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    Abstract     Maintenance, repair and regeneration of adult skeletal muscle are 
 mediated by stem or precursor cells within the muscle. In addition to the satellite 
cell, which is the archetypal muscle stem cell, there are other stem cells within 
 skeletal muscle that can contribute to muscle regeneration under experimental 
 conditions. We describe these different cells within skeletal muscle and evaluate the 
experimental evidence for them being skeletal muscle stem cells. Further studies 
will be needed to determine the roles of different skeletal muscle resident cells to 
repair, maintain and regenerate skeletal muscle.  
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1           Introduction 

 Skeletal muscle is the largest organ within the human body, comprising 30–40 % of 
the body mass [ 1 ] and is essential for movement and posture. Muscle fi bres that 
contain the contractile elements are formed during development by the fusion of 
myoblasts to form multinucleated muscle fi bres, in which the nuclei (myonuclei) 
are postmitotic. Postnatal growth, repair and maintenance of skeletal muscle are 
mediated by satellite cells; however, there are other stem cells within skeletal  muscle 
that are also capable of differentiation into skeletal muscle. In this chapter, we 
review the different stem cells present within adult skeletal muscle and their contri-
bution to skeletal muscle regeneration.  

2     Satellite Cells 

 The classical stem cells within adult skeletal muscle are satellite cells, which were 
fi rst identifi ed by Mauro [ 2 ] and defi ned by their position between the basal lamina 
and sarcolemma of the muscle fi bre. Early work provided evidence that satellite 
cells are the source of new myofi bre nuclei during muscle growth [ 3 ,  4 ] and regen-
eration [ 5 ]. Only recently, with the availability of reliable antibodies [ 6 – 14 ] and 
genetically modifi ed mice [ 15 – 17 ], have satellite cells been established as muscle 
stem cells, able to both contribute to muscle growth [ 18 ,  19 ], regeneration [ 20 ,  21 ] 
and to functionally reconstitute the satellite cell niche [ 22 ,  23 ]. 

 Studies of satellite cells in mice have been facilitated by the relative ease by 
which they may be separated from other cells present within skeletal muscle. 
Isolated muscle fi bres, bearing their complement of satellite cells under the basal 
lamina [ 24 ] enable studies of satellite cells in their niche [ 25 – 27 ]; satellite cells may 
also be physically [ 22 ,  23 ,  28 ] or enzymatically [ 29 ] removed from their niche on 
the fi bre for in vitro or in vivo studies. There are also protocols for satellite cell 
purifi cation from enzymatically disaggregated skeletal muscle either on the basis of 
size and granularity [ 30 ] or using cell-surface satellite cell-specifi c antibodies com-
bined with antibodies against other cell types to enrich for satellite cells [ 31 – 33 ]. 
However, there are caveats in using cell-sorting techniques—the sub-population 
isolated may not be 100 % pure and satellite cells may be activated during the pro-
cedure and thus not express particular markers. In addition, some antibodies used 
for cell sorting are not ideal, e.g. the monoclonal antibody SM/C-2.6 [ 9 ], which is 
frequently used for satellite cell purifi cation [ 10 ,  34 ,  35 ], is not commercially 
 available, nor is the antigen that it recognises known. 

 The term ‘satellite cell’ is often used incorrectly in the literature. By defi nition, a 
satellite cell is a quiescent cell underneath the basal lamina of muscle fi bres. When 
it is no longer under the basal lamina, it is therefore no longer a satellite cell, but 
some studies refer to cells in tissue culture as satellite cells [ 36 ,  37 ]. If the cell is 
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under the basal lamina of the fi bre but has divided and is expressing myogenic 
 regulatory factors such as MyoD, this cell is the progeny of a satellite cell (a 
 myoblast), not a satellite cell [ 27 ]. 

 An important caveat is that not all satellite cells are capable of contributing to 
muscle regeneration [ 23 ,  38 ], suggesting the existence of a ‘stem’ satellite cell sub- 
population [ 33 ] that survives into old age [ 39 ,  40 ]. Whether the ‘stem’ satellite cell 
sub-population really exists, or if satellite cell functional characteristics are stochas-
tic, is still not clear. Despite age-related decrease in satellite cell number [ 40 – 42 ] 
and changes in signalling factors, hormones, cytokines and growth factors that mod-
ulate their function [ 43 ], effi cient muscle regeneration in old age can occur, pro-
vided the local or systemic environment is modulated appropriately [ 39 ,  40 ,  44 ]. 
The extent to which the aged or dystrophic environment [ 45 ] and the satellite cell 
niche itself [ 39 ,  46 ] affect satellite cell function is the focus of much current research 
(reviewed [ 21 ,  47 – 49 ]). 

 Although there is good evidence that satellite cells are required for postnatal 
skeletal muscle regeneration [ 20 ], they lose their regenerative capacity following 
culture [ 30 ], only have a very local effect after intra-muscular injection and do not 
seem to be systemically deliverable, so much work has focussed on other skeletal 
muscle stem cells that might be more appropriate for treating conditions such as 
muscular dystrophies (reviewed [ 50 ,  51 ]). However, other stem cells within skel-
etal muscle have been less intensively studied, largely due to challenges in identi-
fying and purifying them. To complicate matters, the same, or similar, stem cells 
are often given different names or acronyms, e.g. pericytes [ 52 ] and  muscle-derived 
cells (mdcs) [ 53 ], satellite cells and their putative stem cell sub-population, 
muscle stem cells (MuSCs) [ 33 ]. An additional problem in studying different cell 
types is that, if cells have to be expanded in culture, they may change their pheno-
type, so it is always best to study them either in vivo or immediately following their 
direct isolation.  

3     Other Stem Cells Within Skeletal Muscle 

 Stem cells other than satellite cells that have been shown to contribute to skeletal 
muscle regeneration include blood vessel-associated stem cells, such as muscle 
side population (SP) cells, myoendothelial cells (MECs) and pericytes/mesoan-
gioblasts; stem cells of unknown origin, such as muscle-derived stem cells 
(MDSCs), multipotent adult progenitor cells (MAPCs), CD133+ cells, PW1(+)/
Pax7(−) interstitial cells (PICs) and very small embryonic-like stem cells (VSELs). 
But the extent to which these cells contribute to muscle regeneration is often 
slight [ 54 – 56 ] and whether these cells participate in muscle growth, maintenance, 
repair and regeneration in non-experimental conditions often remains unclear 
(Table  1 ).
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3.1        Blood Vessel-Associated Stem Cells 

3.1.1     Side Population Cells 

 Side population (SP) cells were identifi ed by a low Hoechst staining ‘tail’ in their 
FACS profi le [ 57 ]. The ‘tail’ disappears in the presence of a calcium channel 
blocker, verapamil. SP cells have been found in a wide variety of mammalian tis-
sues and in many cases this cell population has been shown to contain multipotent 
stem cells [ 58 ]. Skeletal muscle SP cells express the stem cell marker Sca-1, but no 
myogenic markers and are located outside the basal lamina of muscle fi bres, appar-
ently associated with the vasculature [ 59 ]. The fact that they are present in mice in 
which Pax7, expressed in satellite cells, is knocked out [ 14 ] is compelling evidence 
that they are not derived from satellite cells. 

 Murine muscle SP cells do not differentiate into skeletal muscle in vitro, but after 
co-culture with myogenic cells or on intra-muscular transplantation, they do give 
rise to skeletal muscle [ 54 ,  59 ]. They are also capable of differentiating into haema-
topoietic cells in vitro [ 59 ] and can reconstitute the haematopoietic system of 
lethally irradiated mice [ 60 ]. Skeletal muscle SP cells are systemically deliverable 
to skeletal muscle [ 61 – 63 ], but not to any therapeutically signifi cant levels [ 63 ,  64 ].  

3.1.2     Endothelial/Myoendothelial Cells 

 Myoendothelial cells (MECs), co-expressing both myogenic and endothelial mark-
ers (CD56, CD34 and CD144) have been derived from human (but not mouse) skel-
etal muscle by fl ow cytometry [ 65 ]. However, it has been suggested that mouse 
MDSCs and human MECs are in fact the same, as they have a similar phenotype and 
ability to contribute to muscle regeneration [ 66 ]. Human MECs gave rise to signifi -
cantly more skeletal muscle regeneration following intra-muscular grafting in mice 
than either endothelial cells (CD56−CD34+CD144+) or myoblasts (CD56+). When 
MECs cells were transplanted into infarcted myocardium, they stimulated angio-
genesis, attenuated scar tissue, and promoted proliferation and survival of endoge-
nous cardiomyocytes more effectively than either myoblasts or endothelial cells 
[ 67 ]. However, although blood vessel associated, there is no evidence that myoen-
dothelial cells can transmigrate to skeletal muscle if transplanted systemically.  

3.1.3     Pericytes/Mesoangioblasts 

 Myogenic cells derived from the mouse embryonic dorsal aorta, which co-expressed 
endothelial and myogenic markers, were shown to contribute to skeletal muscle 
growth and regeneration [ 68 ]. These cells, termed mesoangioblasts, are multipotent 
stem cells [ 69 ], able to differentiate into several mesodermal tissues and might be 
the origin of postnatal mesodermal stem cells. Mesoangioblasts have been shown to 
contribute to muscle regeneration and improve the muscle function after intra- 
arterial transplantation into either dystrophic mice [ 70 ] or dogs [ 71 ]. 

Adult Stem Cells : Adult Skeletal Muscle Stem Cells 
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 Pericytes are ALP+ cells located along the blood vessels and may be the adult 
counterpart of embryonic mesoangioblasts. However, unlike mesoangioblasts that 
express endothelial markers, they express pericyte markers such as alkaline phos-
phatase (ALP), NG2 and PDGFR-β [ 52 ]. Pericytes may also be isolated from skel-
etal muscle and other tissues by direct sorting of CD146+ CD34− CD45− CD56− cells 
[ 72 ,  73 ]. Like mesoangioblasts, skeletal muscle-derived pericytes are myogenic and 
can contribute extensively to skeletal muscle regeneration after intra-arterial [ 52 ] 
and intra-muscular [ 53 ] transplantation into dystrophin-defi cient immunodefi cient 
mice. In addition to myogenic differentiation, pericytes can also give rise to many 
other mesenchymal lineages, suggesting a close relationship with mesenchymal 
stem cells (MSCs) [ 52 ,  73 ]. 

 Recent work using genetically modifi ed mice has provided evidence that peri-
cytes, but not endothelial cells, contribute to muscle fi bres and to satellite cells dur-
ing normal postnatal development [ 74 ].   

3.2     Other Skeletal Muscle Stem Cells 

3.2.1     Multipotent Adult Progenitor Cells 

 MAPCs were fi rst isolated from human and mouse adult bone marrow (BM) [ 75 ], 
then from other postnatal tissues such as brain and muscle [ 55 ] and have the poten-
tial to differentiate into cells of all the three germ layers, including skeletal muscle. 
Skeletal muscle-derived MAPCs can be expanded up to 75 population doublings in 
vitro and similar to mouse- and human BM-derived MAPC, muscle MAPCs are 
CD13+, Flk1dim, c-kit−, CD44−, CD45−, MHC class I− and MHC class II−. Human 
and mouse MAPCs were reported to improve ischemic limb function after transplan-
tation intramuscularly to C57BL/6 mice or BALB/c-nu/nu mice after artery ligation 
[ 76 ]. Although they did give rise to donor-derived muscle fi bres, the percentage was 
low, suggesting the positive effects of these cells were most likely via their immuno-
modulatory or trophic effects, e.g. by increasing angiogenesis and endogenous stem 
cell proliferation, than by making a direct contribution to skeletal muscle fi bres.  

3.2.2     Muscle-Derived Stem Cells 

 Cells with stem cell capabilities have been isolated from mouse skeletal muscle on 
the basis of their adhesion and proliferative capabilities. MDSCs or long-term pro-
liferating cells [ 77 ] were purifi ed as a multipotent stem cell from neonatal mouse 
muscle by serial pre-plating, the less adherent cells being MDSCs. These cells 
derived from both mouse [ 77 ,  78 ] and human [ 56 ] contribute to muscle regeneration 
after transplantation into dystrophin-defi cient mdx [the mouse homologue of 
Duchenne muscular dystrophy (DMD)] muscles. However, MDSCs derived from 
human muscle were phenotypically different from mouse MDSCs and gave rise to 
fewer donor-derived dystrophin+ fi bres than did mouse MDSCs. 
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 Mouse MDSCs are non-tumorigenic and can be expanded in vitro up to 300 
population doublings without entering senescence [ 79 ]. Clones of MDSCs express 
myogenic markers (desmin and MyoD) and some stem cell markers such as CD34, 
Sca-1 and Bcl-1 and lack the haematopoietic stem cell marker CD45, c-kit and 
blood lineage markers [ 80 ]. These cells can reconstitute the haematopoietic system 
[ 78 ,  81 ] and elicited signifi cant improvement in cardiac function in comparison to 
myoblasts following transplantation in a mouse cardiac injury model [ 82 ,  83 ]. 
MDSCs exist only in vitro and the cell within skeletal muscle from which they are 
derived is not known.  

3.2.3     PW1(+)/Pax7(−) Interstitial Cells 

 PW1, also known as paternally expressed gene 3 (Peg3), a zinc fi nger protein which 
regulates two key cell-stress pathways, TNF and p53 signalling [ 84 ], is a key regula-
tor of muscle atrophy. PW1 expression initiates in the early embryonic mesoderm 
and is down-regulated in tissues as they differentiate. It was recently suggested that 
PW1 might represent a pan-marker for multiple adult stem cells within mammalian 
tissue [ 85 ]. In mouse skeletal muscle immediately after birth, PW1 expression was 
detected not only on satellite cells but also on some Pax7− interstitial cells, termed 
PICs [ 86 ]. PICs are bipotent in vitro, generating both smooth and skeletal muscle 
and were able contribute to muscle regeneration in vivo within injured host mouse 
muscle [ 86 ]. However, PICs do not seem to be present within adult mouse muscle 
and their human counterparts have not yet been identifi ed.  

3.2.4     CD133+ Cells 

 CD133 is a pentaspan transmembrane glycoprotein (5-transmembrane, 5-TM), 
which specifi cally localises to cellular protrusions. The function of CD133 (also 
known as prominin-1 and AC133) is currently unknown. However, there is great 
interest in this marker, as it is expressed on many different types of stem cell, includ-
ing haematopoietic stem cells [ 87 ], neural stem cells [ 88 ], endothelial progenitor 
cells [ 89 ,  90 ] and very small embryonic-like stem cells (VSELs) [ 91 ,  92 ]. CD133+ 
cells isolated from human skeletal muscle are able to contribute to muscle regenera-
tion after both intra-muscular delivery to injured immunodefi cient mouse muscle 
[ 93 ] and systemic administration to dystrophic immunodefi cient mice [ 94 ]. But, as 
human muscle CD133+ cells were isolated by enzymatic disaggregation, the origin 
of these cells is unclear. As skeletal muscle is heavily vascularised, it is possible that 
the skeletal muscle-derived AC133+ cells isolated by Benchaouir et al. were blood 
borne and the same, or similar to, blood-derived AC133+ cells that can contribute to 
muscle regeneration [ 95 ]. A limitation to the study of these cells is that, although 
there are antibodies that can be used for FACS or MACS isolation [ 94 ], the anatomi-
cal location of these cells within skeletal muscle remains unknown. Skeletal muscle- 
derived CD133+ cells share some cell surface markers, such as CXCR4 and CD34, 
with satellite cells [ 93 ,  94 ] and cultured CD133+ cells express not only myoblast 
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markers but also the smooth muscle marker α-SMA and pericyte markers NG2 and 
PDGFRβ (Meng, unpublished data), suggesting the heterogeneity of this cell popu-
lation. The majority of freshly isolated mouse CD133+ cells are very small in 
size—2–6 μm (Meng and Asfahani, unpublished observations)—a size very similar 
to those reported for VSELs [ 91 ,  92 ,  96 ]. In addition, their robust myogenic poten-
tial and ability to form Pax7+ cells in the satellite cell position [ 93 ] suggests a very 
close relationship of CD133+ with satellite cells, but whether they are a satellite cell 
sub-population, or a precursor of satellite cells, remains to be elucidated. Whether 
CD133+ cells derived from mouse skeletal muscle are equivalent to human CD133+ 
cells remains to be seen.  

3.2.5     VSELs 

 Recently, a population of stem cells termed ‘very small, embryonic-like stem cells’ 
(VSELs) was discovered within many tissues, including skeletal muscle [ 91 ]. These 
cells are approximately 6.5 μm in diameter in the human [ 96 ] (i.e. smaller than red 
blood cells) and can be purifi ed by fl ow cytometry [ 97 ] (reviewed [ 98 ]). VSELs 
express several markers of pluripotent stem cells, including Oct-4, cell surface pro-
tein SSEA-4, Nanog, Sox-2, Rex-1 and Tert [ 99 ] and form embryoid body-like 
spheres in vitro [ 97 ]. VSELs derived from the mouse bone marrow are radiation 
resistant and may be long-term repopulating haematopoietic stem cells [ 100 ] as 
well as differentiating to cardiomyocytes in vitro [ 101 ]. VSELs therefore show 
intriguing similarities to ‘stem’ satellite cells, which are also of small size [ 23 ,  30 ] 
and radiation resistant [ 39 ,  102 ,  103 ]. But their function and relationship to other 
cells within skeletal muscle is at present unknown.   

4     The Relationships Between Stem Cells Resident 
in Skeletal Muscle 

 Some muscle stem cells clearly have close relationships (e.g. pericytes and satellite 
cells, PICs and satellite cells), whereas the hierarchy, if any, between other skeletal 
muscle resident stem cells is not clear. Even if one cell type does not directly give 
rise to another, they may affect each other’s function. The close proximity of  satellite 
cells to blood vessels [ 104 ] will facilitate satellite cell interactions with endothelial 
cells, pericytes and other blood vessel-associated cells [ 105 ,  106 ].  

5     Why Are We Interested in Skeletal Muscle Stem Cells? 

 Interest in skeletal muscle stem cells was initiated because of the possibility of 
using them, or their progeny, to treat muscular dystrophies such as DMD [ 50 ,  107 ]. 
For this purpose, cells derived either from a normal donor or from the patient, 
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genetically modifi ed to express the defective gene (e.g. dystrophin), could be used. 
Ideally, cells would be able to be systemically delivered to skeletal muscle and 
repair or replace dystrophic muscle fi bres, thus restoring dystrophin expression 
within fi bres that have donor-derived myonuclei. If the donor stem cells also recon-
stituted the skeletal muscle stem cell pool, they could contribute to muscle repair 
and regeneration and restoration of dystrophin protein throughout the lifetime of 
the individual. 

 Donor muscle stem cells might also be a therapeutic option for sarcopenia (the 
age-related loss of skeletal muscle mass and strength). However, the systemic or 
local environment as a result of age or dystrophy-related changes may prevent effi -
cient stem cell function. There is therefore a pressing need to understand the effect 
of age or different muscular dystrophies on the satellite cells themselves and on 
their environment. Modifi cation of pathways that promote muscle stem cell func-
tion could be an alternative means to alleviate the loss of muscle that occurs as a 
result of ageing or muscular dystrophies.  

6     Conclusions 

 In this review, we have summarised the stem cell types within the skeletal muscle 
and the evidence for them being skeletal muscle stem cells. Skeletal muscle con-
tains many stem or precursor cells that can contribute to muscle regeneration under 
experimental conditions, but, apart from satellite cells and pericytes, their contribu-
tion (if any) to ‘normal’ muscle growth, maintenance and repair is not known. 
Further studies will be needed to determine the roles of different skeletal muscle- 
resident cells within both normal and dystrophic muscles and how to augment their 
function to prevent or delay the loss of skeletal muscle fi bres that occurs as a conse-
quence of both age and muscular dystrophies.     
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