
Chapter 7
Best Approximation

7.1 Well-Posedness and Porosity

Given a nonempty closed subset A of a Banach space (X,‖ · ‖) and a point x ∈ X,
we consider the minimization problem

min
{‖x − y‖ : y ∈ A

}
. (P)

It is well known that if A is convex and X is reflexive, then problem (P) always has
at least one solution. This solution is unique when X is strictly convex.

If A is merely closed but X is uniformly convex, then according to classical
results of Stechkin [173] and Edelstein [59], the set of all points in X having a
unique nearest point in A is Gδ and dense in X. Since then there has been a lot
of activity in this direction. In particular, it is known [84, 88] that the following
properties are equivalent for any Banach space X:

(A) X is reflexive and has a Kadec-Klee norm.
(B) For each nonempty closed subset A of X, the set of points in X \A with nearest

points in A is dense in X \ A.
(C) For each nonempty closed subset A of X, the set of points in X \A with nearest

points in A is generic (that is, a dense Gδ subset) in X \ A.

A more recent result of De Blasi, Myjak and Papini [52] establishes well-
posedness of problem (P) for a uniformly convex X, closed A and a generic x ∈ X.

In this connection we recall that the minimization problem (P) is said to be well
posed if it has a unique solution, say a0, and every minimizing sequence of (P)
converges to a0.

A more precise formulation of the De Blasi-Myjak-Papini result mentioned
above involves the notion of porosity.

Using this terminology and denoting by F the set of all points such that the
minimization problem (P) is well posed, we note that De Blasi, Myjak and Papini
[52] proved, in fact, that the complement X \ F is σ -porous in X.

However, the fundamental restriction in all these results is that they hold only
under certain assumptions on the space X. In view of the Lau-Konjagin result
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mentioned above these assumptions cannot be removed. On the other hand, many
generic results in nonlinear functional analysis hold in any Banach space. Therefore
the following natural question arises: can generic results for best approximation
problems be obtained in general Banach spaces? In [138] we answer this question
in the affirmative. In this chapter we present the results obtained in [138].

To this end, we change our point of view and consider a new framework. The
main feature of this new framework is that the set A in problem (P) may also vary. In
our first result (Theorem 7.3) we fix x and consider the space S(X) of all nonempty
closed subsets of X equipped with an appropriate complete metric, say h. We then
show that the collection of all sets A ∈ S(X) for which problem (P) is well posed
has a σ -porous complement.

In the second result (Theorem 7.4) we consider the space of pairs S(X) × X

with the metric h(A,B) + ‖x − y‖, where A,B ∈ S(X) and x, y ∈ X. Once again
we show that the family of all pairs (A,x) ∈ S(X) × X for which problem (P) is
well-posed has a σ -porous complement.

In our third result (Theorem 7.5) we show that for any nonempty, separable and
closed subset X0 of X, there exists a subset F of (S(X),h) with a σ -porous com-
plement such that any A ∈ F has the following property:

There exists a dense Gδ subset F of X0 such that for any x ∈ F , the minimization
problem (P) is well posed.

In order to prove these results we now provide more information on porous sets.
Let (Y,ρ) be a metric space. We denote by Bρ(y, r) the closed ball of center

y ∈ Y and radius r > 0.
The following simple observation was made in [180].

Proposition 7.1 Let E be a subset of the metric space (Y,ρ). Assume that there
exist r0 > 0 and β ∈ (0,1) such that the following property holds:

(P1) For each x ∈ Y and each r ∈ (0, r0], there exists z ∈ Y \E such that ρ(x, z) ≤
r and Bρ(z,βr) ∩ E = ∅.

Then E is porous with respect to ρ.

Proof Let x ∈ Y and r ∈ (0, r0]. By property (P1), there exists z ∈ Y \ E such that

ρ(x, z) ≤ r/2 and Bρ(z,βr/2) ∩ E = ∅.

Hence Bρ(z,βr/2) ⊂ Bρ(x, r) \ E and Proposition 7.1 is proved. �

As a matter of fact, property (P1) can be weakened.

Proposition 7.2 Let E be a subset of the metric space (Y,ρ). Assume that there
exist r0 > 0 and β ∈ (0,1) such that the following property holds:

(P2) For each x ∈ E and each r ∈ (0, r0], there exists z ∈ Y \E such that ρ(x, z) ≤
r and Bρ(z,βr) ∩ E = ∅.

Then E is porous with respect to ρ.
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Proof We may assume that β < 1/2. Let x ∈ Y and r ∈ (0, r0]. We will show that
there exists z ∈ Y \ E such that

ρ(x, z) ≤ r and Bρ(z,βr/2) ∩ E = ∅. (7.1)

If Bρ(x, r/4) ∩ E = ∅, then (7.1) holds with z = x. Assume now that Bρ(x, r/4) ∩
E �= ∅. Then there exists

x1 ∈ Bρ(x, r/4) ∩ E. (7.2)

By property (P2), there exists z ∈ Y \ E such that

ρ(x1, z) ≤ r/2 and Bρ(z,βr/2) ∩ E = ∅. (7.3)

The relations (7.2) and (7.3) imply that

ρ(x, z) ≤ ρ(x, x1) + ρ(x1, z) ≤ 3r/4.

Thus there indeed exists z ∈ Y \ E satisfying (7.1). Proposition 7.2 is now seen to
follow from Proposition 7.1. �

The following definition was introduced in [180].
Assume that a set Y is equipped with two metrics ρ1 and ρ2 such that ρ1(x, y) ≤

ρ2(x, y) for all x, y ∈ Y and that the metric spaces (Y,ρ1) and (Y,ρ2) are complete.
We say that a set E ⊂ Y is porous with respect to the pair (ρ1, ρ2) if there exist

r0 > 0 and α ∈ (0,1) such that for each x ∈ E and each r ∈ (0, r0], there exists
z ∈ Y \ E such that ρ2(z, x) ≤ r and Bρ1(z,αr) ∩ E = ∅.

Proposition 7.2 implies that if E is porous with respect to (ρ1, ρ2), then it is
porous with respect to both ρ1 and ρ2.

A set E ⊂ Y is called σ -porous with respect to (ρ1, ρ2) if it is a countable union
of sets which are porous with respect to (ρ1, ρ2).

As a matter of fact, it turns out that our results are true not only for Banach
spaces, but also for all complete hyperbolic spaces.

Let (X,ρ,M) be a complete hyperbolic space. For each x ∈ X and each A ⊂ X,
set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

Denote by S(X) the family of all nonempty closed subsets of X. For each A,B ∈
S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.4)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

It is easy to see that H̃ is a metric on S(X) and that the space (S(X), H̃ ) is complete.
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Fix θ ∈ X. For each natural number n and each A,B ∈ S(X), we set

hn(A,B) = sup
{∣∣ρ(x,A) − ρ(x,B)

∣
∣ : x ∈ X and ρ(x, θ) ≤ n

}
(7.5)

and

h(A,B) =
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly,

H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h.
We now state the following three results which were obtained in [138]. Their

proofs are given later in this chapter.

Theorem 7.3 Let (X,ρ,M) be a complete hyperbolic space and let x̃ ∈ X. Then
there exists a set Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -porous with
respect to the pair (h, H̃ ) and such that for each A ∈ Ω , the following property
holds:

(C1) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = ρ(x̃,A). Moreover, for each
ε > 0, there exists δ > 0 such that if x ∈ A satisfies ρ(x̃, x) ≤ ρ(x̃,A) + δ,
then ρ(x, ỹ) ≤ ε.

To state the following result we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

) = h(A,B) + ρ(x, y),

d2
(
(A,x), (B,y)

) = H̃ (A,B) + ρ(x, y), x, y ∈ X,A,B ∈ S(X).

Theorem 7.4 Let (X,ρ,M) be a complete hyperbolic space. There exists a set Ω ⊂
S(X) × X such that its complement [S(X) × X] \ Ω is σ -porous with respect to the
pair (d1, d2) and such that for each (A, x̃) ∈ Ω , the following property holds:

(C2) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = ρ(x̃,A). Moreover, for each
ε > 0, there exists δ > 0 such that if z ∈ X satisfies ρ(x̃, z) ≤ δ, B ∈ S(X) sat-
isfies h(A,B) ≤ δ, and y ∈ B satisfies ρ(y, z) ≤ ρ(z,B)+δ, then ρ(y, ỹ) ≤ ε.

In classical generic results the set A was fixed and x varied in a dense Gδ subset
of X. In our first two results the set A is also variable. However, in our third result
we show that if X0 is a nonempty, separable and closed subset of X, then for every
fixed A in a dense Gδ subset of S(X) with a σ -porous complement, the set of all
x ∈ X0 for which problem (P) is well posed contains a dense Gδ subset of X0.
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Theorem 7.5 Let (X,ρ,M) be a complete hyperbolic space. Assume that X0 is a
nonempty, separable and closed subset of X. Then there exists a set F ⊂ S(X) such
that S(X) \ F is σ -porous with respect to the pair (h, H̃ ) and such that for each
A ∈ F , the following property holds:

(C3) There exists a set F ⊂ X0 which is a countable intersection of open and ev-
erywhere dense subsets of X0 with the relative topology such that for each
x̃ ∈ F , there exists a unique ỹ ∈ A for which ρ(x̃, ỹ) = ρ(x̃,A). Moreover, if
{yi}∞i=1 ⊂ A satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A), then yi → ỹ as i → ∞.

7.2 Auxiliary Results

Let (X,ρ,M) be a complete hyperbolic space and let S(X) be the family of all
nonempty closed subsets of X.

Lemma 7.6 Let A ∈ S(X), x̃ ∈ X and let r, ε ∈ (0,1). Then there exists x̄ ∈ X such
that ρ(x̄,A) ≤ r and for the set Ã = A ∪ {x̄} the following properties hold:

ρ(x̃, x̄) = ρ(x̃, Ã);
if x ∈ Ã and ρ(x̃, x) ≤ ρ(x̃, Ã) + εr/4, then ρ(x̄, x) ≤ ε.

Proof If ρ(x̃,A) ≤ r , then the lemma holds with x̄ = x̃ and Ã = A∪ {x̃}. Therefore
we may restrict ourselves to the case where

ρ(x̃,A) > r. (7.6)

Choose x0 ∈ A such that

ρ(x̃, x0) ≤ ρ(x̃,A) + r/2. (7.7)

There exists

x̄ ∈ {
γ x̃ ⊕ (1 − γ )x0 : γ ∈ (0,1)

}
(7.8)

such that

ρ(x̄, x0) = r and ρ(x̃, x̄) = ρ(x̃, x0) − r. (7.9)

Set Ã = A ∪ {x̄}. We have by (7.9) and (7.7),

ρ(x̃, x̄) = ρ(x̃, x0) − r ≤ ρ(x̃,A) + r/2 − r = ρ(x̃,A) − r/2.

Therefore ρ(x̃, x̄) = ρ(x̃, Ã), and if x ∈ Ã and ρ(x̃, x) < ρ(x̃, Ã)+r/2, then x = x̄.
This completes the proof of Lemma 7.6. �

Before stating our next lemma we choose, for each ε ∈ (0,1) and each natural
number n, a number

α(ε,n) ∈ (
0,16−n−2ε

)
. (7.10)
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Lemma 7.7 Let A ∈ S(X), x̃ ∈ X and let r, ε ∈ (0,1). Suppose that n is a natural
number, let

α = α(ε,n) (7.11)

and assume that

ρ(x̃, θ) ≤ n and
{
x ∈ X : ρ(x, θ) ≤ n

} ∩ A �= ∅. (7.12)

Then there exists x̄ ∈ X such that ρ(x̄,A) ≤ r and such that the set Ã = A∪{x̄} has
the following two properties:

ρ(x̃, x̄) = ρ(x̃, Ã); (7.13)

if

ỹ ∈ X, ρ(ỹ, x̃) ≤ αr, (7.14)

B ∈ S(X), h(Ã,B) ≤ αr, (7.15)

and

z ∈ B, ρ(ỹ, z) ≤ ρ(ỹ,B) + εr/16, (7.16)

then

ρ(z, x̄) ≤ ε. (7.17)

Proof By Lemma 7.6, there exists x̄ ∈ X such that

ρ(x̄,A) ≤ r (7.18)

and such that for the set Ã = A ∪ {x̄}, equality (7.13) is true and the following
property holds:

If x ∈ Ã and ρ(x̃, x) ≤ ρ(x̃, Ã) + εr/8, then ρ(x̄, x) ≤ ε/2. (7.19)

Assume that ỹ ∈ X satisfies (7.14) and B ∈ S(X) satisfies (7.15). We will show
that

ρ(ỹ,B) < ρ(x̃, Ã) + 4αr16n. (7.20)

By (7.14),
∣∣ρ(ỹ, Ã) − ρ(x̃, Ã)

∣∣ ≤ αr.

When combined with (7.13), this implies that
∣∣ρ(ỹ, Ã) − ρ(x̃, x̄)

∣∣ ≤ αr. (7.21)

Relations (7.13) and (7.12) imply that

ρ(x̃, x̄) ≤ ρ(x̃,A) ≤ 2n and ρ(x̄, θ) ≤ 3n. (7.22)
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It follows from (7.5) and (7.15) that

h4n(Ã,B)
(
1 + h4n(Ã,B)

)−1 ≤ 24nh(Ã,B) ≤ 24nαr.

When combined with (7.10) and (7.11), this inequality implies that

h4n(Ã,B) ≤ 24nαr
(
1 − 24nαr

)−1
< 24n+1αr. (7.23)

Since x̄ ∈ Ã, it now follows from (7.23), (7.22) and (7.5) that ρ(x̄,B) < 24n+1αr

and there exists ȳ ∈ X such that

ȳ ∈ B and ρ(x̄, ȳ) < 2αr16n. (7.24)

By (7.24), (7.14) and (7.13),

ρ(ỹ,B) ≤ ρ(ỹ, ȳ) ≤ ρ(ỹ, x̄) + ρ(x̄, ȳ)

< ρ(ỹ, x̃) + ρ(x̃, x̄) + 2αr16n

≤ 2αr16n + αr + ρ(x̃, Ã).

This certainly implies (7.20), as claimed.
Assume now that z ∈ B satisfies (7.16). It follows from (7.16), (7.20), (7.11) and

(7.10) that

ρ(ỹ, z) ≤ ρ(ỹ,B) + εr/16 ≤ ρ(x̃, Ã) + 4αr16n + εr/16

≤ ρ(x̃, Ã) + εr/8. (7.25)

Relations (7.25), (7.22) and (7.14) imply that

ρ(ỹ, z) ≤ ρ(x̃, Ã) + εr/8 ≤ 2n + r/8. (7.26)

By (7.26), (7.14), (7.11) and (7.12),

ρ(z, θ) ≤ ρ(z, ỹ) + ρ(ỹ, θ) ≤ 2n + r/8 + ρ(ỹ, θ)

≤ 2n + r/8 + ρ(ỹ, x̃) + ρ(x̃, θ)

≤ 2n + r/8 + αr + n ≤ 4n. (7.27)

It follows from (7.23), (7.5), (7.16) and (7.27) that

ρ(z, Ã) = ∣∣ρ(z, Ã) − ρ(z,B)
∣∣ ≤ h4n(Ã,B) < 2αr16n.

Hence there exists z̃ ∈ X such that

z̃ ∈ Ã and ρ(z, z̃) < 2αr16n. (7.28)

By (7.14), (7.28) and (7.16) we have
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ρ(x̃, z̃) ≤ ρ(x̃, ỹ) + ρ(ỹ, z) + ρ(z, z̃)

≤ αr + ρ(ỹ, z) + 2αr16n

≤ αr + 2αr16n + ρ(ỹ,B) + εr/16.

It follows from this inequality, (7.20), (7.11) and (7.10) that

ρ(x̃, z̃) ≤ αr + 2αr16n + εr/16 + ρ(x̃, Ã) + 4αr16n

≤ ρ(x̃, Ã) + 8αr16n + εr/16 ≤ ρ(x̃, Ã) + εr/8.

Thus

ρ(x̃, z̃) ≤ ρ(x̃, Ã) + εr/8.

Using this inequality, (7.28) and (7.19), we see that ρ(x̄, z̃) ≤ ε/2. Combining this
fact with (7.28), (7.11) and (7.10), we conclude that

ρ(z, x̄) ≤ ρ(z, z̃) + ρ(z̃, x̄) ≤ 2αr16n + ε/2 ≤ ε.

Thus (7.17) holds and Lemma 7.7 is proved. �

7.3 Proofs of Theorems 7.3–7.5

Proof of Theorem 7.3 For each integer k ≥ 1, denote by Ωk the set of all A ∈ S(X)

which have the following property:

(P3) There exist xA ∈ X and δA > 0 such that if x ∈ A satisfies ρ(x, x̃) ≤ ρ(x̃,A)+
δA, then ρ(x, xA) ≤ 1/k.

Clearly, Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set

Ω =
∞⋂

k=1

Ωk.

First we will show that S(X) \ Ω is σ -porous with respect to the pair (h, H̃ ). To
meet this goal it is sufficient to show that S(X) \ Ωk is σ -porous with respect to
(h, H̃ ) for all sufficiently large integers k.

There exists a natural number k0 such that ρ(θ, x̃) ≤ k0. Let k ≥ k0 be an integer.
We will show that the set S(X) \ Ωk is σ -porous with respect to (h, H̃ ). For each
integer n ≥ k0, set

Enk = {
A ∈ S(X) \ Ωk : {z ∈ X : ρ(z, θ) ≤ n

} ∩ A �= ∅}
.

By Lemma 7.7, the set Enk is porous with respect to (h, H̃ ) for all integers n ≥ k0.
Since S(X)\Ωk = ⋃∞

n=k0
Enk , we conclude that S(X)\Ωk is σ -porous with respect

to (h, H̃ ). Therefore S(X) \ Ω is also σ -porous with respect to (h, H̃ ).
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Let A ∈ Ω be given. We will show that A has property (C1). By the definition
of Ωk and property (P3), for each integer k ≥ 1, there exist xk ∈ X and δk > 0 such
that the following property holds:

(P4) If x ∈ A satisfies ρ(x, x̃) ≤ ρ(x̃,A) + δk , then ρ(x, xk) ≤ 1/k.

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞ρ(x̃, zi) = ρ(x̃,A). (7.29)

Fix an integer k ≥ 1. It follows from property (P4) that for all large enough natural
numbers i,

ρ(x̃, zi) ≤ ρ(x̃,A) + δk

and

ρ(zi, xk) ≤ 1/k.

Since k is an arbitrary natural number, we conclude that {zi}∞i=1 is a Cauchy se-
quence which converges to some ỹ ∈ A. It is clear that ρ(x̃, ỹ) = ρ(x̃,A). If the
minimizer ỹ were not unique, we would be able to construct a nonconvergent mini-
mizing sequence {zi}∞i=1. Thus ỹ is the unique solution to problem (P) (with x = x̃)
and any sequence {zi}∞i=1 ⊂ A satisfying (7.29) converges to ỹ. This completes the
proof of Theorem 7.3. �

Proof of Theorem 7.4 For each integer k ≥ 1, denote by Ωk the set of all (A, x̃) ∈
S(X) × X which have the following property:

(P5) There exist x̄ ∈ X and δ̄ > 0 such that if x ∈ X satisfies ρ(x, x̃) ≤ δ̄, B ∈
S(X) satisfies h(A,B) ≤ δ̄, and y ∈ B satisfies ρ(y, x) ≤ ρ(x,B) + δ̄, then
ρ(y, x̄) ≤ 1/k.

Clearly Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set

Ω =
∞⋂

k=1

Ωk.

First we will show that [S(X)×X] \Ω is σ -porous with respect to the pair (d1, d2).
For each pair of natural numbers n and k, set

Enk = {
(A,x) ∈ [

S(X) × X
] \ Ωk : ρ(x, θ) ≤ n,Bρ(θ,n) ∩ A �= ∅}

.

By Lemma 7.7, the set Enk is porous with respect to (d1, d2) for all natural numbers
n and k. Since

[
S(X) × X

] \ Ω =
∞⋃

k=1

([
S(X) × X

] \ Ωk

) =
∞⋃

k=1

∞⋃

n=1

Enk,

the set [S(X) × X] \ Ω is σ -porous with respect to (d1, d2), by definition.
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Let (A, x̃) ∈ Ω . We will show that (A, x̃) has property (C2).
By the definition of Ωk and property (P5), for each integer k ≥ 1, there exist

xk ∈ X and δk > 0 with the following property:

(P6) If x ∈ X satisfies ρ(x, x̃) ≤ δk , B ∈ S(X) satisfies h(A,B) ≤ δk , and y ∈ B

satisfies ρ(y, x) ≤ ρ(x,B) + δk , then ρ(y, xk) ≤ 1/k.

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞ρ(x̃, zi) = ρ(x̃,A). (7.30)

Fix an integer k ≥ 1. It follows from property (P6) that for all large enough natural
numbers i,

ρ(x̃, zi) ≤ ρ(x̃,A) + δk

and

ρ(zi, xk) ≤ 1/k.

Since k is an arbitrary natural number, we conclude that {zi}∞i=1 is a Cauchy se-
quence which converges to some ỹ ∈ A. Clearly, ρ(x̃, ỹ) = ρ(x̃,A). It is not difficult
to see that ỹ is the unique solution to the minimization problem (P) with x = x̃.

Let ε > 0 be given. Choose an integer k > 4/min{1, ε}. By property (P6),

ρ(ỹ, xk) ≤ 1/k. (7.31)

Assume that z ∈ X satisfies ρ(z, x̃) ≤ δk , B ∈ S(X) satisfies h(A,B) ≤ δk and
y ∈ B satisfies ρ(y, z) ≤ ρ(z,B) + δk . Then it follows from property (P6) that
ρ(y, xk) ≤ 1/k. When combined with (7.31), this implies that ρ(y, ỹ) ≤ 2/k < ε.
This completes the proof of Theorem 7.4. �

Proof of Theorem 7.5 Let {xi}∞i=1 ⊂ X0 be an everywhere dense subset of X0. For
each natural number p, there exists a set Fp ⊂ S(X) such that Theorem 7.3 holds
with x̃ = xp and Ω = Fp . Set F = ⋂∞

p=1 Fp . Clearly, S(X) \ F is σ -porous with
respect to the pair (h, H̃ ).

Let A ∈F and let p ≥ 1 be an integer. By Theorem 7.3, which holds with x̃ = xp

and Ω = Fp , there exists a unique x̄p ∈ A such that

ρ(xp, x̄p) = ρ(xp,A) (7.32)

and the following property holds:

(P7) For each integer k ≥ 1, there exists δ(p, k) > 0 such that if x ∈ A satisfies
ρ(x, xp) ≤ ρ(xp,A) + 4δ(p, k), then ρ(x, x̄p) ≤ 1/k.

For each pair of natural numbers p and k, set

V (p, k) = {
z ∈ X0 : ρ(z, xp) < δ(p, k)

}
.
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It follows from property (P7) that for each pair of integers p,k ≥ 1, the following
property holds:

(P8) If x ∈ A, z ∈ X0, ρ(z, xp) ≤ δ(p, k) and ρ(z, x) ≤ ρ(z,A) + δ(p, k), then
ρ(x, x̄p) ≤ 1/k.

Set

F :=
∞⋂

k=1

[⋃{
V (p, k) : p = 1,2, . . .

}]
.

Clearly, F is a countable intersection of open and everywhere dense subsets of X0.
Let x ∈ F be given. Consider a sequence {xi}∞i=1 ⊂ A such that

lim
i→∞ρ(x, xi) = ρ(x,A). (7.33)

Let ε > 0. Choose a natural number k > 8−1/min{1, ε}. There exists an integer
p ≥ 1 such that x ∈ V (p, k). By the definition of V (p, k), ρ(x, xp) < δ(p, k). It
follows from this inequality and property (P8) that for all sufficiently large integers
i, ρ(x, xi) ≤ ρ(x,A) + δ(p, k) and ρ(xi, x̄p) ≤ 1/k < ε/2. Since ε is an arbitrary
positive number, we conclude that {xi}∞i=1 is a Cauchy sequence which converges to
ỹ ∈ A. Clearly, ỹ is the unique minimizer of the minimization problem z → ρ(x, z),
z ∈ A. Note that we have shown that any sequence {xi}∞i=1 ⊂ A satisfying (7.33)
converges to ỹ. This completes the proof of Theorem 7.5. �

7.4 Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x ∈ X and a continuous func-
tion f : X → R1, we consider the problem of finding a solution to the minimization
problem min{f (x − y) : y ∈ A}. For a fixed function f , we define an appropriate
complete metric space M of all pairs (A,x) and construct a subset Ω of M, which
is a countable intersection of open and everywhere dense sets such that for each pair
in Ω , our minimization problem is well posed.

Let (X,‖ · ‖) be a Banach space and let f : X → R1 be a continuous function.
Assume that

inf
{
f (x) : x ∈ X

}
is attained at a unique point x∗ ∈ X, (7.34)

lim‖u‖→∞f (u) = ∞, (7.35)

if {xi}∞i=1 ⊂ X and lim
i→∞f (xi) = f (x∗), then lim

i→∞xi = x∗, (7.36)

and that for each integer n ≥ 1, there exists an increasing function φn : (0,1) →
(0,1) such that

f
(
αx + (1 − α)x∗

) ≤ φn(α)f (x) + (
1 − φn(α)

)
f (x∗) (7.37)
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for all x ∈ X satisfying ‖x‖ ≤ n and all α ∈ (0,1). It is clear that (7.37) holds if f

is convex.
Given a closed subset A of X and a point x ∈ X, we consider the minimization

problem

min
{
f (x − y) : y ∈ A

}
. (P)

This problem was studied by many mathematicians mostly in the case where
f (x) = ‖x‖. We recall that the minimization problem (P) is said to be well posed
if it has a unique solution, say a0, and every minimizing sequence of (P) converges
to a0. In other words, if {yi}∞i=1 ⊂ A and limi→∞ f (x − yi) = f (x − a0), then
limi→∞ yi = a0.

Note that in the studies of problem (P) [52, 59, 84, 88, 173], the function f is the
norm of the space X. There are some additional results in the literature where either
f is a Minkowski functional [51, 93] or the function ‖x − y‖, y ∈ A, is perturbed
by some convex function [42].

However, the fundamental restriction in all these results is that they only hold
under certain assumptions on either the space X or the set A. In view of the Lau-
Konjagin result mentioned above, these assumptions cannot be removed. On the
other hand, many generic results in nonlinear functional analysis hold in any Banach
space. Therefore a natural question is whether generic existence results for best ap-
proximation problems can be obtained for general Banach spaces. Positive answers
to this question in the special case where f = ‖ · ‖ can be found in Sects. 7.1–7.3.
In the next sections, which are based on [143], we answer this question in the affir-
mative for a general function f satisfying (7.34)–(7.37).

To this end, we change our point of view and consider another framework, the
main feature of which is that the set A in problem (P) can also vary. We prove four
theorems which were established in [143]. In our first result (Theorem 7.8), we fix
x and consider the space S(X) of all nonempty closed subsets of X equipped with
an appropriate complete metric, say h. We then show that the collection of all sets
A ∈ S(X) for which problem (P) is well posed contains an everywhere dense Gδ

set. In the second result (Theorem 7.9), we consider the space of pairs S(X) × X

with the metric h(A,B) + ‖x − y‖, A,B ∈ S(X), x, y ∈ X. Once again, we show
that the family of all pairs (A,x) ∈ S(X) × X for which problem (P) is well posed
contains an everywhere dense Gδ set. In our third result (Theorem 7.10), we show
that for any separable closed subset X0 of X, there exists an everywhere dense Gδ

subset F of (S(X),h) such that any A ∈ F has the following property: there exists
a Gδ dense subset F of X0 such that for any x ∈ F , problem (P) is well posed.

In our fourth result (Theorem 7.11), we show that a continuous coercive convex
f : X → R1 which has a unique minimizer and a certain well-posedness property
(on the whole space X) has a unique minimizer and the same well-posedness prop-
erty on a generic closed subset of X.
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7.5 Theorems 7.8–7.11

We recall that (X,‖ · ‖) is a Banach space, f : X → R1 is a continuous function
satisfying (7.34)–(7.36) and that for each integer n ≥ 1, there exists an increasing
function φn : (0,1) → (0,1) such that (7.37) is true.

For each x ∈ X and each A ⊂ X, set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
(7.38)

and

ρf (x,A) = inf
{
f (x − y) : y ∈ A

}
. (7.39)

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A,B ∈ S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.40)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (S(X), H̃ ) is complete.
For each natural number n and each A,B ∈ S(X), we set

hn(A,B) := sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ‖x‖ ≤ n
}

(7.41)

and

h(A,B) :=
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly, H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h. The topologies induced
by the metrics H̃ and h on S(X) will be called the strong topology and the weak
topology, respectively.

We now state Theorems 7.8–7.11.

Theorem 7.8 Let x̃ ∈ X. Then there exists a set Ω ⊂ S(X), which is a countable in-
tersection of open (in the weak topology) everywhere dense (in the strong topology)
subsets of S(X), such that for each A ∈ Ω , the following property holds:

(C1) There exists a unique ỹ ∈ A such that f (x̃ − ỹ) = ρf (x̃,A). Moreover,
for each ε > 0, there exists δ > 0 such that if x ∈ A satisfies f (x̃ − x) ≤
ρf (x̃,A) + δ, then ‖x − ỹ‖ ≤ ε.
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To state our second result we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

) = h(A,B) + ρ(x, y),

d2
(
(A,x), (B,y)

) = H̃ (A,B) + ρ(x, y), x, y ∈ X,A,B ∈ S(X).

We will refer to the topologies induced on S(X) × X by d2 and d1 as the strong and
weak topologies, respectively.

Theorem 7.9 There exists a set Ω ⊂ S(X) × X, which is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
S(X) × X, such that for each (A, x̃) ∈ Ω , the following property holds:

(C2) There exists a unique ỹ ∈ A such that f (x̃ − ỹ) = ρf (x̃,A). Moreover, for
each ε > 0, there exists δ > 0 such that if z ∈ X satisfies ‖z − x̃‖ ≤ δ, B ∈
S(X) satisfies h(A,B) ≤ δ, and y ∈ B satisfies f (z− y) ≤ ρf (z,B)+ δ, then
‖y − ỹ‖ ≤ ε.

In most classical generic results the set A was fixed and x varied in a dense Gδ

subset of X. In our first two results the set A is also variable. However, our third
result shows that for every fixed A in a dense Gδ subset of S(X), the set of all x ∈ X

for which problem (P) is well posed contains a dense Gδ subset of X.

Theorem 7.10 Assume that X0 is a closed separable subset of X. Then there exists
a set F ⊂ S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A ∈F ,
the following property holds:

(C3) There exists a set F ⊂ X0, which is a countable intersection of open and ev-
erywhere dense subsets of X0 with the relative topology, such that for each
x̃ ∈ F , there exists a unique ỹ ∈ A for which f (x̃ − ỹ) = ρf (x̃,A). More-
over, if {yi}∞i=1 ⊂ A satisfies limi→∞ f (x̃ − yi) = ρf (x̃,A), then yi → ỹ as
i → ∞.

Now we will show that Theorem 7.8 implies the following result.

Theorem 7.11 Assume that g : X → R1 is a continuous convex function such that
inf{g(x) : x ∈ X} is attained at a unique point y∗ ∈ X, lim‖u‖→∞ g(u) = ∞, and if
{yi}∞i=1 ⊂ X and limi→∞ g(yi) = g(y∗), then yi → y∗ as i → ∞. Then there exists
a set Ω ⊂ S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A ∈ Ω ,
the following property holds:

(C4) There is a unique yA ∈ A such that g(yA) = inf{g(y) : y ∈ A}. Moreover, for
each ε > 0, there exists δ > 0 such that if y ∈ A satisfies g(y) ≤ g(yA) + δ,
then ‖y − yA‖ ≤ ε.
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Proof Define f (x) = g(−x), x ∈ X. Clearly, f is convex and satisfies (7.34)–
(7.36). Therefore Theorem 7.8 is valid with x̃ = 0 and there exists a set Ω ⊂ S(X),
which is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of S(X), such that for each A ∈ Ω , the following
property holds:

There is a unique ỹ ∈ A such that

g(ỹ) = f (−ỹ) = inf
{
f (−y) : y ∈ A

} = inf
{
g(y) : y ∈ A

}
.

Moreover, for each ε > 0, there exists δ > 0 such that if x ∈ A satisfies

g(x) = f (−x) ≤ ρf (0,A) + δ = inf
{
f (−y) : y ∈ A

} + δ = inf
{
g(y) : y ∈ A

} + δ,

then ‖x − ỹ‖ ≤ ε. Theorem 7.11 is proved. �

It is easy to see that in the proofs of Theorems 7.8–7.10 we may assume without
loss of generality that inf{f (x) : x ∈ X} = 0. It is also not difficult to see that we
may assume without loss of generality that x∗ = 0. Indeed, instead of the function
f (·) we can consider f (·+x∗). This new function also satisfies (7.34)–(7.37). Once
Theorems 7.8–7.10 are proved for this new function, they will also hold for the
original function f because the mapping (A,x) → (A,x +x∗), (A,x) ∈ S(X)×A,
is an isometry with respect to both metrics d1 and d2.

7.6 A Basic Lemma

Lemma 7.12 Let A ∈ S(X), x̃ ∈ X, and let r, ε ∈ (0,1). Then there exists Ã ∈
S(X), x̄ ∈ Ã, and δ > 0 such that

H̃ (A, Ã) ≤ r, f (x̃ − x̄) = ρf (x̃, Ã), (7.42)

and such that the following property holds:
For each ỹ ∈ X satisfying ‖ỹ − x̃‖ ≤ δ, each B ∈ S(X) satisfying h(B, Ã) ≤ δ,

and each z ∈ B satisfying

f (ỹ − z) ≤ ρf (ỹ,B) + δ, (7.43)

the inequality ‖z − x̄‖ ≤ ε holds.

Proof There are two cases: either ρ(x̃,A) ≤ r or ρ(x̃,A) > r . Consider the first
case where

ρ(x̃,A) ≤ r. (7.44)

Set

x̄ = x̃ and Ã = A ∪ {x̃}. (7.45)
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Clearly, (7.42) is true. Fix an integer n > ‖x̃‖. By (7.36), there is ξ ∈ (0,1) such
that

if z ∈ X and f (z) ≤ 4ξ, then ‖z‖ ≤ ε/2. (7.46)

Using (7.34), we choose a number δ ∈ (0,1) such that

δ < 2−n−4 min{ε, ξ} (7.47)

and

if z ∈ X and ‖z‖ ≤ 2n+4δ, then f (z) ≤ ξ. (7.48)

Let

ỹ ∈ X, ‖ỹ − x̃‖ ≤ δ, B ∈ S(X), h(B, Ã) ≤ δ (7.49)

and let z ∈ B satisfy (7.43). By (7.49) and (7.41), hn(Ã,B)(1+hn(Ã,B))−1 ≤ 2nδ.
This implies that hn(Ã,B)(1 − 2nδ) ≤ 2nδ. When combined with (7.47), this in-
equality shows that hn(Ã,B) ≤ 2n+1δ. Since n > ‖x̃‖, the last inequality, when
combined with (7.44) and (7.41), implies that ρ(x̃,B) ≤ 2n+1δ. Hence there is
x0 ∈ B such that ‖x̃ − x0‖ ≤ 2n+2δ. This inequality and (7.49) imply in turn that
‖ỹ − x0‖ ≤ 2n+3δ. The definition of δ (see (7.48)) now shows that f (ỹ − x0) ≤ ξ .
Combining this inequality with (7.43), (7.47) and the inclusion x0 ∈ B , we see that

f (ỹ − z) ≤ δ + f (ỹ − x0) ≤ ξ + δ ≤ 2ξ. (7.50)

It now follows from (7.46) that ‖z− ỹ‖ ≤ ε/2. Hence (7.47), (7.49) and (7.45) imply
that ‖x̄ − z‖ ≤ ε. This concludes the proof of the lemma in the first case.

Now we turn our attention to the second case where

ρ(x̃,A) > r. (7.51)

For each t ∈ [0, r], set

At = {
v ∈ X : ρ(v,A) ≤ t

} ∈ S(X) (7.52)

and

μ(t) = ρf (x̃,At ). (7.53)

By (7.51) and (7.36),

μ(t) > 0, t ∈ [0, r]. (7.54)

It is clear that μ(t), t ∈ [0, r], is a decreasing function. Choose a number

t0 ∈ (0, r/4) (7.55)

such that μ is continuous at t0. By (7.35), there exists a natural number n which
satisfies the following conditions:

n > 4‖x̃‖ + 8 (7.56)
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and

if z ∈ X,f (x) ≤ μ(0) + 1, then ‖z‖ ≤ n/4. (7.57)

Let φn : (0,1) → (0,1) be an increasing function for which (7.37) is true. Choose a
positive number γ ∈ (0,1) such that

γ < μ(t0)
(
1 − φ(1 − 2r/n)

)
/8. (7.58)

Next, choose a positive number δ0 < 1/4 such that

2n+3δ0 < min{ε, γ }, (7.59)

[t0 − 4δ0, t0 + 4δ0] ⊂ (0, r/4), (7.60)

and
∣∣μ(t) − μ(t0)

∣∣ ≤ γ, t ∈ [t0 − 4δ0, t0 + 4δ0]. (7.61)

Finally, choose a vector x0 such that

x0 ∈ At0 and f (x̃ − x0) ≤ μ(t0) + γ. (7.62)

It follows from (7.62), (7.52) and (7.55) that

‖x0 − x̃‖ ≥ ρ(x̃,A) − ρ(x0,A) ≥ ρ(x̃,A) − t0 ≥ ρ(x̃,A) − r/2, (7.63)

and hence by (6.51),

‖x0 − x̃‖ > r/2. (7.64)

It follows from (7.62) and (7.57) that

‖x0 − x̃‖ ≤ n/4. (7.65)

There exist x̄ ∈ {αx0 + (1 − α)x̃ : α ∈ (0,1)} and α0 ∈ (0,1) such that

‖x̄ − x0‖ = r/2 (7.66)

and

x̄ = α0x0 + (1 − α0)x̃. (7.67)

By (7.67) and (7.66), r/2 = ‖x̄−x0‖ = ‖α0x0 +(1−α0)x̃−x0‖ = (1−α0)‖x̃−x0‖
and

α0 = 1 − r
(
2‖x̃ − x0‖

)−1
. (7.68)

Relations (7.68) and (7.65) imply that

α0 ≤ 1 − r/(2n/4) = 1 − 2r/n. (7.69)
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Set

Ã = At0 ∪ {x̄}. (7.70)

Now we will estimate f (x̃ − x̄). By (7.67), (7.65), (7.37), (7.62) and (7.69),

f (x̃ − x̄) = f
(
x̃ − (

α0x0 + (1 − α0)x̃
)) = f

(
α0(x̃ − x0)

)

≤ φn(α0)f (x̃ − x0) ≤ φn(α0)
(
μ(t0) + γ

)

≤ φn(1 − 2r/n)
(
μ(t0) + γ

)
.

Thus

f (x̃ − x̄) ≤ φn(1 − 2r/n)
(
μ(t0) + γ

) ≤ μ(t0)φn(1 − 2r/n) + γ. (7.71)

By (7.70), (7.53), (7.58) and (7.71), for each x ∈ Ã \ {x̄} ⊂ At0 ,

f (x̃ − x) ≥ μ(t0) > f (x̃ − x̄) (7.72)

and therefore

f (x̃ − x̄) = ρf (x̃, Ã). (7.73)

There exists δ ∈ (0, δ0) such that

2n+4δ < δ0 (7.74)

and

∣∣f (z) − f (x̃ − x̄)
∣∣ ≤ γ /4

for all z ∈ X satisfying
∥∥z − (x̃ − x̄)

∥∥ ≤ 2n+3δ. (7.75)

By (7.70), (7.40), (7.66), (7.62), (7.55) and (7.52),

H̃ (Ã,A) ≤ H(Ã,A) ≤ r. (7.76)

Relations (7.76) and (7.73) imply (7.42). Assume now that

ỹ ∈ X, ‖ỹ − x̃‖ ≤ δ (7.77)

and

B ∈ S(X) and h(Ã,B) ≤ δ. (7.78)

First we will show that

ρf (ỹ,B) ≤ μ(t0)φn(1 − 2r/n) + 2γ. (7.79)
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By (7.78) and the definition of h (see (7.41)), hn(Ã,B)(1 + hn(Ã,B))−1 ≤ 2nδ.
When combined with (7.74), this inequality implies that

hn(Ã,B) ≤ 2nδ
(
1 − 2nδ

)−1 ≤ 2n+1δ. (7.80)

It follows from (7.41) and the definition of n (see (7.57), (7.56)) that ‖x̃ − x̄‖ ≤ n/2
and ‖x̄‖ ≤ n. When combined with (7.70) and (7.80), this implies that ρ(x̄,B) ≤
2n+1δ. Therefore there exists ȳ ∈ B such that ‖x̄ − ȳ‖ ≤ 2n+2δ. Combining this
inequality with (7.77), we see that ‖(ȳ− ỹ)−(x̄− x̃)‖ ≤ ‖x̄− ȳ‖+‖ỹ− x̃‖ ≤ 2n+3δ.
It follows from this inequality and (7.75) that f (ỹ − ȳ) ≤ f (x̃ − x̄) + γ /4. By the
last inequality and (7.71), f (ỹ − ȳ) ≤ μ(t0)φn(1 − 2r/n)+ 2γ . This implies (7.79).

Assume now that z ∈ B satisfies (7.43). To complete the proof of the lemma it is
sufficient to show that ‖x̄ − z‖ ≤ ε. Assume the contrary. Then

‖x̄ − z‖ > ε. (7.81)

We will show that there exists z̄ ∈ Ã such that

‖z − z̄‖ ≤ 2n+2δ. (7.82)

We have already shown that (7.80) holds. By (7.43), (7.79), (7.58) and (7.74),

f (ỹ − z) ≤ ρf (ỹ,B) + δ ≤ φn(1 − 2r/n)μ(t0) + 2γ + δ ≤ μ(0) + 1/2.

Hence ‖z − ỹ‖ ≤ n/4 by (7.57), and by (7.77) and (7.56),

‖z‖ ≤ n/4 + ‖ỹ‖ ≤ n/4 + ‖x̃‖ + ‖ỹ − x̃‖ ≤ n.

Thus ‖z‖ ≤ n. The inclusion z ∈ B and (7.80) now imply that ρ(z, Ã) ≤ hn(B, Ã) ≤
2n+1δ. Therefore there exists z̄ ∈ Ã such that (7.82) holds. It follows from (7.82),
(7.81), (7.70), (7.74) and (7.59) that

z̄ ∈ At0 . (7.83)

By (7.82) and (7.77), ‖z + x̃ − ỹ − z̄‖ ≤ ‖x̃ − ỹ‖ + ‖z − z̄‖ ≤ 2n+2δ + δ ≤ 2n+3δ.
It follows from this inequality, (7.83), (7.52) and (7.74) that

ρ(z + x̃ − ỹ,A) ≤ ‖z + x̃ − ỹ − z̄‖ + ρ(z̄,A) ≤ 2n+3δ + t0 ≤ t0 + δ0.

Thus z + x̃ − ỹ ∈ At0+δ0 . By this inclusion, (7.52), (7.53) and (7.61),

f (ỹ − z) = f
(
x̃ − (z + x̃ − ỹ)

) ≥ ρf (x̃,At0+δ0) = μ(t0 + δ0) ≥ μ(t0) − γ.

Hence, by (7.43), (7.79), (7.59) and (7.74),

μ(t0) − γ ≤ f (ỹ − z) ≤ ρf (ỹ,B) + δ ≤ φn(1 − 2r/n)μ(t0) + 2γ + δ

≤ φn(1 − 2r/n)μ(t0) + 3γ.

Thus μ(t0)−γ ≤ φn(1−2r/n)μ(t0)+3γ , which contradicts (7.58). This completes
the proof of Lemma 7.12. �
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7.7 Proofs of Theorems 7.8–7.11

The cornerstone of our proofs is the property established in Lemma 7.12.
By Lemma 7.12, for each (A,x) ∈ S(X) × X and each integer k ≥ 1, there exist

A(x, k) ∈ S(X), x̄(A, k) ∈ A(x, k), and δ(x,A, k) > 0 such that

H̃
(
A,A(x, k)

) ≤ 2−k, f
(
x − x̄(A, k)

) = ρf

(
x,A(x, k)

)
, (7.84)

and the following property holds:

(P1) For each y ∈ X satisfying ‖y − x‖ ≤ 2δ(x,A, k), each B ∈ S(X) satisfying
h(B,A(x, k)) ≤ 2δ(x,A, k) and each z ∈ B satisfying f (y − z) ≤ ρf (y,B)+
2δ(x,A, k), the inequality ‖z − x̄(A, k)‖ ≤ 2−k holds.

For each (A,x) ∈ S(X) × X and each integer k ≥ 1, define

V (A,x, k) = {
(B,y) ∈ S(X) × X :

h
(
B,A(x, k)

)
< δ(x,A, k) and ‖y − x‖ < δ(x,A, k)

}
(7.85)

and

U(A,x, k) = {
B ∈ S(X) : h(

B,A(x, k)
)
< δ(x,A, k)

}
. (7.86)

Now set

Ω =
∞⋂

n=1

⋃{
V (A,x, k) : (A,x) ∈ S(X) × X,k ≥ n

}
, (7.87)

and for each x ∈ X let

Ωx =
∞⋂

n=1

⋃{
U(A,x, k) : A ∈ S(X), k ≥ n

}
. (7.88)

It is easy to see that Ωx × {x} ⊂ Ω for all x ∈ X, Ωx is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
S(X) for all x ∈ X, and Ω is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of S(X) × X.

Completion of the proof of Theorem 7.9 Let (A, x̃) ∈ Ω . We will show that (A, x̃)

has property (C2). By the definition of Ω (see (7.87)), for each integer n ≥ 1, there
exist an integer kn ≥ n and a pair (An, xn) ∈ S(X) × X such that

(A, x̃) ∈ V (An, xn, kn). (7.89)

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞f (x̃ − zi) = ρf (x̃,A). (7.90)



7.7 Proofs of Theorems 7.8–7.11 373

Fix an integer n ≥ 1. It follows from (7.89), (7.85) and property (P1) that for all
large enough integers i,

f (x̃ − zi) < ρf (x̃,A) + δ(xn,An, kn)

and
∥∥zi − x̄n(An, kn)

∥∥ ≤ 2−n.

Since n ≥ 1 is arbitrary, we conclude that {zi}∞i=1 is a Cauchy sequence which con-
verges to some ỹ ∈ A. Clearly f (x̃ − ỹ) = ρf (x̃,A). If the minimizer ỹ were not
unique we would be able to construct a nonconvergent minimizing sequence {zi}∞i=1.
Thus ỹ is the unique solution to problem (P) (with x = x̃).

Let ε > 0 be given. Choose an integer n > 4/min{1, ε}. By property (P1), (7.89)
and (7.85),

∥∥ỹ − x̄n(An, kn)
∥∥ ≤ 2−n. (7.91)

Assume that z ∈ X satisfies ‖z − x̃‖ ≤ δ(xn,An, kn), B ∈ S(X) satisfies h(A,B) ≤
δ(xn,An, kn), and y ∈ B satisfies f (z − y) ≤ ρf (z,B) + δ(xn,An, kn). Then

h
(
B,An(xn, kn)

) ≤ 2δ(xn,An, kn) and
∥∥z − x̄n(An, kn)

∥∥ ≤ 2δ(xn,An, kn)

by (7.89) and (7.85). Now it follows from property (P1) that

∥∥y − x̄n(An, kn)
∥∥ ≤ 2−n.

When combined with (7.91), this implies that

‖y − ỹ‖ ≤ 21−n < ε.

The proof of Theorem 7.9 is complete. �

Theorem 7.8 follows from Theorem 7.9 and the inclusion Ωx̃ × {x̃} ⊂ Ω .
Although a variant of Theorem 7.10 also follows from Theorem 7.9 by a classi-

cal result of Kuratowski and Ulam [87], the following direct proof may also be of
interest.

Proof of Theorem 7.10 Let the sequence {xi}∞i=1 ⊂ X0 be everywhere dense in X0.
Set F = ⋂∞

p=1 Ωxp . Clearly, F is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) subsets of S(X).

Let A ∈ F and let p,n ≥ 1 be integers. Clearly, A ∈ Ωxp and by (7.88) and
(7.86), there exist An ∈ S(X) and an integer kn ≥ n such that

h
(
A,An(xp, kn)

)
< δ(xp,An, kn) with A ∈ S(X). (7.92)

It follows from this inequality and property (P1) that the following property holds:
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(P2) For each y ∈ X satisfying ‖y − xp‖ ≤ δ(xp,An, kn) and each z ∈ A satisfying
f (y − z) ≤ ρf (y,A)+ 2δ(xp,An, kn), the inequality ‖z− x̄p(An, kn)‖ ≤ 2−n

holds.

Set W(p,n) = {z ∈ X0 : ‖z − xp‖ < δ(xp,An, kn)} and

F =
∞⋂

n=1

⋃{
W(p,n) : p = 1,2, . . .

}
.

It is clear that F is a countable intersection of open and everywhere dense subsets
of X0.

Let x ∈ F be given. Consider a sequence {zi}∞i=1 ⊂ A such that

lim
i→∞f (x − zi) = ρf (x,A). (7.93)

Let ε > 0. Choose an integer n > 8/min{1, ε}. There exists an integer p ≥ 1 such
that x ∈ W(p,n). By the definition of W(p,n), ‖x −xp‖ < δ(xp,An, kn). It follows
from this inequality, (7.93) and property (P2) that for all sufficiently large integers
i, f (x − zi) ≤ ρf (x,A) + δ(xp,An, kn) and ‖zi − x̄p(An, kn)‖ ≤ 2−n < ε. Since
ε > 0 is arbitrary, we conclude that {zi}∞i=1 is a Cauchy sequence which converges to
ỹ ∈ A. Clearly, ỹ is the unique minimizer of the minimization problem z → f (x −
z), z ∈ A. Note that we have shown that any sequence {zi}∞i=1 ⊂ A satisfying (7.93)
converges to ỹ. This completes the proof of Theorem 7.10. �

7.8 A Porosity Result in Best Approximation Theory

Let D be a nonempty compact subset of a complete hyperbolic space (X,ρ,M) and
denote by S(X) the family of all nonempty closed subsets of X. We endow S(X)

with a pair of natural complete metrics and show that there exists a set Ω ⊂ S(X)

such that its complement S(X) \ Ω is σ -porous with respect to this pair of metrics
and such that for each A ∈ Ω and each x̃ ∈ D, the following property holds: the set
{y ∈ A : ρ(x̃, y) = ρ(x̃,A)} is nonempty and compact, and each sequence {yi}∞i=1 ⊂
A which satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A) has a convergent subsequence. This
result was obtained in [147].

Let (X,ρ,M) be a complete hyperbolic space. For each x ∈ X and each A ⊂ X,
set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

Denote by S(X) the family of all nonempty closed subsets of X. For each A,B ∈
S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.94)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.
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Here we use the convention that ∞/∞ = 1. It is easy to see that H̃ is a metric on
S(X) and that the metric space (S(X), H̃ ) is complete.

Fix θ ∈ X. For each natural number n and each A,B ∈ S(X), we set

hn(A,B) = sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ρ(x, θ) ≤ n
}

(7.95)

and

h(A,B) =
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly,

H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h and prove the following
theorem which is the main result of [147].

Theorem 7.13 Given a nonempty compact subset D of a complete hyperbolic space
(X,ρ,M), there exists a set Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -
porous with respect to the pair of metrics (h, H̃ ), and such that for each A ∈ Ω and
each x̃ ∈ D, the following property holds:

The set {y ∈ A : ρ(x̃, y) = ρ(x̃,A)} is nonempty and compact and each sequence
{yi}∞i=1 ⊂ A which satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A) has a convergent subse-
quence.

7.9 Two Lemmata

Let (X,ρ,M) be a complete hyperbolic space and let D be a nonempty compact
subset of X. In the proof of Theorem 7.13 we will use the following two lemmata.

Lemma 7.14 Let q be a natural number, A ∈ S(X), ε ∈ (0,1), r ∈ (0,1], and let
Q = {ξ1, . . . , ξq} be a finite subset of D. Then there exists a finite set {ξ̃1, . . . , ξ̃q} ⊂
X such that

ρ(ξ̃i ,A) ≤ r, i = 1, . . . , q, (7.96)

and such that the set Ã := A ∪ {ξ̃1, . . . , ξ̃q} has the following properties:

ρ
(
ξi, {ξ̃1, . . . , ξ̃q}) = ρ(ξi, Ã), i = 1, . . . , q; (7.97)

(P3) if i ∈ {1, . . . , q}, x ∈ Ã, and ρ(ξi, x) ≤ ρ(ξi, Ã) + εr/4, then

ρ
(
x, {ξ̃1, . . . , ξ̃q}) ≤ ε.
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Proof Let i ∈ {1, . . . , q}. There are two cases: (1) ρ(ξi,A) ≤ r ; (2) ρ(ξi,A) > r . In
the first case we set

ξ̃i = ξi . (7.98)

In the second case, we first choose xi ∈ A for which

ρ(ξi, xi) ≤ ρ(ξi,A) + r/4, (7.99)

and then choose

ξ̃i ∈ {
γ xi ⊕ (1 − γ )ξi : γ ∈ (0,1)

}
(7.100)

such that

ρ(ξ̃i , xi) = r and ρ(ξ̃i , ξi) = ρ(xi, ξi) − r. (7.101)

Clearly, (7.96) holds. Consider now the set Ã = A ∪ {ξ̃1, . . . , ξ̃q}.
Let i ∈ {1, . . . , q}. It is not difficult to see that if ρ(ξi,A) ≤ r , then the assertion

of the lemma is true. Consider the case where ρ(ξi,A) > r . It follows from (7.99)
and (7.101) that

ρ
(
ξi, {ξ̃1, . . . , ξ̃q}) ≤ ρ(ξi, ξ̃i ) = ρ(xi, ξi) − r

≤ ρ(ξi,A) + r/4 − r = ρ(ξi,A) − 3r/4.

Therefore

ρ
(
ξi, {ξ̃1, . . . , ξ̃q}) = ρ(ξi, Ã),

and if x ∈ Ã and ρ(ξi, x) ≤ ρ(ξi, Ã) + r/2, then x ∈ {ξ̃1, . . . , ξ̃q}. This completes
the proof of Lemma 7.14. �

For each ε ∈ (0,1) and each natural number n, choose a number

α(ε,n) ∈ (
0,16−n−2ε

)
(7.102)

and a natural number n0 such that

ρ(x, θ) ≤ n0, x ∈ D. (7.103)

Lemma 7.15 Let n ≥ n0 be a natural number, A ∈ S(X), ε ∈ (0,1), r ∈ (0,1], and

α = α(ε,n). (7.104)

Assume that
{
z ∈ A : ρ(z, θ) ≤ n

} �= ∅. (7.105)

Then there exist a natural number q and a finite set {ξ̃1, . . . , ξ̃q} ⊂ X such that

ρ(ξ̃i ,A) ≤ r, i = 1, . . . , q, (7.106)
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and if Ã := A ∪ {ξ̃1, . . . , ξ̃q}, u ∈ D, B ∈ S(X),

h(Ã,B) ≤ αr, (7.107)

and

z ∈ B, ρ(u, z) ≤ ρ(u,B) + εr/16, (7.108)

then

ρ
(
z, {ξ̃1, . . . , ξ̃q}) ≤ ε. (7.109)

Proof Since D is compact, there are a natural number q and a finite subset
{ξ1, . . . , ξq} of D such that

D ⊂
q⋃

i=1

{
z ∈ X : ρ(z, ξi) < αr

}
. (7.110)

By Lemma 7.14, there exists a finite set {ξ̃1, . . . ξ̃q} ⊂ X such that (7.106) holds, and
the set Ã := A ∪ {ξ̃1, . . . , ξ̃q} satisfies (7.97) and has the following property:

(P4) If i ∈ {1, . . . , q}, x ∈ Ã, and ρ(ξi, x) ≤ ρ(ξi, Ã) + εr/8, then

ρ
(
x, {ξ̃1, . . . , ξ̃q}) ≤ ε/2.

Assume that u ∈ D, B ∈ S(X), and that (7.107) holds. By (7.110), there is j ∈
{1, . . . , q} such that

ρ(ξj , u) < αr. (7.111)

We will show that

ρ(u,B) < ρ(ξj , Ã) + 4 · 16nαr. (7.112)

Indeed, there exists p ∈ {1, . . . , q} such that

ρ(ξj , ξ̃p) = ρ
(
ξj , {ξ̃1, . . . , ξ̃q}).

By (7.97),

ρ(ξj , ξ̃p) = ρ(ξj , Ã). (7.113)

By (7.111),
∣∣ρ(u, Ã) − ρ(ξj , Ã)

∣∣ ≤ αr. (7.114)

When combined with (7.113), this inequality implies that
∣∣ρ(u, Ã) − ρ(ξj , ξ̃p)

∣∣ ≤ αr. (7.115)

Now (7.113), (7.105) and (7.103) imply that

ρ(ξj , ξ̃p) ≤ ρ(ξj ,A) ≤ 2n and ρ(ξ̃p, θ) ≤ 3n. (7.116)
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It follows from (7.95) and (7.107) that

h4n(Ã,B)
(
1 + h4n(Ã,B)

)−1 ≤ 24nh(Ã,B) ≤ 24nαr,

and when combined with (7.104) and (7.102), this inequality yields

h4n(Ã,B) ≤ 24nαr
(
1 − 24nαr

)−1
< 24n+1αr. (7.117)

Since ξ̃p ∈ Ã, it follows from (7.117), (7.116) and (7.97) that ρ(ξ̃p,B) < 24n+1αr

and there exists v ∈ X such that

v ∈ B and ρ(ξ̃p, v) < 2αr16n. (7.118)

By (7.118), (7.111), (7.113) and (7.118),

ρ(u,B) ≤ ρ(u, v) ≤ ρ(u, ξ̃p) + ρ(ξ̃p, v) ≤ ρ(u, ξj ) + ρ(ξj , ξ̃p) + ρ(ξ̃p, v)

< αr + ρ(ξj , Ã) + 2 · 16nαr.

Hence (7.112) is valid.
Now let (7.108) hold. Then by (7.108), (7.112) and (7.102),

ρ(z,u) ≤ ρ(u,B) + εr/16 < ρ(ξj , Ã) + 4 · 16nαr + εr/16

< ρ(ξj , Ã) + εr/8. (7.119)

Therefore (7.119) and (7.116) imply that

ρ(z,u) ≤ ρ(ξj , Ã) + εr/8 ≤ 2n + r/8.

It follows from this inequality, (7.111) and (7.103) that

ρ(z, θ) ≤ ρ(z,u) + ρ(u, θ) ≤ 2n + r/8 + ρ(u, θ)

≤ 2n + r/8 + ρ(u, ξj ) + ρ(ξj , θ) ≤ 2n + r/8 + αr + n ≤ 4n.

Since z ∈ B , it follows from (7.97) and (7.117) that

ρ(z, Ã) = ∣∣ρ(z, Ã) − ρ(z,B)
∣∣ ≤ h4n(Ã,B) < 2 · 16nαr.

Therefore there exists z̃ ∈ Ã such that

ρ(z, z̃) < 2 · 16nαr. (7.120)

By (7.111), (7.120), (7.108), (7.112) and (7.102),

ρ(z̃, ξj ) ≤ ρ(ξj , u) + ρ(u, z) + ρ(z, z̃) < αr + ρ(u, z) + 2 · 16nαr

≤ αr + 2 · 16nαr + ρ(u,B) + εr/16
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< εr/16 + αr + 2 · 16nαr + ρ(ξj , Ã) + 4 · 16nαr

≤ ρ(ξj , Ã) + 8 · 16nαr + εr/16 ≤ ρ(ξj , Ã) + εr/8

and

ρ(z̃, ξj ) < ρ(ξj , Ã) + εr/8. (7.121)

Since z̃ ∈ Ã, it follows from (7.121) and property (P4) that ρ(z̃, {ξ̃1, . . . , ξ̃q}) ≤ ε/2.
When combined with (7.120) and (7.102), this inequality implies that

ρ
(
z, {ξ̃1, . . . , ξ̃q}) ≤ ε.

This completes the proof of Lemma 7.15. �

7.10 Proof of Theorem 7.13

For each integer k ≥ 1, denote by Ωk the set of all A ∈ S(X) which have the follow-
ing property:

(P5) There exist a nonempty finite set Q ⊂ X and a number δ > 0 such that if
u ∈ D, x ∈ A and ρ(u, x) ≤ ρ(u,A) + δ, then ρ(x,Q) ≤ 1/k.

It is clear that Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set Ω = ⋂∞
k=1 Ωk .

Let k ≥ n0 (see (7.103)) be an integer. We will show that S(X) \ Ωk is σ -porous
with respect to the pair (h, H̃ ). For any integer n ≥ k, define

Enk = {
A ∈ S(X) \ Ωk : {z ∈ A : ρ(z, θ) ≤ n

} �= ∅}
.

By Lemma 7.15, Enk is porous with respect to the pair (h, H̃ ) for all integers n ≥ k.
Thus S(X)\Ωk = ⋃∞

n=k Enk is σ -porous with respect to (h, H̃ ). Hence S(X)\Ω =⋃∞
k=n0

(S(X) \ Ωk) is also σ -porous with respect to the pair of metrics (h, H̃ ).
Let A ∈ Ω . Since A ∈ Ωk for each integer k ≥ 1, it follows from property (P5)

that for any integer k ≥ 1, there exist a nonempty finite set Qk ⊂ X and a number
δk > 0 such that the following property also holds:

(P6) If u ∈ D, x ∈ A, and ρ(u, x) ≤ ρ(x,A) + δk , then ρ(x,Qk) ≤ 1/k.

Let u ∈ D. Consider a sequence {xi}∞i=1 ⊂ A such that limi→∞ ρ(u, xi) =
ρ(u,D). By property (P6), for each integer k ≥ 1, there exists a subsequence
{x(k)

i }∞i=1 of {xi}∞i=1 such that the following two properties hold:

(i) {x(k+1)
i }∞i=1 is a subsequence of {x(k)

i }∞i=1 for all integers k ≥ 1;

(ii) for any integer k ≥ 1, ρ(x
(k)
j , x

(k)
s ) ≤ 2/k for all integers j, s ≥ 1.

These properties imply that there exists a subsequence {x∗
i }∞i=1 of {xi}∞i=1 which

is a Cauchy sequence. Therefore {x∗
i }∞i=1 converges to a point x̃ ∈ A which satisfies

ρ(x̃, u) = limi→∞ ρ(xi, u) = ρ(u,D). This completes the proof of Theorem 7.13.
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7.11 Porous Sets and Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x ∈ X and a Lipschitzian (on
bounded sets) function f : X → R1, we consider the problem of finding a solution
to the minimization problem min{f (x − y) : y ∈ A}. For a fixed function f , we
define an appropriate complete metric space M of all pairs (A,x) and construct a
subset Ω of M, with a σ -porous complement M \ Ω , such that for each pair in Ω ,
our minimization problem is well posed.

Let (X,‖ · ‖) be a Banach space and let f : X → R1 be a Lipschitzian (on
bounded sets) function. Assume that

inf
{
f (x) : x ∈ X

}
is attained at a unique point x∗ ∈ X, (7.122)

lim‖u‖→∞f (u) = ∞, (7.123)

if {xi}∞i=1 ⊂ X and lim
i→∞f (xi) = f (x∗), then lim

i→∞xi = x∗, (7.124)

f
(
αx + (1 − α)x∗

) ≤ αf (x) + (1 − α)f (x∗)

for all x ∈ X and all α ∈ (0,1), (7.125)

and that for each natural number n, there exists kn > 0 such that
∣∣f (x) − f (y)

∣∣ ≤ kn‖x − y‖ for each x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n. (7.126)

Clearly, (7.125) holds if f is convex.
Given a closed subset A of X and a point x ∈ X, we consider the minimization

problem

min
{
f (x − y) : y ∈ A

}
. (P)

For each x ∈ X and each A ⊂ X, set

ρ(x,A) = inf
{‖x − y‖ : y ∈ A

}

and

ρf (x,A) = inf
{
f (x − y) : y ∈ A

}
.

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A,B ∈ S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.127)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (S(X), H̃ ) is complete.
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For each natural number n and each A,B ∈ S(X), we set

hn(A,B) := sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ‖x‖ ≤ n
}

(7.128)

and

h(A,B) :=
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly, H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h. The topologies induced
by the metrics H̃ and h on S(X) will be called the strong topology and the weak
topology, respectively.

Let A ∈ S(X) and x̃ ∈ X be given. We say that the best approximation problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed if there exists a unique x̄ ∈ A such that

f (x̃ − x̄) = inf
{
f (x̃ − y) : y ∈ A

}

and the following property holds:
For each ε > 0, there exists δ > 0 such that if z ∈ X satisfies ‖z − x̃‖ ≤ δ, B ∈

S(X) satisfies h(A,B) ≤ δ, and y ∈ B satisfies f (z − y) ≤ ρf (z,B) + δ, then ‖y −
x̄‖ ≤ ε.

We now state four results obtained in [151]. Their proofs will be given in the next
sections.

Theorem 7.16 Let x̃ ∈ X be given. Then there exists a set Ω ⊂ S(X) such that its
complement S(X) \ Ω is σ -porous with respect to (h, H̃ ) and for each A ∈ Ω , the
problem f (x̃ − y) → min, y ∈ A, is strongly well posed.

To state our second result, we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

) = h(A,B) + ‖x − y‖,
d2

(
(A,x), (B,y)

) = H̃ (A,B) + ‖x − y‖, x, y ∈ X,A,B ∈ S(X).

We will refer to the metrics induced on S(X) × X by d2 and d1 as the strong and
weak metrics, respectively.

Theorem 7.17 There exists a set Ω ⊂ S(X)×X such that its complement (S(X)×
X) \ Ω is σ -porous with respect to (d1, d2) and for each (A, x̃) ∈ Ω , the minimiza-
tion problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed.
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In most classical generic results the set A was fixed and x varied in a dense
Gδ subset of X. In our first two results the set A is also variable. However, our
third result shows that for every fixed A in a subset of S(X) which has a σ -porous
complement, the set of all x ∈ X for which problem (P) is strongly well posed
contains a dense Gδ subset of X.

Theorem 7.18 Assume that X0 is a closed separable subset of X. Then there exists
a set F ⊂ S(X) such that its complement S(X) \ F is σ -porous with respect to
(h, H̃ ) and for each A ∈F , the following property holds:

There exists a set F ⊂ X0, which is a countable intersection of open and every-
where dense subsets of X0 with the relative topology, such that for each x̃ ∈ F , the
minimization problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed.

Now we will show that Theorem 7.16 implies the following result.

Theorem 7.19 Assume that g : X → R1 is a convex function which is Lipschitzian
on bounded subsets of X and that inf{g(x) : x ∈ X} is attained at a unique point
y∗ ∈ X, lim‖u‖→∞ g(u) = ∞, and if {yi}∞i=1 ⊂ X and limi→∞ g(yi) = g(y∗), then
yi → y∗ as i → ∞. Then there exists a set Ω ⊂ S(X) such that its complement
S(X) \ Ω is σ -porous with respect to (h, H̃ ) and for each A ∈ Ω , the following
property holds:

There is a unique yA ∈ A such that g(yA) = inf{g(y) : y ∈ A}. Moreover, for
each ε > 0, there exists δ > 0 such that if y ∈ A satisfies g(y) ≤ g(yA) + δ, then
‖y − yA‖ ≤ ε.

Proof Define f (x) = g(−x), x ∈ X. It is clear that f is convex and satisfies
(7.122)–(7.126). Therefore Theorem 7.16 is valid with x̃ = 0 and there exists a set
Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -porous with respect to (h, H̃ )

and for each A ∈ Ω , the following property holds:
There is a unique ỹ ∈ A such that

g(ỹ) = f (−ỹ) = inf
{
f (−y) : y ∈ A

} = inf
{
g(y) : y ∈ A

}
.

Moreover, for each ε > 0, there exists δ > 0 such that if B ∈ S(X) satisfies
h(A,B) ≤ δ and x ∈ B satisfies

g(x) = f (−x) ≤ ρf (0,B) + δ = inf
{
f (−y) : y ∈ B

} + δ = inf
{
g(y) : y ∈ B

} + δ,

then ‖x − ỹ‖ ≤ ε. Theorem 7.19 is proved. �

It is easy to see that in the proofs of Theorems 7.16–7.18 we may assume without
any loss of generality that inf{f (x) : x ∈ X} = 0. It is also not difficult to see that we
may assume without loss of generality that x∗ = 0. Indeed, instead of the function
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f (·) we can consider f (· + x∗). This new function also satisfies (7.122)–(7.126).
Once Theorems 7.16–7.18 are proved for this new function, they will also hold
for the original function f because the mapping (A,x) → (A,x + x∗), (A,x) ∈
S(X) × X, is an isometry with respect to both metrics d1 and d2.

7.12 A Basic Lemma

Let m and n be two natural numbers. Choose a number

cm > sup
{
f (u) : u ∈ X and ‖u‖ ≤ 2m + 4

} + 2 (7.129)

(see (7.126)). By (7.123), there exists a natural number

am > m + 2

such that

if u ∈ X and f (u) ≤ cm, then ‖u‖ ≤ am. (7.130)

By (7.126), there is km > 1 such that
∣
∣f (x) − f (y)

∣
∣ ≤ km‖x − y‖

for each x, y ∈ X satisfying ‖x‖,‖y‖ ≤ 4am + 4. (7.131)

By (7.131), there exists a positive number

α(m,n) < 2−4am−416−1n−1 (7.132)

such that

if u ∈ X satisfies f (u) ≤ 320amα(m,n), then ‖u‖ ≤ (4n)−1. (7.133)

Finally, we choose a positive number

ᾱ(m,n) < α(m,n)
[
(km + 1)−12−4am−16]. (7.134)

Lemma 7.20 Let

α = α(m,n), ᾱ = ᾱ(m,n), (7.135)

A ∈ S(X), x̃ ∈ X, r ∈ (0,1], and assume that

‖x̃‖ ≤ m and
{
z ∈ X : ‖z‖ ≤ m

} ∩ A �= ∅. (7.136)

Then there exists x̄ ∈ X such that

ρ(x̄,A) ≤ r/8 (7.137)
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and for the set Ã := A ∪ {x̄}, the following property holds:
If

B ∈ S(X), h(Ã,B) ≤ ᾱr, (7.138)

ỹ ∈ X, ‖ỹ − x̃‖ ≤ ᾱr, (7.139)

and

z ∈ B, f (ỹ − z) ≤ ρf (ỹ,B) + αr, (7.140)

then

h(A,B) ≤ r (7.141)

and

‖z − x̄‖ ≤ n−1. (7.142)

Proof First we choose x̄ ∈ X. There are two cases: (1) ρ(x̃,A) ≤ r/8; (2) ρ(x̃,A) >

r/8. If

ρ(x̃,A) ≤ r/8, (7.143)

then we set

x̄ = x̃ and Ã = A ∪ {x̃}. (7.144)

Now consider the second case where

ρ(x̃,A) > r/8. (7.145)

First, choose x0 ∈ A such that

f (x̃ − x0) ≤ ρf (x̃,A) + α(m,n)r (7.146)

and then choose

x̄ ∈ {
γ x̃ + (1 − γ )x0 : γ ∈ (0,1)

}
(7.147)

such that

‖x̄ − x0‖ = r/8 and ‖x̃ − x̄‖ = ‖x̃ − x0‖ − r/8. (7.148)

Finally, set

Ã = A ∪ {x̄}. (7.149)

Clearly, there is γ ∈ (0,1) such that

x̄ = γ x̃ + (1 − γ )x0. (7.150)

It is easy to see that in both cases (7.137) holds and

H̃ (A, Ã) ≤ H(A, Ã) ≤ r/8. (7.151)
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Now assume that z ∈ X satisfies

z ∈ Ã and f (x̃ − z) ≤ ρf (x̃, Ã) + 8α(m,n)r. (7.152)

We will show that ‖x̄ − z‖ ≤ (2n)−1. First consider case (1). Then by (7.152),
(7.144) and (7.149),

f (x̄ − z) = f (x̃ − z) ≤ 8α(m,n)r.

When combined with (7.133), this inequality implies that

‖x̄ − z‖ ≤ (4n)−1.

Now consider case (2). We first estimate f (x̃ − x̄). By (7.150) and (7.125) (with
x∗ = 0 and f (x∗) = 0),

f (x̃ − x̄) = f
(
x̃ − γ x̃ − (1 − γ )x0

)

= f
(
(1 − γ )(x̃ − x0)

) ≤ (1 − γ )f (x̃ − x0). (7.153)

By (7.136), there is z0 ∈ X such that

z0 ∈ A and ‖z0‖ ≤ m. (7.154)

Thus (7.146), (7.132), (7.154) and (7.136) imply that

f (x̃ − x0) ≤ ρf (x̃, Ã) + 1 ≤ f (x̃ − z0) + 1

≤ sup
{
f (u) : u ∈ X,‖u‖ ≤ 2m + 1

} + 1 < cm. (7.155)

Relations (7.155) and (7.130) imply that

‖x0 − x̃‖ ≤ am. (7.156)

It follows from (7.148), (7.150) and (7.156) that

‖x̃ − x0‖ − r/8 = ‖x̃ − x̄‖ = ∥∥x̃ − γ x̃ − (1 − γ )x0
∥∥

= (1 − γ )‖x̃ − x0‖,
1 − γ = (‖x̃ − x0‖ − r/8

)‖x̃ − x0‖−1 = 1 − r
(
8‖x̃ − x0‖

)−1

≤ 1 − r(8am)−1

and that

1 − γ ≤ 1 − r(8am)−1. (7.157)

By (7.153) and (7.157),

f (x̃ − x̄) = (1 − γ )f (x̃ − x0) ≤ (
1 − r(8am)−1)f (x̃ − x0). (7.158)
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Relations (7.152) and (7.158) now imply that

f (x̃ − z) ≤ f (x̃ − x̄) + 8αr ≤ 8αr + (
1 − r(8am)−1)f (x̃ − x0). (7.159)

There are two cases:

f (x̃ − x0) ≥ 8 · 18αam (7.160)

and

f (x̃ − x0) ≤ 8 · 18αam. (7.161)

Assume that (7.160) holds. Then it follows from (7.159), (7.146) and (7.160) that

f (x̃ − z) ≤ 8αr + f (x̃ − x0) − r(8am)−1f (x̃ − x0)

≤ 8αr + ρf (x̃,A) + αr − 8−1 · 18αr < ρf (x̃,A).

Thus z /∈ A and by (7.152) and (7.149),

z = x̄. (7.162)

Now assume that (7.161) is true. By (7.161) and (7.152),

f (x̃ − z) ≤ f (x̃ − x0) + 8αr ≤ 8 · 18αam + 8α ≤ 160αam.

When combined with (7.133), (7.148) and (7.161), this estimate implies that

‖x̃ − z‖ ≤ (4n)−1, ‖x̃ − x0‖ ≤ (4n)−1,

‖x̃ − x̄‖ < ‖x̃ − x0‖ < (4n)−1,

and

‖x̄ − z‖ < (2n)−1.

Thus in both cases,

‖x̄ − z‖ < (2n)−1.

In other words, we have shown that the following property holds:

(P1) If z ∈ X satisfies (7.152), then ‖x̄ − z‖ ≤ (2n)−1.

Now assume that (7.138)–(7.140) hold. By (7.136) and (7.139), we have

‖x̃‖ ≤ m and ‖ỹ‖ ≤ m + 1. (7.163)

Relation (7.136) implies that there is z0 ∈ X such that

z0 ∈ A and ‖z0‖ ≤ m. (7.164)
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It follows from (7.128), (7.138), (7.164), (7.134) and (7.128) that

h4am+4(Ã,B)
(
1 + h4am+4(Ã,B)

)−1 ≤ 24am+4h(Ã,B) ≤ 24am+4ᾱr,

h4am+4(Ã,B) ≤ 24am+4ᾱr
(
1 − 24am+4ᾱr

) ≤ 24am+5ᾱr
(7.165)

and

ρ(z0,B) ≤ ρ(z0, Ã) + ∣
∣ρ(z0,B) − ρ(z0, Ã)

∣
∣

≤ h4am+4(Ã,B) ≤ 24am+5ᾱr. (7.166)

Inequalities (7.166), (7.134) and (7.132) imply that ρ(z0,B) < 1, and that there is
z̃0 ∈ X such that

z̃0 ∈ B and ‖z̃0 − z0‖ < 1. (7.167)

Clearly, by (7.164) and (7.167),

‖z̃0‖ < m + 1. (7.168)

Let
{
(L, l)

} ∈ {
(Ã, x̃), (B, ỹ)

}
. (7.169)

By (7.136), (7.163), (7.164), (7.168) and (7.167),

‖l‖ ≤ m + 1 (7.170)

and there is ū ∈ X such that

ū ∈ L and ‖ū‖ ≤ m + 1. (7.171)

Relations (7.171), (7.170) and (7.129) imply that

ρf (l,L) ≤ f (l − ū) ≤ sup
{
f (u) : u ∈ X,‖u‖ ≤ 2m + 2

} ≤ cm − 2. (7.172)

Also, relations (7.172), (7.130) and (7.170) imply the following property:

(P2) If u ∈ L and f (l−u) ≤ ρf (l,L)+2, then ‖l−u‖ ≤ am and ‖u‖ ≤ ‖l‖+am ≤
2am.

Now assume that Li ∈ S(X) and li ∈ X, i = 1,2, satisfy
{
(L1, l1), (L2, l2)

} = {
(Ã, x̃), (B, ỹ)

}
. (7.173)

Let

u ∈ L1 be such that f (l1 − u) ≤ ρf (l1,L1) + 2. (7.174)

By (7.174), (7.173) and property (P2),

‖u‖ ≤ 2am. (7.175)
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Relations (7.174), (7.173), (7.175), (7.165) and (7.128) imply that

ρ(u,L2) = ∣∣ρ(u,L1) − ρ(u,L2)
∣∣ ≤ h2am(L1,L2)

≤ h4am+4(Ã,B) ≤ 24am+5ᾱr.

When combined with (7.132) and (7.134), this inequality implies that there is v ∈ X

such that

v ∈ L2 and ‖u − v‖ ∈ 24am+6ᾱr ≤ 1. (7.176)

Inequalities (7.175) and (7.176) imply that

‖v‖ ≤ 1 + 2am. (7.177)

By (7.177), (7.175), (7.173) and (7.163),

‖l1 − u‖,‖l2 − v‖ ≤ 1 + 2am + m + 1 < 3am. (7.178)

It follows from (7.176), (7.139) and (7.173) that
∥∥(l1 − u) − (l2 − v)

∥∥ ≤ ᾱr + 24am+6ᾱr. (7.179)

By (7.179), (7.178), (7.134) and the definition of km (see (7.131)),
∣∣f (l1 − u) − f (l2 − v)

∣∣ ≤ km

∥∥(l1 − u) − (l2 − v)
∥∥

≤ kmᾱr
(
1 + 24am+6) ≤ rα2−9. (7.180)

Inequalities (7.180) and (7.176) imply that

ρf (l2,L2) ≤ f (l2 − v) ≤ f (l1 − u) + 2−9αr

and

ρf (l2,L2) ≤ 2−9αr + f (l1 − u). (7.181)

Since (7.181) holds for any u satisfying (7.174), we conclude that

ρf (l2,L2) ≤ 2−9αr + ρf (l1,L1).

This fact implies, in turn, that
∣∣ρf (l1,L1) − ρf (l2,L2)

∣∣ = ∣∣ρf (x̃, Ã) − ρf (ỹ,B)
∣∣ ≤ 2−9αr. (7.182)

By property (P2), (7.169) and (7.140),

‖ỹ − z‖ ≤ am and ‖z‖ ≤ 2am. (7.183)

It follows from (7.140), (7.183), (7.165) and (7.128) that
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ρ(z, Ã) ≤ ρ(z,B) + ∣∣ρ(z,B) − ρ(z, Ã)
∣∣

= ∣
∣ρ(z,B) − ρ(z, Ã)

∣
∣ ≤ h4am+4(Ã,B) ≤ 24am+5ᾱr.

Thus there exists z̃ ∈ X such that

z̃ ∈ Ã and ‖z − z̃‖ ≤ 24am+6ᾱr. (7.184)

By (7.136), (7.183), (7.184), (7.134) and (7.132), we have

‖x̃ − z̃‖ ≤ ‖x̃‖ + ‖z̃‖ ≤ m + ‖z‖ + ‖z̃ − z‖
≤ m + 2am + 24am+6ᾱr ≤ 3am + 1.

When combined with (7.134), (7.184), (7.139), (7.140) and (7.182), this inequality
implies that

f (x̃ − z̃) ≤ f (ỹ − z) + ∣∣f (x̃ − z̃) − f (ỹ − z)
∣∣

≤ f (ỹ − z) + km

∥∥x̃ − z̃ − (ỹ − z)
∥∥ ≤ f (ỹ − z)

≤ km‖x̃ − ỹ‖ + km‖z̃ − z‖ ≤ f (ỹ − z) + kmᾱr + km24am+6ᾱr

≤ ρf (ỹ,B) + αr + kmᾱr
(
1 + 24am+6)

≤ αr + kmᾱr
(
1 + 24am+6) + ρf (x̃, Ã) + 2−9αr ≤ αr + αr + ρf (x̃, Ã).

Thus we see that

f (x̃ − z̃) ≤ ρf (x̃, Ã) + 2αr. (7.185)

It follows from property (P1), (7.152), (7.185) and (7.184) that

‖z̃ − x̄‖ ≤ (2n)−1.

When combined with (7.184), (7.134) and (7.132), this inequality implies that

‖z − x̄‖ ≤ ‖z − z̃‖ + ‖z̃ − x̄‖ ≤ 24am+6ᾱr + (2n)−1 ≤ n−1.

Thus (7.142) is proved. Inequality (7.141) follows from (7.138), (7.151), (7.134)
and (7.132). Thus we have shown that (7.138)–(7.140) imply (7.141) and (7.142).
Lemma 7.20 is proved. �

7.13 Proofs of Theorems 7.16–7.18

We use the notations and the definitions from the previous section.
For each natural number n, denote by Fn the set of all (x,A) ∈ X × S(X) such

that the following property holds:
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(P3) There exist y ∈ A and δ > 0 such that for each x̃ ∈ X satisfying ‖x̃ − x‖ ≤ δ,
each B ∈ S(X) satisfying h(A,B) ≤ δ, and each z ∈ B satisfying f (x̃ − z) ≤
ρf (x̃,B) + δ, the inequality ‖z − y‖ ≤ n−1 holds.

Set

F =
∞⋂

n=1

Fn. (7.186)

Lemma 7.21 If

(x,A) ∈F , (7.187)

then the problem f (x − y) → min, y ∈ A, is strongly well posed.

Proof Let (x,A) ∈ F and let n be a natural number. Since (x,A) ∈ F ⊂ Fn, there
exist xn ∈ A and δn > 0 such that the following property holds:

(P4) For each x̃ ∈ X satisfying ‖x̃ − x‖ ≤ δn, each B ∈ S(X) satisfying h(A,B) ≤
δn, and each z ∈ B satisfying f (x̃ − z) ≤ ρf (x̃,B) + δn, the inequality ‖z −
xn‖ ≤ n−1 holds.

Suppose that

{zi}∞i=1 ⊂ A and lim
i→∞f (x − zi) = ρf (x,A). (7.188)

Let n be any natural number. By (7.188) and property (P4), for all sufficiently large
i we have

f (x − zi) ≤ ρf (x,A) + δn and ‖zi − xn‖ ≤ n−1. (7.189)

The second inequality of (7.189) implies that {zi}∞i=1 is a Cauchy sequence and there
exists

x̄ = lim
i→∞ zi . (7.190)

Limits (7.190) and (7.188) imply that

f (x − x̄) = ρf (x,A).

Clearly, x̄ is the unique solution of the problem f (x − z) → min, z ∈ A. Otherwise
we would be able to construct a nonconvergent sequence {zi}∞i=1 satisfying (7.188).
By (7.190) and (7.189),

‖x̄ − xn‖ ≤ n−1, n = 1,2, . . . . (7.191)

Let ε > 0 be given. Choose a natural number

n > 8ε−1. (7.192)
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Assume that

x̃ ∈ X, ‖x̃ − x‖ ≤ δn, B ∈ S(X), h(A,B) ≤ δn,

z ∈ B, and f (x̃ − z) ≤ ρf (x̃,B) + δn.

By Property (P4), ‖z − xn‖ ≤ 1/n. When combined with (7.192) and (7.191), this
inequality implies that

‖z − x̄‖ ≤ ‖z − xn‖ + ‖xn − x̄‖ ≤ (2n)−1 < ε.

Thus the problem f (x − z) → min, z ∈ A, is strongly well posed. Lemma 7.21 is
proved. �

Proof of Theorem 7.16 For each integer n ≥ 1, set

Ωn := {
A ∈ S(X) : (x̃,A) ∈Fn

}
(7.193)

and let

Ω :=
∞⋂

n=1

Ωn. (7.194)

By Lemma 7.21, (7.193) and (7.194), for each A ∈ Ω , the problem f (x̃ −z) → min,
z ∈ A, is strongly well posed. In order to prove the theorem, it is sufficient to show
that for each natural number n, the set S(X)\Ωn is σ -porous with respect to (h, H̃ ).
To this end, let n be any natural number.

Fix a natural number

m0 > ‖x̃‖. (7.195)

For each integer m ≥ m0, define

Em := {
A ∈ S(X) : A ∩ {

z ∈ X : ‖z‖ ≤ m
} �= ∅}

. (7.196)

Since

S(X) \ Ωn =
∞⋃

m=m0

(Em \ Ωn),

in order to prove the theorem, it is sufficient to show that for any natural number
m ≥ m0, the set Em \ Ωn is porous with respect to (h, H̃ ). Let m ≥ m0 be a natural
number. Define

α∗ = ᾱ(m + 1, n)/2 (7.197)

(see (7.132) and (7.134)). Let A ∈ S(X) and r ∈ (0,1]. There are two cases:
case (1), where

A ∩ {
z ∈ X : ‖z‖ ≤ m + 1

} = ∅ (7.198)
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and case (2), where

A ∩ {
z ∈ X : ‖z‖ ≤ m + 1

} �= ∅. (7.199)

Consider the first case.
Let

B ∈ S(X) be such that h(A,B) ≤ 2−m−2. (7.200)

We claim that B /∈ Em. Assume the contrary. Then there is u ∈ X such that

u ∈ B and ‖u‖ ≤ m. (7.201)

By (7.201) and (7.128),

ρ(u,A) ≤ ρ(u,B) + ∣∣ρ(u,B) − ρ(u,A)
∣∣ ≤ hm(A,B). (7.202)

The definition of hm (see (7.128)) and (7.200) imply that

hm(A,B)
(
1 + hm(A,B)

)−1 ≤ h(A,B)2m ≤ 2−2,

hm(A,B) ≤ hm(A,B)2−2 + 2−2

and

hm(A,B) ≤ 1/3.

When combined with (7.202), this implies that there is v ∈ A such that ‖u − v‖ ≤
1/2. Together with (7.201) this inequality implies that ‖v‖ ≤ m + 1/2, a contradic-
tion (see (7.198)). Therefore B /∈ Em, as claimed. Thus we have shown that

{
B ∈ S(X) : h(A,B) ≤ 2−m−2} ∩ Em = ∅. (7.203)

Now consider the second case. Then by Lemma 7.20, (7.195) and (7.199), there
exists x̄ ∈ X such that

ρ(x̄,A) ≤ r/8

and such that for the set Ã = A ∪ {x̄}, the following property holds:

(P5) if B ∈ S(X), h(Ã,B) ≤ ᾱ(m + 1, n)r , ỹ ∈ X, ‖ỹ − x̃‖ ≤ ᾱ(m + 1, n)r , and
z ∈ B satisfies

f (ỹ − z) ≤ ρf (ỹ,B) + ᾱ(m + 1, n),

then

‖z − x̄‖ ≤ n−1 and h(A,B) ≤ r.

Clearly,

H̃ (A, Ã) ≤ r/8.



7.13 Proofs of Theorems 7.16–7.18 393

Property (P5), (7.193) and the definition of Fn (see (P3)) imply that
{
B ∈ S(X) : h(Ã,B) ≤ ᾱ(m + 1, n)r/2

} ⊂ Ωn.

Thus in both cases we have
{
B ∈ S(X) : h(Ã,B) ≤ α∗r/2

} ∩ (Em \ Ωn) = ∅. (7.204)

(Note that in the first case (7.204) is true with Ã = A.)
Therefore we have shown that the set Em \ Ωn is porous with respect to (h, H̃ ).

Theorem 7.16 is proved. �

Proof of Theorem 7.17 By Lemma 7.21, in order to prove the theorem, it is sufficient
to show that for any natural number n, the set (X × S(X)) \ Fn is σ -porous in
X × S(X) with respect to (h, H̃ ). To this end, let n be a natural number. For each
natural number m, define

Em = {
(x,A) ∈ X × S(X) : ‖x‖ ≤ m and A ∩ {

z ∈ X : ‖z‖ ≤ m
} �= ∅}

. (7.205)

Since

(
X × S(X)

) \Fn =
∞⋃

m=1

Em \Fn,

in order to prove the theorem it is sufficient to show that for each natural number m,
the set Em \Fn is porous in X × S(X) with respect to (h, H̃ ).

Let m be a natural number. Define α∗ by (7.197). Assume that (x̃ × A) ∈ X ×
S(X) and r ∈ (0,1].

There are three cases:
case (1), where

‖x̃‖ > m + 1,

case (2), where

‖x̃‖ ≤ m + 1 and
{
z ∈ A : ‖z‖ ≤ m + 1

} = ∅, (7.206)

and case (3), where

‖x̃‖ ≤ m + 1 and
{
z ∈ A : ‖z‖ ≤ m + 1

} �= ∅. (7.207)

In the first case,
{
(y,B) ∈ X × S(X) : d1

(
(x̃,A), (y,B)

) ≤ 2−1} ∩ Em = ∅. (7.208)

Next, consider the second case. In the proof of Theorem 7.16 we have shown that

if B ∈ S(X) satisfies h(A,B) ≤ 2−m−2, then

B ∩ {
z ∈ X : ‖z‖ ≤ m

} = ∅
and
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{
(y,B) ∈ X × S(X) : d1

(
(y,B), (x̃,A)

) ≤ 2−m−2} ∩ Em = ∅. (7.209)

Finally, consider the third case. Then by Lemma 7.20, there exists x̄ ∈ X such that
ρ(x̄,A) ≤ r/8 and such that for the set Ã = A ∪ {x̄}, property (P5) holds. Clearly,

d2
(
(x̃,A), (x̃, Ã)

) = H̃ (A, Ã) ≤ r/8.

Property (P5) implies that
{
(ỹ,B) ∈ X × S(X) : d1

(
(ỹ,B), (x̃, Ã)

) ≤ ᾱ(m + 1, n)r/2
} ⊂ Fn.

Hence in all three cases we have
{
(ỹ,B) ∈ X × S(X) : d1

(
(ỹ,B), (x̃, Ã)

) ≤ α∗r
} ∩ (Em \Fn) = ∅. (7.210)

Note that in the first and second cases, (7.210) is true with A = Ã. Therefore we
have shown that the set Em \Fn is porous with respect to (d1, d2). Theorem 7.17 is
proved. �

Proof of Theorem 7.18 Let {xi}∞i=1 be a countable dense subset of X0. By countable
dense subset of X0. By Theorem 7.16, for each Fi ⊂ S(X) such that S(X)\Fi is σ -
porous in S(X) with respect to (h, H̃ ) and such that for each A ∈ S(X), the problem
f (xi − z) → min, z ∈ X, is strongly well posed. Set

F :=
∞⋂

i=1

Fi . (7.211)

Clearly, S(X) \F is a σ -porous subset of S(X) with respect to (h, H̃ ).
Let A ∈ F . Assume that n and i are natural numbers. Since the problem f (xi −

z) → min, z ∈ A, is strongly well posed, there exists a number δin > 0 and a unique
x̄i ∈ A such that

f (xi − x̄i ) = ρf (xi,A) (7.212)

and the following property holds:

(P6) if y ∈ X satisfies ‖y − xi‖ ≤ δin, B ∈ S(X) satisfies h(A,B) ≤ δin, and z ∈ B

satisfies

f (y − z) ≤ ρf (y,B) + δin, (7.213)

then ‖z − x̄i‖ ≤ (2n)−1.

Define

F =
∞⋂

q=1

⋃{{
z ∈ X : ‖z − xi‖ < δin

} : i = 1,2, . . . , n = q, q + 1, . . .
} ∩ X0.

(7.214)
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Clearly, F is a countable intersection of open everywhere dense subsets of X0. Let

x̃ ∈ F. (7.215)

For each natural number q , there exist natural numbers nq ≥ q and iq such that

‖x̃ − xiq‖ < δiqnq . (7.216)

Assume that

{yk}∞k=1 ⊂ A and lim
k→∞f (x̃ − yk) = ρf (x̃,A). (7.217)

Let q be a natural number. Then for all sufficiently large natural numbers k,

f (x̃ − yk) ≤ ρf (x̃,A) + δiqnq ,

and by property (P6) and (7.216),

‖yk − x̄iq ‖ ≤ (2nq)−1 ≤ (2q)−1. (7.218)

This implies that {yk}∞k=1 is a Cauchy sequence and there exists x̄ = limk→∞ yk .
By (7.217), f (x̃− x̄) = ρf (x̃,A). Clearly, x̄ is the unique minimizer for the problem
f (x̃ − z) → min, z ∈ A. Otherwise, we would be able to construct a nonconvergent
sequence {yk}∞k=1. By (7.218),

‖x̄ − xiq ‖ ≤ (2q)−1, q = 1,2, . . . . (7.219)

Let ε > 0 be given. Choose a natural number

q > 8ε−1.

Set

δ = δiqnq − ‖x̃ − xiq ‖. (7.220)

By (7.216), δ > 0. Assume that

y ∈ X, ‖y − x̃‖ ≤ δ, B ∈ S(X), h(A,B) ≤ δ, (7.221)

and

z ∈ B, f (y − z) ≤ ρf (y,B) + δ.

By (7.220) and (7.221),

‖y − xiq ‖ ≤ ‖y − x̃‖ + ‖x̃ − xiq ‖ ≤ δiqnq . (7.222)

By (7.222), (7.220) and property (P6), ‖z − x̄iq ‖ ≤ (2q)−1. When combined with
(7.219), this inequality implies that ‖z − x̄‖ ≤ q−1 < ε. This completes the proof of
Theorem 7.18. �
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