
Chapter 7

Monotonic Behavior

In this chapter we discuss the monotonic strengthening and fracture mechanisms of

continuous fiber and discontinuously reinforced (short fiber and particle) metal

matrix composites. Cyclic fatigue and creep of MMCs are discussed in Chaps. 8

and 9, respectively.

7.1 Strengthening Mechanisms

The monotonic strength and stiffness of MMCs are usually much higher than those

of the unreinforced metal. Figure 7.1 shows a general schematic of the evolution of

damage in an MMC during monotonic loading. Since the reinforcing phase typi-

cally is much stiffer than the matrix, a significant fraction of the stress is initially

borne by the reinforcement. Microplasticity then takes place, at a fairly low stress,

which corresponds to the original deviation from linearity in the stress–strain curve.

This point is termed the proportional limit stress. Microplasticity in the composites

has been attributed to stress concentrations in the matrix at the sharp ends of fibers,

whiskers, and particles or at the poles of the reinforcement (Goodier 1933; Corbin

and Wilkinson 1994; Chawla et al. 1998b, 2003). With increasing strain,

microplasticity increases in magnitude to global plasticity in the matrix. The

incorporation of reinforcement results in an increase in work-hardening rate of

the material, relative to the unreinforced matrix. The higher observed work-

hardening rate, relative to the unreinforced material, is a simple function of lower

matrix volume (by incorporation of the reinforcement) and not necessarily due to a

change in work-hardening mechanisms. When the matrix is significantly work

hardened, the matrix is placed under great constraint (i.e., a triaxial tensile stress

develops) with an inability for strain relaxation to take place. This causes the onset

of void nucleation and growth, which take place at a lower far-field applied strain

than that observed in the unreinforced material. With the onset of void growth in the

matrix, the stress in the reinforcement approaches its fracture stress, followed by

fracture of the composite. It should be pointed out that the damage evolution will
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also be very much influenced by the strength and nature of the reinforcement/matrix

interface, as discussed in Sects. 7.2 and 7.3 below.

7.1.1 Direct Strengthening

The strengthening mechanisms observed in MMCs may be divided into two broad

categories, direct and indirect strengthening. Direct strengthening takes place

primarily in continuous fiber-reinforced composites but also takes place in discon-

tinuously reinforced composites. Under an applied load, the load is transferred from

the weak matrix, across the matrix/reinforcement interface, to the typically high-

stiffness reinforcement (Cox 1952; Kelly and Lilholt 1969; Cheskis and Heckel

1970; Kelly 1973; Chawla 1998; Chawla and Shen 2001). In this manner, strength-

ening takes place by the reinforcement “carrying” much of the applied load. This is

shown schematically in Fig. 7.2. Let us assume a single high-stiffness fiber embed-

ded in a lower-modulus matrix. The composite is loaded without direct loading of

the fiber itself. If a set of parallel imaginary lines are drawn on the composite, after

loading the lines will become distorted because of the shear stresses generated by

differing axial displacements in the fiber and matrix. Thus, load transfer to the fiber

occurs by means of shear strains in the matrix.

Let us consider the case of a purely elastic fiber in an elastic matrix mathemat-

ically, Fig. 7.3. Let u be the displacement in the matrix in the presence of the fiber,

at a distance x from one end, and let v be the displacement at x in the absence of the

fiber. If Pf is the normal load on the fiber, then we can write the following

expression for load transfer from the matrix to the fiber:
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Fig. 7.1 Schematic of

damage evolution in MMCs

under tensile loading
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dPf

dx
¼ B u� vð Þ ð7:1Þ

where B is a constant that is a function of fiber arrangement and matrix and fiber

properties. The exact expression for B is described later in this section. Differen-

tiating (7.1), we get

d2Pf

dx2
¼ B

du

dx
� dv

dx

� �
ð7:2Þ

where
du

dx
is the strain in fiber¼ Pf

EfAf

and
dv

dx
is the strain in the matrix away from the

fiber ¼ e, imposed strain.

Equation 7.2 can be rewritten as

d2Pf

dx2
¼ B

Pf

AfEf

� e

� �

This second-order differential equation has the following solution:

Fig. 7.2 A single fiber

embedded in a matrix with

lower modulus: (a)

unstressed state and (b)

stressed state. The

imaginary vertical lines
become distorted,

indicating shear strains at

the interface and load

transfer to the fiber

Fig. 7.3 A single fiber embedded in a cylindrical matrix shell subjected to an axial strain, e, which

causes displacements in the fiber (u) and in the matrix (v)
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Pf ¼ EfAfeþ Ssinhβxþ Tcoshβx

where β ¼
ffiffiffiffiffiffiffi
B

AfEf

q
.

In order to evaluate the integration constants, S and T, we apply the boundary

conditions, Pf ¼ 0 at x ¼ 0 and x ¼ ‘. Using half-angle trigonometric relations, we

obtain the following result:

Pf ¼ EfAfe 1� coshβ ‘
2
� x

� �
cosh β‘

2

" #
for 0 < x < ‘=2 ð7:3aÞ

or

σf ¼ Pf

Af

¼ Efe

‘
1� coshβ ‘

2
� x

� �
cosh β‘

2

" #
for 0 < x < ‘=2 ð7:3bÞ

The maximum possible value of strain in the fiber is the imposed strain, e, so the

maximum stress in the fiber is eEf. The parameter β is a measure of how fast the

load is transferred from the matrix to the fiber from the two ends. A value of

β ¼ 0.5 indicates a linear dependence of load transfer. If we have a long enough

fiber, Fig. 7.4, the stress in the fiber will increase from both ends to a maximum

value of the ultimate tensile strength of the fiber, i.e., σfu ¼ Efe. Only a portion of

the fiber (in the center) will be under the maximum stress. The average stress in the
fiber, then, can be written as

σ f ¼ Efe

‘

ð‘
0

1� coshβ ‘
2
� x

� �
cosh β‘

2

" #
dx ¼ Efe 1� tanh β‘

2
β‘
2

" #

We can obtain the variation of shear stress, τ, along the fiber/matrix interface by

considering the equilibrium of forces acting over an element of fiber (radius rf).

Thus, we can write, from Fig. 7.4,

dPf

dx
dx ¼ 2πrfdxτ ð7:4Þ

Let us now consider the variation of shear stress, τ, along the fiber/matrix

interface. We can obtain an expression for the interfacial shear stress by considering

the equilibrium of forces over an element of fiber. The tensile load on the fiber, Pf, is

equal to Pf ¼ σfπrf2. Substituting this into (7.4), we get
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τ ¼ 1

2πrf

dPf

d‘
¼ rf

2

dσf
dx

ð7:5Þ

From (7.3b) and (7.5), we obtain

τ ¼ Efrfeβ

2

sinhβ ‘=2� xð Þ
coshβ‘=2

Figure 7.4 shows the variation of τ and σ with distance x. At the ends of the fiber,

the axial stress is zero. It increases until it reaches σfu in the center of the fiber

(assuming a sufficiently long fiber that will enable the stress to build to σfu). The
shear stress is a maximum at the fiber ends and a minimum in the center of the fiber.

Such a stress distribution has also been confirmed by finite difference technique

(Termonia 1987) and by micro-Raman spectroscopy for polymer matrix composites

(Young 1994).

We now return to the expression for the constant B, which is a function of fiber

packing geometry. In Fig. 7.4 we note that 2R is the average center-to-center fiber

spacing. Let τ(r) represent the shear stress at a distance r from the fiber axis. Then at

the fiber surface (r ¼ rf), we can write

dPf

dx
¼ �2π rfτ rfð Þ ¼ B u� vð Þ

or

Fig. 7.4 Tensile stress (σ) and shear stress (τ) distribution in a single fiber embedded in a

cylindrical matrix shell
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B ¼ � 2π rfτ rfð Þ
u� vð Þ ð7:6Þ

Consider now the equilibrium of forces on volume of matrix material between rf
and R. We can write

2πrτ rð Þ ¼ constant ¼ 2π rfτ rfð Þ
τ rð Þ ¼ rfτ rfð Þ

r

The shear strain in The shear strain in the matrix by

τ rð Þ ¼ Gmγ

where Gm is the shear modulus of the matrix and γ is the shear strain in the matrix.

The shear strain in the matrix is given by

γ ¼ dw

dr
¼ τ rð Þ

Gm

¼ τ rfð Þrf
Gmr

where w is the real displacement in the matrix at any distance r. Integrating the

above expression between the surface of the fiber, rf, and the outer radius of the

matrix, R, gives us the total displacement in the matrix:

ðR
0

dw ¼ Δw ¼ τ rfð Þrf
Gm

ðR
0

1

r
dr ¼ τ rfð Þrf

Gm

‘n
R

rf

� �
ð7:7Þ

We can also write for the total displacement as

Δw ¼ v� u ¼ � u� vð Þ ð7:8Þ

From (7.7) and (7.8), we obtain the following relationship:

τ rfð Þrf
u� v

¼ � Gm

ln R=rfð Þ ð7:9Þ

From (7.6) and (7.9), we get

B ¼ 2πGm

ln R=rfð Þ ð7:10Þ

B is related to load transfer parameter β as follows:
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β ¼ B

EfAf

� �1
2

¼ 2πGm

EfAfln R=rfð Þ
� �1

2

ð7:11Þ

The ratio R/rf is a function fiber packing. For a square array and hexagonal array

of fibers, we can write the following two expressions:

ln
R

rf

� �
¼ 1

2
ln

π
Vf

� �
square arrayð Þ

ln
R

rf

� �
¼ 1

2
ln

2πffiffiffi
3

p
Vf

� �
hexagonal arrayð Þ

A more general, maximum fiber packing factor, ϕmax, can also be introduced

into the above equation:

ln
R

rf

� �
¼ 1

2
ln

ϕmax

Vf

� �

Substituting into (7.11), we get

β ¼ 4πGm

EfAfln ϕmax=Vfð Þ
� �1

2

From the discussion above, it can be seen that in order to load the fibers to their

ultimate tensile strength, the matrix shear strength must be relatively high. The

maximum shear stress will be the smaller of the following two stresses: (a) yield

stress of the matrix in shear and (b) shear strength of the fiber/matrix interface. In

MMCs, the interface shear strength is quite high, so plastic yielding of the matrix

will take place first. If we assume that the matrix does not work-harden, the matrix

shear yield strength, τy, will control the load transfer. Then, the equilibrium of

forces over a fiber length ‘/2 (since the fiber is loaded from both ends) gives us the

following relation:

σf
πd2

4
‘ ¼ τyπd

‘

2
or

‘

d
¼ σf

2τy
ð7:12Þ

The term ‘/d is called the aspect ratio of the fiber. Given a sufficiently long fiber,
it should be possible to load the fiber to its ultimate tensile strength, σfu, by means of

load transfer through the plastically deforming matrix. Thus, in order to load the

fiber to σfu, a critical aspect ratio of fiber is required, (‘/d)c, which is obtained by

rewriting (7.12):
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‘

d

� �
c

¼ σfu
2τy

ð7:13Þ

Thus, in order to load the fiber to σfu at a single point, ‘ must be equal to ‘c. In
order to load a larger fraction of the fiber to σfu, ‘ should be much larger than ‘c.
Thus, load transfer is more efficient in composites with large aspect ratio reinforce-

ment, such as continuous fibers or whiskers. Due to the lower aspect ratio of

particulate materials, load transfer is not as efficient as in the case of continuous

fiber reinforcement, but is still significant in providing strengthening (Nardone and

Prewo 1986; Davis and Allison 1993; Chawla et al. 1998a, 2000).

Nardone and Prewo (1986) proposed a modified shear-lag model for load

transfer in particulate materials, Fig. 7.5. The model incorporates load transfer

from the particle ends, which is neglected in fiber-reinforced composites because of

the large aspect ratio. The yield strength of the particulate composite, σcy, is
increased over the matrix yield strength, σmy:

σcy ¼ σmy Vp

Sþ 4

4

� �
þ Vm

� �

where S is the aspect ratio of the particle (equal to the particle length, L, divided by

the particle thickness, t, for a rectangular particle), Vp is the volume fraction of

particles, and Vm is the volume fraction of matrix. Note that this relation does not

account for the effect of particle size directly or matrix microstructure on load

transfer.

dx

σp σp + dσp

σi
L

τ

t

τ

τ τσp

xL1 L1

Fig. 7.5 Schematic of

modified shear-lag analysis

used to quantify load

transfer in low-aspect-ratio

particles (after Nardone and

Prewo 1986)
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7.1.2 Indirect Strengthening

Indirect strengthening arises from a change in matrix microstructure and properties

due to the addition of reinforcement. In this section we describe some possible

sources of indirect strengthening. Thermal expansion mismatch between reinforce-

ment and matrix can result in internal stresses whenever there is a temperature

change (e.g., during cooldown from processing or during service). Such a mismatch

is generally present in all kinds of composites. It is a very important feature of

MMCs comprised as they are of a high coefficient of thermal expansion (CTE)

metallic matrix and a low CTE ceramic reinforcement. If the thermal mismatch-

induced stress is greater than the yield stress of the matrix, upon cooling, disloca-

tions form at the reinforcement/matrix interface because plastic deformation in

common metals occurs via dislocations. In this manner, thermally induced dislo-

cation punching results in “indirect strengthening” of the matrix (Chawla and

Metzger 1972; Chawla 1973a, b; Vogelsang et al. 1986; Arsenault and Shi 1986;

Dunand and Mortensen 1991). Chawla and Metzger (1972) showed this effect in W

fiber-reinforced Cu single crystal matrix composites. The density of dislocations in

the matrix was measured (by an etch-pitting technique) as a function of distance

from the fiber/matrix interface, for composites with various volume fractions of W

fiber, Fig. 7.6a. With increasing volume fraction, the dislocation density in the

matrix increased. The dislocation density was also highest in the interface region

because the thermal stresses between the fiber and matrix in the interface region are

the highest. The three-dimensional thermal stress model described in Chap. 6 can be

used to explain the distribution of dislocation density in the matrix. Figure 7.6b

shows thermally induced slip lines in the polycrystalline Cu matrix in a W/Cu

composite that was thermally cycled between room temperature and 450 �C.
Dunand and Mortensen (1991) used a model system of glass fiber-reinforced

AgCl to study dislocation punching due to thermal mismatch. The AgCl matrix is

optically transparent, and the dislocations can be seen emanating from the fiber,

Fig. 7.7. The degree of thermally induced dislocations can also be exacerbated by

the degree of fiber roughness (Isaacs and Mortensen 1992).

Arsenault and Shi (1986) developed a model to quantify the degree of disloca-

tion punching that takes place due to CTE mismatch between a particle and matrix,

Fig. 7.8. The dislocation density generated due to the mismatch is given by

ρCTE ¼ AεVp

b 1� Vp

� �
d

ð7:14Þ

where A is a geometric constant, b is the Burgers vector, d is the diameter of the

particle, Vp is the particle volume fraction, and ε is the thermal misfit strain equal to

ΔαΔT. The incremental increase in strength due to dislocation punching, then, can

be written as

Δσ ¼ BGbρ1=2CTE

where B is a constant and G is the shear modulus of the matrix. Substituting in

(7.14), we can write Δσ as
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Δσ ¼ BGb
AεVp

b 1� Vp

� � S

d

" #1
2

ð7:15Þ

where S is the aspect ratio of the particle and the other symbols have the signifi-

cance given above. Inspection of (7.15) shows that the degree of indirect strength-

ening is directly proportional to volume fraction and inversely proportional to

particle size. Thus, a larger degree of interfacial area (i.e., smaller particle size)

will result in enhanced dislocation punching. This is shown schematically in

Fig. 7.9. Note that for a constant volume fraction of 0.3, a significant enhancement

in indirect strengthening is observed for particles of 3-μm diameter, vis-à-vis

particles of 100-μm diameter.
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Fig. 7.7 Thermally induced dislocation punching in a model glass fiber/AgCl system (Dunand

and Mortensen 1991). Note the high density of dislocations at the interface and the punching of

dislocation loops from the fiber ends (courtesy of A. Mortensen and reprinted with permission of

Elsevier Ltd.)

Fig. 7.8 Schematic of model used to quantify the degree of dislocation punching that takes place

due to CTE mismatch between particle and matrix (after Arsenault and Shi 1986)
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In age-hardenable matrix materials, the thermally induced dislocations (formed

upon quenching from the solution treatment) serve as heterogeneous nucleation

sites for precipitate formation during the aging treatment (Suresh and Chawla

1993). Not only is there a preferential distribution of precipitates in the particle/

matrix interface region, but the higher density of dislocations also causes an

acceleration in the time to peak age compared to the unreinforced alloy of the

same composition.

In composites processed by liquid-phase routes, the matrix grain size can be

much finer than that of the unreinforced alloy, due to pinning of grain boundaries by

the particles or Zener pinning (Humphreys 1977, 1991). Differences in matrix

texture may also result by the incorporation of reinforcement, for example, in

deformation-processed materials (see Chap. 4).

Separating and quantifying the contributions of direct and indirect strengthen-

ing, to the overall composite strength, is a challenge. The extent of indirect

strengthening is more difficult to quantify than the contribution from direct

strengthening. One way to separate the two types of strengthening is to process

composites such that the matrix microstructure is similar to that of the unreinforced

alloy. Krajewski et al. (1993) used a thermomechanical treatment in Al 2080/SiCp,

consisting of solution treating and rolling, followed by aging (T8 treatment), to

provide a homogeneous distribution of dislocations (and subsequently precipitates)

in both the matrix of the composite and the unreinforced alloy. In such a situation,

Fig. 7.9 Increase in yield strength due to dislocation punching, as predicted by the model of

Arsenault and Shi (1986). The degree of strengthening is significantly influenced by particle size,

for a given volume fraction
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the difference in strengthening between unreinforced alloy and composite was

attributed primarily to load transfer to the reinforcement (Chawla et al. 1998a).

This is shown in Fig. 7.10. Chawla et al. (1998a) showed that in T8 matrix

composites, the experimental increase in yield strength correlated well with pre-

dictions from the modified shear-lag model. In composites that were solution

treated, quenched, and aged (T6 heat treatment), the strength of the composite

consisted of contributions of both indirect and direct strengthening; see Fig. 7.10.

7.2 Monotonic Behavior of Continuous

Fiber Reinforced MMCs

The monotonic strength and damage evolution in continuous fiber-reinforced

MMCs are dependent on several factors:

1. Fiber characteristics. The volume fraction, strength, and relative orientation of

the fibers, with respect to the loading axis.

2. Strength and nature of the interface. Interfacial strength has a significant effect

on the strengthening and damage tolerance of continuous fiber-reinforced

MMCs. Interfacial reactions between fiber and matrix, and fiber dissolution,

Fig. 7.10 Yield strength versus volume fraction of SiC particles in 2080/SiCp composite (after

Chawla et al. 1998a). The rolled and aged materials (T8 matrix composites) have similar

microstructure to the unreinforced T8 alloy. T6 matrix composites are aged only, so their

microstructure is different from 2080–T6. The experimental increase in yield strength in T8

materials correlated well with predictions from the modified shear-lag model. In T6 matrix

composites, the strength of the composite consisted of contributions of both indirect and direct

strengthening
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may be detrimental to the strength of the composite. Preferential precipitation at

the interface, in age-hardenable systems, can have mixed effects on strength.

3. Matrix work-hardening and strength characteristics. Of particular importance

are the changes in matrix microstructure, during processing, due to the incorpo-

ration of the reinforcement (i.e., indirect strengthening, described above).

We now examine each of the three main factors described above. Continuous

fiber-reinforced MMCs exhibit very high strength in the direction parallel to the

fibers but comparatively low strength perpendicular to the fiber direction. Fig-

ure 7.11 shows the anisotropy in strength of Al–2.5Li/Al2O3,f composites, parallel

to the fibers (0�) and perpendicular to the fiber direction (90�), in both tension and

compression (Schulte and Minoshima 1993). Clearly, along the axis of the fibers,

the degree of strengthening from the fibers will be much higher than that perpen-

dicular to the fiber direction. The mechanical properties of fiber-reinforced metal
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matrix composites are also very much dependent on the strength of the fiber/matrix

interface. Figure 7.12 shows a schematic of damage for the case of a relatively weak

fiber/matrix interface and that of a relatively strong interface. When a fiber fractures

in the composite with a weak interface, fiber debonding and crack deflection take

place. These local energy-absorbing mechanisms allow for uniform redistribution

of the load, originally borne by the fiber before fracture, to the surrounding fibers.

This condition is called global load sharing (Curtin 1993). When the interface

strength is very large, fiber fracture will not result in debonding and crack deflec-

tion. Rather, the load cannot be redistributed homogeneously, so the single fiber

fracture will result in precipitous fracture of adjacent fibers. As the neighboring

fibers fracture, more and more fibers will continue to fracture until the composite

fails. This series of successive fiber failures due to localization of strain around a

single fiber results in local load sharing (Gonzalez and LLorca 2001). It should be

noted that a very weak interface is also not desirable in MMCs. Such an interface

would not allow efficient load transfer from the matrix to the fiber.

Whether a composite exhibits global or local load sharing, behavior may also be

influenced by the work-hardening characteristics of the matrix. A matrix with high

strain hardening rate would be less conducive to plastic relaxation of the stress

concentration around the fractured fiber. Thus, more brittle matrix materials are

more conducive to local load sharing and a lower ductility. Figure 7.13 shows a

comparison of Al/Al2O3/60f and 6061/Al2O3/60f fiber-reinforced composites (Devé

and McCullough 1995).

Because of the combined effects of high interfacial shear strength and higher

matrix work-hardening rate of the Al 6061 matrix, this composite has a much lower

ductility and strength than the composite with the pure Al matrix. Voleti

et al. (1998) used a finite element model of a composite consisting of a broken

Fig. 7.12 Schematic of damage for the case of (a) relatively strong fiber/matrix interface,

resulting in local load sharing and coplanar failure, and (b) relatively weak interface, where global

load sharing is observed and fiber debonding and matrix shear are predominant
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fiber surrounded by the matrix and an intact fiber. They showed that the stress

concentration in the intact fiber was influenced by both interfacial debonding and

matrix plasticity surrounding the broken fiber. If fiber fracture takes place at very

low strains (much below the onset of global plasticity), then the matrix plasticity

“propagates” toward the intact fiber resulting in a large degree of stress elevation.

Interfacial debonding, on the other hand, reduces the stress concentration around

the fractured fiber and the intact fiber.

The degree of global load sharing is also a function of strain rate. Galvez

et al. (2001) tested large-diameter SiC fiber-reinforced Ti-6Al-4V matrix compos-

ites at strain rates ranging between 2 � 10�5 and 500 s�1. It was shown that at very

high strain rates local load sharing conditions were predominant, and a lower

ductility of the composite was observed. Lower strain rates were more conducive

to allowing a gradual redistribution of the load, so global load sharing was

observed. Microstructural observations showed that at low strain rates, the carbon

coating on the SiC fiber resulted in crack deflection at the interface, while at very

high strain rates, the cracks penetrated the coating. These authors did not, however,

observe a strain rate dependence of strength of the composite.

Guden and Hall (2000) noticed significant increases in compressive flow stress

and strength with increasing strain rate in Al/Al2O3,f composites. The strain rate

sensitivity was observed in both longitudinal and transverse orientations. The strain

rate sensitivity of transverse strength was attributed to the matrix strain rate

sensitivity, while that in the longitudinal direction was due to strain rate-dependent

fiber buckling. In static compression, significant kinking and buckling of the fibers
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Fig. 7.13 Tensile stress–strain comparison of Al/Al2O3/60f and Al6061/ Al2O3/60f fiber-

reinforced composites (after Devé and McCullough 1995). The high interfacial shear strength

and higher matrix work hardening rate of the Al6061 matrix resulted in a much lower ductility and

strength than the composite with pure Al matrix
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also take place (Devé 1997). Unfortunately, while relatively weak interfaces are

conducive to global load sharing and, thus, high tensile strength and ductility, they

are quite detrimental to the transverse properties of the composite (Jansson

et al. 1991; McCullough et al. 1994; Bushby 1998). This can be explained by the

fact that, under transverse loading, the weak interfaces are perpendicular to the

applied load. Similar observations have been made for Al2O3 fiber/Mg matrix

composites under off-axis loading (Hack et al. 1984).

7.2.1 Criteria for Debonding and Crack Deflection
at an Interface

In MMCs, as well as in other types of composites, interfacial bonding affects the

fracture behavior of the composite. In very general terms, a strong interfacial bond

will allow an oncoming crack to go unimpeded through the interface and the

composite will fail, more or less, in one plane and in a brittle manner. The

interaction of a crack with a weak interface, on the other hand, is likely to lead to

debonding at the interface, followed by crack deflection, crack bridging, fiber

fracture, and finally fiber pullout. These are all energy-absorbing phenomena that

contribute to enhanced fracture toughness and a non-catastrophic failure mode.

A strength-based model for crack deflection or the formation of secondary crack

at a weak interface was first proposed by Cook and Gordon (1964). They analyzed

the problem of crack deflection at an interface between materials of identical elastic

constants, i.e., the same material joined at an interface. Consider a crack advancing

perpendicular to the fiber/matrix interface. Cook and Gordon (1964) estimated the

strength of the interface necessary to cause a diversion of the crack from its original

direction. At the tip of a crack, there exists a triaxial state of stress (plane strain) or a

biaxial stress (plane stress); see Fig. 7.14. The principal stress component, σy, has a
very high value at the crack tip and decreases sharply with distance from the crack

tip. The stress component acting normal to the interface, σx, is zero at the crack tip.
It rises to a maximum value at a small distance from the crack tip and then falls off

in a manner similar to σy. If the tensile strength of the interface is less than the

maximum value of σx, then the interface will fail in front of the crack tip. According
to the estimates of Cook and Gordon, an interface with strength equal to or less than

one-fifth of σx will result in the opening of the interface in front of the crack tip.

One can also analyze the interaction between a crack and an interface in terms of a

fracture energy parameter instead of strength (He and Hutchinson 1989). Two

materials meeting at an interface are more than likely to have different elastic
constants. The modulus mismatch leads to shearing of the crack surfaces. This

results in a mixed-mode stress state in the vicinity of an interface crack tip involving

both the tensile and shear components. This, in turn, results in mixed-mode fracture,

which can occur at the crack tip or in the wake of the crack. Figure 7.15 shows this

crack front and crack wake debonding in a fiber-reinforced composite. What this
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means in practical terms is that instead of a simple, one parameter description by the

critical stress intensity factor KIc, one needs a more complex formalism of fracture

mechanics to describe the situation in the composite. The parameter K under such a

situation becomes scale sensitive, but the critical strain energy release rate, GIc, is

not a scale-sensitive parameter. The strain energy release rate, G, is a function of the

phase angle, ψ, which is a function of normal and shear loading.

Fig. 7.14 Stress distribution at a crack tip under a uniaxial applied stress in the y-direction (after

Cook and Gordon 1964). σy has a very high value at the crack tip and decreases sharply with

distance from the crack tip. The stress component acting normal to the interface, σx, is zero at the

crack tip; it rises to a maximum value at a small distance from the crack tip and then falls off in a

manner similar to σy

Fig. 7.15 Crack front and crack wake debonding in a fiber-reinforced composite under a far-field,

uniaxial stress, σ. Note the interfacial shear stress, τ, causing sliding and triaxial state of stress at

the crack tip
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One needs to specify G and ψ to analyze the debonding at the interface. G and ψ
are related, through the so-called Dundurs parameters, α and β as defined below:

α ¼ G1 1� ν2ð Þ � G2 1� ν1ð Þ
G1 1� ν2ð Þ þ G2 1� ν1ð Þ

β ¼ 1

2

G1 1� 2ν2ð Þ � G2 1� 2ν1ð Þ
G1 1� ν2ð Þ þ G2 1� ν1ð Þ

The parameter α can also be defined as

α ¼ E 1 � E 2

E 1 þ E 2

E 1 ¼ E

1� ν2

In the above expressions, ν is the Poisson’s ratio, E is Young’s modulus, and the

subscripts 1 and 2 refer to the interface and fiber, respectively. The expression for

the phase angle, ψ, in terms of the elastic coefficients of the two media, radius r

from the crack tip and the displacements, u and v, at the crack tip, is as follows:

ϕ ¼ tan �1 ν
u

0
@

1
A

ψ ¼ ϕ� lnr

2π

0
@

1
Aln

1� βð Þ
1þ βð Þ

These expressions have been used by several researchers (Ruhle and Evans

1988; He and Hutchinson 1989; Evans and Marshall 1989; Gupta et al. 1993;

Chan 1993) to analyze the conditions for fiber/matrix debonding in terms of the

energy requirements. Without going into the details of the model, the main message

of such a plot is to display the conditions under which the crack will deflect along

the interface or penetrate through the interface into the fiber. The chart of Gi/Gf

versus α is shown in Fig. 7.16. Gi is the mixed-mode interfacial fracture energy of

the interface, Gf is the mode I fracture energy of the fiber, and α is a measure of

elastic anisotropy as defined above. For opening mode or mode I, ψ ¼ 0�, while for
mode II, ψ ¼ 90�. For all values of Gi/Gf below the line, interfacial debonding is

predicted. For the special condition of α ¼ 0, i.e., zero elastic mismatch, the model

predicts debonding at the fiber/matrix interface for Gi/Gf less than about 0.25.

Conversely, for Gi/Gf greater than 0.25, the crack will propagate across the fiber.

In general, for the elastic mismatch, α, greater than zero, the minimum interfacial

toughness required for interface debonding increases, i.e., high-modulus fiber tends

to favor debonding.
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Gupta et al. (1993) have also derived strength and energy criteria for crack

deflection at a fiber/matrix interface for several composite systems. They took due

account of the anisotropic nature of the fiber as well as the fact that a crack can

deflect along the interface in one direction (singly) or two directions (doubly). Their

experimental technique involved laser spallation of a film from a substrate and the

measurement of displacement by a sophisticated laser Doppler displacement inter-

ferometer. This technique allows the measurement of the tensile strength of the

planar interface between the film and the substrate. The strength determined in the

laser spallation experiment is thought to be independent of any inelastic processes

because the interface separation takes place at a very high strain rate, about 106 s�1.

The tensile strength determined in this fashion is then related to the intrinsic
interface toughness. According to the analysis of Gupta et al., for most pairs of

materials, the energy release rate is higher for the doubly deflected crack than that

for the singly deflected case. In this formulation, a generalized interface delamina-

tion chart based on the energy criterion cannot be made. However, the authors did

provide the ratio of energies of crack deflection and crack penetration for a few

chosen interface systems (Gupta 1991; Gupta et al. 1993).

7.2.2 Work Done in Fiber Pullout

Fiber pullout can be an important feature of the failure process in fiber-reinforced

composites. We now derive an expression for the work done in the pullout process.

Consider the situation depicted in Fig. 7.17. Let us say that the fiber, of diameter d,

fractures at some distance k below the main crack plane, such that 0 < k < ‘c/2,
where ‘c is the critical length for load transfer. Locally, debonding of the fiber/

matrix interface occurs. When the fiber is pulled out of the matrix, an interfacial

frictional shear stress, τi, will be generated. In our simple analysis here, we assume

Fig. 7.16 A chart of

relative energies, Gi/Gf

versus elastic mismatch, α
(after Evans and Marshall

1989)
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that this shear stress, τi, resisting fiber sliding is a constant. More complex treat-

ments involving a Coulomb friction law governing fiber sliding resistance (Shetty

1988; Gao et al. 1988) and treatments taking into account residual stresses are

available in the literature (Cox 1990; Hutchinson and Jensen 1990; Kerans and

Parthasarathy 1991).

Let us assume that the fiber be pulled out through a distance x. The interfacial

shear force opposing this motion of fiber is τiπd (k � x), where πd (k � x) is the

cylindrical surface area over which the shear stress is acting. Let the fiber be pulled

out through a small distance dx. Then the work done by the interfacial shear force is

τiπd (k � x) dx. The total work done in the fiber pullout process over the length k is

obtained by integration:

ðk
o

τiπd k� xð Þ dx ¼ τiπdk2

2

The length of the fiber pulled out will vary between 0 and ‘c/2, where ‘c is the
critical length for load transfer. Therefore, the average work done in the fiber

pullout process is

Fig. 7.17 Fiber pulled out

through a distance x after

fiber fracture. A shear

stress, τi, comes into play at

the interface during pullout
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Wfp ¼ 1

‘c=2

ð‘c=2
o

τiπdk2 dk
2

¼ τiπd‘c2

24

This expression assumes that all of the broken fibers are pulled out. Experimen-

tal observations, however, show that only fibers with broken ends within a distance

‘c/2 from the principal fracture plane undergo pullout. Thus, we should expect a

fraction (‘c/‘) of fibers to pullout, and the average work done per fiber in fiber

pullout can be written as

Wfp ¼ ‘c
‘

τiπd‘c2

24

7.2.3 Effect of Interfacial Reactions on Monotonic Behavior

In Chap. 4, we described the general features of the interface and provided some

examples of interfacial reactions in MMCs. Here we explore the effects of interfa-

cial reactions on the monotonic properties of MMCs. Interfacial reactions can play

an important role in damage of continuous fiber-reinforced MMCs (Page

et al. 1984). In Ti matrix composites reinforced with SCS-6 fibers, the C-rich

fiber coating reacts with the Ti matrix to form layers of brittle TiC and Ti5Si3
(Konitzer and Loretto 1989; Leyens et al. 2003). In B fiber-reinforced Al, AlB2 is

formed at the interface at temperatures as low as 500 �C (Grimes et al. 1977).

Tensile loading in the longitudinal axis results in circumferential cracks in the

reaction layer, which severely impair the strength of the composite (Grimes

et al. 1977; Mikata and Taya 1985; Kyono et al. 1986). Figure 7.18a shows that

the longitudinal strength decreases with increasing exposure time at 500 �C (Kyono

et al. 1986). In the transverse orientation, however, Fig. 7.18b, there was a slight

increase in strength. This is because the damage mechanisms in transversely loaded

composites were quite different. Here, the fracture surfaces of as-fabricated sam-

ples showed significant interfacial debonding. With increasing exposure time and

an increase in the reaction layer thickness, the interface strength increased, so

microcracks formed in the reaction layer and propagated through the boron fiber,

resulting in fiber splitting.

Transverse strength may also be affected by binders used to densify the matrix of

the composite. Eldridge et al. (1997) fabricated sapphire fiber-reinforced NiAl

matrix composites with and without a polymethyl methacrylate (PMMA) organic

binder. Transverse fracture surfaces showed that the composites with the binder

exhibited a large amount of carbon residue at the fiber/matrix interface, which

prevented a strong interfacial mechanical bond and led to low interfacial strength,

Fig. 7.19a. Composites processed without binder had a much “cleaner” fracture

surface, Fig. 7.19b, and stronger bond strength.

The extent of interfacial reaction can be reduced by the application of a thin fiber

coating. In SiC fiber-reinforced W composites, for example, a reaction zone of
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tungsten silicide is formed, which embrittles the interface and reduces the strength

of the composite. Deposition of a TiC coating significantly limited the reduction in

strength (Faucon et al. 2001). It should be noted that while the incorporation of a

fiber coating may hinder interfacial reaction, it may also contribute to a lower

degree of wetting by the matrix and poorer densification of the composite.

As mentioned above, in composites with a precipitation-hardenable matrix, the

interface may be affected by precipitates in the matrix which typically nucleate

heterogeneously at the fiber/matrix interface (see Chap. 3). Cornie et al. (1993)

tailored heat treatments to control the precipitate size and spacing at the interface.

They found that a minimum in precipitate spacing (which corresponds to a mini-

mum in precipitate size) resulted in a maximum in longitudinal strength and a

minimum in transverse strength. This was caused by the decrease in interfacial

strength due to precipitation at the interface. With increasing annealing time,

coarsening of the precipitates took place, increasing the precipitate spacing and
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Fig. 7.18 Effect of

exposure time at 500 �C on
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increasing the interfacial bond strength. In this case, the transverse strength was

maximized, although the longitudinal strength degraded by a small amount. The

increase in transverse strength was explained by the increase in the interfacial area

fraction of fiber/pure matrix (precipitate-free) bond.

The preceding discussion points to the difficulty in obtaining a combination of

longitudinal and transverse strengthening in continuous fiber reinforced MMCs.

The longitudinal properties are controlled primarily by the strength and volume

fraction of the fibers, while the transverse properties are dictated primarily by the

matrix (Rao et al. 1993) and fiber/matrix interface strength (Warrier and Majumdar

1997). An increase in fiber volume fraction, however, increases the residual stresses

during cooling from processing while also decreases the transverse strength

(Rosenberger et al. 1999). Thus, increasing the fiber strength would be a logical

step toward increasing the longitudinal strength and simultaneously retaining the

transverse properties of the composite. Rosenberger et al. (1999) compared the

strength of composites with a high-strength ultra-SCS fiber in a Ti alloy matrix, to

those with conventional SCS fibers, and showed an increase in longitudinal strength

with no corresponding decrease in transverse strength.

Slight changes in composite modulus may also be achieved by controlling the

matrix microstructure through heat treatments (Miller and Lagoudas 2000). This is

confined to matrix materials, such as Ti alloys, where a change in crystal structure

Fig. 7.19 Matching transverse fracture surfaces of sapphire fiber-reinforced NiAl matrix com-

posites (after Eldridge et al. 1997; courtesy of J.I. Eldridge): (a) with polymethyl methacrylate

(PMMA) binder and (b) without binder (after Eldridge et al. 1997). Composites with the binder

exhibited a large amount of carbon residue at the fiber/matrix interface, which prevented a strong

interfacial mechanical bond and led to lower interfacial strength
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morphology of second phases takes place during heat treatment. Such manipulation

of the matrix microstructure and crystal structure can also be used to tailor com-

posite strength and ductility (Boehlert et al. 1997). In addition, other processing

parameters may be used to tailor the matrix microstructure. Blucher et al. (2001),

for example, studied the tensile behavior of composite wires of Al/Al2O3,f (Nextel

610), 6061/Al2O3,f, and Al/Cf. With increasing wire drawing velocity, an increase

in strength was observed, Fig. 7.20. This was attributed to the refinement in the

microstructure, due to higher solidification rate, at higher drawing velocity. In the

Al/Cf composites, a reduction in interfacial reaction with increasing drawing

velocity may have also contributed to the observed behavior.

7.2.4 Modeling of Monotonic Behavior of Continuous
Fiber Reinforced MMCs

The tensile behavior of continuous fiber reinforced MMCs has been modeled

extensively by finite element modeling (Brockenbrough et al. 1991; Gonzalez and

LLorca 2001; Rossoll et al. 2005). Gonzalez and LLorca (2001) studied the tensile

behavior of SCS-6 fiber reinforced Ti-6Al-4V matrix composites at ambient and

elevated temperatures. The fibers are modeled using an axisymmetric model shown

in Fig. 7.21a. The fibers are embedded in a “homogeneous composite” with average

composite properties. A comparison of the stress–strain behavior predicted by the
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model with the experiment is shown in Fig. 7.21b. The experimental behavior is

shown as the gray-shaded region (due to slight scatter in the data), while the model

prediction is shown in the solid black line. The composite exhibited an initial linear

portion followed by a pronounced deviation from linearity and fracture of the

composite. Note that due to the processing-induced residual stress, at zero applied
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Fig. 7.21 Finite element modeling of tensile behavior of fiber-reinforced Ti-6Al-4V matrix

composites (after Gonzalez and LLorca 2001; courtesy of J. LLorca): (a) finite element model

and (b) simulated composite, fiber, and matrix response. The simulated response correlates well

with the experiment
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stress, the matrix is in a state of residual tension while the fiber is in compression.

With increasing applied stress, the load on both the fiber and matrix increases,

although the rate of loading in the fiber is higher because of load transfer from the

matrix. When the matrix yields, the stress in the matrix reaches a plateau. This

stress corresponds to the deviation from linear stress–strain behavior of the com-

posite. The stress in the fiber, on the other hand, continuously increases until

fracture of the composite takes place.

When a fiber fractures, the stress on neighboring fibers is also affected, since

more load is carried by the surviving fibers. The stress state in neighboring fibers is

shown in Fig. 7.22. The stress in the neighboring fibers is highest in the plane of

fracture of the original fiber. The first nearest-neighbor fiber has the highest stress,

followed by the second and third nearest neighbor, respectively.

As shown above, during longitudinal loading, the load is carried primarily by the

fibers, although plastic deformation of the matrix between the fibers also takes

place. Under transverse loading, however, significant plastic deformation between

the fibers takes place. Thus, under transverse loading, the distribution of the fibers

plays an important role in the composite response. Brockenbrough et al. (1991)
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modeled the longitudinal and transverse response of a 6061/B/46f composite with

varying fiber distributions. As one would expect, under longitudinal loading, fiber

distribution did not have a significant influence on the modeled behavior,

Fig. 7.23a, since the composite behavior was dominated by the response of the

fibers. The experimental behavior compared well with the model prediction. Under

transverse loading, the fiber distribution was modeled as square, square-diagonal,

and triangle-packed, Fig. 7.23b. The elastic regime was somewhat unaffected by

the fiber distribution. Once the matrix yielded, the effect of fiber distribution

became more apparent. The distribution of square packing exhibited the highest

work-hardening rate, followed by triangle and square-diagonal packing,

respectively.

Rossoll et al. (2005) used finite element analyses (FEA) for varying fiber

distributions, ranging from single fiber unit cells to complex cells to study the

damage evolution during a tensile test. The in situ flow stress of the matrix in the

composite was found to be different from that of the unreinforced alloy. This is the

result of constrained deformation of the metal matrix in the composite, especially in

the presence of clustering of fibers. This results in a deviation from the rule of

mixtures, based on isostrain, because of a stiffening effect of matrix confinement

when surrounded by touching fibers.

7.3 Monotonic Behavior of Discontinuously

Reinforced MMCs

The monotonic behavior of discontinuously reinforced MMCs is dependent on

several factors, such as reinforcement volume fraction, particle size, shape, and

matrix microstructure. Chawla et al. (1998a) examined the effect of particle volume

fraction (at a constant SiC particle size) on monotonic tensile behavior. Figure 7.24

shows the tensile behavior of an Al–Cu–Mg (2080)/SiCp–T8 composite with

varying volume fraction (at a constant particle size of 5 μm). With an increase in

particle volume fraction, higher elastic modulus, macroscopic yield and tensile

strengths, and lower ductility were observed. A comparison of the measured

increase in yield strength, with increasing reinforcement volume fraction, com-

pared very well with predictions from a simple modified shear-lag analysis by

Nardone and Prewo (1986) (see Sect. 7.1.1).

As mentioned in Sect. 7.1, microplasticity takes place at a fairly low stress, which

corresponds to the proportional limit stress in the stress–strain curve. This

microplasticity originates from stress concentrations at the poles and sharp corners

of the particle, Fig. 7.25 (Chawla et al. 1998b). The initial microyielding stress

decreases with increasing volume fraction of reinforcement, as the number of stress

concentration points increases. The work-hardening rate increases with increasing

volume fraction of reinforcement (and decreasingmatrix volume). The lower ductility

can be attributed to the earlier onset of void nucleation with increasing reinforcement.
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Fig. 7.25 Microplasticity in the matrix of particle-reinforced MMCs due to stress concentrations

at the poles of the reinforcement and/or at sharp corners of the reinforcing particles (after Chawla

et al. 1998b)
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The high-stress concentration at the tips of the cracked particles could also contribute

to a lower ductility in the composite, compared to the unreinforced alloy.

The effect of particle size on tensile behavior has been documented by several

investigators (Mummery et al. 1991; Manoharan and Lewandowski 1992; Chawla

et al. 1998a). Figure 7.26 shows the general trend of increase in strength and

ductility with a decrease in particle size. This may be attributed to an increase in

the SiC particle strength with a decrease in particle size. This inverse relationship

between particle size and particle strength can be explained as follows. As the

volume of the particle increases, the probability of a strength-limiting flaw existing

in the volume of the material also increases. At relatively large particle sizes of this

material, a significant amount of particle cracking takes place during extrusion prior

to testing. Chawla et al. (1998a) showed that in Al 2080/SiCp composites, with

volume fractions ranging from 10 to 30 vol.%, particle cracking was observed

above an average particle size of 20 μm. Cracked particles do not carry any load, so

the strength of the composite is lower than that of the unreinforced material,

Fig. 7.26.

A smaller particle size also means a smaller interparticle spacing (for a given

volume fraction of particles) so that nucleated voids in the matrix are unable to

coalesce as easily (Mummery et al. 1991). A higher work-hardening rate has also

been observed with decreasing particle size (Lewandowski et al. 1991; Manoharan

and Lewandowski 1992). This is attributed to the formation of dislocation tangles
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around the particles and the formation of a dislocation cell structure with a cell size

directly proportional to the interparticle spacing (Kamat et al. 1989).

The fracture of particle-reinforced MMCs is very much dependent on particle

strength and particle/matrix interface strength. A schematic of the two possible

types of damage evolution is shown in Fig. 7.27. If the strength of the interface is

greater than the particle strength (often observed in peak-aged composites), then the

particles fracture before the interface. Matrix void growth takes place, and shear

localization between fractured particles results in failure of the composite. In order

to quantify the extent of particle fracture and particle pullout during tensile loading,

both mating fracture surfaces need to be examined. An example of mating fracture

surfaces is shown in Fig. 7.28. A particle found on both mating fracture surfaces has

fractured. The nature of fracture of the brittle SiC particles is quite interesting.

Figure 7.29 shows the fractured surface of a SiC particle after tensile loading. Note

the spherical flaws or voids on the fracture surface, which presumably were

responsible for crack initiation in the particles. The flaws arise during processing

of the particles.

Williams et al. (2010) conducted X-ray tomography on a SiC particle-reinforced

2080 Al alloy under tensile loading. Close inspection of damage in the composite

shows that there are three major types of damage, Fig. 7.30: (a) SiC particle

fracture, (b) interfacial debonding close to the SiC/Al alloy matrix interface, and

(c) matrix void growth which appears primarily within regions of SiC particle

clustering. The latter can be attributed to a lack of plasticity (shear) within the

Fig. 7.27 Schematic of the two possible types of tensile damage evolution in particle-reinforced

MMCs: (a) interface strength greater than particle strength and (b) interface strength less than

particle strength
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highly constrained region of matrix within the SiC particle cluster and the high

degree of tensile stress triaxiality. There are also very small voids at the tips of the

sharp, angular SiC particles. These are natural locations for stress concentration

which result in voids, although it appears that some of these voids are present even

Fig. 7.29 Fracture surface of a SiC particle after tensile loading (after Chawla et al. 2002b). Note

the spherical flaws or voids on the fractured particle surface, which presumably are responsible for

crack initiation. The flaws arise during processing of the particles

Fig. 7.28 Mating tensile fracture surfaces of a 2080/SiC/20p composite showing significant

amount of particle fracture (after Chawla et al. 2002a)
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in the as-processed condition. It is possible that even during extrusion high stresses

are developed at the sharp corners of the SiC particles. Links between debonding

and cracks in particles are also present.

Quantitative analysis of particle and inclusion fracture was also conducted from

the 3D datasets. Between 1,500 and 2,000 SiC particles were analyzed in the

as-processed sample and after tensile fracture. For each sample, the location of

cracked and uncracked particles was recorded through inspection of four uniformly

spaced 2D slices of the 3D tomography data. Figure 7.31 shows the location of the

fractured particles in the as-processed condition, Fig. 7.31a, and after tensile frac-

ture, Fig. 7.31b. After tensile fracture, the high density of fractured particles close to

the fracture plane can be observed. In fact, the damage zone extends to about 1 mm

from the fracture plane.

Williams et al. (2011) also showed the evolution of damage using in situ testing

inside a synchrotron source. Figure 7.32 shows the evolution of tensile damage at

three different strains. The onset of damage appears to begin very close to the

ultimate strength, at about 440 MPa. This damage is primarily dominated by

particle fracture, which begins around 1 % strain. Figure 7.32a shows the onset

of particle fracture through the center of the particle, likely at a flaw within the

Fig. 7.30 “Virtual section” through the thickness of the composite after tensile damage by X-ray

tomography (Williams et al. 2010). Three major types of damage are observed: SiC particle

fracture, interfacial debonding close to the SiC/Al alloy matrix interface, and matrix void growth

which appears primarily within regions of SiC particle clustering or at sharp corners of SiC

particles
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particle, and propagates out to the matrix. Figure 7.32c shows that most of the

particle fracture is observed very close to the fracture stress. Some instances of

localized void growth are also observed, particularly at the sharp corners of the SiC

particles, but also in regions where particles are very closely spaced. Here, the thin

layer of matrix is highly constrained and under a triaxial state of stress which

promote void growth. The degree of void growth was quite limited, however, and

seemed to take place primarily at preexisting voids from processing.

Through analysis of particle fracture statistics obtained from X-ray synchrotron

tomography, the probability of particle fracture was shown to be controlled by

Fig. 7.31 2D sections through the thickness of the composite illustrating cracked and undamaged

particles (Williams et al. 2010): (a) as-processed and (b) after tensile fracture. The damage zone

extends to over a 1 mm from the fracture plane
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particle size and aspect ratio (Williams et al. 2010), as shown in Fig. 7.33. It is a

stronger function of aspect ratio than of particle size. It was shown that, using the

statistics from the 3D tomography, aspect ratio and particle size are important

parameters in determining the probability of fracture in the SiC particles. More

specifically, higher aspect ratio particles (due to better load transfer) and larger

particles (which have a larger probability of a strength-limiting flaw) are more

prone to fracture.

The second scenario for damage in particle-reinforced MMCs is when the

interface strength is much lower than the particle strength. Here, void nucleation

and growth will take place at the interface, due to decohesion of the matrix from the

particle. This will be followed by ductile shear fracture through the matrix alone.

Fig. 7.32 Evolution of damage as a function of applied stress by in situ X-ray tomography

(Williams et al. 2011): (a) 0 % strain, (b) 1 % strain, and (c) 1.6 % strain. At 0–0.4 % strain, no

damage is observed. At 1 %, void growth begins at sharp corners and regions of high constraint and

triaxiality. At fracture (1.6 %), particle fracture is quite predominant
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An example of this is shown in Figure 7.34, for a composite with an overaged

matrix, with relatively weak interface strength. Note that a thin matrix layer has

been left on the SiC particle surface.

Particle-reinforced composites, especially those subjected to extrusion, exhibit a

fair amount of anisotropy due to preferential particle orientation along the extrusion

axis. Logsdon and Liaw (1986) studied the tensile strength anisotropy behavior in

SiC particle and whisker-reinforced aluminum alloys and noted that the strength

was higher parallel to the extrusion axis than perpendicular to the extrusion axis.

Jeong et al. (1994) also noted a higher Young’s modulus of the composite along the

extrusion axis. Ganesh and Chawla (2004, 2005) noted that the extent of orientation

was highest for lowest volume fraction composites, since with increasing volume

fraction the mean free path for rotation and alignment of a given particle decreased.

The Young’s modulus and tensile strength of the composites, independent of

orientation, increased with increasing volume fraction of reinforcement,

Fig. 7.35. Thus, although the degree of microstructural anisotropy was greatest

for 2080/SiC/10p, the greatest anisotropy in mechanical behavior was observed in

2080/SiC/30p.

The mechanical properties of lower-cost processing techniques, such as sinter-

forging, have been compared to existing hot-pressed and extruded materials.

Chawla et al. (2002a) examined the strength of composites fabricated by a

low-cost sinter-forging approach. The SiC particle size was relatively coarse, e.g.,

25 μm. Materials processed by the sinter-forged approach exhibited similar tensile

properties to those of the extruded material of similar composition, reinforcement

Fig. 7.33 Quantitative analysis of particle radius and aspect ratio of fracture characteristics of the

SiC particles (Williams et al 2010). Higher aspect ratio and higher equivalent radius result in a

greater probability of fracture. Higher-aspect-ratio particles enable more load transfer, while

higher radius results in a higher probability of a strength-limiting flaw in the SiC particle
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Fig. 7.34 Void nucleation and growth at the particle/matrix interface, due to relatively weak

interface strength (overaged condition). Ductile shear fracture is also observed in the matrix of the

composite (after Chawla et al. 2002b)
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Fig. 7.35 Anisotropy in Young’s modulus in a 2080/SiCp composite (after Ganesh and Chawla
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volume fraction, and particle size, Fig. 7.36. The microstructure of the sinter-forged

composites exhibited relatively uniform distribution of SiC particles, which

appeared to be somewhat aligned perpendicular to the forging direction. The degree

of particle alignment and interparticle bond strength was not as high as that

observed for the extruded composite. The sinter-forged composite exhibited higher

Young’s modulus and ultimate tensile strength than the extruded material, but

lower strain-to-failure. The higher modulus and strength were attributed to the

absence of any significant processing-induced particle fracture, while the lower

strain-to-failure was caused by poorer matrix interparticle bonding compared to the

extruded material. Indeed, secondary working of the composite, such as extrusion

after initial casting, can significantly improve the ductility of the composite,

Fig. 7.37 (Lloyd 1997). The ductility of the composite is also very much a function

of the degree of particle clustering. Murphy et al. (1998) controlled the degree of

particle

Quantifying Reinforcement Clustering

During processing of continuous fiber or particle-reinforced MMCs, cluster-

ing of the reinforcement is likely to take place (see Chap. 4). While individual

fibers can be distributed relatively homogeneously (e.g., when woven in a

fiber fabric), controlling particle distribution can be more challenging. As

(continued)
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Fig. 7.36 Tensile strength of 2080/SiC/20p–T6 fabricated by low-cost sinter-forging and extru-

sion approach (after Chawla et al. 2002a). The sinter-forged material exhibited similar tensile

properties, with slightly lower ductility, than the extruded material
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Quantifying Reinforcement Clustering (continued)

shown in this chapter, reinforcement clusters have a profound effect on

mechanical properties, because the clusters act as stress concentrations.

Many techniques have been used to quantify the degree of reinforcement

clustering. Here we describe two techniques that can be used to obtain some

quantitative measure of reinforcement clustering: (a) Dirichlet and finite-

body tessellation and (b) digital image dilation.

The technique is named after the mathematician Dirichlet (1850) who

proposed a tessellation scheme to quantify the arrangement of geometric

objects in space. Consider a hypothetical two-dimensional microstructure

consisting of elliptical particles in space (see figure below). Let us mark the

centroid of each ellipse. We can now construct cells around the particles, such

that each cell wall is equidistant between two centroids (part (b) in the figure

below). This construction is called a tessellation. The tessellation is very

useful because it yields information about the cell size, nearest-neighbor

spacing distributions between particles, etc. Inspection of the Dirichlet tes-

sellation, however, shows that when the objects are not perfect spheres

(in this case ellipses), the particles are not always fully contained within the

cell boundaries. This is because the centroid of the ellipse is used to construct

the tessellation. Thus, for the case of nonspherical reinforcement, a conven-

tional tessellation is not quite adequate for quantifying the microstructure.

(continued)
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Fig. 7.37 Effect of degree of secondary working (i.e., extrusion ratio) on ductility of Al–SiC/15p
(after Lloyd 1997). Extrusion significantly improved the ductility of the composite

202 7 Monotonic Behavior



Quantifying Reinforcement Clustering (continued)

The conventional tessellation scheme can be enhanced by employing a

finite-body tessellation (Chawla et al. 2002a). The steps involved in this

process are shown in the panel below. An optical or scanning electron

micrograph, (a), is segmented into a black and white image, (b). A watershed

image operation is then conducted, (c), which analyzes distances between

particles based on the centroid and perimeter of each particle. A tessellation is

then constructed, (d), whereby each of the irregular particles resides within

the boundaries of the cell. Similar statistics can be obtained from the finite-

body tessellation as those from the conventional tessellation.

(continued)
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Quantifying Reinforcement Clustering (continued)

An alternative method for quantifying the degree of clustering in a com-

posite is to use a digital image dilation technique (Chawla et al. 2002a). This

technique consists of, again, analyzing a segmented microstructure (part

(a) below). The perimeter of each particle is “dilated” by a certain increment,

part (b). The dilation increment can be calculated by analytical expressions

for the average interparticle spacing for a random distribution of particles of

single (Meyers and Chawla 1999) or multiple sizes (Torquato 2002). If the

particles are touching after the dilation, then this set of particles is identified

as a cluster (shaded region in part (b)). The cluster may be quantified by the

number of particles in the cluster or by the area fraction of the cluster, relative

to the whole microstructure. Ayyar and Chawla (2006) used this technique to

show the relative degree of clustering between two microstructures (also

shown below). The microstructure on the left is relatively homogeneous,

and the one on the right is highly clustered. Part (c) shows a histogram of

the cluster size distribution for the two microstructures. Note that the clus-

tered microstructure has a much higher fraction of larger clusters. This

information is particularly useful from a cyclic fatigue design perspective,

since the fatigue life is controlled by the largest defect (cluster) size.

(continued)
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Quantifying Reinforcement Clustering (continued)

clustering by controlling the cooling rate of the composite. The degree of particle

clustering was measured by tessellation techniques (see inset), to determine a

clustering severity parameter, P. The ductility of the composite was found to

significantly decrease with increasing P.

Matrix microstructure also plays an important role on the strength of the

composite. Overaging heat treatments modify the matrix microstructure, resulting
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in coarsening of the precipitate structure, while retaining a homogeneous precipi-

tate distribution, which directly influences the strength of the composite (Chawla

et al. 2000). Figure 7.38 shows the coarsening and increase in precipitate spacing in

the matrix of MMCs overaged at various temperatures for 24 h. Increasing precip-

itate spacing decreases tensile strength, Fig. 7.39. This is to be expected since

coarser precipitates result in a larger interprecipitate spacing and easier bypass of

dislocations. For the composites subjected to higher overaging temperatures, the

yield strength also decreased with an increase in precipitate spacing.

7.3.1 Modeling of Monotonic Behavior of Particle-
Reinforced MMCs

Similar to modeling of continuous fiber-reinforced MMCs, FEM modeling has also

been used to model the behavior of discontinuously reinforced MMCs. Figure 7.40a

shows several single particle unit-cell models, in which the left vertical boundary

represents the axially symmetric axis and mirror symmetry exists about the hori-

zontal boundary. A periodic arrangement of particles with the shape of a “unit

Fig. 7.38 Coarsening and increase in precipitate spacing in the matrix of 2080/SiC/20p–T8

overaged at various temperatures for 24 h (after Chawla et al. 2000)
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cylinder,” “truncated cylinder,” “double cone,” and “sphere” may be simulated

using the appropriate boundary conditions (Shen et al. 1994). The matrix is

modeled as an isotropically hardening elastoplastic solid (following the experimen-

tal stress–strain curve of a peak-aged Al–3.5Cu alloy) and the SiC particles as an

elastic solid. The calculated tensile stress–strain response of Al–SiC/20p compos-

ites, having the four particle shapes described above, is shown in Fig. 7.40b.

Clearly, particle shape has a significant influence on the overall tensile behavior

of the composite. The unit-cylinder particles clearly strengthen the composite more

than the other three shapes for a given reinforcement fraction. This, however, does

not imply that particles with sharp corners have a more pronounced strengthening

effect, as shown by the case of “double-cone” particles, possessing the “sharpest”

type of corners. A detailed analysis (Shen et al. 1995) showed that the unit-cylinder

and double-cone particles result in the highest and lowest degrees of “disturbance”

of the local plastic flow paths in the matrix, respectively. This directly reflects the

different extents of constrained plastic flow and hence the strengthening behavior in

the composite. The reader is referred to other simple unit-cell approaches focusing

on various aspects of elastoplastic behavior of short fiber and particle-reinforced

composites, such as reinforcement particle fracture (LLorca 1995; Steglich

et al. 1999), reinforcement clustering (Christman et al. 1989; Toda et al. 1998),

matrix void growth (LLorca et al. 1991), and residual stress from thermal treat-

ments and processing (Levy and Papazian 1991; Dutta et al. 1993).

Fig. 7.39 Decrease in strength due to overaging of 2080–T8 and 2080/SiCp–T8 composites (after

Shen and Chawla 2001). The reduction in strength is similar for all materials. Coarser precipitates

result in a larger interprecipitate spacing and easier bypass by dislocations
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The thermal expansion mismatch between the reinforcement and the matrix

results in thermal stresses within the composite upon cooling from the processing

temperature to ambient temperature. As mentioned above, in actual composites,

thermal residual stresses are relieved by plastic deformation in the matrix, resulting

in indirect strengthening. Figure 7.41 shows the calculated tensile stress–strain

curves for 20 % SiC-reinforced Al alloy utilizing the unit-cylinder particles

(Fig. 7.40a), with and without the presence of thermal residual stress. As before,

the matrix was taken to be anisotropically hardening elastoplastic material in the

model. The thermal residual stresses were calculated for a composite cooled from

the solutionizing temperature of 500 �C, where the composite is in a relatively

stress-free state, to room temperature, 20 �C. Also included in the figure is the

stress–strain response used for the pure matrix. During cooling the matrix near the

particle/matrix interface undergoes yielding. This has direct bearing on subsequent

loading of the material. It can be seen in Fig. 7.41 that in the presence of thermal

stresses, a smaller slope is observed at the early stage of deformation, due to the

slightly smaller apparent modulus arising from prior plastic deformation. When

compared with the material free of residual stresses, higher values of the average

axial stress were observed. This means that the existence of residual stresses

enhanced the initial strain hardening rate in the material. Comparing the curves

for the pure matrix and for the composite without thermal residual stresses, direct
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Fig. 7.41 Tensile stress–strain curves for Al–SiC/20p utilizing the unit-cylinder particles with and

without thermal residual stress (after Shen et al. 1994). Hardening caused by cooling-induced

plasticity leads to higher strength for the composite
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strengthening effects are observed. The higher flow stress for the composite is a

direct consequence of load transfer from the matrix to the reinforcement, which is

also related to the constrained plastic flow within the matrix. A comparison of the

two curves of the composite reveals the indirect strengthening effect. In the model,

strain hardening caused by cooling-induced plasticity leads to subsequent higher

strength for the composite with thermal stresses incorporated (after the crossover

point). In actual materials, thermal mismatch-induced dislocation punching renders

higher matrix strength due to strain hardening. Thus, when appropriate constitutive

models are chosen (e.g., hardening plasticity rather than perfect plasticity in the

present case), continuum-based numerical modeling can provide insights into the

deformation mechanisms.

Models involving simple, shaped single particle and multiparticles can provide

useful insight into deformation. Microstructure-based models, however, more

accurately predict the deformation behavior of the composites (Chawla

et al. 2003, 2004; Ganesh and Chawla 2004). This is because in actual composites,

the particles are highly irregular in shape and commonly contain sharp corners, so

spherical particles are not necessarily a realistic choice for simulation. Thus, while

simplifications in unit-cell models may aid in computation, they fail to capture the

complex morphology, size, and spatial distribution of the reinforcement. It follows

that an accurate simulation of the mechanical behavior of material can only be

obtained by incorporating actual three-dimensional (3D) microstructural morphol-

ogies as a basis for the model.

A comparison of the modeled 3D response using the actual microstructure

versus a simplified representation of spherical particles is shown in Fig. 7.42. The

spatial distribution of the particles in both models is about the same. Note that the

angular particles are under a much larger stress than the spherical particles,

indicating more load transfer to the angular particles. The stress in the spherical

particles is quite uniform, while that in the angular particles is not. The plastic strain

contours in the matrix are also quite different. More localization of strain is

observed in the model with angular particles. This simple comparison shows that,

indeed, the microstructure-based model predictions are quite different from those of

simplified spherical particles. Thus, modeling of the material using the actual

microstructure is extremely important.

A comparison of Young’s modulus predicted by unit-cell models versus the

microstructure-based model was shown in Chap. 6. The microstructure-based

model was closest to the experiment (Chawla et al. 2004). A comparison of the

overall stress–strain curve (elastic and plastic parts) of the 3D microstructure

simulation to the experiment is shown in Fig. 7.43. These simulations incorporate

a cooling step in the model, from the solution treating temperature of 493–25 �C.
The prismatic rectangle and microstructure-based models both predict the experi-

mental behavior quite well. Nevertheless, the microstructure-based models more

faithfully represent the experimental behavior. More importantly, the localized

plasticity that results from the sharp and angular nature of SiC particles can only

be captured in the microstructure-based model. Thus, other models that
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approximate the shape of the particles to ellipsoids underestimate the extent of

strengthening.

The effect of particle clustering has also been modeled using FEM. Segurado

et al. (2003) conducted 3D finite element simulations of clustered composites. They

Fig. 7.42 Comparison between 3D finite element models incorporating (1) actual microstructure

and (2) approximation to spherical particles: (a) FEM models, (b) stress distribution in particles,

and (c) plastic strain in matrix. Note that the microstructure model exhibits much higher stress in

the particles and larger and more inhomogeneous plastic strain than the simplified spherical

particle model
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showed that within a particle cluster, the stresses in the particles are much higher

than the average particle stress, Fig. 7.44a. With an increase in particle clustering,

the standard deviation of the particle stress increased significantly, Fig. 7.44b. In a

practical sense, this would cause particle fracture at a much lower far-field applied

stress (Fig. 7.44c) compared to a composite with homogeneous distribution.

Chawla and Deng (2005) developed model microstructures, consisting of circu-

lar reinforcement particles in a metallic matrix. The microstructures had varying

degrees of particle clustering, as quantified by the coefficient of variance in particle

spacing (see inset). The tensile behavior of the microstructure was modeled using

two-dimensional (2D) finite element analysis. Matrix plasticity and particle fracture

were explicitly modeled. All the particles had a homogeneous strength of 1 GPa.

The plastic strain distribution in the matrix is much more homogeneous in the

homogeneous particle arrangement, Fig. 7.45a, although the plastic strain is inten-

sified in the region of particle fracture. In the clustered particle microstructure,

larger stresses develop which results in particle fracture within the cluster,

Fig.7.45b. A lower degree of plastic strain is observed. The modeled stress–strain

response shows that the clustered microstructure has a lower “ductility,” although

matrix fracture was not modeled. This model verifies the experimental results of

Murphy et al. (1998), described above.

Shen and Chawla (2001) and Shen et al. (2001) explored the correlation

between macro-hardness and tensile properties of particle-reinforced metal

matrix composites. It was shown that, unlike most monolithic metals and alloys,

hardness does not necessarily scale with the overall strength of particle-reinforced

Fig. 7.43 Comparison of stress–strain predictions from various FEM models after cooling (after

Chawla et al. 2004). The 3D microstructure model (from two random regions in the microstruc-

ture) is most accurate in predicting the experimentally observed behavior
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metal matrix composites, Fig. 7.46. The hardness test may significantly

overestimate the overall tensile and yield strengths of composites containing

large reinforcement particles, which are prone to fracture during deformation

processing and/or tensile loading. The predominant local compressive stress

state in a hardness test prevents the preexisting fractured particles from weaken-

ing the material during indentation. For composites having relatively small

reinforcement particles, a unique relationship between hardness and tensile/

yield strength did not exist, even when the material was essentially free of

Fig 7.44 (a) 3D finite element model consisting of perfectly spherical SiC particles in an Al

matrix (after Segurado et al. 2003; courtesy of J. LLorca). The model consists of 49 particles and

7 “clusters.” The stress within the cluster is higher than the average stress. (b) Standard deviation

of stress in particles with increasing clustering, for a given strain, and (c) fraction of broken

particles predicted. ξ and ξcl are the volume fraction of particles (15 %) in the composite and within

the cluster, respectively
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preexisting fractured particles. This was especially true in cases where the

strength of the Al matrix was relatively low. The tendency of higher hardness

for particle-reinforced composites can be attributed to the localized increase in

particle concentration directly underneath the indenter during hardness testing,

Fig. 7.47. This was illustrated by micromechanical modeling using the finite

element method. Under indentation, the material system with discrete particles

exhibits a higher resistance to deformation than the homogenized system having

exactly the same overall stress–strain behavior, Fig. 7.48 (Shen et al. 2001).
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Fig. 7.47 Deformation behavior of particle-reinforced MMCs during microindentation (after

Shen and Chawla 2001): (a) localized increase in particle concentration due to plastic flow of

the matrix and (b) localized particle fracture, indicated by the arrows
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7.4 In Situ Metal Matrix Composites

Some interesting work on in situ MMCs has involved using appropriate heat

treatments to obtain a hard phase (at fairly high volume fractions) distributed in a

ductile matrix. Examples include dual-phase steels where a hard martensitic phase

is distributed in a soft ferrite matrix (Speich and Miller 1979; Tamura et al. 1973;

Rios, et al. 1981; Stewart et al. 2012) and an ultrahigh-carbon steel (UHCS) heat

treated to give a composite consisting of hard cementite particles distributed in a

ferritic matrix (Young et al. 2007). These kinds of materials are nothing but

particle-reinforced MMCs as shown in Fig. 7.49. Typically, the microstructure of

the so-called dual-phase steels consists of 5–20 vol.% of hard martensite dispersed

in a ductile ferrite matrix. Such a material can be treated as a metal matrix

composite; as such we can use some concepts from the field of composites to

model the stress–strain behavior of a dual-phase steel. Rios et al. (1981) used a

phenomenological model involving partitioning of stress and strain between ferrite

and martensite. The linear partitioning of the applied stress between ferrite and

martensite gave a good agreement with the experimental result.

Stewart et al. (2012) used micropillar compression to obtain the constitutive

behavior of ferrite and martensite. Micropillars of ferrite and martensite were

fabricated by focused ion beam (FIB) milling of dual-phase steel, Fig. 7.50. The

stress–strain curves, in compression, of ferrite and martensite were obtained by

means of a nanoindenter, Fig. 7.51. By using a rule-of-mixtures approach, the

mechanical properties of the individual constituents were combined to predict the

mechanical behavior of the bulk steel.

Young et al. (2007) studied load partitioning between ferrite and cementite in

UHCS (34 % by volume) by synchrotron X-ray diffraction under uniaxial tensile

Fig. 7.48 Finite element model of indentation in (a) homogeneous material and (b) particle-

reinforced composite. In the model, both materials had the same macroscopic tensile constitutive

behavior (after Shen et al. 2001). Under indentation, the material system with discrete particles

exhibited a higher resistance to deformation
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stress. In the elastic range, the two components (α-Fe and Fe3C) have almost the

same properties. After the ductile ferrite goes plastic, there occurs load transfer

from the soft α-Fe to the hard, elastic Fe3C particles. No thermal residual stresses

occur in this case because the strain due to mismatch in CTE is balanced by that due

to phase transformation. The two phases have nearly the same elastic constants. So

there is no load transfer in the elastic range. In the stage where the ferrite is

deforming plastically while cementite is deforming elastically, there occurs a

Fig. 7.49 Microstructure of dual-phase steel, an in situ composite with ferrite and martensite

constituents (Rios et al. 1981). White phase is martensite, while the dark phase is ferrite

Fig. 7.50 Scanning electron microscope images of (a) ferrite and (b) martensite pillar post

deformation (Stewart et al. 2012). Note pillar deformation occurs by crystallographic slip
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load transfer from ferrite to cementite. Young et al. (2007) used a two-parameter

power law hardening equation for the ferrite matrix in the finite element modeling

to obtain the macroscopic stress–strain curve. Experimentally determined diffrac-

tion strain data in the axial and transverse directions matched reasonably well with

predictions of the mold.

7.5 Fracture Toughness

The fracture toughness of particle-reinforced MMCs is controlled by several fac-

tors. These include (a) volume fraction of reinforcement, (b) interparticle spacing

and strength of particles, (c) spatial distribution of particles (i.e., particle cluster-

ing), and (d) microstructure of matrix and interface region (as controlled by heat

treatment in age-hardenable alloys). Figure 7.52 is a compilation of toughness in

several composite systems, as a function of reinforcement volume fraction

(Manoharan et al. 1993; Hunt et al. 1993, and Beck Tan et al. 1994). Note that all

the composites show a decrease in toughness with increasing volume fraction of

reinforcement. The toughness appears to reach a “plateau” at volume fractions of

20 % and above. The decrease in toughness, shown in Fig. 7.52, can be explained by

an increase in stress triaxiality with increasing volume fraction of particles (similar

to what takes place during tensile loading of the composite).

The effect of particle size is less clear-cut. This is because decreasing particle

size results in a smaller interparticle spacing. In addition, it also results in an

increase in strength of ceramic particle, because of a lower probability of encoun-

tering a strength-limiting flaw. It has been shown that the degree of clustering

increases with decreasing particle size (Hunt et al. 1993) and that the degree of

indirect strengthening increases with decreasing particle size (Arsenault and Shi

Fig. 7.51 Stress–strain curves from ferrite and martensite micropillar compression of (a) as

sintered and (b) aged at 538 �C specimens. Note increased martensite strength with aging
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1986). Figure 7.53 shows the decrease in toughness of a 2080/SiCp composite with

increasing strength, at three volume fractions and as a function of particle size. The

curve for the largest particle size is farthest left, because of the decrease in the

strength of the composite with increasing particle size. It is interesting to note that,

for a given volume fraction, the toughness of the composite decreases slightly with

decreasing particle size. The effect of particle size on toughness was also investi-

gated by Kamat et al. (1989). They studied the fracture toughness behavior of Al2O3

particle-reinforced Al matrix composites at volume fractions of 10 and 20 % Al2O3

and several particle sizes ranging between 5 and 50 μm. At large particle sizes

(>15 μm), particle fracture was hypothesized to cause unstable crack growth and

much lower crack growth toughness. At smaller particle diameter, interfacial

decohesion took place. In this smaller particle size (and smaller interparticle

spacing) regime, the behavior of the composites was found to follow the model

of Rice and Johnson, where particle/matrix decohesion is assumed to take place at

the interface ahead of the main crack. The coalescence of voids arising from

particle/matrix decohesion is facilitated by a decrease in interparticle spacing.

Their model showed the ratio of toughness-to-fracture strength, JIc/σf, to be directly
proportional to the interparticle diameter, λ:

JIc
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Fig. 7.52 Toughness of several particle-reinforced MMCs as a function of reinforcement volume

fraction (after Manoharan et al. 1993; Hunt et al. 1993, and Beck Tan et al. 1994). All the

composites show a decrease in toughness with increasing volume fraction, reaching a “plateau”

at volume fraction of about 20 % and above
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The fracture toughness is also influenced by the degree of clustering of particles.

Lloyd (1995) obtained varying degrees of clustering by varying the cooling rate of a

cast A356/SiC/15p composite, Fig. 7.54. As mentioned in Chap. 4, faster cooling

rates result in less time for particle pushing from dendrites, resulting in a more

homogeneous distribution of particles. This work clearly shows that with increasing

clustering (quantified by an increase in minimum edge-to-edge spacing of parti-

cles), the toughness decreases. This stems from an increase in stress triaxiality

caused by particle clusters. The toughness is also very much affected by matrix

microstructure. Manoharan and Lewandowski (1990) studied the fracture tough-

ness behavior of SiC particle-reinforced Al matrix composites, Fig. 7.55. The

materials were heat treated to the underaged (UA) and overaged (OA) conditions

and had the same nominal tensile strength. The fracture toughness in the two heat-

treated conditions was quite different. In the UA condition, the toughness was twice

as large as that of the OA material. This was attributed to a transition in fracture

mode from particle fracture controlled (UA) to interfacial decohesion (OA). The

ease of interfacial decohesion was explained by coarsening of precipitates and

weakening at the particle/matrix interface. In the unreinforced alloy, the toughness

in both UA and OA conditions was similar.

The toughness of particle-reinforced MMCs has also been shown to be a

function of loading velocity. Wang and Kobayashi (1997) examined the effect of

loading velocity on the fracture toughness of a 6061/SiC/22w, Fig. 7.56. At a

loading velocity above 10 m/s, the fracture toughness increased significantly.

Fractographic analysis showed that matrix dimples were deeper and the damage
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Fig. 7.53 Effect of particle size on toughness of a 2080/SiCp composite, at three volume fractions

(after Hunt et al. 1993). For a given volume fraction, the toughness of the composite decreases

slightly with decreasing particle size
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Fig. 7.54 Effect of particle clustering on toughness of a cast A356/SiC/15p composite (after

Lloyd 1995). With increasing clustering (quantified by minimum edge-to-edge spacing of the

particles), the toughness decreases
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Fig. 7.55 Effect of matrix microstructure on the fracture toughness–tensile strength relationship

in particle-reinforced MMCs (after Lewandowski 2000; Hunt et al.; 1993; Kamat et al. 1989). For

a given tensile strength, the toughness is higher in the underaged condition vis-à-vis the overaged

condition
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zone extended to a longer distance at the faster loading rate. It was postulated that

the very fast loading rate did not allow enough time for interaction and coalescence

between cracks and voids.
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