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4.1  Objectives

The objectives of this chapter are to explore the variety of metrics and approaches 
for analyzing the functional composition and diversity of species assemblages. 
Important topics will include the consideration of how uni- and multivariate trait 
data are utilized in functional diversity analyses, the use of raw trait distance matri-
ces versus trait dendrograms, and the degree of similarity between functional diver-
sity metrics.

4.2  Background

The number of articles in ecology that are taking a “trait-based” approach is cur-
rently exploding with many of these articles seeking to quantify the functional 
diversity of the species in a community or assemblage (e.g., [73–92]). As we will 
see shortly, functional diversity can be quantified in a number of ways, but we can 
coarsely define it here as the diversity or dissimilarity of the ecological strategies or 
performance of species upon the basis of their morphological physiological traits. 
Traits directly or indirectly correlated with species performance (i.e., growth, mor-
tality, reproduction) are increasingly termed “functional traits” and I will tend to use 
that nomenclature in the following text.

Despite the recent surge in interest, the measurement of functional diversity in 
communities or assemblages dates back at least 50 years with some of the most 
interesting early examples investigating the volume and packing of trait space of 
species in assemblages spanning an environmental or richness gradient [94–97]. For 
example, early work by Ricklefs and colleagues [93, 94] investigated whether the 
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spacing of species in trait space was maintained across a species richness as expected 
by limiting similarity theory [39].

The recent explosion of functional diversity measurement in ecology can largely 
be traced to influential work linking functional diversity to ecosystem function (e.g., 
[11, 91, 98]) and detailed reviews formalizing the conceptual foundation for func-
tional diversity research (e.g., [76]). This work also coincided with the focus of 
plant ecologists on identifying a series of plant traits that are believed to be related 
to plant performance across environmental gradients [99–102]. Thus, in the span of 
two decades plant ecologists, in particular, found themselves collecting large and 
detailed datasets of plant traits in assemblages and developing and implementing 
measures of functional diversity. In many instances this has unfortunately resulted 
in the “reinvention” of metrics that were originally developed decades earlier and 
presumably forgotten or ignored. The goal of the present chapter is to discuss the 
main approaches for measuring functional diversity in communities and assem-
blages and how to calculate these metrics using R. We will not cover every possible 
metric of functional diversity ever published. Such an approach would be difficult 
and would result in the covering of many redundant measures. I have therefore cho-
sen to keep it simple by covering the main classes of functional diversity metrics 
that are flexible. From each of these classes I will provide one or a few example 
metrics that are likely monotonic with many of the metrics you will encounter in the 
literature. As in the other chapters we will not simply learn how to “plug and chug” 
using existing functions. Rather we will dissect the measures so we understand how 
they work and so you may learn how you may construct your own measures of 
functional diversity or adjust those measures covered presently.

4.3  �Quantifying the Functional Composition of Communities 
Using the Moments of Trait Distributions

As we will see in the following subsections, a great number of metrics have been 
generated for quantifying the functional diversity of communities with, often redun-
dant, metrics invented nearly monthly at this point in time. It can be difficult to 
decipher what the results of various metric actually mean and how they do or do not 
relate to results published using alternative metrics. Outside of this increasingly 
complex maze of functional diversity metrics are simple calculations of the four 
moments of the trait distribution within communities or assemblages. The four 
moments—mean, standard deviation, skew, and kurtosis—are easier to interpret for 
the average scientist and can therefore be the easiest way to begin understanding the 
functional composition of your study system. They may even be an effective method 
for detecting the imprint of deterministic community assembly processes (e.g., [77, 
84, 103]). For example, the co-occurrence of functionally similar species will be 
reflected by a lower standard deviation and a higher kurtosis of trait values in an 
assemblage [77].
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In this section we will compute the four moments of the trait distribution in 
assemblages weighting all species present equally. We will then compute the 
community-weighted mean trait value for communities. The community-weighted 
mean is simply the mean trait value weighted by the relative abundance of species 
and it is becoming frequently used in trait-based ecological analyses. We begin by 
reading in the example community dataset for this chapter, which is in the format of 
a community data matrix. Recall that the community data matrix is the general for-
mat for most of the ecology-specific functions you will encounter in R. The example 
community data matrix can be read in as a table.

 

Ensure that your data has been read into R correctly with the community (or site) 
names as row names, the species (or taxa) names as column names, and number of 
individuals as the cell values. To do this, take a quick look at the matrix.

 

Next we can read in the example trait data for this chapter. The .txt file has species 
names in the first column followed by four columns of trait data. It is important that 
the species names become row names when reading in the example or your own 
trait data into R for the analyses that follow.

 

Look at the trait data to ensure that the data were read into R correctly and that spe-
cies names are indeed represented as row names and there are four columns of trait 
data.

 

The community data and trait data matrices have now been loaded into R and we are 
now ready to calculate the moments of the trait distributions for communities. To 
begin we will calculate individual moments for individual communities in order to 
understand the code. The first step is to quickly review how to get the list of species 
present in a community or assemblage. For example, we would like to know all of 
the species in our first community or assemblage with an abundance greater than 
zero—the first row in our community data matrix.

 

The result is an object called “spp” that contains the names of species present in our 
first community. The trait data for these species can now be extracted from our traits 
matrix by asking for only those rows with the row names matching the names in our 
species list.
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The above allows us to extract the trait data for all species in a community or 
assemblage for subsequent analyses. The two lines of code can also be combined 
into one line.

 

We now know how to get the values for all traits in our matrix for all species present 
in our first community or assemblage. From this output we can calculate the 
moments of the trait distribution. We can first calculate the community mean for 
each trait by wrapping the above line of code with the function mean().

 

The na.rm = T argument was utilized here in case your trait data matrix had 
missing trait values for some species. We can calculate the mean trait values for 
other communities or assemblages by altering what row is being selected from the 
community data matrix. For example, the next line of code calculates the mean trait 
values for community 3 instead of community 1.

 

At this point it is rather easy to calculate the remaining moments of the trait distribu-
tion. Here I calculate the standard deviation of the trait values in community 2.

 

High standard deviation values are indicative of more functional diversity in a com-
munity or assemblage, but they may be biased due to differences in the mean from 
community to community. To reduce this bias, a coefficient of variation in trait 
values can be calculated by dividing the standard deviations of the trait values in a 
community by the mean trait values in a community. This is easily done by dividing 
the last line of code by the line prior to it.

The functions mean() and sd() are in the base R package and are therefore 
available upon opening R. Functions to calculate skew and kurtosis, on the other 
hand, are not in the base package, but they are available in the fBasics package 
which can be installed and loaded as follows.

 

The skew of the trait distribution for community 1 can now be calculated in a similar 
way except using the function skewness().
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High values of skewness do not necessarily imply lower community functional 
diversity, but do indicate that most co-occurring species tend to have very similar 
trait values. The kurtosis of the traits in community 1 can be calculated using the 
kurtosis() function.

 

Small kurtosis values indicate community trait distributions with “fatter” tails and 
therefore may indicate an increase in the average trait disparity between co-occurring 
species [77].

The above code calculates the moments of the trait distribution for one commu-
nity, or row in the community data matrix, at a time. To automate this calculation 
across several communities (i.e., all rows in the community data matrix) we write a 
function where we calculate the moment for a single community and use an 
apply() function to apply the calculation to all rows (i.e., communities) in our 
system. In this example, we will write the moments for trait one in each community. 
We start by writing the kurtosis function for trait one.

 

The above code for calculating the kurtosis of the first trait in all communities can 
be easily changed to calculate the skewness and the mean and standard deviation as 
follows.
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These functions can now be applied to our community data matrix to calculate the 
mean, standard deviation, skew, and kurtosis of the trait values for the species pres-
ent in each of our communities using the apply() function.

 

In the above we have calculated the moments of the trait distributions in communi-
ties weighting all species or taxa present in the community equally. In many eco-
logical analyses it is best not to treat all co-occurring species equally. Depending on 
the question of interest, it may be best to weight species by their abundances or 
some other measure of their dominance (e.g., percent canopy cover). One of the 
most common ways this is done when characterizing the functional composition of 
communities is to calculate what is has been termed the community-weighted mean 
(CWM) for a trait. The CWM is the mean trait value weighted by the relative abun-
dance of each species. Here we will calculate the CWM for our communities using 
the same example datasets as before for comparison.

The first step in calculating the CWM is to transform our community data matrix 
from a tally of individuals of each species in a community into their relative abun-
dances. These relative abundances can then be used to weight the mean trait value 
in a community. A rapid way to calculate the relative abundances of each species in 
each community is to divide the abundance of each species in a row (i.e., a com-
munity), by the total abundance in that row (i.e., a community). This can be accom-
plished using the function rowSums().

 

All values in the cells of the matrix should now represent the fraction of the indi-
viduals in a community that for a particular species.

 

It is possible that your data, for example, could contain the total canopy area or total 
biomass. In that instance the above code would provide you with percent cover or 
percent biomass. The R package vegan contains a function that can also be utilized 
to convert your community data matrix values into relative abundances, percent 
cover, or percent biomass. The function is called decostand() and can be used 
as follows.
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This function takes a community data matrix as input and can transform the matrix 
using several different methods applied to rows or columns. Here we have selected 
the “total” method and MARGIN = 1, indicating that we want the method applied to 
each row. The method “total” divides each value in a row by the row sum or row 
total. Although this is what we did previously simply using the rowSums() func-
tion, the decostand() function is useful to know as many methods can be 
invoked easily. These methods include transforming the matrix to presence/
absence (method = “pa”), standardizing the values to a mean of zero and unit vari-
ance (method = “standardize”), standardizing the values to range between zero and 
one (method = “range”), and dividing the values by the maximum value in the row or 
column (method = “max”). Thus, it is a powerful tool for altering the format of your 
community data matrix in a variety of ways. Now let us quickly check to see that our 
results using rowSums() are similar to that we received using decostand().

 

You will find that the results of this approach and the previous approach are identi-
cal. To check that our relative abundances or percent cover or biomass for each 
community does indeed sum to one we can check the sum of each row.

 

Now that we have successfully changed our community data matrix to represent the 
relative abundances of species we can easily calculate the CWM for a single trait for 
a single community using the weighted.mean() function. This function takes 
an input matrix of values and an input matrix of weights. The input matrix of values 
in this case will be the trait values for the first trait of all species in our study system 
sorted using the order of the column names in the community data matrix.

 

The above selected the first column of the traits object to give the CWM of the 
first trait. The weighted mean of the second trait could be calculated by changing the 
selected column to 2.

 

To calculate the CWM value for the second trait in community two, simply change 
the row selected from the my.ra.sample object to 2.

 

Because the above code calculates the weighted mean for one trait in one commu-
nity at a time, it is best that we write some code that will automatically calculate the 
CWM for a trait in all communities. Thus, we would like to apply our code to all 
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communities simultaneously and will start by writing a function to calculate the 
weighted mean of trait one.

 

Now we can apply this function to our community data matrix to calculate the 
CWM for trait one in each community.

 

This approach can be extended to a weighted standard deviation as well using the 
wt.sd() function in the SDMtools package.

 

We have now see how to calculate the moments of the trait distribution for individ-
ual traits and individual communities. Some of these moments such as the mean 
cannot be deemed a measure of trait diversity. Indeed the mean is the exact opposite. 
Further, we may be interested in multivariate analyses of the function in a commu-
nity. In the next sections we will discuss more detailed metrics designed to measure 
FD using one to many traits.

4.4  �Dendrogram-Based Versus Euclidean Distance-Based 
Measures of Functional Diversity

The metrics for FD that we will discuss in the following all rely on a branch length 
or Euclidean distance to be measured between species. The branch length infor-
mation comes from a dendrogram generated with a method of hierarchical cluster-
ing with a Euclidean trait distance matrix as input. This involves the clustering of 
species in trait space and may remove fine-scale trait differentiation between spe-
cies. An alternative approach to this is to simply use the original trait distance 
matrix in the FD calculations. The use of the original distance matrix is appealing 
since the data are not transformed, but dendrograms are still frequently used to 
calculate FD and are sometimes preferred because their data structure is similar to 
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that of a phylogeny which may be used in a concurrent analysis of phylogenetic 
diversity to which the FD analysis will be compared. Thus we will discuss both 
approaches presently.

4.4.1  Generating Trait Distance Matrices

The majority of the functional diversity metrics currently utilized in the literature 
are distance-based measures. One to many traits can be used in these metrics. The 
distances themselves are calculated either using the Euclidean distance between 
species in “trait space” or the branch lengths separating species on a dendrogram 
generated by clustering species based on their proximity in a trait distance matrix. 
In this subsection we will be focus on the calculation of the Euclidean distance 
between species in trait space.

First we will produce a distance matrix for the second trait in our trait matrix. To 
assure that we have species names on the output distance matrix we first generate a 
matrix containing the data for our second trait and with the row names from the 
original trait matrix.

 

Using this new object containing only the data for trait 2 we can calculate the 
Euclidean distance between all species upon the basis of this single trait. This is 
accomplished using the dist() function and the “euclidean” method.

 

As we will see below this distance matrix can be used in many of the existing met-
rics of functional diversity available in R. Although many studies will only analyze 
the functional diversity of an assemblage using a distance matrix constructed from 
multiple traits, it is generally useful to investigate the diversity of individual traits 
in an assemblage. Indeed the majority of the papers that have investigated the 
diversity of individual traits have found that not all traits behave similarly across 
assemblages (e.g., [64, 74, 75, 77, 79]). That is, one trait might increase in diversity 
along an environmental gradient while another may decrease. Thus, analyzing indi-
vidual traits may help “unpack” the overall functional diversity calculated from 
multiple traits.

A distance matrix can be generated using all trait data simultaneously also using 
the dist() function. In this case, the traits input matrix already has species 
names as row names and therefore does not need any transformation.
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While it is simple to compute the Euclidean distance between all pairs of species 
based on multiple traits, this approach is generally not advised. This is because it is 
likely that the measured traits may covary and may be measured on vastly different 
scales. For example, it is common in plant functional ecology to measure many 
covarying leaf traits and one or a few orthogonal stem or seed traits. If, for example, 
a distance matrix were computed on these raw data the leaf traits, which effectively 
only represent one axis of function, would dominate the structure of the distance 
matrix. Further, if a trait is measured, such as seed mass, that spans several orders 
of magnitude, that trait will dominate the structure of the distance matrix. Both of 
these scenarios are undesirable. Thus, it is often best to first transform your data to 
approximate a normal distribution for each trait. Then the data should be scaled and 
used in a principal components analysis to eliminate trait redundancy. We will make 
our data are approximately normal by using a log() in this example and we will 
scale the data using the scale() and apply() functions.

 

The result is that all the trait values in each column are scaled to approximately a 
mean of zero and unit variance. These data can now be used in a principal compo-
nents analysis to eliminate trait redundancy and to produce orthogonal axes of func-
tion that can be used in a distance matrix calculation. The scaled trait data can be 
input into the princomp() function as follows.

 

The principal components (PC) analysis will produce one PC axis for each input 
column (i.e., trait). If all PC axes were then used as input in a distance matrix calcu-
lation the result would be no different than if the PC analysis was not performed at 
all. Thus, we must select the few axes that explain the vast majority of the variance 
in the scaled trait data. We can examine the proportion of the total variance explained 
by each axis by examining a summary of the object output by the princomp() 
function.

 

A good rule of thumb is to include the PC axes that explain over 90 % and perhaps 
even 95 % of the variation in the scaled trait data. In this example, the first three PC 
axes explain 94.7  % of the variation. To determine what traits are most heavily 
weighted on these axes we can examine the trait loadings.

 

From this we can see that trait 1 and trait 2 most heavily influence the first PC 
axes  and traits 4 and 5 most heavily influence the second and third PC axes, 
respectively.
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The next objective is to extract where each species lands on the first three PC 
axes and to use this information to generate a distance matrix. First we can simply 
look at these values by printing the PC scores to the screen.

 

We see one column for each PC axis and one row per species in the same order as 
the rows names (i.e., species names) in the input scaled distance matrix. As we are 
only using the first three PC axes we will extract the PC scores from those axes and 
put them in a new matrix assigning row names from the original traits matrix.

 

This data can now be used in the dist() function to calculate the multivariate 
Euclidean distance between all species in the study system.

 

The result of this analysis is a distance matrix that is less likely to be biased by the 
co-variation of traits in the original dataset and differences in the scale of measure-
ment between traits. It is therefore recommended that this approach be used in most 
cases for calculating a distance-based functional diversity metric. Of course, calcu-
lating the diversity of an actual trait and not PC scores is more intuitive to many. I 
do not completely discourage such an approach and I find it useful, but the indi-
vidual trait diversities should not be assumed to be independent. Further, I do not 
recommend calculating a distance matrix using all raw trait data simultaneously 
given that many of the traits ecologists measure strongly covary. Similar to raw trait 
data it is often useful to investigate each individual axis of function. In the case of 
data that has been normalized, scaled, and run through a PC analysis, scores from 
individual PC axes can be used as individual “traits” for analysis.

The above assumes that the trait data you are utilizing is continuous data with no 
values missing for any traits or any species in your system. This is not always the 
case in ecological studies where rare species can often not be located in the field or 
an available database and where we are interested in using categorical traits such as 
growth form along with continuous traits. In instances where we have mixed trait 
variables (i.e., continuous and categorical) and/or a few missing trait values for a 
few species an alternative approach is necessary as a dist() function will not 
accommodate this scenario. A Gower Distance, though, can be calculated using the 
gowdis() function in the FD package. This function calculates the overall simi-
larity of species or taxa based on Gower [104] and converts this similarity to a 
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dissimilarity by subtracting it from one. If all traits are equally weighted, then the 
Gower similarity, for continuous variables, is the difference in values divided by the 
maximum observed difference for that variable in the dataset and this value is 
summed across all traits. For binary traits the contrast is either a zero or one for dif-
ferent or same. The Gower Distance for our dataset can be calculated as follows.

 

Now that we have a trait distance matrix it can be used directly in FD analyses or as 
input into a hierarchical clustering analysis to generate a trait dendrogram. We will 
discuss trait dendrogram construction in the next subsection.

4.4.2  Generating Trait Dendrograms

The generation of trait dendrograms is quite simple. Perhaps it is so simple that the 
researcher often does not understand conceptually and mathematically what is 
being done in the background calculations. Thus, we will cover the few steps needed 
to calculate a trait dendrogram in R with some explanation of what is happening 
particularly with respect to the generation of the distance matrix and the clustering 
method.

The first step in generating a trait dendrogram is to produce a distance matrix 
representing the distance between all taxa or species in your system using one to 
many traits. In this example, we will first use multiple continuous traits stored in a 
matrix with species names as the row names. The most advisable and easily com-
prehended method for generating a trait distance matrix for construction of a den-
drogram is to calculate the Euclidean distance between all species in trait space. 
Here we will assume that the traits are not correlated, but if your traits do covary 
please consult the code in the preceding section regarding reducing data redundancy 
prior to distance matrix generation.

 

As discussed above there may be instances where you are missing a trait value for a 
small number of species or you have mixed trait variables (i.e., continuous and cat-
egorical). In such instances the use of dist() is not possible and it is advisable to 
calculate a Gower distance using the gowdis() function in the FD package to 
produce a distance matrix for the next step. In this example, we will ignore such a 
situation.

We now use the trait distance matrix to generate a trait dendrogram using hierar-
chical clustering. The hclust() function in R performs hierarchical clustering 
using several different methods. In the majority of cases published in the literature 
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an Unweighted Pair Group Method with Arithmetic Mean, commonly referred to as 
UPGMA, is utilized to generate a trait dendrogram. The UPGMA begins by identi-
fying the two closest species in the trait distance matrix (randomly if there are mul-
tiple pairs sharing the smallest distance). A new distance matrix is then calculated 
between the distance between that cluster and all other species. The two species in 
this new matrix that are closest to one another form the next cluster and so on until 
all species and clusters are clustered. The branch lengths in the resulting dendro-
gram between clusters are calculated using pairwise distances.

	
clusterdist =
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where there are A species in cluster 1 and B species in cluster 2 and dij is the distance 
between all members of cluster 1 and members of cluster 2. Thus, the distances (i.e., 
branch lengths) between species in a trait dendrogram are no longer the distances 
between species in trait space. Rather, they are the distances between all the species 
in the clusters the species belong to in the dendrogram. A UPGMA-based dendro-
gram can be calculated using the hclust() function in R and the “average” 
method (Fig. 4.1).

 

We can see that the plotted dendrogram has branch lengths measured on a continu-
ous scale corresponding to multivariate distance in trait space. In many instances it 
might be desirable to investigate a single trait with dendrogram-based metrics. 
Generating a dendrogram from a single trait (i.e., a single column in your trait 
matrix) is simple, but it is important to assign species names as row names. If they 
are not assigned the resulting dendrogram will not have species names on it. Here 
we will make a UPGMA dendrogram for the trait found in the second column of our 
trait matrix (Fig. 4.2).

 

The plotted dendrogram shows that species do not cluster in the same way as they 
did previously when using all traits simultaneously. This indicates that species do 
not rank similarly on all trait axes and it highlights why it is often important and 
interesting to perform all analyses on all traits at once and each trait individually.
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4.4.3  Pairwise and Nearest Neighbor Measures

We are now ready to calculate the main two classes of FD metrics. Exactly as is the 
case for phylogenetic diversity (PD) in the previous chapter, the two main classes 
are pairwise distance metrics and nearest neighbor metrics. Indeed, the calculations 
and code are generally identical in R. The main decision we have to make prior to 
calculating these metrics for FD is whether to use a dendrogram or a raw trait dis-
tance matrix as the following code in this section requires a distance matrix that can 
be generated from the dendrogram or is the raw distance matrix. We will not use the 
dendrogram for the following analyses, but if we did we would first convert the 
dendrogram to a distance matrix.

 

Thus we have effectively input a trait distance matrix into a hierarchical clustering 
algorithm to generate a dendrogram only to convert that dendrogram into a new 
distance matrix that likely has less refined information. You can now perhaps see 
why many do not like using a dendrogram-based approach unless necessary.

Fig. 4.1  A plot of our functional trait dendrogram constructed using UPGMA hierarchical cluster-
ing of a Euclidean distance matrix of all traits
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For the remaining examples in this subsection we will use the raw trait distance 
matrix. If you recall above, we used dist() on our PC axes and we will now make 
this output a square matrix for the remaining functions.

 

The first FD measure we will compute is the unweighted pairwise functional dis-
tance between all present species in our second community. This can be calculated 
simply by first subsampling our distance matrix to only include present species and 
then calculating a mean value.

 

This can be calculated across all communities by first generating a small function to 
calculate the unweighted mean pairwise distance.

 

Fig. 4.2  A plot of our functional trait dendrogram for only our second trait constructed using 
UPGMA hierarchical clustering of a Euclidean distance matrix calculated for the second trait
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This function can now be applied to all rows (i.e., communities) in our community 
data matrix using the apply() function to compute the metric.

 

This same calculation can be calculated using the mpd() function in the picante 
package which loops through communities rather than use an apply() making it 
computationally slower.

 

The abundance-weighted version of the pairwise trait distance metric can be calcu-
lated by again applying a function we will write. The function can be written as 
follows.

 

The function is then applied to the rows of our community data matrix to calculate 
the abundance-weighted mean pairwise functional distance in each of our 
communities.

 

This metric can also be calculated using the mpd() function in the picante 
package.
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The mean pairwise functional distances calculated above represent one major class 
of FD metric. Indeed, many of the “new” metrics that are published each year are 
monotonic with the mean pairwise functional distance.

The second major class of functional diversity metric uses nearest functional 
neighbor distances. There are two main ways that nearest neighbor distances have 
been utilized in the trait literature. The first, and most common, method is to take 
the mean nearest neighbor distance. In this calculation, the distance to the nearest 
functional neighbor in the community that is not your own species is tallied for each 
species and a mean is taken. This is easy to calculate but first we will place an NA 
value in the diagonal of our functional distance matrix to ensure we are not counting 
conspecifics in our nearest neighbor calculations.

 

Now we can calculate the mean nearest functional neighbor distance for the species 
in our third community by first extracting a community-level distance matrix.

 

From this distance matrix we can use the apply() function to calculate the mini-
mum value in each row (i.e., the nearest neighbor for each species) and take a mean. 
This is the mean nearest neighbor distance for our community.

 

The second way nearest neighbor distances could be utilized in a study of FD is to 
take a standard deviation of the nearest neighbor values. This gives the researcher 
an idea of the regularity of the spacing and not just the average distance. A low vari-
ance indicates that species are relatively evenly placed in functional space.

 

We can apply both of these metrics to all rows (i.e., communities) in our study sys-
tem by first writing a function for each to calculate the value for a single community. 
First the mean nearest functional neighbor distance can be coded as follows:
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Next, the function for the standard deviation of nearest neighbor distances.

 

They both can be applied to our dataset as:

 

Both functions can also be extended to weight the mean or standard deviation by the 
abundance of the focal species. The functions would be coded and applied as:
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Next, the function for the standard deviation of nearest neighbor distances.

 

We have now successfully calculated the unweighted and abundance weighted of 
the mean nearest functional neighbor distance and the standard deviation of the 
nearest functional neighbor distances for each community in our system. There is 
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currently no function in an R package, that I know of, that calculates the standard 
deviation of the nearest neighbor distance, but the unweighted and abundance-
weighted mean can be calculated using the mntd() function in the picante 
package.

 

Again, low values of the mean nearest functional neighbor distance indicate func-
tionally similar species co-occurring or low FD, whereas high values indicate func-
tionally dissimilar species are co-occurring and therefore high FD. In most cases, 
the mean nearest neighbor distance is sensitive to the species richness gradient 
across the communities being compared in your system. In particular, the mean 
nearest neighbor distance will decrease with increasing species richness in most 
cases. We will discuss the implications of this and null models in Chap. 6.

4.4.4  Ranges and Convex Hulls

One of the oldest and simplest measurements of FD has been to quantify the range 
of functions in a sample or community. In the case of a single trait this measure of 
FD is simply the range of the trait values in the community. When there are two or 
three measured traits the FD then becomes the area or volume of the two- or three-
dimensional shape, respectively, representing the community trait space with verti-
ces defined by the maximum and minimum value for each trait [90, 92, 94]. 
Calculation of these areas or volumes for the purpose of investigating the FD in 
communities started in the 1960s if not earlier [94], though the approach has been 
“invented” again recently (e.g., [90]) spurring an increasing number of papers using 
this conceptual approach. The methodological advance made during these reinven-
tions is the possibility of calculating the trait volume for a community in more than 
three dimensions (i.e., using more than three traits). In particular, “convex hulls” 
can now be calculated for high-dimensional data and the volumes of these hulls can 
be quantified. The convex hull volume for a community is now commonly referred 
to as FRic or Functional Richness, though the term Functional Richness can often 
be confused or conflated with Functional Group Richness, which is a distinct mea-
sure [92]. The calculation of a convex hull or FRic is conceptually appealing because 
it can help a researcher understand how species pack and fill trait space. For exam-
ple, the original use of such metrics in the 1960s and 1970s was to ask whether 
communities with more species have a greater morphological trait volume [93, 94]. 
This research was often done in the context of limiting similarity theory where the 
expectation was that the only way one could “add” species to a community was to 
add them to the periphery of trait space because adding them somewhere within the 
existing trait distribution would mean they would be too similar to invade. Further, 
researchers predicted that environments that are more abiotically benign and/or that 
have stronger biotic interactions will allow the invasion and success of peripheral 
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phenotypes resulting in a large morphological volume whereas harsher abiotic envi-
ronments will limit the invasion and success of peripheral phenotypes resulting in a 
small morphological volume.

The calculation of the convex hull volumes (i.e., FRic) in R is not difficult, but 
before we proceed to the measurement of FRic let us quickly determine how to 
calculate the univariate equivalent of calculating the range for each trait in a com-
munity. We begin by focusing on the first community in our community data matrix 
(i.e., row one) and extracting the names of all the species that are present in the 
community as determined by their positive values in the community data matrix.

 

We can now use the names of the species present in our first community to extract 
only those rows in the trait matrix containing the species in our fist community. This 
pruned trait matrix can then be used in an apply() function with a MARGIN of 2 
to calculate the maximum trait value in each column (i.e., for each trait) and the 
minimum value. The difference between the outputs from these two apply() 
functions is the range for each trait in the first community.

 

If we wanted to the above for our fourth community in a single line of code we 
would use the following.

 

Establishing how to calculate the ranges of all traits simultaneously for a single 
community now makes it clear how to scale the analysis up to analyze the range of 
all traits in all communities simultaneously. To accomplish this we first write a func-
tion that will calculate the range of all traits for a single community.

 

We now apply this function to the rows in our community data matrix to calculate 
the range of all traits in all communities simultaneously.
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The calculation of trait ranges across communities can now be extended to calculate 
the overall convex hull volume (i.e., FRic). The calculations of convex hulls can 
now be done with multiple packages in R, but we will utilize the geometry package, 
which we can install and load using the following code.

 

The function convhulln() in the geometry package can be used to perform all 
of the necessary calculations. We will begin by first quantifying the convex hull for 
only the first community in our community data matrix. The convhulln() func-
tion requires a matrix of continuous values that it will treat as the vertices where 
each column is a trait. Thus, we can use the following code to extract only those 
species present in our first community from the trait matrix and provide those values 
to the convex hull function.

 

We see that the function output a three-column matrix defining all of the vertices 
that constitute the convex hull, but no other information is provided. We must ask 
the function to output the volume of the convex hull choosing the “FA” option.

 

A list has been output with three elements—hull, area, and vol. The hull element 
contains all of the vertices we saw above. The area element reports the area of the 
convex hull, but this is not of interest to us. The vol element contains the volume of 
the convex hull and therefore is our FRic value for this community.

 

This approach for calculating the FRic for a single community can now be scaled up to 
calculate the FRic for all communities simultaneously using the following function.
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The hull function can now be applied to all rows in the community data matrix using 
an apply() function. This rapidly produces the convex hull volume or FRic for 
each community.

 

The FRic of the species in each community can also be performed by using the 
dbFD() function in the FD package. The FD package performs many additional 
useful analyses for trait-based ecology that we discuss in the next section. Here we 
will install and load the package.

 

We will now use the dbFD() function to calculate FRic. This function calculates 
many metrics simultaneously, but for the moment we are only interested in output-
ting the FRic values for our communities.

 

A valuable aspect of this function in the FD package is that it performs an initial test 
to determine whether the trait data require a reduction in dimensionality. This raises 
an important point that we have discussed above and that permeates through all 
functional diversity analyses. It is essential that redundant trait axes are reduced so 
as not to overly weight your metric of FD using several covarying traits. Fortunately, 
this function performs this for you, but you are advised that reducing dimensionality 
in other analyses is generally not done for you automatically.
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4.4.5  Other Measures

The last three metrics that we will discuss are the Functional Evenness (FEve), 
Functional Divergence (FDiv), and Functional Dispersion (FDis). The FEve metric 
utilizes a minimum spanning tree (MST) to connect all species in functional trait 
space and measures the regularity of the species points along the branches of this 
tree and the regularity of their abundances. Thus, we may expect it to be very similar 
to a nearest neighbor metric. The FEve metric can be calculated as:

 

The FDiv metric first measures the average distance of all species from the centroid 
of the trait space in a community and then sums the magnitude of the divergences 
from that mean. Thus higher values are supposed to indicate more dispersion 
towards the maximum and minimum of the range of traits. It can be calculated as

 

The FDis metric calculates the distance of each species from the centroid of the 
community traits. Thus, it is not quite the same calculation as the pairwise distance 
between species we can expect that it might be highly correlated. It is also similar 
to the FDiv metric, though conceptually perhaps easier to understand the biological 
meaning of FDis and it is likely a clearer indicator of trait dispersion in a commu-
nity. The FDis can be calculated as:

 

We have now calculated all of the major types and varieties of FD metrics that you 
will commonly see in the literature. In the next section we will quickly compare 
these metrics to evaluate their independence.

4.5  Comparing Metrics of Functional Diversity

As we consider diversity metrics in this book and elsewhere it is essential to con-
sider their mathematical and statistical relationships in order to determine which are 
providing novel information and which are not and are simply monotonic with an 
existing metric. We have explored most of these metrics in the previous chapter on 
PD, but we will quickly plot them against each other and calculate their correlations 
(Fig. 4.3).
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We see that the PW and FDis metrics are almost identical as has been previously 
pointed out by Laliberte and Legendre [92] and that FDis and FDiv, while being 
correlated, are not identical indices. Lastly, we see that the hull/FRic metric and the 
mean nearest neighbor metric are related to species richness, indicating that they 
should perhaps be considered in the context of a null model for comparative analy-
ses (see Chap. 6).

4.6  Conclusions

This chapter has addressed a large number of metrics that can be used to characterize 
the functional structure and diversity of communities or assemblages. We began by 
simply characterizing the moments of the trait distribution in assemblages. While this 
is useful, these measures, particularly the mean, are not measures of functional diver-
sity and should not be used as such. We then covered pairwise- and nearest 

4.6  Conclusions

http://dx.doi.org/10.1007/978-1-4614-9542-0_6


82

neighbor-based metrics of functional diversity which have their roots in the 
eco-morphology literature spanning back to at least the 1960s underscoring the long 
history of measuring trait similarity and functional diversity in species assemblages.

Almost all functional diversity metrics that have been published or that will be 
published will likely fall into either the pairwise or nearest neighbor classes. There 
are likely many metrics of functional diversity that I have not covered in this chap-
ter, but it is likely that many of these are highly correlated with the measures we 
have covered. In deciding the “best” metric for your study I urge you to consider 
whether your chosen metric is actually that different from existing metrics. In many 
cases we may find that the metric is monotonic with an existing metric and may not 
provide much additional metric. It is also expected that the code above will provide 
you with enough details regarding how to handle trait and community data in R to 
formulate your own measures of functional diversity in R, but I again urge you to 
make sure your new metrics are indeed novel.

Fig. 4.3  A plot of each functional diversity metric against all other metrics
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4.7  Exercises

	1.	 Simulate two traits on your example phylogeny from Chap. 3 using Brownian 
Motion and the fastBM() function in the phytools package.

	2.	 Quantify the functional diversity for each of your communities using the simu-
lated trait data, the example community data matrix from Chap. 3, and the pair-
wise and nearest neighbor metrics weighted by abundance. Next do the same for 
phylogenetic diversity using the analogous pairwise and nearest neighbor met-
rics and the same phylogeny you used to simulate the trait data.

	3.	 Perform a simple correlation between the phylogenetic and functional diversity 
measures. Do the functional and phylogenetic diversity measures correlate? Why 
or why not?

	4.	 Repeat the above with other metrics of that are presence–absence weighted or 
weighted by abundance.

4.7  Exercises
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