
Chapter 4
Dynamical Systems with Convex Lyapunov
Functions

4.1 Minimization of Convex Functionals

In this section, which is based on [128], we consider a metric space of sequences
of continuous mappings acting on a bounded, closed and convex subset of a Ba-
nach space, which share a common convex Lyapunov function. We show that for a
generic sequence taken from that space the values of the Lyapunov function along
all trajectories tend to its infimum.

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a bounded,
closed and convex subset of X, and f : K → R1 is a convex and uniformly contin-
uous function. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K ⊂ X with the relative topology.
Denote by A the set of all continuous self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K. (4.1)

Later in this chapter (see Sect. 4.4), we construct many such mappings.
For the set A we define a metric ρ : A×A→ R1 by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A. (4.2)

Clearly, the metric space A is complete. Denote by M the set of all sequences
{At }∞t=1 ⊂ A. Members {At }∞t=1, {Bt }∞t=1 and {Ct }∞t=1 of M will occasionally be
denoted by boldface A, B and C, respectively. For the set M we consider the uni-
formity determined by the following base:

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ M×M : ρ(At ,Bt ) ≤ ε, t = 1, . . . ,N
}
,
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182 4 Dynamical Systems with Convex Lyapunov Functions

where N is a natural number and ε > 0. Clearly the uniform space M is metrizable
(by a metric ρw : M×M → R1) and complete (see [80]).

From the point of view of the theory of dynamical systems, each element of
M describes a nonstationary dynamical system with a Lyapunov function f . Also,
some optimization procedures in Banach spaces can be represented by elements of
M (see the first example in Sect. 4.4 and [97, 98]).

In this section we intend to show that for a generic sequence taken from the space
M the values of the Lyapunov function along all trajectories tend to its infimum.

We now present the two main results of this section. They were obtained in [128].
Theorem 4.1 deals with sequences of operators (the space M), while Theorem 4.2
is concerned with the stationary case (the space A).

Theorem 4.1 There exists a set F ⊂ M, which is a countable intersection of open
and everywhere dense sets in M, such that for each B = {Bt }∞t=1 ∈ F the following
assertion holds:

For each ε > 0, there exist a neighborhood U of B in M and a natural number
N such that for each C = {Ct }∞t=1 ∈ U and each x ∈ K ,

f (CN · · ·C1x) ≤ inf(f ) + ε.

Theorem 4.2 There exists a set G ⊂ A, which is a countable intersection of open
and everywhere dense sets in A, such that for each B ∈ G the following assertion
holds:

For each ε > 0, there exist a neighborhood U of B in A and a natural number
N such that for each C ∈ U and each x ∈ K ,

f
(
CNx

) ≤ inf(f ) + ε.

The following proposition is the key auxiliary result which will be used in the
proofs of these two theorems.

Proposition 4.3 There exists a mapping A∗ ∈ A with the following property:
Given ε > 0, there is δ(ε) > 0 such that for each x ∈ K satisfying f (x) ≥

inf(f ) + ε, the inequality

f (A∗x) ≤ f (x) − δ(ε)

is true.

Remark 4.4 If there is xmin ∈ K for which f (xmin) = inf(f ), then we can set
A∗(x) = xmin for all x ∈ K .

Section 4.2 contains the proof of Proposition 4.3. Proofs of Theorems 4.1 and 4.2
are given in Sect. 4.3. Section 4.4 is devoted to two examples.
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4.2 Proof of Proposition 4.3

By Remark 4.4, we may assume that

{
x ∈ K : f (x) = inf(f )

} = ∅. (4.3)

For each x ∈ K , define an integer p(x) ≥ 1 by

p(x) = min
{
i : i is a natural number and f (x) ≥ inf(f ) + 2−i

}
. (4.4)

By (4.3), the function p(x) is well defined for all x ∈ K . Now we will define an
open covering {Vx : x ∈ K} of K . For each x ∈ K , there is an open neighborhood
Vx of x in K such that:

∣∣f (y) − f (x)
∣∣ ≤ 8−p(x)−1 for all y ∈ Vx (4.5)

and

if p(x) > 1 then f (y) < inf(f ) + 2−p(x)+1 for all y ∈ Vx. (4.6)

For each x ∈ K , choose ax ∈ K such that

f (ax) ≤ inf(f ) + 2−p(x)−9. (4.7)

Clearly,
⋃{Vx : x ∈ K} = K and {Vx : x ∈ K} is an open covering of K .

Lemma 4.5 Let x ∈ K . Then for all y ∈ Vx ,

f (y) ≥ inf(f ) + 2−p(x)−1 (4.8)

and
∣∣p(y) − p(x)

∣∣ ≤ 1. (4.9)

Proof Let y ∈ Vx . Then (4.8) follows from (4.5) and (4.4). The definition of p(x)

(see (4.4)) and (4.8) imply that p(y) ≤ p(x) + 1. Now we will show that p(y) ≥
p(x) − 1. It is sufficient to consider the case p(x) > 1. Then by the definition of Vx

(see (4.6)) and (4.4), f (y) < inf(f ) + 2−p(x)+1 and p(y) ≥ p(x). This completes
the proof of the lemma. �

Since metric spaces are paracompact, there is a continuous locally finite parti-
tion of unity {φx}x∈K on K subordinated to {Vx}x∈K (namely, suppφx ⊂ Vx for all
x ∈ K and

∑
x∈K φx(y) = 1 for all y ∈ K).

For y ∈ K , define

A∗y =
∑

x∈K

φx(y)ax. (4.10)

Clearly, the mapping A∗ is well defined, A∗(K) ⊂ K and A∗ is continuous.
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Lemma 4.6 For each y ∈ K ,

f (A∗y) ≤ f (y) − 2−p(y)−1. (4.11)

Proof Let y ∈ K . There is an open neighborhood U of y in K and x1, . . . , xn ∈ K

such that

{x ∈ K : suppφx ∩ U �= ∅} = {xi}ni=1. (4.12)

We have

A∗y =
n∑

i=1

φxi
(y)axi

. (4.13)

We may assume that there is an integer m ∈ {1, . . . , n} such that

φxi
(y) > 0 if and only if 1 ≤ i ≤ m. (4.14)

By (4.12) and (4.14),
∑m

i=1 φxi
(y) = 1. When combined with (4.13) and (4.14), this

implies that

f (A∗y) ≤ max
{
f (axi

) : i = 1, . . . ,m
}
. (4.15)

Let i ∈ {1, . . . ,m}. It follows from (4.14) and Lemma 4.5 that

y ∈ suppφxi
⊂ Vxi

and
∣∣p(y) − p(xi)

∣∣ ≤ 1. (4.16)

By (4.7) and (4.16),

f (axi
) ≤ inf(f ) + 2−p(xi )−9 ≤ inf(f ) + 2−p(y)−8.

Thus, by (4.15),

f (A∗y) ≤ inf(f ) + 2−p(y)−8. (4.17)

On the other hand, by (4.4), f (y) ≥ inf(f ) + 2−p(y). Together with (4.17) this im-
plies (4.11). The lemma is proved. �

Completion of the proof of Proposition 4.3 Clearly, A∗ ∈ A. Let ε > 0 be given.
Choose an integer j ≥ 1 such that 2−j < ε.

Let x ∈ K satisfy f (x) ≥ inf(f )+ε. Then by (4.4), p(x) ≤ j and by Lemma 4.6,

f (A∗x) ≤ f (x) − 2−p(x)−1 ≤ f (x) − 2−j−1.

This completes the proof of the proposition (with δ(ε) = 2−j−1). �

Remark 4.7 As a matter of fact, if ε ∈ (0,1), then the proof of Proposition 4.3 shows
that it holds with δ(ε) = ε/4.
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4.3 Proofs of Theorems 4.1 and 4.2

Set

rK = sup
{‖x‖ : x ∈ K

}
and d0 = sup

{∣∣f (x)
∣∣ : x ∈ K

}
. (4.18)

Let A∗ ∈ A be one of the mappings the existence of which is guaranteed by Propo-
sition 4.3. For each {At }∞t=1 ∈ M and each γ ∈ (0,1), we define a sequence of
mappings A

γ
t : K → K , t = 1,2, . . . , by

A
γ
t x = (1 − γ )Atx + γA∗x, x ∈ K, t = 1,2, . . . . (4.19)

It is easy to see that for each {At }∞t=1 ∈ M and each γ ∈ (0,1),

{
A

γ
t

}∞
t=1 ∈M and ρ

(
A

γ
t ,At

) ≤ 2γ rK, t = 1,2, . . . . (4.20)

We may assume that the function δ(ε) of Proposition 4.3 satisfies δ(ε) < ε for all
ε > 0.

Lemma 4.8 Assume that ε, γ ∈ (0,1), {At }∞t=1 ∈ M and let an integer N ≥ 4 sat-
isfy

2−1Nγ δ(ε) > 2d0 + 1. (4.21)

Then there exists a number Δ > 0 such that for each sequence {Bt }Nt=1 ⊂ A satisfy-
ing

ρ
(
Bt ,A

γ
t

) ≤ Δ, t = 1, . . . ,N, (4.22)

it follows that, for each x ∈ K ,

f (BN · · ·B1x) ≤ inf(f ) + ε. (4.23)

Proof Since the function f is uniformly continuous, there is Δ ∈ (0,16−1δ(ε)) such
that

∣∣f (y1) − f (y2)
∣∣ ≤ 16−1γ δ(ε) (4.24)

for each y1, y2 ∈ K satisfying ‖y1 − y2‖ ≤ Δ.
Assume that {Bt }Nt=1 ⊂ A satisfies (4.22) and that x ∈ K . We now show that

(4.23) holds.
Assume the contrary. Then

f (x) > inf(f ) + ε and f (Bn · · ·B1x) > inf(f ) + ε, n = 1, . . . ,N. (4.25)

Set

x0 = x, xt+1 = Bt+1xt , t = 0,1, . . . ,N − 1. (4.26)
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For each t ≥ 0 satisfying t ≤ N − 1, it follows from (4.22), (4.26) and the definition
of Δ (see (4.24)) that

∥∥Bt+1xt − A
γ

t+1xt

∥∥ ≤ Δ (4.27)

and
∣∣f (xt+1) − f

(
A

γ

t+1xt

)∣∣ = ∣∣f (Bt+1xt ) − f
(
A

γ

t+1xt

)∣∣

≤ 16−1γ δ(ε). (4.28)

By (4.19), (4.25), (4.26), the definition of δ(ε) and the properties of the mapping
A∗, we have for each t = 0, . . . ,N − 1,

f
(
A

γ

t+1xt

) = f
(
(1 − γ )At+1xt + γA∗xt

)

≤ (1 − γ )f (At+1xt ) + γf (A∗xt ) ≤ (1 − γ )f (xt ) + γ
(
f (xt ) − δ(ε)

)

= f (xt ) − γ δ(ε).

Together with (4.28) this implies that for t = 0, . . . ,N − 1,

f (xt+1) ≤ 16−1γ δ(ε) + f (xt ) − γ δ(ε).

By induction we can show that for all t = 1, . . . ,N ,

f (xt ) ≤ f (x0) − 2−1γ δ(ε)t.

Together with (4.21) and (4.18) this implies that

f (BN · · ·B1x) = f (xN) ≤ f (x0) − 2−1Nγ δ(ε)

≤ d0 − 2−1Nγ δ(ε) ≤ −d0 − 1 ≤ inf(f ) − 1.

This obvious contradiction proves (4.23) and the lemma itself. �

By Lemma 4.8, for each A = {At }∞t=1 ∈ M, each γ ∈ (0,1) and each integer
q ≥ 1, there exist an integer N(A, γ, q) ≥ 4 and an open neighborhood U(A, γ, q)

of {Aγ
t }∞t=1 in M such that the following property holds:

(a) For each {Bt }∞t=1 ∈ U(A, γ, q) and each x ∈ K ,

f (BN(A,γ,q) · · ·B1x) ≤ inf(f ) + 4−q .

Proof of Theorem 4.1 It follows from (4.20) that the set
{{

A
γ
t

}∞
t=1 : {At }∞t=1 ∈M, γ ∈ (0,1)

}

is everywhere dense in M. Define

F =
∞⋂

q=1

⋃{
U(A, γ, q) : A ∈M, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense sets in M.
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Assume that {Bt }∞t=1 ∈ F and that ε > 0. Choose an integer q ≥ 1 such that

4−q < ε. (4.29)

There exist {At }∞t=1 ∈ M and γ ∈ (0,1) such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, q

)
. (4.30)

It follows from (4.29) and property (a) that for each {Ct }∞t=1 ∈ U(A, γ, q) and each
x ∈ K ,

f (CN(A,γ,q) · · ·C1x) ≤ inf(f ) + 4−q < inf(f ) + ε.

This completes the proof of Theorem 4.1. �

Proof of Theorem 4.2 For each A ∈ A, define

Ât = A, t = 1,2, . . . . (4.31)

Clearly, {Ât }∞t=1 ∈M for A ∈ A, and for each A ∈A and each γ ∈ (0,1),

Â
γ
t x = (1 − γ )Ax + γA∗x, x ∈ K, t = 1,2, . . . (4.32)

(see (4.19)). By property (a) (which follows from Lemma 4.8), for each A ∈ A,
each γ ∈ (0,1) and each integer q ≥ 1, there exist an integer N(A,γ, q) ≥ 4 and an
open neighborhood U(A,γ, q) of the mapping (1 − γ )A + γA∗ in A such that the
following property holds:

(b) For each B ∈ U(A,γ, q) and each x ∈ K ,

f
(
BN(A,γ,q)x

) ≤ inf(f ) + 4−q .

Clearly, the set
{
(1 − γ )A + γA∗ : A ∈A, γ ∈ (0,1)

}

is everywhere dense in A. Define

G =
∞⋂

q=1

⋃{
U(A,γ, q) : A ∈A, γ ∈ (0,1)

}
.

It is clear that G is a countable intersection of open and everywhere dense sets in A.
Assume that B ∈ G and ε > 0. Choose an integer q ≥ 1 such that (4.29) is valid.
There exist A ∈ A and γ ∈ (0,1) such that B ∈ U(A,γ, q). It now follows from
(4.29) and property (b) that for each C ∈ U(A,γ, q) and each x ∈ K ,

f
(
CN(A,γ,q)x

) ≤ inf(f ) + 4−q < inf(f ) + ε.

Theorem 4.2 is established. �
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4.4 Examples

Let (X,‖ · ‖) be a Banach space. In this section we consider examples of contin-
uous mappings A : K → K satisfying f (Ax) ≤ f (x) for all x ∈ K , where K is a
bounded, closed and convex subset of X and f : K → R1 is a convex function.

Example 4.9 Let f : X → R1 be a convex uniformly continuous function satisfying

f (x) → ∞ as ‖x‖ → ∞.

Evidently, the function f is bounded from below. For each real number c, let Kc =
{x ∈ X : f (x) ≤ c}. Fix a real number c such that Kc �= ∅. Clearly, the set Kc is
bounded, closed and convex. We assume that the function f is strictly convex on
Kc , namely,

f
(
αx + (1 − α)y

)
< αf (x) + (1 − α)f (y)

for all x, y ∈ Kc, x �= y, and all α ∈ (0,1).
Let V : Kc → X be any continuous mapping. For each x ∈ Kc , there is a unique

solution of the following minimization problem:

f (z) → min, z ∈ {
x + αV (x) : α ∈ [0,1]}.

This solution will be denoted by Ax. Since f (Ax) ≤ f (x) for all x ∈ Kc , we con-
clude that A(Kc) ⊂ Kc .

We will show that the mapping A : Kc → Kc is continuous. To this end, con-
sider a sequence {xn}∞n=1 ⊂ Kc such that limn→∞ xn = x∗. We intend to show
that limn→∞ Axn = Ax∗. For each integer n ≥ 1, there is αn ∈ [0,1] such that
Axn = xn + αnV xn. There is also α∗ ∈ [0,1] such that Ax∗ = x∗ + α∗V (x∗). We
may assume without loss of generality that the limit ᾱ = limn→∞ αn exists. By the
definition of A,

f (Ax∗) ≤ f
(
x∗ + ᾱV (x∗)

)
.

Since the function f is strictly convex, to complete the proof it is sufficient to show
that

f (Ax∗) = f
(
x∗ + α∗V (x∗)

) = f
(
x∗ + ᾱV (x∗)

)
. (4.33)

Assume the contrary. Then

lim
n→∞f

(
xn + α∗V (xn)

) = f
(
x∗ + α∗V (x∗)

)

< f
(
x∗ + ᾱV (x∗)

) = lim
n→∞f

(
xn + αnV (xn)

)
,

and for all large enough n,

f
(
xn + α∗V (xn)

)
< f

(
xn + αnV (xn)

) = f (Axn).
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This contradicts the definition of A. Hence (4.33) is true and the mapping A is
indeed continuous.

Example 4.10 Let K be a bounded, closed and convex subset of X and f : K → R1

be a convex continuous function which is bounded from below. For each x0, x1 ∈ K

satisfying f (x0) > f (x1), we will construct a continuous mapping A : K → K such
that f (Ax) ≤ f (x) for all x ∈ K and Ax = x1 for all x in a neighborhood of x0.

Indeed, let x0, x1 ∈ K with f (x0) > f (x1). There are numbers r0, ε0 such that

f (x) − ε0 > f (x1) for all x ∈ K satisfying ‖x − x0‖ ≤ r0. (4.34)

Now we define an open covering {Vx : x ∈ K} of K . Let x ∈ K . If ‖x − x0‖ < r0
we set

Vx = {
y ∈ K : ‖y − x0‖ < r0

}
and ax = x1.

If ‖x − x0‖ ≥ r0, then there is rx ∈ (0,4−1r0) and ax ∈ K such that

f (ax) ≤ f (y) for all y ∈ {
z ∈ K : ‖z − x‖ ≤ rx

}
. (4.35)

In this case we set

Vx = {
y ∈ K : ‖y − x‖ < rx

}
.

Clearly,
⋃{Vx : x ∈ K} = K . There is a continuous locally finite partition of unity

{φx}x∈K on K subordinated to {Vx}x∈K (namely, suppφx ⊂ Vx for all x ∈ K). For
y ∈ K , define

Ay =
∑

x∈K

φx(y)ax.

Evidently, the mapping A is well defined, A : K → X and A is continuous. Since∑
x∈K φx(y) = 1 for all y ∈ K and K is convex, we see that A(K) ⊂ K .
We will now show that f (Ay) ≤ f (y) for all y ∈ K and that Ay = x1 if ‖y −

x0‖ ≤ 4−1r0.
Let y ∈ K . There are z1, . . . , zn ∈ K and a neighborhood U of y in K such that

{z ∈ K : U ∩ suppφz �= ∅} = {z1, . . . , zn}.
We have

Ay =
n∑

i=1

φzi
(y)azi

,

n∑

i=1

φzi
(y) = 1, f (Ay) ≤

n∑

i=1

φzi
(y)f (azi

). (4.36)

We may assume without loss of generality that there is p ∈ {1, . . . , n} such that

φzi
(y) > 0 if and only if 1 ≤ i ≤ p. (4.37)

Let 1 ≤ i ≤ p. Then

y ∈ suppφzi
⊂ Vzi

(4.38)
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and by the definition of Vzi
and azi

(see (4.34) and (4.35)), f (y) ≥ f (azi
). When

combined with (4.36) and (4.37), this implies that f (Ay) ≤ f (y).
Assume in addition that ‖y − x0‖ ≤ 4−1r0. Then it follows from the definition of

{Vz : z ∈ K} and (4.38) that ‖zi − x0‖ < r0 and azi
= x1 for each i = 1, . . . , p. By

(4.36) and (4.37), Ay = x1. Thus we have indeed constructed a continuous mapping
A : K → K such that f (Ay) ≤ f (y) for all y ∈ K , and Ay = x1 for all y ∈ K

satisfying ‖y − x0‖ ≤ 4−1r0.

4.5 Normal Mappings

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a nonempty,
bounded, closed and convex subset of X, and f : K → R1 is a convex and uniformly
continuous function. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K ⊂ X with the relative topology.
Denote by A the set of all self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K (4.39)

and by Ac the set of all continuous mappings A ∈ A. In Sect. 4.4 we constructed
many mappings which belong to Ac.

We equip the set A with a metric ρ :A×A→ R1 defined by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A. (4.40)

Clearly, the metric space A is complete and Ac is a closed subset of A. In the sequel
we will consider the metric space (Ac, ρ). Denote by M the set of all sequences
{At }∞t=1 ⊂ A and by Mc the set of all sequences {At }∞t=1 ⊂ Ac. Members {At }∞t=1,
{Bt }∞t=1 and {Ct }∞t=1 of M will occasionally be denoted by boldface A, B and C,
respectively. For the set M we will consider two uniformities and the topologies
induced by them. The first uniformity is determined by the following base:

Ew(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ M×M :
ρ(At ,Bt ) ≤ ε, t = 1, . . . ,N

}
, (4.41)

where N is a natural number and ε > 0. Clearly the uniform space M with this
uniformity is metrizable (by a metric ρw : M×M → R1) and complete (see [80]).
We equip the set M with the topology induced by this uniformity. This topology
will be called weak and denoted by τw . Clearly Mc is a closed subset of M with
the weak topology.
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The second uniformity is determined by the following base:

Es(ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M : ρ(At ,Bt ) ≤ ε, t ≥ 1
}
, (4.42)

where ε > 0. Clearly this uniformity is metrizable (by a metric ρs : M × M →
R1) and complete (see [80]). Denote by τs the topology induced by this uniformity
in M. Since τs is clearly stronger than τw , it will be called strong. We consider the
topological subspace Mc ⊂M with the relative weak and strong topologies.

In Sects. 4.1–4.3 we showed that for a generic sequence taken from the space
Mc, the sequence of values of the Lyapunov function f along any trajectory tends
to the infimum of f .

A mapping A ∈ A is called normal if given ε > 0, there is δ(ε) > 0 such that for
each x ∈ K satisfying f (x) ≥ inf(f ) + ε, the inequality

f (Ax) ≤ f (x) − δ(ε)

is true.
A sequence {At }∞t=1 ∈ M is called normal if given ε > 0, there is δ(ε) > 0 such

that for each x ∈ K satisfying f (x) ≥ inf(f )+ε and each integer t ≥ 1, the inequal-
ity

f (Atx) ≤ f (x) − δ(ε)

holds.
In this chapter we show that a generic element taken from the spaces A, Ac, M

and Mc is normal. This is important because it turns out that the sequence of values
of the Lyapunov function f along any (unrestricted) trajectory of such an element
tends to the infimum of f on K .

For α ∈ (0,1), A = {At }∞t=1, B = {Bt }∞t=1 ∈ M define αA + (1 − α)B = {αAt +
(1 − α)Bt }∞t=1 ∈ M.

We can easily prove the following fact.

Proposition 4.11 Let α ∈ (0,1), A,B ∈ M and let A be normal. Then αA + (1 −
α)B is also normal.

In this chapter we will prove the following results obtained in [63].

Theorem 4.12 Let A = {At }∞t=1 ∈ M be normal and let ε > 0. Then there exists a
neighborhood U of A in M with the strong topology and a natural number N such
that for each C = {Ct }∞t=1 ∈ U , each x ∈ K and each r : {1,2, . . .} → {1,2, . . .},

f (Cr(N) · · ·Cr(1)x) ≤ inf(f ) + ε.

Theorem 4.13 Let A = {At }∞t=1 ∈ M be normal and let ε > 0. Then there exists a
neighborhood U of A in M with the weak topology and a natural number N such
that for each C = {Ct }∞t=1 ∈ U and each x ∈ K ,

f (CN · · ·C1x) ≤ inf(f ) + ε.
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Theorem 4.14 There exists a set F ⊂ M which is a countable intersection of open
and everywhere dense sets in M with the strong topology and a set Fc ⊂ F ∩Mc

which is a countable intersection of open and everywhere dense sets in Mc with the
strong topology such that each A ∈F is normal.

Theorem 4.15 There exists a set F ⊂ A which is a countable intersection of open
and everywhere dense sets in A and a set Fc ⊂ F ∩Ac, which is a countable inter-
section of open and everywhere dense sets in Ac such that each A ∈ F is normal.

4.6 Existence of a Normal A ∈Ac

If there is xmin ∈ K for which f (xmin) = inf(f ), then we can set A(x) = xmin for
all x ∈ K and this A is normal. Therefore in order to show the existence of a normal
A ∈ Ac we may assume that

{
x ∈ K : f (x) = inf(f )

} = ∅. (4.43)

The existence of a normal A ∈ Ac follows from Michael’s selection theorem.

Proposition 4.16 There exists a normal A∗ ∈Ac .

Proof We may assume that (4.43) is true. Define a set-valued map a : K → 2K as
follows: for each x ∈ K , denote by a(x) the closure (in the norm topology of X) of
the set

{
y ∈ K : f (y) < 2−1(f (x) + inf(f )

)}
. (4.44)

It is clear that for each x ∈ K , the set a(x) is nonempty, closed and convex. We will
show that a is lower semicontinuous.

Let x0 ∈ K , y0 ∈ a(x0) and let ε > 0 be given. In order to prove that a is lower
semicontinuous, we need to show that there exists a positive number δ such that for
each x ∈ K satisfying ‖x − x0‖ < δ,

a(x) ∩ {
y ∈ K : ‖y − y0‖ < ε

} �= ∅.

By the definition of a(x0), there exists a point y1 ∈ K such that

f (y1) < 2−1(f (x0) + inf(f )
)

and ‖y1 − y0‖ < ε/2.

Since the function f is continuous, there is a number δ > 0 such that for each x ∈ K

satisfying ‖x − x0‖ < δ,

f (y1) < 2−1(f (x) + inf(f )
)
.

Hence y1 ∈ a(x) by definition. Therefore a is indeed lower semicontinuous. By
Michael’s selection theorem, there exists a continuous mapping A∗ : K → K such
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that A∗x ∈ a(x) for all x ∈ K . It follows from the definition of a (see (4.44)) that
for each x ∈ K ,

f (A∗x) ≤ 2−1(f (x) + inf(f )
)
.

This implies that A∗ is normal. This completes the proof of Proposition 4.16. �

4.7 Auxiliary Results

By Proposition 4.16, there exists a normal mapping A∗ ∈ Ac. For each {At }∞t=1 ∈M
and each γ ∈ (0,1), we define a sequence of mappings Aγ = {Aγ

t }∞t=1 ∈M by

A
γ
t x = (1 − γ )Atx + γA∗x, x ∈ K, t = 1,2, . . . . (4.45)

Clearly, for each A = {At }∞t=1 ∈ Mc and each γ ∈ (0,1), Aγ ∈ Mc. By (4.45) and
Proposition 4.11, Aγ is normal for each A ∈ M and each γ ∈ (0,1). It is obvious
that for each A ∈M,

Aγ → A as γ → 0+ in the strong topology. (4.46)

Lemma 4.17 Let A = {At }∞t=1 ∈ M be normal and let ε > 0 be given. Then there
exist a neighborhood U of A in M with the strong topology and a number δ > 0
such that for each B = {Bt }∞t=1 ∈ U , each x ∈ K satisfying

f (x) ≥ inf(f ) + ε (4.47)

and each integer t ≥ 1,

f (Btx) ≤ f (x) − δ.

Proof Since A is normal, there is δ0 > 0 such that for each integer t ≥ 1 and each
x ∈ K satisfying (4.47),

f (Atx) ≤ f (x) − δ0. (4.48)

Since f is uniformly continuous, there is δ ∈ (0,4−1δ0) such that
∣∣f (y) − f (z)

∣∣ ≤ 4−1δ0 (4.49)

for each y, z ∈ K satisfying ‖y − z‖ ≤ 2δ. Set

U = {
B ∈M : (A,B) ∈ Es(δ)

}
. (4.50)

Assume that B = {Bt }∞t=1 ∈ U , let t ≥ 1 be an integer and let x ∈ K satisfy
(4.47). By (4.47) and the definition of δ0, (4.48) is true. The definitions of δ and U

(see (4.49) and (4.50)) imply that

‖Atx − Btx‖ ≤ δ and
∣∣f (Atx) − f (Btx)

∣∣ ≤ δ0/4.
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When combined with (4.48), this implies that

f (Btx) ≤ f (x) + 4−1δ0 − δ0 ≤ f (x) − δ.

This completes the proof of the lemma. �

4.8 Proof of Theorem 4.12

Assume that A = {At }∞t=1 ∈ M is normal and let ε > 0 be given. By Lemma 4.17,
there exist a neighborhood U of A in M with the strong topology and a number
δ > 0 such that the following property holds:

(Pi) For each {Bt }∞t=1 ∈ U , each integer t ≥ 1 and each x ∈ K satisfying (4.47), the
inequality

f (Btx) ≤ f (x) − δ (4.51)

holds.

Choose a natural number N ≥ 4 such that

δN > 2(ε + 1) + 2 sup
{∣∣f (z)

∣∣ : z ∈ K
}
. (4.52)

Assume that

C = {Ct }∞t=1 ∈ U, x ∈ K and r : {1,2, . . .} → {1,2, . . .}. (4.53)

We claim that

f (Cr(N) · · ·Cr(1)x) ≤ inf(f ) + ε. (4.54)

Assume the contrary. Then

f (x) > inf(f ) + ε, f (Cr(n) · · ·Cr(1)x) > inf(f ) + ε, n = 1, . . . ,N. (4.55)

It follows from (4.55), (4.53) and property (Pi) that

f (Cr(1)x) ≤ f (x) − δ,

f (Cr(n+1)Cr(n) · · ·Cr(1)x) ≤ f (Cr(n) · · ·Cr(1)x) − δ, n = 1, . . . ,N − 1.

This implies that

f (Cr(n) · · ·Cr(1)x) ≤ f (x) − Nδ ≤ −2 − sup
{∣∣f (z)

∣∣ : z ∈ K
}
,

a contradiction. Therefore (4.54) is valid and Theorem 4.12 is proved.
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4.9 Proof of Theorem 4.13

Assume that A = {At }∞t=1 ∈M is normal and let ε > 0 be given. Since A is normal,
there is δ ∈ (0,1) such that for each integer t ≥ 1 and each x ∈ K satisfying

f (x) ≥ inf(f ) + ε, (4.56)

the following inequality is valid:

f (Atx) ≤ f (x) − δ. (4.57)

Choose a natural number N > 4 for which

N > 4δ−1 + 4δ−1 sup
{∣∣f (z)

∣∣ : z ∈ K
}
. (4.58)

Since f is uniformly continuous, there is Δ ∈ (0,4−1δ) such that

∣∣f (z) − f (y)
∣∣ ≤ 8−1δ (4.59)

for each y, z ∈ K satisfying ‖z − y‖ ≤ 4Δ. Set

U = {
B ∈ M : (A,B) ∈ Ew(N,Δ)

}
. (4.60)

Assume that

C = {Ct }∞t=1 ∈ U and x ∈ K. (4.61)

We claim that

f (CN · · ·C1x) ≤ inf(f ) + ε. (4.62)

Assume the contrary. Then

f (x) > inf(f ) + ε, f (Cn · · ·C1x) > inf(f ) + ε, n = 1, . . . ,N. (4.63)

Define C0 : K → K by C0x = x for all x ∈ K . Let t ∈ {0, . . . ,N − 1}. It follows
from (4.63) and the definition of δ (see (4.56) and (4.57)) that

f (At+1Ct · · ·C0x) ≤ f (Ct · · ·C0x) − δ. (4.64)

The definition of U (see (4.60)) and (4.61) imply that ‖At+1Ct · · ·C0x −Ct+1Ct · · ·
C0x‖ ≤ Δ. By this inequality and the definition of Δ (see (4.59)),

∣∣f (At+1Ct · · ·C0x) − f (Ct+1Ct · · ·C0x)
∣∣ ≤ 8−1δ.

When combined with (4.64), this implies that

f (Ct+1Ct · · ·C0x) ≤ f (Ct · · ·C0x) − 2−1δ.
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Since this inequality is true for all t ∈ {0, . . . ,N − 1}, we conclude that

f (CN · · ·C1x) ≤ f (x) − 2−1Nδ.

Together with (4.58) this implies that

− sup
{∣∣f (z)

∣∣ : z ∈ K
} ≤ sup

{∣∣f (z)
∣∣ : z ∈ K

} − 2−1δN

≤ −2 − sup
{∣∣f (z)

∣∣ : z ∈ K
}
,

a contradiction. Therefore (4.62) does hold and Theorem 4.13 is proved.

4.10 Proof of Theorem 4.14

Let A ∈ M, γ ∈ (0,1) and let i ≥ 1 be an integer. Consider the sequence Aγ ∈ M
defined by (4.45). By Proposition 4.11, Aγ is normal. By Lemma 4.17, there ex-
ists an open neighborhood U(A, γ, i) of Aγ in M with the strong topology and a
number δ(A, γ, i) > 0 such that the following property holds:

(Pii) For each B = {Bt }∞t=1 ∈ U(A, γ, i), each integer t ≥ 1 and each x ∈ K satis-
fying f (x) ≥ inf(f ) + 2−i ,

f (Btx) ≤ f (x) − δ(A, γ, i).

Define

F =
∞⋂

i=1

⋃{
U(A, γ, i) : A ∈M, γ ∈ (0,1)

}
(4.65)

and

Fc =
[ ∞⋂

i=1

⋃{
U(A, γ, i) : A ∈Mc, γ ∈ (0,1)

}
]

∩Mc.

Clearly, Fc ⊂ F , F is a countable intersection of open and everywhere dense sets
in M with the strong topology, and Fc is a countable intersection of open and
everywhere dense sets in Mc with the strong topology.

Assume that B = {Bt }∞t=1 ∈F . We will show that B is normal.
Let ε > 0 be given. Choose an integer i ≥ 1 such that

2−i < ε/8. (4.66)

By (4.65), there exist A ∈M and γ ∈ (0,1) such that

B ∈ U(A, γ, i). (4.67)
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Let t ≥ 1 be an integer, x ∈ K , and f (x) ≥ inf(f ) + ε. Then by (4.66), (4.67) and
property (Pii),

f (Btx) ≤ f (x) − δ(A, γ, i).

Thus B is indeed normal and Theorem 4.14 is proved.
The proof of Theorem 4.15 is analogous to that of Theorem 4.14.

4.11 Normality and Porosity

In this section, which is based on [133], we continue to consider a complete metric
space of sequences of mappings acting on a bounded, closed and convex subset K

of a Banach space which share a common convex Lyapunov function f . In previous
sections, we introduced the concept of normality and showed that a generic element
taken from this space is normal. The sequence of values of the Lyapunov uniformly
continuous function f along any (unrestricted) trajectory of such an element tends
to the infimum of f on K . In the present section, we first present a convergence
result for perturbations of such trajectories. We then show that if f is Lipschitzian,
then the complement of the set of normal sequences is σ -porous.

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a nonempty,
bounded, closed and convex subset of X, and f : K → R1 is a convex and uniformly
continuous function. Observe that the function f is bounded because K is bounded
and f is uniformly continuous. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
and sup(f ) = sup

{
f (x) : x ∈ K

}
.

We consider the topological subspace K ⊂ X with the relative topology. Denote
by A the set of all self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K

and by Ac the set of all continuous mappings A ∈A.
For the set A we define a metric ρ : A×A→ R1 by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A.

It is clear that the metric space A is complete and Ac is a closed subset of A. We will
study the metric space (Ac, ρ). Denote by M the set of all sequences {At }∞t=1 ⊂ A
and by Mc the set of all sequences {At }∞t=1 ⊂Ac. For the set M we define a metric
ρM : M×M → R1 by

ρM
({At }∞t=1, {Bt }∞t=1

) = sup
{
ρ(At ,Bt ) : t = 1,2, . . .

}
, {At }∞t=1, {Bt }∞t=1 ∈ M.

Clearly, the metric space M is complete and Mc is a closed subset of M. We will
also study the metric space (Mc, ρM).

We recall the following definition of normality.
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A mapping A ∈ A is called normal if given ε > 0, there is δ(ε) > 0 such that for
each x ∈ K satisfying f (x) ≥ inf(f ) + ε, the inequality

f (Ax) ≤ f (x) − δ(ε)

is true.
A sequence {At }∞t=1 ∈ M is called normal if given ε > 0, there is δ(ε) > 0 such

that for each x ∈ K satisfying f (x) ≥ inf(f )+ε and each integer t ≥ 1, the inequal-
ity

f (Atx) ≤ f (x) − δ(ε)

holds.
We now present two theorems which were obtained in [133]. Their proofs are

given in the next two sections.

Theorem 4.18 Let {At }∞t=1 ∈ M be normal and let ε be positive. Then there exist
a natural number n0 and a number γ > 0 such that for each integer n ≥ n0, each
mapping r : {1, . . . , n} → {1,2, . . .} and each sequence {xi}ni=0 ⊂ K which satisfies

‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n − 1,

the inequality f (xi) ≤ inf(f ) + ε holds for i = n0, . . . , n.

Theorem 4.19 Let F be the set of all normal sequences in the space M and let

F = {
A ∈A : {At }∞t=1 ∈ F where At = A, t = 1,2, . . .

}
.

Assume that the function f is Lipschitzian. Then the complement of the set F is a
σ -porous subset of M and the complement of the set F ∩Mc is a σ -porous subset
of Mc. Moreover, the complement of the set F is a σ -porous subset of A and the
complement of the set F ∩Ac is a σ -porous subset of Ac .

4.12 Proof of Theorem 4.18

We may assume that ε < 1. Since {At }∞t=1 is normal, there exists a function δ :
(0,∞) → (0,∞) such that for each s > 0, each x ∈ K satisfying f (x) ≥ inf(f )+ s

and each integer t ≥ 1,

f (Atx) ≤ f (x) − δ(s). (4.68)

We may assume that δ(s) < s, s ∈ (0,∞). Choose a natural number

n0 > 4
(
1 + sup(f ) − inf(f )

)
δ
(
8−1ε

)−1
. (4.69)
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Since f is uniformly continuous, there exists a number γ > 0 such that for each
y1, y2 ∈ K satisfying ‖y1 − y2‖ ≤ γ , the following inequality holds:

∣∣f (y1) − f (y2)
∣∣ ≤ δ

(
8−1ε

)
8−1(n0 + 1)−1. (4.70)

We claim that the following assertion is true:
(A) Suppose that

{xi}n0
i=0 ⊂ K,r : {1, . . . , n0} → {1,2, . . .},

‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n0 − 1. (4.71)

Then there exists an integer n1 ∈ {1, . . . , n0} such that

f (xn1) ≤ inf(f ) + ε/8. (4.72)

Assume the contrary. Then

f (xi) > inf(f ) + ε/8, i = 1, . . . , n0. (4.73)

By (4.73) and the definition of δ : (0,∞) → (0,∞) (see (4.68)), for each i =
1, . . . , n0 − 1, we have

f (Ar(i+1)xi) ≤ f (xi) − δ
(
8−1ε

)
. (4.74)

It follows from (4.71) and the definition of γ (see (4.70)) that for i = 1, . . . , n0 − 1,

∣∣f (xi+1) − f (Ar(i+1)xi)
∣∣ ≤ δ

(
8−1ε

)
8−1(n0 + 1)−1.

When combined with (4.74), this inequality implies that for i = 1, . . . , n0 − 1,

f (xi+1) − f (xi) ≤ f (xi+1) − f (Ar(i+1)xi) + f (Ar(i+1)xi) − f (xi)

≤ δ
(
8−1ε

)
8−1(n0 + 1)−1 − δ

(
8−1ε

) ≤ (−1/2)δ
(
8−1ε

)
.

This, in turn, implies that

inf(f ) − sup(f ) ≤ f (xn0) − f (x1) ≤ (n0 − 1)(−1/2)δ
(
8−1ε

)
,

a contradiction (see (4.69)). Thus there exists an integer n1 ∈ {1, . . . , n0} such that
(4.72) is true. Therefore assertion (A) is valid, as claimed.

Assume now that we are given an integer n ≥ n0, a mapping

r : {1, . . . , n} → {1,2, . . .} (4.75)

and a finite sequence

{xi}ni=0 ⊂ K such that ‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n − 1. (4.76)
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It follows from assertion (A) that there exists a finite sequence of natural numbers
{jp}qp=1 such that

1 ≤ j1 ≤ n0, 1 ≤ jp+1 − jp ≤ n0 if 1 ≤ p ≤ q − 1, n − jq < n0,

f (xjp ) ≤ inf(f ) + ε/8, p = 1, . . . , q.
(4.77)

Let i ∈ {n0, . . . , n}. We will show that f (xi) ≤ inf(f ) + ε/2. There exists p ∈
{1, . . . , q} such that

0 ≤ i − jp ≤ n0.

If i = jp , then by (4.77), f (xi) = f (xjp ) ≤ inf(f )+ ε/8. Thus we may assume that
i > jp . For all integers jp ≤ s < i, it follows from (4.76) and the definition of γ (see
(4.70)) that

f (Ar(s+1)xs) ≤ f (xs),

∣
∣f (xs+1) − f (Ar(s+1)xs)

∣
∣ ≤ δ

(
8−1ε

)
8−1(n0 + 1)−1

and

f (xs+1) ≤ f (Ar(s+1)xs) + δ
(
8−1ε

)
8−1(n0 + 1)−1

≤ f (xs) + δ
(
8−1ε

)
8−1(n0 + 1)−1.

Thus

f (xs+1) − f (xs) ≤ δ
(
8−1ε

)
8−1(n0 + 1)−1, jp ≤ s < i.

This implies that

f (xi) ≤ f (xjp ) + δ
(
8−1ε

)
8−1(n0 + 1)−1(n0 + 1)

≤ inf(f ) + ε/8 + 8−1δ
(
8−1ε

) ≤ inf(f ) + ε/2.

Therefore f (xi) ≤ inf(f ) + ε/2 for all integers i ∈ [n0, n] and Theorem 4.18 is
proved.

4.13 Proof of Theorem 4.19

Since f : K → R1 is assumed to be Lipschitzian, there exists a constant L(f ) > 0
such that

∣∣f (x) − f (y)
∣∣ ≤ L(f )‖x − y‖ for all x, y ∈ K. (4.78)

By Proposition 4.16, there exist a normal continuous mapping A∗ : K → K and a
function φ : (0,∞) → (0,∞) such that for each ε > 0 and each x ∈ K satisfying
f (x) ≥ inf(f ) + ε, the inequality f (A∗x) ≤ f (x) − φ(ε) holds.
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Let ε > 0 be given. We say that a sequence {At }∞t=1 ∈ M is (ε)-quasinormal if
there exists δ > 0 such that if x ∈ K satisfies f (x) ≥ inf(f ) + ε, then f (Atx) ≤
f (x) − δ for all integers t ≥ 1.

Recall that F is defined to be the set of all normal sequences in M. For each in-
teger n ≥ 1, denote by Fn the set of all (n−1)-quasinormal sequences in M. Clearly,

F =
∞⋂

n=1

Fn. (4.79)

Set

d(K) = sup
{‖z‖ : z ∈ K

}
. (4.80)

Let n ≥ 1 be an integer. Choose α ∈ (0,1) such that

2L(f )α < (1 − α)φ
(
n−1)8−1(d(K) + 1

)−1
. (4.81)

Assume that 0 < r ≤ 1 and {At }∞t=1 ∈ M. Set

γ = (1 − α)r8−1(d(K) + 1
)−1

(4.82)

and define for each integer t ≥ 1, the mapping Atγ : K → K by

Atγ x = (1 − γ )Atx + γA∗x, x ∈ K. (4.83)

It is clear that {Atγ }∞t=1 ∈ M and

ρM
({At }∞t=1, {Atγ }∞t=1

) ≤ 2γ sup
{‖z‖ : z ∈ K

} ≤ 2γ d(K). (4.84)

Note that {Atγ }∞t=1 ∈ Mc if {At }∞t=1 ∈ Mc and that Atγ = A1γ , t = 1,2, . . . , if
At = A1, t = 1,2, . . . .

Assume that

{Ct }∞t=1 ∈M and ρM
({Atγ }∞t=1, {Ct }∞t=1

) ≤ αr. (4.85)

Then by (4.85), (4.84) and (4.82),

ρM
({At }∞t=1, {Ct }∞t=1

) ≤ αr + 2γ d(K) ≤ αr + (1 − α)r/2

= r(1 + α)/2 < r. (4.86)

Assume now that x ∈ K satisfies

f (x) ≥ inf(f ) + n−1 (4.87)

and that t ≥ 1 is an integer. By (4.87), the properties of A∗ and φ, and (4.83),

f (A∗x) ≤ f (x) − φ
(
n−1),

f (Atγ x) ≤ (1 − γ )f (Atx) + γf (A∗x)

≤ (1 − γ )f (x) + γ
(
f (x) − φ

(
n−1)) = f (x) − γφ

(
n−1).

(4.88)
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By (4.85), ‖Ctx − Atγ x‖ ≤ αr . Together with (4.78) this inequality yields
∣∣f (Ctx) − f (Atγ x)

∣∣ ≤ L(f )αr.

By the latter inequality, (4.88), (4.82) and (4.81),

f (Ctx) ≤ f (Atγ x) + L(f )αr

≤ L(f )αr + f (x) − γφ
(
n−1)

≤ f (x) − φ
(
n−1)(1 − α)r8−1(d(K) + 1

)−1 + L(f )αr

≤ f (x) − L(f )αr.

Thus for each {Ct }∞t=1 ∈ M satisfying (4.85), inequalities (4.86) hold and
{Ct }∞t=1 ∈ Fn. Summing up, we have shown that for each integer n ≥ 1, M \ Fn

is porous in M, Mc \Fn is porous in Mc, the complement of the set

{
A ∈A : {At }∞t=1 ∈Fn with At = A for all integers t ≥ 1

}

is porous in A and the complement of the set

{
A ∈ Ac : {At }∞t=1 ∈ Fn with At = A for all integers t ≥ 1

}

is porous in Ac.
Combining these facts with (4.79), we conclude that M \ F is σ -porous in M,

Mc \F is σ -porous in Mc, A \ F is σ -porous in A and Ac \ F is σ -porous in Ac .
This completes the proof of Theorem 4.19.

4.14 Convex Functions Possessing a Sharp Minimum

In this section, which is based on the paper [7], we are given a convex, Lipschitz
function f , defined on a bounded, closed and convex subset K of a Banach space
X, which possesses a sharp minimum. A minimization algorithm is a self-mapping
A : K → K such that f (Ax) ≤ f (x) for all x ∈ K . We show that for most of these
algorithms A, the sequences {Anx}∞n=1 tend to this sharp minimum (at an exponen-
tial rate) for all initial values x ∈ K .

Let K ⊂ X be a nonempty, bounded, closed and convex subset of a Banach
space X. For each A : K → X, set

Lip(A) = sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ K such that x �= y

}
. (4.89)

Assume that f : K → R1 is a convex, Lipschitz function such that Lip(f ) > 0.
We have

∣∣f (x) − f (y)
∣∣ ≤ Lip(f )‖x − y‖ for all x, y ∈ K.
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Assume further that there exists a point x∗ ∈ K and a number c0 > 0 such that

inf(f ) := inf
{
f (x) : x ∈ K

} = f (x∗)

and

f (x) ≥ f (x∗) + c0‖x − x∗‖ for all x ∈ K. (4.90)

In other words, we assume that the function f possesses a sharp minimum (cf.
[26, 109]).

Denote by A the set of all self-mappings A : K → K such that Lip(A) < ∞ and

f (Ax) ≤ f (x) for all x ∈ K. (4.91)

We equip the set A with the uniformity determined by the base

E(ε) = {
(A,B) ∈A×A : ‖Ax − Bx‖ ≤ ε for all x ∈ K and Lip(A − B) ≤ ε

}
,

where ε > 0. Clearly, the uniform space A is metrizable and complete.

Theorem 4.20 There exists an open and everywhere dense subset B ⊂ A such that
for each B ∈ B, there exist an open neighborhood U of B in A and a number
λ0 ∈ (0,1) such that for each C ∈ U , each x ∈ K , and each natural number n,

∥∥Cnx − x∗
∥∥ ≤ c−1

0 λn
(
f (x) − f (x∗)

)
.

Proof Let γ ∈ (0,1) and A ∈ A be given. Set

Aγ x = (1 − γ )Ax + γ x∗, x ∈ K. (4.92)

Clearly, for all x ∈ K ,

f (Aγ x) ≤ (1 − γ )f (Ax) + γf (x∗) (4.93)

and

Aγ ∈ A. (4.94)

Next, we prove the following lemma.

Lemma 4.21 Let A ∈A, γ ∈ (0,1) and B ∈ A. Then for each x ∈ K ,

f (Bx) − f (x∗) ≤ [
(1 − γ ) + Lip(f )Lip(B − Aγ )c−1

0

](
f (x) − f (x∗)

)
.

Proof Let x ∈ K . By (4.93), the relations Aγ x∗ = Bx∗ = x∗ and (4.90),

f (Bx) − f (x∗) = f (Aγ x) − f (x∗) + f (Bx) − f (Aγ x)

≤ (1 − γ )
(
f (x) − f (x∗)

) + Lip(f )‖Bx − Aγ x‖
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≤ (1 − γ )
(
f (x) − f (x∗)

) + Lip(f )Lip(B − Aγ )‖x − x∗‖
≤ (1 − γ )

(
f (x) − f (x∗)

)

+ Lip(f )Lip(B − Aγ )c−1
0

(
f (x) − f (x∗)

)

≤ [
(1 − γ ) + Lip(f )Lip(B − Aγ )c−1

0

](
f (x) − f (x∗)

)
.

The lemma is proved. �

Completion of the proof of Theorem 4.20 Let A ∈ A and γ ∈ (0,1) be given.
Choose r(γ ) > 0 such that

λγ := (1 − γ ) + Lip(f )r(γ )c−1
0 < 1. (4.95)

Denote by U(A,γ ) the open neighborhood of Aγ in A such that

U(A,γ ) ⊂ {
B ∈A : (Aγ ,B) ∈ E

(
r(γ )

)}
. (4.96)

Set

B =
⋃{

U(A,γ ) : A ∈A, γ ∈ (0,1)
}
. (4.97)

Clearly, we have for each A ∈A,

Aγ → A as γ → 0+.

Therefore B is an everywhere dense, open subset of A. Let B ∈ A. There are A ∈A
and γ ∈ (0,1) such that

B ∈ U(A,γ ). (4.98)

Assume that

C ∈ U(A,γ ) and x ∈ K. (4.99)

By Lemma 4.21, (4.99), (4.96) and (4.95),

f (Cx) − f (x∗) ≤ [
(1 − γ ) + Lip(f )Lip(C − Aγ )c−1

0

](
f (x) − f (x∗)

)

≤ λγ

(
f (x) − f (x∗)

)
.

This implies that for each x ∈ K and each natural number n,

f
(
Cnx

) − f (x∗) ≤ λn
γ

(
f (x) − f (x∗)

)
.

When combined with (4.90), this last inequality implies, in its turn, that for each
x ∈ K and each integer n ≥ 1,

∥
∥Cnx − x∗

∥
∥ ≤ c−1

0

(
f

(
Cnx

) − f (x∗)
) ≤ c−1

0 λn
γ

(
f (x) − f (x∗)

)
.

This completes the proof of Theorem 4.20. �
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