
Chapter 8
Descent Methods

8.1 Discrete Descent Methods for a Convex Objective Function

Given a Lipschitzian convex function f on a Banach space X, we consider a com-
plete metric space A of vector fields V on X with the topology of uniform conver-
gence on bounded subsets. With each such vector field we associate two iterative
processes. We introduce the class of regular vector fields V ∈ A and prove (under
two mild assumptions on f ) that the complement of the set of regular vector fields
is not only of the first category, but also σ -porous. We then show that for a locally
uniformly continuous regular vector field V and a coercive function f , the values
of f tend to its infimum for both processes. These results were obtained in [136].

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, (X∗,‖ · ‖∗) is its dual
space with the norm ‖ · ‖∗, and f : X → R1 is a convex continuous function which
is bounded from below. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B .
For each x ∈ X, let

∂f (x) := {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
bounded (in the norm topology). Set

inf(f ) := inf
{
f (x) : x ∈ X

}
.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (i.e., for each K0 > 0 there is K1 > 0 such that ‖V x‖ ≤ K1 if
‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f (x), l(V x) ≤ 0. We denote by Ac

the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly
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continuous on each bounded subset of X, and by Aau the set of all V ∈A which are
uniformly continuous on the subsets

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}

for each integer n ≥ 1. Finally, let Aauc =Aau ∩Ac.
Next we endow the set A with a metric ρ: For each V1,V2 ∈ A and each integer

i ≥ 1, we first set

ρi(V1,V2) := sup
{‖V1x − V2x‖ : x ∈ X and ‖x‖ ≤ i

}
(8.1)

and then define

ρ(V1,V2) :=
∞∑
i=1

2−i
[
ρi(V1,V2)

(
1 + ρi(V1,V2)

)−1]
. (8.2)

Clearly (A, ρ) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,ε) = {
(V1,V2) ∈A×A : ‖V1x − V2x‖ ≤ ε, x ∈ X,‖x‖ ≤ N

}
, (8.3)

where N,ε > 0, is a base for the uniformity generated by the metric ρ. Evidently
Ac, Au, Aau and Aauc are closed subsets of the metric space (A, ρ). In the sequel
we assign to all these spaces the same metric ρ.

To compute inf(f ), we are going to associate with each vector field W ∈ A two
gradient-like iterative processes (see (8.5) and (8.7) below).

The study of steepest descent and other minimization methods is a central topic in
optimization theory. See, for example, [2, 19, 44, 47, 69, 73, 103] and the references
mentioned therein. Note, in particular, that the counterexample studied in Sect. 2.2
of Chap. VIII of [73] shows that, even for two-dimensional problems, the simplest
choice for a descent direction, namely the normalized steepest descent direction,

V (x) = argmin
{

max
l∈∂f (x)

〈l, d〉 : ‖d‖ = 1
}
,

may produce sequences the functional values of which fail to converge to the infi-
mum of f . This vector field V belongs to A and the Lipschitzian function f attains
its infimum. The steepest descent scheme (Algorithm 1.1.7) presented in Sect. 1.1
of Chap. VIII of [73] corresponds to any of the two iterative processes we consider
below.

In infinite dimensions the problem is even more difficult and less understood.
Moreover, positive results usually require special assumptions on the space and the
functions. However, as shown in our paper [135] (under certain assumptions on the
function f ), for an arbitrary Banach space X and a generic vector field V ∈ A, the
values of f tend to its infimum for both processes. In that paper, instead of consid-
ering a certain convergence property for a method generated by a single vector field
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V , we investigated it for the whole space A and showed that this property held for
most of the vector fields in A.

Here we introduce the class of regular vector fields V ∈ A. Our first result, The-
orem 8.2, shows (under the two mild assumptions A(i) and A(ii) on f stated below)
that the complement of the set of regular vector fields is not only of the first cate-
gory, but also σ -porous in each of the spaces A, Ac, Au, Aau and Aauc. We then
show (Theorem 8.3) that for any regular vector field V ∈Aau, if the constructed se-
quence {xi}∞i=0 ⊂ X has a bounded subsequence (in the case of the first process) or
is bounded (in the case of the second one), then the values of the function f tend to
its infimum for both processes. If, in addition to A(i) and A(ii), f also satisfies the
assumption A(iii), then this convergence result is valid for any regular V ∈A. Note
that if the function f is coercive, then the constructed sequences will always stay
bounded. Thus we see, by Theorem 8.2, that for a coercive f the set of divergent
descent methods is σ -porous. Our last result, Theorem 8.4, shows that in this case
we obtain not only convergence, but also stability.

Our results are established in any Banach space and for those convex functions
which satisfy the following two assumptions.

A(i) There exists a bounded (in the norm topology) set X0 ⊂ X such that

inf(f ) = inf
{
f (x) : x ∈ X

} = inf
{
f (x) : x ∈ X0

};
A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.

Note that we may assume that the set X0 in A(i) is closed and convex. It is clear
that assumption A(i) holds if lim‖x‖→∞ f (x) = ∞.

We say that a mapping V ∈ A is regular if for any natural number n, there exists
a positive number δ(n) such that for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A.
It is not difficult to verify the following property of regular vector fields. It means,

in particular, that G = A \ F is a face of the convex cone A in the sense that if a
non-trivial convex combination of two vector fields in A belongs to G, then both of
them must belong to G.

Proposition 8.1 Assume that V1,V2 ∈ A, V1 is regular, φ : X → [0,1], and that for
each integer n ≥ 1,

inf
{
φ(x) : x ∈ X and ‖x‖ ≤ n

}
> 0.

Then the mapping x → φ(x)V1x + (1 − φ(x))V2x, x ∈ X, also belongs to F .
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Our first result shows that in a very strong sense most of the vector fields in A
are regular.

Theorem 8.2 Assume that both A(i) and A(ii) hold. Then A \ F (respectively,
Ac \F , Aau \ F and Aauc \ F ) is a σ -porous subset of the space A (respectively,
Ac, Aau and Aauc). Moreover, if f attains its infimum, then the set Au \ F is also
a σ -porous subset of the space Au.

Now let W ∈A. We associate with W two iterative processes.
For x ∈ X we denote by PW(x) the set of all

y ∈ {
x + αWx : α ∈ [0,1]}

such that

f (y) = inf
{
f (x + βWx) : β ∈ [0,1]}. (8.4)

Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such that
for all i = 0,1, . . . ,

xi+1 ∈ PW(xi). (8.5)

This is our first iterative process.
Next we describe the second iterative process.
Given a sequence a = {ai}∞i=0 ⊂ (0,1] such that

lim
i→∞ai = 0 and

∞∑
i=0

ai = ∞, (8.6)

we construct for each initial point x0 ∈ X, a sequence {xi}∞i=0 ⊂ X according to the
following rule:

xi+1 = xi + aiW(xi) if f
(
xi + aiW(xi)

)
< f (xi),

xi+1 = xi otherwise,
(8.7)

where i = 0,1, . . . .
We will also make use of the following assumption:

A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X satis-
fying

‖x1‖,‖x2‖ ≤ n, f (xi) ≥ inf(f ) + 1/n, i = 1,2, and

‖x1 − x2‖ ≤ δ,

the following inequality holds:

H
(
∂f (x1), ∂f (x2)

) ≤ 1/n.
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This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f

is larger than inf(f ).
Our next result is a convergence theorem for those iterative processes associated

with regular vector fields. It is of interest to note that we obtain convergence when
either the regular vector field W or the subdifferential ∂f enjoy a certain uniform
continuity property.

Theorem 8.3 Assume that W ∈ A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. W ∈ Aau; 2. A(iii) is valid. Then the fol-
lowing two assertions are true:

(i) Let the sequence {xi}∞i=0 ⊂ X satisfy (8.5) for all i = 0,1, . . . . If

lim inf
i→∞ ‖xi‖ < ∞,

then limi→∞ f (xi) = inf(f ).
(ii) Let a sequence a = {ai}∞i=0 ⊂ (0,1] satisfy (8.6) and let the sequence {xi}∞i=0 ⊂

X satisfy (8.7) for all i = 0,1, . . . . If {xi}∞i=0 is bounded, then

lim
i→∞f (xi) = inf(f ).

Finally, we impose an additional coercivity condition on f and establish the fol-
lowing stability theorem. Note that this coercivity condition implies A(i).

Theorem 8.4 Assume that f (x) → ∞ as ‖x‖ → ∞, V ∈ A is regular, A(ii) is valid
and that at least one of the following conditions holds: 1. V ∈ Aau; 2. A(iii) is valid.

Let K,ε > 0 be given. Then there exist a neighborhood U of V in A and a natural
number N0 such that the following two assertions are true:

(i) For each W ∈ U and each sequence {xi}N0
i=0 ⊂ X which satisfies ‖x0‖ ≤ K and

(8.5) for all i = 0, . . . ,N0 − 1, the inequality f (xN0) ≤ inf(f ) + ε holds.
(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0,1] satisfying (8.6), there exists

a natural number N such that for each W ∈ U and each sequence {xi}Ni=0 ⊂
X which satisfies ‖x0‖ ≤ K and (8.7) for all i = 0, . . . ,N − 1, the inequality
f (xN) ≤ inf(f ) + ε holds.

8.2 An Auxiliary Result

Assume that K is a nonempty, closed and convex subset of X. We consider the
topological subspace K ⊂ X with the relative topology. For each function h : K →
R1 define inf(h) := inf{h(x) : x ∈K}.
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Proposition 8.5 Let g : K → R1 be a convex, bounded from below, function which
is uniformly continuous on bounded subsets of K. Assume that there exists a
bounded and convex set K0 ⊂ K such that for each x ∈ K, there exists y ∈ K0 for
which g(y) ≤ g(x).

Then there exists a continuous mapping Ag : K → K0 which satisfies g(Agx) ≤
g(x) for all x ∈ K and has the following two properties:

B(i) For each integer n ≥ 1, the mapping Ag is uniformly continuous on the set

{
x ∈K : ‖x‖ ≤ n and g(x) ≥ inf(g) + 1/n

};
B(ii) if g(x) ≥ inf(g) + ε for some ε > 0 and x ∈ K, then

g(Agx) ≤ g(x) − ε/2.

Proof If there exists x ∈ K for which g(x) = inf(g), then there exists x∗ ∈ K0 for
which g(x∗) = inf(g) and we can set Ag(y) = x∗ for all y ∈ K. Therefore we may
assume that

{
x ∈ K : g(x) = inf(g)

} = ∅.

For each integer i ≥ 0, there exists yi ∈K0 such that

g(yi) ≤ (
4(i + 1)

)−1 + inf(g). (8.8)

Consider now the linear segments which join y0, y1, . . . , yn, . . . (all contained in
K0 by the convexity of K0), represented as a continuous curve γ : [0,∞) → K0 and
parametrized so that

γ (t) = yi + (t − i)(yi+1 − yi) if i ≤ t < i + 1 (i = 0,1,2, . . . ). (8.9)

The curve γ is Lipschitzian because the set K0 is bounded. Define

Agx = γ
(
g(x) − (

inf(g)
)−1)

, x ∈K. (8.10)

It is easy to see that Agx ∈ K0 for all x ∈ K, the mapping Ag is continuous on K
and that it is uniformly continuous on the subsets

{
x ∈ K : ‖x‖ ≤ n and g(x) ≥ inf(g) + 1/n

}

for each integer n ≥ 1.
Assume that

x ∈ K, ε > 0 and g(x) ≥ inf(g) + ε. (8.11)

There is an integer i ≥ 0 such that

g(x) − inf(g) ∈ (
(i + 1)−1, i−1] (8.12)
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(here 0−1 = ∞). Then

(
g(x) − inf(g)

)−1 ∈ [i, i + 1) (8.13)

and by (8.10), (8.9) and (8.13),

Agx = γ
(
g(x) − (

inf(g)
)−1) = yi + ((

g(x) − inf(g)
)−1 − i

)
(yi+1 − yi).

It follows from this relation, (8.8), (8.11), (8.12) and the convexity of g that

g(Agx) ≤ max
{
g(yi), g(yi+1)

} ≤ inf(g) + (
4(i + 1)

)−1

≤ inf(g) + 4−1(g(x) − inf(g)
) = g(x) − 3 · 4−1(g(x) − inf(g)

)

≤ g(x) − 3 · 4−1ε.

This completes the proof of Proposition 8.5. �

8.3 Proof of Theorem 8.2

We first note the following simple lemma.

Lemma 8.6 Assume that V1,V2 ∈A, φ : X → [0,1], and that

V x = (
1 − φ(x)

)
V1x + φ(x)V2x, x ∈ X.

Then V ∈A. If V1,V2 ∈Ac and φ is continuous on X, then V ∈ Ac. If V1,V2 ∈ Au

(respectively, Aau, Aauc) and φ is uniformly continuous on bounded subsets of X,
then V ∈Au (respectively, Aau, Aauc).

For each pair of integers m,n ≥ 1, denote by Ωmn the set of all V ∈A such that

‖V x‖ ≤ m for all x ∈ X satisfying ‖x‖ ≤ n + 1 (8.14)

and

sup
{
l(V x) : x ∈ X,‖x‖ ≤ n,f (x) ≥ inf(f ) + 1/n, l ∈ ∂f (x)

} = 0. (8.15)

Clearly,
∞⋃

m=1

∞⋃
n=1

Ωmn = A \F . (8.16)

Therefore in order to prove Theorem 8.2 it is sufficient to show that for each pair of
integers m,n ≥ 1, the set Ωmn (respectively, Ωmn ∩Ac, Ωmn ∩Aau, Ωmn ∩Aauc)
is a porous subset of A (respectively, Ac, Aau, Aauc), and if f attains its minimum,
then Ωmn ∩Au is a porous subset of Au.
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By assumption A(i), there is a bounded and convex set X0 ⊂ X with the follow-
ing property:

C(i) For each x ∈ X, there is x0 ∈ X0 such that f (x0) ≤ f (x). If f attains its mini-
mum, then X0 is a singleton.

By Proposition 8.5, there is a continuous mapping Af : X → X such that

Af (X) ⊂ X0, f (Af x) ≤ f (x) for all x ∈ X, (8.17)

and which has the following two properties:

C(ii) If x ∈ X, ε > 0 and f (x) ≥ inf(f ) + ε, then f (Af x) ≤ f (x) − ε/2;
C(iii) for any natural number n, the mapping Af is uniformly continuous on the set

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}
.

Let m,n ≥ 1 be integers. In the sequel we will use the piecewise linear function
φ : R1 → R1 defined by

φ(x) = 1, x ∈ [−n,n], φ(x) = 0, |x| ≥ n + 1 (8.18)

and

φ(−n − 1 + t) = t, t ∈ [0,1], φ(n + t) = 1 − t, t ∈ [0,1].
By assumption A(ii), there is c0 > 1 such that

∣∣f (x) − f (y)
∣∣ ≤ c0‖x − y‖ (8.19)

for all x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n + 2. Choose α ∈ (0,1) such that

αc02n+2 < (2n)−12−1(1 − α)
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1

. (8.20)

Assume that V ∈ Ωmn and r ∈ (0,1]. Let

γ = 2−1(1 − α)r
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1 (8.21)

and define Vγ : X → X by

Vγ x = (
1 − γφ

(‖x‖))V x + γφ
(‖x‖)(Af x − x), x ∈ X. (8.22)

By Lemma 8.6, Vγ ∈ A and moreover, if V ∈ Ac (respectively, Aau, Aauc), then
Vγ ∈ Ac (respectively, Aau, Aauc), and if V ∈ Au and f attains its minimum, then
Af is constant (see C(i)) and Vγ ∈Au.

Next we estimate the distance ρ(Vγ ,V ). It follows from (8.22) and the definition
of φ (see (8.18)) that Vγ x = V x for all x ∈ X satisfying ‖x‖ ≥ n + 1 and

ρi(Vγ ,V ) = ρn+1(Vγ ,V ) for all integers i ≥ n + 1.
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Since V ∈ Ωmn, the above equality, when combined with (8.2), (8.1), (8.22), (8.18)
and (8.17), yields

ρ(Vγ ,V ) ≤
∞∑
i=1

2−iρi(V ,Vγ ) ≤ ρn+1(V ,Vγ )

= sup
{‖V x − Vγ x‖ : x ∈ X,‖x‖ ≤ n + 1

}

≤ sup
{
γφ

(‖x‖)(‖V x‖ + ‖Af x − x‖) : x ∈ X,‖x‖ ≤ n + 1
}

≤ γ (m + 1) + γ (n + 1) + γ sup
{‖x‖ : x ∈ X0

}
. (8.23)

Assume that W ∈A with

ρ(W,Vγ ) ≤ αr. (8.24)

By (8.24), (8.23) and (8.21),

ρ(W,V ) ≤ αr + γ
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
}) ≤ 2−1(1 + α)r < r. (8.25)

Assume now that

x ∈ X, ‖x‖ ≤ n, f (x) ≥ inf(f ) + 1/n and l ∈ ∂f (x). (8.26)

Inequality (8.19) implies that

‖l‖∗ ≤ c0.

By (8.22), (8.26), the definition of φ (see (8.18)) and C(ii),

l(Vγ x) = l
((

1 − γφ
(‖x‖))V x + γφ

(‖x‖)(Af x − x)
) ≤ γφ

(‖x‖)l(Af x − x)

= γ l(Af x − x) ≤ γ
(
f (Af x) − f (x)

) ≤ −γ (2n)−1. (8.27)

It follows from (8.26) and (8.1) that

‖Wx − Vγ x‖ ≤ ρn(W,Vγ ). (8.28)

By (8.24), (8.28) and the inequality ‖l‖∗ ≤ c0, we have

2−nρn(W,Vγ )
(
1 + ρn(W,Vγ )

)−1 ≤ ρ(W,Vγ ) ≤ αr,

ρn(W,Vγ )
(
1 + ρn(W,Vγ )

)−1 ≤ 2nαr,

ρn(W,Vγ )
(
1 − 2nαr

) ≤ 2nαr, ‖Wx − Vγ x‖ ≤ 2nαr
(
1 − 2nαr

)−1
,

(8.29)

and
∣∣l(Wx) − l(Vγ x)

∣∣ ≤ c02nαr
(
1 − 2nαr

)−1
. (8.30)

By (8.30), (8.27), (8.21) and (8.20),
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l(Wx) ≤ l(Vγ x) + c02nαr
(
1 − 2nαr

)−1

≤ −γ (2n)−1 + c02nαr
(
1 − 2nαr

)−1

= c02nαr
(
1 − 2nαr

)−1

− (2n)−12−1(1 − α)r
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1

≤ −r
[−c02nα · 2 + (2n)−12−1(1 − α)

(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1]

≤ −2rc02nα.

Thus
{
W ∈ A : ρ(W,Vγ ) ≤ αr

} ∩ Ωmn = ∅.

In view of (8.25), we can conclude that Ωmn is porous in A, Ωmn ∩Ac is porous in
Ac, Ωmn ∩Aau is porous in Aau, Ωmn ∩Aauc is porous in Aauc, and if f attains its
minimum, then Ωmn∩Au is porous in Au. This completes the proof of Theorem 8.2.

8.4 A Basic Lemma

The following result is our key lemma.

Lemma 8.7 Assume that V ∈ A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. V ∈Aau; 2. A(iii) is valid.

Let K̄ and ε̄ be positive. Then there exist a neighborhood U of V in A and
positive numbers ᾱ and γ such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K̄, f (x) ≥ inf(f ) + ε̄, (8.31)

and each β ∈ (0, ᾱ],
f (x) − f (x + βWx) ≥ βγ. (8.32)

Proof There exists K0 > K̄ + 1 such that

‖V x‖ ≤ K0 if x ∈ X and ‖x‖ ≤ K̄ + 2. (8.33)

By Assumption A(ii), there exists a constant L0 > 4 such that
∣∣f (x1) − f (x2)

∣∣ ≤ L0‖x1 − x2‖ (8.34)

for all x1, x2 ∈ X satisfying ‖x1‖,‖x2‖ ≤ 2K0 + 4. Since V is regular, there exists
a positive number δ0 ∈ (0,1) such that

ξ(Vy) ≤ −δ0 (8.35)



8.4 A Basic Lemma 407

for each y ∈ X satisfying ‖y‖ ≤ K0 + 4, f (y) ≥ inf(f ) + ε̄/4, and each ξ ∈ ∂f (y).
Choose δ1 ∈ (0,1) such that

4δ1(K0 + L0) < δ0. (8.36)

There exists a positive number ᾱ such that the following conditions hold:

8ᾱ(L0 + 1)(K0 + 1) < min{1, ε̄}; (8.37)

(a) if V ∈Aau, then for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K̄ + 4, min
{
f (x1), f (x2)

} ≥ inf(f ) + ε̄/4,

and ‖x1 − x2‖ ≤ ᾱ(K0 + 1),
(8.38)

the following inequality is true:

‖V x1 − V x2‖ ≤ δ1; (8.39)

(b) if A(iii) is valid, then for each x1, x2 ∈ X satisfying (8.38), the following
inequality is true:

H
(
∂f (x1), ∂f (x2)

)
< δ1. (8.40)

Next choose a positive number δ2 such that

8δ2(L0 + 1) < δ1δ0. (8.41)

Now choose a positive number γ such that

γ < δ0/8 (8.42)

and define

U := {
W ∈A : ‖Wx − V x‖ ≤ δ2, x ∈ X and ‖x‖ ≤ K̄

}
. (8.43)

Assume that W ∈ U , x ∈ X satisfies (8.31), and that β ∈ (0, ᾱ]. We intend to
show that (8.32) holds. To this end, we first note that (8.31), (8.33), (8.37), (8.43)
and (8.41) yield

‖x + βV x‖ ≤ K̄ + βK0 ≤ K̄ + ᾱK0 ≤ K̄ + 1

and

‖x + βWx‖ ≤ δ2β + ‖x + βV x‖ ≤ K̄ + 1 + ᾱδ2 ≤ K̄ + 2.

By these inequalities, the definition of L0 (see (8.34)) and (8.43),

∣∣f (x + βV x) − f (x + βWx)
∣∣ ≤ L0β‖Wx − V x‖ ≤ L0βδ2. (8.44)
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Next we will estimate f (x) − f (x + βV x). There exist θ ∈ [0, β] and l ∈ ∂f (x +
θV x) such that

f (x + βV x) − f (x) = l(V x)β. (8.45)

By (8.31), (8.33) and (8.37),

‖x‖ ≤ K̄, ‖V x‖ ≤ K0, ‖θV x‖ ≤ ᾱK0, and

‖x + θV x‖ ≤ K̄ + 1.
(8.46)

It follows from (8.46) and the definition of L0 (see (8.34)) that

‖l‖∗ ≤ L0. (8.47)

It follows from (8.46), the definition of L0 (see (8.34)), (8.37) and (8.31) that

f (x + θV x) ≥ f (x) − L0‖θV x‖
≥ f (x) − L0ᾱK0 ≥ f (x) − 8−1ε̄ ≥ inf(f ) + ε̄/2. (8.48)

Consider the case where V ∈Aau. By (8.47), condition (a), (8.46), (8.31) and (8.48),

βl(V x) ≤ βl
(
V (x + θV x)

) + β‖l‖∗
(∥∥V (x + θV x) − V x

∥∥)

≤ βl
(
V (x + θV x)

) + βL0
∥∥V (x + θV x) − V x

∥∥
≤ βl

(
V (x + θV x)

) + βL0δ1. (8.49)

By (8.46), (8.48) and the definition of δ0 (see (8.35)),

l
(
V (x + θV x)

) ≤ −δ0.

When combined with (8.49) and (8.36), this inequality implies that

βl(V x) ≤ −βδ0 + βL0δ1 ≤ −βδ0/2.

By these inequalities and (8.45),

f (x + βV x) − f (x) ≤ −βδ0/2. (8.50)

Assume now that A(iii) is valid. It then follows from condition (b), (8.46), (8.31)
and (8.48) that

H
(
∂f (x), ∂f (x + θV x)

)
< δ1.

Therefore there exists l̄ ∈ ∂f (x) such that ‖l̄− l‖∗ ≤ δ1. When combined with (8.45)
and (8.46), this fact implies that

f (x + βV x) − f (x) = βl(V x) ≤ βl̄(V x) + β‖l̄ − l‖∗‖V x‖
≤ βl̄(V x) + βδ1K0. (8.51)
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It follows from the definition of δ0 (see (8.35)) and (8.31) that βl̄(V x) ≤ −βδ0.
Combining this inequality with (8.51) and (8.36), we see that

f (x + βV x) − f (x) ≤ −βδ0 + βδ1K0 ≤ −βδ0/2.

Thus in both cases (8.50) is true. It now follows from (8.50), (8.44), (8.41) and
(8.42) that

f (x + βWx) − f (x) ≤ f (x + βV x) − f (x) + f (x + βWx) − f (x + βV x)

≤ −βδ0/2 + L0βδ2 ≤ −βδ0/4 ≤ −γβ.

Thus (8.32) holds. Lemma 8.7 is proved. �

8.5 Proofs of Theorems 8.3 and 8.4

Proof of Theorem 8.3 To show that assertion (i) holds, suppose that

{xi}∞i=0 ⊂ X, xi+1 ∈ PWxi, i = 0,1, . . . , and lim inf
i→∞ ‖xi‖ < ∞. (8.52)

We will show that

lim
i→∞f (xi) = inf(f ). (8.53)

Assume the contrary. Then there exists ε > 0 such that

f (xi) ≥ inf(f ) + ε, i = 0,1, . . . . (8.54)

There exists a number S > 0 and a strictly increasing sequence of natural numbers
{ik}∞k=1 such that

‖xik‖ ≤ S, k = 1,2, . . . . (8.55)

By Lemma 8.7, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfying

‖x‖ ≤ S, f (x) ≥ inf(f ) + ε, (8.56)

and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.57)

It follows from (8.52), (8.4), (8.5), the definitions of α and γ , (8.55) and (8.54) that
for each integer k ≥ 1,

f (xik ) − f (xik+1) ≥ f (xik ) − f (xik + αWxik ) ≥ γ α.
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Since this inequality holds for all integers k ≥ 1, we conclude that

lim
n→∞

(
f (x0) − f (xn)

) = ∞.

This contradicts our assumption that f is bounded from below. Therefore (8.53) and
assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}∞i=0 ⊂ (0,1] satisfy (8.6) and let a
bounded {xi}∞i=0 ⊂ X satisfy (8.7) for all integers i ≥ 0. We will show that (8.53)
holds. Indeed, assume that (8.53) is not true. Then there exists ε > 0 such that (8.54)
holds. Since the sequence {xi}∞1=0 is bounded, there exists a number S > 0 such that

S > ‖xi‖, i = 0,1, . . . . (8.58)

By Lemma 8.7, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfying
(8.56) and each β ∈ (0, α], inequality (8.57) holds. Since ai → 0 as i → ∞, there
exists a natural number i0 such that

ai < α for all integers i ≥ i0. (8.59)

Let i ≥ i0 be an integer. Then it follows from (8.58), (8.54), the definitions of α

and γ , and (8.59) that

f (xi) − f (xi + aiWxi) ≥ γ ai, xi+1 = xi + aiWxi,

and

f (xi) − f (xi+1) ≥ γ ai.

Since
∑∞

i=0 ai = ∞, we conclude that

lim
n→∞

(
f (x0) − f (xn)

) = ∞.

The contradiction we have reached shows that (8.53), assertion (ii) and Theorem 8.3
itself are all true. �

Proof of Theorem 8.4 Let

K0 > sup
{
f (x) : x ∈ X,‖x‖ ≤ K + 1

}
(8.60)

and set

E0 = {
x ∈ X : f (x) ≤ K0 + 1

}
. (8.61)

Clearly, E0 is bounded and closed. Choose

K1 > sup
{‖x‖ : x ∈ E0

} + 1 + K. (8.62)

By Lemma 8.7, there exist a neighborhood U of V in A and numbers α,γ ∈ (0,1)

such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K1, f (x) ≥ inf(f ) + ε, (8.63)
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and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.64)

Now choose a natural number N0 which satisfies

N0 > (αγ )−1(K0 + 4 + ∣∣inf(f )
∣∣). (8.65)

First we will show that assertion (i) is true. Assume that W ∈ U , {xi}N0
i=0 ⊂ X,

‖x0‖ ≤ K, and xi+1 ∈ PWxi, i = 0, . . . ,N0 − 1. (8.66)

Our aim is to show that

f (xN0) ≤ inf(f ) + ε. (8.67)

Assume that (8.67) is not true. Then

f (xi) > inf(f ) + ε, i = 0, . . . ,N0. (8.68)

By (8.66) and (8.60)–(8.62), we also have

‖xi‖ ≤ K1, i = 0, . . . ,N0. (8.69)

Let i ∈ {0, . . . ,N0 − 1}. It follows from (8.69), (8.68) and the definitions of U , α

and γ (see (8.63) and (8.64)) that

f (xi) − f (xi+1) ≥ f (xi) − f (xi + αWxi) ≥ γ α.

Summing up from i = 0 to N0 − 1, we conclude that

f (x0) − f (xN0) ≥ N0γ α.

It follows from this inequality, (8.60), (8.65) and (8.66) that

inf(f ) ≤ f (xN0) ≤ f (x0) − N0γ α ≤ K0 − N0γ α ≤ −4 − ∣∣inf(f )
∣∣.

Since we have reached a contradiction, we see that (8.67) must be true and assertion
(i) is proved.

Now we will show that assertion (ii) is also valid. To this end, let a sequence
a = {ai}∞i=0 ⊂ (0,1] satisfy

lim
i→∞ai = 0 and

∞∑
i=0

ai = ∞. (8.70)

Evidently, there exists a natural number N1 such that

ai ≤ α for all i ≥ N1. (8.71)
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Choose a natural number N > N1 + 4 such that

γ

N−1∑
i=N1

ai > K0 + 4 + ∣∣inf(f )
∣∣. (8.72)

Now assume that W ∈ U , {xi}Ni=0 ⊂ X, ‖x0‖ ≤ K , and that (8.7) holds for all i =
0, . . . ,N − 1. We claim that

f (xN) ≤ inf(f ) + ε. (8.73)

Assume the contrary. Then

f (xi) > inf(f ) + ε, i = 0, . . . ,N. (8.74)

Since ‖x0‖ ≤ K , we see by (8.7) and (8.60)–(8.62) that

‖xi‖ ≤ K1, i = 0, . . . ,N. (8.75)

Let i ∈ {N1, . . . ,N − 1}. It follows from (8.75), (8.74), (8.71) and the definitions of
α and γ (see (8.63) and (8.64)) that

f (xi) − f (xi + aiWxi) ≥ γ ai.

This implies that

f (xN1) − f (xN) ≥ γ

N−1∑
i=N1

ai .

By this inequality, (8.7), the inequality ‖x0‖ ≤ K , (8.60) and (8.72), we obtain

inf(f ) ≤ f (xN) ≤ f (xN1) − γ

N−1∑
i=N1

ai

≤ K0 − γ

N−1∑
i=N1

ai < −4 − | inf(f )|.

The contradiction we have reached proves (8.73) and assertion (ii). This completes
the proof of Theorem 8.4. �

8.6 Methods for a Nonconvex Objective Function

Assume that (X,‖ · ‖) is a Banach space, (X∗,‖ · ‖∗) is its dual space, and f : X →
R1 is a function which is bounded from below and Lipschitzian on bounded subsets
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of X. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B . For each x ∈ X, let

f 0(x,h) = lim sup
t→0+,y→x

[
f (y + th) − f (y)

]
/t, h ∈ X, (8.76)

be the Clarke derivative of f at the point x [41],

∂f (x) = {
l ∈ X∗ : f 0(x,h) ≥ l(h) for all h ∈ X

}
(8.77)

the Clarke subdifferential of f at x, and

Ξ(x) := inf
{
f 0(x,h) : h ∈ X and ‖h‖ = 1

}
. (8.78)

It is well known that the set ∂f (x) is nonempty and bounded. It should be mentioned
that the functional Ξ was introduced in [176] and used in [182] in order to study
penalty methods in constrained optimization.

Set inf(f ) = inf{f (x) : x ∈ X}. Denote by A the set of all mappings V : X →
X such that V is bounded on every bounded subset of X, and for each x ∈ X,
f 0(x,V x) ≤ 0. We denote by Ac the set of all continuous V ∈ A and by Ab the set
of all V ∈ A which are bounded on X. Finally, let Abc = Ab ∩Ac. Next we endow
the set A with two metrics, ρs and ρw . To define ρs , we set, for each V1,V2 ∈ A,
ρ̃s(V1,V2) = sup{‖V1x − V2x‖ : x ∈ X} and

ρs(V1,V2) = ρ̃s(V1,V2)
(
1 + ρ̃s(V1,V2)

)−1
. (8.79)

(Here we use the convention that ∞/∞ = 1.) It is clear that (A, ρs) is a complete
metric space. To define ρw , we set, for each V1,V2 ∈A and each integer i ≥ 1,

ρi(V1,V2) := sup
{‖V1x − V2x‖ : x ∈ X and ‖x‖ ≤ i

}
, (8.80)

ρw(V1,V2) :=
∞∑
i=1

2−i
[
ρi(V1,V2)

(
1 + ρi(V1,V2)

)−1]
. (8.81)

Clearly, (A, ρw) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,ε) = {
(V1,V2) ∈A×A : ‖V1x − V2x‖ ≤ ε, x ∈ X,‖x‖ ≤ N

}
,

where N,ε > 0, is a base for the uniformity generated by the metric ρw . It is easy
to see that ρw(V1,V2) ≤ ρs(V1,V2) for all V1,V2 ∈A. The metric ρw induces on A
a topology which is called the weak topology and the metric ρs induces a topology
which is called the strong topology. Clearly, Ac is a closed subset of A with the
weak topology while Ab and Abc are closed subsets of A with the strong topology.
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We consider the subspaces Ac, Ab and Abc with the metrics ρs and ρw which induce
the strong and the weak topologies, respectively.

When the function f is convex, one usually looks for a sequence {xi}∞i=1 which
tends to a minimum point of f (if such a point exists) or at least such that
limi→∞ f (xi) = inf(f ). If f is not necessarily convex, but X is finite-dimensional,
then we expect to construct a sequence which tends to a critical point z of f ,
namely a point z for which 0 ∈ ∂f (z). If f is not necessarily convex and X is
infinite-dimensional, then the problem is more difficult and less understood be-
cause we cannot guarantee, in general, the existence of a critical point and a con-
vergent subsequence. To partially overcome this difficulty, we have introduced the
function Ξ : X → R1. Evidently, a point z is a critical point of f if and only if
Ξ(z) ≥ 0. Therefore we say that z is ε-critical for a given ε > 0 if Ξ(z) ≥ −ε.
We look for sequences {xi}∞i=1 such that either lim infi→∞ Ξ(xi) ≥ 0 or at least
lim supi→∞ Ξ(xi) ≥ 0. In the first case, given ε > 0, all the points xi , except possi-
bly a finite number of them, are ε-critical, while in the second case this holds for a
subsequence of {xi}∞i=1.

We show, under certain assumptions on f , that for most (in the sense of Baire’s
categories) vector fields W ∈ A, the iterative processes defined below (see (8.84)
and (8.85)) yield sequences with the desirable properties. Moreover, we show that
the complement of the set of “good” vector fields is not only of the first category,
but also σ -porous. These results, which were obtained in [141], are stated in this
section. Their proofs are relegated to subsequent sections.

For each set E ⊂ X, we denote by cl(E) the closure of E in the norm topology.
Our results hold for any Banach space and for those functions which satisfy the
following two assumptions.

A(i) For each ε > 0, there exists δ ∈ (0, ε) such that

cl
({

x ∈ X : Ξ(x) < −ε
}) ⊂ {

x ∈ X : Ξ(x) < −δ
};

A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.
We say that a mapping V ∈ A is regular if for any natural number n, there exists

a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and Ξ(x) <

−1/n, we have f 0(x,V x) ≤ −δ(n).
This concept of regularity is a non-convex analog of the regular vector fields

introduced in [136]. We denote by F the set of all regular vector fields V ∈A.

Theorem 8.8 Assume that both A(i) and A(ii) hold. Then A \ F (respectively,
Ac \F , Ab \ F and Abc \ F ) is a σ -porous subset of the space A (respectively,
Ac, Ab and Abc) with respect to the pair (ρw,ρs).

Now let W ∈ A. We associate with W two iterative processes. For x ∈ X we
denote by PW(x) the set of all y ∈ {x + αWx : α ∈ [0,1]} such that

f (y) = inf
{
f (x + βWx) : β ∈ [0,1]}. (8.82)
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Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such that
for all i = 0,1, . . . ,

xi+1 ∈ PW(xi). (8.83)

This is our first iterative process. Next we describe the second iterative process.
Given a sequence a = {ai}∞i=0 ⊂ (0,1) such that

lim
i→∞ai = 0 and

∞∑
i=0

ai = ∞, (8.84)

we construct for each initial point x0 ∈ X, a sequence {xi}∞i=0 ⊂ X according to the
following rule:

xi+1 = xi + aiW(xi) if f
(
xi + aiW(xi)

)
< f (xi),

xi+1 = xi otherwise, where i = 0,1, . . . .
(8.85)

In the sequel we will also make use of the following assumption:

A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X satis-
fying ‖x1‖,‖x2‖ ≤ n, min{Ξ(xi) : i = 1,2} ≤ −1/n, and ‖x1 − x2‖ ≤ δ, the
following inequality holds: H(∂f (x1), ∂f (x2)) ≤ 1/n.

We denote by Card(B) the cardinality of a set B .

Theorem 8.9 Assume that W ∈ A is regular, and that A(i), A(ii) and A(iii) are all
valid. Then the following two assertions are true:

(i) Let the sequence {xi}∞i=0 ⊂ X satisfy (8.83) for all i = 0,1, . . . . If {xi}∞i=0 is
bounded, then lim infi→∞ Ξ(xi) ≥ 0.

(ii) Let a sequence a = {ai}∞i=0 ⊂ (0,1) satisfy (8.84) and let the sequence
{xi}∞i=0 ⊂ X satisfy (8.85) for all i = 0,1, . . . . If {xi}∞i=0 is bounded, then

lim sup
i→∞

Ξ(xi) ≥ 0.

Theorem 8.10 Assume that f (x) → ∞ as ‖x‖ → ∞, V ∈ A is regular, and that
A(i), A(ii) and A(iii) are all valid. Let K,ε > 0 be given. Then there exist a neigh-
borhood U of V in A with the weak topology and a natural number N0 such that
the following two assertions are true:

(i) For each W ∈ U , each integer n ≥ N0 and each sequence {xi}ni=0 ⊂ X which
satisfies ‖x0‖ ≤ K and (8.83) for all i = 0, . . . , n − 1, we have

Card
{
i ∈ {0, . . . ,N − 1} : Ξ(xi) ≤ −ε

} ≤ N0.

(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0,1) satisfying (8.84), there
exists a natural number N such that for each W ∈ U and each sequence
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{xi}Ni=0 ⊂ X which satisfies ‖x0‖ ≤ K and (8.85) for all i = 0, . . . ,N − 1, we
have

max
{
Ξ(xi) : i = 0, . . . ,N

} ≥ −ε.

8.7 An Auxiliary Result

For each positive number λ, set

Eλ := {
x ∈ X : Ξ(x) < −λ

}
. (8.86)

Proposition 8.11 Let ε > 0 be given. Suppose that

cl(Eε) ⊂ Eδ(ε) (8.87)

for some δ(ε) ∈ (0, ε). Then there exists a locally Lipschitzian vector field V ∈ Ab

such that f 0(y,Vy) < −δ(ε) for all y ∈ X satisfying Ξ(y) < −ε.

Proof It easily follows from definitions (8.76) and (8.78) that Eλ is an open set
for all λ > 0. Let x ∈ Eδ(ε). Then there exist hx ∈ X such that ‖hx‖ = 1 and
f 0(x,hx) < −δ(ε), and (see (8.76)) an open neighborhood Ux of x in X such that

f 0(y,hx) < −δ(ε) for all y ∈ Ux. (8.88)

For x ∈ X \ Eδ(ε), set

hx = 0 and Ux = X \ cl(Eε). (8.89)

Clearly, {Ux}x∈X is an open covering of X. Since any metric space is paracompact,
there is a locally finite refinement {Qα : α ∈ A} of {Ux : x ∈ X}, i.e., an open cov-
ering of X such that each x ∈ X has a neighborhood Q(x) with Q(x) ∩ Qα �= ∅
only for finitely many α ∈ A, and such that for each α ∈ A, there exists xα ∈ X

with Qα ⊂ U(xα). Let α ∈ A. Define μα : X → [0,∞) by μα(x) = 0 if x /∈ Qα

and by μα(x) = inf{‖x − y‖ : y ∈ ∂Qα} otherwise. (Here ∂B is the boundary of
a set B ⊂ X.) The function μα is clearly Lipschitzian on all of X with Lipschitz
constant 1. Let ωα(x) = μα(x)(

∑
β∈A μβ(x))−1, x ∈ X. Since {Qα : α ∈ A} is lo-

cally finite, each ωα is well defined and locally Lipschitzian on X. Define a locally
Lipschitzian, bounded mapping V : X → X by

V (y) :=
∑
α∈A

ωα(y)hxα , y ∈ X. (8.90)

Let y ∈ X. There are a neighborhood Q of y in X and α1, . . . , αn ∈ A such that

{α ∈ A : Qα ∩ Q �= ∅} = {α1, . . . , αn}. (8.91)
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We have

V (y) =
n∑

i=1

ωαi
(y)hxαi

,

n∑
i=1

ωαi
(y) = 1, (8.92)

f 0(y,Vy) = f 0

(
y,

n∑
i=1

ωαi
(y)hxαi

)
≤

n∑
i=1

ωαi
(y)f 0(y,hxαi

). (8.93)

Let i ∈ {1, . . . , n} with ωαi
(y) > 0. Then

y ∈ supp{ωαi
} ⊂ Qαi

⊂ Uxαi
. (8.94)

If xαi
∈ X \ Eδ(ε), then by (8.89), hxαi

= 0 and f 0(y,hxαi
) = 0. If xαi

∈ Eδ(ε), then

by (8.88) and (8.94), f 0(y,hxαi
) < 0. Therefore f 0(y,hxαi

) ≤ 0 in both cases and

f 0(y,Vy) ≤ 0. Thus V ∈ A. Assume that y ∈ Eε , i ∈ {1, . . . , n} and ωαi
(y) > 0.

Then (8.94) holds. We assert that xαi
∈ Eδ(ε). Assume the contrary. Then xαi

∈ X \
Eδ(ε) and by (8.89), Uxαi

= X\cl(Eε). When combined with (8.94), this implies that
y ∈ Eε ∩Uxαi

= Eε ∩(X\cl(Eε)), a contradiction. Thus xαi
∈ Eδ(ε), as asserted. By

the definition of Uxαi
(see (8.88)) and (8.94), f 0(y,hxαi

) < −δ(ε). When combined

with (8.93), this implies that f 0(y,Vy) < −δ(ε). �

8.8 Proof of Theorem 8.8

For each pair of integers m,n ≥ 1, denote by Ωmn the set of all V ∈A such that

‖V x‖ ≤ m for all x ∈ X satisfying ‖x‖ ≤ n + 1 and (8.95)

sup
{
f 0(x,V x) : x ∈ X,‖x‖ ≤ n,Ξ(x) < −1/n

} = 0. (8.96)

Clearly,
∞⋃

m=1

∞⋃
n=1

Ωmn = A \F . (8.97)

Therefore in order to prove Theorem 8.8 it is sufficient to show that for each pair of
integers m,n ≥ 1, the set Ωmn (respectively, Ωmn ∩Ac, Ωmn ∩Ab, Ωmn ∩Abc) is a
porous subset of A (respectively, Ac, Ab , Abc) with respect to the pair (ρw,ρs). Let
m,n ≥ 1 be integers. By Proposition 8.11, there exists a vector field V∗ ∈ A such
that (i) V∗ is bounded on X and V∗ is locally Lipschitzian on X; (ii) there exists
δ∗ ∈ (0,1) such that

f 0(y,V∗y) < −δ∗ for all y ∈ X satisfying Ξ(y) < −(4n)−1. (8.98)

By assumption A(ii), there is c0 > 1 such that
∣∣f (x) − f (y)

∣∣ ≤ c0‖x − y‖ (8.99)
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for all x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n + 2. Choose α ∈ (0,1) such that

αc02n+2 < (2n)−12−1(1 − α)δ∗
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1

. (8.100)

Assume that V ∈ A and r ∈ (0,1]. There are two cases: (a) sup{‖V x‖ : x ∈
X,‖x‖ ≤ n + 1} ≤ m + 1; (b) sup{‖V x‖ : x ∈ X,‖x‖ ≤ n + 1} > m + 1. We first
assume that (b) holds. Let W ∈ A with ρw(W,V ) ≤ 2−n−4. Then ρn+1(W,V )(1 +
ρn+1(V ,W))−1 ≤ 8−1, ρn+1(W,V ) ≤ 1/7, and sup{‖Wx‖ : x ∈ X,‖x‖ ≤ n+ 1} >

m. Thus {W ∈ A : ρw(W,V ) ≤ 2−n−4} ∩ Ωmn = ∅. Assume now that (a) holds. Let

γ = 2−1(1 − α)r
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1 (8.101)

and define Vγ ∈A by

Vγ x = V x + γV∗x, x ∈ X. (8.102)

If V ∈ Ac (respectively, Ab , Abc), then Vγ ∈ Ac (respectively, Ab , Abc). Next we
estimate the distance ρs(Vγ ,V ). It follows from (8.102), (8.101) and (8.76) that

ρs(Vγ ,V ) ≤ ρ̃s(Vγ ,V ) ≤ γ sup
{∥∥V∗(x)

∥∥ : x ∈ X
} ≤ 2−1(1 − α)r. (8.103)

Assume that W ∈A with

ρw(W,Vγ ) ≤ αr. (8.104)

By (8.104) and (8.103),

ρw(W,V ) ≤ ρw(W,Vγ ) + ρw(Vγ ,V ) ≤ αr + 2−1(1 − α)r

≤ 2−1(1 + α)r < r. (8.105)

Assume now that

x ∈ X, ‖x‖ ≤ n, Ξ(x) < −1/n and l ∈ ∂f (x). (8.106)

Inequality (8.99) implies that

‖l‖∗ ≤ c0. (8.107)

By (8.102), (8.98) and (8.106),

l(Vγ x) = l(V x) + γ l
(
V∗(x)

) ≤ γ l(V∗x) ≤ γf 0(x,V∗x) ≤ γ (−δ∗). (8.108)

It follows from (8.106) and (8.80) that

‖Wx − Vγ x‖ ≤ ρn(W,Vγ ). (8.109)

By (8.104) and (8.81), we have 2−nρn(W,Vγ )(1 + ρn(W,Vγ ))−1 ≤ ρw(W,Vγ ) ≤
αr , ρn(W,Vγ )(1 + ρn(W,Vγ ))−1 ≤ 2nαr , and ρn(W,Vγ )(1 − 2nαr) ≤ 2nαr .
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When combined with (8.109), the last inequality implies that ‖Wx − Vγ x‖ ≤
2nαr(1 − 2nαr)−1, and when combined with (8.107), this implies that

∣∣l(Wx) − l(Vγ x)
∣∣ ≤ c02nαr

(
1 − 2nαr

)−1
. (8.110)

By (8.110), (8.108), (8.101) and (8.100),

l(Wx) ≤ l(Vγ x) + c02nαr
(
1 − 2nαr

)−1 ≤ −γ δ∗ + c02nαr
(
1 − 2nαr

)−1

= c02nαr
(
1 − 2nαr

)−1

− δ∗
[
2−1(1 − α)r

(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})]−1

= −r
[−c02nα

(
1 − 2nαr

)−1

+ δ∗2−1(1 − α)
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1]

≤ −2rc02nα.

Since l is an arbitrary element of ∂f (x), we conclude that f 0(x,Wx) ≤ −2rc02nα.
Thus {W ∈ A : ρw(W,Vγ ) ≤ αr} ∩ Ωmn = ∅. Recall that in case (b), {W ∈ A :
ρw(W,V ) ≤ 2−n−4}∩Ωmn = ∅. Therefore Ωmn is porous in A, Ωmn ∩Ac is porous
in Ac , Ωmn ∩Ab is porous in Ab , and Ωmn ∩Abc is porous in Abc , as asserted.

8.9 A Basic Lemma for Theorems 8.9 and 8.10

Lemma 8.12 Assume that V ∈ A is regular, and that A(i), A(ii) and A(iii) are all
valid. Let K̄ and ε̄ be positive. Then there exist a neighborhood U of V in A with
the weak topology and positive numbers ᾱ and γ such that for each W ∈ U , each
x ∈ X satisfying

‖x‖ ≤ K̄ and Ξ(x) ≤ −ε̄, (8.111)

and each β ∈ (0, ᾱ], we have

f (x) − f (x + βWx) ≥ βγ. (8.112)

Proof There exists K0 > K̄ + 1 such that

‖V x‖ ≤ K0 if x ∈ X and ‖x‖ ≤ K̄ + 2. (8.113)

By Assumption A(ii), there exists a constant L0 > 4 such that
∣∣f (x1) − f (x2)

∣∣ ≤ L0‖x1 − x2‖ (8.114)

for all x1, x2 ∈ X satisfying ‖x1‖,‖x2‖ ≤ 2K0 + 4. There is δ0 ∈ (0,1) such that

f 0(y,Vy) ≤ −δ0 (8.115)
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for each y ∈ X satisfying ‖y‖ ≤ K0 + 4 and Ξ(y) ≤ −ε̄/4. Choose δ1 ∈ (0,1) such
that

4δ1(K0 + L0) < δ0. (8.116)

By A(iii), there is a positive ᾱ such that the following conditions hold:

8ᾱ(L0 + 1)(K0 + 1) < min{1, ε̄}; (8.117)

for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K̄ + 4, min
{
Ξ(x1),Ξ(x2)

} ≤ −ε̄/4,

‖x1 − x2‖ ≤ ᾱ(K0 + 1),
(8.118)

the following inequality is true:

H
(
∂f (x1), ∂f (x2)

)
< δ1/2. (8.119)

Next, choose a positive number δ2 such that

8δ2(L0 + 1) < δ1δ0. (8.120)

Finally, choose a positive number γ and define a neighborhood U such that

γ < δ0/4, (8.121)

U = {
W ∈A : ‖Wx − V x‖ ≤ δ2, x ∈ X and ‖x‖ ≤ K̄

}
. (8.122)

Assume that W ∈ U , x ∈ X satisfies (8.111), and that β ∈ (0, ᾱ]. We intend to
show that (8.112)) holds. To this end, we first note that (8.111), (8.113), (8.117)
and (8.122) yield

‖x + βV x‖ ≤ K̄ + βK0 ≤ K̄ + ᾱK0 ≤ K̄ + 1,

‖x + βWx‖ ≤ δ2β + ‖x + βV x‖ ≤ K̄ + 1 + ᾱδ2 ≤ K̄ + 2.
(8.123)

By these inequalities, the definition of L0 (see (8.114)) and (8.122),
∣∣f (x + βV x) − f (x + βWx)

∣∣ ≤ L0β‖Wx − V x‖ ≤ L0βδ2. (8.124)

Next we estimate f (x)−f (x+βV x). By [89], there exist θ ∈ [0, β] and l ∈ ∂f (x+
θV x) such that

f (x + βV x) − f (x) = l(V x)β. (8.125)

By (8.111), (8.114) and (8.117),

‖x‖ ≤ K̄, ‖V x‖ ≤ K0, ‖θV x‖ ≤ ᾱK0, and

‖x + θV x‖ ≤ K̄ + 1.
(8.126)
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Note that (8.126) and the definition of L0 (see (8.114)) imply that

‖l‖∗ ≤ L0. (8.127)

It also follows from (8.111), (8.126) and the definition of ᾱ (see (8.118) and (8.119))
that H(∂f (x), ∂f (x + θV x)) < δ1. Therefore there exists l̄ ∈ ∂f (x) such that ‖l̄ −
l‖∗ ≤ δ1. When combined with (8.125) and (8.126), this fact implies that

f (x + βV x) − f (x) = βl(V x) ≤ βl̄(V x) + β‖l̄ − l‖∗‖V x‖
≤ βl̄(V x) + βδ1K0. (8.128)

It follows from the definition of δ0 (see (8.115)) and (8.111) that βl̄(V x) ≤ −βδ0.
Combining this inequality with (8.128) and (8.116), we see that f (x + βV x) −
f (x) ≤ −βδ0 + βδ1K0 ≤ −βδ0/2. It now follows from this inequality, (8.120),
(8.124) and (8.121) that f (x + βWx) − f (x) ≤ f (x + βV x) − f (x) + f (x +
βWx) − f (x + βV x) ≤ −βδ0/2 + L0βδ2 ≤ −βδ0/4 ≤ −γβ . Thus (8.112) holds
and Lemma 8.12 is proved. �

8.10 Proofs of Theorems 8.9 and 8.10

Proof of Theorem 8.9 To show that assertion (i) holds, suppose that

{xi}∞i=0 ⊂ X, xi+1 ∈ PWxi, i = 0,1, . . . ,

sup
{‖xi‖ : i = 0,1, . . .

}
< ∞.

(8.129)

We claim that

lim inf
i→∞ Ξ(xi) ≥ 0. (8.130)

Assume the contrary. Then there exist ε > 0 and a strictly increasing sequence of
natural numbers {ik}∞k=1 such that

Ξ(xik ) ≤ −ε, k = 1,2, . . . . (8.131)

Choose a number S > 0 such that

‖xi‖ ≤ S, i = 1,2, . . . . (8.132)

By Lemma 8.12, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfy-
ing

‖x‖ ≤ S and Ξ(x) ≤ −ε, (8.133)

and each β ∈ (0, α], we have

f (x) − f (x + βWx) ≥ γβ. (8.134)
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It follows from (8.129), (8.82), (8.83), the definitions of α and γ , (8.132) and (8.131)
that for each integer k ≥ 1, f (xik ) − f (xik+1) ≥ f (xik ) − f (xik + αWxik ) ≥ γ α.
Since this inequality holds for all integers k ≥ 1, we conclude that limn→∞(f (x0)−
f (xn)) = ∞. This contradicts our assumption that f is bounded from below. There-
fore (8.130) and assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}∞i=0 ⊂ (0,1) satisfy (8.84) and let a
bounded {xi}∞i=0 ⊂ X satisfy (8.85) for all integers i ≥ 0. We will show that

lim sup
i→∞

Ξ(xi) ≥ 0. (8.135)

Indeed, assume that (8.135) is not true. Then there exist ε > 0 and an integer i1 ≥ 0
such that

Ξ(xi) ≤ −ε, i ≥ i1. (8.136)

Since the sequence {xi}∞1=0 is bounded, there exists a number S > 0 such that

S > ‖xi‖, i = 0,1, . . . . (8.137)

By Lemma 8.12, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfy-
ing (8.133) and each β ∈ (0, α], inequality (8.134) holds. Since ai → 0 as i → ∞,
there exists a natural number i0 ≥ i1 such that

ai < α for all integers i ≥ i0. (8.138)

Let i ≥ i0 be an integer. Then it follows from (8.137), (8.136), the definitions of
α and γ , and (8.138) that f (xi) − f (xi + aiWxi) ≥ γ ai , xi+1 = xi + aiWxi , and
f (xi) − f (xi+1) ≥ γ ai . Since

∑∞
i=0 ai = ∞, we conclude that limn→∞(f (x0) −

f (xn)) = ∞. The contradiction we have reached shows that (8.135), assertion (ii)
and Theorem 8.9 itself are all true. �

Proof of Theorem 8.10 Let

K0 > sup
{
f (x) : x ∈ X,‖x‖ ≤ K + 1

}
, (8.139)

E0 = {
x ∈ X : f (x) ≤ K0 + 1

}
. (8.140)

It is clear that E0 is bounded and closed. Choose

K1 > sup
{‖x‖ : x ∈ E0

} + 1 + K. (8.141)

By Lemma 8.12, there exist a neighborhood U of V in A and numbers α,γ ∈ (0,1)

such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K1 and Ξ(x) ≤ −ε, (8.142)

and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.143)
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Now choose a natural number N0 which satisfies

N0 > (αγ )−1(K0 + 4 + ∣∣inf(f )
∣∣). (8.144)

Let W ∈ U , {xi}ni=0 ⊂ X, where the integer n ≥ N0,

‖x0‖ ≤ K, and xi+1 ∈ PWxi, i = 0, . . . , n − 1, (8.145)

B = {
i ∈ {0, . . . , n − 1} : Ξ(xi) ≤ −ε

}
and m = Card(B). (8.146)

By (8.145) and (8.139)–(8.141), we have

‖xi‖ ≤ K1, i = 0, . . . , n. (8.147)

Let i ∈ B . It follows from (8.147), (8.146) and the definitions of U , α and γ (see
(8.142) and (8.143)) that f (xi)−f (xi+1) ≥ f (xi)−f (xi +αWxi) ≥ γ α. Summing
up from i = 0 to n − 1, we conclude that

f (x0) − f (xn) ≥ γ α Card(B) = mγα.

It follows from this inequality, (8.139), (8.145) and (8.144) that

m ≤ [∣∣inf(f )
∣∣ + K0

]
(αγ )−1 < N0.

Thus we see that assertion (i) is proved.
To prove assertion (ii), let a sequence a = {ai}∞i=0 ⊂ (0,1) satisfy

lim
i→∞ai = 0 and

∞∑
i=0

ai = ∞. (8.148)

Clearly, there exists a natural number N1 such that

ai ≤ α for all i ≥ N1. (8.149)

Choose a natural number N > N1 + 4 such that

γ

N−1∑
i=N1

ai > K0 + 4 + ∣∣inf(f )
∣∣. (8.150)

Now assume that W ∈ U , {xi}Ni=0 ⊂ X, ‖x0‖ ≤ K , and that (8.85) holds for all
i = 0, . . . ,N − 1. We will show that

max
{
Ξ(xi) : i = 0, . . . ,N

} ≥ −ε. (8.151)

Assume the contrary. Then

Ξ(xi) ≤ −ε, i = 0, . . . ,N. (8.152)
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Since ‖x0‖ ≤ K , we see by (8.85) and (8.139)–(8.141) that

‖xi‖ ≤ K1, i = 0, . . . ,N. (8.153)

Let i ∈ {N1, . . . ,N −1}. It follows from (8.153), (8.152), (8.149) and the definitions
of α and γ (see (8.142)) and (8.143)) that

f (xi) − f (xi + aiWxi) ≥ γ ai.

This implies that

f (xN1) − f (xN) ≥ γ

N−1∑
i=N1

ai .

By this inequality, (8.85), the inequality ‖x0‖ ≤ K , (8.139) and (8.150), we obtain
that

inf(f ) ≤ f (xN) ≤ f (xN1) − γ

N−1∑
i=N1

ai ≤ K0 − γ

N−1∑
i=N1

ai < −4 − ∣∣inf(f )
∣∣.

The contradiction we have reached proves (8.151) and assertion (ii). �

8.11 Continuous Descent Methods

Let (X∗,‖ · ‖∗) be the dual space of the Banach space (X,‖ · ‖), and let f : X → R1

be a convex continuous function which is bounded from below. Recall that for each
pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B .
For each x ∈ X, let

∂f (x) := {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
norm-bounded. Set

inf(f ) := inf
{
f (x) : x ∈ X

}
.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (that is, for each K0 > 0, there is K1 > 0 such that ‖V x‖ ≤ K1
if ‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f (x), l(V x) ≤ 0. We denote by Ac

the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly
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continuous on each bounded subset of X, and by Aau the set of all V ∈A which are
uniformly continuous on the subsets

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}

for each integer n ≥ 1. Finally, let Aauc = Aau ∩Ac.
Our results are valid in any Banach space and for those convex functions which

satisfy the following two assumptions.

A(i) There exists a bounded set X0 ⊂ X such that

inf(f ) = inf
{
f (x) : x ∈ X

} = inf
{
f (x) : x ∈ X0

};
A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.

Note that assumption A(i) clearly holds if lim‖x‖→∞ f (x) = ∞.
We recall that a mapping V ∈ A is regular if for any natural number n, there

exists a positive number δ(n) such that for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and for each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A.
Let T > 0, x0 ∈ X and let u : [0, T ] → X be a Bochner integrable function. Set

x(t) = x0 +
∫ t

0
u(s) ds, t ∈ [0, T ].

Then x : [0, T ] → X is differentiable and x′(t) = u(t) for almost every t ∈ [0, T ].
Recall that the function f : X → R1 is assumed to be convex and continuous, and
therefore it is, in fact, locally Lipschitzian. It follows that its restriction to the set
{x(t) : t ∈ [0, T ]} is Lipschitzian. Indeed, since the set {x(t) : t ∈ [0, T ]} is compact,
the closure of its convex hull C is both compact and convex, and so the restriction
of f to C is Lipschitzian. Hence the function (f · x)(t) := f (x(t)), t ∈ [0, T ], is
absolutely continuous. It follows that for almost every t ∈ [0, T ], both the derivatives
x′(t) and (f · x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h) − x(t)
]
,

(f · x)′(t) = lim
h→0

h−1[f (
x(t + h)

) − f
(
x(t)

)]
.

We continue with the following fact.

Proposition 8.13 Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f · x)′(t) exist. Then

(f · x)′(t) = lim
h→0

h−1[f (
x(t) + hx′(t)

) − f
(
x(t)

)]
. (8.154)
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Proof There exist a neighborhood U of x(t) in X and a constant L > 0 such that

∣∣f (z1) − f (z2)
∣∣ ≤ L‖z1 − z2‖ for all z1, z2 ∈ U . (8.155)

Let ε > 0 be given. There exists δ > 0 such that

x(t + h), x(t) + hx′(t) ∈ U for each h ∈ [−δ, δ] ∩ [−t, T − t], (8.156)

and such that for each h ∈ [(−δ, δ) \ {0}] ∩ [−t, T − t],
∥∥x(t + h) − x(t) − hx′(t)

∥∥ < ε|h|. (8.157)

Let

h ∈ [
(−δ, δ) \ {0}] ∩ [−t, T − t]. (8.158)

It follows from (8.156), (8.155) and (8.157) that

∣∣f (
x(t +h)

)−f
(
x(t)+hx′(t)

)∣∣ ≤ L
∥∥x(t +h)−x(t)−hx′(t)

∥∥ < Lε|h|. (8.159)

Clearly,

[
f

(
x(t + h)

) − f
(
x(t)

)]
h−1 = [

f
(
x(t + h)

) − f
(
x(t) + hx′(t)

)]
h−1

+ [
f

(
x(t) + hx′(t)

) − f
(
x(t)

)]
h−1. (8.160)

Relations (8.159) and (8.160) imply that

∣∣[f (
x(t + h)

) − f
(
x(t)

)]
h−1 − [

f
(
x(t) + hx′(t)

) − f
(
x(t)

)]
h−1

∣∣
≤ ∣∣f (

x(t + h)
) − f

(
x(t) + hx′(t)

)∣∣∣∣h−1
∣∣ ≤ Lε.

Since ε is an arbitrary positive number, we conclude that (8.154) holds. �

Assume now that V ∈ A and that the differentiable function x : [0, T ] → X sat-
isfies

x′(t) = V
(
x(t)

)
for a.e. t ∈ [0, T ]. (8.161)

Then by Proposition 8.13, (f · x)′(t) ≤ 0 for a.e. t ∈ [0, T ], and f (x(t)) is decreas-
ing on [0, T ].

In the sequel we denote by μ(E) the Lebesgue measure of E ⊂ R1.
In the next two sections, we prove the following two results which were obtained

in [148].

Theorem 8.14 Let V ∈ A be regular, let x : [0,∞) → X be differentiable and sup-
pose that

x′(t) = V
(
x(t)

)
for a.e. t ∈ [0,∞). (8.162)
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Assume that there exists a positive number r such that

μ
({

t ∈ [0, T ] : ∥∥x(t)
∥∥ ≤ r

}) → ∞ as T → ∞. (8.163)

Then limt→∞ f (x(t)) = inf(f ).

Theorem 8.15 Let V ∈ A be regular, let f be Lipschitzian on bounded subsets of
X, and assume that lim‖x‖→∞ f (x) = ∞. Let K0 and ε > 0 be positive. Then there
exist N0 > 0 and δ > 0 such that for each T ≥ N0 and each differentiable mapping
x : [0, T ] → X satisfying

∥∥x(0)
∥∥ ≤ K0 and

∥∥x′(t) − V
(
x(t)

)∥∥ ≤ δ for a.e. t ∈ [0, T ],

the following inequality holds for all t ∈ [N0, T ]:

f
(
x(t)

) ≤ inf(f ) + ε.

8.12 Proof of Theorem 8.14

Assume the contrary. Since f (x(t)) is decreasing on [0,∞), this means that there
exists ε > 0 such that

lim
t→∞f

(
x(t)

)
> inf(f ) + ε. (8.164)

Then by Proposition 8.13 and (8.162), we have for each T > 0,

f
(
x(T )

) − f
(
x(0)

) =
∫ T

0
(f · x)′(t) dt

=
∫ T

0
f 0(x(t), x′(t)

)
dt =

∫ T

0
f 0(x(t),V

(
x(t)

))
dt

≤
∫

ΩT

f 0(x(t),V
(
x(t)

))
dt, (8.165)

where

ΩT = {
t ∈ [0, T ] : ∥∥x(t)

∥∥ ≤ r
}
. (8.166)

Since V is regular, there exists δ > 0 such that for each x ∈ X satisfying

‖x‖ ≤ r + 1 and f (x) ≥ inf(f ) + ε/2, (8.167)

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ. (8.168)
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It follows from (8.165), (8.166), (8.164), the definition of δ (see (8.167) and (8.168))
and (8.163) that for each T > 0,

f
(
x(T )

) − f
(
x(0)

) ≤
∫

ΩT

f 0(x(t),V
(
x(t)

))
dt ≤ −δμ(ΩT ) → −∞

as T → ∞, a contradiction. The contradiction we have reached proves Theo-
rem 8.14.

8.13 Proof of Theorem 8.15

We may assume without loss of generality that ε < 1/2. Choose

K1 > sup
{
f (x) : x ∈ X and ‖x‖ ≤ K0 + 1

}
. (8.169)

The set
{
x ∈ X : f (x) ≤ K1 + ∣∣inf(f )

∣∣ + 4
}

(8.170)

is bounded. Therefore there exists

K2 > K0 + K1

such that

if f (x) ≤ K1 + ∣∣inf(f )
∣∣ + 4, then ‖x‖ ≤ K2. (8.171)

There exists a number K3 > K2 + 1 such that

sup
{
f (x) : x ∈ X and ‖x‖ ≤ K2 + 1

} + 2

< inf
{
f (x) : x ∈ X and ‖x‖ ≥ K3

}
. (8.172)

There exists a number L0 > 0 such that

∣∣f (x1) − f (x2)
∣∣ ≤ L0‖x1 − x2‖ (8.173)

for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K3 + 1. (8.174)

Fix an integer

n > K3 + 8/ε. (8.175)

There exists a positive number δ(n) < 1 such that:
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(P1) for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Choose a natural number N0 > 8 such that

8−1δ(n)N0 >
∣∣inf(f )

∣∣ + sup
{∣∣f (z)

∣∣ : z ∈ X and ‖z‖ ≤ K2
} + 4 (8.176)

and a positive number δ which satisfies

8δ(N0 + 1)(L0 + 1) < ε and (1 + L0)δ < δ(n)/2. (8.177)

Let T ≥ N0 and let x : [0, T ] → X be a differentiable function such that

∥∥x(0)
∥∥ ≤ K2 (8.178)

and
∥∥x′(t) − V

(
x(t)

)∥∥ ≤ δ for a.e. t ∈ [0, T ]. (8.179)

We claim that
∥∥x(t)

∥∥ ≤ K3, t ∈ [
0,min{2N0, T }]. (8.180)

Assume the contrary. Then there exists t0 ∈ (0,min{2N0, T }] such that
∥∥x(t)

∥∥ ≤ K3, t ∈ [0, t0) and
∥∥x(t0)

∥∥ = K3. (8.181)

It follows from Proposition 8.13, the convexity of directional derivatives, the in-
equality f 0(x(t),V x(t)) ≤ 0, which holds for all t ∈ [0, T ], (8.181), the definition
of L0 (see (8.173), (8.174) and (8.179)) that

f
(
x(t0)

) − f
(
x(0)

)

=
∫ t0

0
(f · x)′(t) dt =

∫ t0

0
f 0(x(t), x′(t)

)
dt

≤
∫ t0

0
f 0(x(t),V

(
x(t)

))
dt +

∫ t0

0
f 0(x(t), x′(t) − V

(
x(t)

))
dt

≤
∫ t0

0
f 0(x(t), x′(t) − V

(
x(t)

))
dt ≤

∫ t0

0
L0

∥∥x′(t) − V
(
x(t)

)∥∥dt ≤ t0L0δ.

Thus by (8.177),

f
(
x(t0)

) ≤ f
(
x(0)

) + 2N0L0δ < f
(
x(0)

) + 1.
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Since ‖x(0)‖ ≤ K2 (see (8.178)) and ‖x(t0)‖ = K3, the inequality just obtained
contradicts (8.172). The contradiction we have reached proves (8.180).

We now claim that there exists a number

t0 ∈ [1,N0] (8.182)

such that

f
(
x(t0)

) ≤ inf(f ) + ε/8. (8.183)

Assume the contrary. Then

f
(
x(t)

)
> inf(f ) + ε/8 and

∥∥x(t)
∥∥ ≤ K3, t ∈ [1,N0]. (8.184)

It follows from (8.184), Property (P1) and (8.175) that

f 0(x(t),V
(
x(t)

)) ≤ −δ(n), t ∈ [1,N0]. (8.185)

By (8.185), (8.184), (8.179), (8.177), the convexity of the directional derivatives of
f , and the definition of L0 (see (8.173) and (8.174)), we have, for almost every
t ∈ [1,N0],

f 0(x(t), x′(t)
) ≤ f 0(x(t),V

(
x(t)

)) + f 0(x(t), x′(t) − V
(
x(t)

))

≤ −δ(n) + L0
∥∥x′(t) − V

(
x(t)

)∥∥ ≤ −δ(n) + L0δ

≤ −δ(n)/2. (8.186)

It follows from the convexity of the directional derivatives of f , the inclusion
V ∈ A, (8.179), (8.180) and the definition of L0 (see (8.173) and (8.174)), that for
almost every t ∈ [0,1],

f 0(x(t), x′(t)
) ≤ f 0(x(t),V

(
x(t)

)) + f 0(x(t), x′(t) − V
(
x(t)

))

≤ f 0(x(t), x′(t) − V
(
x(t)

)) ≤ L0
∥∥x′(t) − V

(
x(t)

)∥∥
≤ L0δ. (8.187)

Inequalities (8.178), (8.186) and (8.187) imply that

inf(f ) − sup
{
f (z) : z ∈ X,‖z‖ ≤ K2

}

≤ f
(
x(N0)

) − f
(
x(0)

)

=
∫ N0

0
f 0(x(t), x′(t)

)
dt =

∫ 1

0
f 0(x(t), x′(t)

)
dt +

∫ N0

1
f 0(x(t), x′(t)

)
dt

≤ −2−1δ(n)N0/2 + 1.

This contradicts (8.176). The contradiction we have reached yields the existence of
a point t0 which satisfies both (8.182) and (8.183). Clearly, ‖x(t0)| ≤ K2. Having
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established (8.180) and the existence of such a point t0 for an arbitrary mapping x

satisfying both (8.178) and (8.179), we now consider the mapping x0(t) = x(t + t0),
t ∈ [0, T − t0]. Evidently, (8.178) and (8.179) hold true with x replaced by x0 and
T replaced by T − t0. Hence, if T − t0 ≥ N0, then we have

∥∥x(t)
∥∥ = ∥∥x0(t − t0)

∥∥ ≤ K3, t ∈ [
t0, t0 + min{2N0, T }],

and there exists

t1 ∈ [t0 + 1, t0 + N0]
for which

f
(
x(t1)

) ≤ inf(f ) + ε/8.

Repeating this procedure, we obtain by induction a finite sequence of points {ti}qi=0
such that

t0 ∈ [1,N0], ti+1 − ti ∈ [1,N0], i = 0, . . . , q − 1, T − tq < N0,

f
(
x(ti)

) ≤ inf(f ) + ε/8, i = 0, . . . , q,
∥∥x(t)

∥∥ ≤ K3, t ∈ [t0, T ].

Let i ∈ {0, . . . , q}, t ≤ T , and 0 < t − ti ≤ N0. Then by Proposition 8.13, the con-
vexity of the directional derivative of f , the inclusion V ∈ A, the definition of L0

(see (8.173) and (8.174)), (7.177) and (8.179), we have

f
(
x(t)

) − f
(
x(ti)

) =
∫ t

ti

f 0(x(t), x′(t)
)
dt

≤
∫ t

ti

f 0(x(t),V
(
x(t)

))
dt +

∫ t

ti

f 0(x(t), x′(t) − V
(
x(t)

))
dt

≤
∫ t

ti

f 0(x(t), x′(t) − V
(
x(t)

))
dt

≤
∫ t

ti

L0
∥∥x′(t) − V

(
x(t)

)∥∥dt

≤ L0δ(t − ti ) ≤ 2N0L0δ < ε/4

and hence

f
(
x(t)

) ≤ f
(
x(ti)

) + ε/4 ≤ inf(f ) + ε/2.

This completes the proof of Theorem 8.15.
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8.14 Regular Vector-Fields

In the previous sections of this chapter, given a continuous convex function f on
a Banach space X, we associate with f a complete metric space A of mappings
V : X → X such that f 0(x,V x) ≤ 0 for all x ∈ X. Here f 0(x,u) is the right-
hand derivative of f at x in the direction of u ∈ X. We call such mappings descent
vector-fields (with respect to f ). We identified a regularity property of such vector-
fields and showed that regular vector-fields generate convergent discrete descent
methods. This has turned out to be true for continuous descent methods as well. Such
results are significant because most of the elements in A are, in fact, regular. Here by
“most” we mean an everywhere dense Gδ subset of A. Thus it is important to know
when a given descent vector-field V : X → X is regular. In [163] we established
necessary and sufficient conditions for regularity: see Theorems 8.18–8.21 below.

More precisely, let (X,‖ · ‖) be a Banach space and let (X∗,‖ · ‖∗) be its dual.
For each h : X → R1, set inf(h) = {h(z) : z ∈ X}.
Let U be a nonempty, open subset of X and let f : U → R1 be a locally Lips-

chitzian function.
For each x ∈ U , let

f 0(x,h) = lim sup
t→0+,y→x

[
f (y + th) − f (y)

]
/t, h ∈ X, (8.188)

be the Clarke derivative of f at the point x, and let

∂f (x) = {
l ∈ X∗ : f 0(x,h) ≥ l(h) for all h ∈ X

}
(8.189)

be the Clarke subdifferential of f at x.
For each x ∈ U , set

Ξf (x) := inf
{
f 0(x,u) : u ∈ X,‖u‖ ≤ 1

}
. (8.190)

Clearly, Ξf (x) ≤ 0 for all x ∈ X and Ξf (x) = 0 if and only if 0 ∈ ∂f (x).
For each x ∈ U , set

Ξ̃f (x) = inf
{
f 0(x,h) : h ∈ X,‖h‖ = 1

}
. (8.191)

Let x ∈ U . Clearly, Ξ̃f (x) ≥ Ξf (x) and 0 ∈ ∂f (x) if and only if Ξ̃f (x) ≥ 0.
In the next section we prove the following two propositions.

Proposition 8.16 Let x ∈ U . If Ξ̃f (x) ≥ 0, then Ξf (x) = 0. If Ξ̃f (x) < 0, then
Ξf (x) = Ξ̃f (x).

Proposition 8.17 For each x ∈ U ,

Ξf (x) = − inf
{‖l‖∗ : l ∈ ∂f (x)

}
. (8.192)
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Assume now that f : X → R1 is a continuous and convex function which is
bounded from below. It is known that f is locally Lipschitzian. It is also known (see
Chap. 2, Sect. 2 of [41]) that in this case

f 0(x,h) = lim
t→0+

[
f (x + th) − f (x)

]
/t, x,h ∈ X.

Recall that a mapping V : X → X is called regular if V is bounded on every
bounded subset of X, f 0(x,V x) ≤ 0 for all x ∈ X, and if for any natural number n,
there exists a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and
f (x) ≥ inf(f ) + 1/n, we have

f 0(x,V x) ≤ −δ(n).

We now present four results which were established in [163]. Their proofs are
given in subsequent sections.

Theorem 8.18 Let f : X → R1 be a convex and continuous function which is
bounded from below, let x̄ ∈ X satisfy

f (x̄) = inf
{
f (z) : z ∈ X

}
, (8.193)

and let the following property hold:

(P1) for every sequence {yi}∞i=1 ⊂ X satisfying limi→∞ f (yi) = f (x̄),
limi→∞ yi = x̄ in the norm topology.

For each natural number n, let φn : [0,∞) → [0,∞) be an increasing function
such that φn(0) = 0 and the following property holds:

(P2) for each ε > 0, there exists δ := δ(ε, n) > 0 such that for each t ≥ 0 satisfying
φn(t) ≤ δ, the inequality t ≤ ε holds.

If V : X → X is bounded on bounded subsets of X,

f 0(x,V x) ≤ 0 for all x ∈ X, (8.194)

and if for each natural number n and each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
, (8.195)

then V is regular.

Theorem 8.19 Assume that f : X → R1 is a convex and continuous function,
x̄ ∈ X,

f (x̄) = inf(f ),

property (P1) holds and the following property also holds:
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(P3) if {xi}∞i=1 ⊂ X converges to x̄ in the norm topology, then

lim
i→∞Ξf (xi) = 0.

Assume that V : X → X is regular and let n ≥ 1 be an integer. Then there exists
an increasing function φn : [0,∞) → [0,∞) such that φn(0) = 0, property (P2)
holds, and for each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
.

Assume now that f : X → R1 is merely locally Lipschitzian. Recall that in this
case a mapping V : X → X is called regular if V is bounded on every bounded
subset of X,

f 0(x,V x) ≤ 0 for all x ∈ X, (8.196)

and for any natural number n, there exists δ(n) > 0 such that for each x ∈ X satis-
fying ‖x‖ ≤ n and Ξf (x) ≤ −1/n, we have f 0(x,V x) ≤ −δ(n).

Theorem 8.20 Let f : X → R1 be a locally Lipschitzian function. For each natural
number n, let φn : [0,∞) → [0,∞) be an increasing function such that φn(0) = 0
and property (P2) holds.

Assume that V : X → X is bounded on every bounded subset of X,

f 0(x,V x) ≤ 0 for all x ∈ X,

and for each natural number n and each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.197)

Then V is regular.

Theorem 8.21 Assume that the function f : X → R1 is locally Lipschitzian and
that V : X → X is regular.

Then for each natural number n, there exists an increasing function φn :
[0,∞) → [0,∞) such that (P2) holds and for each natural number n and each
x ∈ X satisfying ‖x‖ ≤ n, (8.197) holds.

8.15 Proofs of Propositions 8.16 and 8.17

Proof of Proposition 8.16 Assume that Ξ̃f (x) ≥ 0. Then 0 ∈ ∂f (x) and Ξf (x) = 0.
Assume that Ξ̃f (x) < 0. Then by definition (see (8.191)),

inf
{
f 0(x,h) : h ∈ X,‖h‖ = 1

} = Ξ̃f (x) < 0. (8.198)
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By (8.198) and the homogeneity of f 0(x, ·),

f 0(x,h) ≥ Ξ̃f (x)‖h‖ for all h ∈ X. (8.199)

By (8.198), (8.191), (8.190) and (8.199),

0 > Ξ̃f (x) ≥ Ξf (x) = inf
{
f 0(x,h) : h ∈ X,‖h‖ ≤ 1

}

≥ inf
{
Ξ̃f (x)‖h‖ : h ∈ X,‖h‖ ≤ 1

} = Ξ̃f (x).

This implies that

Ξ̃f (x) = Ξf (x),

as claimed. Proposition 8.16 is proved. �

We precede the proof of Proposition 8.17 with the following lemma.

Lemma 8.22 Let x ∈ U and c > 0 be given. Then the following statements are
equivalent:

(i) Ξf (x) ≥ −c;
(ii) Ξ̃f (x) ≥ −c;

(iii) there is l ∈ ∂f (x) such that ‖l‖∗ ≤ c.

Proof By Proposition 8.16,

Ξf (x) ≥ −c if and only if Ξ̃f (x) ≥ −c.

It follows from (8.191) that Ξ̃f (x) ≥ −c if and only if

f 0(x,h) ≥ −c for all h ∈ X satisfying ‖h‖ = 1,

which is, in its turn, equivalent to the following relation:

f 0(x,h) ≥ −c‖h‖ for all h ∈ X.

Rewriting this last inequality as

f 0(x,h) + c‖h‖ ≥ 0 for all h ∈ X,

we see that it is equivalent to the inclusion

0 ∈ ∂f (x) + c
{
l ∈ X∗ : ‖l‖∗ ≤ 1

}
.

Thus we have proved that (ii) is equivalent to (iii). This completes the proof of
Lemma 8.22. �
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Proof of Proposition 8.17 Clearly, equality (8.192) holds if either one of its sides
equals zero. Therefore we only need to prove (8.192) in the case where

Ξf (x) < 0 and inf
{‖l‖∗ : l ∈ ∂f (x)

}
> 0. (8.200)

Assume that (8.200) holds. By Lemma 8.22, there is l̄ such that

l̄ ∈ ∂f (x) and ‖l̄‖∗ ≤ −Ξf (x). (8.201)

Hence

− inf
{‖l‖∗ : l ∈ ∂f (x)

} ≥ −‖l̄‖∗ ≥ Ξf (x). (8.202)

Let ε be any positive number. There is lε ∈ ∂f (x) such that

‖lε‖∗ ≤ inf
{‖l‖∗ : l ∈ ∂f (x)

} + ε. (8.203)

By (8.203) and Lemma 8.22,

Ξf (x) ≥ −ε − inf
{‖l‖∗ : l ∈ ∂f (x)

}
.

Since ε is any positive number, we conclude that

Ξf (x) ≥ − inf
{‖l‖∗ : l ∈ ∂f (x)

}
.

When combined with (8.202), this inequality completes the proof of Proposi-
tion 8.17. �

8.16 An Auxiliary Result

Proposition 8.23 Let g : X → R1 be a convex and continuous function, x̄ ∈ X,

g(x̄) = inf
{
g(z) : z ∈ X

}
, (8.204)

and let the following property hold:

(P4) for any sequence {yi}∞i=1 ⊂ X satisfying limi→∞ g(yi) = g(x̄), we have
limi→∞ ‖yi − x̄‖ = 0.

Assume that {xi}∞i=1 ⊂ X,

sup
{‖xi‖ : i = 1,2, . . .

}
< ∞ and lim

i→∞Ξg(xi) = 0. (8.205)

Then limi→∞ ‖xi − x̄‖ = 0.
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Proof By (8.205) and Proposition 8.17, there exists a sequence {li}∞i=1 ⊂ X∗ such
that

lim
i→∞‖li‖∗ = 0 and li ∈ ∂g(xi) for all integers i ≥ 1. (8.206)

Choose a number M > 0 such that

‖xi‖ ≤ M for all integers i ≥ 1 (8.207)

and let i ≥ 1 be an integer. By (8.206),

g(z) − li (z) ≥ g(xi) − li (xi) for all z ∈ X. (8.208)

It follows from (8.208), (8.207) and (8.206) that

g(x̄) − g(xi) = g(x̄) − li (x̄) − (
g(xi) − li (xi)

) + li (x̄ − xi)

≥ li (x̄ − xi) ≥ −‖li‖‖x̄ − xi‖ ≥ −‖li‖
(
M + ‖x̄‖) → 0 as i → ∞

and therefore

lim inf
i→∞

(
g(x̄) − g(xi)

) ≥ 0.

Together with (P4) this implies that limi→∞ ‖xi − x̄‖ = 0. Proposition 8.23 is
proved. �

8.17 Proof of Theorem 8.18

To show that V is regular, let n be a natural number. We have to find a positive
number δ = δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and f (x) ≥ inf(f ) +
1/n,

f 0(x,V x) ≤ −δ.

Assume the contrary. Then for each natural number k, there exists xk ∈ X satis-
fying

‖xk‖ ≤ n, f (xk) ≥ inf(f ) + 1/n, (8.209)

and

f 0(xk,V xk) > −1/k. (8.210)

It follows from (8.210), (8.209) and (8.195) that for each natural number k,

−k−1 < f 0(xk,V xk) ≤ −φn

(−Ξf (xk)
)

and hence φn(−Ξf (xk)) < k−1.
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Together with (P2) this inequality implies that limk→∞ Ξf (xk) = 0. When com-
bined with Proposition 8.23 and (8.209), this implies limk→∞ ‖xk − x̄‖ = 0. Since
f is continuous,

lim
k→∞f (xk) = f (x̄) = inf(f ).

This, however, contradicts (8.209). The contradiction we have reached proves that
V is indeed regular, as asserted.

8.18 Proof of Theorem 8.19

In what follows we make the convention that the infimum over the empty set is
infinity. Set φn(0) = 0 and let t > 0. Put

φn(t) = min
{
inf

{−f 0(x,V x) : x ∈ X,‖x‖ ≤ n and Ξf (x) ≤ −t
}
,1

}
. (8.211)

Clearly, φn : [0,∞) → [0,1] is well defined and increasing.
We show that for each x ∈ X satisfying ‖x‖ ≤ n,

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.212)

Let x ∈ X with ‖x‖ ≤ n. If Ξf (x) = 0, then it is obvious that (8.212) holds.
Assume now that

Ξf (x) < 0. (8.213)

Then by (8.211)), (8.213) and the inequality ‖x‖ ≤ n,

φn

(−Ξf (x)
) = min

{
inf

{−f 0(y,Vy) : y ∈ X,‖y‖ ≤ n and Ξf (y) ≤ Ξf (x)
}
,1

}

≤ min
{
1,−f 0(x,V x)

} ≤ −f 0(x,V x)

and hence

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
.

Thus (8.212) holds for each x ∈ X satisfying ‖x‖ ≤ n.
Next we show that (P2) holds. To this end, let ε > 0 be given. We claim that there

is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the inequality t ≤ ε holds.
Assume the contrary. Then for each natural number i, there exists ti ≥ 0 such

that

φn(ti) ≤ (4i)−1, ti > ε. (8.214)

By (8.214) and (8.211), for each natural number i, there exists a point xi ∈ X such
that

‖xi‖ ≤ n, Ξf (xi) ≤ −ti < −ε, (8.215)
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and

f 0(xi,V xi) ≥ −(2i)−1. (8.216)

Now it follows from (8.215), (8.216) and the definition of regularity that

lim
i→∞f (xi) = f (x̄).

Together with (P1) this implies that limi→∞ ‖xi − x̄‖ = 0. When combined with
(P3), this inequality implies that limi→∞ Ξf (xi) = 0. This, however, contradicts
(8.215). The contradiction we have reached proves Theorem 8.19.

8.19 Proof of Theorem 8.20

Let n be a given natural number. We need to show that there exists δ > 0 such that
for each x ∈ X satisfying

‖x‖ ≤ n and Ξf (x) < −1/n, (8.217)

we have

f 0(x,V x) ≤ −δ.

Assume the contrary. Then for each natural number k, there exists xk ∈ X such that

‖xk‖ ≤ n, Ξf (xk) ≤ −1/n, (8.218)

and

f 0(xk,V xk) > −1/k.

By (8.218) and (8.197),

−1/k < f 0(xk,V xk) ≤ −φn

(−Ξf (xk)
)

and

φ
(−Ξf (xk)

) ≤ 1/k. (8.219)

It now follows from (8.219) and property (P2) that

lim sup
k→∞

(−Ξf (xk)
) = 0

and

lim
k→∞Ξf (xk) = 0.

The last equality contradicts (8.218) and this contradiction proves Theorem 8.20.
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8.20 Proof of Theorem 8.21

Set φn(0) = 0 and let t > 0. Define

φn(t) = min
{
inf

{−f 0(x,V x) : x ∈ X,‖x‖ ≤ n,Ξf (x) ≤ −t
}
,1

}
. (8.220)

Clearly, φ : [0,∞) → [0,1] is well defined and increasing.
We show that for each x ∈ X satisfying ‖x‖ ≤ n,

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.221)

Consider x ∈ X with

‖x‖ ≤ n. (8.222)

If Ξf (x) = 0, then (8.221) clearly holds. Assume that

Ξf (x) < 0. (8.223)

Then by (8.220), (8.221), (8.222) and (8.223),

φn

(−Ξf (x)
) = min

{
inf

{−f 0(y,Vy) : y ∈ X,‖y‖ ≤ n,Ξf (y) ≤ Ξf (x)
}
,1

}

≤ min
{
1,−f 0(x,V x)

} ≤ −f 0(x,V x)

and hence (8.221) holds for all x ∈ X satisfying ‖x‖ ≤ n, as claimed.
Now we show that property (P2) also holds. To this end, let ε be positive.
We claim that there is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the

inequality t ≤ ε holds.
Assume the contrary. Then for each natural number i, there exists ti ≥ 0 such

that

φ(ti) ≤ (4i)−1, ti > ε. (8.224)

Let i be a natural number. By (8.224) and (8.220), there exists xi ∈ X such that

‖xi‖ ≤ n, Ξf (xi) ≤ −ti < −ε, (8.225)

and

−f 0(xi,V xi) ≤ (2i)−1.

Clearly,

f 0(xi,V xi) ≥ −(2i)−1. (8.226)

Choose a natural number p such that

p > n and 1/p < ε. (8.227)

Since V is regular, there is δ > 0 such that

if x ∈ X,‖x‖ ≤ p and Ξf (x) < −1/p, then f 0(x,V x) < −δ. (8.228)
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Choose a natural number j such that

1/j < δ. (8.229)

Then for all integers i ≥ j , it follows from (8.225) and (8.227) that

Ξf (xi) < −ε < −1/p and ‖xi‖ ≤ p.

Together with (8.228) and (8.229), this implies that for all integers i ≥ j ,

f 0(xi,V xi) < −δ < −j−1 < −(i)−1.

Since this contradicts (8.226), the proof of Theorem 8.21 is complete.

8.21 Most Continuous Descent Methods Converge

Let (X,‖·‖) be a Banach space and let f : X → R1 be a convex continuous function
which satisfies the following conditions:

C(i) lim‖x‖→∞ f (x) = ∞;
C(ii) there is x̄ ∈ X such that f (x̄) ≤ f (x) for all x ∈ X;
C(iii) if {xn}∞n=1 ⊂ X and limn→∞ f (xn) = f (x̄), then

lim
n→∞‖xn − x̄‖ = 0.

By C(iii), the point x̄, where the minimum of f is attained, is unique.
For each x ∈ X, let

f 0(x,u) = lim
t→0+

[
f (x + tu) − f (x)

]
/t, u ∈ X. (8.230)

Let (X∗,‖ · ‖∗) be the dual space of (X,‖ · ‖).
For each x ∈ X, let

∂f (x) = {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
norm-bounded.

For each x ∈ X and r > 0, set

B(x, r) = {
z ∈ X : ‖z − x‖ ≤ r

}
and B(r) = B(0, r). (8.231)

For each mapping A : X → X and each r > 0, put

Lip(A, r) := sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ B(r) and x �= y

}
. (8.232)
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Denote by Al the set of all mappings V : X → X such that Lip(V , r) < ∞ for
each positive r (this means that the restriction of V to any bounded subset of X is
Lipschitzian) and f 0(x,V x) ≤ 0 for all x ∈ X.

For the set Al we consider the uniformity determined by the base

Es(n, ε) = {
(V1,V2) ∈Al ×Al : Lip(V1 − V2, n) ≤ ε

and ‖V1x − V2x‖ ≤ ε for all x ∈ B(n)
}
. (8.233)

Clearly, this uniform space Al is metrizable and complete. The topology induced
by this uniformity in Al will be called the strong topology.

We also equip the space Al with the uniformity determined by the base

Ew(n, ε) = {
(V1,V2) ∈ Al ×Al : ‖V1x − V2x‖ ≤ ε

for all x ∈ B(n)
}

(8.234)

where n, ε > 0. The topology induced by this uniformity will be called the weak
topology.

The following existence result is proved in the next section.

Proposition 8.24 Let x0 ∈ X and V ∈ Al . Then there exists a unique continuously
differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞),

x(0) = x0.

In the subsequent sections we prove the following result which was obtained
in [1].

Theorem 8.25 There exists a set F ⊂Al which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Al such
that for each V ∈ F , the following property holds:

For each ε > 0 and each n > 0, there exist Tεn > 0 and a neighborhood U of
V in Al with the weak topology such that for each W ∈ U and each differentiable
mapping y : [0,∞) → X satisfying

∣∣f (
y(0)

)∣∣ ≤ n and y′(t) = Wy(t) for all t ≥ 0,

the inequality ‖y(t) − x̄‖ ≤ ε holds for all t ≥ Tεn.

8.22 Proof of Proposition 8.24

Since V is locally Lipschitzian, there exists a unique differentiable function x : I →
X, where I is an interval of the form [0, b), b > 0, such that

x(0) = x0, x′(t) = V x(t), t ∈ I. (8.235)
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We may and will assume that I is the maximal interval of this form on which the
solution exists.

We need to show that b = ∞. Suppose, by contradiction, that b < ∞.
By Proposition 8.13 and the relation V ∈ Al , the function f (x(t)) is decreasing

on I . By C(i), the set {x(t) : t ∈ [0, b)} is bounded. Thus there is K0 > 0 such that
∥∥x(t)

∥∥ ≤ K0 for all t ∈ [0, b). (8.236)

Since V is Lipschitzian on bounded subsets of X, there is K1 > 0 such that

if z ∈ X,‖z‖ ≤ K0, then ‖V z‖ ≤ K1. (8.237)

Let ε > 0 be given. Then it follows from (8.235), (8.236) and (8.237) that for each
t1, t2 ∈ [0, b) such that 0 < t2 − t1 < ε/K1,

∥∥x(t2) − x(t1)
∥∥ =

∥∥∥∥
∫ t2

t1

x′(t) dt

∥∥∥∥ =
∥∥∥∥
∫ t2

t1

V x(t) dt

∥∥∥∥

≤
∫ t2

t1

∥∥V x(t)
∥∥dt ≤

∫ t2

t1

K1 dt = K1(t2 − t1) < ε.

Hence there exists z0 = limt→b− x(t) in the norm topology. It follows that there
exists a unique solution of the initial value problem

z′(t) = V z(t), z(b) = z0,

defined on a neighborhood of b, and this implies that our solution x(·) can be ex-
tended to an open interval larger than I . The contradiction we have reached com-
pletes the proof of Proposition 8.24.

8.23 Proof of Theorem 8.25

For each V ∈Al and each γ ∈ (0,1), set

Vγ x = V x + γ (x̄ − x), x ∈ X. (8.238)

We first prove several lemmata.

Lemma 8.26 Let V ∈Al and γ ∈ (0,1). Then Vγ ∈Al .

Proof Clearly, Vγ is Lipschitzian on any bounded subset of X. Let x ∈ X. Then by
(8.238), the subadditivity and positive homogeneity of the directional derivative of
a convex function, the relation V ∈Al , and C(ii),

f 0(x,Vγ x) = f 0(x,V x + γ (x̄ − x)
) ≤ f 0(x,V x) + γf 0(x, x̄ − x)

≤ γf 0(x, x̄ − x) ≤ γ
(
f (x̄) − f (x)

) ≤ 0.

This completes the proof of Lemma 8.26. �
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It is easy to see that the following lemma also holds.

Lemma 8.27 Let V ∈Al . Then limγ→0+ Vγ = V in the strong topology.

Lemma 8.28 Let V ∈ Al , γ ∈ (0,1), ε > 0, and let x ∈ X satisfy f (x) ≥ f (x̄)+ ε.
Then f 0(x,Vγ x) ≤ −γ ε.

Proof It follows from (8.238), the properties of the directional derivative of a convex
function, and the relation V ∈ Al that

f 0(x,Vγ x) = f 0(x,V x + γ (x̄ − x)
) ≤ f 0(x,V x) + γf 0(x, x̄ − x)

≤ γf 0(x, x̄ − x) ≤ γ
(
f (x̄) − f (x)

) ≤ −εγ.

The lemma is proved. �

Lemma 8.29 Let V ∈Al , γ ∈ (0,1), and let x ∈ C1([0,∞);X) satisfy

x′(t) = Vγ x(t), t ∈ [0,∞). (8.239)

Assume that T0, ε > 0 are such that

T0 >
(
f

(
x(0)

) − f (x̄)
)
(γ ε)−1. (8.240)

Then for each t ≥ T0, f (x(t)) ≤ f (x̄) + ε.

Proof Since the function f (x(·)) is decreasing on [0,∞) (see Proposition 8.13,
Lemma 8.26 and (8.239)), it is sufficient to show that

f
(
x(T0)

) ≤ f (x̄) + ε. (8.241)

Assume the contrary. Then f (x(T0)) > f (x̄) + ε, and since f (x(·)) is decreasing
on [0,∞), we have

f
(
x(t)

)
> f (x̄) + ε for all t ∈ [0, T0]. (8.242)

When combined with Lemma 8.28, inequality (8.242) implies that

f 0(x(t),Vγ

(
x(t)

) ≤ −γ ε for all t ∈ [0, T0]. (8.243)

It now follows from Proposition 8.13, (8.239) and (8.243) that

f
(
x(T0)

) − f
(
x(0)

) =
∫ T0

0
(f ◦ x)′(t) dt =

∫ T0

0
f 0(x(t), x′(t)

)
dt

=
∫ T0

0
f 0(x(t),Vγ x(t)

)
dt ≤ T0(−γ ε),
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whence

T0γ ε ≤ f
(
x(0)

) − f
(
x(T0)

)
< f

(
x(0)

) − f (x̄).

This contradicts (8.240). The contradiction we have reached proves the lemma. �

Lemma 8.30 Let V ∈ Al , γ ∈ (0,1), ε > 0 and n > 0. Then there exist a neighbor-
hood U of Vγ in Al with the weak topology and τ > 0 such that for each W ∈ U
and each continuously differentiable mapping x : [0,∞) → X satisfying

x′(t) = Wx(t), t ∈ [0,∞), (8.244)

and
∣∣f (

x(0)
)∣∣ ≤ n, (8.245)

the following inequality holds:
∥∥x(t) − x̄

∥∥ ≤ ε for all t ≥ τ. (8.246)

Proof By C(i), there is n1 > n such that

if z ∈ X,f (z) ≤ n, then ‖z‖ ≤ n1. (8.247)

By C(iii), there is δ1 > 0 such that

if z ∈ X and f (z) ≤ f (x̄) + δ1, then ‖z − x̄‖ ≤ ε. (8.248)

Since f is continuous, there is ε1 > 0 such that
∣∣f (x̄) − f (z)

∣∣ ≤ δ1 for each z ∈ X satisfying ‖z − x̄‖ ≤ ε1. (8.249)

In view of C(iii), there exists δ0 ∈ (0,1) such that

if z ∈ X and f (z) ≤ f (x̄) + δ0, then ‖z − x̄‖ ≤ ε1/4. (8.250)

Since Vγ ∈ Al , there is L > 0 such that

‖Vγ z1 − Vγ z2‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ B(n1). (8.251)

Fix

τ >
(
n − f (x̄) + 1

)
(γ δ0)

−1 + 1 (8.252)

and choose a positive number Δ such that

ΔτeLτ ≤ ε1/4. (8.253)

Set

U = {
W ∈ Al : ‖Wz − Vγ z‖ ≤ Δ for all z ∈ B(n1)

}
. (8.254)
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Assume that

W ∈ U (8.255)

and that x ∈ C1([0,∞);X) satisfies (8.244) and (8.245). We have to prove (8.246).
In view of (8.248), it is sufficient to show that

f
(
x(t)

) ≤ f (x̄) + δ1 for all t ≥ τ.

Since the function f (x(·)) is decreasing on [0,∞), in order to prove the lemma we
only need to show that

f
(
x(τ)

) ≤ f (x̄) + δ1.

By (8.249), this inequality will follow from the inequality

∥∥x(τ) − x̄
∥∥ ≤ ε1. (8.256)

We now prove (8.256).
To this end, consider a continuously differentiable mapping y : [0,∞) → X

which satisfies

y′(t) = Vγ y(t), t ∈ [0,∞), (8.257)

and

y(0) = x(0). (8.258)

Since the functions f (x(·)) and f (y(·)) are decreasing on [0,∞), we obtain by
(8.258) and (8.245) that for each s ≥ 0,

f
(
x(s)

)
, f

(
y(s)

) ≤ f
(
x(0)

) ≤ n.

When combined with (8.247), this inequality implies that

∥∥x(s)
∥∥,

∥∥y(s)
∥∥ ≤ n1 for all s ≥ 0. (8.259)

It follows from Lemma 8.29 (with x = y, ε = δ0), (8.258), (8.257), (8.252) and
(8.245) that

f
(
y(τ)

) ≤ f (x̄) + δ0.

This inequality and (8.250) imply that
∥∥y(τ) − x̄

∥∥ ≤ ε1/4. (8.260)

Now we estimate ‖x(τ) − y(τ)‖. It follows from (8.257), (8.244) and (8.258) that
for each s ∈ [0, τ ],
∥∥y(s) − x(s)

∥∥ =
∥∥∥∥y(0) +

∫ s

0
Vγ y(t) dt −

(
x(0) +

∫ s

0
Wx(t) dt

)∥∥∥∥
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=
∥∥∥∥
∫ s

0

(
Vγ y(t) − Wx(t)

)
dt

∥∥∥∥ ≤
∫ s

0

∥∥Vγ y(t) − Wx(t)
∥∥dt

≤
∫ s

0

∥∥Vγ y(t) − Vγ x(t)
∥∥dt +

∫ s

0

∥∥Vγ x(t) − Wx(t)
∥∥dt. (8.261)

By (8.259) and (8.254), for each s ∈ (0, τ ], we have

∫ s

0

∥∥Vγ x(t) − Wx(t)
∥∥dt ≤

∫ s

0
Δdt ≤ Δs ≤ Δτ. (8.262)

By (8.259) and (8.251), for each s ∈ [0, τ ],
∫ s

0

∥∥Vγ y(t) − Vγ x(t)
∥∥dt ≤

∫ s

0
L

∥∥y(t) − x(t)
∥∥dt. (8.263)

It follows from (8.261), (8.262) and (8.263) that for each s ∈ [0, τ ],
∥∥y(s) − x(s)

∥∥ ≤ Δτ +
∫ s

0
L

∥∥y(t) − x(t)
∥∥dt. (8.264)

Applying Gronwall’s inequality, we obtain that

∥∥y(τ) − x(τ)
∥∥ ≤ Δτe

∫ τ
0 Ldt = ΔτeLτ .

When combined with (8.253), this inequality implies that

∥∥y(τ) − x(τ)
∥∥ ≤ ε1/4.

Together with (8.260), this implies that ‖x(τ) − x̄‖ ≤ ε1/2. Lemma 8.30 is
proved. �

Completion of the proof of Theorem 8.25 Let V ∈ Aγ , γ ∈ (0,1), and let i be a
natural number. By Lemma 8.30, there exist an open neighborhood U(V , γ, i) of
Vγ in Al with the weak topology and a positive number τ (V, γ, i) such that the
following property holds:

(P) For each W ∈ U(V , γ, i) and each continuously differentiable mapping x :
[0,∞) → X satisfying

x′(t) = Wx(t), t ∈ [0,∞),
∣∣f (

x(0)
)∣∣ ≤ i,

the following inequality holds:

∥∥x(t) − x̄
∥∥ ≤ i−1 for all t ≥ τ (V, γ, i).
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Set

F :=
∞⋂
i=1

⋃{
U(V , γ, i) : V ∈Al , γ ∈ (0,1)

}
. (8.265)

By Lemma 8.27, F is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of Al .

Let Ṽ ∈F and let n, ε > 0 be given. Choose a natural number i such that

i > n, i > ε−1. (8.266)

By (8.265), there are V ∈ Al and γ ∈ (0,1) such that

Ṽ ∈ U(V , γ, i). (8.267)

We claim show that the assertion of Theorem 8.15 holds with U = U(V , γ, i) and
Tεn = τ (V, γ, i).

Assume that W ∈ U(V , γ, i) and that the continuously differentiable mapping
y : [0,∞) → X satisfies

∣∣f (
y(0)

)∣∣ ≤ n, y′(t) = Wy(t) for all t ≥ 0. (8.268)

Then by (8.268), (8.266) and property (P), it follows that
∥∥y(t) − x̄

∥∥ ≤ i−1 for all t ≥ τ (V, γ, i).

When combined with (8.266), this inequality implies that ‖y(t) − x̄‖ ≤ ε for all
t ≥ τ (V, γ, i). Theorem 8.25 is established. �
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