
Use R !

Nathan G. Swenson

Functional
and
Phylogenetic
Ecology in R

 Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

 For further volumes:
 http://www.springer.com/series/6991

http://www.springer.com/series/8115

 Nathan G. Swenson

 Functional and Phylogenetic
Ecology in R

 ISSN 2197-5736 ISSN 2197-5744 (electronic)
ISBN 978-1-4614-9541-3 ISBN 978-1-4614-9542-0 (eBook)
 DOI 10.1007/978-1-4614-9542-0
 Springer New York Heidelberg Dordrecht London

 Library of Congress Control Number: 2013958447

 © Springer Science+Business Media New York 2014
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

 Nathan G. Swenson
 Assistant Professor of Plant Biology
 Michigan State University
 East Lansing , MI , USA

www.springer.com

 To Eowyn

vii

 Pref ace

 The hypotheses that have been derived to explain the distribution, abundance,
dynamics, and diversity of species are typically tested using data matrices contain-
ing the names and abundances of species in one to many sites. In effect, this research
approach treats all species as independent entities. Species, of course, are not inde-
pendent. They vary in their degree of relatedness and their functional similarity.
Aside from being a basic statistical “issue to deal with,” not accounting for the
phylogenetic and functional nonindependence of species likely severely limits the
ability of an ecologist to adequately test the hypotheses of interest. Indeed the more
we analyze the phylogenetic and functional signature in ecological data, the more
we realize that the inferences we might have made using only information about
species names and abundances would be overturned if we also considered their
phylogenetic and functional similarity. I have now seen such instances enough to be
wary of any ecological analyses that do not consider where the species came from
and how they actually function.

 As a young fi eld ecologist working in the rainforest in El Yunque, Puerto Rico,
right after earning my undergraduate degree, I was consistently interested in the
spatial distributions of individual species. I could tell you where in the forest you
are likely to fi nd a certain species and whether or not other species from that same
genus or family were also likely to be in that same area. This was satisfying to some
degree, but I was always frustrated by not being able to tell someone why a species
was only found along streams or ridges. My frustrations lead me to seek out institu-
tions where I could perform doctoral research that would investigate the functional
ecology of tropical trees. While interviewing for graduate school I was shocked
when three potential Ph.D. mentors in a row asked me whether I was familiar with
Cam Webb’s research into the phylogenetic structure of tropical tree communities.
Admittedly I had not read Cam’s work prior to my fi rst interview, but by the time
the second and third interviews came around later that month, I had read almost all
of his papers. My master’s research had been focused on evolutionary biology and I
was immediately excited to see phylogenetic information being woven into tropical
tree ecology. Around this time I was also reading reviews and empirical studies
focusing on the evolution of plant function. Suffi ce it to say that by the time I started

viii

my Ph.D. research that fall at the University of Arizona, I was very excited about the
prospect of quantifying function in tropical tree communities and putting that infor-
mation into a phylogenetic context.

 Almost immediately upon arrival in Tucson, I began to analyze the phylogenetic
and functional composition of tree assemblages in the Neotropics. Immediately I
ran into signifi cant computational challenges both in the form of integrating and
formatting enormous forest plot datasets and in the form of synthesizing the output.
I had heard of R during my master’s research and it was clear many of my new lab
mates were using R, but I had yet to dive in and learn. It was at this time when a
postdoctoral fellow and a friend of mine named Jason Pither taught me enough
basic R and gave me enough books to make me dangerous (and not always in a good
way). It is hard to thank Jason enough for his initial help and encouragement. My
life as a researcher has never been the same and I still consult him from time to time
for sage advice.

 Several years have passed now and I have transitioned slowly from a young fi eld
ecologist still trying to fi gure out basic R code to someone leading R workshops
around the world focusing on phylogenetic and functional analyses of ecological
data. The fi rst of these workshops I conducted at the Chinese Academy of Sciences,
Institute of Botany in Beijing. In preparing for that course I generated a short work-
book. I continually updated and expanded the workbook prior to new workshops
over the years and the result is this book. I am indebted to the students in those
workshops for serving as “guinea pigs” and for helping me improve this text.

 There are many additional people that I have to thank. I would fi rst like to thank
Xiangcheng Mi for being a great collaborator over the past several years where we
have both benefi tted from the R expertise of the other. I would also like to thank my
other close colleagues at the Institute of Botany in Beijing (Keping Ma, Jinlong
Zhang, and Xiaojuan Liu) and at the Xishuangbanna Tropical Botanical Garden
(Min Cao, Luxiang Lin, and Jie Yang). We have all shared many fun collaborative
experiences and all share a zeal for tropical trees that keeps us going. I wish to thank
the researchers affi liated with the Smithsonian Institution Center for Tropical Forest
Science that have always been generous in their collaboration. In particular, I thank
Stuart Davies, Rick Condit, John Kress, Dave Erickson, Joe Wright, Jess
Zimmerman, Jill Thompson, Liza Comita, Andy Jones, Nathan Kraft, Bob Howe,
and Amy Wolf. I would also like to thank the many researchers who have generated
the R code constituting the packages that are utilized in this book. Writing these
packages has been a huge service to the research community. I would like to thank
Springer and the Editors of the UseR! series for encouraging me to contribute this
text. I would like to thank the United States National Science Foundation for gener-
ously funding my phylogenetic and functional ecology research from my postdoc-
toral research to the present. Lastly, I would like to thank Liwei Hua for all of her
love and support before, during and after I composed this book.

 Aarhus , Denmark Nate Swenson

Preface

ix

 Contents

1 Introduction ... 1
1.1 Why Phylogenetics and Functional Traits in Ecology? 1
1.2 Why R? .. 2
1.3 Structure and How to Use This Book?... 3
1.4 Setting Working Directories and Package Installation 5

2 Phylogenetic Data in R ... 9
2.1 Objectives ... 9
2.2 Loading Phylogenies into R and the Structure

of the “Phylo” Class ... 9
2.3 Plotting Phylogenetic Trees in R ... 12
2.4 Manipulating and Calculating Additional Information

from Phylogenetic Trees in R .. 15
2.5 Simulating Phylogenies in R .. 22
2.6 Conclusions .. 25
2.7 Exercises .. 25

3 Phylogenetic Diversity .. 27
3.1 Objectives ... 27
3.2 Background .. 27
3.3 “Community” Datasets .. 29
3.4 Tree-Based Measures of Phylogenetic Diversity 32
3.5 Distance-Based Measures of Phylogenetic Diversity 41

3.5.1 Pairwise Measures ... 41
3.5.2 Nearest Neighbor Measures ... 48

3.6 Comparing Metrics .. 52
3.7 Conclusions .. 54
3.8 Exercises .. 55

4 Functional Diversity .. 57
4.1 Objectives ... 57
4.2 Background .. 57

x

4.3 Quantifying the Functional Composition of Communities
Using the Moments of Trait Distributions ... 58

4.4 Dendrogram-Based Versus Euclidean Distance-Based
Measures of Functional Diversity .. 64
4.4.1 Generating Trait Distance Matrices 65
4.4.2 Generating Trait Dendrograms .. 68
4.4.3 Pairwise and Nearest Neighbor Measures 70
4.4.4 Ranges and Convex Hulls .. 76
4.4.5 Other Measures .. 80

4.5 Comparing Metrics of Functional Diversity 80
4.6 Conclusions .. 81
4.7 Exercises .. 83

5 Phylogenetic and Functional Beta Diversity ... 85
5.1 Objectives ... 85
5.2 Background .. 85
5.3 Tree-Based Measures of Phylogenetic Beta Diversity 87

5.3.1 UniFrac .. 87
5.3.2 Phylogenetic Sorenson’s Index .. 94

5.4 Distance-Based Measures of Phylogenetic
and Functional Beta Diversity ... 95
5.4.1 Pairwise Measures ... 95
5.4.2 Nearest Neighbor Measures ... 100

5.5 Other Metrics ... 104
5.6 Comparing Metrics .. 105
5.7 Conclusions .. 108
5.8 Exercises .. 108

6 Null Models .. 109
6.1 Objectives ... 109
6.2 Background .. 109

6.2.1 Why Use Null Models for Phylogenetic
and Functional Analyses? .. 110

6.2.2 Calculating Standardized Effect Sizes,
Quantiles, and P-Values ... 114

6.3 Classes of Null Models in Phylogenetic
and Functional Analyses of Species Assemblages? 116

6.4 Randomizing Community Data Matrices in R 116
6.4.1 Unconstrained Randomizations ... 117
6.4.2 Constrained Randomizations ... 118

6.5 Randomizing Phylogenetic Data .. 120
6.5.1 Unconstrained Randomizations ... 120
6.5.2 Constrained Randomizations ... 128

6.6 Randomizing Functional Trait Data ... 132
6.6.1 Unconstrained Randomizations ... 133
6.6.2 Constrained Randomizations ... 134

Contents

xi

6.7 Null Models for Phylogenetic and Functional
Alpha Diversity .. 136

6.8 Null Models for Phylogenetic and Functional
Beta Diversity .. 141

6.9 Conclusions .. 145
6.10 Exercises .. 146

7 Comparative Methods and Phylogenetic Signal 147
7.1 Objectives .. 147
7.2 Trait Correlations ... 147

7.2.1 Independent Contrasts .. 148
7.2.2 Phylogenetic Generalized Least Squares 150
7.2.3 Phylogenetic Eigenvector Regression 151

7.3 Quantifying Phylogenetic Signal ... 154
7.3.1 Mantel Test ... 155
7.3.2 Blomberg’s K and Signifi cance Tests 156
7.3.3 Pagel’s Lambda .. 159
7.3.4 Standardized Contrast Variance, Unstandardized

Contrast Means, and Randomization Tests 162
7.3.5 Phylogenetic Eigenvectors ... 165

7.4 Quantifying the Timing and Magnitude of Trait Divergences 165
7.5 Conclusions .. 171
7.6 Exercises .. 171

8 Partitioning the Phylogenetic, Functional, Environmental,
and Spatial Components of Community Diversity 173
8.1 Objectives .. 173
8.2 Background .. 173
8.3 Partitioning Variation in Community Functional

Alpha Diversity by the Environment, Space,
and the Community Phylogenetic Alpha Diversity 174
8.3.1 Partitioning FD Using Multiple Regression

on Distance Matrices .. 175
8.3.2 Partitioning FD Using Principal Coordinates

of Neighbor Matrices (PCNM) and Forward Selection 178
8.4 Variance Partitioning of Phylogenetic or Functional

Beta Diversity Along Environmental and Spatial Gradients 179
8.4.1 Beta Diversity and Multiple Regression

on Distance Matrices .. 180
8.4.2 Partitioning Beta Diversity Using Principal Coordinates

of Neighbor Matrices (PCNM) and Forward Selection 181
8.5 Integrating Phylogenetic, Trait, Environmental

and Spatial Information to Quantify the Role
of Abiotic Filtering During Community Assembly 182

8.6 Conclusions .. 185
8.7 Exercises .. 187

Contents

xii

9 Integrating R with Other Phylogenetic and Functional
Trait Analytical Software ... 189
9.1 Objectives ... 189
9.2 Background: The Development of Eco-Informatics Tools

for Phylogenetic- and Functional Trait-Based Ecology..................... 189
9.3 Phylocom ... 190

9.3.1 Quantifying Phylogenetic and Functional Diversity
and Dispersion in Phylocom .. 191

9.3.2 Comparative Analyses in Phylocom 197
9.3.3 Interfacing R and Phylocom for Null Modeling 197

9.4 Conclusions .. 200
9.5 Exercises .. 201

References .. 203

Index ... 211

Contents

1N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_1, © Springer Science+Business Media New York 2014

1.1 Why Phylogenetics and Functional Traits in Ecology?

 The distribution of biodiversity is a, if not the, major focus of ecologists. Specifi cally,
ecologists often investigate the spatial or temporal trends in biodiversity levels
within a particular study region or across the planet. The study of biodiversity has
traditionally focused on quantifying patterns of species diversity or species richness
across some type of gradient and determining the potential processes that have pro-
duced the observed pattern. This approach is a cornerstone of ecological investiga-
tions and thinking regarding biodiversity. However, there are two clear limitations
to this species-centric approach. First, biodiversity is not simply species diversity.
Biodiversity also includes the phylogenetic, genetic, and functional diversity in an
assemblage [1]. Indeed, species diversity may even be the least informative of all of
these dimensions of biodiversity. For example, regions could have the same exact
species diversity, but very different levels of phylogenetic and functional diversity
and therefore very different levels of biodiversity. Or they could have very similar
levels of functional and phylogenetic diversity despite large differences in their spe-
cies richness [2 – 5]. Thus, attempting to determine the processes that produce biodi-
versity cannot be obtained by examining only one component of biodiversity.
A second challenge for the species-centric approach to studying biodiversity that is
perhaps more important than the fi rst one is that species names are relatively infor-
mation poor. While they are fundamental to biology, they convey little information
regarding the function or evolutionary history of species, and such information is
critical for determining the processes that have combined to produce the observed
levels of biodiversity. These inherent limitations of a species-centric approach sug-
gest that a more pluralistic approach to studying biodiversity is needed in order to
obtain a mechanistic understanding of how patterns of biodiversity are formed [6 –
 13]. In particular, a biodiversity synthesis will necessarily require the consideration
of the interrelationships between the three primary components of biodiversity—
species diversity, functional trait diversity, and phylogenetic diversity [1]. Ecologists
are now embracing this reality and have altered their research programs accordingly.

 Chapter 1
 Introduction

2

The number of phylogenetic- and functional trait-based analyses in ecology has
skyrocketed in recent years resulting in hundreds of publications. Indeed, entirely
new fi elds in ecology have formed such as community phylogenetics, and new grant
programs have sprung up such as the United States National Science Foundation’s
Dimensions of Biodiversity program.

 Coinciding with the increased interest in quantifying phylogenetic and func-
tional diversity in ecology, a dizzying array of tools and methods has been generated
to incorporate phylogenetic and functional information into traditional ecological
analyses. Increasingly, these tools are being implemented in R making them easily
and freely accessible to researchers around the planet. The goal of this volume is to
lead beginning or advanced R users through phylogenetic- and functional trait-
based ecological analyses in R. It is expected that beginning users can use this vol-
ume as a step-by-step entryway into phylogenetic and functional analyses for
ecology in R, whereas it is expected that more advanced users will be able to use
this volume as a “cookbook” or quick reference to understand particular analyses.
The volume starts with chapters on the R environment and phylogenetic data in R.
These are followed by three chapters providing comprehensive coverage of phylo-
genetic and functional metrics of biodiversity and one chapter on null modeling and
randomizations for phylogenetic and functional trait analyses in R. Lastly, two
chapters focusing on integrating phylogenetic and functional trait information are
provided followed by a fi nal chapter that focuses on interfacing the R environment
with a commonly used C-based program called Phylocom that has been infl uential
in phylogenetic ecology [14].

1.2 Why R?

 After learning how to ask fundamentally important questions, basic natural history
and fi eld identifi cation of the organisms in their study system, I think there are few
skills more useful for young ecologists to learn than programming in general and
statistical programming in particular. Ecology, like many other disciplines, is rapidly
advancing in its analytical complexity and its utilization of “big data.” Performing
advanced analyses, even on small datasets, or performing even simple analyses on
large datasets typically require some level of comfort with computer code. Indeed,
when I meet ecology undergraduate and graduate students (and faculty) at other
universities I am often asked whether it is “worth it” to learn a programming lan-
guage like R. I usually provide the response “of course.” In many cases I am met
with an unconvinced look. I can read in their eyes that they really don’t buy my
response as a reason to go through what seems to be a daunting process of learning
a computer language. To combat this response I often like to fi rst say learning R is
very liberating as it frees one up to do many more analyses that they can currently
perform. Second, to buoy the fi rst statement I convey an estimate of the percent of
the journal articles that I have published that I think would have been possible with-
out R or the ability to program in some other language. The percent I generally

1 Introduction

3

estimate is surprisingly small to many (<20 %). In other words, a lot of the work I
do simply would never be possible without even a basic ability to write computer
code. I was fortunate enough to be confronted with this reality very early on in my
graduate career while working with big datasets and I realized that I better learn a
programming language quick if I was to fi nish my Ph.D. in under a decade.

 Learning R and using it day to day (when not in the fi eld, but often also using it
in the fi eld letting analyses run on my computer in the fi eld station while I was out
staring at trees) was perhaps one of the most valuable tools I gained in graduate
school. While it is certainly valuable to learn other programming languages, I would
argue learning R is the best starting place for ecologists. This is because ecology
and many other disciplines have converged on R for their statistical analyses. This
creates a positive feedback loop where more and more researchers perform their
analyses in R and write analytical code specifi cally for R, and therefore more
researchers fi nd themselves drawn into the R universe and also contribute. The R
code that researchers produce is often made available in packages or in the supple-
mental material of journal articles making analyses transparent and widely acces-
sible. The issue of accessibility brings us to another important reason why R should
be used. R is free! You do not have to pay large sums of money to run your statistics
and neither do your collaborators with whom you would like to share your code.
Anyone anywhere can freely download the software on their computer and run the
most current and advanced analytical code in their fi eld. This greatly levels the ana-
lytical playing fi eld for ecology and that can only be a good thing for our science
and for achieving our common goals. So I ask you—why not R? The most advanced
ecological analyses are now generally coded in R, and this code is becoming or
already has become the common analytical currency in ecology.

1.3 Structure and How to Use This Book?

 The book is designed to introduce you to phylogenetic and functional trait analyses
that can be performed in R. I will not describe in detail each chapter here, but if you
are new to R and/or new to phylogenies you should not skip past Chap. 2 . This
chapter introduces you to phylogenetic data in R—how it is structured and how it
can be plotted and manipulated to meet your research goals. This chapter is simply
designed as a primer for ecologists and not a comprehensive treatment on phyloge-
netics in R. At the given time there are enough R packages for phylogenetic analy-
ses that such a treatment would be hard to compile, but I do highly recommend
 Analysis of Phylogenetics and Evolution in R by Emmanuel Paradis in the Springer
UseR! series [15] as a wonderful introduction to phylogenies in R and comparative
analyses. I would also highly recommend reading a few key texts regarding phylo-
genetics and comparative methods to help you fully understand what goes into
inferring phylogenies and analyzing data in a phylogenetic context (e.g., [16 – 18]).
The present book will cover some similar topics covered in the Paradis book [15]
related to how to handle and plot phylogenetic data in Chap. 2 and comparative

1.3 Structure and How to Use This Book?

http://dx.doi.org/10.1007/978-1-4614-9542-0_2
http://dx.doi.org/10.1007/978-1-4614-9542-0_2

4

analyses in Chap. 7 , but the result of the present book is a signifi cant departure
focusing primarily on ecological analyses and not macroevolutionary analyses per
se. Similarly, the UseR! series book Numerical Ecology in R by Daniel Bocard,
Francois Gillet, and Pierre Legendre [19] would likely be of interest and use to the
readers of this book for general ecological analyses, but the present book signifi -
cantly differs due to its exclusive focus on phylogenetic and trait data.

 The vast majority of the analyses to be discussed in this book can be accom-
plished using simple “plug and chug” functions in a variety of existing R packages.
In teaching courses and workshops on these topics, I have come to two main conclu-
sions. The fi rst is that the participants in my courses and workshops often fi nd it
very diffi cult to navigate the large number of packages available, and they fi nd it
diffi cult to determine whether certain functions do what they want or are similar to
other functions in other packages. The second is that participants in my courses and
workshops can very easily type in a line of code and get a result, but learning to do
this is not very benefi cial by itself. This is because the student doesn’t realize exactly
what was calculated and how it was done. This causes serious problems and limita-
tions when the time comes to interpret the results or when a researcher decides they
would like to modify the analytical approach to suit their particular needs. With
these issues in mind, the majority of the code provided in the book is designed to
lead you, the reader, through the computational steps necessary to calculate the
metrics being discussed. I will use my own code to achieve this goal. In some cases
my code will be very similar to that in the “canned” R functions already available,
and in other cases the code may be signifi cantly different but produces the same
result. This difference can be due to different coding styles between me and the
original author or my attempts to speed up code by using functions like apply()
instead of for() . After we have broken an analysis into its individual components
and calculated the desired result, I will provide you with the name of the “canned”
function in an R package, where possible, that should provide the same result. Thus,
if you wish to eschew learning how the fi ne details regarding how the analysis works
and what it means, you can ultimately just use the functions highlighted at the end
of each section. Though, I don’t recommend this approach and I hope that you read,
work, and think through the components of the code I provide so you have a detailed
understanding of how that number you receive at the end was calculated and what it
means. By doing this you will also learn R and learn how to tinker with R code for
phylogenetic and functional trait analyses so that you can customize new analyses
for your own particular dataset. While working through the examples in the book,
you may fi nd that you often run across a new function that you were not aware of
before and you may want a more detailed description of what is provided to that
function and what comes out of it. To get this information you can access the help
fi le for any function using a “?” and then the function name. For example, if you
wanted to know what the mean() function does in R, you could see the help page
for this function by typing:

1 Introduction

http://dx.doi.org/10.1007/978-1-4614-9542-0_7

5

 I highly recommend taking this approach and I often do it myself to navigate the
code of others and to remind myself how to use a function that I use infrequently.

 At the end of each chapter you will fi nd a series of exercises. Some of the exer-
cises will be quite simple and are simply designed to get you used to running the
analysis on a variety of datasets. Other exercises will require you recall the informa-
tion you learned in previous chapters. The goal of this is to help you integrate con-
cepts and information and to help you memorize code and analyses through
repetition in different venues. A few exercises will require you to use functions we
have not covered. These exercises will be much more diffi cult to accomplish for the
new user, but I have generally told you what new functions you will likely have to
use to accomplish the task. It is then up to you to discover how to use these functions
and put them together to solve the problem. This is the type of practical problem
you will encounter in your future work where you have a particular problem to
solve; you break that large problem into many small problems that can be solved
with the right tools (i.e., R functions) and then you integrate the solutions to all of
those problems to solve the one large problem. Going through advanced exercises
such as these will rapidly help you become a more powerful R user.

 Lastly, the book relies on many example datasets. Some of these datasets are
subsets of larger datasets I utilize for my own work in plant ecology. Others are
datasets I have “cooked up” in R. I encourage you to fi rst utilize these datasets to run
the analyses, but you should then quickly transition to using your own datasets.
As you will quickly fi nd out it is very easy to plug and chug with example datasets,
but tiny problems will lurk when you use your own dataset. While these issues
regarding minor differences in formatting between fi les, for example, may be frus-
trating, it is a common obstacle in data analysis and learning to confront these prob-
lems sooner rather than later will be useful to you.

1.4 Setting Working Directories and Package Installation

 This book is intended for an audience that spans researchers that are relatively new
to R to more advanced R users all of whom would like to incorporate phylogenetic
and/or functional information into their research programs. In order to span this
gradient, it is necessary to cover some basics that an advanced user does not need to
review. For those advanced users this subsection will not be that useful aside from
the list of packages at the end that we will utilize in this book. Relatively, new R
users may need this section for a brief review on what working directories are and
how they are set and how R packages are installed and loaded. We will begin with
discussing working directories.

 The working directory is the folder (a.k.a. directory) on your hard drive in which
the fi les that you are using and creating are stored. For example, you have a fi le for your
phylogenetic tree and a fi le for your community data in a folder and you would like to
read those fi les into R and generate output in R that you can write to this same folder.

1.4 Setting Working Directories and Package Installation

6

This can be accomplished by typing in the path to your fi les every time you read and
write them into and out of R, but it is often easier to simply set a single working
directory for the project you are working on at that time. For those of you still not
totally excited about typing in commands, you can set the working directory in
R using drop down menus:

 For PC it is under the “File” menu as “Change dir…”
 For MAC it is under the “MISC” menu as “Change Working Directory…”

 For those of you ready to take the plunge and start typing commands, you can set
working directories if you know the “path” to your fi le as. For example:

 For PC:

 For Mac:

 You can always fi nd out your current working directory by typing:

 Getting the current working directory can be a good way to fi nd out “where you are”
currently so you can set a new path for your desired working directory. If you are
using the drop down menu to set your working directory, it is useful to get the cur-
rent working directory path using getwd() so you can begin to learn what a path
looks like and how to defi ne one. Once you have set your working directory you can
obtain a list of all of the fi les in that working directory. You can accomplish this for
any directory, actually, on your computer, but for your current working directory
you can simply type:

 You will now see a list of fi le names print out on your R console. These are all of the
fi les currently contained in your working directory.

 We are almost ready to jump right in and proceed to the next chapter on phylo-
genetic data in R, but fi rst we must discuss packages. R packages contain a series
of functions that can be used for data manipulation or analysis. The functions in a
package may use each other and often other functions written in other packages.
That is, a function X in package A may need to perform a sub-analysis that can be
performed by function Y in package B. In those instances function X in package
A “depends” on function Y in package B. Such dependencies are commonplace
and one of the wonderful things about R such that you don’t have to write your
own function anew for your package. You can simply call a function from another
package. In this book we will use many packages for phylogenetic and trait analy-
ses in ecology that are useful by themselves or integrated with other packages.

1 Introduction

7

To install a single package, in this example the R package vegan , you can type the
following command:

 After typing in this command and hitting return you may be asked to select a
“mirror.” Simply select a mirror that is closest to your geographic location. This will
then be the default location from where you download your desired R packages for
the current session. Once you have downloaded an R package, it is there for each R
session in the future, but its functions are not available to you immediately until you
load the package into memory. To load an R package at the start of your session or
midway through a session when you need a new function from a different package,
you can use the following code again using vegan as our example:

 If the package you are loading depends on other packages that are already down-
loaded on your computer, the other packages will also be loaded. If those packages
necessary are not on your computer you will receive a message telling you that they
must be downloaded.

 Now that we have covered how to install and load specifi c packages, I will sim-
ply list the packages that we will use in this book. These could be all installed en
masse, but since you may not want to utilize all analyses in this book or you may not
want these many items downloaded to your hard drive I will only list them and
expect that you can download those that you need or want when you see me call the
library in the code in a chapter. The specifi c packages we will use are: ape , vegan ,
 phytools , geiger , abind , picante , Rsundials , nlme , adephylo , phylobase , ecodist ,
 ade4 , bipartite , geometry , packfor , GUniFrac , SDMtools , fBasics , and FD .

1.4 Setting Working Directories and Package Installation

9N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_2, © Springer Science+Business Media New York 2014

2.1 Objectives

 The objectives of this chapter are to introduce the user to how phylogenetic
information is stored, presented, and manipulated in R. We will cover primarily the
class “phylo” in this chapter since that is the class that is most frequently utilized in
phylogenetic diversity and comparative analyses in R. By the end of this chapter the
user should have a basic command of how to plot phylogenies and extract informa-
tion from the data fi les. The chapter is designed for beginners, and users familiar
with using phylogenies in R may quickly scan this chapter to refresh.

2.2 Loading Phylogenies into R and the Structure
of the “Phylo” Class

 This section deals with loading phylogenetic data fi les into R as a “phylo” class and
how the data are structured inside R. The focus will be primarily on learning the
basics nuts and bolts of phylogenetic data in R. As such there will be a number of
aspects of phylogenetic data that are not germane to the goals of this book that will
not be covered. We will begin by simply reading in an example phylogeny that is in
the parenthetical Newick format. This can be accomplished using the read.
tree() function in the ape R package. Thus, we must fi rst load the ape package
and then use the function .

 Chapter 2
 Phylogenetic Data in R

 The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_2) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_2

10

 To print the original fi le to your R console so that you can see the original Newick
format simply use the write.tree() function.

 Alternatively, you could also open the original fi le in a text editor. We can also read
a Nexus formatted phylogeny into R using the read.nexus() function in the ape
package.

 To print the original Nexus format to your R console so that you can see the original
Nexus format simply use the write.nexus() function.

 The Nexus fi le could also be opened with a text editor or with the program Mesquite [20].
Both fi les are now stored as class “phylo” objects in R. Thus, the two fi les that were
once in different formats are now stored using a structure in R allowing us to use
either version in the following analyses in this chapter and the majority of this book.
While Nexus fi les can and often do hold much more information along with the
phylogenetic tree such as trait data and sequence alignments, in this instance the
Nexus fi le does not hold additional information and we will use the Newick version
stored in the my.phylo object for the remaining analyses.

 Now that our phylogeny is in R we should explore its contents and structure fi rst
before we do any analyses just like you should do for any other data fi le you would
have in R. To do this we can fi rst simply type the name of the object.

 We see that our example phylogeny contains 26 tips and 25 internal nodes. The
phylogeny also has “terminal nodes,” which are the tips. In some cases a phyloge-
netic tree may not be fully bifurcating. That is, a single branch may not split into
two branches at an internal node and may branch simultaneously into three or more
branches. This is called a “polytomy.” A polytomy can be further classifi ed as a
“hard polytomy” where the branching of three or more lineages from one is to sig-
nify an actual simultaneous divergence or a “soft polytomy” where the branch of
three or more lineages from one is used to signify ignorance regarding who is most
closely related to whom between the derived and ancestral lineages. Typically, the
polytomies that you will encounter will be soft polytomies. A quick way to tell
whether your phylogeny probably contains a polytomy is that the number of internal
nodes is less than the number of tips minus 1.

 The next item printed out by R is a series of tip labels for the fi rst six tips. The
next item lists node labels if they exist for our phylogeny. In many cases you will
not have node labels in your phylogeny. Finally, we see that the phylogeny is rooted
and has branch lengths. This is all useful information that we can quickly glean, but

2 Phylogenetic Data in R

11

it is simply printed on our screen and is not useful for more detailed investigations
into our phylogeny. In some cases we can simply ask R whether our phylogeny has
a particular structure. For example, we can ask if the phylogeny is rooted or if it is
ultrametric (i.e., all tips end at the same point as is true for a phylogeny of extant
species scaled to time).

 Though, even the answers to these questions are not only a fraction of what we
might want to know or extract from our phylogenetic tree in R and we therefore
need to learn more about how the phylogenetic data is structured in R. To learn more
about how our phylogenetic data is structured, we can ask for the names of our
phylogeny object.

 We see that fi ve names: “edge,” “tip.label,” “Nnode,” “node.label,” and “edge.
length” are reported. We can extract each of these from the object using the $ sym-
bol and the name. For example, to examine what the “edge” is we can do the
following:

 This results in a matrix with two columns, and the number of rows corresponds to
the number of branches in our phylogeny. The values in the fi rst column correspond
to the internal node from where the branch originates, and the values in the second
column correspond to the internal or terminal node where the branch ends. The next
name we can examine is “tip.label.”

 This returned a vector containing all of the names of the taxa on the tips of our
phylogeny. We will examine this later, but the order of the names in this vector is
from the species on the bottom of the phylogeny when plotted using plot(my.
phylo), and the last name is the species on the top of the phylogeny when plotted
using plot(my.phylo) . We now examine what our phylogeny object holds
under the name “Nnode.”

 The number reported is simply the number of internal nodes in our phylogeny. Next
we can ask what is contained under the “node.label” name.

2.2 Loading Phylogenies into R and the Structure of the “Phylo” Class

12

 This produces a vector of the internal node labels in our phylogeny with one label
per node. In this instance the node labels are simply the numbers 1 through 25.
Recall, that many phylogenies will not have node labels or may have labels for only
some of the internal nodes. Lastly, we can ask what is under the “edge.length” name
in our object.

 A vector of branch (i.e., edge) lengths is returned. The length of this vector is equal to
the number of branches in our phylogeny, and the order of the values corresponds to the
order of the branches described under my.phylo$edge . Thus, if we wanted to
make a matrix that had the information regarding the node numbers for the begin-
ning and end points of each branch in the fi rst two columns and the length of that
branch in the third column we could do the following:

 We now have investigated the basic structure of our phylogenetic data object in R.
In Sect. 2.4 we will discuss how to modify this data or to use it to calculate addi-
tional information, but fi rst we should discuss how to plot phylogenetic trees in R
because it will help us visualize downstream manipulations we will perform.

2.3 Plotting Phylogenetic Trees in R

 In any situation it is always a good idea to fi rst look at your data once it is read into
R. In the case of a table or matrix one can plot the data as a histogram or just look
at the numbers themselves. In the case of phylogenetic trees, a fi rst approach can be
to examine the object using the approach we used in the previous section. After this
initial examination it is good to simply plot the phylogenetic tree to further investi-
gate the data to assure there is nothing out of place or “odd” about your data. There
are two easy ways to plot a phylogenetic tree in R. The fi rst just uses the generic
 plot() function (Fig . 2.1):

 If we would like to decrease the size of the names of terminal taxa, in this case
species, in the plot we can adjust their size by changing the cex value to smaller
than the default of one. We can also add a scale bar using a second function called
 add.scale.bar() and providing the length desired for the scale bar (Fig. 2.2).

 The plot() function is useful for a quick examination, but it can be limited as it
is not specialized for phylogenetic data. The function plot.phylo() in the ape

2 Phylogenetic Data in R

13

package is more fl exible and designed to specifi cally plot phylogenetic objects. This
function allows the user to display the phylogeny in different styles or types and to
manipulate species names and tree branches. For example, we can plot our phylog-
eny as a “fan,” as is often done for phylogenies much larger than ours, with gray
branches (Fig. 2.3).

 As you can see from the code there are many options available to us regarding how
to plot the phylogeny including whether or not to show labels, how to color the
branches, and how to color the terminal taxa. This list does not include all of the
possible ways to alter the appearance of the phylogeny using plot.phylo() . For
a full description of all the possibilities, simply type ?plot.phylo .

 Simply plotting your phylogeny in this way or with some other exotic format is
fun and can be useful and you may fi nd that you may want to add additional infor-
mation to “decorate” your tree and this may not be possible using the plot.
phylo() function. For example, in the previous section we looked at the node
numbers for each branch, but we may not know how those node numbers are arrayed

 Fig. 2.1 The phylogenetic tree for our dataset

2.3 Plotting Phylogenetic Trees in R

14

on our phylogeny. To solve this problem we could fi rst plot our phylogeny, in this
example with plot() .

 Next we could simply ask R to place the node number in black for each internal
node in a gray box on that node using the nodelabels() function (Fig. 2.4).

 You will note that the node label nearest to the root of the phylogeny is one more
than the number of species in our phylogeny. That is because the fi rst 26 node num-
bers correspond to the 26 species in our phylogeny. To see this you can use the
 tiplabels() function (Fig. 2.5).

 A similar procedure could be used if you had a value for each internal node sorted
in the same order as the node numbers. For example, you may have an ancestral trait
value estimated for each internal node that you would like to assign. This could be

 Fig. 2.2 The phylogenetic tree for our dataset with smaller labels and a branch length scale bar

2 Phylogenetic Data in R

15

done simply by providing a vector of the values to the nodelabels() function.
There are a number of additional ways to display and decorate your tree with differ-
ing degrees of usefulness. It is not the goal to cover those more exotic approaches
presently, and I will leave you to explore the wonderful diversity of ways one can
plot a phylogeny in R. For the present time we can be satisfi ed with simply
visualizing the basic structure of our phylogeny and we can proceed with how to
manipulate that information or to calculate additional information from the basic
structure.

2.4 Manipulating and Calculating Additional Information
from Phylogenetic Trees in R

 We now know how to examine the structure of our phylogenetic data objects in
R and how to plot the phylogenies for visualization. The next step is to learn
how to manipulate or extract additional information from the phylogenetic trees.

 Fig. 2.3 The phylogenetic tree for our dataset displayed as a circular phylogeny or “fan” type
phylogeny

2.4 Manipulating and Calculating Additional Information from Phylogenetic…

16

We will begin by learning how to extract subsets of our original phylogenetic tree.
This can be accomplished in two ways—by extracting entire clades or by pruning
particular taxa out of the phylogeny. Both approaches can be useful for an ecologist.
The fi rst is useful if one wanted to perform an analysis only on a particular clade and
the second is useful if one is given a phylogeny that contains more species than are
in the community or trait data set being analyzed. To extract individual clades from
our phylogeny, we can use the subtrees() function. This function takes an input
phylogeny and produces a list where each element is a phylogeny object of class
“phylo” containing the species derived from an individual internal node in the phy-
logeny. Thus, the length of the list should be equal to the number of the internal
nodes in the phylogeny.

 We can look at the 15th individual subtree by asking for the 15th element in the list
produced by the subtrees() function.

 Fig. 2.4 The phylogenetic tree for our dataset with internal nodes labeled with their node
numbers

2 Phylogenetic Data in R

17

 We see that this particular subtree contains three taxa and two internal nodes. We
can visualize this subtree by plotting it (Fig. 2.6).

 The alternative to extracting all subtrees or clades from the original phylogeny is to
selectively prune individual taxa out of the phylogeny. This can be done using the
 drop.tip() function, which takes a phylogeny object and a vector of names to
be pruned from the phylogeny (Fig. 2.7).

 We can see that the three species we specifi ed were pruned out of our original
phylogeny. This approach can therefore be a powerful tool, but the downside is that
you must know all of the names you don’t want to keep whereas it may be easier to
know all of the names you do want to keep. Later in the book we will address this
situation.

 Fig. 2.5 The phylogenetic tree for our dataset with internal and terminal nodes labeled with their
node numbers

2.4 Manipulating and Calculating Additional Information from Phylogenetic…

18

 Fig. 2.6 A plot of the 15th
subtree or clade from our
example phylogeny

 Fig. 2.7 A plot of our example phylogeny with species “e,” “j,” and “s” removed or pruned.
Compare with Fig. 2.2 to visualize the difference

2 Phylogenetic Data in R

19

 Next let us consider a situation where our phylogeny is not fully bifurcating. In
many cases such a phylogeny will cause no problems for the analyses we will cover
in this book, but in some cases the functions check that the phylogeny is fully bifur-
cating before running the analysis. If the phylogeny is not bifurcating the function
will not run. Because our original example phylogeny was fully bifurcating, let us
read in an example phylogeny with a single node in it that splits into three daughter
lineages and not two (Fig. 2.8).

 The node with three branches emerging from a single node represents our uncer-
tainty regarding the true relationship between these three species. There are three
possibilities: the fi rst two lineages are more closely related to each other than the
third lineage, the fi rst and third lineages are more closely related to each other than
the second lineage, or the second and third lineages are more closely related to each
other than the fi rst lineage. When this uncertainty occurs it is often good practice to
randomly resolve the polytomy several times and rerun the analysis each time to
estimate the sensitivity of the result to the uncertainty (e.g., [21]). In the above simple
case there are only three possibilities, but imagine a situation with multiple polyto-
mies some of which are nested. The number of possibilities could be quite large.
Further, when a polytomy of three lineages is resolved, a new node must be
added to the phylogeny and the distance from the original polytomous node to the
new node is unknown and varying this distance introduces a massive number of

 Fig. 2.8 A plot of our
example phylogeny
containing a single soft
polytomy indicating
uncertainty regarding the
relatedness of sp1, sp2,
and sp3

2.4 Manipulating and Calculating Additional Information from Phylogenetic…

20

possibilities to consider. A fi rst step that some phylogenetic programs, such as
Mesquite [20], take is simply placing the new node at half the branch length from
the polytomous node to its daughter node. Unfortunately, as far as I am aware, func-
tions currently in R do not have this particular capability, but there is a function
called multi2di() that randomly resolves polytomies in your phylogeny, but as
we will see in a second the new branch lengths separating the species are zero. In
this sense the multi2di() function tricks the R function you are trying to run
into thinking the phylogeny is bifurcating, but in reality it has placed a new node at
zero distance from the original polytomous node. Despite this, the multi2di()
function can be a quick and unbiased way to manipulate your polytomous phylog-
eny so that the function you are interested in implementing will run.

 We see that the new phylogeny has one more node than the original phylogeny we
read into R and that the number of internal nodes is now one less than the number
of tips. Though when we plot the bifurcating phylogeny we see that the tree still
looks to have a polytomy. This is because the new node randomly resolving the
polytomy has been placed zero distance for the original polytomous node (Fig. 2.9).

 Fig. 2.9 A plot of our
example polytomous
phylogeny where we have
randomly resolved the
polytomy for sp1, sp2, and
sp3. Note that the
phylogenetic tree still appears
to contain a polytomy

2 Phylogenetic Data in R

21

 Our next goal is to extract the branching time for each internal node for an ultrametric
phylogeny. This can be done simply using the branching.times() function in
the ape package.

 The output is a vector of values with a length equal to the number of internal nodes
in the phylogeny. The order of the nodes is from the root of the phylogeny towards
the tips. It is important to know that this function only works for an ultrametric
phylogeny. If the phylogeny is not ultrametric some nodes may have a negative
branching time because they are distal of some terminal taxa.

 The last piece of information that we can extract from a phylogeny that we will
discuss in this chapter is a matrix depicting the phylogenetic distance between each
pair of terminal taxa or a matrix that depicts the amount of shared branch length
between each pair of terminal taxa. The fi rst type of matrix is typically referred to
as a phylogenetic distance matrix, and it forms the foundation for many phyloge-
netic diversity metrics. The phylogenetic distance matrix can be generated using the
 cophenetic() function.

 Because the matrix is large (25 × 25 species) we can look at just the top left corner
to get an idea of the output.

 We see that the resulting matrix has the species names as the row and column names,
and the values in the matrix are the sum of the branch lengths separating each pair
of species. Thus, if two species are far apart on the phylogeny their distance will be
larger than that for two closely related species. The second type of matrix reports
the shared branch length between all pairs of species and is often referred to as a
phylogenetic variance–covariance (VCV) matrix. This type of matrix is used in
some phylogenetic diversity metrics, but it is more commonly used in comparative
analyses. A phylogenetic VCV matrix can be computed in R using the vcv()
function.

 The diagonal values of the matrix are the distances from the root to the tip that con-
tains that species. The off diagonal values indicate the amount of shared branch
length between two species. Assuming a Brownian Motion model of trait evolution,
the diagonal values are used to estimate the expected variance in a trait, and the off
diagonal values are used to estimate the expected covariance in the trait values
between two species. I will explain this in more detail in later chapters, but essen-
tially high off diagonal values mean species that are more closely related and are
expected to have more similar trait values.

2.4 Manipulating and Calculating Additional Information from Phylogenetic…

22

2.5 Simulating Phylogenies in R

 Simulation studies are increasingly found in the ecological and evolutionary literature.
Some of these studies are strictly experimental in that they experiment with different
parameters to observe the likely patterns that can result. Other approaches use simu-
lations to estimate the parameter values that would best explain an observed pattern
in an empirical dataset of interest. Both are useful and now widely employed
approaches in phylogenetic investigations in ecology and evolution [22 – 24].

 The simulation of phylogenies in R is trivial, but this does not mean such simula-
tions should be used without careful thought. There are a number of ways to simu-
late phylogenies in R, but we will focus on the two most basic approaches available
in the ape package. The fi rst approach begins with a single branch that randomly
splits into two “daughter” branches. These daughter branches may then branch
themselves to produce two daughters and so on until the desired number of terminal
nodes is reached. This phylogenetic simulation can be performed in R using the
 rtree() function. Here, we will generate a random phylogeny with random split-
ting containing 40 species.

 This function can be modifi ed to include a root in the phylogeny or not. The default
is to include a root. Now plot your new simulated tree (Fig. 2.10):

 The fi rst thing you may notice is that the phylogeny is not ultrametric and that it will
not look like mine because it was randomly generated. You may also notice that the

 Fig. 2.10 A plot of a
simulated phylogeny
containing 40 species
generated by randomly
splitting lineages. Note that
your phylogeny will be
randomly generated and
therefore will not look like
the phylogeny plotted
presently

2 Phylogenetic Data in R

23

terminal taxa are labeled t1, t2, …, t40. This nomenclature for terminal taxa will be
used in both simulation approaches described here. If you were simultaneously simu-
lating community datasets with 40 taxa with a different naming convention, you could
simply replace the names on the phylogeny with your list in the desired order using
 new.tree$tip.label <- c(your.vector.of.names) . If you wished to
provide a vector of names prior to the simulation of the phylogeny to simply things,
then you could provide that vector after the tip.label argument in the function.

 The second basic approach for simulating phylogenies in R is to simulate a phy-
logeny that randomly clusters terminal taxa. Thus, in a sense this approach works
backwards towards the tips while the previous method moves in the other direction.
This “coalescence” method can be performed using the rcoal() function in the
 ape package.

 This generated a random coalescent tree. Now plot your new simulated coalescent
tree (Fig. 2.11):

 Fig. 2.11 A plot of a simulated phylogeny containing 40 species generated by simulating
coalescence. Note that your phylogeny will be randomly generated and therefore will not look like
the phylogeny plotted presently

2.5 Simulating Phylogenies in R

24

 You will see a rooted and ultrametric phylogeny has been randomly generated.
As I mentioned above, these are the two most basic approaches for simulating phy-
logenies, and if you were interested in performing a simulation study it would be
useful to consider the assumptions you would want to make regarding the phylog-
eny prior to simulating anything and to decide whether these assumptions are met
using one of the two approaches above or any other approaches available in R.

 Both of the above simulation approaches generate one phylogenetic tree at a
time. What if you wanted to generate 100 random phylogenies with 10 species
each? You would not want to sit at your computer and enter the line of code 100
times. To perform any function repeatedly in R you can write a loop function
called a for() loop. Such loops are generally fi ne for computationally easily
problems like simulating a phylogeny with ten species, but for larger problems the
 replicate() function may be quicker. Though for simplicity we will just use a
 for() loop here and only produce nine random splitting phylogenies with ten
terminal taxa in each and write each phylogeny to your working directory with a
unique fi le number with a “.txt” fi le ending. If you are new to R you will see lines
of code starting with a “#” symbol. This means that the text in that line following
the symbol is a comment which R will disregard. Commenting your code is essen-
tial particularly when writing loops or functions. This helps you understand what
you are doing and your goals and it also greatly helps anyone that may use your
code in the future.

 If you now navigate to your working directory on your hard drive you will see nine
new fi les named “1.txt,” “2.txt,” …, “9.txt.” Open one of the fi les in a text editor and
you will see a Newick version of your simulated random splitting phylogenetic tree
for that iteration of the for() loop. Thus, it can be fairly easy and fast to simulate
a phylogeny in R and again the central issue will be whether the simulation you are
using is appropriate for your particular research goals. It is not possible for me to
recommend one simulation approach over another for every problem because the
goals of simulation approaches vary from study to study. Thus, my goal here is to
simply introduce you to two basic simulation approaches to get you started and to
demonstrate that simulating phylogenetic data is quite simple in R.

2 Phylogenetic Data in R

25

2.6 Conclusions

 We have now covered the basics of phylogenetic information in R particularly
focusing on the “phylo” class. There is a much more extensive text in the UseR!
series on phylogenetic information in R that I recommend for more detail [15], but
for the analyses in the present book this chapter serves as a suffi cient primer. The
most important aspects from the present chapter that you should keep at the fore-
front of your mind as we proceed into the next chapter on phylogenetic diversity
have to do with how branch length information is stored and manipulated in the
“phylo” class.

2.7 Exercises

 1. Make a Newick fi le for fi ve species (speciesA, speciesB, speciesC, speciesD, and
speciesE) where speciesA and speciesE are most closely related to one another,
speciesB and speciesD are most closely related to one another, and speciesC is
most closely related to speciesA and speciesE. The fi le should have no branch
lengths. Read this fi le into R and plot it with blue branches.

 2. Take the Newick fi le you just made and put branch lengths in the fi le. Set all
branch lengths to be 3.00 units in length and calculate the total branch length of
the phylogeny (i.e., the tree length).

 3. Calculate all subtrees for your phylogeny. Next choose one subtree and calculate
the length of all the branches of that subtree and divide this number by the sum
of the branch lengths in the whole phylogeny.

 4. Use the sample() function to randomize the tip labels on a phylogeny where
no name is lost and no name is used twice in the new phylogeny (i.e., sample
without replacement).

 5. Take the Newick fi le you made in Exercise 2 above and print a Nexus version of
the fi le to your R console.

 6. Repeat 1–5 above, except fi rst generate a six species phylogeny speciesA–
speciesF. speciesA and speciesB should be most closely related to one another,
speciesC and speciesD should be most closely related to one another, and speciesE
and speciesF should be most closely related to one another. Finally, speciesE and
speciesF should be more closely related to speciesA and speciesB and more dis-
tantly related to speciesC and speciesD.

 7. Simulate 45 coalescent trees (10 species in each) and write them to your working
directory.

 8. Put the 45 random coalescent tree fi les into a new directory, change your R work-
ing directory to that new directory and read each phylogeny into R, and calculate
the total tree length for each automatically (i.e., do not do this one tree at a
time—automate it). You will need to use the list.fi les() command and
make a for() loop.

2.7 Exercises

27N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_3, © Springer Science+Business Media New York 2014

3.1  Objectives

The objectives of this chapter are to first build a background understanding of why
ecologists are interested in quantifying phylogenetic diversity (PD) and then to uti-
lize R to quantify a variety of PD metrics that are the most frequently used. As in
other chapters, we will focus on breaking down each analysis into its constituent
parts to deepen our understanding of what exactly is being calculated and to facili-
tate your ability to write modifications of the code or novel code to generate PD
analyses suited to your particular research objective.

3.2  Background

Ecologists interested in studying and conserving biodiversity are tasked with quan-
tifying that diversity through space and time. Typically, this has been done using a
measure of species diversity. Other dimensions of biodiversity such as phylogenetic
diversity and functional diversity are less often quantified, but these forgotten
dimensions may be equally or more important [1]. For example, conservation biolo-
gists are interested in phylogenetic measures of biodiversity as a way to provide a
more robust estimate of the overall evolutionary history being currently preserved
in protected lands or the potential amount of biodiversity that could be lost in threat-
ened regions [25–27]. Basic community ecology research, on the other hand, has
focused on the phylogenetic structure of communities in order to gain insights into
their assembly (e.g., [28–38]). Despite their differing aims, both research programs
generate estimates of the phylogenetic diversity (PD) within and between species
assemblages across scales.

Chapter 3
Phylogenetic Diversity

The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_3) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_2

28

A large number of present day and past studies of community assembly and spe-
cies coexistence focus on the relative importance of species similarity. In particular,
empirical and theoretical research often asks whether ecologically similar species
should tend to co-occur or not (e.g., [39, 40]) or whether the ecological similarity of
species needs to be invoked at all to predict species coexistence and community
assembly (e.g., [41–43]). For example, the mechanism of abiotic filtering proposes
that ecologically similar species should co-occur [40] while strong biotic interac-
tions (positive or negative) should lead to ecologically dissimilar species coexisting
[39], although this viewpoint is challenged [44]. Lastly, a neutral model suggests
that the ecological similarity of species need not be invoked to understand coexis-
tence and assembly and that coexisting species are likely to be random with respect
to their ecological similarities [41–43]. With these central predictions in place, the
challenge becomes how can we measure the ecological similarity of species.

The phylogenetic diversity of communities has been of interest in community
ecology for almost 100 years where early studies analyzed the ratio of species and
genera in communities as a way to understand whether biotic or abiotic interactions
are important in community assembly [45–48]. Specifically, a low species to genus
ratio indicates the coexistence of distantly related species—what is termed today as
phylogenetic overdispersion. A high species to genus ratio indicates coexistence of
closely related species—what is termed today as phylogenetic underdispersion or
clustering. This species to genus ratio approach continued for decades culminating
with the famous community assembly rules and null model debates of the 1960s and
1970s (e.g., [49–52]). The foundation of the species to genus ratio approach is the
assumption that closely related species are more likely to have similar niches—
often termed phylogenetic niche conservatism (e.g., [53–55]). If closely related spe-
cies tend to share similar niches, then community assembly via abiotic filtering
should result in phylogenetic clustering whereas community assembly mediated by
biotic interactions should result in phylogenetic overdispersion (e.g., [7, 30]).
Charles Darwin originally alluded to niche conservatism when he considered the
implications of common descent. Specifically, species that share a recent common
ancestor should, on average, tend to be more similar to one another than they are to
more distant relatives. If this assumption is supported then phylogenetic diversity
may adequately estimate the functional diversity of an assemblage.

A problem with the species to genus ratio approach, beyond the assumption of
niche conservatism, is taxonomic ranks do not convey detailed information regard-
ing the time since two species diverged. A solution to this problem is to use phylo-
genetic trees with branch lengths. The branch lengths can be used to provide a more
refined measure of relatedness between taxa and therefore PD. Though, until the
early 2000s generating phylogenetic trees representing communities (i.e., commu-
nity phylogenies) was considered not possible. Pioneering work by Cam Webb and
colleagues that developed software tools such as Phylomatic [56] for estimating
phylogenetic trees for plant communities largely removed this obstacle. This inno-
vation sparked a large number of investigations into the phylogenetic relatedness of
coexisting plant species primarily in the tropics where measurements of species
function or niches in tens to hundreds of locally coexisting species are difficult to
achieve at best [28, 57]. This work has primarily sought to quantify the phylogenetic

3  Phylogenetic Diversity

29

diversity in a community and to ask whether that phylogenetic diversity is higher or
lower than that randomly expected given their species diversity. These results are
then often used to determine to what degree abiotic or biotic interactions govern
community assembly, but one must be aware that the phylogenetic proxy for simi-
larity is often not robust (e.g., [30, 34, 35, 44].

3.3  “Community” Datasets

A fundamental component of many of the analyses in this book are community data.
I will use the term “community” throughout the book very loosely to refer to a
group of species or taxa that you are studying. I will also interchange this term with
“assemblage” or “site” or “sample.” The interchangeability of these terms is not
used here to reflect biological similarity. Rather, I use them interchangeably because
the code can be used on a “community” of ten grass species, an “assemblage” of
mammals on a continent, a group of insects found at a “site” on the side of a moun-
tain, or the microbes found in a “sample” of soil. Ultimately, the point is that I do
not wish readers to think the following analyses can only be utilized for “communi-
ties” however one wishes to define them or not.

Ecologists store their community or assemblage data in their brains, notebooks,
and computers differently. Indeed, it often seems that the only commonality is a
lack of similarity in how ecologists record and store their community datasets. The
problem with this situation is that computer code written by others to analyze com-
munity data often requires a particular data format. This leaves ecologists the task
of trying to determine how to wrangle their, sometimes large, datasets into the
“right” format. The objective of this section is not to discuss how to wrangle ones
community data. Rather I will outline the general community data format utilized in
the R functions here and elsewhere and how to read your data into R so that it con-
forms to this format style.

The general format used to store and analyze community data in R is the “site-
by-species” matrix. I generally will refer to this as the community data matrix. The
“site” can be a community, an assemblage, a sample, or whatever group of taxa you
wish to analyze. The sites are arranged in rows with the names of the rows being the
names of the sites. Thus, if you had sampled insects every 100 m up a mountain for
a total of ten sites, your community data matrix would have ten rows. The columns
of your community data matrix contain species or taxa found in your sites. For
example, if you found 94 insects total in your 10 sites on the mountainside, you
would have a community data matrix with 10 rows and 94 columns with the row
names being the unique names of sites and the column names as the unique names
of species or taxa. If your data were collected on the appropriate scale, you may then
consider that your matrix contains many communities (i.e., individual rows) within
a meta-community (i.e., the entire matrix). The values in the matrix could be binary
indicating the presence or absence of each taxon in each site or the values could be
continuous indicating the abundance or relative abundance of each species or taxon
in each site. We can examine these data types by reading in examples of each. First

3.3  “Community” Datasets

30

we read in a community data matrix where the values are binary indicating the pres-
ence or absence of each species. The example table is tab delimited with column
headers and the row names in column one.

Summing the rows of this matrix will provide the richness for each site.

Summing the columns of this matrix would provide the number of sites a taxon
occupies. This value could be divided by the number of sites (i.e., the number of
rows) to calculate the occupancy rate for a taxon in the study system.

If we examine a community data matrix with values indicating the number of indi-
viduals, we can see that the row sums are the total abundance of all taxa per site and
the column sums are the total abundances of taxa in the study system.

If we examine a community data matrix with values indicating the relative abun-
dance of taxa, we can see that the row sums should equal one and that the column
sums equal the sum of the relative abundances for a taxon across sites.

The community data matrix format is not unique to phylogenetic and functional
analyses of ecological data. Rather, phylogenetic and functional analyses have
adopted this format in part because the format allows for many aspects of communi-
ties to be quantified quickly and because maintaining this format allows phyloge-
netic or functional analyses to utilize R functions originally built for other ecological
analyses.

Some ecologists may record their data in the field naturally as a site-by-species
matrix and enter it into their computers in that format. In such instances it is easy to
read the data into R for ecological analyses. In many other cases, ecologists record
their data giving each individual its own row in a field notebook with perhaps a
column indicating the individuals name, the location of the individual (i.e., what
community it was found in), the size of the individual, and so on. This type of data

3  Phylogenetic Diversity

31

can be read into R relatively easily and automatically recompiled as a community
data matrix. For example, imagine you could easily format your data with three
columns where each row is an individual. The first column is the name of the site
where the individual was observed, the second column was a one for present or
perhaps the size of the individual, and the third column was the name of the species
or taxon for the individual. Such a format is likely easy to generate by moving col-
umns in the typical spreadsheet programs many ecologists use and to save as a tab
delimited .txt file with no column names. This data format can be read into R using
the picante package [58]. First load the picante package.

Next use the readsample() function to read in your three-column text file with
no column headers and examine the output.

In this instance I put ones in the second column to simply indicate presences of an
individual. The values in the community data matrix are the numbers of individuals
for a taxon per site. If I utilized the size of the individual in the second column, the
values would have been equal to the sum of the sizes of all individuals for a taxon
per site. If we wished to simplify our community data matrix such that the values
are binary representing presence or absence, we could use the vegan package
decostand() function and use the “pa” method.

Similarly, if we wanted to transform our original matrix into relative abundance we
can use the same function and the “total” method, which divides each value in a row
by the total of all values in a row if the MARGIN is set to one.

If you would like to save a copy of your community data matrix, you can write it to
your hard drive using the write.table() function setting the value separation
to “\t” for tab delimited text and row and column names as True.

If you would like to save your community data matrix in the three column format,
you can use the writesample() function.

Now that we understand how community data can be read into R and stored in a matrix
format we can move on to the analysis of our community data. In the following

3.3  “Community” Datasets

32

sections we will focus on calculating three main classes of PD metrics using
community data matrices. The goal is to be able to simultaneously calculate the PD
of each site (i.e., row in the community data matrix) by providing the R function the
community data matrix and a phylogenetic tree.

3.4  Tree-Based Measures of Phylogenetic Diversity

Metrics of biodiversity that incorporated evolutionary history have existed for
approximately a century. Early metrics utilized taxonomic ranks and taxonomic
ratios as phylogenetic trees with reasonably inferred branch lengths were not avail-
able [45–48]. Over the past 30 years the development of phylogenetic diversity met-
rics that utilize branch length information has rapidly accelerated and the number of
articles published in leading ecological journals that utilize taxonomic ratios is
nearly zero. Dan Faith’s “PD” metric published in 1992 [25] is often considered the
first clear demonstration of how to calculate phylogenetic diversity using a phyloge-
netic tree with branch lengths, though previous discussions do exist (e.g., [59]).
Faith’s metric was, and still often is, called “PD.” This name causes problems given
that researchers often abbreviate the general concept or measurement of phyloge-
netic diversity, and not Faith’s metric per se, as “PD.” I prefer to utilize the abbrevia-
tion “PD” to refer to the general concept or measurement and “Faith’s Index” as the
metric published by Faith [25] and will do so throughout this book. Faith’s Index is
described as the sum of the branch lengths connecting all species in an assemblage.

	
Faith = å

i

n

il
	

where there are n branches with each having a length of l in a phylogeny containing
only the species in the assemblage. Thus, adding a species to an assemblage adds at
minimum a terminal branch to the phylogeny thereby often leading to a correlation
between the species richness of an assemblage and Faith’s Index in a study system.
Given that Faith’s Index is the sum of all branch lengths in a phylogeny containing
only the species in an assemblage, the calculation of this metric is simple if we can
quickly prune a phylogenetic tree to only include the species in our assemblage. We
begin by reading our community data matrix into R.

In this example file the first row contained the taxa names and the first column con-
tained the name of the assemblage. The example phylogenetic tree containing all of
the species in our community data can be read into R using the read.tree()
function.

3  Phylogenetic Diversity

33

We see that the phylogeny contains 15 taxa (i.e., tips) and 14 nodes, it has branch
lengths, and it is rooted. Because the number of nodes is one less than the number
of tips, we know the phylogeny is fully bifurcating. Generally, when reading any
data into R you should plot it and phylogenies are no different. This helps identify
any clear problems with the dataset prior to any additional analyses that may be
affected (Fig. 3.1).

The phylogeny has now been plotted and we do not see any clear problems with the
dataset. Potential problems that could easily be detected are nonsensical taxa names
on the tips of the tree that do not match the names of taxa in your community data
matrix; the phylogeny is not ultrametric when you expected it to be ultrametric (this
can also be checked using is.ultrametric()), etc.

In this simple example for calculating Faith’s Index for a single community, and
not all communities at once, we must extract the data from the community for all
species that are present (i.e., have an abundance or relative abundance greater than
zero). The community we will analyze is the first community in our example data-
set. We will therefore ask R for the first row in our example community data matrix
for only those columns (i.e., species) where the values (i.e., the abundance or rela-
tive abundance) are greater than zero.

The ones in this code refer to the first row in the data matrix and the greater than zero
refers to wanting only those columns with a value greater than zero. The result is a

Fig. 3.1  A plot of our
example phylogeny

3.4  Tree-Based Measures of Phylogenetic Diversity

34

vector containing the abundances or relative abundances of only the species present
in the first community with the names of the vector being the species names.
Because only the species present in the community are in this output, we can simply
calculate the species richness of the community by asking R for the length of this
vector.

Now that we know how to extract from our community data only those taxa present
in a community, we can utilize this information to prune our phylogeny that con-
tains all of the taxa present in our community and many taxa that are not present.
This can be accomplished by using the treedata() function in the R package
geiger. To do this we first load the geiger package [60].

We now use the treedata() function to prune our original phylogeny. This func-
tion is designed to match and organize phylogenetic and trait data for comparative
analyses. Specifically, the function requires a phylogenetic tree and a matrix or vec-
tor of trait data with the row names for a matrix or names for a vector being the taxa
names. The function returns pruned versions of the phylogeny and trait data.
Although we are not using actual trait data presently, we can utilize the vector of
abundances and names of taxa extracted from our community data matrix as the
“trait” data thereby pruning our large original phylogeny to only contain the species
present in our first community.

The output includes a pruned phylogeny and trait dataset as well as a warning mes-
sage. The warning message in this instance is telling us that several taxa (i.e., tips)
in the phylogeny were not found in the trait dataset and were therefore pruned from
the phylogeny. It then lists these taxa. Given that the “trait” data we provided the
function was the abundance of only the present species in our community, this
warning actually confirms we have accomplished our goal of pruning taxa from the
phylogeny not in our community. Because the warnings will appear for every com-
munity in our dataset and we are only interested in obtaining the pruned phylogeny
for a community, we can modify the above code as follows.

We now have obtained a pruned version of our larger phylogeny. This pruned ver-
sion only contains the species found in our community. To compare this pruned

3  Phylogenetic Diversity

35

phylogeny to the original one, open a new quartz window and plot the pruned
phylogeny (Fig. 3.2).

Faith’s Index can now be easily computed using the pruned phylogenetic tree con-
taining only species found in the community by summing all branch (i.e., edge)
lengths.

This code only provides the Faith’s Index for a single community, but we would
ideally like to calculate the Faith’s Index for all communities at once. To accomplish
this we first write a simple function named prune.sum.function() for prun-
ing a large phylogenetic tree called my.phylo using row x from the community
data matrix. We then sum the branch lengths in the pruned phylogeny and output the
result.

Given that prune.sum.function()takes a single row (i.e., community) from
the community data matrix as input, we can apply this function to all rows

Fig. 3.2  A plot of our
example phylogeny after
being pruned to only include
species found in our
community

3.4  Tree-Based Measures of Phylogenetic Diversity

36

simultaneously using the apply() function using a MARGIN value equal to 1 to
indicate that we want to apply the prune.sum.function() to each individual
row in the input matrix called my.sample.

We have now rapidly calculated the Faith’s Index value for each of our communi-
ties. As is the case for many of the analyses that we will conduct in this book, a
function already exists to calculate the Faith’s Index metric. The phylogenetic and
function diversity functions are primarily available in the picante package. However,
a difficulty with the functions written in this package is that they often rely on
for() loops, which can be considerably slower than apply() functions. For
example, it is common for functions in picante to loop through each row in a com-
munity data matrix rather than simply use an apply() function as we have done
above. It is known that for() loops slow down analyses, and apply() type func-
tions should be used as much as possible. While the difference in computing speed
for small datasets is generally negligible, the difference in speed when handling
large datasets can be considerable particularly when randomization procedures are
invoked. In such instances I recommend not using the picante package and simply
using the apply() based functions provided above and elsewhere. Nonetheless,
calculating Faith’s Index using picante can be done using the pd() function.

The original version of Faith’s Index did not include the root of the pruned phyloge-
netic tree for a community or assemblage, but recently Faith’s Index has been stated
to include the root. There is even a differently named metric called “Evolutionary
History” or “Evolutionary Heritage” (EH) that was designed to be different from
Faith’s Index by its inclusion of the root [61]. The rationale for including the root is
that it provides more information regarding the long evolutionary history leading up
to the species found in the community. Thus, those interested in calculating the
historical diversity in an assemblage for conservation purposes, for example, the
inclusion of the root may be preferred. This can easily be calculated as follows.

A critique of Faith’s Index has been that it does not include information regarding
the relative abundance of individual species in the assemblages being analyzed.
This lack of information may not be of as much interest for conservation assess-
ments, but it may be terribly important for analyses of community structure and
diversity. This has led to the development of a version of Faith’s index that is
weighted by abundance [62] that I will call the Weighted Faith’s Index.

	

Weighted Faith i

n

i

n
= × ∑

∑
n

l A

A

i i

i 	

3  Phylogenetic Diversity

37

where n is the number of branches in the phylogenetic tree, li is the length of the
ith branch, and Ai is the average abundance of all species subtended by that branch.
As you can see, calculating this weighted metric is more complex than simply sum-
ming the branch lengths in a phylogeny containing community members. It requires
calculating a metric over all individual branches in the phylogeny containing the
community members. To calculate the Weighted Faith’s Index for a single commu-
nity, we start by extracting from a larger phylogeny the phylogeny containing only
the species in our community. In this example we will analyze the first community
(i.e., species with an abundance greater than zero in row one of our my.sample
object).

The next step is to generate an empty matrix that will hold the output for the vari-
ables we would like to quantify for each individual branch in our community phy-
logeny. We will fill the matrix initially with NA values, have four columns and the
same number of rows as there are edges (i.e., branches) in our community phylog-
eny. The number of rows therefore corresponds to the parameter n in the above
equation.

In the first two columns we will place the beginning and ending (i.e., basal and ter-
minal) node for each branch in our community phylogeny by asking for the edges
stored in our community phylogeny object. We will use this information to ask R
what species are subtended by each branch on the phylogeny.

In the third column of the matrix we will place the length of all edges (i.e., branches)
in the phylogeny. This column therefore contains the parameter li in the above
equation.

We now see that we have the nodes defining each edge in the phylogeny and the
length of that edge. To visualize what the node numbers in the first two columns
correspond to in our phylogeny, we can first plot the phylogeny and then plot the
internal node labels followed by the terminal (i.e., tip) node labels (Fig. 3.3).

3.4  Tree-Based Measures of Phylogenetic Diversity

38

We can now visualize what the information in the matrix we have created indicates.
We can see that an internal node in our phylogeny splits into two branches, if the
tree is completely bifurcating, each of which ends in a different node. For example,
in this phylogeny node 17 branches and ends in the terminal nodes 27 and 18. Thus,
if we wanted only the species from one of those two branches, we would not ask for
all species subtended by node 17. Rather we would ask for all species subtended by
either node 27 or node 18. In other words we would like to ask R to report the
average abundance of all species descendent from node 27 or 18 and not node 17
(i.e., the terminal node numbers in column two of our branches matrix object).
We could therefore write a simple for() loop to go through each row in our matrix,
ask for the species descendent from the node in column two, and average their abun-
dance. Summing this information would provide the denominator in the above
equation.

Fig. 3.3  A plot of our
example phylogeny with the
internal and terminal nodes
labeled. The node numbers
displayed help to understand
how we can select individual
branches for the Weighted
Faith’s Index calculation

3  Phylogenetic Diversity

39

As noted above, the number of branches in the phylogeny is the n parameter in the
equation and is simply the number of rows in our matrix or the number of rows
produced when asking for the edges from a phylo object.

The denominator of the Weighted Faith’s Index is calculated by summing column
four in our matrix. Recall that each row in column four contains the average abun-
dance of the species subtended by the node number indicated in column two. In
other words, each row in column four is an Ai value.

The numerator for the Weighted Faith’s Index equation is the sum of the products of
individual branch lengths (li) found in column three of our matrix and the average
abundance of the species from that branch (Ai) found in column four.

We now have the values to calculate the Weighted Faith’s Index for a single
community.

While useful, the above approach only analyzes a single assemblage at a time. This
is obviously suboptimal and was only used to demonstrate the general approach.
A better method would be to write a function to calculate the Weighted Faith’s
Index for a community and to apply this approach to the rows in the community data
matrix. To do this we write two small functions. The first is to generate a function
called get.leaves() that will provide the species subtended by each branch.
This will be accomplished by providing a temporary community phylogeny and the
values in the second column of the branches object.

The second function which we will call the weighted.faith.function()
will take an input community data matrix and trim a larger phylogeny called my.
phylo to an individual community phylogeny for each row in the community data
matrix. Using the community phylogenies and the get.leaves() function, we
can calculate the Weighted Faith’s Index.

3.4  Tree-Based Measures of Phylogenetic Diversity

40

While still a little cumbersome and containing a loop, the above code can now be
quickly applied to the community data matrix, my.sample, using the apply()
function.

We have now completed the calculation of the Weighted Faith’s Index. To my
knowledge this function is not available in any existing R package. Although there
are likely to be many tree-based metrics such as Faith’s Index developed in the
future, the original metric and its abundance-weighted derivative are likely to remain
the most widely used in conservation. Since the original derivation of Faith’s Index
in 1992, more complex measures of phylogenetic diversity have been developed and
that majority of these utilize some variety of phylogenetic distance matrix. In the
next section we will discuss and implement the two main classes of distance-based
measures of phylogenetic diversity.

3  Phylogenetic Diversity

41

3.5  Distance-Based Measures of Phylogenetic Diversity

The success and widespread use of tree-based measures of phylogenetic diversity
(PD) lies in their precedent and the ease with which summing branch lengths or
weighted branch lengths can be understood. Despite these qualities several addi-
tional metrics have been published that can produce alternative, or maybe even
refined, insights into the phylogenetic structure of assemblages. The majority of
these new metrics rely on a phylogenetic distance matrix of some variety and gener-
ally arose from a tradition in trait-based ecology of examining and contrasting the
pairwise functional distance between species or individuals in a community or the
nearest functional neighbor distances. Thus, in many ways the same mathematics
used to calculate early functional diversity metrics were simply adopted to quantify
phylogenetic diversity replacing a trait distance matrix with a phylogenetic distance
matrix. Although it seems like a handful of new phylogenetic diversity metrics are
published every year at this point, most generally fall into one of two categories—
pairwise or nearest neighbor. Some “new” metrics may not exclusively use these
conceptual frameworks, but they are often highly correlated with existing metrics in
one of these two categories and it can often be difficult to discern what novel infor-
mation is being extracted by the “new” metrics published. Given this situation,
I will simply cover the two main classes of PD metrics and the classic metrics
representing these classes. In some cases I will point you to associated metrics that
I will not discuss in as much detail but can be easily calculated in R.

3.5.1  Pairwise Measures

Distance-based measures of phylogenetic diversity utilize a phylogenetic distance
matrix or phylogenetic variance–covariance matrix to quantify a metric of related-
ness between species or taxa in a community or sample. Phylogenetic distance
matrices are simply matrices with taxa names on the rows and columns and values
in the cells depicting the phylogenetic branch length separating each pair of species.
Thus, the diagonal in such a matrix is the distance from a taxon to itself and there-
fore zero. A phylogenetic distance matrix can be calculated in R using a phylogeny
object as class “phylo” and the cophenetic() function (Fig. 3.4).

The phylogenetic distance matrix therefore simply reflects the branch lengths
between taxa with no other underlying assumptions beyond those that have gone
into original inference of the phylogenetic tree. A phylogenetic variance–covariance

3.5  Distance-Based Measures of Phylogenetic Diversity

42

(VCV) is slightly different from a phylogenetic distance matrix. The phylogenetic
VCV matrix represents the expected variance and covariances between species
assuming a particular model of trait evolution. In the simplest case, which is the
case generally utilized in phylogenetic diversity metrics relying on phylogenetic
VCV matrices, is that traits are assumed to evolve under a Brownian Motion model.
A Brownian Motion model assumes that traits evolve as a random walk along the
length of a branch in a phylogeny. Thus, the potential variance in a trait increases
with branch length. Further, the expected similarity between the traits evolving on
two lineages increases with their total shared branch length such that the expected
covariation of the trait values for two lineages increases with the shared branch
length. For example, in a phylogeny with a root 100 million years old where species
A and B diverged 12 million years ago and the lineage containing A and B diverged
from the lineage containing species C 40 million years ago, the expected covariation
of the trait values for A and B is proportional to 88 and the expected covariation of
trait values for A and C or B and C is proportional to 60. These expected covari-
ances make up the off diagonal values in the phylogenetic VCV matrix. The
expected variance in a trait is proportional to the branch length from the root to the
tip. In this case all species would have an expected variance proportional to 100.
These expected variances make up the diagonal values in the phylogenetic VCV
matrix. Although it is generally not the case for phylogenetic diversity analyses,
other models of trait evolution may be used to generate the phylogenetic VCV
matrix and that will change the formula for the expected variances and
covariances.

A phylogenetic VCV matrix assuming Brownian Motion can be generated in R
using a phylo object and the vcv() function in the ape package.

Fig. 3.4  A plot of our
example phylogeny

3  Phylogenetic Diversity

43

We see that the diagonal values are equivalent to the root-to-tip distance, and the off
diagonal values indicate the shared branch lengths between all species in the phy-
logeny. Thus, when assuming a Brownian Motion model, we see that the phyloge-
netic VCV matrix is not all that different from a phylogenetic distance matrix for an
ultrametric phylogeny. The exceptions being that the diagonals are root-to-tip dis-
tances and not zero, and the expected covariances are equivalent to the root-to-tip
distance minus the one-half of the phylogenetic distance between two species.

Now that we have a basic understanding of the types of matrices that enter into
distance-based PD metrics, we can proceed to discuss and calculate in R the most
widely used metrics. We will begin with pairwise metrics of PD. Pairwise metrics
have their roots in trait-based analyses where the idea is to summarize the overall
average distance in uni- or multivariate trait space between all species combinations
in a community or sample. This concept was adopted by Webb [28] and modified to
simply use a phylogenetic distance matrix instead of a trait distance matrix. The
pairwise metric that Webb [28] developed is still the most widely used metric and is
called the mean pairwise distance (mpd).

	
mpd

n
where i j

i j
= ¹

å åi

n

j

n
d ,

,
	

where there are n species in the community or sample, δ is the phylogenetic distance
matrix, and δi,j is the phylogenetic distance between species i and j. Because this
metric calculates all pairwise distances in a community or sample, it is often consid-
ered to be a “basal” metric of PD. That is, this metric and all other pairwise metrics
capture the overall phylogenetic dissimilarity of the taxa in a sample and do not
detect finer scale phylogenetic patterns. We will discuss this in more detail in the
next subsection on nearest neighbor metrics and why calculating both types of met-
rics and contrasting the results is useful.

The objective when calculating the mpd metric is to generate a phylogenetic
distance matrix between all species in a community and to take an average not
including the diagonal values because species i cannot equal species j. However, in
most cases the phylogeny we are utilizing contains many additional species or taxa
that are not found in our sample or community. Thus, we must prune this larger
phylogeny to only contain the species in our sample or community. Here, we will
first do this using a single community in our community data matrix. We will focus
on the first community in our data matrix (i.e., row one). The first objective is to
extract only those species in our community in row one that have a positive value
indicating they are present. We will ignore their abundances since we are calculat-
ing the original version of mpd that weights all present species equally. To extract
the present species in community one, we ask for all species in row one that have a
positive value.

3.5  Distance-Based Measures of Phylogenetic Diversity

44

We now have a vector of values containing only the names of the species present in
our community. We also have the names of each species in this vector. We can use
these names to extract only the rows and columns from the phylogenetic distance
matrix we generated above. This will provide a phylogenetic distance matrix that
does not contain the species not present in our community.

We now have a phylogenetic distance matrix for our community. We could simply
take a mean of the upper or lower triangle of this matrix if we allowed species i to
equal species j in our calculation, but since this is not allowed in the calculation of
mpd we will use the as.dist() function to provide only the lower triangle with-
out diagonal values and take a mean.

This simple calculation has now given us the mpd for a single community, but we
would now like to calculate it simultaneously for all communities in our community
data matrix. This can be accomplished by first generating a small function that takes
a row from the community data matrix and does the calculation we just performed.

Now that we have a simple function to calculate mpd for a single row of the com-
munity data matrix, we can use the apply() function to apply this function to all
rows in the community data matrix to rapidly calculate mpd for all communities.

The mpd of all communities can also be calculated using a preexisting function in
the R using the mpd() function in the picante package. The mpd() function is
conceptually similar to the above aside from using a slower for() loop to calcu-
late the metric across all rows in the community data matrix.

3  Phylogenetic Diversity

45

Although the vast majority of the early papers that employed the mpd metric
weighted all species or taxa in a community equally in the calculation, (e.g., [28, 32,
33, 63]), we can see from the code above that the mpd() function has an option to
weight the calculation by abundance. Weighting by abundance is often useful in the
analyses of communities since species are rarely equally abundant and the variation
in the shape of the abundance distribution across communities relays important eco-
logical information. Further, weighting metrics such as mpd by abundance adds
another valuable piece of information particularly related to the phylogenetic distri-
bution of abundance itself (see [38, 64–67]). For example, the most abundant spe-
cies in a community may be very distantly or very closely related. In such instances
the abundance weighted mpd value would be much higher or much lower, respec-
tively, than the unweighted mpd value.

The abundance weighted mpd, which I will call mpd.a, can be formalized as
follows:

	

mpd i

n

j

n

i

n

j

n
. ,

,
a = ¹

å å
å å

d i j i j

i j

f f

f f
where i j

	

The variables in the mpd.a equation are the same as those in the mpd equation with
the addition of the abundances of species denoted with the variable f for frequency.
The mpd.a metric was “invented” and became more widely used towards the end of
the first decade of this millennium. However, it should be pointed out that Rao had
published a very similar metric nearly three decades earlier [68]. The Rao metric
was designed as a general dissimilarity metric utilizing a distance matrix between
taxa and has been applied to both phylogenetic and trait-based investigations. The
primary difference between the Rao metric for within community diversity and the
mpd.a calculation is that species i can equal species j. In simple terms, this means
that a mean of the lower triangle of a community phylogenetic distance matrix is
calculated using the diagonal elements.

	

Rao i

n

j

n

i

n

j

n
’sD

f f

f f
alpha

i j i j

i j

=
å å
å å

d ,

	

While the inclusion of zeros in the Rao calculation, indicating the distance from an
individual species to itself, is conceptually important we will see below that the
mpd.a and Rao’s Dalpha metrics are monotonic and therefore will give the same rank-
ings of PD when comparing communities in your community data matrix. In other
words, conceptually it might matter, but it will not matter for your results.

3.5  Distance-Based Measures of Phylogenetic Diversity

46

In the spirit of consistency we will proceed with a simple calculation of mpd.a in
R while understanding that this concept, and essentially the same metric, was
invented by Rao [68]. The calculation of mpd.a is slightly more difficult because we
must weight the mean of the phylogenetic distances separating all species in a com-
munity by the product of their abundances. We will eschew the calculation of the
metric for a single community in this instance and simply write a function that can
be applied to all rows in our community data matrix.

The above function for the abundance weighted metric, mpd.a, can now be applied
to all rows in the community data matrix to rapidly calculate the value for each com-
munity simultaneously.

The mpd() function in the picante package can be used for this same purpose by
switching the abundance.weighted argument to true. Again the general workings of
the calculations are similar aside from the above code using an apply() function
rather than a for() loop.

In addition to the metrics detailed above, several other pairwise metrics have been
proposed in the literature. The vast majority produce results that are perfectly or
monotonically related to the mpd-based measures above as we will see in Sect. 3.6.
Here I will briefly discuss a few of these measures that are well known and often
implemented in the literature. The first metric I will cover was produced by Hardy

3  Phylogenetic Diversity

47

and Senterre [69] where they translated commonly used metrics from population
genetics, such as Fst, into the realm of community phylogenetics. Specifically,
Hardy and Senterre proposed that phylogenetic diversity, D, within a community k
can be calculated as:

	

D f fk
i

n

j

n

i j ik jk= ååd ,

	

where the variables are the same as the above equations aside from using a subscript
of ik to specify the abundance of species i in community k and not another commu-
nity. This clause becomes important when Hardy and Senterre [69] extend their
mathematical treatment to the partitioning of gamma phylogenetic diversity into the
within and between community components. We can see that this metric should be
highly correlated with both the Rao and mpd.a metrics and is a natural phylogenetic
extension of the Shannon Diversity index [69]. We can also see that this metric
could be simply calculated using the above code for mpd.a that we have written
replacing the weighted mean by summing the product of the community phyloge-
netic distance matrix and abundance products.

The other additional pairwise metrics that are frequently employed to calculate
the phylogenetic diversity within a sample or community employ phylogenetic
VCV matrices under a Brownian Motion trait evolution assumption instead of a
phylogenetic distance matrix. This series of metrics were generated by Helmus
et al. [70]. Recall that above we saw that the expected covariances (i.e., the off
diagonal elements) in a phylogenetic VCV matrix are equivalent to the root-to-tip
distance minus the one-half of the phylogenetic distance between two species. The
first metric that Helmus et al. [70] produced is called the Phylogenetic Species
Variability (PSV), which is expected to calculate the expected variance among spe-
cies in a community phylogeny for a trait evolving under Brownian motion. This
metric does not weight the expected variance by the abundances of the species and
has been shown to be exactly half the mpd value when the phylogeny is ultrametric
[71]. The second metric that Helmus et al. [70] produced is called Phylogenetic
Species Evenness (PSE), which is identical to mpd.a when the phylogeny is ultra-
metric with the exception that the phylogeny is scaled from zero to one for PSE and
not for mpd.a [71]. The final commonly used metric proposed by Helmus et al. [70]
is called the Phylogenetic Species Richness, which is equivalent to multiplying mpd
by the number of species in the community [71]. Thus, why conceptually different,
the Helmus et al. metrics are essentially equivalent to metrics produced earlier or
can be calculated by slightly modifying those metrics. It is important, though, to
remember that this is only in the case when the phylogeny is ultrametric and that the
framework presented by Helmus et al. is potentially more flexible because, in the-
ory, one could implement phylogenetic VCV matrices that use alternative models of
trait evolution to generate the expected variances and covariances. That said, the
implementation of the Helmus et al. metrics in R currently does not permit alterna-
tive models of trait evolution. They can be calculated as follows.

3.5  Distance-Based Measures of Phylogenetic Diversity

48

> psv(my.sample, my.phylo)

> pse(my.sample, my.phylo)

> psr(my.sample, my.phylo)

We have now covered the list of the major pairwise metrics of PD that you will
likely encounter in the literature. Undoubtedly, additional metrics exist and some
are likely being generated this very instant, but in most cases these metrics will be
conceptually and mathematically very similar to what is covered here. The chal-
lenge therefore is to determine when, where, and why metrics that will be produced
in the future tell us additional meaningful biological information. In the next sub-
section we will consider nearest neighbor metrics of PD that are generally not
related to pairwise metrics conceptually or mathematically.

3.5.2  Nearest Neighbor Measures

The use of pairwise distance measures is an effective means of calculating PD when
one is interested in the overall diversity in a sample or community, but because these
measures average across all species pairs a lot of detail is often lost. One important
detail that is lost is “terminal” information. As I stated above, pairwise metrics are
often considered “basal” because they average across all species, but these metrics
cannot tell us the average phylogenetic distance for each species to its closest rela-
tive in the sample or community. It is often expected that the strongest interactions
are likely to occur between closely related species [32, 72]. In such instances, we
may be more interested in the “terminal” diversity. Similarly, ecologists investigat-
ing the trait diversity in communities frequently have calculated the average nearest
neighbor in trait space across species in a community as a means to detect whether
species are more broadly or finely spaced in one community compared to another.
This concept lead to the development of mean nearest neighbor metrics for trait-
based analyses that were translated to phylogenetics by Webb [28] again by simply
replacing a trait distance matrix with a phylogenetic distance matrix. The unweighted
nearest neighbor metric that Webb [28] produces is now generally referred to as the
mean nearest taxon distance (mntd).

	
mntd i

n

= ¹å min
,

d i, j

n
where i j

	

where there are n species in the community, δi,j is the phylogenetic distance between
species i and species j, and minδi,j is the minimum phylogenetic distance between spe-
cies i and all other species in the community (i.e., the nearest neighbor distance).
As in the mpd calculation, the distance from one species to itself is not considered.
If we consider the structure of a community phylogenetic distance matrix, it quickly
becomes clear how to calculate mntd. In particular, for each row (i.e., species) in the

3  Phylogenetic Diversity

49

matrix we need to find the smallest value that is not the diagonal value and then take
a mean across rows. We can accomplish this with the following short function.

This small function for calculating the mntd for a single community can now be
applied to all rows in the community data matrix.

The mntd for all communities can also be calculated using the mntd() function in
the picante package. Again the general workings of the code are similar aside from
a for() loop through rows in the community data matrix rather than using an
apply().

As with the tree-based and pairwise metrics described above, incorporating species
abundance into the calculation of nearest neighbor metrics can likely yield some
important insights. For example, two communities may both have very small mntd
values indicating the co-occurrence of very closely related species, but one com-
munity could have nearest neighbors that have vastly different abundances whereas
in the other community the abundances of the nearest neighbors may be similar.
This information is critical for our understanding of when, where, and why very
closely related species can co-occur. We can therefore derive an abundance-weighted
version of the above nearest neighbor metric that we will call mntd.a.

	
mntd i

n

.
min

,a = ¹å d i, j if

n
where i j

	

3.5  Distance-Based Measures of Phylogenetic Diversity

50

where we have added the variable fi to indicate the abundance of species i in the
community. In order to calculate this new metric, we can see that we simply need to
weight the mean by abundance of each species represented as rows in the commu-
nity phylogenetic distance matrix. In other words, we must quantify the product of
the abundance of a species with the minimum value found in the row in the com-
munity phylogenetic distance matrix for that species and take an average across all
species. This can be accomplished with the following function.

This function can now be applied to all rows in our community data matrix to
calculate the mntd.a for all communities simultaneously.

The mntd.a can be calculated using the preexisting mntd() function in the picante
package with the abundance.weighted option flagged as true.

In general, the above two metrics are the primary nearest neighbor metrics of PD
you will find in the literature. Interestingly, the phylogenetics literature has not
adopted the version of these metrics prevalent in the trait literature that takes the
standard deviation of the nearest neighbor values instead of the mean. Quantifying
the standard deviation of the nearest neighbor values can be useful in determining
whether the relative spacing in trait or phylogenetic distance is relatively homoge-
neous or heterogeneous among species. I know of no existing functions in R to
calculate these metrics for phylogenetics, so we will write our own here. You will
find they are essentially the same with a minor modification. We will call the stan-
dard deviation version of the mntd and mntd.a metrics sntd and sntd.a, respectively.
The sntd value can be calculated for all communities as follows:

3  Phylogenetic Diversity

51

The sntd.a value for all communities can be calculated but requires the computation
of a weighted standard deviation. A weighted standard deviation can be calculated
using the SDMTools package in R.

Now that we have installed and loaded the SDMTools package, we can proceed to
calculating the sntd.a values for all communities.

3.5  Distance-Based Measures of Phylogenetic Diversity

52

We have now covered the major tree-based and distance-based metrics of PD. As
stated in numerous places above, many other metrics exist or may be published in
the near future. It is my guess that most of these metrics will likely fall into one of
the three general categories above and will likely be highly correlated with existing
metrics in those categories. By covering the major metric in each category and
breaking apart how they are calculated in R, it is my hope that you will be able to
understand exactly what is being calculated in these metrics and in the code for
other metrics you may come across.

3.6  Comparing Metrics

The labyrinth of phylogenetic and functional diversity metrics is vast and can be
confusing. It is not unusual for a researcher to be asked to utilize a different metric
of PD for their study at the request of a collaborator or reviewer. It is also common
to find one to several “new” PD metrics published in the literature each year. The
problem with this is that many of the metrics for PD that are now used are highly
correlated and in some cases mathematically identical. This is bound to happen when
a literature explodes, such as the phylogenetic community ecology literature, but we
should also strive to recognize redundancy and understand which metrics are mono-
tonic and which are not. We should also force ourselves to compare all of our “new”
metrics against the existing list to assure that we are not publishing a “new” metric
that has been around for years or a metric that has an incredibly subtle mathematical
difference that still results it in being monotonic with an existing metric. Once the
“cat is out of the bag” it is hard to eradicate a newly branded and wholly redundant
metric from the literature, so we can at minimum here document which metrics are
highly correlated. This should help you understand why your use of the mpd metric,
the PSV metric, or Rao’s pairwise metric simply does not matter. In the following
lines of code we recalculate all metrics on the same dataset, plot them against one
another, and calculate a Pearson’s correlation for each combination (Fig. 3.5).

3  Phylogenetic Diversity

53

Fig. 3.5  A plot of each phylogenetic diversity metric against all other metrics. You will note that
while some metrics are not related others are highly correlated in this dataset. For example, the
abundance weighted mpd calculation, Rao and Helmus’ PSE is all highly correlated and represent
redundant metrics

3.6  Comparing Metrics

54

> cor(outputs)

Although there is a lot of output to consider here, we can clearly see that some
metrics are incredibly correlated if not exactly the same. This should serve as fair
warning that the cottage industry of creating “new” metrics of PD should be scruti-
nized more carefully and we should not take any newly published metric as new or
better. Indeed, in many cases that metric may be so similar to an existing metric that
it is pointless to publish it. To reduce clutter I encourage those reviewing and gen-
erating new metrics to, at minimum, test whether the new metric is weakly corre-
lated with an existing metric and use a simulation test (not a simple cooked example)
to demonstrate that the new metric can pick up a biological process that other exit-
ing metrics cannot detect.

3.7  Conclusions

This chapter has focused on quantifying the phylogenetic diversity of assemblages
or communities. We have classified the metrics into tree-based metrics that are
focused on summing the total phylogenetic branch length contained in a community
and those that utilize a phylogenetic distance matrix to quantify the phylogenetic
similarity of co-occurring species. Both approaches can be expanded to incorporate
abundance information and by contrasting the equally weighted and abundance-
weighted values, we may be able to have a better understanding of the phylogenetic
distribution of abundance in a community. It is critical to remember that phyloge-
netic diversity metrics themselves tell us about just that and do not necessarily relate
to the functional diversity of assemblage or community. That is, although ecologists
have frequently used phylogenetic diversity in the past as a proxy of the ecological
or functional similarity of species in the assemblage being studied, this usage is
generally discouraged at this point in time because relatedness is not always a strong
proxy of ecological similarity. Thus, phylogenetic diversity is still useful as a mea-
sure of biodiversity, but only in certain contexts. It is useful as an alternative indica-
tor of biodiversity to inform managers and conservationists. It is also a useful
alternative biodiversity metric that can be contrasted to functional and species diver-
sity as independent variables in a statistical model and in those cases phylogenetic
diversity is a stronger predictor of the response variable; this is evidence that unmea-
sured traits that may have phylogenetic signal are critical. Lastly, phylogenetic
diversity may be useful in those cases where measuring function in the near future
is not feasible and a quick measure of diversity beyond species richness is neces-
sary. In any of these cases it will be critical for the researcher to understand whether
or not the phylogenetic diversity metric is necessarily correlated with species rich-
ness, whether using abundance-weighting is necessary or informative, whether con-
trasting metrics is informative, and whether a null model is necessary to properly
understand the phylogenetic pattern. Most of these issues can be addressed rather
easily in R using the code provided in this and other chapters in the book.

3  Phylogenetic Diversity

55

3.8  Exercises

	1.	 Simulate a coalescent phylogenetic tree using the rcoal() function in the ape
package with the same number of species as in your example community data
matrix from this chapter.

	2.	 Assign names to the phylogeny that match those in the community data matrix
and are in the same order.

	3.	 Calculate the mean pairwise phylogenetic distance weighted by abundance and
your simulated phylogeny.

	4.	 Write a function that repeats steps 1–3 above 55 times. Take the resulting 55 vec-
tors of mean pairwise phylogenetic distances and compile them into a matrix
where the number of columns is 55 and the number of rows is equal to the num-
ber of communities in your example community data matrix.

	5.	 Repeat steps 1–4 above, but use the pd() function to calculate species richness
and Faith’s Index. This time produce two matrices. In the first report the species
richness for each community for each simulated phylogeny. In the second report
the Faith’s Index for each community for each simulated phylogeny.

3.8  Exercises

57N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_4, © Springer Science+Business Media New York 2014

4.1  Objectives

The objectives of this chapter are to explore the variety of metrics and approaches
for analyzing the functional composition and diversity of species assemblages.
Important topics will include the consideration of how uni- and multivariate trait
data are utilized in functional diversity analyses, the use of raw trait distance matri-
ces versus trait dendrograms, and the degree of similarity between functional diver-
sity metrics.

4.2  Background

The number of articles in ecology that are taking a “trait-based” approach is cur-
rently exploding with many of these articles seeking to quantify the functional
diversity of the species in a community or assemblage (e.g., [73–92]). As we will
see shortly, functional diversity can be quantified in a number of ways, but we can
coarsely define it here as the diversity or dissimilarity of the ecological strategies or
performance of species upon the basis of their morphological physiological traits.
Traits directly or indirectly correlated with species performance (i.e., growth, mor-
tality, reproduction) are increasingly termed “functional traits” and I will tend to use
that nomenclature in the following text.

Despite the recent surge in interest, the measurement of functional diversity in
communities or assemblages dates back at least 50 years with some of the most
interesting early examples investigating the volume and packing of trait space of
species in assemblages spanning an environmental or richness gradient [94–97]. For
example, early work by Ricklefs and colleagues [93, 94] investigated whether the

Chapter 4
Functional Diversity

The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_4) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_2

58

spacing of species in trait space was maintained across a species richness as expected
by limiting similarity theory [39].

The recent explosion of functional diversity measurement in ecology can largely
be traced to influential work linking functional diversity to ecosystem function (e.g.,
[11, 91, 98]) and detailed reviews formalizing the conceptual foundation for func-
tional diversity research (e.g., [76]). This work also coincided with the focus of
plant ecologists on identifying a series of plant traits that are believed to be related
to plant performance across environmental gradients [99–102]. Thus, in the span of
two decades plant ecologists, in particular, found themselves collecting large and
detailed datasets of plant traits in assemblages and developing and implementing
measures of functional diversity. In many instances this has unfortunately resulted
in the “reinvention” of metrics that were originally developed decades earlier and
presumably forgotten or ignored. The goal of the present chapter is to discuss the
main approaches for measuring functional diversity in communities and assem-
blages and how to calculate these metrics using R. We will not cover every possible
metric of functional diversity ever published. Such an approach would be difficult
and would result in the covering of many redundant measures. I have therefore cho-
sen to keep it simple by covering the main classes of functional diversity metrics
that are flexible. From each of these classes I will provide one or a few example
metrics that are likely monotonic with many of the metrics you will encounter in the
literature. As in the other chapters we will not simply learn how to “plug and chug”
using existing functions. Rather we will dissect the measures so we understand how
they work and so you may learn how you may construct your own measures of
functional diversity or adjust those measures covered presently.

4.3  �Quantifying the Functional Composition of Communities
Using the Moments of Trait Distributions

As we will see in the following subsections, a great number of metrics have been
generated for quantifying the functional diversity of communities with, often redun-
dant, metrics invented nearly monthly at this point in time. It can be difficult to
decipher what the results of various metric actually mean and how they do or do not
relate to results published using alternative metrics. Outside of this increasingly
complex maze of functional diversity metrics are simple calculations of the four
moments of the trait distribution within communities or assemblages. The four
moments—mean, standard deviation, skew, and kurtosis—are easier to interpret for
the average scientist and can therefore be the easiest way to begin understanding the
functional composition of your study system. They may even be an effective method
for detecting the imprint of deterministic community assembly processes (e.g., [77,
84, 103]). For example, the co-occurrence of functionally similar species will be
reflected by a lower standard deviation and a higher kurtosis of trait values in an
assemblage [77].

4  Functional Diversity

59

In this section we will compute the four moments of the trait distribution in
assemblages weighting all species present equally. We will then compute the
community-weighted mean trait value for communities. The community-weighted
mean is simply the mean trait value weighted by the relative abundance of species
and it is becoming frequently used in trait-based ecological analyses. We begin by
reading in the example community dataset for this chapter, which is in the format of
a community data matrix. Recall that the community data matrix is the general for-
mat for most of the ecology-specific functions you will encounter in R. The example
community data matrix can be read in as a table.

Ensure that your data has been read into R correctly with the community (or site)
names as row names, the species (or taxa) names as column names, and number of
individuals as the cell values. To do this, take a quick look at the matrix.

Next we can read in the example trait data for this chapter. The .txt file has species
names in the first column followed by four columns of trait data. It is important that
the species names become row names when reading in the example or your own
trait data into R for the analyses that follow.

Look at the trait data to ensure that the data were read into R correctly and that spe-
cies names are indeed represented as row names and there are four columns of trait
data.

The community data and trait data matrices have now been loaded into R and we are
now ready to calculate the moments of the trait distributions for communities. To
begin we will calculate individual moments for individual communities in order to
understand the code. The first step is to quickly review how to get the list of species
present in a community or assemblage. For example, we would like to know all of
the species in our first community or assemblage with an abundance greater than
zero—the first row in our community data matrix.

The result is an object called “spp” that contains the names of species present in our
first community. The trait data for these species can now be extracted from our traits
matrix by asking for only those rows with the row names matching the names in our
species list.

4.3  Quantifying the Functional Composition of Communities Using the Moments…

60

The above allows us to extract the trait data for all species in a community or
assemblage for subsequent analyses. The two lines of code can also be combined
into one line.

We now know how to get the values for all traits in our matrix for all species present
in our first community or assemblage. From this output we can calculate the
moments of the trait distribution. We can first calculate the community mean for
each trait by wrapping the above line of code with the function mean().

The na.rm = T argument was utilized here in case your trait data matrix had
missing trait values for some species. We can calculate the mean trait values for
other communities or assemblages by altering what row is being selected from the
community data matrix. For example, the next line of code calculates the mean trait
values for community 3 instead of community 1.

At this point it is rather easy to calculate the remaining moments of the trait distribu-
tion. Here I calculate the standard deviation of the trait values in community 2.

High standard deviation values are indicative of more functional diversity in a com-
munity or assemblage, but they may be biased due to differences in the mean from
community to community. To reduce this bias, a coefficient of variation in trait
values can be calculated by dividing the standard deviations of the trait values in a
community by the mean trait values in a community. This is easily done by dividing
the last line of code by the line prior to it.

The functions mean() and sd() are in the base R package and are therefore
available upon opening R. Functions to calculate skew and kurtosis, on the other
hand, are not in the base package, but they are available in the fBasics package
which can be installed and loaded as follows.

The skew of the trait distribution for community 1 can now be calculated in a similar
way except using the function skewness().

4  Functional Diversity

61

High values of skewness do not necessarily imply lower community functional
diversity, but do indicate that most co-occurring species tend to have very similar
trait values. The kurtosis of the traits in community 1 can be calculated using the
kurtosis() function.

Small kurtosis values indicate community trait distributions with “fatter” tails and
therefore may indicate an increase in the average trait disparity between co-occurring
species [77].

The above code calculates the moments of the trait distribution for one commu-
nity, or row in the community data matrix, at a time. To automate this calculation
across several communities (i.e., all rows in the community data matrix) we write a
function where we calculate the moment for a single community and use an
apply() function to apply the calculation to all rows (i.e., communities) in our
system. In this example, we will write the moments for trait one in each community.
We start by writing the kurtosis function for trait one.

The above code for calculating the kurtosis of the first trait in all communities can
be easily changed to calculate the skewness and the mean and standard deviation as
follows.

4.3  Quantifying the Functional Composition of Communities Using the Moments…

62

These functions can now be applied to our community data matrix to calculate the
mean, standard deviation, skew, and kurtosis of the trait values for the species pres-
ent in each of our communities using the apply() function.

In the above we have calculated the moments of the trait distributions in communi-
ties weighting all species or taxa present in the community equally. In many eco-
logical analyses it is best not to treat all co-occurring species equally. Depending on
the question of interest, it may be best to weight species by their abundances or
some other measure of their dominance (e.g., percent canopy cover). One of the
most common ways this is done when characterizing the functional composition of
communities is to calculate what is has been termed the community-weighted mean
(CWM) for a trait. The CWM is the mean trait value weighted by the relative abun-
dance of each species. Here we will calculate the CWM for our communities using
the same example datasets as before for comparison.

The first step in calculating the CWM is to transform our community data matrix
from a tally of individuals of each species in a community into their relative abun-
dances. These relative abundances can then be used to weight the mean trait value
in a community. A rapid way to calculate the relative abundances of each species in
each community is to divide the abundance of each species in a row (i.e., a com-
munity), by the total abundance in that row (i.e., a community). This can be accom-
plished using the function rowSums().

All values in the cells of the matrix should now represent the fraction of the indi-
viduals in a community that for a particular species.

It is possible that your data, for example, could contain the total canopy area or total
biomass. In that instance the above code would provide you with percent cover or
percent biomass. The R package vegan contains a function that can also be utilized
to convert your community data matrix values into relative abundances, percent
cover, or percent biomass. The function is called decostand() and can be used
as follows.

4  Functional Diversity

63

This function takes a community data matrix as input and can transform the matrix
using several different methods applied to rows or columns. Here we have selected
the “total” method and MARGIN = 1, indicating that we want the method applied to
each row. The method “total” divides each value in a row by the row sum or row
total. Although this is what we did previously simply using the rowSums() func-
tion, the decostand() function is useful to know as many methods can be
invoked easily. These methods include transforming the matrix to presence/
absence (method = “pa”), standardizing the values to a mean of zero and unit vari-
ance (method = “standardize”), standardizing the values to range between zero and
one (method = “range”), and dividing the values by the maximum value in the row or
column (method = “max”). Thus, it is a powerful tool for altering the format of your
community data matrix in a variety of ways. Now let us quickly check to see that our
results using rowSums() are similar to that we received using decostand().

You will find that the results of this approach and the previous approach are identi-
cal. To check that our relative abundances or percent cover or biomass for each
community does indeed sum to one we can check the sum of each row.

Now that we have successfully changed our community data matrix to represent the
relative abundances of species we can easily calculate the CWM for a single trait for
a single community using the weighted.mean() function. This function takes
an input matrix of values and an input matrix of weights. The input matrix of values
in this case will be the trait values for the first trait of all species in our study system
sorted using the order of the column names in the community data matrix.

The above selected the first column of the traits object to give the CWM of the
first trait. The weighted mean of the second trait could be calculated by changing the
selected column to 2.

To calculate the CWM value for the second trait in community two, simply change
the row selected from the my.ra.sample object to 2.

Because the above code calculates the weighted mean for one trait in one commu-
nity at a time, it is best that we write some code that will automatically calculate the
CWM for a trait in all communities. Thus, we would like to apply our code to all

4.3  Quantifying the Functional Composition of Communities Using the Moments…

64

communities simultaneously and will start by writing a function to calculate the
weighted mean of trait one.

Now we can apply this function to our community data matrix to calculate the
CWM for trait one in each community.

This approach can be extended to a weighted standard deviation as well using the
wt.sd() function in the SDMtools package.

We have now see how to calculate the moments of the trait distribution for individ-
ual traits and individual communities. Some of these moments such as the mean
cannot be deemed a measure of trait diversity. Indeed the mean is the exact opposite.
Further, we may be interested in multivariate analyses of the function in a commu-
nity. In the next sections we will discuss more detailed metrics designed to measure
FD using one to many traits.

4.4  �Dendrogram-Based Versus Euclidean Distance-Based
Measures of Functional Diversity

The metrics for FD that we will discuss in the following all rely on a branch length
or Euclidean distance to be measured between species. The branch length infor-
mation comes from a dendrogram generated with a method of hierarchical cluster-
ing with a Euclidean trait distance matrix as input. This involves the clustering of
species in trait space and may remove fine-scale trait differentiation between spe-
cies. An alternative approach to this is to simply use the original trait distance
matrix in the FD calculations. The use of the original distance matrix is appealing
since the data are not transformed, but dendrograms are still frequently used to
calculate FD and are sometimes preferred because their data structure is similar to

4  Functional Diversity

65

that of a phylogeny which may be used in a concurrent analysis of phylogenetic
diversity to which the FD analysis will be compared. Thus we will discuss both
approaches presently.

4.4.1  Generating Trait Distance Matrices

The majority of the functional diversity metrics currently utilized in the literature
are distance-based measures. One to many traits can be used in these metrics. The
distances themselves are calculated either using the Euclidean distance between
species in “trait space” or the branch lengths separating species on a dendrogram
generated by clustering species based on their proximity in a trait distance matrix.
In this subsection we will be focus on the calculation of the Euclidean distance
between species in trait space.

First we will produce a distance matrix for the second trait in our trait matrix. To
assure that we have species names on the output distance matrix we first generate a
matrix containing the data for our second trait and with the row names from the
original trait matrix.

Using this new object containing only the data for trait 2 we can calculate the
Euclidean distance between all species upon the basis of this single trait. This is
accomplished using the dist() function and the “euclidean” method.

As we will see below this distance matrix can be used in many of the existing met-
rics of functional diversity available in R. Although many studies will only analyze
the functional diversity of an assemblage using a distance matrix constructed from
multiple traits, it is generally useful to investigate the diversity of individual traits
in an assemblage. Indeed the majority of the papers that have investigated the
diversity of individual traits have found that not all traits behave similarly across
assemblages (e.g., [64, 74, 75, 77, 79]). That is, one trait might increase in diversity
along an environmental gradient while another may decrease. Thus, analyzing indi-
vidual traits may help “unpack” the overall functional diversity calculated from
multiple traits.

A distance matrix can be generated using all trait data simultaneously also using
the dist() function. In this case, the traits input matrix already has species
names as row names and therefore does not need any transformation.

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

66

While it is simple to compute the Euclidean distance between all pairs of species
based on multiple traits, this approach is generally not advised. This is because it is
likely that the measured traits may covary and may be measured on vastly different
scales. For example, it is common in plant functional ecology to measure many
covarying leaf traits and one or a few orthogonal stem or seed traits. If, for example,
a distance matrix were computed on these raw data the leaf traits, which effectively
only represent one axis of function, would dominate the structure of the distance
matrix. Further, if a trait is measured, such as seed mass, that spans several orders
of magnitude, that trait will dominate the structure of the distance matrix. Both of
these scenarios are undesirable. Thus, it is often best to first transform your data to
approximate a normal distribution for each trait. Then the data should be scaled and
used in a principal components analysis to eliminate trait redundancy. We will make
our data are approximately normal by using a log() in this example and we will
scale the data using the scale() and apply() functions.

The result is that all the trait values in each column are scaled to approximately a
mean of zero and unit variance. These data can now be used in a principal compo-
nents analysis to eliminate trait redundancy and to produce orthogonal axes of func-
tion that can be used in a distance matrix calculation. The scaled trait data can be
input into the princomp() function as follows.

The principal components (PC) analysis will produce one PC axis for each input
column (i.e., trait). If all PC axes were then used as input in a distance matrix calcu-
lation the result would be no different than if the PC analysis was not performed at
all. Thus, we must select the few axes that explain the vast majority of the variance
in the scaled trait data. We can examine the proportion of the total variance explained
by each axis by examining a summary of the object output by the princomp()
function.

A good rule of thumb is to include the PC axes that explain over 90 % and perhaps
even 95 % of the variation in the scaled trait data. In this example, the first three PC
axes explain 94.7 % of the variation. To determine what traits are most heavily
weighted on these axes we can examine the trait loadings.

From this we can see that trait 1 and trait 2 most heavily influence the first PC
axes and traits 4 and 5 most heavily influence the second and third PC axes,
respectively.

4  Functional Diversity

67

The next objective is to extract where each species lands on the first three PC
axes and to use this information to generate a distance matrix. First we can simply
look at these values by printing the PC scores to the screen.

We see one column for each PC axis and one row per species in the same order as
the rows names (i.e., species names) in the input scaled distance matrix. As we are
only using the first three PC axes we will extract the PC scores from those axes and
put them in a new matrix assigning row names from the original traits matrix.

This data can now be used in the dist() function to calculate the multivariate
Euclidean distance between all species in the study system.

The result of this analysis is a distance matrix that is less likely to be biased by the
co-variation of traits in the original dataset and differences in the scale of measure-
ment between traits. It is therefore recommended that this approach be used in most
cases for calculating a distance-based functional diversity metric. Of course, calcu-
lating the diversity of an actual trait and not PC scores is more intuitive to many. I
do not completely discourage such an approach and I find it useful, but the indi-
vidual trait diversities should not be assumed to be independent. Further, I do not
recommend calculating a distance matrix using all raw trait data simultaneously
given that many of the traits ecologists measure strongly covary. Similar to raw trait
data it is often useful to investigate each individual axis of function. In the case of
data that has been normalized, scaled, and run through a PC analysis, scores from
individual PC axes can be used as individual “traits” for analysis.

The above assumes that the trait data you are utilizing is continuous data with no
values missing for any traits or any species in your system. This is not always the
case in ecological studies where rare species can often not be located in the field or
an available database and where we are interested in using categorical traits such as
growth form along with continuous traits. In instances where we have mixed trait
variables (i.e., continuous and categorical) and/or a few missing trait values for a
few species an alternative approach is necessary as a dist() function will not
accommodate this scenario. A Gower Distance, though, can be calculated using the
gowdis() function in the FD package. This function calculates the overall simi-
larity of species or taxa based on Gower [104] and converts this similarity to a

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

68

dissimilarity by subtracting it from one. If all traits are equally weighted, then the
Gower similarity, for continuous variables, is the difference in values divided by the
maximum observed difference for that variable in the dataset and this value is
summed across all traits. For binary traits the contrast is either a zero or one for dif-
ferent or same. The Gower Distance for our dataset can be calculated as follows.

Now that we have a trait distance matrix it can be used directly in FD analyses or as
input into a hierarchical clustering analysis to generate a trait dendrogram. We will
discuss trait dendrogram construction in the next subsection.

4.4.2  Generating Trait Dendrograms

The generation of trait dendrograms is quite simple. Perhaps it is so simple that the
researcher often does not understand conceptually and mathematically what is
being done in the background calculations. Thus, we will cover the few steps needed
to calculate a trait dendrogram in R with some explanation of what is happening
particularly with respect to the generation of the distance matrix and the clustering
method.

The first step in generating a trait dendrogram is to produce a distance matrix
representing the distance between all taxa or species in your system using one to
many traits. In this example, we will first use multiple continuous traits stored in a
matrix with species names as the row names. The most advisable and easily com-
prehended method for generating a trait distance matrix for construction of a den-
drogram is to calculate the Euclidean distance between all species in trait space.
Here we will assume that the traits are not correlated, but if your traits do covary
please consult the code in the preceding section regarding reducing data redundancy
prior to distance matrix generation.

As discussed above there may be instances where you are missing a trait value for a
small number of species or you have mixed trait variables (i.e., continuous and cat-
egorical). In such instances the use of dist() is not possible and it is advisable to
calculate a Gower distance using the gowdis() function in the FD package to
produce a distance matrix for the next step. In this example, we will ignore such a
situation.

We now use the trait distance matrix to generate a trait dendrogram using hierar-
chical clustering. The hclust() function in R performs hierarchical clustering
using several different methods. In the majority of cases published in the literature

4  Functional Diversity

69

an Unweighted Pair Group Method with Arithmetic Mean, commonly referred to as
UPGMA, is utilized to generate a trait dendrogram. The UPGMA begins by identi-
fying the two closest species in the trait distance matrix (randomly if there are mul-
tiple pairs sharing the smallest distance). A new distance matrix is then calculated
between the distance between that cluster and all other species. The two species in
this new matrix that are closest to one another form the next cluster and so on until
all species and clusters are clustered. The branch lengths in the resulting dendro-
gram between clusters are calculated using pairwise distances.

	
clusterdist =

´
åå d

A B

ijj

B

i

A

	

where there are A species in cluster 1 and B species in cluster 2 and dij is the distance
between all members of cluster 1 and members of cluster 2. Thus, the distances (i.e.,
branch lengths) between species in a trait dendrogram are no longer the distances
between species in trait space. Rather, they are the distances between all the species
in the clusters the species belong to in the dendrogram. A UPGMA-based dendro-
gram can be calculated using the hclust() function in R and the “average”
method (Fig. 4.1).

We can see that the plotted dendrogram has branch lengths measured on a continu-
ous scale corresponding to multivariate distance in trait space. In many instances it
might be desirable to investigate a single trait with dendrogram-based metrics.
Generating a dendrogram from a single trait (i.e., a single column in your trait
matrix) is simple, but it is important to assign species names as row names. If they
are not assigned the resulting dendrogram will not have species names on it. Here
we will make a UPGMA dendrogram for the trait found in the second column of our
trait matrix (Fig. 4.2).

The plotted dendrogram shows that species do not cluster in the same way as they
did previously when using all traits simultaneously. This indicates that species do
not rank similarly on all trait axes and it highlights why it is often important and
interesting to perform all analyses on all traits at once and each trait individually.

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

70

4.4.3  Pairwise and Nearest Neighbor Measures

We are now ready to calculate the main two classes of FD metrics. Exactly as is the
case for phylogenetic diversity (PD) in the previous chapter, the two main classes
are pairwise distance metrics and nearest neighbor metrics. Indeed, the calculations
and code are generally identical in R. The main decision we have to make prior to
calculating these metrics for FD is whether to use a dendrogram or a raw trait dis-
tance matrix as the following code in this section requires a distance matrix that can
be generated from the dendrogram or is the raw distance matrix. We will not use the
dendrogram for the following analyses, but if we did we would first convert the
dendrogram to a distance matrix.

Thus we have effectively input a trait distance matrix into a hierarchical clustering
algorithm to generate a dendrogram only to convert that dendrogram into a new
distance matrix that likely has less refined information. You can now perhaps see
why many do not like using a dendrogram-based approach unless necessary.

Fig. 4.1  A plot of our functional trait dendrogram constructed using UPGMA hierarchical cluster-
ing of a Euclidean distance matrix of all traits

4  Functional Diversity

71

For the remaining examples in this subsection we will use the raw trait distance
matrix. If you recall above, we used dist() on our PC axes and we will now make
this output a square matrix for the remaining functions.

The first FD measure we will compute is the unweighted pairwise functional dis-
tance between all present species in our second community. This can be calculated
simply by first subsampling our distance matrix to only include present species and
then calculating a mean value.

This can be calculated across all communities by first generating a small function to
calculate the unweighted mean pairwise distance.

Fig. 4.2  A plot of our functional trait dendrogram for only our second trait constructed using
UPGMA hierarchical clustering of a Euclidean distance matrix calculated for the second trait

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

72

This function can now be applied to all rows (i.e., communities) in our community
data matrix using the apply() function to compute the metric.

This same calculation can be calculated using the mpd() function in the picante
package which loops through communities rather than use an apply() making it
computationally slower.

The abundance-weighted version of the pairwise trait distance metric can be calcu-
lated by again applying a function we will write. The function can be written as
follows.

The function is then applied to the rows of our community data matrix to calculate
the abundance-weighted mean pairwise functional distance in each of our
communities.

This metric can also be calculated using the mpd() function in the picante
package.

4  Functional Diversity

73

The mean pairwise functional distances calculated above represent one major class
of FD metric. Indeed, many of the “new” metrics that are published each year are
monotonic with the mean pairwise functional distance.

The second major class of functional diversity metric uses nearest functional
neighbor distances. There are two main ways that nearest neighbor distances have
been utilized in the trait literature. The first, and most common, method is to take
the mean nearest neighbor distance. In this calculation, the distance to the nearest
functional neighbor in the community that is not your own species is tallied for each
species and a mean is taken. This is easy to calculate but first we will place an NA
value in the diagonal of our functional distance matrix to ensure we are not counting
conspecifics in our nearest neighbor calculations.

Now we can calculate the mean nearest functional neighbor distance for the species
in our third community by first extracting a community-level distance matrix.

From this distance matrix we can use the apply() function to calculate the mini-
mum value in each row (i.e., the nearest neighbor for each species) and take a mean.
This is the mean nearest neighbor distance for our community.

The second way nearest neighbor distances could be utilized in a study of FD is to
take a standard deviation of the nearest neighbor values. This gives the researcher
an idea of the regularity of the spacing and not just the average distance. A low vari-
ance indicates that species are relatively evenly placed in functional space.

We can apply both of these metrics to all rows (i.e., communities) in our study sys-
tem by first writing a function for each to calculate the value for a single community.
First the mean nearest functional neighbor distance can be coded as follows:

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

74

Next, the function for the standard deviation of nearest neighbor distances.

They both can be applied to our dataset as:

Both functions can also be extended to weight the mean or standard deviation by the
abundance of the focal species. The functions would be coded and applied as:

4  Functional Diversity

75

Next, the function for the standard deviation of nearest neighbor distances.

We have now successfully calculated the unweighted and abundance weighted of
the mean nearest functional neighbor distance and the standard deviation of the
nearest functional neighbor distances for each community in our system. There is

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

76

currently no function in an R package, that I know of, that calculates the standard
deviation of the nearest neighbor distance, but the unweighted and abundance-
weighted mean can be calculated using the mntd() function in the picante
package.

Again, low values of the mean nearest functional neighbor distance indicate func-
tionally similar species co-occurring or low FD, whereas high values indicate func-
tionally dissimilar species are co-occurring and therefore high FD. In most cases,
the mean nearest neighbor distance is sensitive to the species richness gradient
across the communities being compared in your system. In particular, the mean
nearest neighbor distance will decrease with increasing species richness in most
cases. We will discuss the implications of this and null models in Chap. 6.

4.4.4  Ranges and Convex Hulls

One of the oldest and simplest measurements of FD has been to quantify the range
of functions in a sample or community. In the case of a single trait this measure of
FD is simply the range of the trait values in the community. When there are two or
three measured traits the FD then becomes the area or volume of the two- or three-
dimensional shape, respectively, representing the community trait space with verti-
ces defined by the maximum and minimum value for each trait [90, 92, 94].
Calculation of these areas or volumes for the purpose of investigating the FD in
communities started in the 1960s if not earlier [94], though the approach has been
“invented” again recently (e.g., [90]) spurring an increasing number of papers using
this conceptual approach. The methodological advance made during these reinven-
tions is the possibility of calculating the trait volume for a community in more than
three dimensions (i.e., using more than three traits). In particular, “convex hulls”
can now be calculated for high-dimensional data and the volumes of these hulls can
be quantified. The convex hull volume for a community is now commonly referred
to as FRic or Functional Richness, though the term Functional Richness can often
be confused or conflated with Functional Group Richness, which is a distinct mea-
sure [92]. The calculation of a convex hull or FRic is conceptually appealing because
it can help a researcher understand how species pack and fill trait space. For exam-
ple, the original use of such metrics in the 1960s and 1970s was to ask whether
communities with more species have a greater morphological trait volume [93, 94].
This research was often done in the context of limiting similarity theory where the
expectation was that the only way one could “add” species to a community was to
add them to the periphery of trait space because adding them somewhere within the
existing trait distribution would mean they would be too similar to invade. Further,
researchers predicted that environments that are more abiotically benign and/or that
have stronger biotic interactions will allow the invasion and success of peripheral

4  Functional Diversity

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

77

phenotypes resulting in a large morphological volume whereas harsher abiotic envi-
ronments will limit the invasion and success of peripheral phenotypes resulting in a
small morphological volume.

The calculation of the convex hull volumes (i.e., FRic) in R is not difficult, but
before we proceed to the measurement of FRic let us quickly determine how to
calculate the univariate equivalent of calculating the range for each trait in a com-
munity. We begin by focusing on the first community in our community data matrix
(i.e., row one) and extracting the names of all the species that are present in the
community as determined by their positive values in the community data matrix.

We can now use the names of the species present in our first community to extract
only those rows in the trait matrix containing the species in our fist community. This
pruned trait matrix can then be used in an apply() function with a MARGIN of 2
to calculate the maximum trait value in each column (i.e., for each trait) and the
minimum value. The difference between the outputs from these two apply()
functions is the range for each trait in the first community.

If we wanted to the above for our fourth community in a single line of code we
would use the following.

Establishing how to calculate the ranges of all traits simultaneously for a single
community now makes it clear how to scale the analysis up to analyze the range of
all traits in all communities simultaneously. To accomplish this we first write a func-
tion that will calculate the range of all traits for a single community.

We now apply this function to the rows in our community data matrix to calculate
the range of all traits in all communities simultaneously.

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

78

The calculation of trait ranges across communities can now be extended to calculate
the overall convex hull volume (i.e., FRic). The calculations of convex hulls can
now be done with multiple packages in R, but we will utilize the geometry package,
which we can install and load using the following code.

The function convhulln() in the geometry package can be used to perform all
of the necessary calculations. We will begin by first quantifying the convex hull for
only the first community in our community data matrix. The convhulln() func-
tion requires a matrix of continuous values that it will treat as the vertices where
each column is a trait. Thus, we can use the following code to extract only those
species present in our first community from the trait matrix and provide those values
to the convex hull function.

We see that the function output a three-column matrix defining all of the vertices
that constitute the convex hull, but no other information is provided. We must ask
the function to output the volume of the convex hull choosing the “FA” option.

A list has been output with three elements—hull, area, and vol. The hull element
contains all of the vertices we saw above. The area element reports the area of the
convex hull, but this is not of interest to us. The vol element contains the volume of
the convex hull and therefore is our FRic value for this community.

This approach for calculating the FRic for a single community can now be scaled up to
calculate the FRic for all communities simultaneously using the following function.

4  Functional Diversity

79

The hull function can now be applied to all rows in the community data matrix using
an apply() function. This rapidly produces the convex hull volume or FRic for
each community.

The FRic of the species in each community can also be performed by using the
dbFD() function in the FD package. The FD package performs many additional
useful analyses for trait-based ecology that we discuss in the next section. Here we
will install and load the package.

We will now use the dbFD() function to calculate FRic. This function calculates
many metrics simultaneously, but for the moment we are only interested in output-
ting the FRic values for our communities.

A valuable aspect of this function in the FD package is that it performs an initial test
to determine whether the trait data require a reduction in dimensionality. This raises
an important point that we have discussed above and that permeates through all
functional diversity analyses. It is essential that redundant trait axes are reduced so
as not to overly weight your metric of FD using several covarying traits. Fortunately,
this function performs this for you, but you are advised that reducing dimensionality
in other analyses is generally not done for you automatically.

4.4  Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional…

80

4.4.5  Other Measures

The last three metrics that we will discuss are the Functional Evenness (FEve),
Functional Divergence (FDiv), and Functional Dispersion (FDis). The FEve metric
utilizes a minimum spanning tree (MST) to connect all species in functional trait
space and measures the regularity of the species points along the branches of this
tree and the regularity of their abundances. Thus, we may expect it to be very similar
to a nearest neighbor metric. The FEve metric can be calculated as:

The FDiv metric first measures the average distance of all species from the centroid
of the trait space in a community and then sums the magnitude of the divergences
from that mean. Thus higher values are supposed to indicate more dispersion
towards the maximum and minimum of the range of traits. It can be calculated as

The FDis metric calculates the distance of each species from the centroid of the
community traits. Thus, it is not quite the same calculation as the pairwise distance
between species we can expect that it might be highly correlated. It is also similar
to the FDiv metric, though conceptually perhaps easier to understand the biological
meaning of FDis and it is likely a clearer indicator of trait dispersion in a commu-
nity. The FDis can be calculated as:

We have now calculated all of the major types and varieties of FD metrics that you
will commonly see in the literature. In the next section we will quickly compare
these metrics to evaluate their independence.

4.5  Comparing Metrics of Functional Diversity

As we consider diversity metrics in this book and elsewhere it is essential to con-
sider their mathematical and statistical relationships in order to determine which are
providing novel information and which are not and are simply monotonic with an
existing metric. We have explored most of these metrics in the previous chapter on
PD, but we will quickly plot them against each other and calculate their correlations
(Fig. 4.3).

4  Functional Diversity

81

We see that the PW and FDis metrics are almost identical as has been previously
pointed out by Laliberte and Legendre [92] and that FDis and FDiv, while being
correlated, are not identical indices. Lastly, we see that the hull/FRic metric and the
mean nearest neighbor metric are related to species richness, indicating that they
should perhaps be considered in the context of a null model for comparative analy-
ses (see Chap. 6).

4.6  Conclusions

This chapter has addressed a large number of metrics that can be used to characterize
the functional structure and diversity of communities or assemblages. We began by
simply characterizing the moments of the trait distribution in assemblages. While this
is useful, these measures, particularly the mean, are not measures of functional diver-
sity and should not be used as such. We then covered pairwise- and nearest

4.6  Conclusions

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

82

neighbor-based metrics of functional diversity which have their roots in the
eco-morphology literature spanning back to at least the 1960s underscoring the long
history of measuring trait similarity and functional diversity in species assemblages.

Almost all functional diversity metrics that have been published or that will be
published will likely fall into either the pairwise or nearest neighbor classes. There
are likely many metrics of functional diversity that I have not covered in this chap-
ter, but it is likely that many of these are highly correlated with the measures we
have covered. In deciding the “best” metric for your study I urge you to consider
whether your chosen metric is actually that different from existing metrics. In many
cases we may find that the metric is monotonic with an existing metric and may not
provide much additional metric. It is also expected that the code above will provide
you with enough details regarding how to handle trait and community data in R to
formulate your own measures of functional diversity in R, but I again urge you to
make sure your new metrics are indeed novel.

Fig. 4.3  A plot of each functional diversity metric against all other metrics

4  Functional Diversity

83

4.7  Exercises

	1.	 Simulate two traits on your example phylogeny from Chap. 3 using Brownian
Motion and the fastBM() function in the phytools package.

	2.	 Quantify the functional diversity for each of your communities using the simu-
lated trait data, the example community data matrix from Chap. 3, and the pair-
wise and nearest neighbor metrics weighted by abundance. Next do the same for
phylogenetic diversity using the analogous pairwise and nearest neighbor met-
rics and the same phylogeny you used to simulate the trait data.

	3.	 Perform a simple correlation between the phylogenetic and functional diversity
measures. Do the functional and phylogenetic diversity measures correlate? Why
or why not?

	4.	 Repeat the above with other metrics of that are presence–absence weighted or
weighted by abundance.

4.7  Exercises

http://dx.doi.org/10.1007/978-1-4614-9542-0_3
http://dx.doi.org/10.1007/978-1-4614-9542-0_3

85N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_5, © Springer Science+Business Media New York 2014

5.1  Objectives

The first objective of this chapter is to introduce the conceptual and empirical
background for why phylogenetic and functional analyses of beta diversity are of
interest to ecologists. This is followed by detailed instructions on how to calculate
in R the major metrics of phylogenetic and functional beta diversity that are most
commonly employed in the literature. The ultimate goal is to obtain a robust con-
ceptual and practical knowledge of phylogenetic and functional beta diversity.

5.2  Background

The study of beta diversity has gone from being a topic in the backwaters of ecology
to being an extremely hot and controversial topic in the literature. Even when and
where we should use the simple term “beta diversity” has become amazingly con-
troversial [105–107]. I therefore think it is worthwhile to begin with a brief state-
ment on how I use the term “beta diversity.” I am not of the camp that believes there
is a “true” measure of beta diversity or that the term beta diversity should only be
used in certain contexts any more than “biodiversity” should be defined by one and
only one equation. I am of the opinion that we are wise enough to understand the
general concept and to understand the metrics that are being utilized to represent
this concept and how they differ from one another (see [108]). I therefore use the
term beta diversity to represent the turnover in composition between a pair of
assemblages or communities or the variation in the composition between a set of
assemblages or communities. I purposefully use the term “composition” here
because beta diversity should not be restricted to species names and their similarity
between communities. Indeed, comparing the similarity of species names between

Chapter 5
Phylogenetic and Functional Beta Diversity

The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_5) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_2

86

communities is very uninformative in many cases given that species are not statisti-
cally independent entities—they share differing degrees of evolutionary history and
functional similarity [80, 89, 109–112]. Thus, in the following I will trust that you
understand that beta diversity generally means, in my lexicon, the turnover or dis-
similarity in the composition of assemblages or communities. If you do not appreci-
ate this opinion you can simply replace the term “beta diversity” in the following
with “dissimilarity” and proceed.

Now that we have dispatched with what exactly I mean by “beta diversity” we
should consider why phylogenetic and functional information is interesting in the
context of beta diversity. The argument for using phylogenetic and functional in beta
diversity studies can be quite simple in that species are non-independent entities that
share evolutionary history and vary in their functional similarity. If this general sta-
tistical argument is not enough, we can consider the evidence from recent research
that has shown the turnover or variation in community composition from a “species”
or “functional” perspective is often very different. For example, Fukami et al. [109]
have shown that although the spatial turnover of the species composition of com-
munities may diverge, the functional composition may converge. Further, Swenson
et al. [110] have shown that although there is a strong temporal decay in the species
compositional similarity in a tropical forest through time the functional composition
does not turn over at all. Thus, in both cases the species beta diversity analyses are
likely very misleading regarding the actual deterministic ecological process acting
in the system. Such instances are likely particularly important in high diversity sys-
tems where many species are very similar or even redundant functionally and all that
matters is which species with the “right” function can colonize the open site first.

Despite the conceptual arguments regarding the importance of measuring the
phylogenetic and functional beta diversity between communities, the first clear
measurements of phylogenetic beta diversity in the literature arose out of necessity
in the microbial ecology literature [113, 114]. In particular, microbial ecologists are
faced with utilizing phylogenetic and not Latin binomials to quantify the diversity
in their study systems. Traditional species beta diversity metrics such as a Jaccard’s
distance or a Bray–Curtis distance were therefore of no use and metrics based on
phylogenetic branch lengths were required. Microbial ecologists were therefore the
first to generate tree-based and distance-based phylogenetic metrics of beta diver-
sity, although this fairly deep literature is often ignored by ecologists working on
plant and animal systems (e.g., [115]). Over the past 5 years plant and animal ecolo-
gists have become increasingly interested in phylogenetic and to some extent func-
tional beta diversity and have generated their own metrics that are often highly
related to the existing metrics published in the microbial literature.

In the following sections we will cover tree-based metrics of phylogenetic beta
diversity that have been the focus of microbial ecologists. We will then transition to
distance-based metrics of phylogenetic beta diversity metrics that can also be used for
the measurement of functional beta diversity. These distance-based metrics are typi-
cally easier to understand conceptually, more flexible and faster to calculate, likely
making them the metrics you will most frequently encounter in the literature. Although
some of the metrics described, such as UniFrac, can be calculated using GUIs available
online I would encourage you to use R for such analyses for transparency and flexibility.

5  Phylogenetic and Functional Beta Diversity

87

Indeed some online programs do not even report the beta diversity statistic and only
allow you to cluster communities or correlate the statistic with an environmental gradi-
ent making these programs useful for only a very narrow range of analyses.

5.3  Tree-Based Measures of Phylogenetic Beta Diversity

The measurement of phylogenetic and functional beta diversity in ecology is gener-
ally a new phenomenon and the literature on this topic does not have nearly the
depth as that covering phylogenetic and functional alpha diversity. We will begin by
discussing the two major tree-based metrics of phylogenetic and functional diver-
sity. Generally, these metrics have only been used on phylogenetic trees, but could
potentially be utilized on dendrograms constructed from trait data.

5.3.1  UniFrac

To the best of my knowledge, the first tree-based metric developed for computing
phylogenetic or functional beta diversity was published by Luzopone and Knight
[114]. Their metric seeks to quantify the unique fraction of the phylogeny contained
in each of the two communities or assemblages being compared and hence the name
UniFrac. The formal equation for calculating UniFrac is

	
UniFrac

PD PD

PDA B
A B A B

A B
, =

-È Ç

È 	

where PDA ∪ B is the phylogenetic diversity of the species in communities A and B
combined and PDA ∩ B is the phylogenetic diversity of the species shared between
communities A and B.

Put in plain English, in order to calculate the UniFrac for two communities you
must subtract the shared branch lengths between two communities from the sum of
the total branch lengths for all species in both communities (i.e., the Faith’s index
for a “community” containing all species found in your two communities). This dif-
ference is then divided by the sum of the total branch lengths in both communities.
Thus, it is fairly easy to calculate in R. We start by first loading our example com-
munity data matrix for this chapter in to R.

Next we read in our example phylogenetic tree for this chapter.

To start we will simply calculate the UniFrac for the first two communities in our
community data matrix. The first goal is to calculate the phylogenetic diversity (PD)

5.3  Tree-Based Measures of Phylogenetic Beta Diversity

88

using Faith’s Index for the first and second communities independently. We can
accomplish this by using only the first or second rows of the community data matrix
in the pd() function. Given that the pd() function returns a PD value in the first
column and a species richness (SR) value in the second column, we will ask for only
the value in the first column.

The numerator and denominator of the UniFrac calculation require the PD calculated
using all species found in both communities being compared. This can be accom-
plished by adding the two rows from the community data matrix containing the two
communities being compared and using the resulting matrix in the pd() function.

The pd.total object that we just calculated describes the PD if the two commu-
nities were considered one. The branch length shared between the communities can
be calculated by subtracting this value from the sum of the individual PD values for
the two communities.

The shared branch length can then be subtracted from the total branch length found
when combining both communities to produce the total branch length that is unique
to one community or the other (i.e., the numerator of the UniFrac equation). This
value is standardized by the total branch length found when combining the two
communities.

The result is the fraction of the total branch length for the two communities that is
unique to one of the two communities. The implementation described above is
referred to as the “unweighted UniFrac” as it is not weighted by the abundance of
individual species. The unweighted UniFrac can be calculated between all pairs of
communities in the community data matrix using the unifrac() function in the
picante package.

5  Phylogenetic and Functional Beta Diversity

89

It is often useful when calculating beta diversity to consider the relative abundances
of the species in the communities being compared and to perhaps compare and
contrast such measures to those that weight all species equally. The UniFrac metric
is the only tree-based metric of which I am aware that has been extended to include
the relative abundances of species into the calculation. Specifically, Luzopone et al.
[116] extended their original unweighted UniFrac calculation to consider how many
individuals from each community were subtended by the branches unique to each
community. The calculation of the weighted UniFrac metric has two steps. The first
step is to calculate a raw weighted UniFrac value (u) as follows:

	

u b
A

A

B

Bi

n

i
i i= ´ -å
T T 	

where bi is the length of individual branch i of the n total branches in your phylog-
eny containing all species in your community data matrix or meta-community.
Each individual branch (bi) is multiplied by the absolute value of the difference
between the abundance of the species subtended by branch i in community A (Ai)
divided by the total abundance in community A (AT) and the abundance of the spe-
cies subtended by branch i in community B (Bi) divided by the total abundance in
community B (BT). Simplified, the length of each branch is multiplied by the abso-
lute value of the differences in the relative abundance of the species in communi-
ties A and B that are subtended by that branch summed over all branches. Given
the calculation utilizes the relative abundances of species in each community we
first transform our community data matrix to transform raw counts of species to
relative abundances.

The next goal is to loop through each branch to calculate the product of its length
and the absolute difference of the relative abundances of the species in the two com-
munities subtended by that branch. We will start by generating an empty matrix that
will hold the necessary information for the calculation where we will have one row
per branch (i.e., edge) in our phylogeny and six columns.

Next we need a way to extract the basal and terminal node number for each branch
and to link this information to the length of the branch. In the first two columns we
place the numbers for the basal and terminal nodes of each branch.

In the first column are the basal node numbers for each branch in our phylogeny and
in the second column are the terminal node numbers. To visualize these nodes first

5.3  Tree-Based Measures of Phylogenetic Beta Diversity

90

plot the phylogeny using plot.phylo() and then label the internal node numbers
using nodelabels() and the terminal node numbers using tiplabels() (Fig. 5.1).

The next objective is to match each of these node combinations with a branch length
and placing the value in the third column.

We now have a matrix containing the numbers indicating the placement of each
branch in the phylogeny and the length of each of those branches. The length of the
branches corresponds to the parameter bi in the raw weighted UniFrac equation. We
will now use a for() loop to loop through each row in the matrix identifying the
leaves (i.e., taxa) subtended by each branch, calculating the absolute difference in
their relative abundances in two communities, and multiply that by the branch

Fig. 5.1  A plot of our example phylogeny indicating the internal and terminal node numbers.
Visualizing these node numbers helps to understand how to select and weight individual branches
for the UniFrac calculations

5  Phylogenetic and Functional Beta Diversity

91

length. The calculation will require the tips() function from the geiger package.
This function reports the names of the taxa subtended by the node number provided.
First we load the geiger package and then start the loop.

The result is the raw weighted UniFrac value (u) for the first two communities in our
community data matrix. This value is typically “normalized” by a scaling factor called D.
In words, the scaling factor sums the relative abundance for each species in the two

5.3  Tree-Based Measures of Phylogenetic Beta Diversity

92

communities and multiplies this value by the branch length from the root of the phy-
logeny to the branch tip for that species and sums this calculation over all species.

	

D d
A

A

B

Bj

n

j
j j= ´ +

æ

è
ç

ö

ø
÷å

T T 	

where dj is the distance from the root to the branch tip for species j of n total species.
The value for dj will be constant for all species when using an ultrametric phylog-
eny. The abundances of species j in community A (Aj) and community B (Bj) are
divided by the total abundance of all species in community A (AT) and B (BT).

In order to calculate the scaling factor, D, we can utilize a loop where we calcu-
late the total relative abundance of each species in the two communities and multi-
ply that value by the phylogenetic distance from the root to the tip holding each
species. First we make an empty matrix to hold the three columns for the output of
interest and one row per species in our community distance matrix. If the species is
not present in either of our communities it is fine as the total relative abundance will
be zero and will not influence the summation.

Now start the loop from 1 to the number of species in our meta-community (i.e., the
number of columns in our community data matrix object my.ra.sample).

5  Phylogenetic and Functional Beta Diversity

93

We can normalize the raw weighted UniFrac, u, by dividing by the scaling
factor, D.

We, therefore, now have the ability to calculate the ability to calculate a weighted
and scaled version of the UniFrac metric. The weighting of UniFrac by abundance
is a welcome improvement over the original UniFrac metric, but some conceptual
and mathematical problems with this weighted metric have been pointed out [117].
One particularly troubling problem is that the weighted UniFrac does not equal the
value from the original UniFrac calculation if abundances become binary. That is, if
species are treated as either present or absent in the weighted equation the result
would not equal that of the original equation. In other words, the weighted metric is
not a natural extension of the original and the two are not coherent. An additional
issue with the weighted UniFrac calculation above is that it may overly weight
branches with large abundance proportions [117]. A solution to these two issues has
been derived by Chen et al. [117] by altering the equation for weighted UniFrac to
include a normalizing factor to the equation.

	

d

b p p
p p

p p

b p p

i i i
i i

i i
i

n

i i ii

n

a

a

a
() =

+() -
+

+()

å

å

A B
A B

A B

A B

	

where α is the normalizing factor that can range from zero to one, bi is the length of
branch i, and pi

A is the proportion of the abundances subtended by branch i for com-
munity A. This modified, and arguably much improved, version of the abundance-
weighted UniFrac is available in the GUniFrac package.

The GUniFrac() function in the GUniFrac package can run the analyses with mul-
tiple different levels of alpha at the same time to produce an array of dissimilarity
matrices.

The first three layers of the output array are the weighted UniFrac values with the
three different levels of alpha we provided. As the alpha parameter approaches one
it places more weight on branches with more abundance. The fourth level is the
unweighted version of the Chen et al.’s [117] UniFrac equation above and the last
level is the variance-weighted version of UniFrac from Chang et al. [118]. An issue,
of course, with the Chun et al.’s metric is that one must pick the results from an
alpha level for downstream analyses. If this was a uniformed process it would be

5.3  Tree-Based Measures of Phylogenetic Beta Diversity

94

undesirable, though quantifying the sensitivity of the downstream inferences result-
ing from different alpha levels. Despite these drawbacks there are also clear draw-
backs to the original weighted version of UniFrac, suggesting that more work is
needed to understand the behavior of these metrics and it is perhaps best to utilize
distance-based metrics until these issues are resolved.

5.3.2  Phylogenetic Sorenson’s Index

The next metric we will discuss is very similar to the unweighted UniFrac method.
It was proposed years later by Bryant et al. [119] and is calculated as

	

PhyloSor
BL

BL BL

k k

k k

= ´
+()

2 1 2

1 2 	

where BLk k1 2
 is the Faith’s Index of the species shared between two communities

and BLk1
 and BLk2

 are the Faith’s Indices for the two communities. The PhyloSor
metric is a metric of similarity such that as the phylogenetic similarity of two com-
munities increases the PhyloSor value increases. This is the opposite of the
unweighted UniFrac metric which is a dissimilarity metric. Nonetheless, as we will
see below, the two metrics are highly correlated.

We can calculate the PhyloSor for two communities using all the calculations we
did in the previous subsection for the unweighted UniFrac. Specifically, all we need
to do is to divide the Faith’s Index for the species shared by the two communities by
the sum of the Faith’s Index for each of the two communities and multiply this
value by 2.

Thus we can see what PhyloSor is closely related to the unweighted UniFrac metric.
Indeed, the two are monotonic and the PhyloSor metric represents essentially a
reinvention of a preexisting phylogenetic beta diversity metric. Thus, there is really
no quantitative reason to think that PhyloSor is an improvement over the preexisting
unweighted UniFrac metric.

The PhyloSor of all communities can be calculated using the phylosor()
function in the picante package. It should be noted that this calculation is incredibly
slow such that it is potentially not useful when dealing with large phylogenetic trees
and/or large numbers of communities.

We have now seen the two major types of tree-based phylogenetic beta diversity
metrics. Conceptually both metrics could be used to calculate functional beta

5  Phylogenetic and Functional Beta Diversity

95

diversity, but this can be tricky in R as the existing code requires a phylo object.
A functional dendrogram can be coerced into a phylo object using as.phylo(),
but it may cause unwanted distortions to the dendrogram. The distance-based beta
diversity approaches we will cover in the next section are amenable to both phylo-
genetic and functional data and are often much faster to compute than the above
tree-based metrics.

5.4  �Distance-Based Measures of Phylogenetic
and Functional Beta Diversity

The above metrics of phylogenetic beta diversity, in essence, both compare the rela-
tive proportion of the total amount of Faith’s Index that is shared or unique to both
communities, thereby defining their similarity or dissimilarity. The calculations for
these tree-based methods can be slow and the metric that has been modified to
incorporate abundances has some outstanding issues regarding how it should or
should not be used.

An alternative class of distance-based beta diversity metrics exist that are gener-
ally faster to compute, are able to handle phylogenetic and functional information,
are more tractable when transitioning from presence–absence weighted to abun-
dance weighted, and are conceptually and mathematically tightly linked with exist-
ing distance-based phylogenetic and functional alpha diversity metrics. These
properties of distance-based beta diversity measures make them preferable for most
analyses.

The following subsections will explore the two main groups of distance-based
phylogenetic and functional beta diversity metrics. Similar to distance-based alpha
diversity metrics, the two main groups are based on pairwise and nearest neighbor
distances. Recent work by Swenson [112] has demonstrated that all tree- and
distance-based metrics of phylogenetic beta diversity he explored are highly corre-
lated with one of the pairwise or nearest neighbor metrics to be discussed below,
indicating that many of the metrics that have been published are largely redundant.
As such we will focus one general type of pairwise and one general type of nearest
neighbor metric.

5.4.1  Pairwise Measures

In many cases we are simply interested in ecology in the overall similarity or dis-
similarity between two samples or communities. In a distance-based framework this
overall similarity can be calculated as the distance between all species or individu-
als in one community to all species or individuals in a second community. If there
is no information regarding the evolutionary history or function of the species or
individuals, then this metric simply calculates the overall overlap in the identities of

5.4  Distance-Based Measures of Phylogenetic and Functional Beta Diversity

96

species or individuals. The lack of information regarding the evolutionary history or
function of species or individuals reduces the information we can glean from mea-
sures of community dissimilarity and even in some cases can cause us to overturn
the inferences we made from information regarding identity (i.e., species names)
alone (e.g., [109, 110]).

The calculation of a distance-based metric to quantify the overall dissimilarity
between two samples has its roots in Rao [68], which we will discuss above. The
metrics utilized today are generally natural and minor extensions to the original Rao
metric. For example, the pairwise phylogenetic or trait distance (Dpw) between two
communities can be calculated as

	
D

nk nk

ijj

nk

i

nk

pw =
´
åå d21

1 2 	

where there are nk1 species in community k1, nk2 species in community k2, and δij is
the phylogenetic or functional distance between species i in community k1 to all
species in community k2. In this instance species i or species j can occur in both
communities and conspecific distances (i.e., zeros) are counted in the mean pairwise
distances between communities.

The calculation of Dpw in R for phylogenetic or trait data requires a phylogenetic
distance matrix with all the species in the first community as rows and all species in
the second community as columns. A mean of this distance matrix, including any
zeros, is the Dpw value. To accomplish this we must first make a distance matrix for
our phylogeny or trait dataset. The phylogenetic distance matrix can be generated
using the cophenetic() function.

A trait distance matrix can be calculated from the raw trait values using the dist()
function or by using cophenetic() on a trait dendrogram. In this example, we
will calculate a Euclidean distance matrix from the raw trait values.

The next step is to extract the names of the species present in our community. Here
we will utilize the first community in our community data matrix.

5  Phylogenetic and Functional Beta Diversity

97

The result is a vector of names for those species present in the first community. This
can be repeated for the second community in our community data matrix.

Now that we have vectors containing the names of the species present in our two
communities to be compared we can select the rows in our phylogenetic distance
matrix corresponding to the species present in the first community and the columns
corresponding to the species present in the second community. Here we are just
using the phylogenetic distance matrix, but the exact same procedure could be done
using the trait distance matrix to measure functional beta diversity.

An average of the resulting phylogenetic (or functional) distance matrix comparing
the two communities can now be quantified to provide the Dpw value.

As we discussed above the Dpw metric quantifies a mean phylogenetic or functional
distance between two communities including the distance between conspecifics. If
the use of conspecifics was undesirable for some reason they could easily be
removed from the analysis by replacing all zero values in the community phyloge-
netic or functional distance matrix with NA values. In particular, we first generate a
new distance matrix identical to the original.

Second we replace all instances of zero (i.e., all congeneric comparisons) with a
NA. Note that in the event that your phylogeny has a branch that ends with two spe-
cies or more that are not separated by any branch length or you have two or more
species that have the exact same trait values the code below may present unwanted
results.

We can now take a mean of the resulting community phylogenetic (or functional)
distance matrix assuring that we remove all NA values.

Next we would like to extend the Dpw metric to include the abundances of species.
It is critical that the abundance-weighted metric is a natural mathematical extension

5.4  Distance-Based Measures of Phylogenetic and Functional Beta Diversity

98

of the original unweighted metric and, as we have seen above, this is not always
accomplished. With this in mind, we can define an abundance-weighted version of
the pairwise dissimilarity (Dpw’).

	
D f f

i

nk

j

nk

ij i jpw
¢ = åå

1 2

d
	

where fi is the abundance of species i in community one and fj is the abundance of
species j in community two. We could alternatively write the equation with the sum-
mations in the numerator going across all individuals instead of species and the with
no abundance parameters. Now that we have defined an abundance-weighted pair-
wise dissimilarity metric that is a natural extension of the unweighted metric, we
can proceed to calculate it in R using an example quantifying the phylogenetic dis-
similarity between two communities. We start by transforming our community data
matrix that contains the raw count of individuals into relative abundances by divid-
ing the values in each row by the sum of the values in that row.

Next, we obtain the names of the species present in the first two communities.

We then generate a community phylogenetic distance matrix containing only the
species present in our two communities.

Last, we calculate the abundance-weighted pairwise phylogenetic dissimilarity
(Dpw’) by calculating the product of community phylogenetic distance with the
product of all abundances between species in the two communities. This value is
then summed to provide the dissimilarity.

The values for Dpw and Dpw’ for all pairs of communities in your community data
matrix can be calculated by using the comdist() function in the picante package,
but it is important to note this function will not remove conspecifics from the analy-
sis. Whether you calculate Dpw or Dpw’ using comdist() depends on whether you
tell the function true or false regarding abundance weighting.

5  Phylogenetic and Functional Beta Diversity

99

When working with large datasets and/or when you are interested in running a null
model analysis (see Chap. 6) you likely may find that the comdist() function is
too slow to accomplish your tasks in a timely manner. This is because a difficulty
arises when coding the calculation of beta diversity or dissimilarity metrics that is
not present when calculating alpha diversity. That problem is that all pairwise com-
parisons of communities must be calculated. Thus, the number of calculations and
outputs is much larger for beta diversity than alpha diversity. As we have seen in the
previous chapters alpha diversity is often calculated for each community by writing
a for() loop to analyze one community (i.e., one row in the community data
matrix) at a time. The use of loops can severely slow down analyses and we have
overcome those limitations for alpha diversity by using the apply() function
instead of a loop. The problem is even greater for beta diversity because functions
such as comdist() use nested for() loops. In other words, there will be a loop
starting with community one and a loop inside that loop to compare community 1 to
all of the other communities. The effect of these nested loops on beta diversity cal-
culations may be minimal on small datasets, but on larger datasets or when you
would like to analyze hundreds or thousands of random communities in a null mod-
eling context the effect can be very large. Thus, we should attempt to find a way to
utilize apply() functions to eliminate loops as much as possible in phylogenetic or
functional beta diversity analyses.

Here I present one such approach for calculating the Dpw value for all pairs of
communities in our dataset without using a for() loop. This will require that we
write three small functions. We start by generating a simple function we will call
get.presents() that simply reports the names of the species present in a com-
munity (i.e., a row in our community data matrix).

We can now apply our get.presents() function simultaneously to all rows of our
community data matrix to produce a list containing the names for the species pres-
ent in each of our communities.

Note it is critical for the following steps that the list.of.names object is truly
a list and not a matrix. It would only be a matrix if all communities in your com-
munity data matrix had the same exact species richness. If your object is a matrix
you would use an apply() function in the following code with a MARGIN = 2
instead of a lapply() function. The next goal is to write a function to calculate
Dpw that can be applied to each group of names in our list of species present in each
community.

5.4  Distance-Based Measures of Phylogenetic and Functional Beta Diversity

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

100

The above functions will now generate a list of names present in each community,
and then for a single community calculate the Dpw between it and all other commu-
nities. Thus to finish the analysis we have to compare all communities to all others.
To accomplish this we can use an lapply() function. Thus we have one lap-
ply() nested within the Dpw.apply.function and one lapply wrapped
around that function. This replaces the use of two for() loops and vastly speeds
up the calculation.

The result is a list with one layer for each community. Inside each layer is a list of
Dpw values comparing that community to the others. The goal now is to put these
levels back together to form an output matrix. This can be done simply using the
do.call() function.

As similar approach can be used to calculate the Dpw’ where the tmp.func-
tion() is modified to include the calculation for the Dpw’ between two communi-
ties. We will now transition to the calculation of nearest neighbor distance-based
phylogenetic and functional beta diversity metrics.

5.4.2  Nearest Neighbor Measures

The previous subsection dealt with calculation of pairwise distance-based phyloge-
netic and functional beta diversity calculations. While pairwise metrics maybe

5  Phylogenetic and Functional Beta Diversity

101

interesting for comparing the overall dissimilarity between sets of communities, it
might be equally interesting to quantify whether the closest relative of each species
or individual in one community to the next is distantly or closely related. This is the
question that nearest neighbor distance-based beta diversity analyses ask and they
are conceptually similar to beta diversity indices that simply ask how many species
or genera are shared between two communities. A nearest neighbor extension of the
alpha diversity metric mntd to beta diversity (Dnn) can be formulated as follows:

	
D

nk nknn

iki

nk

jkj

nk

=
+

+å åmin mind d
2

1

1

2

1 2 	

where mind ik2
 is the minimum phylogenetic distance between species i in commu-

nity k1 and all species in community k2, mind jk1
 is the minimum phylogenetic dis-

tance between species j in community k2 and all species in community k1, and n is
the number of species in the respective communities. This metric has been utilized
in phylogenetic and functional beta diversity analyses and provides a refined or
“terminal” measure of dissimilarity [64, 80, 120, 121]. As with the Dpw calculations
above, conspecifics are included in this Dnn equation such that if two communities
have the identical species composition the Dnn value will be zero.

We will begin with a calculation of the Dnn metric by comparing the first two
communities in our community data matrix. The goal is to first generate a phyloge-
netic (or functional) distance matrix containing only the species found in the
community.

If we look at the output distance matrix we visualize that if we were able to select
the minimum value in each row we would have a series of the nearest neighbor
values across species in community one and if we did the same across columns we
would have the nearest neighbor values across all species in community two. This
can be accomplished using the apply() function. Using just community one as an
example we will use an apply() function in the rows of the community phyloge-
netic distance matrix to extract the minimum value in each row.

Because the ultimate goal is to calculate the nearest neighbor values for each spe-
cies in both communities we can use two apply() functions, one for the rows and
one for the columns, and calculate a mean value to produce the Dnn result.

5.4  Distance-Based Measures of Phylogenetic and Functional Beta Diversity

102

In many instances it might be interesting to remove conspecific species shared
between the two communities for the calculation. This may assist you in determin-
ing how much the phylogenetic or functional dissimilarity that you have found is
simply the result of little species turnover or the turnover of species that are very
closely related or functional very similar. We can accomplish this by first replacing
all zeros in the distance matrix with NA values. Again note that this will assign NA
values to non-conspecifics that have no phylogenetic branch length separating them
or that share identical trait values and as such you will want to take care before
applying this approach.

The Dnn value can be calculated for all pairs of communities using the com-
distnt() function in the picante package, which has the options to weight all
species equally and to exclude conspecific species. It should be noted that the
comdistnt() function also simply replaces zero values in the distance matrix
with NA values and therefore may place NA values for non-conspecific pairs in the
distance matrix. This function also uses nested for() loops for its calculation and
therefore may be much slower than the apply() function-based code above
particularly with large datasets.

Like all of the other phylogenetic and functional diversity metrics presented in this
book it is often very useful to weight the metrics by abundance. We will call the
abundance-weighted version of the nearest neighbor metric Dnn′. The Dnn′ equation
for simply weights all of the nearest neighbor distances by the abundance of the
focal species and averages across all individuals.

	

D
f f

f f
nn

ik ii

nk

jk jj

nk

ii

nk

jj

nk
¢ =

´ + ´

´

å å
å å

min mind d
2

1

1

2

1 2

	

where fi is the abundance of species i in community k1 and fj is the abundance of
species j in community k2. The original Dnn calculation and the present calculation
include conspecific species, but this can be easily modified to remove conspecifics.
The calculation of this metric in R first requires that we convert our community data

5  Phylogenetic and Functional Beta Diversity

103

matrix to relative abundances by dividing values in the rows by the sum of the val-
ues in that row.

We then derive a phylogenetic distance matrix that contains all the species present
in community one in the rows and all species present in community two in the
columns.

The calculation is now the same as before with the exception that we calculate a
weighted mean with the abundances of the species in the two communities serving
as the weights.

The code above can again be modified to remove conspecific species from the cal-
culation by replacing all zeros in the phylogenetic (or functional) distance matrix
with NA values. The Dnn′ values for all pairs of communities can be calculated in
the picante package using the comdistnt() function.

Again, like the comdist() function, the comdistnt() function has nested
for() loops that can slow computation of values. Here I will quickly provide an
example for how to eliminate these nested loops using apply() and lapply()
functions. We begin by using the same functions to extract the names of species
present in each community in our community data matrix.

5.4  Distance-Based Measures of Phylogenetic and Functional Beta Diversity

104

Next we write the function that will quantify the Dnn between one community and
all other communities.

Now that the function has been written to calculate the Dnn between one community
and all others, we can use lapply() to apply this function to all levels in our list
containing the names of species present in each of our communities. Recall that the
output of the lapply() last time was a list of values for each community. We will
therefore wrap our code with do.call() to zip our output back together into a
matrix that is easy to visualize.

A similar procedure can be used to calculate the abundance-weighted nearest neigh-
bor metric by replacing the code in the tmp.function() with a weighted mean
calculation.

5.5  Other Metrics

The above sections cover the major tree- and distance-based approaches and metrics
for calculating phylogenetic and functional beta diversity. Like any other series of
diversity metrics, novel and not-so-novel metrics probably will be published while
this book is being written and after. We cannot cover those metrics, of course, and
we won’t cover many other metrics that are monotonic with the distance-based met-
rics provided above with one exception. We will briefly discuss the dissimilarity
indices of Rao [68]. We discuss these indices given that they were published long
before the metrics above and therefore have a special place in phylogenetic and
functional diversity metric history even though their application to this type of data
was not immediate.

The two Rao dissimilarity metrics that we will briefly discuss can be calculated
with the raoD() function in the picante package using a community data matrix
and a phylogeny. This function does not take a trait distance matrix, but given the

5  Phylogenetic and Functional Beta Diversity

105

results are monotonic with the above metrics we will not worry about this issue
since one can simply use those metrics instead.

The first dissimilarity metric output by the raoD() function is what I will call
Rao’s Dbeta. The equation for this metric is defined simply as the pairwise phyloge-
netic (or functional) distance between all individuals in two communities.

	
Rao D f fbeta

i j
ij ik jk’s = ååd

2 1

	

Thus, we can see that this metric is essentially the same as the Dpw’ metric, but in
this instance the δij value is equal to the distance to the most recent common ances-
tor (MRCA) of two species and not the complete distance between two species. In
other words, Dpw’ will simply be equal to twice the Rao’s Dbeta for an ultrametric
phylogeny. The Rao’s Dbeta can be extracted from the output we generated above by
asking for the Dkl matrix.

Rao has also proposed a metric, which I will call Rao’s H, that weighted the Rao’s
Dbeta by the diversity within each community.

	

Rao H
Rao D

f f

beta

i ki

S

j kj

Sk k
’

’
s

s
=

+()´å åd d
1

1

2

2 1
2 	

Again it is essential to recall that the phylogenetic distance values in this equation
are distances to the MRCA and not the complete distance separating two taxa on the
phylogeny. The values for Rao’s H can be extracted from the output we produced by
asking for the H matrix.

Now that we have covered the original Rao metrics we can transition into compar-
ing all of the phylogenetic and functional beta diversity metrics covered in this
chapter.

5.6  Comparing Metrics

As we have discussed in the two previous chapters regarding alpha diversity it is
often useful and informative to compare metrics. This helps us to understand
which metrics are monotonic and which are providing unrelated information that

5.6  Comparing Metrics

106

may be helpful. This is important for our understanding of the metrics published
and outlined here, but also if you are considering coding a new metric for your
research. If your “new” metric is monotonic with existing metrics, then it proba-
bly is not needed and shouldn’t be published in order to avoid cluttering and in
some cases mathematical synonymy in the already vast diversity metrics literature
(Fig. 5.2).

Fig. 5.2  A plot of each phylogenetic beta diversity metric against all other metrics. Note that while
some metrics are not related others are highly correlated in this dataset. For example the Dpw’ and
Rao D metrics are all highly correlated and are in fact redundant

5  Phylogenetic and Functional Beta Diversity

107

We can see that metrics such as Rao’s D and Dpw’ and UniFrac and PhyloSor are
monotonic and highly correlated if not mathematically identical. We can test degree
of correlation with a simple Pearson’s correlation.

Thus, we can now quickly see which metrics are clearly monotonic or at least highly
correlated. The results are to some degree particular to the datasets we are using, but
the general direction and strength of the correlations will likely be seen in almost
any dataset you use. For example, the perfect correlation between Rao’s D and Dpw’
is a mathematical necessity and it is unlikely, given how they are calculated, that
UniFrac and PhyloSor will ever be divergent across many communities or samples
in a system. This underscores the importance of knowing why you are calculating
one metric over another or both metrics and knowing whether we should expect
them to tell us novel information.

5.6  Comparing Metrics

108

5.7  Conclusions

Here we have focused on phylogenetic and functional measures of beta diversity.
There is approximately a decade worth of research regarding phylogenetic beta
diversity with the vast majority of the early work coming from microbial ecologists
that necessarily had to use phylogenetic information to characterize the beta diver-
sity in their systems. Functional beta diversity research is much rarer, but is becom-
ing more prevalent in the literature over the past few years. The promise of both
approaches is that by recognizing that species are not independent entities and by
quantifying their phylogenetic and functional non-independence we can provide
stronger tests of ecological and evolutionary hypotheses. These tests can be easily
facilitated in R using the code provided in the above sections. In particular, we have
discussed the two main classes of phylogenetic and functional beta diversity metrics
that have been generated and a central framework for quantifying a metric from
each class that is flexible. We have also discussed other tree-based metrics of phy-
logenetic beta diversity that are more common in the microbial ecology literature
that rely on quantifying the shared branch length between communities and less on
the phylogenetic distance between species or individuals in two communities. These
tree-based metrics are, for the most part, less flexible and computationally slower
and therefore are less often used by plant and animal ecologists. It is inevitable that
more phylogenetic or functional beta diversity metrics will be published in the near
future or there are metrics that already exist that I have not covered. It will be a chal-
lenge to navigate this barrage of new metrics, but using the code in this chapter you
should be able to quantify these new metrics in R and compare them to existing
metrics to determine their novelty and when, where, and why they may be useful in
your research program.

5.8  Exercises

	1.	 Quantify the species beta diversity in your example dataset using the presence–
absence-weighted Jaccard’s Index and the abundance-weighted Bray–Curtis
Index. Use the vegdist() function in the vegan package for both metrics.

	2.	 Correlate both measures of species beta diversity with the phylogenetic and
functional beta diversity metrics presented in this chapter. Are the phylogenetic
and functional metrics correlated with the species beta diversity metrics? Is this
important?

	3.	 Simulate a coalescent phylogeny in R that has the same number of species in
your example dataset using the rcoal() function in ape. Take the species
names from your community data matrix and place them on the tips of your
simulated phylogeny.

	4.	 Calculate the phylogenetic beta diversity metrics addressed in this chapter using
the simulated phylogenetic tree and your original community data matrix.

5  Phylogenetic and Functional Beta Diversity

109N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_6, © Springer Science+Business Media New York 2014

6.1 Objectives

 The ultimate goal of this chapter is to understand when, where, and why null models
should be used in the analysis of phylogenetic and functional diversity. The specifi c
objectives of this chapter are to fi rst discuss the philosophy behind null models,
what they seek to accomplish, and how they work. Second is to establish why null
models are necessary for most analyses of phylogenetic and functional diversity.
Lastly, we will implement several classes of null models for phylogenetic and func-
tional alpha and beta diversity.

6.2 Background

 The usage of null models in ecology has a history dating back, to the best of my
knowledge, nearly 100 years [52]. Interestingly, the fi rst null models were used in
the context of relatedness and co-occurrence where researchers were quantifying
the ratio between the number of genera per community to the number of species per
community. A lower ratio indicating a lower degree of relatedness and higher phy-
logenetic diversity—although it was not termed phylogenetic diversity at this stage.
A higher ratio indicated a higher degree of relatedness and less phylogenetic diver-
sity. Not long after the fi rst studies of these ratios were published, the question of
what ratio might one expect given the observed richness was raised. In other words,
it was not possible to tell whether the pattern observed was unusual or could be
explained simply by random colonization of the community from a given pool of
species. This fundamental problem spurred the use of null models in ecology gener-
ally and community ecology in particular [52].

 Chapter 6
 Null Models

 The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_6) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

110

 In the early null modeling literature there was typically not enough computing
power available to generate random communities from a given source pool that could
be used to generate a null distribution to which the observed could be compared.
This resulted in some analytical solutions and in some cases randomizations done by
hand. In these studies and those that were the fi rst performed on computers, generally
the expected co-occurrence of species or their relatedness based on a genus:species
ratio was generated by randomly assembling communities from a source pool of
names while maintaining the observed number of species. In other words, if your
community had three species observed, you would randomly choose three species
from a source pool of names; calculate the statistic of interest (e.g., genus:species
ratio) and repeat this process hundreds of times to generate a null distribution. With
this approach the only pattern observed that is fi xed in the randomizations is the
observed species richness. Thus the null models were fairly “unconstrained.”

 The modern conceptual approach to null modeling is to attempt to fi x all observed
patterns in the data except the one pattern that you are interested in studying [122].
Thus, by only fi xing the observed species richness of a community, a number of
other observed patterns (e.g., species rarity) were free to vary. This mismatch
between concept and implementation generally resulted in high type I error rates,
but this mismatch and the increase in computational power also spurred method-
ological advancements that permitted researchers to increasingly constrain their
null models such that fewer observed patterns varied in the randomizations. Though,
in some cases early on and still today null models may be so constrained that there
is no power to detect anything [123 , 124]. Thus, when conducting null modeling
analyses it is critical to: (1) obey the fi rst rule of null modeling which is to fi x all
observed patterns in the randomizations except the pattern of interest and (2) be
cognizant of the inherent interactions between type I error rates, statistical power,
and the degree of constraint imposed in your null model. In the following sections
we will describe exactly why null models are useful for phylogenetic and functional
diversity analyses, what types of null models are typically used, and their relative
degree of constraint.

6.2.1 Why Use Null Models for Phylogenetic
and Functional Analyses?

 The calculation of phylogenetic diversity (PD) or functional diversity (FD) itself
can be the end goal in many analyses. For example, one may be interested in
whether the PD contained in one proposed nature reserve is greater than that of
another proposed reserve or whether FD is a signifi cantly related to an ecosystem
process or service. Such approaches are legitimate, but they are also generally
working under the implicit or explicit assumption that PD or FD measures are pro-
viding information that measures of species richness or diversity do not. This addi-
tional information is thought to provide refi ned or orthogonal information regarding,
for example, the conservation decision being made or the ecological process being
studied. In many cases the PD or FD metrics being utilized by biologists are highly

6 Null Models

111

correlated with the species richness (SR) of the community. The PD or FD measure
in these instances may refi ne our quantifi cation of biodiversity by adding an
 evolutionary or functional dimension, but the strong correlation between SR and
PD leaves the question of how much additional information is actually being
gained. This can be demonstrated by calculating the Faith’s Index PD metric for an
example dataset (Fig . 6.1).

 The benefi t of metrics for PD or FD such as Faith’s Index [25] and Petchey and
Gaston’s analog FD [76], respectively, is that the value must increase as species are

 Fig. 6.1 A plot of the Faith’s Index PD value from a community against the species richness from
the same community. Two aspects of this plot are important. First, the two variables are highly
correlated. Second, the variance decreases as one moves from species-poor to species-rich assem-
blages. This decrease in variance demonstrates why analyzing the residuals of this relationship
alone does not remove the dependence of Faith’s Index on species richness

6.2 Background

112

added to an assemblage. In other words, adding any species will add to the biodiver-
sity. This makes intuitive sense, but it results in a strong correlation between SR and
PD or FD when there is even a moderate gradient in SR. This creates several prob-
lems. For example, if a researcher reports that two communities have very different
PD values, it can be impossible to know if this is simply because they have very
different SR values or there is something fundamental about the phylogenetic infor-
mation that is important. An enticing method for removing this artifact to determine
whether the differences in PD or FD between assemblages are different than that
expected given the SR is to examine the residuals of the SR–PD or SR–FD plot with
residuals below the regression line indicating lower than expected PD or FD given
the SR in a particular community and residuals above the regression indicating
higher than expected PD or FD given the SR in a particular community. The prob-
lem with this particular approach, that is not always appreciated, is that the variance
of the residuals around the regression must decrease as the SR in a community
approaches the number of species in the phylogeny due to how tree-based metrics
that are additive with SR are calculated. The magnitude of the variance with SR will
also differ depending on the shape and size of the phylogenetic tree in the study
thereby making comparisons of residuals impossible. Lastly, whether the observed
PD or FD is signifi cantly different from the value predicted by a regression fi t can-
not be determined easily and calculating a P -value using this approach is pointless.
In sum, it is impossible to know whether the raw PD or FD value generated from
many metrics is truly telling us something aside from the SR of the assemblage and
simple calculations of how the metric deviates from the expected using a regression
approach are invalid. For these reasons null models are generally advised for any
analysis of PD or FD.

 The knowledge that some metrics of PD or FD are strongly correlated with SR
has lead researchers to develop metrics of PD or FD that are not correlated with SR.
The argument made by these researchers is that the metrics are not correlated and
are therefore providing orthogonal information regarding the biodiversity in an
assemblage. Although this philosophy removes the appealing aspect of other met-
rics where the addition of a species increases the PD or FD, it does add the appeal-
ing aspect that SR and PD or FD may be treated as independent variables in an
analysis. In other words, it may be possible to use SR and FD as uncorrelated inde-
pendent variables with an ecosystem process as the dependent variable to determine
the relative contribution of each dimension of biodiversity. The majority of the PD
or FD metrics proposed that are uncorrelated with SR involve a pairwise calcula-
tion. For example, the mean pairwise phylogenetic distance between all species in a
community is one such metric. We can quickly calculate this metric and demon-
strate the lack of correlation with SR (Fig. 6.2).

6 Null Models

113

 We see there is no correlation between the metric and SR. Similar results would
be found using other pairwise calculations such as FDis, Rao’s Index, and PSV. This
type of plot generally forms the basis for the argument that the raw values of these
metrics can be used as independent biodiversity information for downstream analy-
ses. Despite the vigor with which some make this argument, there is still a funda-
mental bias related to SR that makes comparisons using these raw values ill advised.
Indeed, the very nature of how pairwise metrics are calculated is problematic and is
in a sense the same exact problem with the tree-based metrics described above. That
is, as the SR of the community approaches the number of species in the phylogeny
or trait dataset, the range of possible PD or FD values calculated from a pairwise
metric decreases. In other words, the mathematical mechanics of these metrics dic-
tates that the variance in PD or FD has to decrease as SR increases where the values
converge on the mean of the phylogenetic or functional distance matrix being

 Fig. 6.2 A plot of the Mean Pairwise Phylogenetic Distance (MPD) value from a community
against the species richness from the same community. One aspect of this plot is particularly
important. The variance in MPD decreases as one moves from species-poor to species-rich assem-
blages. This decrease in variance demonstrates why analyzing the residuals of this relationship
alone does not remove the dependence of MPD on species richness. It further demonstrates that
although these metrics are not correlated, this does not mean that MPD itself is truly independent
from species richness because a greater range of MPD values is mathematically possible at low-
species richness values. Thus, researchers will tend to fi nd “less signifi cant” MPD values in assem-
blages with higher species richness if a proper null model is not utilized

6.2 Background

114

utilized. Thus, the very high or very low PD or FD values that are possible with
these metrics at low SR are mathematically not possible at high SR. This is one
reason why plots of these PD or FD metrics against SR demonstrating no correla-
tion often have a “funnel shape” with decreasing variance along the SR axis. In sum,
even those metrics that are designed to be independent of SR and can be shown to
be uncorrelated have an underlying bias associated with SR that makes the compari-
son of the PD or FD between communities diffi cult particularly when the difference
in SR between the two communities is large. For these reasons null models are
generally advised for any analysis that seeks to utilize PD or FD values for inference
including those metrics that are uncorrelated with SR.

6.2.2 Calculating Standardized Effect Sizes, Quantiles,
and P -Values

 The problems associated with comparing the PD or FD values across communities
and assemblages can generally be summarized as being the result of decrease in the
range of possible values as the SR of a community or assemblage approaches the
number of species in the phylogeny or trait dataset. To permit comparative analyses,
we must remove this artifact by quantifying whether the PD or FD is higher or lower
than expected given the observed SR in the community or assemblage. As we dis-
cussed above, some have utilized residual analyses of SR–PD or SR–FD plots to
calculate the magnitude and direction of the deviation of the PD or FD from the
expectation derived from the regression line. The necessary decrease in the range in
possible values with SR means that comparing these raw deviations from the regres-
sion line, or “effect sizes,” is hopelessly biased such that the absolute value of the
magnitude of the deviations will always be much higher at lower SR values. Further,
a regression approach is ill advised because it is often diffi cult to estimate the range
of possible values or the variance of possible values at a given SR value using the
observed dataset.

 Null models permit researchers to estimate the expected distribution of PD or FD
values for a given SR. This expected, or null, distribution can be used to calculate
an effect size (E.S.) by measuring the deviation of the observed value from the mean
of the null distribution.

 E S. . = -observed null

where positive E.S. values indicate an observed value higher than the average
expected value and negative E.S. values indicate an observed value lower than the
average expected value. Given the range of possible PD or FD values and the pos-
sible variance in values decreases with SR, not all E.S. values are created equal.
That is, an E.S. value of 5.24 for one community containing 5 species is not compa-
rable to an E.S. value of 5.24 for a second community containing 45 species. Indeed,

6 Null Models

115

the 5.24 E.S. value for the community with 45 species is much more impressive
given the lower possible maximum value. A standardization of E.S. values is
 therefore necessary before they can be compared without bias. A standardized effect
size (S.E.S.) is generally calculated in null model analyses by dividing the E.S. by
the standard deviation of the null distribution.

S E S. . . =
-

()
observed null

sd null

 This calculation removes any directional bias associated with the decrease in vari-
ance in the expected values with increasing SR. Similar to the E.S. calculation, a
positive value S.E.S . indicates a higher than the average expected value and a
negative value indicates a lower than the average expected value. The calculation
of S.E.S. values using output from a null model is an effective method for compar-
ing the PD or FD of the communities and assemblages in your study system while
removing biases associated with differences in SR. It is important to remember,
however, that the shape of the null distributions may be variable across studies
making meta-analysis diffi cult. For example, the null distributions in one study
may be highly skewed and approximately normal in another study. Part of this
bias could be removed if the S.E.S. values were reanalyzed using the median of
the null distribution instead of the mean. This highlights the importance of exam-
ining the shape of some or all of the null distributions used in your study and it
also highlights the usefulness of calculating quantile values in studies that utilize
null models.

 The quantile value or score is simply where the observed value lands in the null
distribution. These scores can be utilized to estimate P -values. For example, an
observed value that lands in the middle of a normal null distribution containing 999
values will have 500.5 as its quantile score. Or if an observed value is higher than
any of the 999 random values, it will have a quantile score of 1,000, and if the
observed is lower than any of the random values, it will have a quantile score of 1.
Thus, a study hypothesizing that the PD in a community will be lower than expected
with α = 0.05 (i.e., a one-tailed test) will need a quantile score for the observed value
is less than or equal to 50 to reject the null because 50/1,000 = 0.05. If the hypothesis
is that the observed PD in a community will be signifi cantly different than expected
with α = 0.05 (i.e., a two-tailed test), then the quantile score for the observed value
must be less than or equal to 25 for a lower than expected PD or greater than or
equal to 975 for a higher than expected PD. The calculation of quantile scores and
the associated estimated P -values removes some of the biases that make comparing
 S.E.S. values from multiple studies diffi cult, but they also remove information
regarding the size of the effect itself. Thus, it is recommended that investigators
report both the S.E.S. values and the quantile scores when possible to aid those read-
ers interested in place the result of a particular study into a broader context or dis-
tribution of results.

6.2 Background

116

6.3 Classes of Null Models in Phylogenetic and Functional
Analyses of Species Assemblages?

 There are two general classes of null models that you will encounter when it comes
to phylogenetic and functional diversity analyses. In both classes the objective is to
maintain all aspects of the observed data except the pattern of interest. Traditionally,
measures of phylogenetic and functional diversity have been interested in whether
co-occurring species exhibit more or less phylogenetic or functional diversity, how-
ever quantifi ed, than expected. The word “expected” in the previous sentence is key
as the structure of the null model underlies what the expectation really is in your
study. In most cases, researchers are interested in whether the phylogenetic or func-
tional diversity is more or less than expected given all other observed patterns in the
community including the observed species richness, the observed occupancy rates
of species (e.g., how many communities a species occupies in a given meta-
community), the observed species abundances, etc. The fi rst class of null models
used to address this type of question seeks to randomize the community data matrix
itself and does not alter the phylogenetic tree or the trait data matrix. This approach
can be unconstrained where potentially many aspects of the observed community
data matrix may vary during each iteration of the null model or the approach can be
constrained where the investigator seeks to fi x as many observed patterns as possi-
ble (e.g., community species richness and species occupancy rates) while allowing
one pattern (e.g., species co-occurrence) to vary.

 An alternative approach is to randomize the phylogenetic tree or trait data while
fi xing the observed community data matrix. This approach is more recent in the
literature, but it has the advantage not having to deal with the many interconnected
patterns in a community data matrix that can be hard to isolate in a randomization
framework. This is not to say that potential biases may arise in a null modeling
approach that randomizes the phylogenetic or functional trait data. We will discuss
where these biases may lurk and how to constrain the phylogenetic or functional
trait randomizations to mitigate such biases.

 We will begin our consideration of null models for phylogenetic and functional
diversity analyses with the fi rst class of models—community data matrix random-
izations. The discussion will start with the most basic, unconstrained, and computa-
tionally easy null models to provide historical context and then we will quickly
transition to the more constrained models that are currently used. We will then dis-
cuss the second class of null models designed to randomize phylogenetic or func-
tional trait data while maintaining the community data matrix.

6.4 Randomizing Community Data Matrices in R

 As we have established in Sect. 6.2 , null models have been present in ecology for
nearly a century. We have also established that good practice when conducting a
null model is to attempt to fi x all observed patterns or aspects of the data except the

6 Null Models

117

aspect you are interested. In the case of phylogenetic and functional analyses of
communities, one is often interested in determining whether the community pattern
of interest (e.g., degree of co-occurrence, species similarity in assemblages, etc.) is
nonrandom with respect to phylogeny or function. This leaves several options for
constructing a null model. The fi rst we will discuss is the randomization of com-
munity data. Randomizing community data was the original null modeling approach
for questions regarding relatedness and co-occurrence and therefore has a deeper
literature that has documented the advantages and disadvantages of various com-
munity data randomizations. Given that almost all analyses of phylogenetic and
functional diversity in R require a community data matrix, we will focus our dis-
cussion on the randomization of these matrices while maintaining the observed
phylogenetic and functional data. Recall that a community data matrix contains
columns for each species in the meta-community and rows for each community in
the meta-community.

6.4.1 Unconstrained Randomizations

 The original null models utilized in ecology generated random species assemblages
that generally only fi xed one or a few observed patterns. Thus, these null models
may be considered “unconstrained” or minimally constrained. These null models
are generally quicker to compute and easier to program, but many aspects of the
data are often randomized along with the pattern of interest. This typically results in
an infl ation of type I error and therefore they are not recommended for most analy-
ses. Though we will discuss these null models for historical completeness and for
those rare cases when unconstrained randomizations of community data matrices
are appropriate.

 The classic unconstrained null model is one that r-assembles the communities at
random individually while maintaining the species richness observed. Say we have
a meta-community containing species six species (A, B, C, D, E, and F) and in the
three communities in our study system we know their presence or absences. The
community data matrix would then look something like this:

 The species richness for each community can be calculated by summing the ones in
each row and we see each community has four species.

6.4 Randomizing Community Data Matrices in R

118

 If we wanted to randomly assemble community one (i.e., com1), we would then
randomly draw four species from the list of A through F without replacement.

 This could be repeated many times to produce many null or random communities
for com1. Here we will only replicate the process ten times.

 To perform this randomization for all communities to output a community data
matrix we can use the randomizeMatrix() function in the picante package.

 The output is an array with each level being a random community data matrix. These
random matrices could be used to calculate random phylogenetic and functional alpha
and beta diversity. For example, one couple replicate the function 999 times instead of
3 and produce 999 random community data matrices and then use a function like
 PD() to calculate the Faith’s Index for the 999 random community matrices.

 If we take a look at the output from the randomization above generating three
community data matrices we will see that while the row sums do not change (i.e.,
the community species richness is fi xed), the column sums are not consistent for
species indicating that the occupancy rate, the number of communities a species is
in, is not maintained. Though there is a chance this didn’t happen with your data due
to the low number of randomizations we used.

 This variability in the column sums indicates that not only the co-occurrence of spe-
cies pairs is varying, but their overall occupancy rates are also changing. Indeed a
species could be present in only one community in one randomization (i.e., rare)
and present in all communities in the next (i.e., common). This suggests that mul-
tiple properties of the matrix are not fi xed in randomizations and this likely could
infl ate type I error.

6.4.2 Constrained Randomizations

 A solution to the unconstrained randomization problem from the previous subsec-
tion is to fi x the row and column sums for a presence–absence community data

6 Null Models

119

matrix in all randomizations. This approach is now known as an “Independent
Swap” null model [125]. An independent swap is computationally more diffi cult
and initially restricted researchers from implementing this approach, but it is now
easily implemented in R using the same function as above:

 We can now see that the row and column sums (i.e., the community species richness
and species occupancy rate) are now consistent across randomizations.

 Thus, a useful and computationally expedient constrained null model is available in
R for randomizing our community data matrices that contain presence and absence
of species. The next goal, obviously, is to randomize a community data matrix that
contains abundances or relative abundances. To explore this possibility, let us assign
abundances to our species.

 Now run the independent swab null model and sum the rows and columns.

 We see that the row sums are in some instances different indicating that the total
abundance of a community varies from randomization to randomization. The col-
umn sums on the other hand are consistent indicating the total abundance of a spe-
cies in the system is fi xed in the randomizations. Now let us examine the actual
output community data matrices.

 We see the occupancy rate of species (i.e., the number of row a species has a posi-
tive abundance) is fi xed. That is good news. Though, unfortunately, when we
consider all of this evidence we see that adding abundance to this problem that
the total abundance in a community is no longer fi xed. This likely will have con-
sequences for not only abundance-weighted alpha diversity measures but also

6.4 Randomizing Community Data Matrices in R

120

abundance- weighted beta diversity measures. Thus, if we are using abundance
data it may be very diffi cult to fi x all the observed properties of the communities
aside from the one property we are interested in analyzing. This is a fundamental,
and thus far unavoidable, problem for null models randomizing community data
matrices. In the following sections we will consider randomizations that fi x the
entire community data matrix while randomizing the phylogenetic or functional
information.

6.5 Randomizing Phylogenetic Data

 Null models that focus on the randomization of community data matrices are becom-
ing increasingly sophisticate and fast, but even the most constrained of these ran-
domizations are often fairly unconstrained from my perspective. In many instances
this can make it diffi cult to determine whether the statistical signal being produced
can be unbiased and only informing the investigator about the pattern of interest. An
alternative approach for phylogenetic diversity investigations, that may be less sus-
ceptible to the biases that lurk in community data matrix randomizations, is to ran-
domize the phylogenetic relatedness of species. Thus, when asking a question such
as does my community have a higher phylogenetic diversity than expected, we do
not construct random communities. Rather we randomize the phylogenetic distances
between the species in our community of interest. The randomization of phyloge-
netic relatedness therefore preserves all obvious and less obvious patterns and infor-
mation in the community data matrix. Also, as you will see below, randomizations
of phylogenetic relatedness are simple and computationally fast. Though, similar to
community data matrix randomizations, phylogenetic randomizations can be uncon-
strained or constrained and care must be taken when utilizing one over the other.

6.5.1 Unconstrained Randomizations

 The overarching goal of randomizing phylogenetic data for ecological analyses is
generally to randomize the relatedness of species or individuals. The ultimate
unconstrained phylogenetic randomization would be to simulate phylogenetic trees
that contain the same number of species in your data. In the context of most ecologi-
cal investigations, that would mean simulating phylogenies with the same number
of taxa as that found in the observed meta-community. This is ill advised for several
reasons as it not only randomizes the overall ranking of relatedness of taxa (i.e., the
topology of the phylogeny) but also the distribution of relatedness of between taxa
(i.e., the distribution of branch lengths). This total lack of constraint would increase
the type I error rate to such a level that it is not worth demonstrating how such a null
model could be constructed in R. Rather we consider a more constrained null model
that randomizes the names of taxa on the phylogeny. Thus, it randomizes who is

6 Null Models

121

most closely related to whom, but it does not alter the actual branch lengths and
their distribution.

 We will begin by fi rst reading our example Newick formatted phylogeny into R
using read.tree() . As always we will also plot the phylogeny (Fig. 6.3).

 The goal of the unconstrained phylogenetic randomization is to simply randomize
the taxa names on the tips or terminal branches on the phylogeny. To accomplish
this we must fi rst consider how the taxa names are stored in our my.phylo object.

 We see that we can obtain a vector listing the names of all taxa in the phylogeny. We
see that the order of the names is the same order of the names in the plotted phylog-
eny from the bottom to the top of the plot the image if you use plot(my.phylo) .
The goal therefore is to randomize the position of the names in this vector and to
place them back onto the phylogeny. First, let us randomize the names in the vector
using sample() .

 Fig. 6.3 A plot of our
example phylogeny

6.5 Randomizing Phylogenetic Data

122

 The resulting vector of names is in a different order than the original vector. This
was accomplished by telling sample() to take the vector of names and to resam-
ple them without replacement until we have the same number of names as in the
original vector. Because we have not permitted replacement, this approach simply
shuffl es the position of the names in the vector. If we permitted replacement, some
names would appear twice in the new vector and some species would be omitted.
This is not desired as we do not want the same taxa names appearing on multiple
terminal branches in our randomized phylogenies. Now that we know how to ran-
domize the taxa names, we must put them back onto our phylogeny. Because we do
not wish to alter our original phylogeny, fi rst make a new object that is the same as
our original phylogeny.

 Next we want to place the taxa names (i.e., tip labels) on our new phylogeny object
with the randomized list of names.

 The above code could be used to randomize the names on the original phylogeny,
 my.phylo , without having to create a separate phylogeny object, but this is not
advised. To assure that the randomization of taxa names was successful, plot the ran-
domized phylogeny and compare it to the original to assure that it is indeed random-
ized. First open a new quartz window where we can plot the randomized phylogeny.

 Now plot the randomized phylogeny for comparison. Hopefully the names of the
taxa on the randomized phylogeny are in a different order (i.e., on different terminal
branches) than the original phylogeny (Fig. 6.4).

 The names of the taxa should be in a different order. If they are not, run the above
code again to make a second randomized phylogeny. As the size of the phylogeny
decreases, the number of possible ways taxa could be arranged on the phylogeny
will of course also decrease. Thus, if you are using your own phylogenetic tree and
it has few taxa, then it is more likely that your resampling or shuffl ing of taxa across
the terminal branches will result in the same distribution of names as in the original
phylogeny. Now that we know how to randomize the names of taxa on the terminal
branches of a phylogeny we are able to implement this procedure more broadly.
Although, we can now code this randomization ourselves, let us utilize an existing
function for shuffl ing names of taxa on a phylogeny. First load the R package
 picante , which you should already have installed:

6 Null Models

123

 Now use the function tipShuffl e() to randomize the names of taxa on the phy-
logeny. We will assign this new phylogeny as a new object.

 To assure that this function is indeed randomizing the names of taxa on the phylog-
eny, plot the new object and compare the distribution of names on the original and
newly randomized phylogenies (Fig. 6.5).

 We have now learned how to randomize the names of taxa on a phylogeny using our
own code and the code in an existing R package. This knowledge is the fundamental
building block for coding in R almost any unconstrained phylogenetic randomiza-
tion for the purpose of asking whether the observed phylogenetic diversity is higher
or lower than that expected. To demonstrate this we will now code our own null
model for the mean pairwise distance (MPD) phylogenetic diversity metric and
Faith’s Index of phylogenetic diversity (PD). Although we focus on the MPD and
PD metrics, the basics of the code below could apply to the use of generally any
metric of phylogenetic diversity you would calculate in R.

 When coding any null model in R, there are a couple of options. One option is to
write for() loops that loop through a series of randomizations (e.g., 999). This is
generally the approach most functions use despite being much slower than the sec-
ond option. The second option is to use a replicate() function. We will choose

 Fig. 6.4 A plot of our
example phylogeny with the
species names randomized.
Compare with Fig. 6.3

6.5 Randomizing Phylogenetic Data

124

the second option here as it is generally much faster. We start by writing a small
function that will take an observed phylogeny, shuffl e the names of the species on
the phylogeny, and use the randomized phylogeny to calculate the MPD.

 Next we can replicate this function ten times to produce ten random MPD values
(columns of the output) for each community (rows of the output).

 When coding null models, it is generally an idea to fi rst utilize a small number of
iterations and check the output of the null model. If there is an error in the code or
it is slow, you do not want to spend time waiting for thousands of iterations to run
to fi nd out. When looking at the null model output matrix of any null that you have

 Fig. 6.5 A plot of our
example phylogeny with the
species names randomized
again. Compare with
Figs. 6.3 and 6.4

6 Null Models

125

coded, one should immediately check if the results are indeed random. This could
be done by checking the observed values to the observed values in the null model
output matrix and by making sure that null values are changing across iterations
(values within rows across columns in this instance). If the values in a row are con-
sistent across columns, this indicates that either the code you have written has an
error. Another possibility is that the data cannot be randomized to multiple states.
For example, if your community contains all species in the meta-community and
your phylogeny only contains the species in the meta-community, then you will
always have the same MPD value for the community even after shuffl ing the names
of taxa on the phylogeny. Thus it is critical to check the output matrix from a null
model particularly one that you have coded de novo.

 Now that you have checked the null model output matrix for any obvious errors,
plot a histogram to visualize the null distribution. In this example we will look at the
null distribution for the fi rst community and therefore will plot the fi rst row of the
null model output matrix (Fig. 6.6).

 Fig. 6.6 A histogram of our null values calculated from the randomized phylogenetic data. Note
that we only ran ten iterations of the null model such that your null distribution may look very dif-
ferent from that displayed and likely is not normally distributed

6.5 Randomizing Phylogenetic Data

126

 Drawing a histogram of the null distribution provides another way of examining
whether there appears to be anything odd about the null model. For example, a very
low number of values (e.g., all are either an MPD of 125 or 242) or no variance
would be warnings that the model is poorly coded or the number of possible random
datasets is low, thereby removing your power to reject the null expectation. Recall
that you need at least 20 possible states to have enough power to reject a hypothesis
using a one-tailed test.

 Plotting the null distribution can also be a useful way to visualize how much your
observed result does or does not deviate from the null distribution. To do this, sim-
ply place a vertical line where your observed value lands in the histogram.

 It is possible that your observed value lands far outside the null distribution and you
should replot the histogram with an adjusted x -axis that could incorporate your
observed value.

 Although plotting the null distribution and observed value is useful, we also wish
to calculate summary statistics that can be reported and used for quantitatively
based inferences. Specifi cally, we are interested in computing the standardize effect
size (S.E.S .) and quantile score. The quantile score, or where the observed value
ranks in the null distribution, can be used to calculate a P -value. The S.E.S. is cal-
culated as the observed minus the mean of the null distribution and this value
divided by the standard deviation of the null distribution. Here we calculate the
S.E.S. for just the fi rst community.

 Positive S.E.S. values indicate an observed diversity value, MPD in this case, than
average null value and negative values indicate an observed diversity value that is
lower than average. Recall, that the denominator in these equations standardizes the
effect size (numerator) making S.E.S. values more comparable across communities.
That said, comparing S.E.S. values across communities or studies may be hindered
by differences in species richness causing null distributions to take different shapes.
For example, one study may have null distributions that are highly skewed, while
another study may have null distributions that are approximately normal. This dif-
ference can make comparisons of S.E.S. values diffi cult. For this reason and others,
it is preferable to also compute where the observed value ranks in the null distribu-
tion. Calculating such quantile scores can be computed by combining the observed
and null values for a community and calculating the rank. In this example, I place
the observed value fi rst followed by the null values and then ask for the rank of the
fi rst value (i.e., the observed value) in the overall distribution.

6 Null Models

127

 This value tells us where the observed value ranks in the overall distribution (i.e.,
the quantile score). This value can be utilized to calculate a P -value by dividing it
by the number of null model iterations plus one.

 The value reported is the P -value for where the observed lands in the null probabil-
ity distribution. In this example we have only 10 iterations of the null model and one
observed value making 11 total values and therefore a denominator of 11. Remember
that if your study uses 999 randomizations, the number 11 would be changed to
1,000. If the test were a one-sided test of whether the MPD value observed was
signifi cantly lower than expected, we would require a P -value less than or equal to
0.05. If the test were a one-sided test of whether the MPD value observed was sig-
nifi cantly higher than expected, we would require a P -value greater than or equal to
0.95. If the test were two sided, we would require P -values less than or equal to
0.025 or greater than or equal to 0.975.

 Instead of calculating the S.E.S. or P -value for each community one by one, the
 apply() function can be used to calculate these values for all communities
simultaneously.

 Here we use the apply() function to calculate the mean and standard deviation of
the values in each row of the null model output matrix. The same approach can be
utilized for calculating the P -values.

 Now that we have seen to code a null model randomizing the names of taxa on a
phylogeny for the MPD metric, let us quickly consider how to code this same ran-
domization for the PD metric. The PD metric is being used as a second example
simply because the output from the pd() function is slightly different.

 As with the previous example, we want to start with determining what the output
from the function of interest look like so we know how to generate a null model
output matrix.

 Unlike the vector output from the mpd() function, the output from the pd() func-
tion is matrix with two columns. The fi rst column reports the PD value and the second
column reports the species richness (SR) value and each row represents a community

6.5 Randomizing Phylogenetic Data

128

in the meta-community. Since the species richness is not being manipulated in our
randomizations and because it is not of immediate interest for this randomization
study we do not wish to have this information in our output matrices. We therefore
can generate a randomization function reporting out just the PD values.

 Next we can replicate this function ten times to produce ten random MPD values
(columns of the output) for each community (rows of the output).

 We can now use the apply() function as before to calculate our S.E.S. values and
 P -values.

 Here we use the apply() function to calculate the mean and standard deviation of
the values in each row of the null model output matrix. The same approach can be
utilized for calculating the P -values.

 The above has demonstrated how to write a simple randomization of names of taxa
on a phylogenetic tree and how this can be used to calculate the S.E.S. and P -value
for phylogenetic diversity metrics such as MPD and PD. In Sect. 6.7 we will exam-
ine functions that are already coded in R that can be utilized for the calculation of
these values for most phylogenetic diversity metrics.

6.5.2 Constrained Randomizations

 The great advantage of randomizing the names of taxa on the phylogeny is that all
observed patterns in the community data matrix are fi xed. Thus, the total abundance
of species with and across communities, the occupancy rates of species across com-
munities, the species alpha and beta diversity, and patterns of the spatial contagion

6 Null Models

129

of species (i.e., dispersal limitation) are all fi xed. These benefi ts are generally
enough for me to strictly adhere to using the randomizing of names of taxa on the
phylogeny for all analyses of phylogenetic alpha and beta diversity. Though, some
cases it may be necessary to further constrain this name shuffl ing null model. For
example, Hardy [126] highlighted that type I error rates could be infl ated using a
name shuffl ing null model if there is phylogenetic signal in abundance or occupancy
rates, that is, when closely related species tend to be equally abundant or have simi-
lar occupancy rates. In Chap. 7 we will discuss how to calculate the phylogenetic
signal in trait, abundance and occupancy data. In cases where there is phylogenetic
signal in abundance or occupancy rate, Hardy [126] suggests placing species into
bins based on their global abundances (i.e., their total abundance across all com-
munities) or the number of communities they occur in (i.e., their occupancy rates in
the meta-community). The problem with any analysis that relies on the binning of
data is that it requires the investigator or arbitrarily set the limits to the individual
bins or to determine bin limits based on some aspect of biology envisioned from the
perspective of a human. The results of investigations that bin data are therefore
often very sensitive to the decisions made by the investigator and are diffi cult to
compare across separate studies. Unfortunately, the bins chosen for the null pro-
posed by Hardy [126] are indeed arbitrary with no set rule to follow across studies,
but I will still provide an example.

 Binning and shuffl ing names based on their abundances fi xes the distribution of
occupancy rates across species but does not maintain the occupancy rates of indi-
vidual species. Indeed, the change in occupancy rate could change dramatically. For
example, if species A has 48 individuals spread across 4 communities and species B
has 47 individuals all located in 1 community, a binning and shuffl ing based on
abundance would place these two species in the same bin and randomize them as if
they are equal. Similarly, binning and shuffl ing by occupancy rate could result in the
shuffl ing of species with very different global abundances. Thus, as we have seen
before, even in “constrained” null models designed to reduce type I error rates,
observed properties of the data may be inadvertently randomized when constraining
other observed aspects of the data. Great care should therefore be taken to under-
stand exactly what is and is not being directly or indirectly randomized in all null
models.

 The constrained shuffl ing null model of Hardy [126] can be implemented in R
using the following code. I will bin the data by abundance arbitrarily since there is
no set rule for bin size. The bin size (K) is used to set the limits of the abundance
bins using a geometric series. A geometric series can be quickly generated using the
 gseq() function in the Rsundials R package.

6.5 Randomizing Phylogenetic Data

http://dx.doi.org/10.1007/978-1-4614-9542-0_7

130

 The gseq() function produces a geometric series using a starting value, an ending
value, and an exponent value. The starting value here is the minimum global abun-
dance from our community data matrix, the ending value is the maximum global abun-
dance, and the exponent is the Hardy K value which we can defi ne arbitrarily as 3.

 The values in the output are the lower bound of each bin. Thus, the present output
has four values indicating a total of four abundance bins. The next step is to bin each
species in the community data matrix based on where its global abundance falls in
the bins we just defi ned. The global of all species can be calculated by using col-
Sums() . The global abundances and the bin defi nitions can be used to assign a bin
to each species using the fi ndInterval() function.

 The vector output is in the same order as the species names in the community data
matrix and we can assign them as follows.

 Now that we have names assigned to the vector we can bin species, the names of the
vector, based on the numerical values in the vector.

 The result is a list with one element per bin containing all of the species names with
that have global abundances falling inside that bin. The next goal is to shuffl e names
within each of these elements. We will fi rst write a simple function we will call
 hardy.shuffl e() that takes an input vector of values and shuffl es them.

6 Null Models

131

 We can now apply this function to each individual element in the list to shuffl e the
names in each bin using lapply() .

 The names of the species within each bin have now been shuffl ed. The goal now is
to combine the names. It is critical that we do not simply combine the names in the
order they are displayed. Rather, the shuffl ed names must be pieced together in the
same order as the bins in the assigned.bins object. In other words, using the
shuffl ed names in the fi rst bin we want to assign the fi rst name to the fi rst occurrence
of the fi rst bin in the assigned.bins object, the second name to the second
occurrence of the fi rst bin, and so on. This can be accomplished using the
 unsplit() function using our split and randomized object and the information
from the original values in the assigned.bins object.

 We now see that we have recombined the names into a single vector, but they are in
a randomized order within individual bins. To see this we can inspect the order of
the names and the bin numbers in the original object.

 Now that we know how to perform a single iteration of the null model, we can scale
it up. We will construct a simple example null model with nine iterations. We fi rst
use the replicate() function to shuffl e and recombine our binned names.

 We now have a matrix with the same number of rows as we have species in the com-
munity data matrix and one column per iteration of the null model.

 We will now sequentially assign these names to the community data matrix, but we
do not wish to alter the original data matrix so we can make a duplicate community
data matrix that we can alter.

6.5 Randomizing Phylogenetic Data

132

 A simple function can now be written that assigns new column names to our
 temporary community data matrix and calculates the PD using Faith’s Index and our
original phylogeny and the data matrix containing the given species names.

 The above calculation could easily be changed to incorporate other phylogenetic
diversity metrics. For example, the mean pairwise phylogenetic distance (MPD)
could be calculated as follows:

 The replicated name shuffl ing and function above can be now be used in an
 apply() to rapidly calculate the random PD value for each community and set of
shuffl ed names where we take the shuffl ed names in each column and apply the
function that assigns those names to the community data matrix and calculates PD.

 The result is a matrix with one column per iteration of the null model, 9 in this sce-
nario, and one row per community in the community data matrix. To a full null model,
one could easily change the 9 in the above replicate() function to 999, 9999, etc.

6.6 Randomizing Functional Trait Data

 The randomization of functional trait data for analyses of alpha and beta FD gener-
ally involve the shuffl ing of species names on the trait data matrix. While this may
be considered an unconstrained null model, it does constrain the co-variances and
overall phenotypes while changing the name of the species that has that phenotype.
In the next subsection we will demonstrate how to code this simple null model. The
constrained trait null model that we will discuss in the subsection after that dis-
cusses how to constrain a null model for nearest neighbor distances by the observed
range. Specifi cally, the range of a trait is generally considered to indicate the degree
to which the abiotic environment fi lters species or traits into a habitat where biotic
interactions should be stronger and therefore infl uence the nearest neighbor. By not
controlling the observed range in randomizations for nearest neighbor indices, it is

6 Null Models

133

possible that results of the null model may be biased toward fi nding smaller than
expected nearest neighbor distances. First, though, let us quickly consider a less
constrained name shuffl ing null model.

6.6.1 Unconstrained Randomizations

 The least constrained null model that isn’t ridiculous (i.e., shuffl ing all trait values
in each column independently) is to simply shuffl e the row names on the trait matrix.
This maintains the observed patterns of trait co-variance and overall phenotypes.
This null is therefore somewhat analogous to the name shuffl ing null used for phy-
logenies. To shuffl e the names on a trait matrix we can fi rst read in the trait matrix
and then make a duplicate of that matrix that we can randomize.

 Next we simply randomly sample all row names in the trait matrix with replacement
effectively shuffl ing their order.

 To utilize this approach to write a null model for your favorite FD metric, we fi rst
make a function for the randomization. In this case we will use a mean pairwise trait
distance.

 This function can now be replicated multiple times (i.e., output columns) to produce
a null distribution for each community (i.e., output rows).

 To calculate the S.E.S. and P -value for each community, you could use the output from
this replicate() function in the same way we used the replicate() output in
Sect. 6.5.1 .

6.6 Randomizing Functional Trait Data

134

6.6.2 Constrained Randomizations

 The discussion of constrained randomizations of trait data has generally been lim-
ited to a single approach. Specifi cally, the tradition of simultaneously analyzing the
trait range or volume and the mean nearest trait neighbor distances in assemblages
has been criticized. The basis of the criticism is that functional ecologists typically
conceptualize the assembly of species in a community as fi rst a process of abiotic
fi ltering at larger spatial scales that should limit the range or volume of functions in
a community. Within this limited range biotic interactions or fi ner scale abiotic gra-
dients dictate the functional similarity of species. If null models shuffl ing species
names on the trait matrix are performed on both the range or volume and the nearest
neighbor distance metrics it may be expected that we under-estimate the observed
nearest neighbor distance in relation to the null expectation. Specifi cally, if the null
model utilizes all species in the region, even those that fall outside the range or vol-
ume of traits observed in the assemblage, the nearest neighbor distances will seem
much lower than expected for those communities that have small ranges or volumes.
Though, if the expectation for the nearest neighbor distances was based upon a null
model that only selected species from those that had traits within the observed range
or volume of traits this bias might be removed [127 , 128]. Thus, for those concep-
tualizing trait-based community assembly as fi rst a process where abiotic fi ltering
constrains the range or volume of traits in a community and second a process where
local scale abiotic and biotic interactions determine the spacing of species in the
given range or volume of trait space, a more constrained null modeling approach
may be preferred.

 To accomplish the constrained null modeling process outlined in the above para-
graph there is no change in how one would analyze the deviation of the observed
range or volume of traits in an assemblage versus that expected using a null model
that shuffl es the names of species on the trait data matrix. The mean nearest neigh-
bor null model however must be modifi ed. Specifi cally, the names of species can no
longer be shuffl ed for all species in the trait data matrix. Rather, we must fi rst trim
the observed trait matrix to only contain those species that have trait values that fall
within the uni-variate range of the trait being analyzed or the multi-variate volume
of the traits being analyzed. It is recommended that even in those cases where you
are analyzing a single trait, if you have information for multiple traits you should
constrain the trait data matrix (i.e., the species pool) by the multi-variate trait vol-
ume observed to further reduce Type I error. Once the trait data matrix has been
constrained to only include species that fall within the observed trait volume, we
can shuffl e the names on this constrained trait matrix and run the null model. In the
following, I provide a function that utilizes the three traits in our trait data matrix to
calculate the mean nearest functional neighbor for a single community (x). This
function can then be applied to all communities and replicated 999 times to generate
a null distribution. I provide comments throughout the function so that it is clear
what is being done and so you can determine how to alter the function to suit your
particular needs.

6 Null Models

135

6.6 Randomizing Functional Trait Data

136

 We now replicate the above 999 times getting a random value for each community
each time using a constrained range. When replicating the shuff.constrain.
nn() function once, we see that only the diagonal values are of interest. This is
because the apply() function goes through each row but we report values for
each community. Thus we only want the values for the community we are constrain-
ing the pool by. This means that we would like the diagonal of every one of the 999
layers in the output array.

 We have now successfully generated a null model for mean nearest functional
neighbor analyses that is constrained by the observed volume defi ned by the
observed minimum and maximum of multiple trait values in a community. The
above code could be modifi ed to include one to many traits and other metrics such
as the standard deviation of the nearest neighbor distances in the assemblage. For
example, if you only had two traits in your trait data matrix, you would remove all
lines of code concerning trait 3, or if you had four traits, you would copy and paste
the lines of code concerning trait 3 and change the 3’s to 4’s. Further, if you wanted
to constrain the null model to the observed multivariate trait volume, but only
wanted the mean nearest neighbor distance for a single trait, you could change the
last line in the shuff.constrain.nn() function from using as.
matrix(dist(pruned.matrix)) to using as.matrix(dist(pruned.
matrix[,1])) for trait 1.

 The rationale for the above-constrained null modeling approach is that the range
of trait values is likely fi rst fi ltered by the abiotic environment, and within this range,
species are again fi ltered based upon their similarity. By not constraining the null
model by the observed range, the nearest neighbor results may be biased toward fi nd-
ing lower than expected mean nearest neighbor distances. As with any other con-
strained null model, however, this approach takes a little more computational time
and may reduce the number of random possibilities for a given dataset to a point at
which there is no statistical power to reject the null hypothesis. As such, when using
this null modeling approach, the researcher must be clear that they are making the
biological assumption that the range or volume of traits is fi rst fi ltered during assem-
bly prior to the interactions that underlie the interactions that determine the similarity
of species in that constrained space. Further, the researcher must be cognizant that in
many cases the observed range may be so small as to restrict them from having any
power to reject the null hypothesis regarding mean nearest neighbor distances.

6.7 Null Models for Phylogenetic and Functional
Alpha Diversity

 In this section we will quickly run through how to perform null models for the major
classes of phylogenetic and functional diversity metrics and to calculate the sum-
mary statistics. In each example, I will fi rst demonstrate how to generate our own

6 Null Models

137

code for the null model and then how to utilize existing functions in the R package
 picante . In most cases, the two approaches will result in similar computation times,
but if you are working with a large dataset, it may be noticeably faster to utilize the
code we write below and not that in the picante package.

 We start by performing an independent swap null model for Faith’s Index. First,
we will write a simple function that fi rst randomizes a community data matrix once
and then calculates a random Faith’s Index value for each community.

 We can now use this function to generate 999 random Faith’s Index values for each
community where each community is a row in the output and each random value is
in its own column for each row. We will bind to the left of this matrix the observed
Faith’s Index for each community. The result is a matrix with one row per commu-
nity and 1,000 columns the fi rst of which is the observed value and the following
999 are the random values.

 From this large matrix we can easily quantify the rank of the observed value in the
null distribution for each community using an apply() function. Recall that the
rank can be used to estimate the P -value. In this instances we may wish to perform
a two-tailed test where we want to test whether the Faith’s Index value is larger or
smaller than expected. If it is larger than expected, we would need to observe a rank
greater than or equal to 975 (i.e., P -value = 1 − 975/1,000). If it is smaller than
expected, we would need to observe a rank less than or equal to 25 (i.e.,
 P -value = 25/1,000).

 We can also use the matrix of observed and null values to quantify the standardized
effect size (S.E.S.) for each community. Recall, that to calculate a S.E.S., we subtract
the mean of the null distribution from the observed value and then divide this by the
standard deviation of the null distribution. Therefore positive values are indicating
the observed value is higher than the average random expectation and negative val-
ues are indicating the observed value is lower than the average random expectation.

6.7 Null Models for Phylogenetic and Functional Alpha Diversity

138

 If you would rather not use the above code, you could utilize the ses.pd() func-
tion in the picante package using the “independentswap” null model.

 The fi rst column in the output is the species richness, the second column is the
observed Faith’s Index, the third column is the mean of the null distribution, the
fourth column is the standard deviation of the null distribution, the fi fth column is
the rank of the observed in the null distribution, the sixth column is the S.E.S.
(called “z” here), the seventh column is the estimated P -value and the fi nal column
is the number of randomizations performed.

 We can run the same analysis with the exception of not randomizing the community
data matrix and randomizing the names of species on the phylogeny. We can perform
this ourselves writing the following simple function and replicating it 999 times.

 The output matrix could be used to calculate the S.E.S. values and P -values as dem-
onstrated in the preceding example. The analysis could also be performed using the
 ses.pd() function and the “taxa.labels” null model in picante .

 The output columns have the same meaning as described above with the exception
that a different null modeling approach has been utilized.

 Now that we have this basic structure down, below I provide simple code for how
you could code your own null models using the independent swap or name shuffl ing
null models in the context of a replicate() function and I also provide the
 picante function that utilizes a for() loop approach.

 The mean pairwise distance (MPD) for phylogenetics can be calculated as fol-
lows though the cophenetic(my.phylo) object could be replaced with a trait
distance matrix for functional calculations.

6 Null Models

139

 This can be calculated in picante using ses.mpd() and the “independentswap”
null.

 A null model for MPD that utilizes a shuffl ing of species names on the phylogeny
can be coded.

 If you wished to change the above function to focus on traits instead of a phylogeny
you could do the following where the x object is a trait data matrix with row names
being species names.

 This can be calculated in picante using ses.mpd() and the “taxa.labels” null.

 The mean nearest taxon distance (MNTD) (a.k.a. the mean nearest neighbor dis-
tance) can be calculated using an independent swap null model as follows, and as in
the above MPD-independent swap null model, a trait data distance matrix could be
used to replace the phylogeny to calculate the mean nearest functional neighbor
distance.

6.7 Null Models for Phylogenetic and Functional Alpha Diversity

140

 This can be calculated in picante using ses.mntd() and the “independentswap” null.

 A null model analysis for MNTD can be calculated using a shuffl ing of species
names on the phylogeny using the following function and replicating it.

 If you wished to change the above function to focus on traits instead of a phylogeny
you could do the following, where the x object is a trait data matrix with row names
being species names.

 This can be calculated in picante using ses.mntd() and the “taxa.labels” null.

 The above text performs null model analyses for metrics that were coded phyloge-
netic diversity analyses in picante that can also be used for functional diversity
analyses. However, we also know that additional metrics of functional diversity are
available in the FD package, but these metrics do not have null model analyses
available in this package. Thus we must write our own null models in R. In the fol-
lowing I provide simple null model analyses using an independent swap null and
name shuffl ing null for the FD is metric, but the $FDis could be replaced in this
code to $FDiv, $FEve, or $FRic for those metrics.

 First we generate a function that randomizes our community data matrix using an
independent swap null model. Then we calculate the FDis metric using the dbFD()
function in the FD package.

6 Null Models

141

 Next we replicate the above function 999 times and combine the observed output
with the 999 random values per community.

 To generate null FDis values for each community by shuffl ing the names of species
on the trait data matrix, we can fi rst write this simple function to shuffl e names and
then calculate a null FDis value using the dbFD() function.

 We now replicate this function 999 times and combine it with the observed output.

 At this point we have now coded null models for phylogenetic and functional alpha
diversity and covered those functions in R that are already coded for similar analy-
ses. The above code is fl exible enough to be re-tooled for alternative metrics of
phylogenetic or functional alpha diversity that you may come across in R or that you
have generated yourself. As always it is good practice to fi rst test your code on a
small dataset with a few iterations of the null model prior to applying it to your
entire dataset.

6.8 Null Models for Phylogenetic and Functional
Beta Diversity

 In the previous section we discussed how to implement null model analyses for
phylogenetic and functional alpha diversity. In many instances we saw that there
were pre-existing R functions to implement these analyses. The case is not the
same for phylogenetic and functional beta diversity where code to generate null
distributions to quantify a standardized effect size (S.E.S.) and P -value do not
exist. In some instances, there is an R function to generate a null distribution (see
 phylosor.rnd() function in the picante package), but these functions are gen-
erally very slow and do not calculate the S.E.S. or P -value for you. Thus, in this
section we will generate our own null model code that can be used to calculate the
S.E.S. and P -value for pairwise and nearest neighbor metrics of phylogenetic and
functional beta diversity. We will use the same general approach as we used for

6.8 Null Models for Phylogenetic and Functional Beta Diversity

142

alpha diversity with one main exception. Alpha diversity analyses result in one
value per community (i.e., vector or one column matrix with one value per com-
munity), but beta diversity analyses provide a dissimilarity between each pair of
communities (i.e., a matrix where the number or rows and columns is equal to the
number of communities). The pairwise nature of the output requires that we utilize
arrays to store the null results with each “layer” in the z -dimension of the three-
dimensional array contains the beta diversity between all pairs of communities for
a single iteration of the null model. This complicates the calculation of S.E.S. val-
ues and P -values slightly and takes longer to compute, but the general approach is
the same.

 We begin by writing a function that randomizes the community data matrix once
using an independent swap approach and calculates the pairwise phylogenetic
 dissimilarity (D pw) value between each pair of communities.

 The above function could be modifi ed to utilize a trait distance matrix instead of the
phylogenetic tree to calculate the functional D pw .

 We can now replicate our function 999 times to generate our null distribution for
each community comparison. Note that this calculation can be time intensive for
large datasets, but for the present example dataset, the computational time will be
short. The output nulls object will be a three-dimensional array, where the row
and column numbers are equal to the number of communities and the number of
levels in the z -dimension is 999. Thus, the null distribution of the D pw values between
two communities can be described using the third dimension. For example, to plot
the null distribution of D pw values between community 1 and community 2, we can
use the following code.

 In order to calculate the S.E.S. value for each pair of communities, we need to com-
pute a mean and standard deviation of the null distribution in the z -dimension. We
can do this simply using two apply() functions.

6 Null Models

143

 Next we can calculate the observed D pw values for our communities using the
 original data.

 We now have the observed D pw value for each pair of communities and the mean and
standard deviation of the null D pw values for each pair of communities. We can use
this information to quickly calculate the S.E.S. values.

 Next we need to combine the observed data with the array of null values such that
the fi rst level in the new array contains the observed values and the following 999
levels contain the random values. We can do this by binding the observed matrix to
the random array using the abind package.

 Now we calculate the rank of the values in each layer. We will do this by outputting
an array with the value in each cell is the rank of the D pw value in that cell in the null
distribution in the z -dimension. We can do this using two apply() functions one
for ranking the values and one to transpose the results such that they align with the
original array.

 Although we might be interested in where some null values are ranked in the distri-
bution, for calculating P -values we are only concerned where the observed values
are ranked. Thus we will only want the values in the top, or fi rst, layer in the ranked
output.

 As with all of the other null model analyses w here we have used 999 randomiza-
tions and a two-tailed test, rank values less than or equal to 25 indicate an observed
value that is lower than that expected and values of 975 or greater indicate an
observed value that is higher than expected.

 The above can be repeated using a null model that shuffl es names on the phylog-
eny or trait matrix instead of randomizing the community data matrix with an

6.8 Null Models for Phylogenetic and Functional Beta Diversity

144

independent swap null model. I will demonstrate this here using a shuffl ing of
names on a phylogeny.

 We now replicate this randomization 999 times to generate an array of null D pw
values between each pair of communities.

 The output nulls object could be used to calculate the S.E.S. values and P -values
using the same approach used above for the community data matrix D pw null.

 Once we have learned how to calculate the independent swap and name shuffl ing
null models for D pw , they can be easily modifi ed and applied to generate the same
type of null models for the nearest neighbor dissimilarity (D nn) between communi-
ties. Specifi cally, the independent swap approach for phylogenetic D nn can be imple-
mented as:

 The name shuffl ing null for phylogenetic D nn can be implemented as:

 While the above code focuses on the presence–absence weighted D pw and D nn met-
rics, the abundance-weighted versions, D pw ′ and D nn ′ respectively, can be calculated
by simply changing the abundance.weighted option to “T.” Further, the above
approaches can be easily modifi ed to calculate the functional trait metrics using a
trait distance matrix in each. Specifi cally, the functions would be modifi ed as:

6 Null Models

145

 As with all null modeling studies you will be asked to explain your choice of one
null model over another. I typically prefer to use name shuffl ing for my analyses of
phylogenetic and functional alpha and beta diversity. In the case of alpha diversity,
the use of other constrained null models like the independent swap that focus on
randomizing the community data matrix and not the phylogeny or trait data may be
a reasonable option. However, my personal viewpoint is that independent swap null
models should not be used for phylogenetic and functional beta diversity analyses.
This is because the independent swap null model does not maintain the spatial struc-
ture of species in the system. In other words any spatial contagion or dispersal limi-
tation is not maintained in the null community data matrices. Given that those
investigating spatial beta diversity are often interested in the degree to which space
or dispersal limitation or the environment determine community turnover, it is prob-
lematic that the null community data matrices do not constrain the observed spatial
patterns and likely infl ate your bias toward fi nding lower than expected turnover.
With respect to the temporal turnover of communities the independent swap also
has problems because the number of individuals of a species is not constrained.
Thus an individual tree that is present in census 1 and census 2 could have, in theory,
two different species names in an independent swap null model and such a scenario
is clearly not biologically reasonable. The shuffl ing of names on the other hand
assures that the observed spatial patterns of species in your system are maintained
allowing for clearer inferences regarding the role of spatial and environmental gra-
dients and the analyses do not suffer from the biologically unreasonable possibility
that individuals surviving from time 1 to time 2 change from one species to another.

6.9 Conclusions

 Here we have considered the conceptual underpinnings of null model analyses in
phylogenetic and functional diversity analyses and how relatively unconstrained
and constrained null models can be implemented in R. Null models can be a

6.9 Conclusions

146

powerful tool for such analyses, but it is critical that a researcher understands and
can articulate why they chose a particular null model for their analyses. It is particu-
larly important that one recognizes what is and is not fi xed in their null model ran-
domizations and how this information does or does not link up with the general goal
of null modeling which is to fi x all of the observed patterns except the one pattern
of interest. Often it will be diffi cult to achieve this ideal because so many patterns in
ecology co-vary tightly, but this is not an excuse for having a highly unconstrained
null model or worse no null model at all. Computational power is potentially the
only real excuse for a highly unconstrained null model or no null model, but this
obstacle is quickly eroding and R in particular makes it particularly easy to code
your own null models. In those instances you do code your own null models, attempt
to avoid for() loops wherever necessary and always test your code on multiple small
datasets to be sure that your code is actually doing what you hoped it would.

6.10 Exercises

 1. Write a null model for PhyloSor or UniFrac. Run it 99 times, output the observed
result, the mean of the null distributions, the standard deviation of the null distri-
butions, the standardized effect sizes, and the P -values.

 2. Write a null model for a Jaccard’s Index (use the function vegdist(my.
sample, method = “jaccard”)) in the vegan package), run it 99 times
on the example dataset, and output the standardized effect sizes values using an
Independent Swap null model.

 3. Repeat number 2 above, but calculate the Checkerboard Score (C-Score) of
 co- occurrence for all species pairs in your meta-community. The C-Score can be
calculated using the function C.score() in the bipartite package.

 4. Using the results from number 3 above, plot the null distribution of C-Scores as
a histogram. Then plot your observed value as a red vertical line on the histogram.

6 Null Models

147N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_7, © Springer Science+Business Media New York 2014

7.1  Objectives

The objectives of this chapter are to consider trait data in the context of phylogenetic
information. We will begin by discussing how to quantify the relationships between
the traits of species while accounting for the nonindependence of species. We will
then explore how to quantify the degree to which variation in traits reflects phylogenetic
nonindependence. Throughout we will discuss multiple approaches, but keep in
mind that not all approaches are equal. Some approaches that will be presented are
now rarely used due to their documented weaknesses. Nonetheless we will cover
these approaches to provide some breadth, background, and context.

7.2  Trait Correlations

Biologists have long recognized that closely related species are generally more
similar to one another than they are to more distantly related. This is often termed
phylogenetic conservatism. Indeed this is one of the foundations of phylogenetic
inference and the principle of common descent. While the pattern of phylogenetic
conservatism is interesting by itself, it also poses a number of problems for statisti-
cal analyses. In particular, because all species are related they cannot be treated as
independent observations in analyses (e.g., [129]). For example, say we would like
to determine if the seed mass of plant species is correlated with the maximum height
of species. Initially the urge is to calculate a correlation co-efficient or a regression.
Unfortunately, given the nonindependence of the data points (due to shared ancestry)
we cannot do a simple regression or correlation. Rather we must use a phylogeneti-
cally informed comparative analysis. One may find that without performing such

Chapter 7
Comparative Methods and Phylogenetic
Signal

The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_7) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_2

148

analyses, many reviewers and editors of a journal will be motivated to reject manu-
scripts that perform only phylogenetically uninformed trait correlation analyses due
to its violation of basic statistical assumptions regarding nonindependence.

In this section we will first consider how to perform phylogenetically informed
trait correlation analyses in R. We will then cover how to calculate whether your
continuous trait data has “phylogenetic signal.” Phylogenetic signal can be thought
of as the degree to which similarity in trait values between species can be predicted
upon their relatedness. If there is phylogenetic signal in the data, then phyloge-
netic comparative methods are necessary for robust statistical analyses of trait
correlations.

7.2.1  Independent Contrasts

The phylogenetically independent contrasts (PICs) method formalized by
Felsenstein [126] remains one of the most widely used approaches for quantifying
the correlation between two traits while acknowledging the phylogenetic noninde-
pendence of species. An attractive feature of PICs is that they are conceptually easy
to understand with a contrast being calculated at each internal node in the phylog-
eny for a trait. A contrast is simply the difference in a trait between the two daughter
nodes weighted by their branch lengths. Thus, if the daughter branches are equally
long and the first daughter has a trait value of 120 and the second daughter of 160,
then the contrast for the parent node is 40. The estimated trait value of the daughter
nodes is calculated as the mean of its daughters weighted by their branch lengths
such that the contrasts can be calculated recursively from the tips of the phylogeny
toward the root.

Contrasts are calculated for a single trait at a time. A correlation of traits in a
contrast setting requires that contrasts be calculated at each node for each trait. If the
traits are correlated after accounting for phylogenetic nonindependence, it is
expected that the contrast values themselves, which are now statistically indepen-
dent, are correlated. A positive correlation indicates that both traits were larger in
the same daughter node and smaller in the other daughter node. A negative correla-
tion indicates trait A was larger in the first daughter lineage and smaller in the
second daughter lineage, whereas trait B was smaller in the first daughter lineage
and larger in the second daughter lineage. A lack of correlation indicates that the
traits are not correlated after accounting for phylogenetic nonindependence. When
calculating the correlation or regression between a set of contrasts for two traits, it
is essential to force the correlation or regression through the origin. This is because
contrasts are calculated, for example, where the second daughter node trait value is
subtracted from the first, but whether this value is negative for both traits or positive
for both traits the meaning is equivalent. The programming of PICs can be difficult
due to the recursive nature of the calculation. Fortunately, a simple function in the
ape package called pic() is available for easy use.

7  Comparative Methods and Phylogenetic Signal

149

We begin by reading in the example trait data matrix for this chapter using the
read.table() function assuring that the taxa names are read in as row names.

Next we read in the example phylogeny for this chapter by first loading the ape
package and the using its read.tree() function.

We can now perform a phylogenetically independent contrast analysis for the first
trait in our trait data matrix using the pic() function. We make sure to sort the trait
data by the order of the tip labels in our phylogeny.

We see that we have produced a vector of values. These are the contrast values for
each internal node sorted from the root toward the most terminal internal node in the
phylogeny. Next we calculate the contrast value for each node for the third trait in
our trait data matrix again assuring that the trait data are sorted in the same order as
the names in the phylogeny.

Next we take the node contrasts and perform a simple linear regression forcing the
regression line through the origin by placing a −1 after the regression equation.

We can see that our two traits have a nonsignificant positive correlation after
accounting for phylogenetic nonindependence. We can also see that a regression
slope is provided by no intercept value because we forced the regression through the
origin. We can now plot the contrasts and the fit regression line using the plot()
and abline() functions (Fig. 7.1).

We have now calculated a correlation between two traits accounting for phyloge-
netic nonindependence using Felsenstein’s independent contrast method. The PIC
method for calculating correlations is a special case of the next method we will
discuss, phylogenetic generalized least squares regression, and the two will there-
fore produce very similar results.

7.2  Trait Correlations

150

7.2.2  Phylogenetic Generalized Least Squares

An alternative method to PICs, or actually a more general method, for quantifying
the correlation of two traits is to perform a phylogenetically informed regression.
Phylogenetic generalized least squares (GLS) regression has been used for over a
decade and provides a regression alternative that allows those more comfortable
with a regression framework, though again the results from the PIC approach will
be very similar [130–132]. The phylogenetic GLS approach incorporates phyloge-
netic nonindependence into generalized linear models in the form of a phylogenetic
variance–covariance (VCV) matrix. Specifically, the regression model uses an
assumed model of trait evolution to generate an expected correlation structure (i.e.,
nonindependence) in the data. We begin by first generating the expected correlation
structure under a Brownian Motion model of trait evolution using the corBrown-
ian() function in the ape package.

Fig. 7.1  A plot of the contrasts for trait three against the contrasts for trait one with a line
representing our regression model forced through the origin

7  Comparative Methods and Phylogenetic Signal

151

Now that the correlation structure is defined we can calculate a simple generalized
linear regression for our first two traits. First we extract the data for our first two
traits sorting them in the same order as the tip labels in the phylogeny.

The GLS regression can now be calculated using the gls() function in the nlme
package.

When running the gls() function you may receive a warning that the data are
assumed to be in the same order as the names in the phylogeny. Because we have
made sure to sort the data in the prior two lines of code, this is not a problem, but
when performing analyses on your own datasets.

In the summary for the regression model we can find the coefficients and their asso-
ciate P-values to determine whether we have a significant relationship between our
two traits. In this instance, again we have a nonsignificant relationship. The sum-
mary also contains a log-likelihood and AIC value that may be useful when compar-
ing different regression equations.

A useful aspect of the phylogenetic GLS approach for quantifying the correla-
tion between traits is that the correlation structure assumed in the model does not
need to be only defined by a Brownian Motion model of trait evolution. Alternative
models can be assumed or even fit to the data and this potentially makes the phylo-
genetic GLS approach more general and flexible than the PIC approach. In the next
subsection we will discuss an approach that does not assume or fit a model of trait
evolution, thereby making it more controversial, called phylogenetic eigenvector
regression.

7.2.3  Phylogenetic Eigenvector Regression

The two approaches for quantifying the correlation between two traits while taking
into account phylogenetic nonindependence incorporated a model of trait evolution
and form their own class of comparative methods. An alternative class utilizes
Euclidean distances from the phylogeny in the form of a phylogenetic distance
matrix and assumes no model of trait evolution. This approach is called phyloge-
netic eigenvector regression. The lack of a model of trait evolution is one of the
reasons why this phylogenetic eigenvector regression is so controversial.

Phylogenetic eigenvector regression was first proposed by Diniz-Filho et al.
[133] and utilizes the same general class of eigenvector-based statistics designed to

7.2  Trait Correlations

152

account for spatial autocorrelation in data with the exception that the goal is to
account for phylogenetic autocorrelation. Eigenvector regression begins with the
derivation of a distance matrix, whether spatial or phylogenetic, that can be used to
define the autocorrelation of data points. The distance matrix is then used in a prin-
ciple components analysis to derive spatial or phylogenetic eigenvectors (i.e., the
“scores” derived from a PCA). The scores, or locations of spatial locations or taxa
in the phylogeny on the PC axes, are then used in a multiple linear regression model
as independent variables along with one trait as a dependent variable and one or
more traits as additional independent variables. The question of how many PC axes
to include as independent variables is often a sticking point for critics of the eigen-
vector approach as the number included may seem arbitrary and adding too many
axes will lead to over-fitting of the regression model. A “broken stick” method is
generally applied to spatial eigenvector regression, and often phylogenetic eigen-
vector regression, for determining the number of PC axes to utilize in the regression
model. The method states that PC axes should be added until the cumulative
explained variance is surpassed by that expected by a broken stick. For example, the
expected cumulative variance from a broken stick for PC1, PC1 + PC2, and
PC1 + PC2 + PC3 is 50 %, 75 %, and 87.5 %. If the cumulative variance explained
by the PC1, PC1 + PC2, and PC1 + PC2 + PC3 is 66 %, 80 %, and 86 %, only the
scores from the first two PC axes should be utilized as independent variables in the
multiple regression model.

Because what phylogenetic eigenvectors actually describe can seem foreign and
hard to visualize, it is best that we first calculate the eigenvectors for our phylog-
eny and then plot the scores of the first few PC axes on our phylogeny. This will
aid our ability to understand what are really the independent variables in the
regression model. Keep in mind that, like any PCA, the following analysis will
seek to produce orthogonal axes that explain different amounts of the total vari-
ance captured in your phylogeny. The first PC axis will generally explain the
majority of the variation and typically involves the most basal split in the phylog-
eny weighting the taxa derived from one daughter branch on one side of the first
PC axis and the taxa derived from the second daughter branch on the other side of
the first PC axis. Thus, as a general rule, the PC axes will generally first describe
major basal splits in the phylogeny and gradually more terminal splits. To perform
our phylogenetic eigenvector regression, we first generate a phylogenetic distance
matrix from our phylogeny.

Next we use this distance matrix in a PC analysis using the princomp()
function.

We can investigate the cumulative variance explained by the PC axes by
summarizing the output. This cumulative variance can be used along with the

7  Comparative Methods and Phylogenetic Signal

153

broken stick method to determine the number of PC axes to use in the multiple
regression.

For the sake of expediency, we will not invoke the broken stick method and simply
utilize the first two PC axes for our multiple regression. Instead we will simply use
the first to PC axes. To visualize how the taxa in our phylogeny load on these axes,
we can use the adephylo package.

First we use the phylo4d() function to merge our PC axis data with our phyloge-
netic tree.

Fig. 7.2  A plot showing the phylogenetic eigenvector values for the first two eigenvectors. You
will see that the first eigenvector essentially splits the species relative to the most basal node in the
phylogeny and the second eigenvector begins to differentiate more terminal relationships within
one clade

7.2  Trait Correlations

154

Second we can use the table.phylo4d() function to plot the phylogeny with
the “trait” (i.e., the locations of our species on the first two PC axes) plotted to the
right with the trait values indicated by open and filled circles of different sizes
(Fig. 7.2).

Now that we can visualize how the locations of species on the first two PC axes are
arrayed on our phylogeny, we can now run a multiple linear regression using our
second trait as the dependent variable and the scores from the first two PC axes and
our first trait as the independent variables.

The summary of the model provides the overall fit and reports whether the PC axes
and our first trait are significantly related to our second trait. Because this approach
can be performed rather simply in a linear model context and because spatial eigen-
vectors are familiar to many ecologists, phylogenetic eigenvector regression is still
frequently used in ecology. However, most comparative methods researchers and
evolutionary biologists have shied away from or all out rejected phylogenetic eigen-
vector regression. Verbal arguments against the eigenvector approach are that it
does not assume or fit a model of trait evolution, the PC analysis manipulates the
original structure of a phylogeny in a way that may not be biologically meaningful,
and the selection of the number of eigenvectors to use in the multiple regression
appears arbitrary. Simulation-based critiques of the eigenvector approach have
pointed out that phylogenetic eigenvectors have far less statistical power to detect
the phylogenetic signal in trait data [134]. The result of this is generally an advo-
cacy for using phylogenetic GLS or its specialized case of PIC correlation when
calculating the correlation between a set of traits while accounting for phylogenetic
non-independence.

7.3  Quantifying Phylogenetic Signal

The term “phylogenetic signal” is increasingly used in the ecological literature and
it is often conflated with multiple different terms and concepts. For example, phylo-
genetic signal is often used as a synonym for “phylogenetic conservatism” when
they can be two completely different things where signal could indicate evolution of
traits along a phylogeny that is less labile than expected under a Brownian Motion
model of evolution (i.e., a random walk) and phylogenetic conservatism could mean
no trait evolution at all (i.e., stasis in a trait through time). This creates a great deal
of confusion in the literature. I highly recommend discussions by Blomberg and

7  Comparative Methods and Phylogenetic Signal

155

Garland [135], Losos [136] and Wiens [137] to get a sense of what various terms
typically mean and how they are used. Here we will generically define phylogenetic
signal as the degree to which variation in species trait values is predicted by the
relatedness of species. I will refrain from providing a quantitative description
because, as we will soon see, there are multiple approaches for quantifying phylo-
genetic signal. Remember that not all approaches are equally valid or robust and I
will highlight this as we discuss each metric.

7.3.1  Mantel Test

Our discussion of phylogenetic signal in trait data will begin with the Mantel Test.
The Mantel Test quantifies the correlation between two distance matrices. In the
context of quantifying phylogenetic signal, the two distance matrices are a phyloge-
netic distance matrix and a univariate or multivariate trait distance matrix. A Mantel
Test using a univariate trait distance matrix is used to quantify the signal in a par-
ticular trait, whereas an analysis using a multivariate trait matrix may be used to
quantify the signal in species function. The Mantel Test is appealing for a couple of
reasons. First, it is conceptually easy to understand that a positive correlation
between phylogenetic distance and trait distance may indicate phylogenetic signal
in a trait and a negative correlation may indicate phylogenetic antisignal. Second,
Mantel Tests can be calculated in many software packages that non-phylogeneticists
(e.g., ecologists) utilize making this approach for calculating phylogenetic signal
more readily available at least in the past prior to R packages for phylogenetics.

Despite the appeal of Mantel Tests for quantifying phylogenetic signal and their
popularity in the past, they are now infrequently used. A good reason for this is that
more sophisticated metrics that have been generated over the past decade and
recent work by has shown that Mantel Tests tend to have less statistical power to
detect phylogenetic signal when compared to the more recently derived metrics
[138]. In particular, this work shows that Mantel Tests suffer from a lack of statisti-
cal power and inflated type I error rates compared to Blomberg’s K statistic that we
will discuss below. Thus, most do not recommend the use of a Mantel Test to quan-
tify phylogenetic signal over other metrics. I therefore only present it here for
completeness and historical context. Mantel Tests can be performed rather easily
in R using the vegan package for ecological analyses. We will first install and load
this package.

We can now read in a phylogenetic tree into R using read.tree() and our
example phylogeny for calculating phylogenetic signal.

7.3  Quantifying Phylogenetic Signal

156

A phylogenetic distance matrix can now be generated using cophenetic().

We now read in the trait dataset for the phylogenetic signal example for this
chapter.

It is critical that the trait data be in the same order as the names in the phylogenetic
distance matrix. We can assure this is the case by sorting the traits matrix using the
order of the row names in the phylogenetic distance matrix.

We can now make a trait distance matrix using all traits in the matrix. Note that we
are assuming here that the trait data are not significantly co-varying. This is likely
not the case in most datasets and a principle components analysis to reduce data
redundancy may be necessary (see Chap. 4 for discussion).

A phylogenetic distance matrix and trait distance matrix have now been generated
and we have all the information needed to conduct a Mantel Test. Remember that a
positive correlation between the two matrices indicates the difference between spe-
cies in trait space measured using Euclidean distance is positively related to the
phylogenetic distance between those two species measured using branch lengths. In
other words, a significant positive correlation is taken as evidence of phylogenetic
signal in the trait data. Conversely, a significant negative correlation is taken as
evidence of phylogenetic antisignal. The Mantel Test can be calculated using the
mantel() function.

We have found a significant positive correlation between phylogenetic and trait dis-
tance. In the above, I mention that this is taken as evidence of phylogenetic signal in
the trait data, but I would like to reiterate again that Mantel Tests are now rarely
utilized and have reduced statistical power. In the next subsection we will discuss
Blomberg’s K, which has been shown to have significantly more statistical power to
detect phylogenetic signal [138].

7.3.2  Blomberg’s K and Significance Tests

The next metric of phylogenetic signal that we will discuss is perhaps the most
widely used metric in ecology. The metric was developed by Blomberg and
colleagues [139] and seeks to quantify the degree to which variation in a trait is

7  Comparative Methods and Phylogenetic Signal

http://dx.doi.org/10.1007/978-1-4614-9542-0_4

157

explained by the structure of a given phylogenetic tree. This value is then standardized
by an expectation derived from Brownian Motion trait evolution on the observed
phylogenetic tree. This standardization procedure is useful in that it potentially
allows for the comparison of values of their statistic, which they termed K, across
phylogenies and studies.

The first step in calculating the K statistic for a trait dataset is to quantify the
phylogenetically corrected mean squared error for the observed trait data. We begin
by extracting the trait data in the first column of our trait data matrix and sorting the
data in the same order as the taxa names in our phylogeny. The trait vector is equivalent
to the X parameter in the Blomberg et al. [139] equations.

For simplicity we will store the number of taxa in our trait dataset so that we can link
this value to the parameter (n) in the equations utilized by Blomberg et al. [139].

A phylogenetic variance–covariance (VCV) matrix is generated next. Recall, that
the diagonal of this matrix is the root to tip distance for each species in the phylog-
eny and the off diagonal values are the distance to the most recent common ancestor
between two species. Thus the expected different between two taxa is expected to
scale with their off diagonal value in this matrix. The VCV matrix we are generating
is equivalent to the parameter V in the Blomberg et al. [139] equations.

We can now compute the inverse of the phylogenetic VCV matrix, which corresponds
to the V−1 parameter in the Blomberg et al. equations using the solve()function.

The next step is to calculate the phylogenetically corrected mean trait value. This
value is equivalent to the estimated trait value at the root node of the phylogenetic tree
[139, 140]. This value can be quantified by summing the product of the inverse VCV
and trait vector and dividing this value by the sum of the inverse VCV. This resulting
value is equivalent to the â parameter in the Blomberg et al. equations.

We are now ready to quantify the observed mean squared error (MSE0) of the trait
data (X) from the phylogenetically corrected mean (â). The equation from
Blomberg et al. for this calculation is as follows:

	
MSE

X a X a

n0 1
=

-() -()
-

¢ˆ ˆ

	

7.3  Quantifying Phylogenetic Signal

158

This can be calculated in R by quantifying the product of a transposed matrix of trait
deviations from the estimated root value and a non-transposed matrix of the same
values. The value is then divided by the number of taxa minus one (i.e., the degrees
of freedom).

The mean squared error (MSE) of the data given the VCV can be calculated as

	
MSE

U a U a

n
=

-() -()
-

¢ˆ ˆ

1 	

where U is the VCV transformed trait vector. This calculation can be simplified in
R as the product of the transposed trait deviations from the estimated root value, the
inverse of the VCV and the trait deviations from the estimated root value. This value
is then divided by the degrees of freedom.

The observed MSE0 value can now be divided by the MSE value to produce an
index of phylogenetic signal where larger values indicate signal and lower values
indicate no signal or antisignal, but Blomberg et al. [139] point out that these values
are not comparable across phylogenies and studies and therefore should be stan-
dardized. The standardization used is to divide this observed ratio by the ratio
expected given a Brownian Motion model of trait evolution on the observed phylogeny.
This expected ratio can be calculated as:

	

MSE

MSE n
trV

n

V
0

1

1

1
=

-
æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷-SS 	

where tr V is the trace of the VCV matrix (i.e., the sum of the diagonal values). This
can be easily calculated in R.

We now have the observed and expected ratios of mean squared errors. We are now
ready to calculate the K value, which is simply the observed ratio divided by the
expected ratio.

	

K
observed

MSE

MSE

expected
MSE

MSE

=

0

0

	

7  Comparative Methods and Phylogenetic Signal

159

Values of K of one therefore indicate that the observed variation in the trait data is
predicted by the structure of the phylogenetic tree (i.e., the phylogenetic VCV)
under a Brownian Motion model of trait evolution. Values of K greater than one
indicate more phylogenetic signal than expected from Brownian Motion, whereas
values less than one indicate less than expected.

There are now multiple R packages than can calculate the K value for a given
trait and phylogeny, but we will implement the phylosig() function in the phy-
tools package because it provides a randomization test to assess the significance of
the observed K value.

The K of a trait can be calculated by providing a sorted vector of the trait data in the
same order as the names on the phylogeny.

Because K is a descriptive statistic, it has left many wondering if their K value is
“significant.” To assess significance, a randomization test is implemented in the
phylosig() function that simulates random trait datasets on the phylogeny to
generate null distribution from which a P-value can be calculated. This method can
be invoked by turning the test option to true and the number of simulations can also
be specified.

Alternative randomization methods could potentially be implemented such as the
permutation of species names along the tips of the phylogeny and recalculating the
K value each time to provide a null distribution, but using the currently available
function outlined above is likely equally or more robust.

7.3.3  Pagel’s Lambda

The next metric we will explore also, in a sense, considers how the distribution of a
trait on a phylogeny compares to that expected by Brownian Motion. The main dif-
ference here, though, is that we seek the transformation of our original phylogeny
that best predicts the distribution of our traits on the phylogeny under a Brownian
Motion model of trait evolution. The phylogeny is transformed using a parameter
called lambda. It is therefore helpful to first understand how the phylogeny is trans-
formed and how it appears under different levels of lambda before considering how
this value is used to quantify phylogenetic signal in trait data.

The lambda transformation of a phylogeny typically utilizes values of lambda
ranging somewhere between zero and one or slightly higher than one. Lambda
values that are too high can generate negative branch lengths, which is impossible.

7.3  Quantifying Phylogenetic Signal

160

A lambda value of one maintains the original branch lengths of the phylogeny,
whereas a lambda value of zero collapses your original phylogeny to a “star phylog-
eny” where all species are equally related emanating from a single soft polytomy.
This may be hard to visualize in your head, so it is best to simply plot a series of
lambda-transformed trees to understand what is happening. The R package geiger
can perform a lambda transformation of a phylo object using the command trans-
form(). We first load this package and perform the lambda transformation.

The lambda.phylo object that we output is actually a small function that will
produce a lambda transformed tree given an input value for lambda. For example,
we can output a phylo object that contains a transformation of our original phylog-
eny using a lambda value of 0.22.

To visualize and compare our phylogeny transformed using different values, we can
plot four versions side-by-side. I will use lambda values of 0, 0.25, 0.50, and 1.00,
but you can use other values (Fig. 7.3).

Fig. 7.3  A plot showing four lambda transformations of our original phylogeny. A lambda
transformation of one retains the original structure and a transformation of zero produces a star
phylogeny where all species are equally related

7  Comparative Methods and Phylogenetic Signal

161

The far right panel displays a transformation using a lambda of one, which retains the
original phylogeny. As we move toward the left with increasingly small lambda values,
we see that the terminal branches become longer and the internal nodes of the phylogeny
are pushed basally until we reach a lambda of zero giving a star phylogeny where all
species are equally related. As the internal nodes are pushed more basal in the phylog-
eny, we expect that sister lineages will have more divergent trait values under a Brownian
Motion model of trait evolution. The reason for this is that the time since their diver-
gence or distance to their most recent common ancestor (MRCA) is getting larger and
given that the expected variance in a trait scales with the branch length under Brownian
Motion we can expect that the longer the path length to the MRCA, the greater the
expected divergence in traits between two lineages. With this in mind and a general
understanding of how changes in lambda influence the structure of the phylogeny, we
can now discuss how lambda may be used as a metric of phylogenetic signal in trait data.

The general idea for using lambda to measure phylogenetic signal is to search for
the lambda value that transforms the original phylogeny such that the observed dis-
tribution of traits on the tips of the phylogeny is mirrored by that expected under
Brownian Motion on the transformed phylogeny [141]. A very low lambda increases
the distance between sister taxa and therefore their expected trait difference under
Brownian Motion. Thus, a lambda-based test of phylogenetic signal that results in
low lambda values indicates very little phylogenetic signal in the trait data given the
original phylogeny and a high lambda value indicates relatively more phylogenetic
signal in the trait data given the original tree. Indeed, if the value of lambda resulting
from the analyses is one, then our original phylogeny and a Brownian Motion model
of trait evolution best match our observed distribution of traits on the tips of the
original phylogeny. The lambda measure of phylogenetic signal in trait data can be
calculated using the phytools package and the same phylosig() function we used
to calculate Blomberg’s K. In this example, we will again compute the phylogenetic
signal in our trait in the second column of the example trait data matrix.

The function outputs the lambda value and the log-likelihood. Given that it is not
possible to search all possible values of lambda for transforming our phylogeny to

7.3  Quantifying Phylogenetic Signal

162

fit the data, an optimization must be used to search and estimate the value. Thus, the
result output above likely does not match yours using the same data. To see this you
can run the above line of code several times. The output lambda values will be
slightly different each time reflecting minor differences in the optimization output.
A log-likelihood for the reported lambda is also output by the phylosig() func-
tion. This value can be compared to the log-likelihood of lambda equal to zero for a
significance test using a likelihood ratio test. Changing the test flag to true from the
default of false results in a likelihood ratio test being computed.

The function now has output the additional information of the log-likelihood of
lambda equal to zero and the P-value from the likelihood ratio test. Note that the test
compares your reported lambda to the null hypothesis of a lambda equal to zero or
a “star phylogeny.” It is therefore a true null hypothesis where relatedness explains
none of the trait similarity between species. This is somewhat different from the
randomization tests we used for Blomberg’s K above where the null was a distribu-
tion of K values from simulated data where the null hypothesis is not necessarily a
star phylogeny with a K of zero.

7.3.4  �Standardized Contrast Variance, Unstandardized
Contrast Means, and Randomization Tests

The next two approaches for quantifying the phylogenetic signal in trait data utilize
the phylogenetic independent contrasts for a single trait. Recall, that the contrast for
a node describes the magnitude of the difference of the trait values for daughter
nodes. This difference can be standardized weighting by branch lengths or unstan-
dardized where all branch lengths are set to one. Thus, large contrast values indicate
that daughters are very divergent in their traits, which may indicate the lack of phy-
logenetic signal. The mean contrast value has therefore been used in the past to
quantify the phylogenetic signal in trait data (e.g., [33]). This mean is typically
calculated using the unstandardized contrast values. We therefore must set all
branch lengths in our phylogeny to one prior to calculating the independent con-
trasts. First we make a duplicate copy of our original phylogeny.

Next we use the compute.brlen() function in the ape package to change all
branch lengths to one. If you wish to check that the branch lengths have indeed
changed, you can check the distribution of edge lengths in both the original and new
phylo objects.

7  Comparative Methods and Phylogenetic Signal

163

We can now calculate the contrast values for one of the traits in our trait matrix and
take a mean value. We will assure that the order of the trait values in the vector align
with the names of taxa on the phylogeny. We will utilize the trait values in the sec-
ond column of our trait data matrix. Also remember that your phylogeny must be
fully bifurcating.

The output value is the mean contrast for our trait across all internal nodes in our
phylogeny with branch lengths set to one. Large values indicate that one average
daughter nodes have large trait differences, whereas small values indicate little
difference. Though, we have no reference to what is “large” and what is “small” and
cannot state whether the observed value is higher or smaller than that expected.
Thus, we cannot infer phylogenetic antisignal or phylogenetic signal, respectively.
Thus, we need a null distribution that we can compare our observed value against.
This can be accomplished using a permutation test where taxa names are shuffled
on the tips of the phylogeny. This can be accomplished by producing a small func-
tion, which we can replicate. In particular, we will write a function that randomizes
the names of taxa on the phylogeny and runs the pic() function.

This function can now be replicated 999 times to produce a null distribution of mean
contrast values using the replicate() function.

We can now compare where the observed value lands in this null distribution of
mean contrast values. We can accomplish this by combining the observed value
with the 999 random values and calculating the rank of the first (i.e., the observed)
value in the distribution.

We would like to perform a two-tailed test for phylogenetic signal and antisignal. If
the output rank (a.k.a. quantile) value is low that indicates our mean observed con-
trasts is generally lower than most random values. This would be indicative of sig-
nificant phylogenetic signal if the output rank value was less than or equal to 25
(e.g., 25/1,000 = 0.025; P = 0.025). Conversely, if the rank value is greater than or
equal to 975 (e.g., 975/1,000 = 0.975; P = 1 − 0.975 = 0.025), then this indicates

7.3  Quantifying Phylogenetic Signal

164

significant phylogenetic antisignal because the average contrast value is significantly
higher than expected by random.

An alternative to quantifying the average unstandardized contrast value as an
indicator of phylogenetic signal is to calculate the variance of the standardized
contrasts [135, 139]. The rational for this approach is that if there is a small degree
of variation in contrast values across internal nodes in the phylogeny, this should
result in closely related species being more similar in trait values due to the nested
structure of the phylogeny. Conversely, if closely related species are not similar, the
variance in contrast values across the phylogeny will be elevated. This metric is gener-
ally calculated using a phylogeny with branch lengths and therefore standardized
contrasts. The variance in standardize contrasts can be simply calculated for our
example trait two as:

The randomization test for the variance approach takes the same format except that
we must slightly change the function that we will replicate to calculate a variance
and not a mean.

This function can now be replicated 999 times to produce a null distribution of PIC
variance values and where the observed variance lands in that distribution using the
replicate() and rank() functions.

Similar to the mean PIC approach above, rank values less than or equal to 25 are
indicative of phylogenetic signal and values greater than or equal to 975 are indica-
tive of phylogenetic antisignal. It is important to remember that in both instances the
significance of the rank values is determined by the number of replicates plus one.
Thus, if we replicated the analyses with 9,999 random trees, significant phyloge-
netic signal would be found if the rank was less than or equal to 250.

The analysis of mean and variance of the unstandardized and standardized con-
trast values, respectively, will often produce different results. Of the two approaches
the variance approach is currently implemented to a greater degree due to the fact it
takes advantage of branch length information. It should be stated though that gener-
ally these two approaches are not used with near the frequency that the above K and
lambda approaches are utilized.

7  Comparative Methods and Phylogenetic Signal

165

7.3.5  Phylogenetic Eigenvectors

The final method we will discuss for measuring phylogenetic signal is phylogenetic
eigenvectors. Similar to the Mantel Test, phylogenetic eigenvectors have been
shown to have a reduced statistical power to detect phylogenetic signal in trait data
[134]. This issue and the degree to which selecting the number of eigenvectors to
incorporate into the regression model is or is not arbitrary are major sticking points
that have resulted in the infrequent use of phylogenetic eigenvectors for measuring
phylogenetic signal. We therefore cover their calculation primarily for historical
context and completeness rather than advocating for their use.

As before we begin by generating the phylogenetic eigenvectors by performing
a PCA on a phylogenetic distance matrix.

Next, we examine the summary of the output object. From this output we can apply
the broken stick method (see Sect. 7.3.3) to select the number of axes to be used for
our downstream regression analyses. In this example, for expediency we will simply
select the first three axes and not implement the broken stick method for selecting
the number of eigenvectors. To extract the eigenvectors for the first three axes for all
species, we can do the following:

Now we perform a linear regression regressing the trait data in column two of our
trait data matrix on the phylogenetic eigenvectors. Make sure to sort the trait data
according to the order of the row names in the phylogenetic eigenvector output.

The resulting summary of the linear model reports the adjusted R-squared. This
value and the significant level could be used to infer the phylogenetic signal in trait
data, but this approach is often criticized and may have very limited statistical power
(e.g., [134]). The coefficients from this multiple regression could be used to deter-
mine which eigenvectors best explain the trait data. Please refer to Sect. 7.3.3 to see
how to visualize these eigenvectors.

7.4  �Quantifying the Timing and Magnitude
of Trait Divergences

The above section dealt with how to quantify the phylogenetic signal in trait data,
but the result from each analysis is a phylogeny-wide measure regarding the degree
of signal. However, we are often interested node-level signal or antisignal and how
this signal changes with the position of the node in the phylogeny. In words, we are

7.4  Quantifying the Timing and Magnitude of Trait Divergences

166

often interested in the size of the trait divergence between two daughter nodes
and whether large or small divergences tend to be correlated with the depth in the
phylogeny (e.g., time). If large divergences happened relative deep in the phylogeny
and terminal nodes have little divergence, this may be evidence that the group
rapidly filled trait space early and began to pack this space through time. We will
discuss a couple of conceptually related approaches to quantifying the timing and
magnitude of trait divergence on a phylogenetic tree.

We will begin by taking the simple approach of asking whether the contrast for a
trait at each node is unusually large or small. Recall, that in Sect. 7.4 we quantified
the mean and the variance of contrast values in our phylogeny for a single trait. We
then utilized a randomization procedure to calculate a series of random means and
variances for 999 phylogenies that had their names shuffled. This code can easily be
adapted to quantify the contrast at each node for the observed and random phylog-
enies by removing the mean calculation. Specifically, we can generate the following
shuffling contrast function.

This function can be replicated 999 times to produce a matrix with the number of
rows equaling the number of nodes in the phylogeny and 999 columns using the
replicate() function.

We can now bind our observed contrasts to this matrix as follows:

The result is a matrix with the first column being the observed contrast values and
the next 999 columns being the random contrast values for those nodes. We can
calculate the rank of where the observed lands in the null distribution using an
apply() function with a MARGIN = 1 taking only the first column from the output
given we want the rank of the observed value and not the ranks of the random val-
ues. Given that we have 999 randomizations, a rank value of less than or equal to 25
is evidence that the contrast for that node is small than expected, whereas a value
greater than or equal to 975 is evidence that the contrast for that node is larger than
expected.

7  Comparative Methods and Phylogenetic Signal

167

The order of the resulting rank values is in the same order as the nodes in your phylo
object. If you have your node labels, you can combine the ranks with the node label
with a cbind(). If you wish to plot the ranks on the corresponding nodes in the
phylogeny, you can utilize the following code (Fig. 7.4).

If we wish to plot the distribution of rank values through time, we first extract the
relative ages of each internal node in the phylogeny using the branching.
times() function in the ape package.

The branching times produced begin at the root and end at the most terminal inter-
nal node. They are therefore in the same order as the ranks in our output. The
branching times are also quantified such that the largest value is assigned to the
root. For example, if the root is 50 million years old and the youngest internal
node is 10 million years old, their branching times will be 50 and 10, respectively.

Fig. 7.4  A plot of our phylogeny where the internal nodes are labeled with the observed contrast
value ranks in the distribution of 999 random contrast values we calculated. Values above or equal
to 975 would indicate a higher than expected divergence or contrast and values below or equal to
25 would indicate a lower than expected divergence or contrast

7.4  Quantifying the Timing and Magnitude of Trait Divergences

168

Thus, if we make a simple plot of the data, the position of the nodes on the x-axis
will be the reverse of their position on the x-axis when plotting the phylogeny.
To correct this we can simply multiply the branching times by negative one such
that a node that is 50 million years old is now −50 on the x-axis (Fig. 7.5).

This procedure is useful for not only plotting ranks from contrast randomiza-
tions, but generally for plotting node-level calculations as a function of time or rela-
tive time.

The above examines contrasts at each node in the tree and compares them to a null
distribution generated by shuffling of names on the phylogeny. Contrasts and name
shuffling are not the only approach for quantifying the timing and magnitude of trait
divergence. An alternative approach proposed by Harmon et al. [142] call Disparity
Through Time (DTT) quantifies the disparity of daughter node trait values and com-
pares the observed values to a null distribution generated by simulating trait evolu-
tion on the phylogeny many times under a Brownian Motion model. For continuous
traits the disparity can be calculated using two methods. The first is the average
squared Euclidean distance between the two daughter values and the second is the
average Manhattan distance between the two daughter values. It is recommended

Fig. 7.5  A plot of the observed contrast value for a node ranks in the distribution of 999 random
contrast values we calculated plotted against the divergence times for that node with the most basal
divergence being plotted on the left side of the x-axis

7  Comparative Methods and Phylogenetic Signal

169

that Euclidean distances should be used if all trait axes being analyzed are in the
same units (i.e., z-standardized traits or PCA axes) and that Manhattan distances
should be used if the traits are all in different units. Given that we have focused in
previous chapters on reducing co-variation in trait data matrices through the use of
PC analyses, we will utilize Euclidean distances in this example. The calculation
of DTT can be performed using the geiger package and the dtt() function.
We will use all traits simultaneously to quantify a multivariate disparity for each
node (Fig. 7.6).

There are multiple outputs from the dtt() function and we will cover them one by
one. First we ask for the names of what is contained in the output object.

The first output are the disparities calculated for each node ordered from the root
toward the tips.

The second output are the branching times for the nodes ordered from the roots
toward the tips. In the dtt() function the branching times are transformed by

Fig. 7.6  A plot of the observed multivariate trait disparities at a node (black line), mean of the null
distribution of disparities from a Brownian Motion model of trait evolution (dashed line), and
95 % envelope from the null distribution (shaded gray). The most basal node is on the left side of
the x-axis. Nodes that have trait disparities or divergences that are significantly higher than that
expected under a Brownian Motion model are indicated by places where the black line is above the
shaded area

7.4  Quantifying the Timing and Magnitude of Trait Divergences

170

subtracting root age from each value and dividing by the root age. The values therefore
range from zero to one.

The third output is a matrix holding the disparities for each node from the simu-
lated datasets using a Brownian Motion model of trait evolution. There is one row
per node ordered from root toward the tips and one column per simulation.

The last output is the Morphological Disparity Index (MDI) statistic. This statistic
calculates the area between the observed disparities connected by a line and the
median of the expected disparities derived from the Brownian Motion simulations
connected by a line. Observed disparities that are larger than the median add to the
area (i.e., the MDI) and observed disparities lower than the median subtract from
the area (i.e., the MDI). Thus, a positive MDI indicates the observed disparity
values are one average larger than that expected from a Brownian Motion model
of trait evolution, whereas negative values indicate the observed disparities are on
average smaller than that expected. Negative values of MDI can be taken as
evidence of an early burst in the evolution of morphological diversity followed by
little morphological diversification within more terminal subclades. Conversely a
positive MDI value can be taken evidence of a constant or accelerating rate of
morphological diversification through time.

One result that the dtt() function does not directly calculate is whether indi-
vidual nodes diverge significantly from the null distribution for that node derived
from the Brownian Motion simulations. This is perhaps surprising given that all of
the necessary information to calculate node-level significance has been output by
the function. Specifically, we know the observed disparities and we have a null
distribution of disparities for each node. All that is left to do is to calculate the rank
of the observed value in the null distribution. This can be accomplished using the
following code.

In this example we have once again generated 999 random values such that we have
a total of 1,000 values in the distribution including the observed values. Thus, val-
ues less than or equal to 25 indicate a disparity value for a node that is lower than
that expected given Brownian Motion and values greater than or equal to 975 indi-
cate a disparity value for a node that is greater than that expected. We can plot these
ranks on the phylogenetic tree using the same approach we used previously in this
subsection to plot the ranks of the observed contrast values.

As you can see, the contrast and disparity approaches are conceptually very simi-
lar. The main difference is that the disparity approach provides a summary statistic
of how the observed disparities generally deviate from the expectation, though it
isn’t too different from the use of contrasts to quantify phylogenetic signal
(see Sect. 7.4), and the use of a model of trait evolution to produce the null

7  Comparative Methods and Phylogenetic Signal

171

distribution in the disparity approach rather than using the shuffling of names across
the tips of the phylogeny. For this second reason the disparity approach may be
preferred because it utilizes an explicit model of trait evolution and allows for the
possibility of other models of trait evolution to be utilized to set the expectation.

7.5  Conclusions

In this chapter we have considered the issue of phylogenetic nonindependence
between species in comparative datasets. We began by covering how to incorporate
phylogenetic information into trait correlation analyses. This was followed by a
demonstration of a variety of methods for quantifying the degree to which trait simi-
larity is explained by the phylogenetic relatedness of species and how this phyloge-
netic signal can be calculated phylogeny wide and at individual nodes. Although
there is a more extensive text in the UseR! series regarding comparative methods in
R [15], and I encourage you to also consult that text, I have included this chapter in
this book as measurements of trait correlations and phylogenetic signal are critical
for most phylogenetic and functional diversity analyses in ecology.

It is my hope that this chapter will help ecologists to begin or continue or adven-
ture into the world of phylogenetic comparative methods, but you will quickly find
that the phylogenetic comparative methods literature is vast and full of very strong
opinions on various topics. I hope that this does not discourage you in your pursuit
of using phylogenetic information in your ecological analyses because at the very
least it is the statistically appropriate thing to do and moreover it likely will make
your analyses much more informative. The code above therefore is simply a starting
point for your use of R for phylogenetic comparative methods.

7.6  Exercises

	1.	 Simulate three trait datasets on your example phylogeny using the fastBM()
function in the phytools package.

	2.	 Calculate a correlation of the independent contrast values for two of the traits and
perform a phylogenetic generalized linear model analysis with these same two
traits arbitrarily selecting one as the dependent variable.

	3.	 Calculate the phylogenetic signal in each simulated trait dataset using Blomberg’s
K, Pagel’s Lambda, and the variance in independent contrasts.

7.6  Exercises

173N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_8, © Springer Science+Business Media New York 2014

8.1 Objectives

 The objectives of this chapter are to understand and implement methods for
 partitioning the functional and phylogenetic dimensions of diversity within and
between communities and to quantify the relationships between traits, phylogenetic
relatedness, space, and the environment simultaneously.

8.2 Background

 The broadening of the concept of biodiversity to include dimensions such as phylo-
genetic and functional diversity has resulted in a large and ever-growing literature.
The majority the research published in this realm has generally quantifi ed the phy-
logenetic or functional diversity in a system and often correlates these results with
some gradient or gradients. Analyses that simultaneously consider phylogenetic and
functional diversity are less common, but can be found in the literature. Much more
rare are studies that directly integrate phylogenetic and functional diversity metrics
and/or partitioning variation in phylogenetic or functional diversity into the compo-
nents that can be explained by spatial and environmental gradients and their
co- variation. Thus, in many ways ecology has generally not yet successfully inte-
grated phylogenetic, functional, environmental, and spatial information into a unifi ed
analytical framework. This limits our ability to simultaneously address in one study
system the fundamental questions of what aspects of organismal function are
selected by the environment to determine the spatial distribution of species and how
have these important aspects of function evolved? In other words, ecologists are still
by and large struggling to explicitly quantify the evolutionary fi ngerprint on the

 Chapter 8
 Partitioning the Phylogenetic, Functional,
Environmental, and Spatial Components
of Community Diversity

 The online version of this chapter (doi: 10.1007/978-1-4614-9542-0_8) contains supplementary
material, which is available to authorized users

http://dx.doi.org/10.1007/978-1-4614-9542-0_8

174

patterns of diversity and abundance in present day ecological communities. While I
am not convinced that a perfect analytical framework exists yet to address this issue,
particularly in communities composed of multiple distantly related lineages
(i.e., not a community or trophic level composed of a single mono-phyletic group),
there are a few approaches that are available to begin to integrate phylogenetic,
functional, environmental, and spatial data that are fundamental to ecological analy-
ses and inferences. I will cover a few of these approaches in this chapter starting
with the partitioning of variation in phylogenetic or functional alpha or beta diver-
sity. After that we will examine a fairly new modifi cation incorporating phyloge-
netic information into an older statistical approach to link trait data with spatial
gradients in the environment. Both of the general approaches to be covered have
been under- utilized in the literature in my opinion. In introducing them to you I
hope they will become more widely used and that they may inspire some to generate
their own novel approaches that integrate these pieces of information in a powerful
and intuitive way.

8.3 Partitioning Variation in Community Functional
Alpha Diversity by the Environment, Space,
and the Community Phylogenetic Alpha Diversity

 The functional diversity (FD) within a community or sample can be explained by
several potentially interacting factors. Frequently it is assumed that the abiotic envi-
ronment plays a key role in determining the FD within an assemblage particularly
on larger spatial scales. However, abiotic gradients are generally spatially autocor-
related such that trend in FD along an abiotic gradient may simply be due to spa-
tially structured processes such as dispersal limitation that are independent of the
environment. Thus, we may be interested in partitioning the FD quantifi ed within
assemblages in a study system into the portion that can be explained by the abiotic
gradient(s) the assemblages are found in independent of spatial distance (i.e., a pure
environmental component), the portion that can be explained simply by the spatial
distance independent of environmental distance (i.e., a pure spatial component), the
portion that can be explained by the interaction of space and the environment or
spatial autocorrelation in the environment (i.e., the space–environment interaction
component), and the portion that cannot be explained by the spatial or environmen-
tal components and their interactions (i.e., the residual component). A fi nal twist on
this framework is that we may also be interested in partitioning the variance in FD
that is explained by the phylogenetic diversity (PD) in the communities and how PD
interacts with the spatial and environmental gradients in the system. In the follow-
ing subsections we will explore how to perform such variance partitioning of alpha
FD using multiple regression on distance matrices and spatial relationships defi ned
as the Euclidean distance between communities. We follow this with a similar mul-
tiple regression-based framework, but with spatial relationships between plots being
quantifi ed using Principal Coordinates of Neighbor Matrices (PCNM) analyses.

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

175

8.3.1 Partitioning FD Using Multiple Regression
on Distance Matrices

 The goal of this subsection is to fi rst calculate the functional diversity (FD) of the
communities in our community data matrix. We will then partition the FD between
communities based on the spatial and environmental distances that separate them.
Then, we will augment these analyses by adding a phylogenetic component to our
variance partitioning. We will use multiple regression on distance matrices (MRM),
but the general concept of variance partitioning could be used to use other approaches
that do not use MRM.

 We start by loading the picante package so that we may calculate FD and reading
in our community data matrix and trait data matrix .

 The following analyses all use spatial and environmental data for each community.
The spatial data will be read into R in the form of a matrix with the fi rst column
being the x coordinates and the second column being the y coordinates. The row
names are the community names. The environmental data contain three variables in
the three columns. It is critical that these tables have the communities in the same
order as that found in the community data matrix. Thus, we will sort both tables to
assure this is the case.

 We now can calculate a measure of FD for each of our communities. Any measure
can be utilized so long as you format the output as a vector. For simplicity we will
calculate the unweighted pairwise functional distance between all species in our
communities. We will calculate functional distance as the Euclidean distance
between the species in our system using all traits simultaneously. The assumption
here is that all traits are orthogonal. If this is not the case, a PC analysis should be
used fi rst to reduce trait redundancy (see Chap. 4). We can use the mpd() function
in the picante package to calculate the pairwise functional distance between the
 species in each community.

8.3 Partitioning Variation in Community Functional Alpha…

http://dx.doi.org/10.1007/978-1-4614-9542-0_4

176

 The MRM analyses to follow require a distance matrix for each of the independent
variables and the dependent variable. The dependent variable in this case is the FD.
Though, our FD output is a vector sorted in the same order as the rows in our com-
munity data matrix and our spatial and environmental data matrices. We would like
to partition the variation in the difference in FD between communities. As such we
will generate a FD distance matrix from our vector of FD values using the dist()
function.

 We are now ready to calculate a multiple regression using our FD distance matrix
regressed onto a distance matrix of our geographic coordinates and environmental
distance. The spatial and environmental distance matrices will be generated using
the dist() function. The MRM analysis can be using the linear model function
 lm() , but if you would like a permutation test, you could use the MRM() function
in the ecodist package.

 We see that our two variables combined explain 70.78 % of the variation in
community FD in our study system, but this is the multiple R 2 value and not the
adjusted R 2 value we need for variance partitioning. Thus we will use a simple
 lm() function.

 We fi nd that the linear model explains ~62.43 % of the variation. The next goal is to
partition the amount of variation in FD between the communities in our system
explained purely by the environmental distance between the communities, purely by
the spatial distance, by the interaction between environmental and spatial distance
(i.e., spatial autocorrelation in the environment), and the variance that cannot be
explained. To begin this process, we fi rst recalculate the full regression model and
extract the R 2 value from the output.

 Then we calculate model including only the spatial distance matrix or only the envi-
ronmental distance matrix and extract the R 2 values from the output.

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

177

 We now have the variation explained by the full model and from the two nested
models. We fi nd that the spatial component which includes pure space and the
space–environment interaction (i.e., MRM.Space.SandE.R2) explains ~35.42 %
of the variance and we fi nd that the environmental component which includes pure
environment and the space–environment interaction (i.e., MRM.Env.SandE.R2)
explains ~56.17 % of the variance.

 The variance explained by the pure components and their interaction and the
residual unexplained variation can now be calculated. The residual variation is simply
one minus the variation explained by the full model.

 The variation explained purely by the environmental component is equal to the dif-
ference between the variation explained in the full model and the variation explained
by the nested model of FD regressed onto spatial distance.

 The variation explained purely by the spatial component is equal to the difference
between the variation explained in the full model and the variation explained by the
nested model of FD regressed onto environmental distance.

 Lastly, the variation in FD that is explained by the interaction between the spatial
and environmental components is the variation explained by the full model minus
the sum of the variation explained by the purely spatial and purely environmental
components.

 We have now established how the variation in FD in a series of communities or
samples in a system can be partitioned into pure spatial and environmental compo-
nents, their interaction, and residual variation using MRM.

8.3 Partitioning Variation in Community Functional Alpha…

178

8.3.2 Partitioning FD Using Principal Coordinates
of Neighbor Matrices (PCNM) and Forward Selection

 The above approach utilized the Euclidean distance in space separating our
communities. Thus the spatial data in these analyses are interpreted on this single
linear axis and there is no scale dependence in the spatial data. In other words, there
is very little spatial structure in the data when using this approach. Given that most
of the biological processes we are interested in presently and elsewhere have spatial
structure (i.e., biological processes are scale dependent), it may be useful to model the
spatial structure in our data prior to performing partitioning analyses. A frequently
utilized method in ecology for modeling this structure is to use Principal Coordinates
of Neighbor Matrices (PCNM), which is a special case of Moran’s eigenvector
maps [19]. A PCNM analysis requires a Euclidean distance matrix for the commu-
nities or samples. This matrix is then truncated by a set value, where all values less
than the truncation parameter are retained and all values larger than the truncation
parameter are given an unrealistically large value. This introduces a neighborhood
structure that can be input into a Principal Component (PC) analysis that will
produce eigenvectors that are orthogonal and structure the spatial data at different
scales, where the fi rst eigenvectors represent coarse scale spatial structure and the
latter eigenvectors represent fi ner scale spatial structure. Some of these eigenvectors
can be utilized in a multiple regression and variance partitioning. Indeed we can fi rst
select which eigenvectors best relate to our dependent variable prior to performing
a multiple regression and variance partitioning. This helps us understand the scale
of the spatial structure that is most closely related to our dependent variable, which
itself is potentially biologically informative.

 We begin by calculating the PCNM values for our spatial data by using the
 pcnm() function in the vegan package. We will provide the function with a
Euclidean distance matrix of our geographic coordinates and a threshold value.
Choosing a threshold value is an important step. It is recommended that the
threshold be as low as possible to include multiple samples under the threshold
(i.e., each sample or community will have at least one other sample or community
in its neighborhood). When the sample or community data are collected at regular
distances in one-, two-, or three-dimensional space, determining this threshold is
fairly easy. When the data are spaced irregularly (i.e., spatial coordinates of plots in
a continental-scale forest inventory dataset), determining the threshold value is
more diffi cult. It may be necessary to set a large threshold to include at least one
neighbor in the neighborhood radius of each sample and this runs the risk of losing
information pertaining to the fi ne-scale spatial structure in the dataset. An imperfect
solution to this problem suggested by Bocard et al. [19] is to fi rst randomly add
geographic coordinates to your dataset to artifi cially allow lower thresholds that can
capture fi ner scale structure. After the PCNM has been performed, these artifi cial
samples or communities are removed from the downstream analyses. The reason
why this is an imperfect solution is that the removal of these artifi cial samples may
mean that the eigenvectors are no longer orthogonal and this must be remembered
if this approach is taken. For the sake of simplicity and expediency, in this example

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

179

we will use a threshold of two. Though please keep in mind that selecting a threshold
value should be done with care in real analyses.

 In order to decide what PCNM vectors to include in our analysis we will use “for-
ward selection.” Forward selection is implemented in the stats package. It can be
installed and loaded using the following code.

 We can now perform forward selection using the forward.sel() function and
the vectors produced by the PCNM analysis and the FD values for our
communities.

 We will extract the fi rst and second vectors for expediency our original PCNM out-
put and place them in a new object for regression analysis.

 We can now perform the same series of lm() functions we used in the previous
subsection, but substituting the PCNMs selected instead of the raw xy distance. One
could also add phylogenetic diversity as an independent variable to this regression
model to also partition the PD component of the observe FD [82].

 We have now seen how to partition the alpha FD in a community into spatial,
environmental, and phylogenetic components and their interactions. In the next section
we will partition phylogenetic and functional beta diversity into purely spatial and
environmental components and their interaction.

8.4 Variance Partitioning of Phylogenetic or Functional
Beta Diversity Along Environmental and Spatial
Gradients

 The previous section discussed the partitioning of phylogenetic and functional alpha
diversity. Partitioning of alpha diversity is far less common than the partitioning of
beta diversity. The partitioning of phylogenetic and functional beta diversity is the
focus of this section where we ask whether the compositional dissimilarity between
pairs of communities in our study system is best explained by their spatial or envi-
ronmental distance or the co-variation in spatial and environmental gradients in the
system.

8.4 Variance Partitioning of Phylogenetic or Functional Beta Diversity…

180

8.4.1 Beta Diversity and Multiple Regression
on Distance Matrices

 A multiple regression on distance matrices (MRM) approach can be useful for relating
phylogenetic or functional beta diversity to spatial and environmental distance par-
ticularly if one does not wish to model any scale-dependent spatial structure in the
data. The MRM approach is a simple extension of the partial Mantel test, which has
been a popular approach in the beta diversity literature. We will not cover the partial
Mantel approach because the MRM approach is now preferred, but a partial Mantel
analysis can be performed using the partial.mantel() function in the vegan
package. The approach for using MRM for partitioning beta diversity is nearly iden-
tical to that used above to partition alpha diversity gradients. The only difference is
that we use the output distance matrix from a phylogenetic or functional beta diver-
sity analysis, such as D pw , as the dependent variable. Therefore we will use very
similar code and example calculating phylogenetic beta diversity where I will only
point out the differences. We will use the same phylogenetic, trait, spatial, and envi-
ronmental data that we used in the preceding section. To begin we will calculate the
unweighted pairwise phylogenetic beta diversity, D pw , for our example system using
the comdist() function in the picante package.

 The output distance matrix representing the D pw between all samples or communi-
ties is now used as the dependent variable for the full and nested MRM models that
follow.

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

181

 As you can see, the code is essentially the same as that we used for the alpha
diversity partitioning in the previous section. In theory, one could partition the func-
tional beta diversity in your study system using the spatial and environmental
distance matrices and the phylogenetic beta diversity distance matrix.

8.4.2 Partitioning Beta Diversity Using Principal Coordinates
of Neighbor Matrices (PCNM) and Forward Selection

 As we have discussed in the previous section on partitioning alpha functional diversity,
it is often useful to model the spatial structure of your data because biological pro-
cesses have scale-dependent spatial structure. The modeling of this spatial structure
can be accomplished by using Principal Coordinate analysis of Neighbor Matrices
(PCNM). In Sect. 8.3.2 we cover PCNM in more detail and the reader is advised to
quickly read that text prior to proceeding with the following code.

 The partitioning of beta diversity using a PCNM approach is nearly identical to
that we used for alpha diversity above with the exception that we will perform a PC
analysis on the output beta diversity matrix. In this case we will use the phyloge-
netic beta diversity output from Sect. 8.4.1 . We fi rst perform a PCNM analysis on
our spatial distance matrix using a threshold value of two. Choosing the threshold
value is important and we are simply using this value for expediency. For a discus-
sion of how to determine the threshold value for your dataset, see Sect. 8.3.2 or the
discussion in Bocard et al. (CITE).

 We now deviate slightly from the PCNM approach we used for alpha diversity. Here
we perform a PC analysis of the beta diversity matrix to produce the orthogonal
eigenvectors that will become the dependent variables in our regression analysis.

 The phylogenetic beta diversity eigenvectors are now used in a forward selection
analysis to determine which PCNM eigenvectors are the best predictors of our beta
diversity eigenvectors. Recall, that the fi rst eigenvectors generally represent coarse-
scale spatial structure and later eigenvectors generally represent fi ne-scale spatial
structure. Thus, the spatial eigenvectors that are selected by this process provide us
some information regarding the scale dependency and spatial structure of the beta
diversity in our system.

 The selected eigenvectors can now be used in a series of linear models as we have
done in the Sects. 8.3.1 and 8.4.1 to partition the variation in beta diversity while
acknowledging scale dependency in spatial structure via a PCNM approach.

8.4 Variance Partitioning of Phylogenetic or Functional Beta Diversity…

182

8.5 Integrating Phylogenetic, Trait, Environmental
and Spatial Information to Quantify the Role
of Abiotic Filtering During Community Assembly

 To this point we have integrated phylogenetic and trait diversity with environmental
and spatial data to partition the diversity. This approach is typically used in the
context of testing niche versus neutral community assembly mechanisms. A related,
but alternative to diversity partitioning, approach is to integrate phylogenetic, trait,
environmental, and spatial information to ask what traits are fi ltered into communi-
ties (i.e., that show lower than expected diversity), what lineages are also fi ltered
into these communities, and what are the environmental and spatial contexts of this
fi ltering? In other words we would like to know how traits are fi ltered into commu-
nities, what is the phylogenetic imprint on the traits, and how is fi ltering distributed
across spatial and environmental gradients. A few approaches have been proposed
to address these fundamental questions. One is the trait–habitat–clade (THC)
approach of Mayfi eld et al. [143], but this approach suffers from utilizing discrete
environmental and trait data. The requirement of discrete habitat types in particular
is a serious limitation for most spatial analyses. We therefore focus on a proposed
approach that is more fl exible both in allowing for mixed (i.e., continuous and
categorical) traits and continuous spatial data.

 The approach we will cover here is an extension of the RLQ approach. The
original RLQ approach utilizes ordination of a R matrix containing environmental
and spatial data, a Q matrix containing trait data for the species, and a L matrix
that is a community data matrix that can be used to link the R and Q matrices. This
approach traditionally been used to quantify the relationship between traits and the
environment across a series of samples or communities. Recently, Pavoine et al.
[144] extended the RLQ approach to incorporate phylogenetic information. In this
extended approach, the L matrix is still the community data matrix and is subjected
to a Correspondence Analysis [145]. The R matrix has rows representing the sam-
ples or communities with columns that are the environmental data and spatial vari-
ables. The environmental data can be a community by environmental parameter
value and the spatial variables data can be the coordinates of the communities in two
columns or a neighborhood matrix. Both the environmental and spatial matrices are
subjected to a Principal Components Analysis (PCA). The Q matrix now has spe-
cies in the system as rows with raw traits or a trait distance matrix subjected to a
PCA or Principal Coordinates Analysis (PCoA), respectively, and a phylogenetic
distance matrix subjected to a PCoA. The modifi ed R and Q matrices are then
linked using the L matrix as is done a tradition RLQ analysis. In the following we
will generate the matrices and then utilize the source code provided by Pavoine
et al. [144] for performing and plotting the modifi ed RLQ analysis.

 We start by loading the ade4 package in R and reading in our environmental matrix.

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

183

 Next we read in our example Newick phylogeny using the read.tree() function in
the ape package. This produces an object of class “phylo.”

 The phylo class object we now have will need to be converted to a “phylog” class
object. The phylog class is used by the ade4 package for phylogenetic trees. It con-
tains not only a Newick tree in the object but also a great deal of additional informa-
tion including a phylogenetic distance matrix. We will use the newick2phylog()
function to convert our phylogeny. This function requires the text of a Newick
phylogeny, which we can obtain by using the write.tree() function.

 We now perform a Correspondence Analysis of our community data matrix to gen-
erate our L matrix.

 Next we perform a PCA on our raw coordinate data weighting by the rows of the L
matrix. Recall, that we can utilize a neighborhood matrix instead. An example
neighborhood matrix could be a binary matrix where communities in a grid that
abut are scored as one and communities that do not abut are scored as zero. An
alternative would be to generate a neighbor matrix as we did for the PCNM analyses
in the previous sections using a threshold value. The output from this analysis is one
half of the R matrix.

 The environmental data forms the second half of the R matrix. Prior to subject the
environmental data matrix to a PCA, we will standardize the data by dividing the
logged values by the difference between the maximum and minimum value for that
column.

 The logged and standardized environmental data can now be used in a PCA weighted
by the rows of the L matrix.

 A PCoA can now be performed on our trait data weighting by the L matrix.
We will assume that our trait data are orthogonal and all are related to the envi-
ronmental gradients of interest. In Pavoine et al. [144], a formal analysis of what
traits to include in this calculation is presented where a regular RLQ analysis (i.e.,
 rlq() in the ade4 package) is performed with a permutation of trait values to

8.5 Integrating Phylogenetic, Trait, Environmental and Spatial Information…

184

determine which traits are signifi cantly related to the environmental variables.
A distance matrix is then calculated only from these traits and input into the PCoA.

 The output forms one half of the Q matrix. The other half of the Q matrix is gener-
ated by performing a PCoA on the phylogenetic distance matrix weighting by the
columns of the L matrix. Our phylog object contains the phylogenetic distance
matrix as Wdist .

 The output of the PCoA on our phylogenetic distance matrix is the second half of
the Q matrix. We are now ready to run the phylogenetic modifi cation of the RLQ
analysis proposed by Pavoine et al. [144]. This analysis not provided in a currently
R package so we will provide R with the source code from Appendix 5 of the
Pavoine et al. [144] paper using the source() function.

 This source code contains the rlqESLTP() function that will perform the modi-
fi ed RLQ approach given the matrices we have generated above. The name of the
function gives the order of the matrices to provided to the function.

 We can now calculate the proportion of the covariance of the phylogeny and traits
(Q matrix) with space and environment (R matrix) for each eigenvector produced
by the analysis. In this example, proportion of the covariance explained by the fi rst
axis can be calculated as follows:

 We see that the fi rst axis explains ~82.37 % of the variation. If we wish to visualize
this axis in space, we simply use the plot.rlqESLTP() function provided in the
source code that we read into R. This can be accomplished by providing our output
object, the x and y coordinates of our communities, telling the function which axis
we want to plot (ax = 1) and that we want to plot the axis in space (wh = “S”)
(Fig . 8.1).

 If we wish to visualize this axis on the phylogeny we plot the same function by
providing our output object, our phylogeny, telling the function which axis we want
to plot (ax = 1) and that we want to plot the axis in relation to the phylogeny (wh =
“P”) (Fig. 8.2).

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

185

 From these results we can see that the resulting fi rst axis underlies ~82.37 % of the
co-variation of the phylogeny and traits with space and environment. We see that
this is co-variation has a spatial structure from the west to east in our study system
and that this spatial structure is generally randomly distributed across our phylogeny.
Thus we are able to determine how traits are arrayed along spatial and environmen-
tal gradients and on the phylogeny to link the evolutionary history of traits that are
fi ltered into communities with spatial and environmental gradients.

8.6 Conclusions

 The integration of phylogenetic and functional diversity individually into ecology is
still a relatively new phenomenon. The simultaneously integration of both of these
components along with spatial and environmental information is an incredibly
new phenomenon that will likely become commonplace in the coming decade.
Thus, although the literature and R code on this topic is sparser than other topics

 Fig. 8.1 A plot of the RLQ output where we plot the distribution of the fi rst axis in space

8.6 Conclusions

186

covered in this book, I felt it was important to cover this important emerging topic.
In particular, we covered how the variation in the observed phylogenetic alpha and
beta diversity in a system can be partitioned into pure spatial and environmental
components and their interaction. We followed this by not only doing the same for
functional diversity but also adding a phylogenetic component into the list of inde-
pendent variables explaining the variation in functional alpha and beta diversity.
We fi nished with an exciting and relatively new analytical framework proposed by
Pavoine et al. [144] that extends the “RLQ approach” to incorporate phylogenetic
information to address how the environment fi lters lineages with particular traits
and how this process plays out over space in the study system.

 It is my expectation that variance partitioning analyses, as we performed in the
beginning of the chapter, will continue to be important in ecology and perhaps
become even more important with their implementation in R and use in a phyloge-
netic and functional diversity context. Fortunately, the general conceptual approach
for these analyses will likely not change radically in the near future. The RLQ-style
integration of phylogenies and traits with environmental and spatial gradients will
likely see many new approaches proposed in the near future that use a similar or a

 Fig. 8.2 A plot of the RLQ output where we plot the distribution of the fi rst axis on the
phylogeny

8 Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components…

187

very different statistical framework, but the conceptual approach will likely not be
much different given the question being addressed is fundamental to ecology. Thus,
I hope that the description of the general approaches in this chapter allows the reader
to utilize these same R-based analyses in their research, but to also understand the
approaches that will emerge in the literature in the coming years.

8.7 Exercises

 1. Quantify the Jaccard’s Index for your example dataset using the vegdist()
function in vegan and partition the variance explained by space and the environ-
ment and their joint effect.

 2. Repeat the analyses in number 1 above, but also include a measure of phyloge-
netic beta diversity as an explanatory variable and its joint effects with space and
the environment.

 3. Quantify the functional beta diversity for your example dataset. Next, partition the
variation in the functional beta diversity by spatial and environmental gradients,
the Jaccard’s Index values, and the interactions between these three variables.

8.7 Exercises

189N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0_9, © Springer Science+Business Media New York 2014

9.1 Objectives

 The objectives of this chapter are to quickly cover how to use R to interface with
analytical software that is written in other programming languages. The chapter will
focus primarily on integrating R commands with the software Phylocom written in
C [14]. I have chosen to focus on this program because it carries out many of the
types of analyses covered in this book. Although I have focused on this particular
program, the general principles of how to call other programs from R and integrate
them into your R-based analyses remain the same.

9.2 Background: The Development of Eco-Informatics Tools
for Phylogenetic- and Functional Trait-Based Ecology

 In other places in this book, we have discussed the long history of performing phy-
logenetic and functional diversity analyses in ecology in some cases dating back
nearly a century. Despite this long history, only recently has the ecological literature
seen a dramatic increase in phylogenetically and functionally based analyses.
Although conceptual advances can explain some of this, I would argue that the
majority of this increase is due to the development of freely available analytical and
eco-informatics tools. Indeed over the course of approximately 5 years, community
ecology went from a discipline that rarely generated phylogenetic trees and had few
analytical tools to analyze those trees where available to one where phylogenetic
trees, though often crude, could be estimated for entire communities within seconds
or minutes and analyzed with powerful software. I think it would be hard to under-
estimate the impact of this development on ecology in general and plant community
ecology in particular.

 Recently developed analytical and eco-informatics tools have had a large role in
the increasing the number of phylogenetically and, to a lesser extent, functionally

 Chapter 9
 Integrating R with Other Phylogenetic
and Functional Trait Analytical Software

190

based analyses in ecology and the most widely utilized of these tools are coded in
C. Although these C programs are open source, ecologists who are not familiar with
C and perhaps more fl uent in R have found it diffi cult to utilize or modify the analy-
ses available in the C programs. For example, the two most widely used C programs
in phylogenetic community ecology are Phylocom and Phylomatic [14 , 56].
Ecologists not accustomed to using command lines have often found these pro-
grams diffi cult to understand or those ecologists not fl uent in C have found it diffi -
cult to change the source code in these programs to run additional analyses that are
not a “canned” function. Thus, when R packages such as picante were derived,
many phylogenetic community ecology analyses became unlocked to the large
number of R using ecologists. One issue though that these users have run into is that
the original C program is faster for null model analyses for a series of reasons of
which may be the use of for() loops in R. For this reason I frequently encounter
researchers who say an analysis is “impossible” in R using the available packages
when I know it is easily possible in the original C programs. One solution to this
issue is writing faster R code, but an alternative option is to use R to communicate
with the C program. This approach may increase speed, but it also has the benefi t of
perhaps allowing you to run analyses that you cannot code (yet) in R. Further, it may
allow you to pull out additional information regarding your analyses that the origi-
nal C program may not allow. For example, the C program Phylocom runs a series
of null models and for phylogenetic alpha diversity metrics will produce a standard-
ized effect size value and P -value and for phylogenetic beta diversity will only
produce a standardized effect size value. In both cases, it is not easy or possible for
the user to see the null distribution and in the case of phylogenetic beta diversity it
isn’t possible to obtain a P -value.

 In the following sections I will describe how to use R to communicate with the
Phylocom program written in C. The goal here will be to simply understand how to
call another program from R. After we have mastered this task and seen how to run
many phylogenetic and functional diversity analyses in Phylocom while in R, I will
discuss how to use R to “unlock” parts of Phylocom to produce all null model analy-
ses and how to seamlessly integrate your R-based analyses with Phylocom.

9.3 Phylocom

 Many attribute the rise in phylogenetic analyses of communities to a paper written
by Cam Webb in 2000 in The American Naturalist regarding the phylogenetic struc-
ture of tree assemblages in Borneo [28]. While this paper was very interesting and
did provide the original formulations of the Net Relatedness Index and Nearest
Taxon Index, the article in and of itself was not the reason for the tidal wave of phy-
logenetic community ecology that arrived in the subsequent decade. Rather, it was
the eco-informatics tools developed by Webb and colleagues [28] to generate and
analyze phylogenetic trees for the species in plant communities that were made
freely available to the research community. The tools they developed were and are

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

191

available in the C programs Phylocom and Phylomatic. In this section we will dis-
cuss how to integrate Phylocom and R and we will cover Phylomatic in the next
section. Phylocom is the main analytical software produced by Webb and colleagues
to quantify the phylogenetic diversity of communities and to perform comparative
methods such as independent contrasts and measures of phylogenetic signal. This
program is still frequently utilized by researchers, but has been forgotten or avoided
by researchers comfortable only in R. My goal here is to simply demonstrate how
this powerful program can be accessed and utilized by calling it from R. We will
begin with quantifying phylogenetic and functional diversity metrics with null mod-
els, follow this with quantifying independent contrasts and phylogenetic signal, and
end with a demonstration of how to randomize data in R and provide that data to
Phylocom to produce null distributions. Before we do any of this though, you will
need to download and unzip the latest version of Phylocom from https://www.
phylodiversity.net/phylocom .

9.3.1 Quantifying Phylogenetic and Functional Diversity
and Dispersion in Phylocom

 Now that we have downloaded Phylocom onto our computer and unzipped the
directory, we are ready to begin interfacing it with R. First, for simplicity, let us set
our working directory in R to the same directory on our computer that holds the
Phylocom program. For Mac users this is the “mac” directory in the Phylocom
directory. For PC users this is the “w32” directory in the Phylocom directory. Note
that the PC version is 32 bit, which can cause memory issues for large datasets. I am
a Mac user so I will set my working directory as follows:

 We will now write some example fi les to these directories that we can use for analy-
sis. We will use the example Phylocom phylogeny, community data, and trait fi les
from the picante package.

 First, we extract the example phylogeny and write it to our working directory in a
Newick fi le format using write.tree() .

 Second, we extract the example community data matrix and write it to our working
directory in the Phylocom format where each row is a species in a particular

9.3 Phylocom

https://www.phylodiversity.net/phylocom
https://www.phylodiversity.net/phylocom

192

community with the fi rst column being the community name, the second column
being the abundance of that species in that community, and the third column being
the species name. It is critical that this fi le is sorted by the fi rst column, that a spe-
cies does not occupy more than one row per community, and that the species names
perfectly match the names of the species in the phylogeny. These fi rst two require-
ments are handled by the writesample() function in picante and the third
requirement is not a concern here given we are using an example dataset, but should
be checked by you or using the treedata() function in geiger .

 Last, we extract the example trait data matrix and write it to our working directory.
Again it is critical that the names in the trait data match those in the phylogeny and
community data. The fi rst row in Phylocom trait data matrices contains information
regarding the type of trait data (e.g., continuous, categorical, etc.). In this instance
our trait data is continuous so this row will include a “3” as the type with the word
“type” in the fi rst column. The second row provides the name of each trait in the
dataset with the word “name” in the fi rst column. The remaining rows in the trait
data matrix contain species names in the fi rst column and trait values in the remain-
ing columns. This format can be produced by using the writetraits() function
in picante .

 If you now look in your working directory you will see these fi les have been written
to your hard drive.

 You can open these fi les with a text editor to examine their format and to quickly see
if there are any obvious errors that may have occurred. If the fi les look fi ne, then we
are ready to proceed with some simple analyses using Phylocom from R.

 The following commands will differ slightly depending on whether you are using
a Mac operating system or Windows. As a Mac user I will be using the system()
function, but if you are a Windows/PC user, you can simply replace system()
with the shell() function. These functions are used to call a program that can be
run in your terminal or command line. For example, we can fi rst use R and sys-
tem() to call Phylocom.

 The description of the Phylocom software is printed to my R console. Here I can see
all of the functions available in this program and how to call them, but fi rst a couple
of quick points about how I used the system() function. First you will note that I

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

193

used quotes around the program that I am calling. So if you had a program called
SuperProgram and the executable was in your working directory, you would replace
“./phylocom” with “./SuperProgram.” Second you will notice that I had a “./” in
front of the program name. This is because I have not placed Phylocom in my path
on my Mac and you likely have not so that the program is not universally accessibly
by your computer. Thus, unless we set the program into our path (see Phylocom
user manual) we can simply use “./” prior to the program name for Mac OSX and
Unix operating systems. For Windows users the “./” is not required.

 Now that we can call the Phylocom program from R, let us fi rst calculate the
Faith’s Index to discover how to use Phylocom. Like many command line programs,
Phylocom works by fi rst telling the command line the program you want to use (i.e.,
phylocom), then the command or method you would like to use in that program, and
fi nally perhaps some options may be selected. The program we want to use is phy-
locom and the method we would like to use is “pd” since that is the command for
calculating Faith’s Index in Phylocom. We follow these two commands by telling
the program the name of our phylogeny fi le using the “-f” switch and the name of
our community data fi le using the “-s” switch.

 The program will look for your phylogeny and community data fi les in your work-
ing directory, so please make sure they are there. You should see a matrix print on
your R console with fi ve columns and seven rows. The fi rst row gives the column
names and each row is a community in your community data matrix. The species
richness in each community is given in the “ntaxa” column, the Faith’s Index is
given in the “PD” column, the summed branch lengths for the entire phylogeny is
given in the “treeBL” column, and the Faith’s Index represented as a proportion of
the summed branch lengths of the entire tree is given in the “propTreeBL” column.
If you wanted to actually save this output and not have it only printed to your R
console, you could tell Phylocom to write a .txt fi le to your working directory with
the output using a “>” followed by the fi le name you want to assign the output.

 You should now see that fi le in your working directory and you can read it into R
using read.table() if you wanted to do further analyses or plotting. Next we
can calculate the mean pairwise phylogenetic distance and the mean nearest phylo-
genetic neighbor and perform a null modeling analysis simultaneously in Phylocom
using the “comstruct” command. We will again provide the information regarding
where to fi nd the phylogeny and community data fi les, but we will also use the “-m”
switch to inform the program what null model to utilize and the “-r” switch to tell
the program how many randomizations to run.

9.3 Phylocom

194

 The output should print out on your R console, but if you wanted you could save it
to your hard drive if you used a “>” followed by the fi le name. We only ran 99 ran-
domizations but this could easily be switched to 999 or higher. We used “-m 0” to
indicate we wanted to use null model type “0” which shuffl es the names of species
on the phylogeny. An independent swap of the community data matrix null model
could be invoked by using “-m 3” instead. If we examine the output we see again,
there is one row per community in our dataset. The species richness is the “ntaxa”
column, the mean pairwise phylogenetic distance is the “MPD” column, the mean
of the null distribution of MPD values is in the “MPD.rnd” column, and the standard
deviation of that null distribution is in the “MPD.sd” column. The next column is
named NRI for Net Relatedness Index. Though here we should pause to consider a
small difference between Phylocom and R output that is of major importance. First
recall that the NRI is a standardized effect size (S.E.S.) for the MPD metric. In the
 picante R package in the code and the equations we used in Chap. 6 , we defi ned that
the S.E.S. is the observed value minus the mean of the null distribution and that
value divided by the standard deviation. Now if we consider the output from
Phylocom we see that the NRI value is not the (MPD − MPD.rnd)/MPD.sd. Rather
it is this value multiplied by negative one. Therefore in Phylocom when the observed
MPD is larger than the mean of the null distribution, the NRI value is negative. In R
when the observed MPD is larger than the mean of the null distribution, the NRI is
positive. The multiplication by negative one in Phylocom is due to this calculation
being used in the original work by Webb [28] that introduced the NRI and NTI
metrics. Thus, it is critical to know whether a researcher has calculated his or her
NRI or NTI value using Phylocom or the picante package because a negative value
in one program has the opposite meaning in the other. It is not completely uncom-
mon for me to see this issue come up in the papers of colleagues where the exact
opposite inference has been made. So please be cautious. The best method is to
simply look at the observed value and the mean of the null distribution and then
consider the S.E.S. value. By doing this you can see whether a S.E.S. value is being
multiplied by negative one or not. Now that we have discussed that issue we can
return to the results on our screen. The next two columns indicate where the observed
value lands in the null distribution. The fi rst reports how many null values are
greater and the second column reports how many null values are lower. These rank
values can be used to estimate P -values. The next six columns are in a similar for-
mat except they concern the mean nearest taxon distance and the Nearest Taxon
Index (NTI; again multiplied by negative one). The last column reports the number
of randomizations used in the null model. This number and the type of null model
are also reported in the very fi rst row of the output.

 The NRI and NTI analyses above only considered the species as present or
absent, but the metrics can be weighted using abundance by using the “-a” switch.

 Lastly, we can output all of the individual random MPD and MNTD by adding a
“-v” to the end of this line of code. This permits the user to examine the null distri-
butions themselves.

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

195

 Now we are ready to compute phylogenetic beta diversity using Phylocom via R.
Specifi cally, we can calculate the phylogenetic D pw , D pw ′ , D nn , and D nn ′ metrics. We
will start by not running any null model analyses and use the D pw metric, which is
calculated using the “comdist” command in Phylocom.

 The result is a matrix where the community names are on the rows and columns and
the values are the pairwise phylogenetic dissimilarity between each set of communi-
ties. The diagonal values correspond to the MPD values. We can again weight this
 D pw calculation by abundance to produce the D pw ′ values by adding the “-a” switch.

 The D nn and D nn ′ values for our communities can be calculated using the “icomdist”
function in Phylocom.

 The result is a matrix where the community names are on the rows and columns and
the values are the nearest neighbor phylogenetic dissimilarity between each set of
communities. The diagonal values correspond to the MNTD values. Next we can
perform a null modeling analysis for each of these metrics again by specifying the
number of randomizations using the “-r” switch and the type of null model using the
“-m” switch. Again we will choose 99 randomizations and the name shuffl ing null
model “0.” Lastly, we will use the “-n” switch to tell Phylocom to run a null model.
If this is not included, the null model analyses will not be performed.

 We see that four matrices have been printed out to our R console. The fi rst matrix
contains the observed D pw values. The second matrix contains the mean of the null
distribution, the third matrix contains the standard deviation of the null distribution,
and the fourth matrix contains the S.E.S. value for the D pw metric again multiplied
by negative one such that negative values indicate higher than expected phyloge-
netic beta diversity and positive values indicate lower than expected phylogenetic
beta diversity. This code can be modifi ed to use abundance using the “-a” switch and
the “comdistnt” function for D nn , but we will forgo those analyses for now. Also
recall that you do not have to output the results to your R console. You can simply
write them to your hard drive as text fi les using “>” followed by the new fi le name.

9.3 Phylocom

196

 A fi nal community phylogenetic function that we will address in Phylocom con-
cerns whether there is more species in a community from a particular internal node
in the phylogeny than expected from randomizing species names on the tips of the
phylogeny. To my knowledge, this function is not yet available in R. So for the time
being we can run this test in Phylocom using the “nodesigl” function.

 The output is a table with seven columns. The fi rst column indicates the name of the
community. The second and third columns indicate the number and name of each
internal node in the phylogeny. The fourth column contains the number of taxa from
that node found in that community. The fi fth column indicates the median expected
value and the sixth column gives the rank of the observed number of species in the
null distribution of expected number of species. Note in some cases, such as the
root, the null distribution contains only one possible value and therefore should not
be considered. The fi nal column contains a “+,” “−,” or no value to indicate the
observed number of species from that node in that community is higher than
expected, lower than expected, or no different from expected, respectively. This
analysis can also be output as a series of Nexus phylogenies, one per community,
with the node labels when there is more or less species than expected for that com-
munity. This Nexus fi le can be generated using the “nodesig” command and read
into a program such as Mesquite for visualization.

 We now transition to the measurement of functional diversity using Phylocom via
R. The command “comtrait” calculates the main measures of functional diversity
found in Phylocom. The command requires a “-t” switch to indicate the trait fi le
instead of the “-f” switch to indicate the phylogeny fi le. It also requires a “-x” switch
to indicate what type of functional diversity you would like to calculate. A value of
“-x 1” calculates the variance of each trait in each community, “-x 2” calculates the
mean pairwise distance for each trait, “-x 3” calculates the mean nearest trait neigh-
bor distances, and fi nally “-x 4” calculates the range of each trait in each commu-
nity. The function also runs a null model using the same “-m” and “-r” switches we
used above. To provide an example, we will calculate the variance of each trait in
each community using a name shuffl ing null model with 99 randomizations.

 The output is a matrix with each row being a unique trait by community combina-
tion sorted by trait order in the traits fi le. The fi rst column is the trait name, the
second column is the community name, the third column is the species richness, the
fourth column is the mean trait value, the fi fth column is the functional diversity
metric (variance in this case), the sixth column is the mean of the null distribution,
the seventh column is the standard deviation of the null distribution, the eighth

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

197

column is the S.E.S. for the metric, the ninth and tenth columns are the ranks, and
the fi nal column is the number or randomizations. Unfortunately, in this function
the S.E.S. value is not multiplied by negative one further adding to the confusion, so
once again some diligence is needed when considering your results.

9.3.2 Comparative Analyses in Phylocom

 Although Phylocom is primarily used for the analysis of phylogenetic diversity in
communities, it also has a powerful comparative methods module that can imple-
ment the calculation of phylogenetic signal and phylogenetically independent con-
trasts (PICs). Conveniently these measures can be calculated simultaneously using
one simple command called “aot” in Phylocom.

 The fi rst output printed to your R console is the phylogenetic signal for each trait.
Here phylogenetic signal is being computed as the variance of the node-level con-
trasts compared to a null distribution of variances generated by shuffl ing names of
species on the phylogeny 999 times. The fi rst column of the output is the trait name,
the second column is the number of taxa analyzed, the third column is the observed
variance in contrast values, and the fourth and fi fth columns are the rank values of
the observed variance in the null distributions. For a one-tailed test, values in the
fourth column less than or equal to 50 indicate signifi cant phylogenetic signal when
using 999 randomizations.

 The second component of the output reports the PIC correlation values between
trait one and the other traits with the fi rst column being the second trait being com-
pared to the fi rst, the second column is the correlation, the third column is the num-
ber of positive contrasts, and the fi nal column is the number of contrasts. In order to
calculate a P -value for the correlation, one can use a Pearson’s correlation co-
effi cient statistical table with the degrees of freedom equaling the number of con-
trasts minus one.

9.3.3 Interfacing R and Phylocom for Null Modeling

 In the previous two subsections, we have discussed how to run Phylocom via R, but
this alone may not be a very powerful way to interface R and Phylocom. After all
this approach doesn’t really take advantage of R per se . Rather it just prevents you
from having to open up a shell or terminal window and may allow you to do a few
additional analyses not currently available in R. Thus we may want to quickly con-
sider how R could be more usefully interfaced with a program like Phylocom. One
potential approach that may be immediately useful is to output manipulated fi les

9.3 Phylocom

198

from R to be used in Phylocom. In particular, we have already seen that many of the
null modeling functions currently available in R are quite slow, whereas they are
generally much faster in Phylocom. Further, we have seen that at least in the case of
beta diversity there are no “canned” R functions for null model analyses, whereas in
Phylocom there are null model analyses but they do not provide the null distribution
or the estimated P -value. Here I will demonstrate a methodology for solving this
particular problem, but the general approach should be useful for solving a number
of tasks where one generates or modifi es fi les in R that could be input into another
program on your computer.

 We being by identifying the problem and the task we want accomplished. We
want to conduct a null model analysis for the phylogenetic beta diversity metric D pw ,
where we can obtain all null values and therefore calculate a P -value. We know we
can conduct a null model analysis of D pw in Phylocom using the “comdist” com-
mand, but we also know that we cannot obtain the null distribution or an estimated
 P -value. A potential solution is to provide Phylocom 999 random phylogenies one
at a time and have it calculate the D pw values using each random phylogeny. We
could then use all of the output fi les to generate null distributions and estimate
 P -values. For brevity, we will take this approach, but using only nine random phy-
logenies. We start by reading into R our original phylogeny while making sure we
have our working directory set to where our Phylocom program is located.

 We will keep our observed community data matrix in the working directory because
we will only use R to manipulate the phylogenetic tree. Specifi cally, we will write a
simple loop that randomizes the names on the phylogeny, writes the randomized
phylogeny to our working directory, and tells Phylocom to calculate the D pw values
using the randomized phylogeny and repeats this process nine times.

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

199

 The result is a series of nine fi les written to your working directory named “1.txt,”
“2.txt,”…, “9.txt.” These fi les contain the random D pw values generated for each
iteration of the null model. The goal now is to read those nine fi les that contain
matrices into R as an array with nine levels in the z -dimension. This can be accom-
plished by fi rst reading in the observed output fi le and then combining it with the
remaining fi les with a loop.

 We now have an array with the row and column numbers equaling the number of
communities and the number of levels in the z -dimension equals the number of
randomizations, which in this case is 9. We can now calculate the mean and stan-
dard deviation of the null distributions using an apply() function.

 These values along with the observed value can be used to calculate a S.E.S. value
as described in Chap. 6 , but such values can be provided by Phylocom. What are not
available in Phylocom are the actual null distribution and the estimated P -value.
Using the above approach that integrates R with Phylocom, we can plot the null
distributions for community comparisons. For example, we can plot a histogram of
the null values for the community 1 versus community 3 comparison.

 We can also calculate an estimated P -value for each comparison by fi rst calculating
the observed D pw values and reading them into R.

9.3 Phylocom

http://dx.doi.org/10.1007/978-1-4614-9542-0_6

200

 We add the observed results to the top layer of the array of null values using the
 abind() function.

 Using this we can now calculate the estimated P -values as we have done before in
Chap. 6 .

 We now have the rank of the observed value in the null distribution from which we
can estimate a P -value (see Chap. 6). This same approach could be used to calculate
the D pw ′ , D nn , and D nn ′ metrics by using the “-a” switch in the above code calling
Phylocom from R and/or using the “comdistnt” command in the above code calling
Phylocom from R. As you can see, it can be fairly easy to integrate R with a pro-
gram like Phylocom where you would like to sequentially feed the external program
output from R. I have used a for() loop for this purpose, but the computational
speed is not a problem because the task I am looping in R, randomizing names on a
phylogeny, is a fairly simple process. Thus, when you are faced with potentially
outputting a lot of fi les from R that you need to feed into an external program, the
process can be automated using R freeing you to spend your time on other tasks.

9.4 Conclusions

 In the fi elds of ecology and evolution we often run across interesting analytical
approaches presented in an article that we think would be useful or our own research.
For some that are comfortable with command line or are fl uent in multiple program-
ming languages, these published programs are easily utilized. For the majority of
the potential users, though, using these programs is not an option or extremely dif-
fi cult. Thankfully, the convergence of the ecological and evolutionary research
communities on R has removed many of these obstacles since many of the pub-
lished programs now in this literature are written in R and can be used by many
researchers and this will only continue and become more common as we increas-
ingly expect our students to become fl uent in R. There are still cases, however,
where the program of interest is written in another language making it diffi cult for
a user to run or manipulate the analyses. The goal of this chapter was to demonstrate
how such an obstacle can be overcome while remaining in R. I used one very popu-
lar C program, Phylocom, frequently used by ecologists for phylogenetic and func-
tional diversity analyses and for comparative analyses, but the general concepts and
approaches should apply to other programs you may be interested in written in C or
other languages.

9 Integrating R with Other Phylogenetic and Functional Trait Analytical Software

http://dx.doi.org/10.1007/978-1-4614-9542-0_6
http://dx.doi.org/10.1007/978-1-4614-9542-0_6

201

9.5 Exercises

 1. Calculate the Faith’s Index for your example data in Phylocom via R.
 2. Noting that Phylocom does not have a randomization for Faith’s Index at this

time, write a phylogenetic null model shuffl ing species names that interfaces R
with Phylocom to calculate 99 random Faith’s Indices for each community and
write the results of each iteration of the null model to your hard drive.

 3. Take the randomization results from number 2 above, read them into R, and cal-
culate a standardized effect size and P -value.

 4. Repeat numbers 2 and 3, but this time randomize the community data matrix
using an independent swap null model and do not manipulate the phylogenetic
tree.

 5. Simulate two trait datasets using your example phylogeny and the fastBM()
function in the phytools package.

 6. Write the two trait datasets in a single fi le to your hard drive assuring that it is
formatted as required by Phylocom.

 7. Via R, run the “aot” command in Phylocom using your example phylogeny and
two simulated trait datasets.

9.5 Exercises

203N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0, © Springer Science+Business Media New York 2014

 References

 1. Swenson, N.G. 2011. The role of evolutionary processes in producing biodiversity patterns,
and the interrelationships between taxonomic, functional and phylogenetic biodiversity.
 American Journal of Botany 98: 472–480.

 2. Gray, A. 1846. Analogy between the fl ora of Japan and that of the United States. American
Journal of Sciences and Arts 2: 135–136.

 3. Wen, J. 1999. Evolution of Eastern Asian and Eastern North American disjunct distributions
in fl owering plants. Annual Review of Ecology and Systematics 30: 421–455.

 4. Latham, R.E., and R.E. Ricklefs. 1993. Continental comparisons of temperate-zone tree spe-
cies diversity. In Species diversity in ecological communities: Historical and geographical
perspectives , ed. R.E. Ricklefs and D.S. Schluter, 294–314. Chicago, IL: University of
Chicago Press.

 5. Guo, Q., R.E. Ricklefs, and M.L. Cody. 1998. Vascular plant diversity in eastern Asia and
North America: Historical and ecological explanations. Botanical Journal of the Linnean
Society 128: 123–136.

 6. Swenson, N.G. 2013. The assembly of tropical tree communities – The advances and short-
comings of phylogenetic and functional trait analyses. Ecography 36: 264–276.

 7. Webb, C.O., D.D. Ackerly, M.A. McPeek, and M.J. Donoghue. 2002. Phylogenies and com-
munity ecology. Annual Review of Ecology and Systematics 33: 475–505.

 8. Vamosi, S.M., S.B. Heard, C. Vamosi, and C.O. Webb. 2009. Emerging patterns in the com-
parative analysis of phylogenetic community structure. Molecular Ecology 18: 572–592.

 9. Cavender-Bares, J., K.H. Kozak, P.V.A. Fine, and P.V.A. Kembel. 2009. The merging of com-
munity ecology and phylogenetic biology. Ecology Letters 12: 693–715.

 10. Weiher, E., and P. Keddy. 1992. Assembly rules, null models, and trait dispersion: New ques-
tions from old patterns. Oikos 74: 159–164.

 11. Tilman, D., J. Knops, D. Wedin, P.B. Reich, M. Ritchie, and E. Siemann. 1997. The infl uence
of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

 12. Diaz, S., and M. Cabido. 2001. Viva la difference: Plant functional diversity matters to eco-
system processes. Trends in Ecology and Evolution 16: 646–655.

 13. McGill, B.J., B.J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology
from functional traits. Trends in Ecology and Evolution 21: 178–185.

 14. Webb, C.O., D.D. Ackerly, and S.W. Kembel. 2008. Phylocom: Software for the analysis of
phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100.

 15. Paradis, E. 2011. Analysis of phylogenetics and evolution with R . New York: Springer.
 16. Felsenstein, J. 2003. Inferring phylogenies . Sunderland, MA: Sinauer.
 17. Harvey, P.H., and M.D. Pagel. 1991. The comparative method in evolutionary biology .

Oxford: Oxford University Press.

204

 18. Brooks, D.R., and D.A. McLennan. 1991. Phylogeny, ecology, and behavior: A research
 program in comparative biology . Chicago, IL: University of Chicago Press.

 19. Borcard, D., F. Gillet, and P. Legendre. 2011. Numerical ecology in R . New York: Springer.
 20. Maddison, W.P., and D.R. Maddison. 2011. Mesquite: A modular system for evolutionary

analysis. Version 2.75. http://mesquiteproject.org
 21. Losos, J.B. 1994. An approach to the analysis of comparative data when a phylogeny is

unavailable or incomplete. Systematic Biology 43: 117–123.
 22. Kraft, N.J.B., W.K. Cornwell, C.O. Webb, and D.D. Ackerly. 2007. Trait evolution, commu-

nity assembly, and the phylogenetic structure of ecological communities. The American
Naturalist 170: 271–283.

 23. Brock, C.D., L.J. Harmon, and M.E. Alfaro. 2011. Testing for temporal variation in diversi-
fi cation rates when sampling is incomplete and nonrandom. Systematic Biology 60:
410–419.

 24. Revell, L.M., L.J. Harmon, and D.C. Collar. 2008. Phylogenetic signal, evolutionary process,
and rate. Systematic Biology 57: 591–601.

 25. Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation
61: 1–10.

 26. Faith, D.P. 1994. Genetic diversity and taxonomic priorities for conservation. Biological
Conservation 68: 69–74.

 27. Faith, D.P. 2002. Quantifying biodiversity: A phylogenetic perspective. Conseration Biology
16: 248–252.

 28. Webb, C.O. 2000. Exploring the phylogenetic structure of ecological communities: An exam-
ple for rainforest trees. The American Naturalist 156: 145–155.

 29. Tofts, R., and J. Silvertown. 2000. A phylogenetic approach to community assembly from a
local species pool. Proceedings of the Royal Society B 267: 363–369.

 30. Cavender-Bares, J., D.D. Ackerly, D.A. Baum, and F.A. Bazzaz. 2004. Phylogenetic overdis-
persion in Floridian oak communities. The American Naturalist 163: 823–843.

 31. Cavender-Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of Floridian plant
communities depends on taxonomic and spatial scale. Ecology 87(Supplement): S109–S122.

 32. Swenson, N.G., B.J. Enquist, J. Pither, J. Thompson, and J.K. Zimmerman. 2006. The prob-
lem and promise of scale dependency in community phylogenetics. Ecology 87: 2418–2424.

 33. Swenson, N.G., B.J. Enquist, J. Thompson, and J.K. Zimmerman. 2007. The infl uence of
spatial and size scales on phylogenetic relatedness in tropical forest communities. Ecology
88: 1770–1780.

 34. Gillespie, R.G. 2004. Community assembly through adaptive radiation in Hawaiian spiders.
 Science 303: 356–359.

 35. Losos, J.B. 1992. The evolution of convergent structure in Caribbean Anolis communities.
 Systematic Biology 41: 403–420.

 36. Verdu, M., and G. Pausas. 2007. Fire drives phylogenetic clustering in Mediterranean Basin
woody plant communities. Journal of Ecology 95: 1316–1323.

 37. Cardillo, M., J.L. Gittleman, and A. Purvis. 2008. Global patterns in the phylogenetic struc-
ture of island mammal assemblages. Proceedings of the Royal Society B 275: 1549–1556.

 38. Anderson, T.M., M.A. Lachance, and W.T. Starmer. 2004. The relationship of phylogeny to
community structure: The cactus yeast community. The American Naturalist 164: 709–721.

 39. MacArthur, R., and R. Levins. 1967. The limiting similarity, convergence, and divergence of
coexisting species. The American Naturalist 101: 377–385.

 40. Keddy, P.A. 1992. Assembly and response rules: Two goals for predictive community ecol-
ogy. Journal of Vegetation Science 3: 157–164.

 41. Hubbell, S.P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science
203: 1299–1309.

 42. Hubbell, S.P., and R.B. Foster. 1986. Commonness and rarity in a Neotropical forest:
Implications for tropical tree conservation. In Conservation biology: The science of scarcity
and diversity , ed. M.E. Soule, 205–231. Sunderland, MA: Sinauer.

References

http://mesquiteproject.org/

205

 43. Hubbell, S.P. 2001. The unifi ed neutral theory of biodiversity and biogeography . Princeton,
NJ: Princeton University Press.

 44. Mayfi eld, M.M., and J.M. Levine. 2010. Opposing effects of competitive exclusion on the
phylogenetic structure of communities. Ecology Letters 13: 1085–1093.

 45. Jaccard, P. 1926. Le coeffi cient generique et le coeffi cient communaute dans la fl ore
marocaine. Bulletin de la Societe Vaudoise des Sciences Naurelles 2: 385–403.

 46. Jaccard, P. 1940. Coeffi cient generique reel et coeffi cient generique probable. Bulletin de la
Societe Vaudoise des Sciences Naurelles 61: 117–136.

 47. Maillefer, A. 1928. Les courbes de Willis: Repartition des especes dans les genres de differ-
ente etendue. Bulletin de la Societe Vaudoise des Sciences Naurelles 56: 617–631.

 48. Elton, C. 1946. Competition and the structure of ecological communities. Journal of Animal
Ecology 15: 54–68.

 49. Simberloff, D.S. 1970. Taxonomic diversity of island biotas. Evolution 24: 23–47.
 50. Grant, P.R., and I. Abbott. 1980. Interspecifi c competition, island biogeography and null

hypotheses. Evolution 34: 332–341.
 51. Harvey, P.H., R.K. Colwell, J.W. Silvertown, and R.M. May. 1983. Null models in ecology.

 Annual Review of Ecology and Systematics 14: 189–211.
 52. Jarvinen, O. 1982. Species-to-genus ratios in biogeography: A historical note. Journal of

Biogeography 9: 363–370.
 53. Wiens, J.J., and C.H. Graham. 2005. Niche conservatism: Integrating evolution, ecology and

conservation biology. Annual Review of Ecology and Systematics 36: 519–539.
 54. Peterson, A.T., J. Soberon, and V. Sanchez-Cordero. 1999. Conservatism of ecological niches

in evolutionary time. Science 285: 1265–1267.
 55. Wiens, J.J., D.D. Ackerly, A.P. Allen, B.L. Anacker, L.B. Buckley, H.V. Cornell, E.I.

Damschen, T.J. Davies, J.A. Grytnes, S.P. Harrison, B.A. Hawkins, R.D. Holt, C.M. McCain,
and P.R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conser-
vation biology. Ecology Letters 13: 1310–1314.

 56. Webb, C.O., and M.J. Donoghue. 2005. Phylomatic: Tree assembly for applied phylogenet-
ics. Molecular Ecology Notes 5: 181–183.

 57. Webb, C.O., C.H. Cannon, and S.J. Davies. 2008. Ecological organization, biogeography,
and the phylogenetic structure of tropical forest tree communities. In Tropical forest com-
munity ecology , ed. W.P. Carson and S.S.A. Schnitzer, 79–97. Oxford: Blackwell.

 58. Kembel, S.W., P.D. Cowan, M.R. Helmus, W.K. Cornwell, H. Morlon, D.D. Ackerly, S.P.
Blomberg, and C.O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology.
 Bioinformatics 26: 1463–1464.

 59. Vane-Wright, R.I., C.J. Humphries, and P.H. Williams. 1991. What to protect – Systematics
and the agony of choice. Biological Conservation 55: 235–254.

 60. Harmon, L.J., J.T. Weir, C.D. Brock, R.E. Glor, and W. Challenger. 2008. GEIGER:
Investigating evolutionary radiations. Bioinformatics 24: 129–131.

 61. Mooers, A.O., S.B. Heard, and E. Chrostowski. 2005. Evolutionary heritage as a metric for
conservation. In Phylogeny and conservation , ed. A. Purvis, T.L. Brooks, and J.L. Gittleman,
120–138. Oxford: Oxford University Press.

 62. Barker, G.M. 2002. Phylogenetic diversity: A quantitative framework for measurement of
priority and achievement in biodiversity conservation. Biological Journal of the Linnean
Society 76: 165–194.

 63. Kembel, S.W., and S.P. Hubbell. 2006. The phylogenetic structure of a neotropical forest tree
community. Ecology 87(Supplement): S86–S99.

 64. Swenson, N.G., D.L. Erickson, X. Mi, N.A. Bourge, J. Forero-Montana, X. Ge, R. Howe,
J.K. Lake, X. Liu, K. Ma, N. Pei, J. Thompson, M. Uriarte, A. Wolf, S.J. Wright, W. Ye,
J. Zhang, J.K. Zimmerman, and W.J. Kress. 2012. Phylogenetic and functional alpha and beta
diversity in temperate and tropical tree communities. Ecology 93: S112–S125.

 65. Yang, J., X. Ci, G. Zhang, N.G. Swenson, L. Sha, C.C. Baskin, J. Li, M. Cao, J.W.F. Slik, and
L. Lin. in press. Functional and phylogenetic assembly in a Chinese tropical tree community
across size classes, spatial scales and habitats. Functional Ecology .

References

206

 66. Mi, X., N.G. Swenson, R. Valencia, W.J. Kress, D.L. Erickson, A. Perez-Castaneda, H. Ren,
S.H. Su, N. Gunatilleke, S. Gunatilleke, Z. Hao, W. Ye, M. Cao, H.S. Suresh, H.S. Dattaraj,
R. Sukumar, and K. Ma. 2012. The contribution of rare species to community phylogenetic
diversity across a global network of forest plots. The American Naturalist 180: E17–E30.

 67. Webb, C.O., and N.C.A. Pitman. 2002. Phylogenetic balance and ecological evenness.
 Systematic Biology 51: 898–907.

 68. Rao, C.R. 1982. Diversity and dissimilarity coeffi cients: A unifi ed approach. Theoretical
Population Biology 21: 24–43.

 69. Hardy, O.J., and B. Senterre. 2007. Characterizing the phylogenetic structure of communities
by additive partitioning of phylogenetic diversity. Journal of Ecology 95: 493–506.

 70. Helmus, M.R., T.J. Bland, C.K. Williams, and A.R. Ives. 2007. Phylogenetic measures of
biodiversity. The American Naturalist 169: E68–E83.

 71. Vellend, M., W.K. Cornwell, K. Magnuson-Ford, and A.O. Mooers. 2010. Measuring phylo-
genetic biodiversity. In Biological diversity: Frontiers in measurement and assessment , ed.
A.E. Magurran and B.J. McGill, 193–206. Oxford: Oxford University Press.

 72. Brown, W.L., and E.O. Wilson. 1956. Character displacement. Systematic Zoology 5: 49–65.
 73. Weiher, E., G.D.P. Clarke, and P.A. Keddy. 1998. Community assembly rules, morphological

dispersion, and the coexistence of plant species. Oikos 81: 309–322.
 74. Thompson, K., S.H. Hillier, J.P. Grime, C.C. Bossard, and S.R. Band. 1996. A functional

analysis of a limestone grassland community. Journal of Vegetation Science 7: 371–380.
 75. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities:

Mechanisms and consequences. Journal of Vegetation Science 17: 255–260.
 76. Petchey, O.L., and K.J. Gaston. 2002. Functional diversity (FD), species richness, and com-

munity composition. Ecology Letters 5: 402–411.
 77. Kraft, N.J.B., R. Valencia, and D.D. Ackerly. 2008. Functional traits and niche-based tree

community assembly in an Amazonian forest. Science 322: 580–582.
 78. Swenson, N.G., and B.J. Enquist. 2007. Ecological and evolutionary determinants of a key

plant functional trait: Wood density and its community-wide variation across latitude and
elevation. American Journal of Botany 91: 451–459.

 79. Swenson, N.G., and B.J. Enquist. 2009. Opposing assembly mechanisms in a Neotropical dry
forest: Implications for phylogenetic and functional community ecology. Ecology 90:
2161–2170.

 80. Swenson, N.G., P. Anglada-Cordero, and J.A. Barone. 2011. Deterministic tropical tree com-
munity turnover: Evidence from patterns of functional beta diversity along an elevational
gradient. Proceedings of the Royal Society B 278: 877–884.

 81. Liu, X., N.G. Swenson, S.J. Wright, L. Zhang, K. Song, Y. Du, J. Zhang, X. Mi, and K. Ma.
2012. Covariation in plant functional traits and soil fertility within two species-rich forests.
 PLoS One 7: e34767.

 82. Liu, X., N.G. Swenson, J. Zhang, and K. Ma. 2013. The environment and space, not phylog-
eny, determine trait dispersion in a subtropical forest. Functional Ecology 27: 264–272.

 83. Jung, V., C. Violle, C. Mondy, L. Hoffmann, and S. Muller. 2010. Intraspecifi c variability and
trait-based community assembly. Journal of Ecology 98: 1134–1140.

 84. Shipley, B., D. Vile, and E. Garnier. 2006. From plant traits to plant communities: A statisti-
cal mechanistic approach to biodiversity. Science 314: 812–814.

 85. Laughlin, D.C., P.Z. Fule, D.W. Huffman, J. Crouse, and E. Laliberte. 2011. Climatic con-
straints on trait-based forest assembly. Journal of Ecology 99: 1489–1499.

 86. Baraloto, C., O.J. Hardy, C.E.T. Paine, K.G. Dexter, C. Cruaud, L.T. Dunning, M.A.
Gonzalez, J.F. Molino, D. Sabatier, V. Savolainen, and J. Chave. 2012. Using functional traits
and phylogenetic trees to examine the assembly of tropical tree communities. Journal of
Ecology 100: 690–701.

 87. Paine, C.E.T., C. Baraloto, J. Chave, and B. Herault. 2011. Functional traits of individual
trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120:
720–727.

References

207

 88. Siefert, A. 2012. Spatial patterns of functional divergence in old-fi eld plant communities.
 Oikos 121: 907–914.

 89. Siefert, A., C. Ravenscroft, M.D. Weiser, and N.G. Swenson. 2013. Functional beta diversity
patterns reveal deterministic community assembly processes in eastern North American
trees. Global Ecology and Biogeography 22: 682–691.

 90. Cornwell, W.K., D.W. Schwilk, and D.D. Ackerly. 2006. A trait-based test for habitat fi lter-
ing: Convex hull volume. Ecology 87: 1465–1471.

 91. Cadotte, M.W., B.J. Cardinale, and T.H. Oakley. 2008. Evolutionary history and the effect of
biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the
United States of America 105: 17012–17017.

 92. Laliberte, E., and P. Legendre. 2010. A distance-based framework for measuring functional
diversity from multiple traits. Ecology 91: 299–305.

 93. Ricklefs, R.E., and K. O’Rourke. 1975. Aspect diversity in moths: A temperate-tropical com-
parison. Evolution 29: 313–324.

 94. Ricklefs, R.E., and J. Travis. 1980. A morphological approach to the study of avian commu-
nity organization. Auk 97: 321–338.

 95. Shepherd, U.L. 1998. A comparison of species diversity and morphological diversity across
the North American latitudinal gradient. Journal of Biogeography 25: 19–29.

 96. Stevens, R.D., S.B. Cox, M.R. Willig, and R.E. Strauss. 2003. Patterns of functional diversity
across an extensive environmental gradient: Vertebrate consumers, hidden treatments, and
latitudinal trends. Ecology Letters 6: 1099–1108.

 97. Swenson, N.G., B.J. Enquist, J. Pither, A.J. Kerkhoff, B. Boyle, M.D. Weiser, J.J. Elser, W.F.
Fagan, J. Forero-Montana, N. Fyllas, N.J.B. Kraft, J.K. Lake, A.T. Moles, S. Patino, O.L.
Phillips, C.A. Price, P.B. Reich, C.A. Quesada, J.C. Stegen, R. Valencia, I.J. Wright, S.J.
Wright, S. Andelman, P.M. Jorgensen, T.E. Lacher Jr., A. Monteagudo, P. Nunez-Vargas, R.
Vasquez, and K.M. Nolting. 2012. The biogeography and fi ltering of woody plant functional
diversity in North and South America. Global Ecology and Biogeography 21: 798–808.

 98. Cadotte, M.W., J. Cavender-Bares, D. Tilman, and T.H. Oakley. 2009. Using phylogenetic,
functional and trait diversity to understand patterns of plant community productivity. PLoS
One 4: e5695.

 99. Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil
199: 213–227.

 100. Weiher, E., A. Van der Werf, K. Thompson, M. Roderick, E. Garnier, and O. Eriksson. 1999.
Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal
of Vegetation Science 10: 609–620.

 101. Westoby, M., D.S. Falster, A.T. Moles, P.A. Vesk, and I.J. Wright. 2002. Plant ecological
strategies: Some leading dimensions of variation between species. Annual Review of Ecology
and Systematics 33: 125–159.

 102. Westoby, M., and I.J. Wright. 2006. Land-plant ecology on the basis of functional traits.
 Trends in Ecology and Evolution 21: 261–268.

 103. Swenson, N.G., and M.D. Weiser. 2010. Plant geography upon the basis of functional traits:
An example from eastern North American trees. Ecology 91: 2234–2241.

 104. Gower, J.C. 1971. A general coeffi cient of similarity and some of its properties. Biometrics
27: 4979–4983.

 105. Tuomisto, H., and K. Ruokolainen. 2006. Analyzing of explaining beta diversity?
Understanding the targets of different methods of analysis. Ecology 87: 2697–2708.

 106. Legendre, P., D. Borcard, and P.R. Peres-Neto. 2008. Analyzing of explaining beta diversity?
Comment. Ecology 89: 3238–3244.

 107. Tuomisto, H., and K. Ruokolainen. 2008. Analyzing or explaining beta diversity? Reply.
 Ecology 89: 3244–3256.

 108. Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J.
Sanders, H.V. Cornell, L.S. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen, and
N.G. Swenson. 2011. Navigating the multiple meanings of beta diversity: A roadmap for the
practicing ecologist. Ecology Letters 14: 19–28.

References

208

 109. Fukami, T., T.M. Bezemer, S.R. Mortimer, and W.H. van der Putten. 2005. Species diver-
gence and trait convergence in experimental plant community assembly. Ecology Letters
8: 1283–1290.

 110. Swenson, N.G., J.C. Stegen, S.J. Davies, D.L. Erickson, J. Forero-Montana, A.H. Hurlbert,
W.J. Kress, J. Thompson, M. Uriarte, S.J. Wright, and J.K. Zimmerman. 2012. Temporal
turnover in the composition of tropical tree communities: Functional determinism and phylo-
genetic stochasticity. Ecology 93: 490–499.

 111. Zhang, J., N.G. Swenson, S. Chen, X. Liu, Z. Li, J. Huang, X. Mi, and K. Ma. 2013.
Phylogenetic beta diversity in tropical forests: Implications for the role of geographical and
environmental distance. Journal of Systematics and Evolution 51: 71–85.

 112. Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the
functional beta diversity of communities. PLoS One 6: e21264.

 113. Martin, A.P. 2002. Phylogenetic approaches for describing and comparing the diversity of
microbial communities. Applied and Environmental Microbiology 68: 3673–3682.

 114. Lozupone, C., and R. Knight. 2005. UniFrac: A new phylogenetic method for comparing
microbial communities. Applied and Environmental Microbiology 71: 8228–8235.

 115. Graham, C.H., and P.V.A. Fine. 2008. Phylogenetic beta diversity: Linking ecological and
evolutionary processes across space and time. Ecology Letters 11: 1265–1277.

 116. Lozupone, C.A., M. Hamady, S.T. Kelley, and R. Knight. 2007. Quantitative and qualitative
beta diversity measures lead to different insights into factors that structure microbial com-
munities. Applied Environmental Microbiology 73: 1576–1585.

 117. Chen, J., K. Bittinger, E.S. Charlson, C. Hoffmann, J. Lewis, G.D. Wu, R.G. Collman, F.D.
Bushman, and H. Li. 2012. Associating microbiome composition with environmental covari-
ates using generalized UniFrac distances. Bioinformatics 28: 2106–2113.

 118. Chang, Q., Y. Luan, and F. Sun. 2011. Variance adjusted weighted UniFrac: A powerful beta
diversity measure for comparing communities based on phylogeny. BMC Bioinformatics
12: 118.

 119. Bryant, J.B., C. Lamanna, H. Morlon, A.J. Kerkhoff, B.J. Enquist, and J.L. Green. 2008.
Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity.
 Proceedings of the National Academy of Sciences of the United States of America 105:
7774–7778.

 120. Ricotta, C., and S. Burrascano. 2008. Beta diversity for functional ecology. Preslia 80: 61–71.
 121. Ricotta, C., and S. Burrascano. 2009. Testing for differences in beta diversity with asymmet-

ric dissimilarities. Ecological Indicators 9: 719–724.
 122. Gotelli, N.J., and G.R. Graves. 1996. Null models in ecology . Washington, DC: Smithsonian

Books.
 123. Colwell, R.K., and D.W. Winkler. 1984. A null model for null models in biogeography. In

 Ecological communities: Conceptual issues and the evidence , ed. D.R. Strong Jr., D.
Simberloff, L.G. Abele, and A.B. Thistle, 344–359. Princeton, NJ: Princeton University
Press.

 124. Kraft, N.J.B., and D.D. Ackerly. 2010. Functional trait and phylogenetic tests of com-
munity assembly across spatial scales in an Amazonian forest. Ecological Monographs
80: 401–422.

 125. Gotelli, N.J., and G.L. Entsminger. 2001. Swap and fi ll algorithms in null model analysis:
Rethinking the knight’s tour. Oecologia 129: 281–291.

 126. Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: Statistical
performances of different null models and test statistics on a locally neutral community.
 Journal of Ecology 96: 914–926.

 127. Lake, J.K., and A. Ostling. 2009. Comment on ‘Functional traits and niche-based community
assembly in an Amazonian forest’. Science 324: 1015.

 128. Kraft, N.J.B., and D.D. Ackerly. 2009. Response to comment on ‘Functional traits and niche-
based community assembly in an Amazonian forest’. Science 324: 1015.

 129. Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist
125: 1–15.

References

209

 130. Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal
Society B 326: 119–156.

 131. Grafen, A. 1992. The uniqueness of the phylogenetic regression. Journal of Theoretical
Biology 156: 405–523.

 132. Martins, E.P., and T.F. Hansen. 1997. Phylogenies and the comparative method: A general
approach to incorporating phylogenetic information into the analysis of interspecifi c data.
 The American Naturalist 149: 646–667.

 133. Diniz-Filho, J.A.F., C.E. Romos de Sant’Ana, and L.M. Bini. 1998. An eigenvector method
for estimating phylogenetic inertia. Evolution 52: 1247–1262.

 134. Freckleton, R.P., N. Cooper, and W. Jetz. 2011. Comparative methods as a statistical fi x: The
dangers of ignoring an evolutionary model. The American Naturalist 178: E10–E17.

 135. Blomberg, S.P., and T. Garland Jr. 2002. Tempo and mode in evolution: Phylogenetic inertia,
adaptation and comparative methods. Journal of Evolutionary Biology 15: 899–910.

 136. Losos, J.B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship
between phylogenetic relatedness and ecological similarity among species. Ecology Letters
11: 995–1007.

 137. Wiens, J.J. 2008. Commentary: Niche conservatism déjà vu. Ecology Letters 11:
1004–1005.

 138. Harmon, L.J., and R.E. Glor. 2010. Poor statistical performance of the Mantel Test in phylo-
genetic comparative analyses. Evolution 64: 2173–2178.

 139. Blomberg, S.P., T. Garland Jr., and A.R. Ives. 2003. Testing for phylogenetic signal in com-
parative data: Behavioral traits are more labile. Evolution 57: 717–745.

 140. Garland Jr., T., P.E. Midford, and A.R. Ives. 1999. An introduction to phylogenetically based
statistical methods, with a new method for confi dence intervals on ancestral values. American
Zoologist 39: 374–388.

 141. Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:
877–884.

 142. Harmon, L.J., J.A. Schulte II, A. Larson, and J.B. Losos. 2003. Tempo and mode of evolu-
tionary radiation in Iguanian lizards. Science 301: 961–964.

 143. Mayfi eld, M.M., M.F. Boni, and D.D. Ackerly. 2009. Traits, habitats, and clades: Identifying
traits of potential importance to environmental fi ltering. The American Naturalist 174:
E1–E22.

 144. Pavoine, S., E. Vela, S. Gachet, G. de Belair, and M.B. Bonsall. 2011. Linking patterns in
phylogeny, traits, abiotic variables and space: A novel approach to linking environmental
fi ltering and plant community assembly. Journal of Ecology 99: 165–175.

 145. Greenacre, M.J. 1984. Theory and applications of correspondence analysis . London:
Academic.

References

211N.G. Swenson, Functional and Phylogenetic Ecology in R, Use R!,
DOI 10.1007/978-1-4614-9542-0, © Springer Science+Business Media New York 2014

 A
 abind , 7, 143, 200
 add.scale.bar , 12
 apply , 4, 35, 36, 39, 40,

44, 46, 49, 61–64, 66, 72,
73, 77, 79, 99–104, 123,
127, 128, 131, 132, 136,
137, 142, 143, 165, 166,
199, 200

 B
 branching.times , 21, 167
 Brownian Motion , 21, 42, 43, 47, 150, 151,

154, 157–159, 161, 168–170

 C
 col-Sums , 130
 comdist , 98, 99, 102, 103, 180,

195, 198, 200
 comdistnt , 102, 103, 195, 200
 convhulln , 78
 cophenetic , 21, 41, 96,

138, 156
 corBrownian , 150

 D
 dbFD , 79, 140, 141
 decostand , 31, 62, 63
 Disparity through time , 168–170

 D nn , 101–104, 144, 195, 200
 do.call , 100, 104
 D pw , 96–101, 105–107, 142–144,

180, 195, 198–200
 drop.tip , 17
 ddt , 169, 170

 E
 Euclidean distance , 64–79, 96, 156, 174,

175, 178

 F
 for , 24, 36, 38, 44, 46, 49,

90, 99, 100, 102, 103,
123, 138, 146, 190, 200

 G
 gls(), 151
 Gower distance , 67, 68
 gseq , 129, 130

 H
 Hclust , 68, 69
 Hierarchical clustering , 64, 68, 70, 71

 K
 kurtosis , 58, 60–62

 Index

212

 L
 lapply , 99, 100, 103, 104, 131
 list.fi les , 6

 M
 mantel() , 156, 180
 Mean nearest neighbor distance , 73, 76,

136, 139
 Mean pairwise distance , 43, 71, 123, 138, 196
 mntd() , 49, 50, 76, 140
 mpd , 127, 139, 175
 multi2di , 20
 Multiple regression on distance matrices ,

175–177, 180

 N
 newick2phylog , 183
 nodelabels , 14, 15, 90

 P
 Pcnm , 178
 pd , 36, 87, 88, 127, 138
 Phylocom , 2, 190–200
 Phylogenetically independent contrast , 149
 phylosig , 159, 161, 162
 Phylosor , 94, 107
 pic , 148–151, 154, 163, 164, 197
 plot.phylo , 12, 13, 90
 Polytomy , 10, 19, 20, 160
 pse , 48
 psr , 48
 psv , 48

 R
 randomizeMatrix , 118
 Rank , 69, 126, 137, 138, 143,

163, 164, 166, 167, 170,
194, 196, 197, 200

 raoD , 104, 105
 rcoal , 23, 108
 read.nexus , 10
 readsample , 31
 read.table , 148, 193
 read.tree , 9, 32, 121, 149,

155, 183
 replicate , 24, 118, 123, 124,

128, 132, 133, 136, 138,
141, 142, 144, 163, 164, 166

 rowSums , 62, 63
 rtree , 22

 S
 sample , 25, 29, 41, 43, 47, 48,

63, 76, 92, 121, 122, 133,
174, 178

 shell , 192, 197
 skewness , 60–62
 split , 10, 131, 152
 Standard deviation of nearest neighbor

distances , 74, 75
 Standardized effect size(S.E.S) , 115, 126–128,

133, 137, 138, 141–144, 190, 194, 195,
197, 199

 sntd , 50
 subtrees , 16, 17
 system , 2, 30, 32, 58, 61, 63,

67, 68, 73, 75, 76, 86,
107, 108, 110, 112, 115,
117, 119, 145, 173–177,
179–182, 185, 186,
192, 193

 T
 table.phylo4d , 154
 tiplabels , 14, 90
 tipShuffl e , 123
 tips , 10, 11, 20, 21, 23, 33,

34, 91, 108, 121, 133,
148, 161, 169–171, 196

 transform , 31, 62–66, 89, 98,
158_161, 169

 treedata , 34, 192

 U
 unifrac , 7, 86–94, 107, 146
 unsplit , 131

 V
 vcv , 21, 42

 W
 Weighted UniFrac , 88–91, 93, 94
 write.nexus , 10
 write.tree , 10, 183, 191
 writesample , 31, 192

Index

	Dedication
	Preface
	Contents
	Chapter 1: Introduction
	1.1 Why Phylogenetics and Functional Traits in Ecology?
	1.2 Why R?
	1.3 Structure and How to Use This Book?
	1.4 Setting Working Directories and Package Installation

	Chapter 2: Phylogenetic Data in R
	2.1 Objectives
	2.2 Loading Phylogenies into R and the Structure of the “Phylo” Class
	2.3 Plotting Phylogenetic Trees in R
	2.4 Manipulating and Calculating Additional Information from Phylogenetic Trees in R
	2.5 Simulating Phylogenies in R
	2.6 Conclusions
	2.7 Exercises

	Chapter 3: Phylogenetic Diversity
	3.1 Objectives
	3.2 Background
	3.3 “Community” Datasets
	3.4 Tree-Based Measures of Phylogenetic Diversity
	3.5 Distance-Based Measures of Phylogenetic Diversity
	3.5.1 Pairwise Measures
	3.5.2 Nearest Neighbor Measures

	3.6 Comparing Metrics
	3.7 Conclusions
	3.8 Exercises

	Chapter 4: Functional Diversity
	4.1 Objectives
	4.2 Background
	4.3 Quantifying the Functional Composition of Communities Using the Moments of Trait Distributions
	4.4 Dendrogram-Based Versus Euclidean Distance-Based Measures of Functional Diversity
	4.4.1 Generating Trait Distance Matrices
	4.4.2 Generating Trait Dendrograms
	4.4.3 Pairwise and Nearest Neighbor Measures
	4.4.4 Ranges and Convex Hulls
	4.4.5 Other Measures

	4.5 Comparing Metrics of Functional Diversity
	4.6 Conclusions
	4.7 Exercises

	Chapter 5: Phylogenetic and Functional Beta Diversity
	5.1 Objectives
	5.2 Background
	5.3 Tree-Based Measures of Phylogenetic Beta Diversity
	5.3.1 UniFrac
	5.3.2 Phylogenetic Sorenson’s Index

	5.4 Distance-Based Measures of Phylogenetic and Functional Beta Diversity
	5.4.1 Pairwise Measures
	5.4.2 Nearest Neighbor Measures

	5.5 Other Metrics
	5.6 Comparing Metrics
	5.7 Conclusions
	5.8 Exercises

	Chapter 6: Null Models
	6.1 Objectives
	6.2 Background
	6.2.1 Why Use Null Models for Phylogenetic and Functional Analyses?
	6.2.2 Calculating Standardized Effect Sizes, Quantiles, and P -Values

	6.3 Classes of Null Models in Phylogenetic and Functional Analyses of Species Assemblages?
	6.4 Randomizing Community Data Matrices in R
	6.4.1 Unconstrained Randomizations
	6.4.2 Constrained Randomizations

	6.5 Randomizing Phylogenetic Data
	6.5.1 Unconstrained Randomizations
	6.5.2 Constrained Randomizations

	6.6 Randomizing Functional Trait Data
	6.6.1 Unconstrained Randomizations
	6.6.2 Constrained Randomizations

	6.7 Null Models for Phylogenetic and Functional Alpha Diversity
	6.8 Null Models for Phylogenetic and Functional Beta Diversity
	6.9 Conclusions
	6.10 Exercises

	Chapter 7: Comparative Methods and Phylogenetic Signal
	7.1 Objectives
	7.2 Trait Correlations
	7.2.1 Independent Contrasts
	7.2.2 Phylogenetic Generalized Least Squares
	7.2.3 Phylogenetic Eigenvector Regression

	7.3 Quantifying Phylogenetic Signal
	7.3.1 Mantel Test
	7.3.2 Blomberg’s K and Significance Tests
	7.3.3 Pagel’s Lambda
	7.3.4 Standardized Contrast Variance, Unstandardized Contrast Means, and Randomization Tests
	7.3.5 Phylogenetic Eigenvectors

	7.4 Quantifying the Timing and Magnitude of Trait Divergences
	7.5 Conclusions
	7.6 Exercises

	Chapter 8: Partitioning the Phylogenetic, Functional, Environmental, and Spatial Components of Community Diversity
	8.1 Objectives
	8.2 Background
	8.3 Partitioning Variation in Community Functional Alpha Diversity by the Environment, Space, and the Community Phylogenetic Alpha Diversity
	8.3.1 Partitioning FD Using Multiple Regression on Distance Matrices
	8.3.2 Partitioning FD Using Principal Coordinates of Neighbor Matrices (PCNM) and Forward Selection

	8.4 Variance Partitioning of Phylogenetic or Functional Beta Diversity Along Environmental and Spatial Gradients
	8.4.1 Beta Diversity and Multiple Regression on Distance Matrices
	8.4.2 Partitioning Beta Diversity Using Principal Coordinates of Neighbor Matrices (PCNM) and Forward Selection

	8.5 Integrating Phylogenetic, Trait, Environmental and Spatial Information to Quantify the Role of Abiotic Filtering During Community Assembly
	8.6 Conclusions
	8.7 Exercises

	Chapter 9: Integrating R with Other Phylogenetic and Functional Trait Analytical Software
	9.1 Objectives
	9.2 Background: The Development of Eco-Informatics Tools for Phylogenetic- and Functional Trait-Based Ecology
	9.3 Phylocom
	9.3.1 Quantifying Phylogenetic and Functional Diversity and Dispersion in Phylocom
	9.3.2 Comparative Analyses in Phylocom
	9.3.3 Interfacing R and Phylocom for Null Modeling

	9.4 Conclusions
	9.5 Exercises

	References
	Index

