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    Abstract     Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells 
that reside in a perivascular niche in close association with pericytes and endothelial 
cells and possess self-renewal and multi-lineage differentiation capacity. The origin, 
unique properties, and therapeutic benefi ts of MSC are under intensive investigation 
worldwide. Several challenges with regard to the proper source of clinical-grade 
MSC and the effi cacy of MSC-based treatment strategies need to be addressed 
before MSC can be routinely used in the clinic. Here, we discuss three areas that can 
potentially facilitate the translation of MSC into clinic: Generation of MSC-like 
cells from human pluripotent stem cells, strategies to enhance homing of MSC to 
injured tissues, and targeting of MSC in vivo.  
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  Abbreviations 

   AMD    Age-related macular degeneration   
  AMI    Acute myocardial infarction   
  Bzb    Bortezomib   
  CCR1    C-C Chemokine receptor type 1   
  CXCR4    C-X-C Chemokine receptor type 4   
  EB    Embryoid body   
  FAK    Focal adhesion kinase   
  GMP    Good manufacturing practice   
  hESC    Human embryonic stem cells   
  HLA    Human leukocyte antigen   
  hPSC    Human pluripotent stem cells   
  ICM    Inner cell mass   
  iPSC    Induced pluripotent stem cells   
  MHC    Major histocompatibility complex   
  miRNA    MicroRNA   
  MSC    Mesenchymal stem cells   
  Runx2    Runt-related transcription factor 2   
  SCID    Severe combined immunodefi ciency   
  SDF-1α    Stromal cell-derived factor-1   
  siRNA    Small-interfering RNA   

1           Introduction 

 Mesenchymal stem cells (MSC) are multipotent cells that were fi rst identifi ed by 
Friedenstein as bone marrow osteogenic stem cells [ 1 ]. The term “mesenchymal 
stem cell” was coined by Caplan to describe a population of cells that are involved 
in the formation of bone and cartilage during embryonic development, bone turn-
over, and repair throughout adulthood [ 2 ]. However, the term “mesenchymal” is 
contentious and not generally accepted [ 3 ]. Other names also exist for MSC includ-
ing multipotent mesenchymal stromal cells, skeletal stem cells, adult stromal stem 
cells, and bone marrow stromal cells [ 4 ,  5 ]. MSC are defi ned as non-hematopoietic, 
plastic adherent multipotent stem cells that are present in the bone marrow stroma 
and can differentiate into cells of mesodermal lineage including osteoblasts, adipo-
cytes, and chondrocytes. In ex vivo culture, MSC are positive for a number of CD 
markers: CD105, CD106, CD90, CD73, CD140b, CD166 and negative for CD31, 
CD45, CD34, CD14, CD133 and the major histocompatibility complex (MHC) 
class II markers [ 4 ,  6 ]. In addition to their presence in bone marrow, MSC-like cell 
populations have been isolated from the stromal compartment of adipose tissue, 
umbilical cord, dental pulp, skeletal muscle, synovium, and periodontal ligament 
[ 7 – 13 ]. While MSC-like cell populations share a common molecular signature with 
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bone marrow MSC, they exhibit differences in their molecular phenotype and 
differentiation potential characteristic for their tissue of origin [ 14 ]. A common in 
vivo location of MSC in the bone marrow and in other tissues is in a perivascular 
niche in close association with pericytes and endothelial cells [ 15 ].  

2     Towards Clinical Use 

 MSC hold a great promise for clinical use in tissue regeneration in a large number of 
clinical conditions. 379 clinical trials, worldwide, are currently undergoing investi-
gations into the therapeutic benefi ts of MSC (  http://clinicaltrials.gov    ). These range 
from enhancing hematopoiesis following hematopoietic stem cell transplantation to 
enhancing tissue regeneration for cardiomyopathies, nerve tissue, bone and carti-
lage repair following injury and chronic disease. 

 Several factors limit the clinical use of MSC [ 16 ], including the inability to 
obtain the large number of MSC required for clinical transplantation due to in vitro 
replicative senescence [ 17 ], heterogeneity of ex vivo cultured MSC with respect to 
their differentiation capacity, and lack of specifi c markers that identify MSC prospec-
tively and are predictive of their in vivo phenotype. In the current review, we will 
discuss progress in studies related to three areas that received a lot of attention due to 
their possible use to facilitate clinical use of MSC: (1) use of human pluripotent stem 
cells as a source for generation of an unlimited number of MSC, (2) development of 
approaches to enhance in vivo migration of MSC into injured tissues, and (3) novel 
strategies for targeting MSC in vivo with the aim of enhancing bone formation.  

3     Generation of MSC-Like Cells from Human 
Pluripotent Stem Cells 

 Human pluripotent stem cells (hPSC) are a group of specialized cells that have the 
unique ability to differentiate into cells of the mesoderm, endoderm, and ectoderm 
lineages and are thus termed pluripotent. There are two major sources of hPSC: 
human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC). 
hESC are generated through isolation of the inner cell mass (ICM) from a 5- to 
6-day-old human blastocyst [ 18 ]. Since the derivation of hESC by Thomson in 1998 
[ 18 ] much effort has been focused to develop protocols for differentiation of hESC 
into lineage-specifi c cell types [ 19 ]. The creation of induced pluripotent stem cells 
(iPSC) from adult somatic cells [ 20 – 22 ] has added a new dimension to the fi eld of 
regenerative medicine by offering the possibility of generating autologous pluripo-
tent stem cells [ 23 ]. ESC and iPSC are similar in their expression of the self- renewal 
markers and ability to differentiate into the three basic cell lineages: ectoderm, endo-
derm, and mesoderm [ 20 – 22 ,  24 ,  25 ]. Pluripotent stem cells offer much promise 
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within the fi eld of regenerative medicine due to their unlimited proliferation ability, 
scalability, and differentiation capacity. 

 A number of methods have been reported for derivation of functional MSC-like 
cells from PSC, using embryoid body formation (EB), monolayer differentiation, 
coculture, selective isolation of spontaneously differentiated cells, and cultures 
using biomaterials [ 23 ,  26 – 29 ]. 

  EB Formation  : Standard methods demonstrate that EBs can be formed spontaneously 
from small clumps of pluripotent cells that are passaged either mechanically or 
using enzymatic methods and cultured in suspension using low adhesion plastic 
vessels. This method allows spontaneous nondirected differentiation or directed 
differentiation of PSC, through addition of growth factors/morphogens/cytokines. 
EBs imitate the structure of the early embryo and recapitulate many of the early 
embryonic developmental events like gastrulation, polarization, and primitive streak 
formation [ 26 ,  30 ]. However, a disadvantage of the EB method is that it provides 
heterogeneous populations of MSC-like cells. In an attempt to reduce cellular 
heterogeneity, a number of alternative approaches have been developed including 
methods of synchronized growth and differentiation through forced aggregation by 
centrifugation [ 31 ], bioreactor cultures [ 32 ], and stirred suspension cultures [ 33 ] 
and recently Son et al. [ 34 ] published data demonstrating a simple method using 
periodic passaging of hEBs to maintain uniformity on size and proliferation whilst 
preserving their differentiation potential.  

  Monolayer Differentiation  : 2-D PSC cultures have an advantage over EB-based 
differentiation as it is possible to visualize the progression of ex vivo differentiation. 
However, this technique fails to recapitulate the gastrulation-like processes apparent 
in EB formation. Development of MSC-like cells has been obtained by using 
induction media that allows synchronized differentiation, e.g. adding Rock inhibitor 
Y27632 [ 35 ], by selection by continuous subculture over a number of weeks to 
select for stromal (MSC-like) cells [ 36 ,  37 ], or by cell sorting based on specifi c 
surface markers, e.g., the selection of a CD105 + /CD24 −  cell population [ 38 ].  

  Coculture  : A number of groups have used coculture of hESC with differentiated 
cells to induce differentiation into an MSC-like phenotype. Barberi et al. employed 
coculture with murine OP9 cells followed by sorting for CD73 +  MSC-like cells 
[ 39 ]. This method of induced differentiation presupposes that secreted factors from 
the differentiated cells can supply microenvironmental cues necessary for 
differentiation, but the nature of these factors is not known.  

  Spontaneous Differentiation  : Spontaneous differentiation into MSC-like cells often 
occurs at the edges of the hPSC colonies, obtained when hPSC are cultured in a 
feeder-free system. In the “raclure” method, the cells at the edges of the colonies are 
manually scrapped [ 40 ,  41 ], or cells can be enriched through adherence to selective 
extracellular matrix components such as hyaluronic acid (HA)-coated plates [ 28 ], 
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or through forced differentiation through overgrowth of cultures [ 42 ]. In our 
laboratory, we found that selection of MSC-like cells based on selective adherence 
to HA-coated culture plates resulted in obtaining a morphologically homogeneous 
cell population with a similar phenotype to bone marrow-derived MSC [ 28 ]. 
In addition, Liu et al. demonstrated that hESC and iPSC differentiated into MSC-
like cells through plating of single cells on a fi brillar type 1 collagen matrix [ 29 ].  

 The MSC-like cells derived from hESC or iPSC using the above-mentioned 
approaches exhibit a phenotypic profi le comparable to MSC as defi ned by CD 
markers and differentiation ability into one or more of the osteoblastic, chondro-
cytic, or adipocytic lineages. While most of the reported differentiation capacities 
are based on in vitro data, a number of groups have demonstrated the ability of 
hPSC-derived MSC-like cells to form bone in vivo following osteogenic induction 
ex vivo or through direct implantation of the cells in osteoinductive scaffolds [ 28 , 
 43 ,  44 ].  

4     Concerns of Using hPSC-Derived MSC-Like 
Cells in Cellular Therapy 

 For clinical use, hPSC-derived MSC-like cells should be obtained from GMP (good 
manufacture practice) compliant hPSC lines. There have been an increasing number 
of reported hESC lines [ 45 – 48 ] and iPSC lines [ 49 ] derived under GMP standards. 
Additionally, clinical-grade derivation protocols for MSC-like cells have been 
reported [ 50 ]. The necessity for extensive ex vivo culture, which would be required 
for clinical therapy, has raised concerns about the possibility of genetic changes and 
the development of a transformed phenotype. A number of reports have highlighted 
the issue of karyotypic stability during routine maintenance of hESC cultured ex 
vivo where gains in chromosomes 12, 17, and X have been reported [ 51 – 55 ]. Of 
additional concern is the unintentional transplantation of undifferentiated hPSC in 
conjunction with their differentiated progeny that may lead to teratoma formation 
upon transplantation. As the purity of hPSC differentiated cultures is variable, 
attempts are being made to deplete undifferentiated hPSC within the cultures either 
by using cytotoxic agents, mechanically removing undifferentiated cells [ 56 ,  57 ], or 
separating out undifferentiated cells using fl uorescent tags which identify undiffer-
entiated cells [ 58 ,  59 ]. Thus, before hPSC-derived MSC are considered for cellular 
therapy safety criteria are needed to be instituted [ 60 ,  61 ]. 

 MSC-like cells derived from iPS cells should be compatible with their recipient 
and thus will not elicit an immunological rejection reaction. Interestingly, differen-
tiated cells derived from hESC may be hypoimmunegenic. Drukker et al. [ 62 ] dem-
onstrated absence of the MHC class II molecules and the presence of low levels of 
class I molecules in hESC. Additionally, normal irradiated mice transplanted with 
bone marrow from immune compromised (SCID) mice were transfused with human 
peripheral blood mononuclear cells to test the possible immunological reaction or 
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rejection of transplanted hESC. Over the course of a month, transplanted hESC did 
not demonstrate signifi cant rejection [ 62 ]. More recently Araki et al. demonstrated 
limited or no immune response in differentiated mouse ESC and iPSC [ 63 ]. 

 It is envisaged that off-the-shelf MSC-like cells should be available in stem cell 
banks that contain hPSC lines that cover the majority of the Western European 
population tissue types. It has been estimate that 150 hESC cell lines in Europe [ 64 ] 
and 170 cell lines for the Japanese population [ 65 ] would be needed to obtain an 
acceptable degree of HLA matching which would only require a minimum of 
immune suppressor therapy. 

 iPSC were initially derived using a combination of four transcription factors 
(OCT4, SOX2, KLF4, and cMyc) to reprogram the somatic cells to their pluripotent 
status [ 20 ]. Whilst the success of reprogramming was a huge step forward towards 
generation of cells for therapy, standard methods used to generate iPSC may result 
in cells not suitable for therapy due to the use of viral vectors. New strategies are 
being developed to overcome these concerns using plasmids [ 66 ], recombinant 
proteins [ 67 ], or RNA molecules [ 68 ,  69 ].  

5     Directing MSC to Injured Tissues 

 Current thinking vis-a-vis the clinical use of MSC in therapy is modeled on the 
hematopoietic stem cell transplantation model where HSC are infused intravenously 
and consequently home to the bone marrow where they establish hematopoiesis 
[ 70 ]. Although homing of MSC to sites of injury and their involvement in healing 
and/or regeneration of defected tissues is a natural repair mechanism, it was 
observed that this endogenous ability can be further enhanced by exogenously 
administered MSC [ 71 ,  72 ]. Systemic infusion of MSC for treatment of tissue injury 
represents a more attractive procedure for clinical applications. In addition, studies 
on MSC migration to injured tissues have been shaped by concepts related to leuko-
cyte recruitment from the circulation to infl ammation sites, through a coordinated 
multistep biological process termed “cell homing” that includes infused cell rolling/
adhering onto sinusoidal endothelial cells followed by their fi rm adhesion pre-
venting their back movement to circulation, resulting in transmigration to their des-
tined tissues [ 73 ]. Employing this model for MSC has been supported by evidence for 
the presence of osteoprogenitors or MSC-like cells in the circulation that can home 
to bone marrow or infl ammatory sites [ 74 ]. 

 Following injury, damaged cells secrete a number of chemokines that act as 
attractants to cells participating in tissue repair [ 75 ]. However, one of the major 
challenges facing MSC-based cell therapy is the observed low and ineffi cient homing 
of systemically infused MSC to non-injured tissues [ 76 ]. Several groups have dem-
onstrated successful but limited homing after systemic delivery to ischemic, irradi-
ated, or otherwise injured skeletal tissues in which only a small fraction of 
transplanted MSC can be found in the target tissue [ 77 – 79 ]. 
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5.1     Novel Approaches to Enhance Homing of MSC 
into Injured Tissues 

 It is well known that adhesion and integrin molecules are important key players in 
determining the potential of cellular homing [ 80 ]. For example, the CD44 antigen 
is a cell surface glycoprotein involved in cell adhesion and migration [ 81 ]. A spe-
cialized glycoform of CD44 called hematopoietic cell E-/L-selectin ligand (HCELL) 
is an E-selectin ligand expressed on human cells [ 82 ]. Using real-time confocal 
microscopy cell traffi cking was monitored in immune-compromised mouse cal-
varia. These results indicated that overexpression of HCELL E-selectin on MSC 
caused, within hours, enhanced osteotropic migration to the bone marrow [ 83 ]. 
Recently, modifi cation of MSC cell surface integrins to enhance homing of MSC to 
bone surfaces was achieved by attaching a synthetic ligand (LLP2A) against integ-
rin α4β1 on the MSC surface to a bisphosphonate (alendronate, Ale). Upon admin-
istration in in vivo animal models the LLP2A-ALE-modifi ed MSC showed enhanced 
homing to bone surfaces with improved bone formation at the endo-cortical, tra-
becular, and periosteal surfaces when compared to non-modifi ed MSC [ 84 ]. In 
another study, cell adhesion molecules were chemically attached to the cell surface 
to improve rolling effi ciency of MSC. This chemical approach involved introduc-
tion of biotin groups to the cell surface by treatment with sulfonated biotinyl- N -hy-
droxy-succinimide, the addition of streptavidin, and attachment of a biotinylated 
cell rolling ligand (sialyl Lewisx (SLeX)) found on the surface of leukocytes [ 85 ]. 
This approach can be used to potentially target P-selectin expressing endothelium in 
the bone marrow or at sites of infl ammation [ 86 ]. 

 Another hypothesized explanation for the poor homing capacity of MSC is their 
inadequate expression of homing-associated chemokines. For example, CXCR4, a 
homing signaling molecule known for its interaction with its cognate ligand Stromal 
cell-derived factor-1 (SDF-1α), is expressed at low levels on the MSC cell surface 
[ 87 ,  88 ]. In a number of in vivo studies, homing of transplanted MSC to tumors 
[ 89 ], myocardium [ 90 ], and bone marrow [ 78 ] has been improved by overexpres-
sion of CXCR4 on the MSC surface. For example, MSC overexpressing CXCR4 
were infused intravenously 24 h after coronary occlusion in a rat model of AMI and 
were found to home to the infarcted myocardium resulting in better recovery of left 
ventricular function as compared to rats infused with control (low CXCR4 express-
ing) cells [ 87 ]. In another study, C3H10T1/2 cells, a multipotent mouse stem cell 
line, overexpressing CXCR4 were injected intravenously in immune-competent 
glucocorticoid-induced osteoporotic mice. These cells had enhanced homing effi -
ciency to the bone marrow and increased bone mass in the osteoporotic mice [ 79 ]. 
Another member of the chemokine family is the C-C chemokine receptor type 1 
(CCR1), known to be involved in the recruitment of immune cells to sites of infl am-
mation, e.g., injured myocardium [ 91 ]. Mouse bone marrow MSC, overexpressing 
CCR1, were injected intra-myocardially in a mouse model of AMI. One hour post 
coronary artery ligation, MSC overexpressing CCR1 had accumulated in the 
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infarcted myocardium at signifi cantly higher levels than control MSC. This led to 
signifi cant reduction in infarct size, reduced cardio-myocyte apoptosis, increased 
capillary density, and restoration of cardiac function via enhancement of trans-
planted cells’ viability and engraftment [ 92 ]. 

 All these studies demonstrate work in progress towards developing a clinically 
relevant protocol for intravenous infusion of the MSC to patients in need of enhanced 
tissue regeneration.   

6     Targeting of MSC In Vivo 

 Therapeutic strategies that employ ex vivo cultured cells are associated with some 
limitations such as the need for substantial number of cells requiring extensive 
ex vivo cell expansion, the need for GMP facilities, as well as development of robust 
methods for differentiation induction [ 16 ]. Targeting of the endogenous MSC popu-
lations, using small molecules, small-interfering RNA (siRNA), or MicroRNA 
(miRNA), is an attractive alternative and is suitable for treatment of diseases where 
the mature cell populations, which are to be targeted by the drug, are depleted or do 
not respond to standard treatment. An example of such a clinical setting is the use 
of osteoblast-targeting anabolic therapies for treatment of bone loss, in which osteo-
blasts are decreased in number and activity [ 93 ]. 

 Small molecules are very attractive agents to be used in clinical applications, due 
to the opportunity of fi ne-tuning their chemical structure using traditional chemistry 
techniques, high stability, adaptability to large-scale production leading to substan-
tial reduction of the treatment costs, and a potential for oral delivery [ 39 ,  94 ,  95 ]. 
Some examples of these approaches have been recently reported. 

 Bortezomib (Bzb) is a small molecule proteasome inhibitor that is used in the 
clinic for treatment of multiple myeloma [ 96 ]. It has been shown that Bzb targets bone 
marrow MSC in vivo and induces their differentiation toward the osteoblastic lineage 
through regulation of runt-related transcription factor 2 (Runx2), known as a master 
regulator of osteogenesis [ 97 ,  98 ]. Intraperitoneal (i.p.) administration of Bzb to mice 
for 3 weeks increased bone mass, trabecular bone connectivity, trabecular number, 
serum osteocalcin, as well as bone formation rate demonstrating enhanced in vivo 
osteoblastic bone formation activity. Moreover, it was shown that in contrast to MSC, 
osteoprogenitors and osteoclasts did not respond to Bzb treatment [ 98 ]. 

 siRNA can specifi cally silence the synthesis of any desired protein by base par-
ing to its mRNA sequence [ 99 ]. To date, more than 20 siRNA-based drugs are under 
clinical investigation for treatment of a variety of conditions including solid tumors, 
acute kidney injury, age-related macular degeneration (AMD), diabetic macular 
edema, hepatitis C, AIDS-associated lymphoma, and respiratory syncytial virus 
infection [ 100 ]. Administration of siRNA and silencing the synthesis of a gene of 
interest can be used to alter the differentiation fate of MSC in vivo [ 101 ]. However, 
the large therapeutic doses of systematically administered siRNA that is needed to 
exert the desired clinical outcome may lead to activation of immune response, as 
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well as adverse effects on other tissues. Thus, the development of novel systems that 
deliver siRNA specifi cally to the cell population of interest is highly desirable. 
Recently, a novel targeting system has been developed that delivers siRNA to the 
bone-forming surfaces enriched for MSC and osteoprogenitors [ 102 ]. This system 
involves dioleoyl trimethylammonium propane (DOTAP)-based cationic liposomes 
attached to six repetitive sequences of aspartate, serine, serine ((AspSerSer)6). 
This system has been used for in vivo systemic delivery of siRNA targeting Plekho1 
(a negative regulator of bone formation) in rats and led to signifi cant enhancement 
of bone formation, enhanced the bone micro-architecture, and increased the bone 
mass in both healthy and osteoporotic rats [ 102 ]. In addition to siRNA, miRNAs 
have potential use in therapy. miRNAs are endogenous, short, noncoding RNAs that 
regulate diverse biological processes mostly through translational repression of 
their target genes [ 103 ]. miRNAs can be employed to modulate the differentiation fate 
of MSC in vitro and in vivo [ 103 ]. Exogenous supplementation or ectopic expres-
sion of miRNAs as well as using anti-miRs to antagonize the effect of miRNAs are 
promising strategies to be employed for treatment of different clinical conditions 
[ 104 ]. In our group, we have demonstrated that miR-138 negatively regulates in 
vitro osteoblast differentiation and in vivo bone formation of MSC, by targeting 
focal adhesion kinase (FAK), a kinase playing a central role in promoting osteoblast 
differentiation [ 105 ]. Using a preclinical in vivo bone formation model, we showed 
that pharmacological inhibition of miR-138 by antimiR-138 increased ectopic bone 
formation and thus it is possible to develop antimiR-138 into a novel strategy for 
treatment of bone loss conditions [ 105 ].  

7     Conclusions and Future Perspectives 

 Regenerative medicine holds promise to restore normal tissue functions in the body 
using stem cell transplantation or ex vivo grown tissues and organs generated 
through a combination of stem cells and biomaterials, i.e., tissue engineering 
approaches. The transition from the laboratory to the clinic has proven to be diffi cult 
and currently there is no standard stem cell-based therapy for non-cancer indications. 
Conversely, a large number of clinical trials testing the ability of different types of 
stem cells including MSC in a number of disease conditions are being conducted 
and include conditions such as nonunion fractures, ulcerative colitis, type 1 diabetes 
mellitus, liver cirrhosis, idiopathic dilated cardiomyopathy, multiple sclerosis, spi-
nal cord injury, acute and chronic graft-versus-host disease, middle cerebral artery 
infarct, osteoarthritis, relapsed/refractory severe acquired aplastic anemia, chronic 
critical limb ischemia, Parkinson’s disease, acute myocardial infarction, hemato-
logical malignancies, Crohn’s disease, acute leukemia, lupus nephritis, and non-
healing wounds (please see:   http://clinicaltrials.gov    ). It is hoped that these trials will 
establish the effi cacy of stem cells and MSC in therapy and their place among other 
current treatment modalities.     
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