform face area of the temporal lobe, an area known to respond more strongly
when a subject is shown pictures of faces than when the same subject is shown pic-
tures of objects. They considered the response to pictures of faces, and to objects,
at every voxel in the fusiform face area and took as their yi variable in regression
analyses the normalized ratio of face response to object response for voxel i. The
xi vector of variables was made up of connectivities to 84 brain regions, which
were found using diffusion weighted imaging. This constituted their “connectiv-
ity” model. Leave-one-out cross-validation was used across 23 subjects to compare
this model with two other models that did not involve connectivity information. One
model defined the xi variables to be physical distances to the 84 brain regions. This
was the “distance” model. The other used the group average among all the other
subjects, as a single predictor xi. This was the “group average” model. For each
subject the authors fit these models to the other 22 subjects, then used the fits to
predict the fMRI responses among all the voxels for each subject. These authors
used mean absolute error instead of MSE. (We comment on this below.) Thus, they
computed the sample mean absolute error across all voxels for each subject. The
cross-validated estimate of mean absolute error was the sample mean15 of these 23
values. The results were as follows: connectivity model, .65; distance model, 1.06;
group average model, .78. This provided evidence that the connectivity model pre-
dicts fMRI activity better than either physical distances or group averaged responses.

�
In some problems it is computationally expensive to obtain n distinct fits, one for

each of the n training data sets needed for leave-one-out cross-validation. In such
cases, K is chosen to be much smaller, so that only K fits need to be computed. The
most popular value in this context is K = 10.

Cross-validation has been studied extensively (see Efron 2004; Arlot and Celisse
2010; and references therein). The argument that cross-validation should provide a
correction for a downwardly biased estimate of MSE is reminiscent of the motivation
for AIC given in Section 11.1.6. There, AIC was introduced to correct the bias in
estimating the Kullback-Liebler discrepancy between fitted model and true model. In

15 In K-fold cross-validation it is tempting to regard the average of the n MSE estimates as an
ordinary mean, and to apply the usual standard error formula (7.17). This does not work correctly,
however, because the n separate evaluations are not independent. Instead, the square of the standard
error in (7.17) is an underestimate of the variance. In fact, it is not possible to provide a simple
evaluation of the uncertainty attached to the cross-validation estimate of MSE, or risk (see Bengio
and Granvalet 2004).

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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regression, minimizing the Kullback-Liebler discrepancy corresponds to minimizing
MSE and, for large samples, AIC and leave-one-out cross-validation agree (Stone
1974). The great advantage of cross-validation is that it furnishes an estimate of MSE
even if the relationship between Y and X does not follow the assumed linear model.
On the other hand, if the linear model assumptions are roughly correct then AIC
tends to outperform cross-validation (Efron 2004).

Let us make two additional remarks. First, we phrased our comments above in
terms of MSE but, more generally, cross-validation provides an estimate of risk (see
p. 102) using loss functions other than that defined by squared error. In Example 12.8
absolute error was used. Second, cross-validation is not a substitute for replication
of experiments. Experimental replication provides much stronger evidence than any
statistical manipulation can create: new data will inevitably involve both small and,
sometimes, substantial changes in details of experimental design and data collection;
to be trustworthy, findings should be robust to such modifications and should therefore
be confirmed in subsequent investigations.

There is a different approach to the problem of using multiple regression in the
presence of a large number of possible predictor variables. Instead of thinking that
some variables are irrelevant, and trying to identify and remove them, one might
say that the coefficients are noisy and, therefore, on aggregate, likely to be too large
in magnitude. This suggests reducing the overall magnitude of the coefficients, a
process usually called shrinkage. We replace the least squares criterion (12.45) with

n∑
i=1

(yi − ŷi,p)
2 = min

β∗

(
n∑

i=1

(yi − y∗i )2 + λ magnitude(β∗)
)

(12.71)

where magnitude(β) is some measure of the overall size of β and is called a penalty.
The number λ is an adjustable constant and is chosen based on the data, often by cross-
validation (or, for some penalties, AIC or BIC). The criterion to be minimized in
(12.71) is penalized least squares and the solution ŷi,p is called penalized regression.
The two most common penalties are

magnitude(β) =
p∑

j=1

β2
j (12.72)

and

magnitude(β) =
p∑

j=1

|βj|. (12.73)
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These penalties are also called, respectively, L2 and L1 penalties.16 In the statistics
literature L2-penalized regression is often called17 ridge regression and L1-penalized
regression is called the LASSO (see Tibshirani 2011, and references therein). We give
a Bayesian interpretation of penalized regression in Section 16.2.3.

Example 12.9 MEG source localization In Example 1.2 we described, briefly,
the way MEG signals are generated and detected, and we discussed an application
in Example 4.7. There are 306 sensors and the sensor data may be analyzed directly
or, alternatively, an attempt may be made to identify the brain sources that produce
the sensor signals, a process known as source localization. One class of methods
overlays a large grid of possible sources on a representation of the cortex, and then
applies Maxwell’s equations in what is known as a “forward solution” that predicts
the sensor signals for any particular set of source activities. This results in a linear
model of the form (12.53) where X is determined by Maxwell’s equations and β

represents the source activity. A typical number of sources might be 5,000, so this
becomes a large problem. Furthermore, because n = 306 we have p > n which makes
the matrix XT X singular (non-invertible) and some alternative to least squares must
be used. The most common solutions involve L2 and L1 penalized least squares,18

which are used in the minimum norm estimate MNE and minimum current estimate
MCE methods of source localization in MEG. �

12.5.8 Multiple regression can be treacherous.

Multiple linear regression is a wonderful technique, of wide-ranging applicability. It
is important to bear in mind, however, the cautions we raised in the context of simple
linear regression, especially in our discussion of Fig. 12.5. With many explanatory
variables, the inadequacies of the linear model illustrated in Fig. 12.5 could be present
for any of the y versus xj relationships, for j = 1, . . . , p, and there are similar
but more complex possibilities when we use the multiple variables simultaneously.
Furthermore, it is no longer possible to plot the data in the form y versus x when
x = (x1, x2, . . . , xp) and p > 2. The assumption of linearity of the relationship
between y and x is crucial, and with multiple variables it is difficult to check.

An additional issue involves one of the most useful features of multiple regression,
that it allows an investigator to examine the relationship of y versus x while adjusting
for another variable u. This was discussed in Section 12.5.1 and its use in the inter-
pretation of neural data was described in Examples 12.4 and 12.1. In this context,
however, the phenomenon of attenuation of correlation, discussed in Section 12.4.4,

16 The penalty in (12.72) may also be written magnitude(β) = ||β||2 and in mathematical analysis
the Euclidean length is called an L2 norm. The penalty (12.73) is called an L1 penalty because it is
based, analogously, on the L1 norm.
17 Strictly speaking ridge regression refers to L2-penalized regression after the x variables are
normalized.
18 Actually, the penalty is applied to weighted least squares as described on p. 345.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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must be considered. In Example 12.4, for instance, the authors wanted to examine
the effect of age on BOLD activity while adjusting for task performance. The vari-
ables used for adjustment were accuracy (x2) and mean reaction time (x3). For each
subject, the numbers x2 and x3 obtained for these variables were based on limited
data and therefore represent accuracy and reaction time with some uncertainty, which
could be summarized by standard errors. These standard errors were not reported by
the authors, and probably were small, but suppose, hypothetically, that the x2 and
x3 measurements had large standard errors. In this case, according to the result in
Section 12.5.1, the correlation of these noisy variables with BOLD activity would
be less than it would have been if accuracy and reaction time had been measured
perfectly. Therefore, the adjustment made with x2 and x3 would also be less than the
adjustment that would have been made in the absence of noise.

A similar concern arises when the measured variables capture imperfectly the
key features of the phenomenon they are supposed to represent. In Example 12.1,
the authors wanted to adjust the effect of reward size on firing rate for relevant
features of each eye saccade. They did this by introducing eye saccade amplitude,
velocity, and latency. If, however, a different feature of eye saccades was crucial
in determining firing rate (e.g., acceleration), then these measurements would only
be correlated with the key feature and would represent it imperfectly. In this sense,
the measured variables would again be noisy representations of the ideal variables.
The fundamental issue for adjustment is whether the measured variables used in a
regression analysis correctly represent the possible additional explanatory factors,
which are often called confounding variables. We discuss confounding variables
further in Section 13.4. The general problem of mismeasured explanatory variables
is discussed in the statistics and epidemiology literature under the rubric of errors
in variables. When multiple regression is used to provide statistical adjustments, the
accuracy of explanatory variables should be considered.

Finally, in Section 12.5.7 we noted the many alternative regression models that
present themselves when there are multiple possible explanatory variables, and we
described very briefly some of the methods used for grappling with the problem of
model determination. These approaches can be very successful in certain circum-
stances. However, there is often enormous uncertainty concerning the model that
best represents the data. A careful analyst will consider whether interpretations are
consistent across all plausible models. Furthermore, in assessing the relationship
between the response y and one of the explanatory variables xj, the process of model
selection can spuriously inflate the magnitude of an estimated coefficient β̂j. See
Kriegeskorte et al. (2010) for discussion.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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