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    Abstract     Wild crop relatives have been playing an important role in deciphering 
the plant genome and genetic improvement of the crop plants both qualitatively and 
quantitatively. They have been used in understanding the fundamental questions 
related to origin, evolution, phylogenetic relationships, cytological status, and intro-
gression of nuclear and cytoplasmic genes for the genetic improvements of their 
domesticated counterparts and facilitating the innovation of many novel concepts 
while working on them directly or by using them. Owing to their high economic 
importance species of  Brassica  (monogenomic diploids,  B. nigra  (B genome, 
 n  = 8),  B. oleracea  (C genome,  n  = 9), and  B. rapa  (A genome,  n  = 10) and dige-
nomics,  B. carinata  (BC,  n  = 17),  B. juncea  (AB,  n  = 18), and  B. napus  (AC,  n  = 19)) 
manifest many morphological variations and research applications that have 
been favorite of plant breeders. Oilseed brassicas are interesting breeding material 
since they have a complete range of breeding systems varying from complete cross-
pollination to self- pollination. Both interspecifi c and intergeneric hybridizations 
have a great potential for creating new variability. Some of them are contributing as 
model plants for comparative crop genetics ( Arabidopsis thaliana ,  B. rapa , etc.). 
Wild allies of  Brassica  have attracted breeders due to their enormous genetic, genomic, 
and breeding potential which can be harnessed for crop improvement, obtaining 
phytomedicines and nutraceuticals, bioenergy production, soil reclamation, and the 
phytoremediation of ecology or environment. The sexual and somatic wide hybrids, 
cytoplasmic sterile line, and addition lines raised between  Brassica  crop species and 
interspecifi c/intergeneric, intersubtribal, and intertribal members have not only lead 
to the widening of crop gene pool but have also assisted in breeding at local, 
regional, and global level by introgressing desirable traits to overcome  unprecedented 
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environmental changes and diseases. Signifi cant increases in seed yield have been 
achieved in oilseed brassicas through the development of hybrid cultivars. This 
chapter emphasizes upon the progenies of wide hybrids with potential agronomic 
traits for  Brassica  breeding as well as the achievements and impacts of alien gene 
transfer in Brassica, achieved mainly through distant hybridization and somatic 
hybridization.  

  Keywords     Alien species   •    Brassica  species   •   Cytogenetics   •   Wide hybridization   
•   Somatic hybrids   •   Addition lines   •   Erucic acid  

10.1         Introduction 

  Brassicaceae  (Cruciferae) is the fi fth largest monophyletic family having approxi-
mately 3,700 species in 338 genera (Gómez-Campo and Prakash  1999 ; Prakash 
 2010 ). Economically, it contributes to 10 % of the world’s vegetable crop produc-
tion and approximately 12 % of the worldwide edible oil source besides being a 
promising potential source of biofuel. Canola is now the world’s third largest source 
of vegetable oil (13 %), after soybean (32 %) and palm oil (28 %). The rapeseed 
production has witnessed a steady upward movement during the past 25 years, and 
presently, it contributes about 14 % of the global vegetable oils (Gupta and Pratap 
 2007 ). One of the spectacular achievements in  Brassica  research concerns the 
improvement in nutritional quality of oil and meal, primarily in  B. napus  and subse-
quently in other species and represents a classical example of plant breeding. The 
 Brassica  crops are unique because every plant part has been selected and manipu-
lated to yield different products. They provide edible oils, condiments (seeds), and 
vegetables (roots, leaves, stem, and infl orescence). Crop  brassicas  lack many desir-
able traits. Enriching conventional germplasm with genes from the related germ-
plasm and widening genetic base is a highly desirable approach. Majority of the 
species in this germpool are wild and weedy and distributed mostly in the 
Mediterranean phytochorea. This germplasm referred to as  Brassica Coenospecies  
(Gómez-Campo  1999a ,  b ) has the potential to exchange genetic material with crop 
brassicas to confer agronomic advantages. It comprises of 14 genera from three 
subtribes, viz.,  Brassicinae ,  Raphaninae,  and  Moricandiinae  in the tribe  Brassiceae . 
Major investigations on this germplasm were initiated by Manton ( 1932 ) who deter-
mined the chromosome numbers; Mizushima ( 1950a ,  b ,  1968 ,  1980 ) hybridized 
wild and crop species to investigate intergenomic homoeology; and Harberd ( 1972 ) 
classifi ed the germplasm into cytodemes. Many investigations dealing with mor-
phology, molecular marker-based taxonomy, and intensive hybridizations have gen-
erated a worth of vast informations since the 1950s. 

 Toshitaro Morinaga carried out a comprehensive genome analysis of crop spe-
cies (1928–1934) and proposed the diploid nature of  B. nigra ,  B. oleracea , and 
 B. rapa  and allopolyploid evolution for  B. carinata ,  B. juncea , and  B. napus.  Korean 
botanist Woo Jang-choon or Nagaharu ( 1935 ) working in Japan presented the 
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cytogenetic relationships among crop species in his famous U triangle (Fig.  10.1 ) 
consisting of three low chromosome monogenomic diploids— B. nigra  (B genome, 
 n  = 8),  B. oleraceae  (C genome,  n  = 9), and  B. rapa  (A genome,  n  = 10) and three 
high chromosome digenomics, i.e.,  B. carinata  (BC,  n  = 17),  B. juncea  (AB,  n  = 18), 
and  B. napus  (AC,  n  = 19) which evolved in nature through convergent alloploid 
evolution between any two diploid species and also experimentally demonstrated 
the allopolyploid evolution of  Brassica napus  synthesis. These relationships are 
further substantiated by cytogenetics, molecular analysis of nuclear and chloroplast 
DNA, and genomic and fl uorescence in situ hybridization (Snowdon et al.  2003 ; 
Snowdon  2007 ), and the U triangle is now considered as a model system for inves-
tigating crop polyploidization (Lukens et al.  2006 ; Pires et al.  2006 ).

10.2         Brassica  Crops Are Highly Polymorphic 

 Figure  10.2  showed the probable geographic centers of origin and domestication of 
different species of  Brassica  based on genetic diversity.  Brassica oleracea ,  B. rapa , 
and  B. juncea  are highly polymorphic displaying a wide range of morphotypes; 
 B. nigra  is exclusively cultivated for the condiment mustard. The cultivated  B. oleracea  
forms exhibit enormous morphological variability in leaf, stem, and infl orescence 
and are collectively referred to as cole crops—a term given by Bailey ( 1922 ), the 
American botanist and horticulturist in 1901. All these forms are sources of popular 
vegetables worldwide. Forms of  B. rapa  are variously termed as turnip rape (oilseed 
forms of Europe and Canada),  sarson  (oil seed forms of Indian subcontinent), 
and leafy vegetables (China and other Southeast Asian countries).  B. carinata , the 
Ethiopian mustard, has a range of uses, e.g., edible oil, spices, medicinals, and veg-
etables. Its cultivation is restricted primarily to Ethiopia but also extends to Kenya. 
 B. juncea  (Indian or brown mustard) is a major source of edible oil in Indian 
subcontinent and Eastern European countries, of vegetables (leaf mustard) in China, 
and hot mustard condiment used in mayonnaise, salad dressing, and sauces in 
Europe, Canada, and America.  B. napus  is a major edible oilseed crop widely grown 
in Europe, Canada, China, and Australia. The development of canola as a crop can 

  Fig. 10.1    Genomic 
relationship among the six 
cultivated  Brassica  species 
( 1935 ) and showing the 
nucleolar dominance 
hierarchy in  Brassica  species 
bb>aa>cc       
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be credited to the pioneering activity of Canadian  Brassica  breeder, R.K. Downey 
(Rakow  2000 ). In the last 50 years, several new fodder and vegetable types of  B. napus  
using leafy and root forming forms of  B. rapa,  viz., ssp.  chinensis ,  pekinensis , 
 narinosa ,  nipposinica,  and  rapa,  have been synthesized. The brassicas are impor-
tant components to the cuisine of many cultures. These represent a valuable source 
of vitamin C, dietary fi ber, and anticancer compounds (Fahey et al.  1997 ).

   This chapter focuses on the wide hybridization of  Brassica  spp., (interspecifi c/
intergeneric, intertribal (Fig.  10.3 ), sexual and somatic hybrids), their general 
 cytological examination, and their implications in breeding, epigenetic control and 
conservation of wild germplasm.

With ever-increasing world population, enhancement of food production is a 
major necessity. Plant breeding is the purposeful manipulation of plant species in 
order to create desired plant types that are better suited for cultivation, giving better 

  Fig. 10.2    Probable geographic centers of origin and domestication       

  Fig. 10.3    Hybrids obtained 
between wild and  Brassica  
crop series       
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yield and are disease resistant. Conventional plant breeding has been practiced for 
thousands of years since the beginning of human civilization; recorded evidence of 
plant breeding dates back to 9,000–11,000 years ago. Classical plant breeding 
involves crossing or hybridization of pure line, followed by artifi cial selection to 
produce plants with desirable traits of higher yield, nutrition, and resistance to dis-
eases. With the advancement in genetics, molecular biology, and tissue culture, 
plant breeding is now increasingly being practiced by using molecular techniques.

   The world is entering a period of unprecedented change in climate, and plant 
breeders must ensure that their breeding programs contain suffi cient genetic diver-
sity to respond to potential changes in the environment. In the last 70 years, many 
wild species in  Brassicaceae  (Prakash et al.  2009 ) have been used for generating 
wide hybrids because of their enormous desirable agronomic traits which can be 
used for improvement of crop species by the breeders and plant biologists. For 
example,  Orychophragmus violaceus  (L.) O. E. Schulz [syn.  Moricandia sonchifo-
lia  (Bunge) Hook Fil.] is a member of the Brassiceae tribe. This species is cultivated 
as an ornamental plant in China, and its wild forms occur both in China and Korea 
(Luo et al.  1994 ), having super oil quality including natural zero-erucic acid; oleic, 
20.32 %; high linoleic, 53.17 %; palmic, 14.31 %; linolenic, 4.76 %; and erucic acid, 
0.94 % (Li et al.  1995 ,  1996 , 1998,  2003 ,  2005 ; Ma et al.  2006 ; Ma and Li  2007 ; Wu 
et al.  1997 ; Xu et al.  2007a ,  b ; Zhao et al.  2007 ,  2008 ; Ge et al.  2009 ).  Capsella 
bursa- pastoris   (2 n  = 32) is a traditional vegetable, medicinal plant, natural double-low 
(erucic acid, glucosinolates) germplasm, and highly resistant to  Alternaria , 
 Sclerotinia , and cold (Chen et al.  2007 ).  Capsella rubella  (2 n  = 16) is being sequenced 
in Europe. Comparison of genomes of different crop plants with  Arabidopsis  as a 
model has become a routine event in plant breeding. The only donor conferring the 
low glucosinolate in all  B. napus  varieties was “Bronowski” from Poland and low 
erucic acid from “Liho” in Germany.  Isatis indigotica  (2 n  = 14) is a medicinal plant. 
Its roots are used as raw materials for preparing medicine to cure virus—cold. 
Extracts of roots and leaves impart resistant to bacteria and viruses (Du et al.  2009 ; 
Tu et al.  2008 ,  2009 ,  2010 ).  Lesquerella fendleri  is a valuable genetic resource for the 
rapeseed breeding for industrial purpose as it possesses high amounts of hydroxy 
fatty acids. In addition, the high tolerance to drought of  L. fendleri  is also useful for 
the genetic improvement of rapeseed (Du et al.  2008 ), especially due to thick 
glutinous polysaccharide layer on its seed coats. With the advancement of hybrid-
ization techniques, hormonal manipulations, genetic transformation, and embryo 
rescue, alien gene transfer has now become a more common practice involving larger 
numbers of crop species. 

 In the early nineteenth century, Sageret ( 1826 ) obtained intersubtribal hybrid 
( Raphanus sativus  ×  B. oleracea ) and Herbert ( 1847 ) raised interspecifi c hybrid 
( B. napus  ×  B. Rapa ) in  Brassica . Initially, these hybridizations were used for cyto-
logical studies for understanding genomic homoeology. Afterwards, wide hybrids 
were routinely obtained for widening genetic base, introgressing nuclear genes that 
are valuable for providing tolerance to biotic and abiotic stresses in selected combi-
nations (Kalloo  1992 ; Warwick  1993 ; Cole  1994 ) or development of the alloplasmic 
lines by transferring the cytoplasm of the wild species to crop brassicas exhibiting 
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cytoplasmic male sterility (CMS) (Banga  1993 ). Some of the alloplasmic lines have 
also exhibited useful agronomic traits (Downey and Rimmer  1993 ). Chromosome 
addition and substitution lines were also generated to locate genes on specifi c 
chromosomes and for constructing genetic maps. During the last three decades, 
in vitro techniques such as ovary culture (Inomata  1978 ; Bajaj et al.  1986 ; Chevre 
et al.  1994 ; Brown et al.  1997 ), ovule culture (Zenkteller  1990 ), embryo rescue 
(Harberd  1969 ), bridge-cross methods (Rao et al.  1996 ), and protoplast fusion 
(Primard et al.  1988 ) have been used vigorously to obtain a huge number of sexual 
and somatic hybrids.  

10.3     Sexual Hybrids 

 Conventional breeding methods require a large number of pollinations for obtaining 
hybrids successfully. In many combinations the success was negligible due to the 
pre-fertilization barriers (hereafter PRFB) which in most of the cases occur due to 
the inability of pollen tubes to grow down the style to affect fertilization. A series of 
observations and experiments in  Brassica  intergeneric and interspecifi c hybridiza-
tion, continued through the last three decades, have made it possible to obtain some 
broader information regarding the mechanism and signifi cance of barriers in wide 
hybridization. PRFB operate mostly at the level of pollen germination or pollen tube 
entry into the stigma. In most of the crossability studies, a common feature is that 
they favor crossability in one direction and that too specifi cally when the wild spe-
cies act as female parent. In a few crosses, 34 % of  Raphanus raphanistrum  pollen 
adhering to the stigma of  Brassica napus  germinated, but no pollen tube penetrated 
the pistil; however, in the reciprocal crosses, only 12 % of  B. napus  pollen germi-
nated on the stigma of  R. raphanistrum  (Rieger et al.  2001 ). Cross between  Brassica 
tournefortii  and  B. rapa  was successful when  B. tournefortii  was used as female 
parent (Choudhary and Joshi  2001 ), while it was observed earlier that pollen grains 
of  B. tournefortii  did not germinate on the stigma of other species resulting in the 
failure of reciprocal crosses (Harberd  1976 ). In another investigation, pollen germi-
nation was good in those crosses where  Enarthocarpus lyratus , a wild species, 
was used as female parent and crop brassicas ( B. campestris ,  B. nigra ,  B. juncea ,  B. 
napus ,  B. carinata ) as male (Gundimeda et al.  1992 ). In this study, aniline blue fl uo-
rescence of pollinated pistil in intergeneric crosses showed that in many crop 
brassicas pollen tube grew through the stigma, style, and ovary when  E. lyratus  was 
the female parent, but in reciprocal crosses, when  E. lyratus  was the pollen parent, 
very few pollen grains germinated and most pollen tubes failed to enter the stig-
matic papillae, few of those which entered the papillae showed swelling of the tube 
tip and also developed callose plug. None of the pollen tube was observed in the 
style. In another intergeneric hybridization study between  Diplotaxis siifolia , a wild 
species, and crop brassicas, the crop brassicas’ pollen germination and pollen tube 
growth was normal on the stigma of  D. siifolia ; however, in the reciprocal cross, 
the  D. siifolia  pollen showed strong PRFB; although pollen grains germinated, the 
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pollen tube failed to enter the stigma. In general, the stigma of the cultivated species 
inhibits pollen of the wild species, while the stigma of the wild species permits 
satisfactory pollen germination and the tube growth of the cultivated species 
(Batra et al.  1989 ,  1990 ; Gundimeda et al.  1992 ; Nanda Kumar and Shivanna  1993 ). 
These classical breeding results of direct and reciprocal crosses showed an inherent 
directional preference (hereafter DP), which ensures these wide hybridizations and 
overcomes the PRFB. 

 There are two possible hypothesis to explain the DP, viz., unilateral pollen pistil 
incompatibility (UI) and endosperm balance number (EBN). The mechanism of UI 
described in 1955 (Harrison and Darby  1955 ) explained that the pollen of one spe-
cies rejects the pistil of another with the reciprocal direction being compatible (De 
Nettancourt  1977 ). Most commonly UI occurs with a self-incompatible (SI) species 
as the pistillate parent and the self-compatible (SC) species donating the pollen. Such 
a mechanism may be responsible for the reproductive isolation between  B. napus  and 
the self-incompatible species  R. raphanistrum  (Kercher and Conner  1996 ). However, 
some of the wild species including  B. fruticulosa ,  B. maurorum ,  Diplotaxis cathol-
ica ,  Erucastrum gallicum , and  E. cardiminoides  are likely to be more effi cient as 
male parents for developing wide crosses with cultivated  Brassica  species. 

 Majority of the crosses which do not show PRFB, invariably show postfertiliza-
tion barriers (PSFB), usually observed as lack of functional endosperm or its early 
degeneration. The PSFB can be explained by many mechanisms like negative inter-
action between diverged sequences, global genome rearrangements, widespread 
epigenetic reprogramming, and imbalance of paternally and maternally imprinted 
genes in the endosperm. The effects of PSFB are embryo abortion at early globular 
stage, and lack of functional endosperm (Nanda Kumar and Shivanna  1990 ). There 
are many models to explain the operation of PSFB. Dobzhansky–Muller model 
explains that there is a negative interaction between the genes of two different cross-
ing species, which leads to inviability or sterility in the hybrid offspring (reviewed 
by Coyne and Orr  1998 ; Rieseberg and Carney  1998 ). Another important model is 
“genomic shock” (allelic incongruity) that causes extensive preprogrammed 
changes to genomic structure namely, changes in chromosomal organization and 
repetitive sequences (McClintock  1984 ). 

 In most of the interploidy crosses within and between the species, endosperm 
breakdown is observed as the primary reason for failure of seed development 
(Watkins  1932 ; Brink and Cooper  1947 ; Stebbins  1958 ; Haig and Westoby  1991 ). 
During seed development three different tissues are in intimate contact, viz., embryo, 
endosperm, and the surrounding somatic tissue of the mother plant. In normal con-
dition the relation between these tissues is 2:3:2. If the uniting gametes have differ-
ent chromosome numbers, this relation would be altered which would result in poor 
seed development or complete abortion of seeds (Sikka  1940 ). Recently the 
imprinted genes in the endosperm are one of the viable reasons for the PSFB. 
Endosperm disruption depends upon 2m:1p (maternal:paternal) which is the EBN 
mentioned above. If maternal genome is in excess (a ratio of >2m:1p), endosperm 
proliferation inhibits, and if paternal genome is excess (a ratio of <2m:1p), it results 
in endosperm proliferation (Haig and Westoby  1991 ; Scott et al.  1998 ). The mechanism 
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controlling the parental genomic ratio in the endosperm is called parental imprinting. 
Parental imprinting is the result of complex theories occurring in endosperm, and 
one of them is parental confl icting theory. Parental confl icting theory is the funda-
mental theory which explains the struggle between maternally and paternally 
derived genomes over resource allocation from mother to offspring (Haig and 
Westoby  1989 ,  1991 ). According to this model the growth promoters essential for 
endosperm development are expressed when inherited from the father but silenced 
when they are inherited from the mother, where as growth inhibitors were silenced 
when inherited from the father and expressed when inherited from the mother. 
The extra doses of maternal genome provide extra copies of growth inhibitors which 
lead to small endosperm and seeds. However, extra paternal genome leads to the 
expression of growth activators which lead to proliferation of endosperm. Both 
these situations are the result of deviation from normal EBN which leads to an 
abnormal growth of endosperm (either undergrowth or proliferation). Furthermore, 
the role of hypomethylation in the parental imprinting was also estimated by anti-
sense  MET1  gene (Adams et al.  2000 ). These studies were carried out on  Arabidopsis  
hybrids, and since  Arabidopsis  is the member of  Brassica ceae, these studies could 
be correlated with hybrids of  Brassica ; nevertheless, it is not suffi cient to draw a 
defi nite conclusion. 

 In addition to PRFB and PSFB, the genotypes also control the crossability of 
wide hybrid combinations. The success of interspecifi c crosses depends not only 
on the species and direction of cross but also on the genotype and ecotype of spe-
cies involved in the hybridization (Bozorgipour and Snape  1990 ). This indeed indi-
cates that a wide range of variation among the different  Brassica  genotypes with 
respect to their difference in genotypes can lead to difference in pollen fertility in 
the hybrids. There are several reports on wide crossing which clearly mention 
about the infl uence of genotypes and ecotypes on the crossability. For example, the 
crossability of different  B. napus  cultivars was carried out with  Orychophragmus 
violaceus , and it was observed that the crossability of  O. violaceus  was successful 
with  B. napus  cultivars “Oro,” “Huayou No. 8,” and “GR 144–149” when  B. napus  
was used as female parent. However, no hybrid plants were obtained in the crosses 
using the cultivars “Canadian twinlow,” “Atlex,” “81008,” and “Senli” (Li et al. 
 1995 ). In an another study, two genotypes of  B. tournefortii  ecotypes crossed with 
the three ecotypes of  B. rapa  i.e  B. rapa  var  trilocularis  (yellow sarsoon),  B. rapa  
ssp.  Sarson  (Brown Sarsoon),  B. rapa  var  dichotoma  (toria) showed difference in 
crossability of different ecotypes (Choudhary and Joshi  2001 ). It appeared from 
these studies that genotype in addition with PRFB and PSFB controls the cross-
ability. The presence of strong PRFB and PSFB can be overcome by using tissue 
culture procedures such as ovary/ovule culture, embryo culture, sequential culture 
(Inomata  1976 ; Nanda Kumar et al.  1988a ,  b ; Batra et al.  1990 ; Gundimeda et al. 
 1992 ; Vyas et al.  1990 ) which involves successive culture of ovaries, ovules, and 
seeds/embryos and is more effective than simple ovary or ovule culture. Certain 
other techniques namely grafting, mixed pollination, bud pollination, stump polli-
nation (Hosoda et al.  1963 ; Sarashima  1964 ) are also found to be effective in over-
coming the barriers. 
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 The fi rst test-tube fertilization in plant was carried out in poppy (Kanta et al. 
 1962 ). Test-tube fertilization of excised ovules in  Brassica  is a practical technique 
for overcoming the PRFB (Kameya and Hinata  1970 ). The method of in vitro 
fertilization of ovules can be successfully applied to various species of  Brassicaceae . 
Mature embryos and plants were obtained after in vitro pollination of the ovules of 
 Arabis caucasica ,  B. napus ,  B. oleracea  var . sabellica  (kale),  B. oleracea  var . 
italica  (broccoli),  Diplotaxis tenuifolia ,  Moricandia arvensis , and  Sisymbrium 
loeselii.  In the case of  Sinapis alba , fertilization and embryo development did not 
occur. Placental pollination has been successfully used for obtaining hybrid imma-
ture embryos at different stages of development from crosses between  B. napus  ×  D. 
tenuifolia ,  B. napus  ×  M. arvensis ,  B. oleracea  var . italica  ×  D. tenuifolia ,  D. tenui-
folia  ×  B. napus ,  D. tenuifolia  ×  M. arvensis , and  D. tenuifolia  ×  S. loeselii.  These 
fi ndings show that in vitro pollination of ovules of various species of  Brassicaceae  
makes it possible to perform the whole process of fertilization and embryogenesis 
and obtain intergeneric hybrid embryos (Zenkteller  1990 ). Embryo rescue tech-
nique is useful as a means for the progress of the study on the interspecifi c and 
intergeneric hybridization of crucifer vegetables, where hybrid embryos abort at 
early stages of development (Nishi et al.  1959 ; Zhang et al.  2003 ,  2004 ; Wen et al. 
 2008 ). Mizushima ( 1950a ,  b ,  1968 ) carried out the pioneer work of hybridizing species 
from secondary and tertiary gene pools. 

 Sexual hybrids show aberrant meiotic chromosome behavior when both the parents 
are diploid. Chromosome homology between various genomes in  Brassica  has been 
thoroughly investigated (reviewed in Prakash and Hinata  1980 ; Prakash et al.  2009  
and Prakash  2010 ). The occurrence of unreduced male as well as female gamete is 
quite common in  Brassica ceae (Ripley and Arnision  1990 ). Cytologically, the 
hybrids predominant show the presence of univalents, a small proportion of bivalents 
and even higher associations (tri-, tetra-, pentavalents). The primary reason for the 
formation of univalents in the wide hybrids is the absence of a homologous partner, 
relatively less bivalents due to occasional pairing which would bring about low 
frequency of chiasma formation and ultimate non-conjugation. Bivalents, when 
they occur, are mostly rod shape monochiasmatic and rarely ring shaped with 
multiple chiasmata. Multivalents in diploid hybrids occur only rarely. Nevertheless, 
a variable number of bivalents and frequent trivalents as well as quadrivalents are 
formed in triploid (tetraploid × diploid) and tetraploid (tetraploid × tetraploid) 
species combinations. 

 Wide hybrids have meiotic irregularities such as numerous disjunctional abnor-
malities including laggards and segregational anomalies (Stebbins  1966 ) resulting 
in pollen sterility. The anthers are generally small, fl accid, and empty. The bridge 
fragment confi guration at anaphase I is observed rarely in the wide hybrids, resulted 
from chiasma formation within a heterozygous inversion. The very rare formation 
of the bridge occurs, because the length of the inverted segment is so small and does 
not permit frequent crossover in that region (Sikka  1940 ). 

 Among the diploid hybrids, high chromosome pairing has been observed in several 
combination:  Sinapis arvensis  ×  B. nigra  (2 n  = 17, 8II, Mizushima  1952 ),  Diplotaxis 
erucoides  ×  B. nigra  (2 n  = 15, 6II, Quiros et al.  1988 ),  B. fruticulosa  ×  B. nigra  
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(2 n  = 16, 7ii Mizushima  1968 ),  B. nigra  ×  Hirschfeldia incana  (2 n  = 15, III+5II, 
Quiros et al.  1988 ),  Erucastrum canariense  ×  B. oleracea  (2 n  = 18, 8II, Harberd and 
McArthur  1980 ), and  E. cardaminoides  ×  B. oleracea  (2 n  = 18 IIV+1III+1II, 
Mohanty  1996 ). The triploid and tetraploid hybrids where higher associations have 
been observed include  B. juncea  ×  Diplotaxis virgata  (IIV/2III; Inomata  2003 ), 
 B. napus × H. incana  (IIV, Kerlan et al.  1993 ), and  D. viminea  ×  B. napus  (2IV, 
Mohanty  1996 ). Triploids and tetraploids bivalents and higher associations may 
result from the homology within the chromosome of the same genome (autosynde-
sis) or because of intergenomic homology (allosyndesis). In the past, it was diffi cult 
to draw conclusions in terms of autosyndesis and allosyndesis. However, it can be 
stated now with further experimentations that intergeneric homology is always 
higher than intrageneric homology. Cytogenetics has played an important role in 
determining the chromosome number, genome analysis, resolving taxonomic status 
and phylogenetic relationships, genome manipulation, chromosome addition lines 
for locating genes and introgression, and in situ hybridization for chromosome iden-
tifi cation (Chen et al.  2007 ; Du et al.  2008 ,  2009 ). Recent use of genomic in situ 
hybridization (GISH) (Li et al.  2007 ; Tu et al.  2009 ; Ge et al.  2009 ) and fl uorescence 
in situ hybridization (FISH) enable us to precisely ascertain the degree of autosynde-
sis and allosyndesis. GISH and FISH assisted in characterization of individual chro-
mosomes, construction of karyotypes, determination of the genomic component of 
allopolyploid species, analysis of meiotic behavior in hybrids, integration of genetic 
and physical maps, and studying the genome evolution by FISH mapping. Hybrids 
between  Brassica  spp and  Orychophragmus violaceus  (2 n  = 24) (an ornamental plant 
in China) are extensively used to study meiotic and mitotic behavior for introgression 
of the nuclear genes of interest. All the hybrid combinations were generated when 
 Brassica  crop species was crossed as female parent with  Orychophragmus violaceus  
as the pollen donor (Li et al.  1995 ,  1996 ,  1998 ,  2003 ; Li and Hensen  1999 ; Hua and 
Li  2006 ; Ge et al.  2006 ,  2009 ).  

10.4     Somatic Hybrids 

 Somatic hybridization is an effective technique to overcome barriers to sexual 
reproduction. Protoplast fusion has been very successful in  Brassica ceae (see 
reviews by Glimelius  1999 ; Christey  2004 ; Navarátilova  2004 ; Li et al.  2005 ; 
Fig.  10.4 ). Biotechnological tools such as embryo rescue and protoplast fusion have 
made it possible to overcome not only intergeneric but also intertribal incompatibil-
ities. As a consequence 44 somatic hybrids between crop and wild species have 
been obtained. These represent interspecifi c/intergeneric [ Brassica spinescens  
(Kirti et al.  1991 ),  Brassica tournefortii  (Stiewe and Robbelen  1994 ),  Diplotaxis 
catholica  (Kirti et al.  1995 ),  Diplotaxis harra  (Begum et al.  1995 ),  Diplotaxis 
muralis ,  Eruca sativa  (Fahleson et al.  1997 ),  Moricandia arvensis ,  Moricandia 
nitens  (Meng et al.  1999 ),  Raphanus sativus  (Wang et al.  2006a ,  b ),  Sinapis arven-
sis ,  Sinapis alba  (Wang et al.  2005 ), and  Trachystoma ballii ], intersubtribal, and a 
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substantial number of intertribal combinations from six different tribes, viz., 
 Sisymbrieae  [ Arabidopsis thaliana  (Siemens and Sacristan  1995 ),  Camelina sativa  
(Narasimhulu et al.  1994 )],  Arabidea  [ Armoracia rusticana  (Navarátilova et al. 
 1997 ),  Barbarea vulgaris  (Ryschka et al.  1999 )],  Drabeaa  [ Lesquerella fendleri  
(Nitovskaya et al.  2006 )],  Lepidieae  [ Capsella bursa-pastoris  (Nitovskaya and 
Shakhovskii  1998 ),  Lepidium sativum , and  Thlaspi perfoliatum  (Fahleson et al. 
 1994a ,  b ),  Thlaspi caerulescens,  and  Isatis indigotica  (Du et al.  2009 )],  Lunarieae  
[ Lunaria annua  (Craig and Millam  1995 )],  Hesperiidae  [ Matthiola incana  (Sheng 
et al.  2008 )], and  Orychophragmus  (Li et al.  1995 ,  1996 , 1998,  2003 ). In many 
instances, desirable characters have been observed in hybrids. However, the intro-
gression has not been largely possible because of high degree of sterility and lack 
of suffi cient intergenomic chromosome pairing. Nevertheless, the results are not 
very discouraging and few characters have been incorporated. Examples include 
somatic hybrids in  Camelina sativa  +  B. carinata  (Narasimhulu et al.  1994 ) and 
 Camelina sativa  +  B. oleracea  (Hansen  1998 ) which were, however, not established 
as viable fi eld plant due to large phylogenetic distance between the partaking 
genomes which severely affected the vegetative growth and development of normal 
plant parts, particularly fl oral organs. The hybrids are generally intermediate to the 
respective parents in most of the quantitative characters. Morphologically, they 
resemble largely the female parent although they also posses distinct male charac-
ters, such as 6–8 petals and multiple carpel-like structures in  A. thaliana  +  B. napus  
(keller et al.  1993 ; Bauer-Weston et al.  1993 ) and 1 or 2 petals in  Thlaspi perfolia-
tum  +  B. napus  (Fahleson et al.  1994a ,  b ).

  Fig. 10.4    Somatic hybridization involving crop brassicas       
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   A majority of somatic hybrids are seed sterile, if selfed. Generally, with the 
decrease in the number of alien chromosomes, the fertility increases, and the plants 
possessing the entire alien chromosome are completely sterile. Somatic hybrids 
have different possibilities regarding the cytoplasmic genomes; either the parental 
genomes segregate completely during cell division or both the parental genomes 
occur as mixed population, and it further leads to recombination in the parental 
genome (see review by Prakash et al.  2009 ). The mitochondrial and chloroplast 
genomes segregate independent of each other. Mitochondrial recombination has been 
reported to occur frequently in  Brassica  (Glimelius  1999 ). On the contrary, interge-
nomic chloroplast recombination is rare. In hybridization involving wild species, gen-
erally the chloroplast from the crop parent is favored and the higher the ploidy of the 
partaking genome is, the more is the contribution of the chloroplast per cell (Butterfass 
 1989 ). Mostly,  B. napus  or  B. juncea  allopolyploids take part in hybridization with 
diploid wild parents; therefore, the chance of crop species chloroplast is more. 
In comparison to the symmetrical fusion, the asymmetrical fusions (irradiating donor 
(wild) protoplast to induce double-strand break) are having more chances of survival 
and adaptability because only a fraction of alien genetic content is present.  

10.5     CMS Systems Originated from Wild Taxa 

 The most rewarding utilization of wild species in crop  brassicas  has been in synthe-
sizing alloplasmic lines of crop species exhibiting male sterility with the wild species 
being as cytoplasm donors ( Arabidopsis thaliana ,  B. oxyrrhina ,  B. tournefortii , 
 Diplotaxis muralis ,  D. erucoides ,  D. berthautii ,  D. catholica ,  D. siifolia ,  Eruca 
sativa ,  Erucastrum canariense ,  Enarthocarpus lyratus ,  Moricandia arvensis , 
 Orychophragmus ,  Raphanus sativus ,  Sinapis arvensis ,  Trachystoma ballii ) and 
introgression of male fertility restoration genes. Out of these CMS sources, fertility 
restoration has been identifi ed in  Raphanus -based Ogura CMS and Polima CMS 
in the western countries, and it has been detected in the CMS-based crosses in 
 B. tournefortii ,  B. juncea  CMS,  Polima  CMS, and  Siifolia  CMS in India (Rai et al. 
 2007 ). Heterotic  B. napus  hybrids based on  Raphanus/Ogu  system in Europe and 
Canada and  B. juncea  hybrids on  Moricandia arvensis  (Prakash et al.  1998 ) system 
in India have been developed.  

10.6     Monosomic and Disomic Addition Lines 

 Wild germplasm needs to be thoroughly characterized for different traits. Dissecting 
their genomes and developing chromosome addition lines to locate gene(s) of impor-
tance will accelerate the map-based cloning of these genes. Monosomic addition 
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lines are used for dissecting several  Brassica  and related genomes, viz.,  B. nigra ,  
B. oleracea ,  B. rapa ,  B. oxyrrhina ,  Diplotaxis erucoides ,  Raphanus sativus ,  Sinapis 
alba ,  S. arvensis ; and several disomic addition lines have been developed including 
 A. thaliana – B. napus  (Leino et al.  2004 ),  B. napus – S. alba  (Wang et al.  2005 ), and 
 B. napus – C. abyssinica  (Wang et al.  2006a ,  b ). A full set of nine disomic  B. napus – R. 
sativus  addition lines developed by Budahn et al. ( 2008 ) is the fi rst disomic addition 
line series in  Brassicaceae .  

10.7     Introgression of Nuclear Genes from Wild  Brassica  
Species for Breeding 

 Nuclear genes for abiotic and biotic stress tolerance have been successfully intro-
gressed in the crop species to generate progenies of wide hybrids with additional 
useful traits for breeding. The agronomic characters in wild species are an attrac-
tion to breeders including resistance to various biotic stresses such as beet cyst 
nematode, alternaria blight [ Diplotaxis erucoides  (Klewer et al.  2003 ),  Camelina 
sativa ,  Capsella bursa-pastoris  +  B. napus ,  Coincya  spp.], blackleg [ Arabidopsis 
thaliana  +  B. napus  (Saal et al.  2004 ),  Sinapis arvensis )], fl ea beetle ( Crambe abys-
sinica ), and other traits such as C3–C4 intermediate photosynthesis [ Moricandia  
spp. (Bang et al.  2003 ),  Diplotaxis tenuifolia ]; drought tolerance ( Brassica tourne-
fortii ,  Diplotaxis acris ,  Eruca  spp.,  Lesquerella  spp.); cold tolerance ( Coincya 
richeri ,  Erucastrum abyssinicum ); high erucic acid content [ Barbarea  spp . , 
 Cardamine ,  Lepidium  (Hu et al.  2002 )]; increased level of palmitic and linolenic 
acids from  Orychophragmus  (Wang et al.  2003 ); greater amount of erucic acid 
from  Crambe abyssinica  +  B. napus  (Schroder-Pontoppidan et al.  1999 ); high 
amount of lesquerolic acid from  Lesquerella fendleri  +  B. napus ; fertility restora-
tion from  R. sativus Diplotaxis catholica Moricandia ,  Trachystoma balli , and 
 Sinapis arvensis  (see review Prakash et al.  2009 ); zinc and cadmium accumulation 
( Thlaspi caerulescens  +  B. napus ); and high nervonic acid content (Fahleson et al. 
 1994a ,  b ,  Thlaspi perfoliatum  +  B. napus ) .  Breeding for improvement of fatty acid 
composition in rapeseed has been emphasized for high-quality rapeseed breeding. 
Most of the Asian varieties have high oil content, but lower oleic and higher erucic 
acid content (Fig.  10.5 ) than the European varieties. The variation in the oleic and 
erucic acid content in the European varieties were larger than in the Asian varieties. 
 Brassica - related  wild germplasm will have an increasingly important role to 
develop abiotic and biotic stress free and better adapted cultivars in the future. 
Their utilization will be more successful using cellular and molecular biotechno-
logical tools.
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10.8        Epigenetics of Interspecifi c and Intergeneric Hybrids: 
Nucleolar Dominance 

 In distant hybrids, it is often observed that the ribosomal genes of one species 
(one genus) are transcriptionally dominant over the ribosomal genes of other species 
(other genus). This phenomenon is known as Nucleolar Dominance (hereafter ND) 
(see review by Pikaard  1999 ,  2000 ,  2001 ). It occurs both in the hybrids of animal 
and plant kingdom like  Xenopus ,  Drosophila ,  Crepis ,  Salix ,  Ribes ,  Solanum , 
 Hordeum ,  Avena ,  Agropyron ,  Triticum , Zea,  Triticale ,  Brassica , and mammalian 
cells. It is an epigenetic effect and is second only to inactivation of one X chromo-
some that occurs in the somatic cells of female mammals. However, unlike X 
inactivation, the choice of which set of rRNA genes to silence is not random, rather 
there is dominant and underdominant rDNA, playing a crucial cross talk in ND 
(wheat–rye addition line). ND is independent of maternal and paternal imprint. ND 
studies on plants is having a history of more than seven decades, and it was for the 
fi rst time described by M. Navashin, a Russian cytogenetist, who began a series of 
caryological investigation on the plant genus  Crepis . In 1928, he found that there is 
a reversible change in the chromosome morphology. Navashin used the term 
“amphiplasty” to describe the ability of metaphase chromosome to adapt new forms. 
Navashin stated that “It was a great surprise to fi nd that the chromosomes of two or 
more different species brought together by hybridization in certain specifi c combi-
nation suffer striking alterations of their individuality (Navashin  1934 ).” In his study 
out of 21 different hybrid combinations, eight hybrid combinations have both the D 
chromosome (earlier the chromosome were designated with alphabets) of the parent 
at metaphase. In other 13 hybrid combinations, one progenitor had retracted its 

  Fig. 10.5    Useful traits incorporated in  Brassica  crops for breeding       
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satellite. NORs include active rRNA genes which give rise to secondary constriction 
of metaphase chromosomes and silent rRNA genes which are often highly com-
pacted in dense heterochromatin. Each rRNA genes at NOR is nearly identical in 
sequence. Differences in the number of repeated DNA elements occur commonly in 
the intergenic spacer region. These unparalleled investigations done by pioneer 
researcher have paved the way for the study of this amphiplastic (ND) phenomenon. 
Hierarchy of rRNA gene transcriptional dominance in  Brassica  is  B. nigra , BB> B. 
rapa , AA> B. oleraceae , CC (Chen et al.  1997 ) (Fig.  10.1 ). So, the size of repetitive 
region and the number of repetitive elements of NORs are not the determining factors 
for ND in crop  Brassica . In the last decade a lot of studies were carried out on epi-
genetics, and it was emphasized that the ND is an epigenetic phenomenon, and DNA 
methylation and histone modifi cation play a crucial role in maintenance of nucleolar 
dominance in allotetraploids of  Brassica . Hypermethylation and hypoacetylation lead 
to transcriptional silencing of rDNA of one of the parents in the hybrid. A role of 
methylation and acetylation was dramatically revealed in allotetraploid  Brassica  by 
using inhibitors of cytosine methylation (like 5-aza 2′-deoxycytidine) and histone 
deacetylase (HDAC) inhibitors like sodium butyrate and trichostatin A (TSA).  

10.9     Conservation of Wild Germplasm 

 Collection and conservation of all the different wild relatives, species, and relative 
of the cultivated species (followed by the evolution of their characteristics) are a 
prerequisite for the effective exploitation of the natural genes available in the popu-
lations. During the 1970s wild germplasm of  Brassica  were extensively collected 
and cytogenetic studies were started. In many crops preexisting genetic variability 
is available from wild relatives of crops. The vast collection of wild crucifers was 
carried out by the expeditions to the Mediterranean region (1970–1975) by Spanish 
researcher Prof. Cesar Gómez-Campo and Japanese researchers U. Mizushima, S. 
Tsunoda, and K. Hinata. Mizushima initiated investigations on wild germplasm in 
the early 1970s, executed hybridizations between wild and crop species, and studied 
observations on chromosome pairing and interpreted genome homoeology (Gómez-
Campo and Gustafsson  1991 ). Harberd ( 1972 ,  1976 ) classifi ed germplasm referred 
to  Brassica  coenospecies into cytodemes (crossing groups) and studied the chromo-
some pairing in a large number of interspecifi c and intergeneric hybrids. Intensive 
efforts have been made in the last decade to search and collect this material; other-
wise, it would have been invariably lost. Most of the  Brassica  collections are con-
served by means of seeds, and in general, they are conserved under long-term 
storage condition to maintain seed variability for many years. The only exception 
within the  Brassica  crop is perennial Kale that is vegetatively propagated (Gómez-
Campo  1999a ,  b ). Ex situ conservation of plant genetic resources in gene bank 
involves collecting traditional varieties and landraces from around the world and, in 
particular, from centers of genetic diversity of specifi c crops. The ex situ conserva-
tion also involves conservation and maintenance of these accessions for current and 
future users for regeneration activities. 
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 Climate, plant diseases, insect pests, and market demands for new quality traits are 
included in the broad defi nition of environment. Wide hybridization is an important 
tool to introduce alien variation into the cultivated crops. Alien gene transfer has 
played an important role in creating additional genetic variability in crop species; 
introgression of newer, useful, and desirable alleles; and devising several innovative 
and advanced techniques like preferential chromosome elimination leading to tech-
niques like doubled-haploidy breeding. Somaclonal variation during the culture 
phase of hybrid embryos developed through distant hybridization generates addi-
tional avenues of variability in several crop plants. The impact of alien gene intro-
gression has been well seen during the “Green Revolution” and also after that in the 
development of improved plant varieties in a spectrum of crops including cereals, 
pulses, oilseeds, and vegetables and ornamental and horticultural crops. Wild spe-
cies are a rich reservoir of several useful alien genes which are no longer available 
within the cultivated gene pools. Continuous efforts have been underway to collect 
and conserve wild relatives of various crops in national and international gene banks 
and use them for alien gene transfer into the cultivated background.  

10.10     Conclusions and Future Prospects 

 Distant hybridizations in crop brassicas through sexual cross can be traced back to 
the 1950s and through somatic hybridization to the late 1970s. The sexual hybrids 
and their progenies recovered by the aid of special efforts such as repeated pollina-
tion, embryo rescue, and sequential culture have contributed immensely in widen-
ing the genetic base of cultivated brassicas as well as generating newer genetic 
variability providing additional avenues of selection. This has resulted in the trans-
fer of several desirable genes into cultivated background from wild species includ-
ing those for disease and insect-pest resistance, improved oil quality, fatty acid 
composition, male sterility and fertility restoration systems, and, of late, tolerance 
to a few abiotic stresses. Nevertheless, pre- and postfertilization barriers in produc-
ing viable hybrids and their progenies have slowed down the progress in transfer-
ring useful alien genes. In such case somatic hybridization has played a great role, 
and among all crop plants, Brassica has been one of the most cited examples where 
somatic hybridization has witnessed great success. 

 The vast knowledge of molecular markers has also greatly aided in  Brassica  
improvement, and it has helped in mapping important traits. The sequencing of 
 Arabidopsis  genome has proven to be of great use in marker-assisted breeding. This 
knowledge further needs to be integrated with conventional breeding or transferring 
alien genes through AB-QTL approach. Further strides are required in genetic trans-
formation and intragenesis and cisgenesis to deploy alien genes from across the 
genome boundaries for the genetic improvement of crop brassicas. At the same 
time, further improvements are required in somatic hybridization and tissue culture 
protocols, especially to solve the problems of low regeneration rate and genotype 
dependency. For a direct use of wild species in genetic improvement of crop 
 brassicas, chromosome fragmentation and integration of only a specifi c fragment 
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conferring a useful trait will be a more practical approach in improving  Brassica  
utilizing wild species.     
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