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    Abstract     Barley ( Hordeum vulgare  L.) is a widely adapted cereal crop with an 
extremely wide geographic distribution throughout the world. It fi nds great use for 
animals as a feed and for humans as a grain, especially as the source for malt for the 
brewing industry. In recent times, there is considerable interest in the nutritional 
properties of barley due to the discovery of the cholesterol-lowering effect of 
β-glucan, a cell wall polysaccharide. Exploitation of genetic diversity in the primary 
and secondary gene pool of barley using DNA-based technologies has yielded inter-
specifi c crosses with improved grain properties, malting quality and resistance to 
biotic and abiotic stresses. The signifi cant achievements regarding introgression of 
alien genes include the genes  Rym14(Hb) ,  Rym16(Hb)  and  Ryd4(Hb)  which were 
introgressed from  Hordeum bulbosum  conferring resistance to BaMMV, BaYMV 
and BYDV in barley. Signifi cant advances in genetic engineering of barley have been 
obtained, and strategies for establishment of regenerative cell and tissue culture 
systems as well as for development of DNA delivery techniques have been formu-
lated. Lately, a huge potential has been realised in barley grains to produce pharma-
ceutical proteins like oral vaccines, growth supplements and food additives which are 
being exploited in a commercial scale. Nevertheless, several problems still remain 
like the strong genotype dependency of barley transformation protocols, transforma-
tion effi ciency, transgene stability and public acceptance. The review focuses on all 
these issues and elaborates achievements made in the last two decades in genetic 
enhancement of barley using different alien gene transfer approaches.  
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5.1         Introduction 

 Crop plants derived from their ancestors in a long process from preferential harvest 
of wild plants to directed selection of plants with good performance resulted in 
systematic breeding for desirable agronomic traits. The process, which started 
approximately 10,000 years ago along with settlement of men, resulted in high 
yielding cultivars to meet the demands of the ever-increasing population of the 
world. However, elite cultivars are vulnerable to a wide range of pressures, thus 
plant breeders must constantly respond to adapt and improve crops. 

 More than half of the food consumed by mankind is based on the major cereals, 
viz. maize, wheat, rice and barley, since these crops are the main sources of plant 
carbohydrates and proteins (FAO  2012 ). Thus, cereals are substantial for production 
of animal feed, starch, fl our, sugar, oils, processed foods, malt, alcoholic beverages, 
gluten and renewable energy (Edgerton  2009 ). The “Green Revolution” and inten-
sifi cation of crop management led to an increase in productivity of these crops until 
the 1980s (Hedden  2003 ). However, in the last two decades, growth rates of yields 
slowed down due to declining resources of arable land and water, deteriorating soil 
conditions as a result of environmental degradation and climate change (Schmidhuber 
and Tubiello  2007 ; Mba et al.  2012 ) as well as due to limitations in the germplasm 
pool (McIntosh  1998 ; Prada  2009 ). It is estimated that feeding nine billion people 
in 2030 would demand raising overall food production by some 50 % between 
2005/2007 and 2030 (Beddington  2010 ; Wegner and Zwart  2011 ). Thus, there is an 
urgent need for new approaches and technologies and also for generating new vari-
eties to meet that dramatic increase (Edgerton  2009 ; Phillips  2010 ). 

 Barley ( Hordeum vulgare  L.), the number four in the world’s cereal crops with 
respect to production quantity, yield (t/ha) and acreage (FAOSTAT), is a widely 
adapted plant with an extremely wide geographic distribution. In 2011, the estimated 
world production of barley was 134 million tons (FAOSTAT). The largest use is for 
animal as well as human food, especially as the source for malt for the brewing 
industry. However, in recent time there is considerable interest in the nutritional 
properties of barley due to the discovery of the cholesterol-lowering effect of 
β-glucan, a cell wall polysaccharide found in barley (Newton et al.  2011 ). 

  H. vulgare  is well studied regarding genetics, cytogenetics and genomics. 
Cultivated barley is self-pollinated and diploid with 2 n  = 2 x  = 14 chromosomes, and 
its genome size is about 5.5 × 10 9  bp with 80 % highly repetitive DNA. Besides the 
availability of numerous germplasm collections, a lot of data have been accumu-
lated in recent time concerning molecular markers, genomic DNA sequences, full-
length cDNAs and expressed sequence tags (ESTs) supplemented by voluminous 
studies on genomics, proteomics and metabolomics which are accessible in differ-
ent databases (Sreenivasulu et al.  2008 ). Strikingly, sequencing the genome of bar-
ley has become a realistic task (Schulte et al.  2009 ). In parallel, tremendous efforts 
in cereal transformation technology were made allowing now comprehensive func-
tional analysis of genes. Combining these developments, barley is now a model 
plant for the  Triticeae  (Saisho and Takeda  2011 ), which is refl ected by numerous 
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reports on transgenic barley in very recent time. This chapter attempts to summarise 
achievements made in alien gene transfer in barley with emphasis on agronomic 
traits as well as fundamental research.  

5.2     Introgression of Alien Genes by Wide Hybridisation 

 A key to successful barley protection and high yield is the constant genetic improve-
ment in this crop. Barley breeding has a long and prosperous history with respect to 
enhancement in resistance levels and yield, and extensive progress has been achieved 
in the last few decades (Friedt et al.  2011 ). However, the modern elite cultivars show 
a relatively low level of genetic diversity, and the loss of important traits like resis-
tances have led to genetic uniformity due to gene erosion. Nevertheless, barley is 
challenged by a range of biotic and abiotic stresses, and continuously, (1) new 
sources emerged due to climate change and (2) the pathogens respond with a rapid 
adaptation (Gregory et al.  2009 ; Pautasso et al.  2012 ). The traditional way for intro-
gression of new genes or for the combination of desired traits is sexual recombina-
tion combined with phenotypic selection and analysis of the progeny. However, 
classical breeding procedures are seriously challenged if sources of natural resis-
tance to pathogens are rare as in case of barley yellow dwarf virus (BYDV) (Ordon 
et al.  2005 ; Kosová et al.  2008 ). 

5.2.1     Wide Crosses 

 Wild or related species of cultivated crops represent large resources for desirable 
genes. In attempts to exploit a broader germplasm resource for improvement of bar-
ley, wild relatives and landraces were re-evaluated (Pickering and Johnston  2005 ; 
Steffenson et al.  2007 ; Newton et al.  2010 ; Nevo and Chen  2010 ). Various aspects of 
introgressing genes from wild barley into domesticated barley have been comprehen-
sively covered previously (Fedak  1989 ). The ancestor of domesticated barley,  H. vul-
gare  ssp.  spontaneum , which belongs to the primary gene pool, shows no 
incompatibility in crossings, while hybridisation with  Hordeum bulbosum , the only 
member of the secondary gene pool, is diffi cult (von Bothmer et al.  2003 ). The use of 
these wild relatives as a source in breeding programmes can be realised by using the 
embryo rescue technique. However, strong crossability barriers exist to the 30 species 
of  Hordeum  belonging to the tertiary gene pool (Pickering and Johnston  2005 ). 
Successful reports on transfer of resistances against several threats like powdery 
mildew (Pickering et al.  1995 ), leaf rust (Pickering et al.  1998 ), Septoria speckled leaf 
blotch (Toubia-Rahme et al.  2003 ) and barley yellow mosaic virus (Ruge et al.  2003 ; 
Ruge-Wehling et al.  2006 ) from  H. bulbosum  into  H. vulgare  are available. 

 Recently, the development of a set of introgression lines (Ils) for barley was 
reported with each IL carrying a single introgression of the exotic  H. vulgare  ssp . 
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spontaneum  accession ISR42-8 in the genetic background of the elite spring barley 
cultivar Scarlett. The set was generated by backcrossing, selfi ng and marker-assisted 
selection. In order to illustrate the applicability of the spring barley ILs, the lines 
were used for verifi cation of quantitative trait loci (QTLs) for fi eld resistance against 
powdery mildew ( Blumeria graminis  f. sp.  hordei  L.) and leaf rust ( Puccinia hordei  L.) 
(Schmalenbach et al.  2008 ). In addition, QTLs were verifi ed in these ILs affecting 
malting quality parameters (Schmalenbach and Pillen  2009 ). It was validated that 
wild barley alleles at the chromosome 1H QTL reduced overall malting quality, 
whereas wild barley alleles at the chromosome 4H QTL improved the malting qual-
ity parameters compared to the control genotype Scarlett (March et al.  2012 ). 
Furthermore, a set of 110 putative ILs containing chromatin introgressed from 
 H. bulbosum  L. into cultivated barley has been identifi ed using a high-copy number 
retrotransposon-like PCR marker. Introgressed chromatin from  H. bulbosum  was con-
fi rmed and genetically located in 88 of these lines using 46 of the EST-derived PCR 
markers (Johnston et al.  2009 ). Notably, resistance to stem rust, caused by  Puccinia 
graminis  f. sp.  tritici , which is an important disease in  H. vulgare , was transferred 
from  H. bulbosum  into cultivated barley (Fetch et al.  2009 ). Moreover, the success-
ful transfer of  Ryd4   Hb  , a novel resistance gene introgressed from  H. bulbosum  into 
barley and conferring complete and dominant resistance to the barley yellow dwarf 
virus, has to be highlighted (Scholz et al.  2009 ).  

5.2.2     Somatic Hybridisation 

 An alternative approach to transfer genes from distant species or from wild rela-
tives is hybridisation of somatic cells to circumvent sexual incompatibilities. 
Despite a large number of somatic hybrids that have been produced in a number 
of crop plants (Liu et al.  2005 ), there are only a very few reports on protoplast 
fusion in barley. Application of this technique for barley improvement is severely 
limited due to diffi culties encountered with plant regeneration from barley proto-
plasts as will be discussed later. The formation of hybrid calli between  H. vulgare  
L. and  H. bulbosum  was described, but plant regeneration was not reported 
(Funatsuki et al.  1994 ). 

 Protoplast fusion experiments in barley and rice yielded one intergeneric somatic 
hybrid plant, which resembled with rice in its morphology. Cytological studies 
revealed large chromosomes from barley and small chromosomes from rice. 
Southern hybridisation with a fragment of the  tryptophan B  ( trpB ) gene detected 
barley-specifi c and rice-specifi c bands. Furthermore, novel mitochondrial and chlo-
roplast sequence rearrangements were also reported that were not detected in either 
of the parents (Kisaka et al.  1998 ). Fusion between barley and carrot protoplast was 
also carried out in an attempt to transfer cold and salt tolerance from barley into 
carrot. Morphology of the three regenerated plants closely resembled that of the 
parental carrot plants (Kisaka et al.  1997 ).   
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5.3     Application of Biotechnological Approaches 

 Biotechnological methods can improve the effi ciency of barley breeding since (1) 
they offer the opportunity to access to additional gene pools, (2) allow the insertion 
of individual genes and (3) reduce time-consuming conventional techniques of 
crossing and backcrossing. Transfer of genes, which cannot be introduced via sex-
ual hybridisation due to pre- and post-zygotic incompatibilities, requires gametic or 
somatic cells competent for regeneration. Thus, one prerequisite for the production 
of fertile transgenic plants is a totipotent target tissue and, second, methods to deliver 
DNA into these cells. Both the processes, which have been developed independently, 
have to be combined to provide highly effi cient, cost-effective and easy to handle 
protocols as a powerful tool for crop improvement programmes and for analysis of 
gene function. 

5.3.1     Establishment of Regenerative Systems in Barley 

 With respect to cell biology, single cells like protoplasts are an ideal target for direct 
DNA uptake. As described for the other cereals, protoplasts in barley can be isolated 
in large quantities from the leaves, roots and stems. Nevertheless, only in rare and 
irreproducible cases protoplasts divided to form callus. Thus, rapidly growing 
embryogenic cell suspensions were used as alternative source, but plant regenera-
tion as a prerequisite for generating transgenic plants could not established as a 
routine method (Jähne et al.  1991 ; Funatsuki et al.  1992 ; Davey et al.  2005 ). 

 In parallel, multicellular explants were analysed to establish highly regenerative 
systems. Leaves derived from in vitro as well as ex vitro grown plants, which are the 
preferential source for callus initiation with subsequent plant regeneration in dicots, 
gave only a poor or no response in barley as well as for all other members of the 
cereals. Thus, other explants like mature seeds, isolated mature embryos, tissues 
derived from young seedlings, immature embryos, infl orescences, nodes and roots 
were evaluated, and a large number of reports are available (reviewed in Schulze 
 2007 ). In the second half of the 1980s, a general consent emerged that immature 
embryos are the most suitable explants. Additionally, anthers and microspores, 
extensively analysed for the production of haploid barley plants, reveal embryo-
genic capacity thus being an excellent target for gene transfer since homozygous 
transgenic plants can be developed more rapidly (Devaux and Kasha  2009 ). 

 Nevertheless, irrespective of the explant source used, the regeneration potential 
in barley is strongly affected by several factors like genotype, medium composi-
tion, phytohormones and growing conditions of the donor plants. There are a 
number of reports, which demonstrate that tissue culture ability and green plant 
regeneration is under genetic control (Bregitzer and Campbell  2001 ; Tyankova 
and Zagorska  2001 ). Further, an ever-increasing number of reports deal with 
improvements of regenerability by optimising or adapting media components for elite 
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genotypes. Consequently, some progress has been made, for example, by substitu-
tion of 2,4-D by picloram (Przetakiewicz et al.  2003 ; Chauhan and Kothari  2004 ) or 
dicamba (Halámková et al.  2004 ; Aguado-Santacruz et al.  2011 ), supplement of 
thidiazuron (Schulze  2007 ; Gubisová et al.  2012 ), increasing cupric sulphate 
(Bregitzer et al.  1998a ; Nuutila et al.  2000 ) or incorporating ethylene precursor 
1-aminocyclopropane 1-carboxylic acid or adding ethylene antagonist silver nitrate 
(Jha et al.  2007 ; Tyagi and Dahleen  2011 ). However, these manipulations also could 
not affect the genotype dependency with respect to regeneration. A tissue culture 
system for barley that appeared to be largely genotype independent seems to be the 
ovule culture technique (Holm et al.  1995 ), which however requires highly special-
ised resources and skills. A recent transcript-derived marker barley map based on 
ESTs was used to locate QTL for barley green plant regeneration and identify can-
didate genes, which include a ferredoxin-nitrate reductase and genes involved in 
hormone response and synthesis in cell division and the cell cycle (Tyagi et al. 
 2010 ). The identifi cation of these genes should be the next step to manipulate regen-
eration ability in barley.  

5.3.2     Development of DNA Delivery Techniques 

 The use of  Agrobacterium -mediated gene transfer which got quickly established for 
numerous dicots in the 1980s was not that successful with cereals, since wounding 
of differentiated cereal tissues does not lead to the wound response-induced dedif-
ferentiation in wound-adjacent cells (Potrykus  1990 ). Thus, numerous other meth-
ods for DNA transfer into the regenerative competent cells were developed for 
cereals which were also applied to barley. Amongst these methods, direct DNA 
transfer into protoplasts was easily achieved due to the absence of the cell wall; 
however, the fi rst report on successful culture and selection of transgenic barley cal-
lus lines was published only in 1991 (Lazzeri et al.  1991 ), and it took another 4 
years that fertile transgenic barley plants were generated via the protoplast approach 
using polyethylene glycol-mediated DNA uptake (Funatsuki et al.  1995 ; Kihara 
et al.  1998 ), followed by electroporation (Salmenkallio-Marttila et al.  1995 ) and 
microinjection in zygote protoplasts (Holm et al.  2000 ). Alternative methods were 
employed to circumvent diffi culties of barley cell culture like imbibing of embryos 
in DNA (Töpfer et al.  1989 ), electrophoresis of DNA into germinating seeds 
(Ahokas  1989 ) and macroinjection of DNA into fl oral tillers or application of 
plasmid- DNA to stigmas (Mendel et al.  1990 ). However, no evidences for stable 
transformation were presented. Altogether, at the end of the 1980s, it emerged that 
those cells, which are transformable, are unable to regenerate and tissues like immature 
embryos with a high regenerative capacity lack methods to transform. A break-
through was, however, the development of the particle gun (Klein et al.  1987 ), 
which enables direct transfer of DNA into regenerable tissues. The feasibility of 
microprojectile bombardment to transfer and express foreign DNA in barley cells 
was demonstrated by Mendel et al. ( 1989 ) and Kartha et al. ( 1989 ). Consequently, 
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the generation of fertile, transgenic barley was achieved using different targets like 
immature embryos (Wan and Lemaux  1994 ; Ritala et al.  1994 ; Hagio et al.  1995 ; 
Koprek et al.  1996 ; Jensen et al.  1996 ), microspores (Jähne et al.  1994 ; Leckband 
and Lörz  1998 ; Shim et al.  2009 ), embryogenic callus from immature embryos (Cho 
et al.  1998 ; Manoharan and Dahleen  2002 ) and mature embryos (Um et al.  2007 ) as 
well as in vitro shoot meristematic cultures derived from germinated seedlings 
(Zhang et al.  1999 ). 

 Successful transformation of cereals with  Agrobacterium  could be achieved due 
to the known advantages and also utilisation of hyper-virulent  Agrobacterium  
strains as well as vectors containing extra copies of  vir  genes which together have 
helped in overcoming the restricted compatibility of the  Poaceae . The progress 
made with rice (Hiei et al.  1994 ) and maize (Ishida et al.  1996 ) paved the way for 
barley also. Tingay et al. ( 1997 ) fi rst demonstrated the suitability of  Agrobacterium 
tumefaciens -mediated transformation for barley using immature embryos, and the 
method was optimised with regard to in vitro culture conditions (Trifonova et al. 
 2001 ; Bartlett et al.  2008 ) and factors infl uencing wounding and coculture (Shrawat 
et al.  2007 ). Additionally, the feasibility of other targets like embryogenic callus 
(Wang et al.  2001 ), ovules (Holme et al.  2006 ) and androgenetic pollen (Kumlehn 
et al.  2006 ) for  Agrobacterium -mediated transformation was also explored resulting 
in a constantly growing number of reports in terms of stable expression of alien genes. 
A comparative analysis of transgenic barley plants generated via particle bombard-
ment as well as via  Agrobacterium -mediated DNA delivery clearly revealed a higher 
transformation effi ciency, low-copy integration (between one and three copies in 
100 % of the lines) and a stable inheritance of the T-DNA as a simple Mendelian 
trait for the  Agrobacterium -derived lines (Travella et al.  2005 ). Experimental results 
of a large-scale study using Southern analysis indicated vector backbone integration 
in 48 % of the transgenic lines derived from  Agrobacterium -mediated transformation 
of immature embryos in barley as described for other plants (Lange et al.  2006 ). 
Likewise, the twin T-DNA strategy based on transformation with an  A. tumefaciens  
vector containing two adjacent T-DNAs thus enabling segregation of the selectable 
marker gene away from the gene of interest was also successfully applied for barley. 
The method represents a powerful approach for elimination of the selectable marker 
gene (Matthews et al.  2001 ). 

 In most cases barley transformation yielded in the regeneration and selection of 
heterozygous transgenic plants. Nevertheless, the doubled haploid (DH) lines are 
important tools for breeding and analysis of gene function. Basing on a huge 
knowledge in barley androgenesis, protocols were provided for inducing homozy-
gosity in transgenic barley lines using microspore culture (Ritala et al.  2005 ). 
Importantly, it was demonstrated, that this is also a practicable and effi cient 
approach for production of selectable marker-free, homozygous transgenic barley 
plants (Coronado et al.  2005 ). 

 Recently, a substantial increase in the transformation rate of barley was achieved 
due to a detailed study including comparison of  Agrobacterium  strains under diverse 
experimental conditions and the use of relatively high concentrations of  l -cysteine 
and acetosyringone as supplements for cocultivation. This powerful protocol 
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enables a transformation effi ciency up to 86.7 stable transgenics per 100 immature 
embryos inoculated with  A. tumefaciens  which was never described before (Hensel 
et al.  2008 ). Besides that, the integrated T-DNA copy numbers are typically low, the 
inheritance of the transgenes is according to the Mendelian rules, and the protocol 
is applicable for other genotypes and breeding lines also.  

5.3.3     Targeted Expression of Alien Genes 

 The signifi cant progress achieved in the last decade in barley transformation is 
correlated to elucidation of mechanisms that control transgene expression with 
respect to (1) strength, (2) cell and tissue specifi city, (3) developmental specifi city 
and (4) environmental effects. Thus, the choice of the promoter is of primary impor-
tance. Whereas, for development and optimisation of gene transfer methods in barley, 
the widely used constitutive promoters from the caulifl ower mosaic virus gene ( 35S ), 
rice actin 1 gene ( Act1 ) and maize polyubiquitin gene ( ubi-1 ) mainly were employed 
(Wan and Lemaux  1994 ; Jähne et al.  1994 ; Tingay et al.  1997 ), numerous specifi c 
promoters were isolated and introduced in cereals transiently and stably (Hensel 
et al.  2011 ). The fi rst report for barley was a homologous approach to functionally 
validate the expression of barley high-pI α-amylase gene promoter and signal 
peptide- coding region fused to a hybrid bacterial thermostable (1,3-1,4)-β-glucanase. 
Nearly 75 % of grains harvested from primary transformants synthesised the gene 
of interest (Jensen et al.  1996 ). Likewise, the expression of a cloned fragment from 
the seed-specifi c β-amylase gene from barley was confi rmed using the 
β-glucuronidase gene ( gus ) in a homologous system, and GUS activity was found in 
the subaleurone endosperm during seed maturation (Okada et al.  2000 ). Endosperm- 
specifi c expression during grain maturation in transgenic barley was detected 
analysing the barley B1 hordein ( Hor2-4 ) and D-hordein ( Hor3-1 ) promoters (Cho 
et al.  1999b ,  2002 ; Furtado et al.  2009 ), a rice glutelin B1 ( GluB-1 ) promoter (Patel 
et al.  2000 ) and two high-molecular-weight glutenin    ( HMW-Glu ) promoters 
(Schünmann et al.  2002 ; Zhang et al.  2003 ; Furtado et al.  2009 ). Besides that, in a 
study with the green fl uorescent protein gene ( gfp ) as a reporter, the wheat early 
methionine (Em) promoter was evaluated which maintained endosperm-specifi c 
expression in barley (Furtado and Henry  2005 ) suggesting its ability as a strong 
promoter to direct transgenes in specifi c tissues of barley. Furthermore, the oat glob-
ulin  AsGlo1  promoter region (960 bp) and a 251 bp fragment were used to produce 
transgenic barley. The mechanism of its specifi city is different from that observed 
in glutelin and prolamin promoters due to a novel interrupted palindromic element 
(Vickers et al.  2006 ). The promoters of two rice genes ( OsPR602  and  OsPR9a ) 
fused to  gus  were also analysed in stably transformed barley, which displayed activ-
ity in early grain development with the strongest expression in endosperm transfer 
cells during the early stages of grain fi lling (Li et al.  2008 ). Likewise, the promoter 
of  ZmMRP-1 , a maize endosperm transfer cell-specifi c transcriptional activator, 
which plays a central role in the regulatory pathways controlling cell differentiation, 
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was introduced in barley. GUS activity was detected in the developing modifi ed 
aleurone layer which indicates that the promoter responds to functional, transport- 
related signals (Barrero et al.  2009 ). 

 Targeted gene expression is a critical step to combat fungal pathogens in barley 
and any other crop. The promoter of the  Lem2  gene of barley, which encodes a 
lectin-like protein that is strongly upregulated by salicylic acid and is preferentially 
expressed in lemma, palea and coleoptile, was analysed. Promoter/ gfp  reporter con-
structs revealed cell- and development-specifi c expression of  gfp  in lemma/palea, 
glumes, coleoptile, auricle and ligule (Abebe et al.  2006 ). Another option in this 
regard is the promoter of a lipid transfer protein ( ltp6 ) which has been cloned from 
barley. Different    promoter deletion constructs were examined using  gfp,  and strong 
expressions in the ovaries and pericarp epidermis and during embryogenesis and 
germination were detected refl ecting the expression pattern of the native gene 
therefore being suited for targeted disease resistance (Federico et al.  2005 ). 

 Recently, the promoter of the germin-like protein ( GER4 ) was identifi ed, which is 
involved in the pathogen-associated molecular pattern of barley leaf epidermis 
attacked by the powdery mildew fungus  Blumeria graminis  f. sp  hordei. GER4c  pro-
moter responds with a high transcript dosage due to pathogen attack and seems to be 
a powerful tool to engineer disease resistance in cereals (Himmelbach et al.  2010 ). 

 Besides the availability of numerous specifi c promoters useful for controlling 
gene expression in cereals and establishment of high-throughput  Agrobacterium-  
mediated transformation protocols, the demand for binary vectors has increased 
since these enable an easy insertion of promoters, effector sequences and selectable 
markers. For this purpose a set of modular binary vectors has been developed 
(Himmelbach et al.  2007 ).   

5.4     Achievements in Transgene Technology in Barley 

 In the last decade tremendous progress has been made in genetic transformation of 
barley. There are numerous reports of both applied and basic nature, which imply 
that barley transformation is now optimised and a routine. Consequently, barley has 
emerged as a model plant of the  Triticeae  tribe (Saisho and Takeda  2011 ) and proves 
that elucidation of gene function is no longer restricted to the dicots. 

5.4.1     Disease Resistance 

 Like other crops, barley is adversely affected by bacteria, fungi and viruses which 
cause a great variety of diseases. Depending on several factors like climatic condi-
tions and crop protection measures adopted, losses due to pests are still high glob-
ally. In a study published in 2006, the global total potential loss for wheat varied 
from 26 to 29 %, whereas for maize and rice, it was 31–37 %, no fi gures were given 
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for barley (Oerke  2006 ). Nevertheless, a few data are available for individual coun-
tries and pests. Taking the example of barley yellow dwarf virus infection on yield 
and malting quality of barley in the USA, various aspects have been comprehen-
sively examined and losses up to 40 % have been reported (Edwards et al.  2001 ). 
Economic losses for barley resulting from impacts of Fusarium head blight (FHB) 
were assumed to be up to 55 % for North Dakota and Minnesota from 1998 to 2000 
(Nganje et al.  2001 ). Recently, in an assessment on the losses caused by diseases 
alone to the Australian barley industry, it was estimated that pathogens caused an 
average loss of 19.6 % of the average annual value of the barley crop in the decade 
1998–1999 to 2007–2008 (Murray and Brennan  2010 ). 

5.4.1.1     Fungus Resistance 

 A large part of research in barley genetic engineering is aimed at increasing fungal 
resistance. The fi rst transgenic approach to increase fungal resistance in barley was 
transformation of the stilbene synthase gene of  Vitis vinifera , resulting in the expres-
sion of the phytoalexin resveratrol capable of detoxifying fungal toxins. Pathological 
experiments indicated an enhanced resistance of T 1  plants in a detached leaf assay 
after inoculation with  Botrytis cinerea  (Leckband and Lörz  1998 ). In an effort to 
combat stem rust caused by  Puccinia graminis  f. sp.  tritici  in barley, the  Rpg1  gene 
for resistance to stem rust was introduced in a highly susceptible cultivar. A single 
copy of the gene conferred resistance against stem rust, and progenies from several 
transformants segregated in a 3:1 ratio for resistance/susceptibility, as expected. 
Therefore, it was demonstrated that the functional  Rpg1  gene isolated by map-based 
cloning coded for stem rust resistance (Horvath et al.  2003 ). On contrary, recently it 
was reported that transgenic barley lines overproducing functional RPG1 protein 
due to insertion of four or fi ve copies responded with susceptibility to stem rust 
probably caused by the failure to degrade the RPG1 protein (Chai et al.  2012 ). 
Similarly, the maize  Rp1-D  gene, which confers race-specifi c resistance against 
 Puccinia sorghi  isolates containing a corresponding  avrRp1-D  avirulence gene, was 
inserted into barley but did not result in novel resistances when these plants were 
challenged with isolates of barley leaf rust  P. hordei  (Ayliffe et al.  2004 ). 

 The interaction of barley with the powdery mildew fungus  Blumeria graminis  f 
sp.  hordei  is presently the subject of intense research. Here, the polymorphic  Mla  
locus harbouring race-specifi c resistance (R) genes is involved. To gain insights into 
 Mla -mediated resistance, epitope-tagged Mla-variants, whose expression is driven 
by native regulatory sequences, were used for generation of transgenic barley lines. 
The fi ndings show a reversible and salt concentration-dependent distribution of the 
intracellular MLA proteins in soluble and membrane-associated pools. The data 
demonstrate that  Rar1  encoding a intracellular Zn 2+  binding protein positively 
controls steady levels of MLA resistance proteins and leads to accumulation of 
MLA6, thus enabling effective resistance (Bieri et al.  2004 ). Furthermore, stable 
over- expression of the constitutively activated barley RAC/ROP protein, RACB, 
reveals the enhancement of susceptibility to powdery mildew concluding that RACB 
might be involved in signalling in response to biotic stress (Schultheiss et al.  2005 ). 
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Besides that, the involvement of  HvRBOHF2 , a respiratory burst oxidase homolo-
gous NADPH oxidase gene, as well as  HvBI-1 , a BAX inhibitor with function in 
negative control of programmed cell death, was analysed for the interaction of bar-
ley and the powdery mildew fungus. Transgenic barley plants were developed with 
stably knocked down expression of  HvRBOHF2  which were unable to contain 
wound-induced cell death and revealed developmental alterations from the three- 
leaf stage onward. The results suggest that RBOHF2 is required for normal develop-
ment of penetration resistance to the fungus (Proels et al.  2010 ). Moreover, barley 
plants carrying an  HvBI-1  RNA interference (RNAi) construct having lower levels 
of  HvBI-1  respond with less susceptibility to powdery mildew than wild-type plants 
accompanied by enhanced resistance to penetration by  B. graminis  f. sp.  hordei  at 
the cellular level (Eichmann et al.  2010 ). In contrast, transgenic barley plants over- 
expressing the cell death-regulating BAX inhibitor  HvBI-1  display suppression of 
defence response and resistance to  B. graminis  f sp.  hordei ; however, young seedlings 
were more resistant to  F. graminearum . The authors concluded that the life cycle of the 
fungus infl uences the outcome of the effect of  HvBI-1  (Babaeizad et al.  2009 ). 

 Barley plants over-expressing the  HvBI-1  were a valuable tool to investigate the 
relationship between the fungus  Piriformospora indica  and barley. The endophytic 
fungus induces root resistance against head blight caused by  Fusarium culmorum  
and also systemic resistance to powdery mildew via an unknown mechanism. 
Cytological and molecular evidences suggest that  P. indica  needs dead host cells for 
proliferation which progresses as the tissues mature. The expression level of the cell 
death regulator  HvBI-1  infl uences development of  P. indica  in barley. Fungal prolif-
eration was remarkably reduced in the transgenic lines indicating that  P. indica  
requires host cell death for proliferation (Deshmukh et al.  2006 ). 

 Another approach being explored is the use of pathogenesis-related (PR) proteins 
known to be associated with degradation of structural components of pathogenic 
fi lamentous fungi. Transgenic barley plants were generated by co-bombardment 
with two plasmids, one containing a rice ( Oryza sativa  L.) chitinase gene ( chi11 ) 
and another carrying a rice thaumatin-like protein gene ( tlp ). From T 1  plants express-
ing both the proteins, T 3  homozygous lines were developed that co-express both 
antifungal proteins (Tobias et al.  2007 ). These lines when tested for many years 
exhibited reduced  Fusarium  head blight (FHB) incidence (Dahleen et al.  2011 ). The 
fungus also produces the mycotoxin deoxynivalenol (DON) which inhibits protein 
synthesis and is harmful to humans and animals and therefore reduces crop quality. 
A strategy to reduce DON accumulation in the grains focussed on introduction of 
 Tri101 , which encodes a 3-OH trichothecene acetyltransferase that converts DON 
to a less toxic acetylated form in barley. T 3  and T 4  progenies of three independent 
transgenic lines with  Tri101  showed a reduction in DON concentration (Manoharan 
et al.  2006 ). These lines were backcrosses and two of the resultant lines consistently 
showed a 40 % reduction in DON (Dahleen et al.  2011 ). 

 Another serious disease in barley is root rot caused by  Rhizoctonia solani  and 
 R. oryzae.  Transgenic barley liners have been developed to ubiquitously express a 
codon-optimised 42-kDa endochitinase  cThEn(GC)  from  Trichoderma harzianum  
(Wu et al.  2006 ). Chitinases from this soil fungus effectively break down chitin, the 
main constituent of fungal cell walls of mature hyphae, conidia, chlamydospores 
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and sclerotia. The transgenic lines of barley displaying resistance to  Rhizoctonia  
were analysed in fi eld to monitor possible side effects of the genetic modifi cation 
compared to the parental cultivar Golden Promise. Moreover, to assess infl uence of 
normal genotypic variation a second cultivar Baronesse was included in the study. 
Using parallel transcriptome and targeted metabolome profi ling, as well as 
 nontargeted metabolite fi ngerprinting, the data exhibited that cultivar-specifi c 
 differences remarkably exceeded the effects caused by the transgene expression 
(Kogel et al.  2010 ). 

 A further interesting attempt to engineer disease resistance in barley against fungal 
plant pathogens is the use of antifungal peptides from insects. The suitability of 
metchnikowin, an antimicrobial peptide from  Drosophila melanogaster , was evalu-
ated for its resistance properties against damaging fungi. The transformed barley 
harbouring the metchnikowin gene showed increased resistance to powdery mildew, 
FHB and root rot. Additionally, accumulation of metchnikowin was also detected in 
plant apoplastic space specifying that the insect signal peptide is functional in 
monocotyledons (Rahnamaeian et al.  2009 ).  

5.4.1.2     Virus Resistance 

 One of the most serious viral diseases of cereals worldwide is barley yellow dwarf 
(BYDV). Since sources of natural resistance to this virus are rare (Ordon et al.  2005 ; 
Kosová et al.  2008 ), the use of virus-derived transgenes was amongst the early 
approaches. Constructs containing the coat protein of several isolates of BYDV 
together with selectable markers were used resulting in some resistant barley plants 
(Wan and Lemaux  1994 ; McGrath et al.  1997 ); however, unfortunately resistance 
was not stable. Further experiments succeeded in transformation of barley with 
transgenes encoding an hpRNA derived from BYDV-PAV polymerase sequences, 
and one-third of the independently transformed lines exhibited very high resistance 
to BYDV-PAV (Wang et al.  2000 ). This was followed by the transfer of transgenes 
derived from BYDV and cereal yellow dwarf virus (CYDV) in an elite Australian 
barley cultivar. While there was considerable variability amongst the virus levels in 
different transgenic lines developed, some of the plants containing transgenes 
showed reduced virus symptoms (Wang et al.  2001 ). 

 The feasibility of using the barley “eukaryotic translation initiation factor 4E” 
( Hv-eIF4E ), which was identifi ed as a candidate for resistance gene function by 
physical mapping, was also analysed. It could be shown that  Hv-eIF4E  confers 
multiallelic recessive  Bymovirus  resistance in barley (Stein et al.  2005 ).   

5.4.2     Abiotic Stresses 

 Signifi cant yield losses are caused in barley by various abiotic stresses including 
drought, fl ooding, salinity, wind and temperature extremities and climate change in 
envisaged to increase the problem further (Gregory et al.  2009 ). Physiological, 
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biochemical and molecular approaches have been used to dissect the response of 
plants to abiotic stresses describing effectors, regulatory genes and gene networks 
emphasising the pivotal role of transcription factors (Nakashima et al.  2009 ). 

 Approximately 40 % of agriculturally used area is covered by acid soils 
strongly limiting productivity. Due to acidity, aluminium is solubilised which 
rapidly inhibits root growth and thereafter water as well as nutrient uptake. A 
malate transporter from wheat ( ALMT1 ) enabling malate effl ux was introduced 
in barley and the transgenic lines when evaluation for response to aluminium 
(Al) stress demonstrated a high level of aluminium tolerance in hydroponic cul-
ture as well as on acid soils (Delhaize et al.  2004 ). Further analysis on relation 
between aluminium resistance and phosphorus nutrition in wild-type and trans-
genic plants expressing  TaALMT1  revealed a higher effi ciency of the transgenics 
in taking up phosphorus on acid soil. In addition, a higher root growth, shoot 
biomass and grain yield were observed for the  TaALMT1 -plants in comparison to 
the control when grown up to maturity on the same soil (Delhaize et al.  2009 ). In 
another study, Li et al. ( 2010 ) found increased aluminium resistance in roots of 
transgenic barley over-expressing  Phalaris coerulescens  thioredoxin gene ( PTrx ) 
(Li et al.  2010 ). 

 Um et al.  2007  generated transgenic barley plants containing cDNA from 
 Arabidopsis  nucleoside diphosphate kinase 2 ( AtNDPK2 ). They observed 10 % 
reduction in membrane damage in the transgenic plants caused by methyl viologen 
which indicated the expression of  AtNDPK2 . Similarly, an alfalfa aldo-keto reduc-
tase ( MsALR ) which can detoxify lipid peroxide degradation products was over- 
expressed in barley to eliminate toxic reactive aldehyde products from cells after 
oxidative stress. The cellular stress response of the transgenic plants was investi-
gated in transient assay estimating damaged cells microscopically using fl uoro-
chromes and determining chlorophyll as well as carotenoid content (Nagy et al. 
 2011 ). In all cases transgenic plants outperformed controls after applying stress. 

 Recently, two dehydration-responsive proteins (DREBs) from wheat were anal-
ysed for their potential to modify transcriptional regulation of drought and cold 
stress in barley (Morran et al.  2011 ). Constitutive over-expression of  TaDREB2  and 
 TaDREB3  resulted in stable transformed plants which responded signifi cantly better 
to drought and cold stresses compared to the controls. However, these showed nega-
tive impacts on developmental parameters like stunted growth, dwarfi sm, delayed 
fl owering and smaller spikes. In contrast, it was observed that the drought-stress- 
inducible  ZmRab17  promoter is quickly and strongly activated by drought causing 
little or no adverse developmental traits (Morran et al.  2011 ). Besides that, the fea-
sibility of the transcription factor  Osmyb4  from rice characterised as a central point 
of a large transcriptional network was also evaluated for modulation of stress 
response in barley. Progeny of transgenic lines harbouring  Osmyb4  under control of 
the  Arabidopsis  cold-inducible promoter  cor15a  was exposed to freezing, and the 
damage was determined through analysis of chlorophyll fl uorescence parameters. 
During germination pronounced differences were observed concerning higher 
vigour to hypoxia combined with cold stress compared with the controls. These data 
support an involvement of  Osmyb4  in fl ooding tolerance and in alleviation of 
germination under adverse environmental conditions (Soltész et al.  2012 ).  
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5.4.3     Improvement of Product Quality and Plant Productivity 

5.4.3.1     Polysaccharides 

 A large part of applied research is focussed on alteration of processing quality of 
barley grains since the starchy endosperm contributes to about 80 % of the total 
grain weight. The linear polysaccharides (1,3-1,4)-β-glucans are the major constitu-
ent of endosperm cell walls in barley. Thus, enzymatic mobilisation of endosperm 
storage constituents requires degradation of these cell walls for a high and effi cient 
use of barley grains for feed and malting. 

 In early attempts barley was manipulated to express a codon-optimised bacterial 
thermostable (1,3-1,4)-β-glucanase to improve the digestibility of the grains in 
monogastric animals like poultry. About 75 % of grains from primary transformants 
synthesised thermostable (1,3-1,4)-β-glucanase and inheritance of transgene expres-
sion was reported in scutellum and aleurone of germinating seeds (Jensen et al. 
 1996 ,  1998 ; Horvath et al.  2000 ; Xue et al.  2003 ). Likewise, a fungal xylanase gene 
under the control of an endosperm- specifi c promoter from cereal storage protein 
was introduced in barley to produce plant cell wall polysaccharide-hydrolysing feed 
enzymes in the endosperm to replace the later addition of microbial produced xyla-
nases to the feed thus reducing the costs (Patel et al.  2000 ). 

 An important aspect regarding malting quality in barley is increasing thermosta-
bility of enzymes, since in malting and brewing industries, the grains are exposed to 
temperatures above 70 °C. In this direction, a mutant thermostable β-amylase gene 
generated by site-directed mutagenesis was used to design transgenic barley plants. 
An increase in thermostability by 11.6 °C compared to the original enzyme was 
obtained which was stably transmitted to progeny (Kihara et al.  2000 ). Similarly, a 
gene encoding for a thermotolerant fungal endo-(1,4)-β-glucanase (Nuutila et al. 
 2002 ) and the heat-stable alkalophilic  Bacillus  α-amylase (Tull et al.  2003 ) was also 
introduced in barley resulting in an enhancement of α-amylase activity by 30–100 % 
compared with the control. 

 In another approach the wheat thioredoxin  h  gene ( wtrxh ) driven by a seed- 
specifi c promoter was over-expressed in barley to gain insight in its putative role in 
germination and seedling development. The results demonstrated an increased 
activity of a starch-branching enzyme of the endosperm, pullulanase specifi cally 
hydrolysing α-1,6-linkages in starch (amylopectin) during germination and seed 
development (Cho et al.  1999a ). In addition, these plants displayed enhanced root 
and shoot growth in the presence of 2 mM sodium selenite suggesting that over- 
expression of thioredoxin  h  could be a tool for application in the remediation of 
polluted soils (Kim et al.  2003 ). 

 Further aspects of interaction between starch metabolism and plant development 
were studied by antisense downregulation of the barley limit dextrinase inhibitor 
(LDI). Transgenic barley plants were developed to investigate the function of LDI. 
In homozygous antisense lines, an increased LD activity was observed in develop-
ing and germinating seeds accompanied by unpredicted pleiotropic effects on 
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numerous enzyme activities, reduced numbers of the small B-type starch granules 
and reduced amylose relative to amylopectin levels (Stahl et al.  2004 ). Another 
transgenic approach using RNAi-mediated silencing was addressed to the starch- 
branching enzymes, SBE IIa and SBE IIb, to defi ne structure of amylose and amy-
lopectin in the barley endosperm. The data suggested that a reduction in the 
expression of both SBEs was necessary to signifi cantly increase amylose content in 
comparison to the wild types (Regina et al.  2010 ). Very recently, the simultaneous 
suppression of all starch-branching enzyme genes ( SBE I ,  SBE IIa  and  SBE IIb ) 
using a chimeric RNAi hairpin was described. Carciofi  et al. ( 2012 ) succeeded in 
generation of barley with amylose-only starch granules which were irregularly 
shaped. The grains of the transgenic lines germinated like the controls displayed 
comparable high yield, but growth was delayed suggesting an important physiologi-
cal role of amylopectin (Carciofi  et al.  2012 ). 

 Of late, the (1,3-1,4)-β- d -glucan, a major constituent of the cell wall of cereals 
and grasses, has gained renewed interest of plant scientists due to its benefi cial 
effects on human health and as a valuable source of fermentable sugars for bioetha-
nol production (Newton et al.  2011 ). Investigations were concentrated on increasing 
the (1,3-1,4)-β- d -glucan levels by over-expression of barley cellulose synthase-like 
family ( CslF ) cDNAs under control of an oat globulin promoter or a constitutive 
promoter. An enhanced amount of 80 % (1,3-1,4)-β- d -glucan in grains of transgenic 
barley was obtained in case of the endosperm-specifi c promoter, whereas gene 
expression driven by the constitutive promoter resulted in sixfold higher levels of 
(1,3-1,4)-β- d -glucan in vegetative organs and similar levels in grains compared with 
the control (Burton et al.  2011 ). A further analysis was conducted to explore the role 
of α-glucosidase in germinating barley grains. In seedlings harbouring an RNA 
interference silencing cassette for  HvAgl97 , α-glucosidase was lowered up to 50 %. 
The fi ndings indicate that the α-glucosidase  HvAGL97  is the major endosperm 
enzyme catalysing the conversion of maltose to glucose but is not required for starch 
degradation in contrast to results from biochemical assays with glucosidase inhibitors 
(Stanley et al.  2011 ).  

5.4.3.2     Proteins 

 With respect to manipulation of seed storage proteins, a cDNA encoding the γ-zein 
protein of maize driven by an endosperm cell-specifi c promoter was used to deter-
mine deposition pattern and impact on grain properties. In transgenic barley, an 
accumulation of nearly 2 % of γ-zein of the total grain nitrogen was reported cor-
responding to 4 % of the total protein fraction. However, no effects on grain texture 
like hardness or vitreousness were described (Zhang et al.  2003 ). A very interesting 
approach is the production of a therapeutic protein in barley grains. Since barley is 
a major constituent of feed for domestic animals, its suitability as a source for oral 
vaccination against porcine diarrhoea caused by F4-positive enterotoxigenic 
 Escherichia coli  (ETEC) strains was explored. A protective immune response 
against the disease is inducible by F4 fi mbriae or FaeG. Transgenic barley was 
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designed expressing the F4 fi mbrial adhesin FaeG in a glycosylated form in the 
endosperm up to 1 % of total soluble protein. The recombinant protein was resistant 
to storage and simulated digestive conditions. In addition, glycosylation did not 
negatively infl uence immunogenicity since erFaeG was able to induce F4 fi mbria- 
specifi c antibodies in mice (Joensuu et al.  2006 ). 

 The alteration of the amino acid composition of barley is important to improve 
the feeding quality of its grains and also to avoid the use of large-scale protein 
supplements derived from soybean or microbes. Efforts were undertaken to 
increase the content of essential amino acids, especially lysine, threonine and 
methionine in barley. Lange et al. ( 2007 ) aimed at selective suppression of 
C-hordein synthesis, the storage protein with the lowest nutritional value by an 
antisense approach. From the 35 primary transformants, fi ve lines were selected 
for comprehensive analysis using SDS-PAGE and reverse phase HPLC. Their data 
demonstrated a relative reduction in the content of C-hordeins combined with a 
relative rise in the synthesis of other storage proteins in the mature grain. An 
increase was found in lysine, threonine and methionine content (16, 13 and 11 %) 
indicating antisense-mediated suppression of C-hordein synthesis as a promising 
approach (Lange et al.  2007 ). The data were confi rmed by a transcriptomic analy-
sis of one of the antisense C-hordein lines using a grain-specifi c cDNA microarray 
(Hansen et al.  2007 ). More recently, another strategy to manipulate lysine content 
in barley grains has also been successfully applied. The key enzyme involved in the 
regulatory step for lysine biosynthesis dihydrodipicolinate synthase ( dapA ) from 
 E. coli  was employed. Analysis revealed T 1  lines with enhanced level of lysine in 
leaves as well as T 2  lines with higher amount in seeds relatively to the wild type 
(Ohnoutkova et al.  2012 ).  

5.4.3.3     Micronutrients 

 Research activities have been increasingly focussed in barley on combating micro-
nutrient defi ciency with regard to the plant as well as to the subsequent consumer 
using this plant product. In an attempt to increase phosphate uptake in barley 
plants, a high-affi nity phosphate transporter was over-expressed in barley, but this 
did not enhance phosphate uptake in transgenic plants (Rae et al.  2004 ). In contrast, 
over- expression of an  Arabidopsis  zinc transporter ( AtZIP1 ) resulted in a rise of 
short- term zinc uptake after zinc defi ciency and seed zinc content thereby improv-
ing its nutritional quality (Ramesh et al.  2004 ). Very recently, the genetic modifi ca-
tion of barley for improvement of phytase activity was reported applying the 
cisgenesis concept. Phytases are essential enzymes for the sequential release of 
phosphate groups from phytic acid thereby providing bioavailable phosphate which 
otherwise could not be used from monogastric animals. Enhanced phytase activity 
up to 2.6- to 2.8-fold was found in the seeds from lines homozygous for the insert. 
Besides that, the activity levels were stable over the three generations assayed 
(Holme et al.  2012 ).  
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5.4.3.4     Plant Productivity 

 For acceleration of plant development, the  vhb  gene encoding  Vitreoscilla  haemo-
globin (VHb) known to improve cellular respiration and effi cient energy generation 
during oxygen-limited growth was inserted in barley. Nevertheless, constitutive 
 vhb -expressing plants failed to fulfi l the expectations (Wilhelmson et al.  2007 ). 
In an attempt to develop early fl owering barley plants, the natural early fl owering 
time allele Cape Verde (Cvi) of Cryptochrome2 ( AtCRY2-Cvi ) gene from an 
 Arabidopsis  was employed. Seeds from T 1  plants were evaluated which recorded 
more than 25 days earlier fl owering and day-length insensitivity as compared to the 
controls (El-Din et al.  2011 ). 

 Zalewski et al. ( 2010 ) concentrated on silencing the expression of cytokinin 
oxidase/dehydrogenase ( HvCKX1 ) applying RNAi-based technology to elucidate 
the function of the gene in barley. The authors succeeded in generating more than 
50 lines from which nearly 80 % displayed signifi cantly reduced CKX activity in 
bulked samples of their T 1  roots. A positive relationship between enzyme activity 
and plant productivity was determined, refl ected as the yield, the number of seeds 
per plant and 1,000 grain weight. Consequently, decreased CKX activity led to a 
higher plant yield and root weight (Zalewski et al.  2010 ). Furthermore, silencing of 
 HvCKX2  resulted in different phenotypes depending on the transformation method. 
 Agrobacterium -mediated gene transfer yielded silenced lines with higher productivity, 
whereas biolistic silenced lines exhibited low productivity and disturbances in plant 
development (Zalewski et al.  2012 ).   

5.4.4     Barley Grains as a Bioreactor 

 Cereal grains offer an excellent opportunity for production of recombinant pharma-
ceutical proteins since they were bred to accumulate and store large amounts of 
carbohydrates and proteins. Molecular breeding in cereal crops with respect to 
expression level, protein authenticity, downstream processing and purifi cation as 
well as regulatory issues has been comprehensively covered previously (Ramessar 
et al.  2008 ; Hensel et al.  2011 ). Barley is of great importance because of it being a 
self-pollinator, unable to generate fertile hybrids with related species and wide 
adaptation with an extremely wide geographic distribution. 

 The applicability of barley to produce heterologous proteins was initially dem-
onstrated using a protein-engineered thermostable (1,3-1,4)-β-glucanase and a fun-
gal xylanase (Nuutila et al.  1999 ; Horvath et al.  2000 ; Patel et al.  2000 ; Xue et al. 
 2003 ). Consequently, this potential was explored for substances, for which tradi-
tional production methods are expensive, ineffi cient and laborious. Thus, an 
antibody- fusion protein used to detect HIV-1 in human blood by causing rapid 
agglutination was expressed in barley. Schünmann et al. ( 2002 ) succeeded in high- 
level expression of an antiglycophorin single-chain antibody fused to an epitope of 
the HIV virus in seeds of barley, which can substitute the SimpliRED™ diagnostic 
reagent. Additionally, the yield in barley (150 μg/g of regent per gramm) exceeded 

5 Barley



102

amounts expressed in transgenic tobacco leaves and potato tubers which were 
 evaluated in parallel (Schünmann et al.  2002 ). Besides that, transgenic barley plants 
comprising genes for production of human antithrombin III, α1-antitrypsin, lyso-
zyme, serum albumin and lactoferrin were reported (Stahl et al.  2002 ). Transgenic 
barley plants expressing human lactoferrin ( hLF ) were also described from other 
groups. Western blot analysis of leaf tissue from T 0  plants documented the expres-
sion of the recombinant human lactoferrin (Kamenarova et al.  2007 ), whereas 
Tanasienko et al. ( 2011 ) provided proof for the presence of the gene  hLF  fragment 
in leaves of T 0  plants by PCR. 

 Eskelin et al. ( 2009 ) and Erlendsson et al. ( 2010 ) presented further convincing 
evidences that transgenic barley seeds can be utilised as a bioreactor. The successful 
expression of both the recombinant full-length and the 45-kDa fragment of human 
collagen-type I α-1 chain ( rCla1 ) in barley seeds was obtained screening three 
promoters. The proteins were further targeted to the endoplasmic reticulum to 
enhance the expression levels of recombinant proteins as previously shown 
(Horvath et al.  2000 ).   The glutelin promoter was superior in yielding 45 mg recom-
binant protein per kg dry seeds in the best lines compared to 15 mg/kg caused by the 
ubiquitin promoter (Eskelin et al.  2009 ). Moreover, the OrfeusTM expression system 
developed by ORF Genetics (Reykjavik, Iceland) was used to produce recombinant 
human Flt3 ligand in barley grains. For that purpose, the cDNA of human Flt3 
ligand, a growth factor necessary for proliferation and differentiation of stem cells, 
with an HQ 6 -tag under control of the hordein promoter was used. High expression 
of biologically active Flt3 ligand with a yield comparable to prokaryotic production 
was reported (Erlendsson et al.  2010 ). 

 Consequently, this huge potential relying on plant-based recombinant protein 
production, in general and in cereal-based production in particular, is exploited 
commercially by several companies like Maltagen Forschung GmbH (Andernach, 
Germany), ORF Genetics (Reykjavik, Iceland) and Ventria Bioscience (Fort Collins, 
USA) and is refl ected in patents (Stahl et al.  2009 ). Thus, the barley endosperm is 
an effi cient bioreactor for pharmaceutical proteins like cytokines, oral vaccines, 
growth factors and food additives.  

5.4.5     Elucidation of Gene Function 

 The enormous progress made in barley transformation in the last decade together 
with the dramatic advances in genome research due to new technologies as well as 
an ever-increasing number of data accessible in public databases (Sreenivasulu et al. 
 2008 ) has enabled the functional characterisation of candidate genes identifi ed in 
functional genomic studies. Comprehensive determination of gene function via 
over-expression or reduction of gene expression up to the knockout of plant genes 
is no longer restricted to the model dicot  Arabidopsis thaliana . Thus, insights in 
metabolic and regulatory networks possibly linked to agronomically important 
traits become important. Table  5.1  summarises examples for the elucidation of gene 
function made in barley so far.
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5.5         Problems and Prospects 

5.5.1     Genotype Dependency 

 Despite signifi cant progress achieved in the last decade in transfer of alien genes 
into  H. vulgare  using biotechnological tools, the strong genotype dependency is still 
a key problem and still hampers routine application of gene transfer to improve 
traits in a desired cultivar. A highly effi cient and reproducible regeneration system 
using immature embryos is only available for the spring variety, Golden Promise, 
identifi ed in the middle of the 1980s (Lührs and Lörz  1987 ). The responsiveness 

   Table 5.1    Elucidation of gene function in barley   

 Promoter specifi city/
coding sequence  Effect  Reference 

  Wheat HMWGLU-1 D1  
antisense  SnRK1  
protein kinase 

 Promoter activity in seeds and anthers 50 % 
pollen: arrested at binucleate stage, 
contains little or no starch, and is 
non-functional, male sterility 

 Zhang et al. ( 2001 ) 

 HvGAMYB (transcription 
factor in barley 
aleurone and anthers) 

 Active in early anther development, 
over-expression led to decrease in anther 
size, male sterility 

 Murray et al. ( 2003 ) 

  jekyll  (expressed in barley 
grain nucellar 
projection tissue) 

 RNAi: decelerates autolysis and cell 
differentiation within nurse tissues, no 
function of nuclear projection as main 
transport route for assimilates, irregular 
and small-sized seeds 

 Radchuk et al. ( 2006 ) 

  LOX2:Hv:1  with and 
without the chloroplast 
targeting signal 

 Over-expression: higher levels of jasmonic 
acid for lines with elevated levels of 
LOX-100 in chloroplasts and in 
cytoplasma, respectively 

 Sharma et al. ( 2006 ) 

  TaMSH7  mismatch repair 
gene 

 RNAi: results in reduced seed set  Lloyd et al. ( 2007 ) 

  Short Vegetative Phase 
(SVP)- like MADS-box 
genes 

 Ectopic expression: inhibition of spike 
development, fl oral reversion, fl orets at 
the base of the spike, delay of head 
emergence, inhibition of fl oral meristem 
identity 

 Trevaskis et al. ( 2007 ) 

  PpENA1  (sodium-pumping 
ATPase from the 
bryophyte 
 Physcomitrella patens ) 

 Over-expression: marked increase in levels 
of free amino acids, organic acids, and 
salicylic acid and in some sugars and 
fatty acids 

 Jacobs et al. ( 2007 ) 

  HvABA8′OH1  (ABA 
catabolism) 

 RNAi: reduced expression results in higher 
levels of ABA and increased dormancy 

 Gubler et al. ( 2008 ) 

  Whirly1  (encodes a nucleic 
acid-binding protein) 

 RNAi: plastid located Whirly1 functions 
primarily in RNA metabolism rather 
than as a DNA-binding protein 

 Melonek et al. ( 2010 ) 
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of this genotype to regeneration protocols is convincingly demonstrated in a summary 
on barley transformation up to 2007 where nearly two-thirds of all reports used only 
this genotype (Schulze  2007 ). Dahleen and Manoharan ( 2007 ) pointed out that this 
model genotype is suitable for improvement of transgene technology but is not 
suited for evaluation of transferred genes in local fi eld conditions owing to less 
agronomic value. In fact, from a practical point of view, agronomically superior 
cultivars adapted to the region should only be used despite their recalcitrance to 
tissue culture methods in order to achieve gains in terms of production and quality. 
A few successful reports are available for commercially important barley varieties 
including the Finnish elite cultivar Kymppi (Ritala et al.  1994 ; Nuutila et al.  1999 ); 
several German spring cultivars (Koprek et al.  1996 ; Sharma et al.  2006 ); the North 
American cultivars, Harrington, Galena and Conlon (Cho et al.  1998 ; Zhang et al. 
 1999 ; Manoharan and Dahleen  2002 ; Manoharan et al.  2006 ; Tobias et al.  2007 ); 
the elite Australian barley cultivars, Schooner, Chebec and Sloop (Wang et al.  2001 ; 
Murray et al.  2004 ); and a Bulgarian winter barley (Kamenarova et al.  2007 ). 
However, in all these studies transformation effi ciency was reported to be low. 
Similarly, the transformation frequency in other spring and winter genotypes that 
were generated was also low despite considerable improvements of protocols for 
 Agrobacterium -based transformation (Hensel et al.  2008 ). Recently, stable transfor-
mation of commercially important varieties from Saudi Arabia (El-Din et al.  2011 ), 
from the Ukraine (Tanasienko et al.  2011 ) and from India (Yadav et al. 2013) was 
reported refl ecting the need for improvements of cultivars, which can be used effec-
tively in areas with special conditions as described for instance for the Ukraine 
having also marshy woodlands, forest-steppe, and steppe (Tanasienko et al.  2011 ). 

 Holme et al. ( 2008 ) reported a genotype-independent method of DNA delivery 
using young barley embryos derived from in vitro cultured ovules as targets for 
 Agrobacterium -mediated transformation. Nonetheless, this method is not suited for 
high-throughput and cost-oriented transformation technology due to its sophisti-
cated and labourious protocol. Other possible targets are in vitro shoot meristematic 
cultures derived from germinated seedlings which can be induced with low geno-
type dependency (Ganeshan et al.  2003 ; Sharma et al.  2004 ). The feasibility of these 
meristematic cultures characterised by proliferation of tightly packed clusters of 
continuously multiplying axillary and adventitious buds (Fig.  5.1 ) was validated for 
barley also (Zhang et al.  1999 ).

5.5.2        Transgene Insertion and Stability 

 Another problem in barley transformation is transgene stability. Direct DNA deliv-
ery frequently results in multicopy integration, and rearrangement of the transgene 
and gene silencing often has been linked to this phenomenon (Vaucheret et al.  1998 ; 
Cho et al.  1999b ,  2002 ; Bregitzer and Tonks  2003 ). Convincing evidences were 
provided by Travella et al. ( 2005 ) comparing transgenic barley lines generated by 
biolistics and  Agrobacterium -mediated method. Sixty per cent of the particle 
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bombardment- derived lines integrated more than eight copies of the transgenes. 
Besides that, in all those lines extensive DNA rearrangements with multiple integra-
tions were observed. In contrast, integration of only 1–3 copies of the transgenes 
with minimal rearrangements was detected in the lines produced by  Agrobacterium-  
mediated method. Further, in case of  Agrobacterium -based lines, analysis of 

  Fig. 5.1    Morphogenic 
response of cultures 
established from meristematic 
shoot segments from barley 
( H. vulgare  cv. Lomerit) as 
described by Sharma et al. 
( 2004 ). ( a ) Tightly packed 
clusters of continuously 
multiplying axillary and 
adventitious buds. ( b ) Green 
clumps of shoot buds on 
maintenance and proliferation 
medium 4 weeks after 
subculture. ( c ) Multiple shoot 
formation from bud clumps 2 
weeks after transfer on 
regeneration medium       
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progeny revealed that the integrated T-DNA was inherited as a simple Mendelian 
trait and no silencing of the  bar  gene was observed in T 1  plants (Travella et al. 
 2005 ). The advantages of  Agrobacterium -mediated gene transfer with respect to 
lower copy number for barley were also substantiated by Bartlett et al. ( 2008 ) and 
Hensel et al. ( 2008 ). The other possible reasons for silencing of transgenes could be 
promoter interference (Tobias et al.  2007 ) and methylation of the fi rst untranslated 
exon and 5′ end of the intron in the  Ubi1  promoter complex (Meng et al.  2003 ). 

 A comprehensive study on transgene integration using fl uorescence in situ 
hybridisation (FISH) from 19 independent barley lines revealed that transgene 
integration sites were found only on fi ve of the seven barley chromosomes 
(Salvo- Garrido et al.  2004 ). Further, specifi c regions of the chromosomes 4H and 
5H were detected containing clusters of transgene insertions, thus indicating a non-
random pattern of integration. The data suggested that transgene insertions were 
preferentially located in gene-rich areas of the genome. A promising new tool to 
target a transgene to a specifi c locus in crops was recently presented by Shukla et al. 
( 2009 ) using designed zinc-fi nger nucleases (ZFNs) that induce a double-stranded 
break at their target locus. The concomitant expression of ZFNs and delivery of 
a simple heterologous donor molecule resulted in precise targeted addition of a 
herbicide- tolerance gene at the intended locus in  Zea mays , and genetic changes 
were transmitted to the progeny (Shukla et al.  2009 ). 

 Analysis of long-term stability of  gus  and  sgfp (S65T) driven by the B1- and 
D-hordein promoter up to the T 9  generation revealed transgene stability in 93 % of 
the transgenic lines examined, while expression of  bar  under control of the maize 
ubiquitin promoter was found in only 60 % lines (Choi et al.  2003 ). Advanced gen-
eration of these lines containing the transgenes were crossed to obtain plants 
expressing multiple transgenes. Thus, a homozygous T 8  plant containing  gus  driven 
by the barley endosperm-specifi c B1-hordein promoter was crossed with another 
homozygous T 4  plant, carrying  sgfp(S65T)  driven by the barley endosperm-specifi c 
D-hordein promoter. PCR was used to monitor F 1  progeny for the transgenes  gus  and 
 sgfp (S65T). Furthermore, functional expression of both transgenes was evaluated up 
to the F 4  generation. Localisation of transgenes by FISH revealed the same location 
of transgenes as in the parental plants (Choi et al.  2009 ).  

5.5.3     Marker Gene Elimination 

 A requirement for the commercial use of genetically modifi ed barley is the elimina-
tion of the selectable marker gene. For this purpose, several approaches have been 
evaluated. Matthews et al. ( 2001 ) investigated the twin T-DNA principle as already 
mentioned. An  Agrobacterium  vector comprising two contiguous T-DNAs, one 
with the gene of interest and the other one with the selectable marker gene, can be 
used to generate T 1  lines which have inserted the gene of interest and is free of the 
selectable gene (Matthews et al.  2001 ; Xue et al.  2003 ). This methodology is routinely 
used now. Another strategy aims at androgenetic generation (haploid technology) 
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of a segregating population of homozygous plants raised from pollen of primary 
transgenic barley plants produced via  Agrobacterium  infection of immature 
embryos. The results demonstrated that selectable marker-free homozygous trans-
genic plants can be effi ciently generated (Coronado et al.  2005 ; Kapusi et al.  2013 ). 
However, even though haploid technology represents an elegant solution and accel-
erates time and resource effi ciency of generating true-breeding, selectable marker- 
free transgenic barley, the major limitation is its strong genotype dependency. 
In both studies mentioned above, the variety Golden Promise was used which shows 
a poor response in pollen culture. Hence, culture conditions for immature pollen 
were elaborated. No promising reports on barley varieties are available which show 
a reasonable regenerative response of immature embryos and pollen. Therefore, 
the regeneration process has to be standardised for each and every genotype inde-
pendently, which is a time-consuming process.  

5.5.4     Field Trials and Risk Assessment 

 Assessment of genetically modifi ed plants under natural fi eld conditions is essentially 
required (1) to analyse transgene stability under natural environment, (2) to verify 
possible negative side effects of the introduced gene, (3) to monitor infl uence of 
natural genotypic variation, (4) to study ecological impacts, and (5) to evaluate the 
impact of environment on the expression of transgene. To analyse agronomic per-
formance of genetically modifi ed barley, the initial fi eld trials were conducted in 
1994 using T 2  generation of transformed plants. Compared to seed-derived Golden 
Promise plants, the transgenics were shorter and showed lower yield, smaller seed and 
a high variability amongst the individual plants (Bregitzer et al.  1998b ). In another 
small-scale fi eld experiment monitoring several agronomic traits, no differences 
were reported in the transgenic barley lines containing the  bar  gene and non- 
transformed control plants (Harwood et al.  1999 ). Yet in another study, reduced 
1,000-grain weight and variable yield reductions were reported in transgene lines as 
compared to the Golden Promise cultivar (Horvath et al.  2001 ). 

 Field assessment also helps to adjudge the behaviour of a transgenic plant when 
it is taken to the natural fi eld conditions. For instance, for the modifi cation of the 
mycotoxin deoxynivalenol (DON) produced by the fungus  F. graminearum , the 
transgenic T 3  and T 4  barley lines revealed a reduction of DON concentration in 
greenhouse test. However, this observation was not confi rmed under fi eld conditions, 
and possibly variations in temperature and humidity, inoculum and disease pressure 
could have overwhelmed the effects of  Tri101  against DON (Manoharan et al. 
 2006 ). Kogel et al. ( 2010 ) observed that cultivar-specifi c differences markedly 
exceed effects caused by the transgene expression as discussed above. 

 To study the level of gene fl ow, fi eld trials were conducted with genetically 
modifi ed homozygous barley lines harbouring the gene for neomycin phosphotrans-
ferase II in 1996 and 1997 in Finland. In these studies, while male sterile barley 
lines were used as recipients for pollen from the transgenics, normal male fertile 
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barley was also included to monitor transgene fl ow in normal barley. The results 
clearly indicated that the chance of cross-pollination to normal fertile barley varied 
from 0 to 7 % at 1 m distance, depending on weather conditions. However, the rate 
of cross- pollination declined rapidly with an increase in isolation distance; thus, in a 
range of 50–100 m distance, only a few seeds developed on male sterile barley due 
to cross-pollination from transgenic lines (Ritala et al.  2002 ; Nuutila et al.  2002 ). 
Studies on gene fl ow were also conducted under fi eld conditions between transgenic 
and non-transgenic barley cv. Golden Promise in south-eastern Australia. The results 
indicated that outcrossing occurred at a rate of 0.005 % over a distance of less than 
12 m, and therefore, the risk of gene fl ow between transgenic and non- transgenic 
barley at the fi eld scale would be very low providing that crops were separated by a 
few metres (Gatford et al.  2006 ). 

 The tremendous progress made in barley genetic engineering is also refl ected in 
the number of proposals for fi eld trials. For the USA, 83 applications for release of 
transgenic barley in the period from 1993 up to 2010 were submitted. In contrast, 
there were only nine proposals for the European Union between 1996 and 2009 
(GMO compass  2013 ). In all these cases the traits that have been targeted are fungal 
resistance, modifi ed product characteristics and herbicide tolerance. 

 In Australia, currently a comprehensive research programme led by the 
Commonwealth Scientifi c and Industrial Research Organisation (CSIRO) is under-
way which started in 2009 with approval of the Offi ce of the Gene Technology 
Regulator ( OGTR ) to assess genetically engineered barley in small fi eld plots in a 
3-year test. Meanwhile    six additional applications were approved (DIR094, DIR099, 
DIR102, DIR111, DIR112, DIR117) for release of GM barley lines containing genes 
for alteration of starch metabolism, for enhancement of the content of resistant starch 
and for improvement of nitrogen use effi ciency and abiotic stress tolerance as approved 
by OGTR (  http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/map    ; verifi ed 
February 2013). In contrast, the number of fi eld trials with genetically modifi ed 
plants in general is declining in Europe (  http://www.gmo-safety.eu/news/1416.
plant-research-europe-genetic-engineering-fi eld-trials.html    ; verifi ed February 
2013). A small fi eld trial with genetically engineered barley producing the enzyme 
phytase is being carried out between 2011 and 2015 in the Czech Republic 
(Notifi cation Number B/CZ/11/2) to verify stability of the transgene  phyA  in progeny 
(GMO Register  2013 ). Similarly, fi eld trials with transgenic barley have also been 
conducted very recently (between 2010 and 2013) in Denmark and Sweden (GMO 
Register  2013 ). In the USA, 11 fi eld tests were conducted between 2011 and 2012 
focussing on  Fusarium  head blight resistance,  Rhizoctonia  resistance and increased 
nitrogen utilisation effi ciency (details available on   http://www.nbiap.vt.edu/    ).  

5.5.5     Public Acceptance 

 One of the major hurdles in large-scale adoption of transgenic barley is its public 
acceptance. Since barley is mainly used for brewing and malting industry as well as 
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feed for animals, the inclusion of selectable markers like antibiotic or herbicide 
resistance is a cause of concern and invokes debates worldwide. Marker-free trans-
genic plants are one of the solutions to this issue (Matthews et al.  2001 ; Xue et al. 
 2003 ). Further, the gene fl ow between the transgenic barley and its wild counterpart 
also remains a concern despite careful investigations on this issue (Gatford et al. 
 2006 ). Additionally, apprehensions with regard to possible health risks by consump-
tion of end products from genetically modifi ed barley also exist thereby forcing the 
industry to take a wait-and-see stance. All these concerns have sometimes resulted in 
acts of vandalism, for example, in Europe (Kuntz  2012 ) and some of the fi eld trials for 
barley have also been the targets of destruction (  http://www.gmo-safety.eu/news/505.
destruction-barley-trial-fi eld.html    ; verifi ed February 2013). 

 To circumvent the problems associated with the use of artifi cial gene combinations, 
the cisgenesis concept was developed (Schouten et al.  2006 ). The concept implies 
that the genetic material introduced in a plant should originate from the plant itself 
or from a species being crossable with that plant; thus, the gene pool for cisgenesis 
is the same as for classical breeding. Additionally, sequences from selectable marker 
genes or vector backbone sequences have to be absent. The feasibility of the cisgen-
esis concept was analysed for barley also aiming at improved phosphate bioavail-
ability in the grains which are used as feed for monogastric animals such as pigs and 
chickens. A barley phytase gene ( HvPAPhy_a ) was used which is expressed during 
grain fi lling, and marker-free plant lines were recovered applying the marker gene 
elimination method. The insertion of the genomic clone for  HvPAPhy_a  resulted in 
lines with enhanced activity of phytase as discussed above (Holme et al.  2012 ), 
and fi eld trials were conducted in 2012 (GMO Register  2013 , Notifi cation Number 
B/DK/12/01).   

5.6     Conclusions and Future Prospects 

 Tremendous progress has been made in alien gene transfer to barley during the last 
two decades, converting it from an otherwise recalcitrant crop to a model for the 
 Triticeae . Advances in distant hybridisation were achieved due to development of 
genomic tools and molecular techniques enabling marker-assisted selection and 
targeted backcrossing. The exploitation of genetic diversity through extensive 
screening programmes evaluating related wild species and landraces for valuable 
agronomic traits and sources of resistance to biotic and abiotic stresses provided an 
important tool for the generation of lines containing introgressed segments from 
wild species such as  Rym14(Hb) ,  Rym16(Hb)  and  Ryd4(Hb)  derived from  H. bulbosum  
and conferring resistance to BaMMV, BaYMV and BYDV in barley. 

 Conventional breeding, of late, has been complemented by the biotechnological 
approaches of alien gene transfer, and these were particularly benefi ted from the 
establishment of  Agrobacterium -mediated genetic transformation technology in 
combination with signifi cant progress in genomic research. Consequently, functional 
characterisation of candidate genes for targeted manipulation of specifi c characters 
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is now possible and is extensively used for fundamental and applied research in barley. 
Nevertheless, despite development of numerous genetically modifi ed barley lines 
with improvements in product quality, composition and resistance to stresses, most 
of these lines are still in the laboratory or in experimental fi eld trials. If outcomes of 
the analyses made in Australian fi eld trials are positive, commercial varieties will be 
available in around 2020 (  http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/
Content/map    ; verifi ed February 2013). Similarly, encouraging reports are also there 
from the trials being conducted in the USA. Therefore, it can be concluded that the 
recent developments made in distant hybridisation, standardisation of tissue culture 
protocols, establishment of  Agrobacterium -mediated and other genetic transforma-
tion techniques and development in barley genomics together will pave a way for 
continuous development of barley cultivars having genes from more distant and 
alien backgrounds, widening the genetic base of existing cultivars.     
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