
Chapter 3
Contractive Mappings

In this chapter we consider the class of contractive mappings and show that a typical
nonexpansive mapping (in the sense of Baire’s categories) is contractive. We also
study nonexpansive mappings which are contractive with respect to a given subset
of their domain.

3.1 Many Nonexpansive Mappings Are Contractive

Assume that (X,‖ · ‖) is a Banach space and let K be a bounded, closed and convex
subset of X. Denote by A the set of all operators A : K → K such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K. (3.1)

In other words, the set A consists of all the nonexpansive self-mappings of K . Set

d(K) = sup
{‖x − y‖ : x, y ∈ K

}
. (3.2)

We equip the set A with the metric h(·, ·) defined by

h(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈ A.

Clearly, the metric space (A, h) is complete.
We say that a mapping A ∈ A is contractive if there exists a decreasing function

φA : [0, d(K)] → [0,1] such that

φA(t) < 1 for all t ∈ (
0, d(K)

]
(3.3)

and

‖Ax − Ay‖ ≤ φA
(‖x − y‖)‖x − y‖ for all x, y ∈ K. (3.4)

The notion of a contractive mapping, as well as its modifications and applications,
were studied by many authors. See, for example, [85]. We now quote a convergence
result which is valid in all complete metric spaces [114].
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Theorem 3.1 Assume that A ∈ A is contractive. Then there exists xA ∈ K such
that Anx → xA as n → ∞, uniformly on K .

In [131] we prove that a generic element in the space of all nonexpansive map-
pings is contractive. In [137] we show that the set of all noncontractive mappings is
not only of the first category, but also σ -porous. Namely, the following result was
obtained there.

Theorem 3.2 There exists a set F ⊂ A such that A \F is σ -porous in (A, h) and
each A ∈F is contractive.

Proof For each natural number n, denote by An the set of all A ∈A which have the
following property:

(P1) There exists κ ∈ (0,1) such that ‖Ax − Ay‖ ≤ κ‖x − y‖ for all x, y ∈ K

satisfying ‖x − y‖ ≥ d(K)(2n)−1.

Let n ≥ 1 be an integer. We will show that the set A \An is porous in (A, h). Set

α = 8−1 min
{
d(K),1

}
(2n)−1(d(K) + 1

)−1
. (3.5)

Fix θ ∈ K . Let A ∈A and r ∈ (0,1]. Set

γ = 2−1r
(
d(K) + 1

)−1
(3.6)

and define

Aγ x = (1 − γ )Ax + γ θ, x ∈ K. (3.7)

Clearly, Aγ ∈A,

h(Aγ ,A) ≤ γ d(K), (3.8)

and for all x, y ∈ K ,

‖Aγ x − Aγ y‖ ≤ (1 − γ )‖Ax − Ay‖ ≤ (1 − γ )‖x − y‖. (3.9)

Assume that B ∈A and

h(B,Aγ ) ≤ αr. (3.10)

We will show that B ∈ An.
Let

x, y ∈ K and ‖x − y‖ ≥ (2n)−1d(K). (3.11)

It follows from (3.9) and (3.11) that

‖x − y‖ − ‖Aγ x − Aγ y‖ ≥ γ ‖x − y‖ ≥ γ d(K)(2n)−1. (3.12)
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By (3.10),

‖Bx −By‖ ≤ ‖Bx −Aγ x‖+‖Aγ x −Aγ y‖+‖Aγ y −By‖ ≤ ‖Aγ x −Aγ y‖+2αr.

When combined with (3.12), (3.6), and (3.5), this implies that

‖x − y‖ − ‖Bx − By‖ ≥ ‖x − y‖ − ‖Aγ x − Aγ y‖ − 2αr

≥ γ d(K)(2n)−1 − 2αr

= 2−1r
[
(2n)−1d(K)

(
d(K) + 1

)−1 − 4α
]

≥ 2−1rd(K)(4n)−1(d(K) + 1
)−1

.

Thus

‖Bx − By‖ ≤ ‖x − y‖ − rd(K)
(
d(K) + 1

)−1
(8n)−1

≤ ‖x − y‖(1 − r(8n)−1(d(K) + 1
)−1)

.

Since this holds for all x, y ∈ K satisfying (3.11), we conclude that B ∈ An. Thus
each B ∈ A satisfying (3.10) belongs to An. In other words,

{
B ∈ A : h(B,Aγ ) ≤ αr

} ⊂ An. (3.13)

If B ∈A satisfies (3.10), then by (3.8), (3.5) and (3.6), we have

h(A,B) ≤ h(B,Aγ ) + h(Aγ ,A) ≤ αr + γ d(K) ≤ 8−1r + 2−1r ≤ r.

Thus
{
B ∈A : h(B,Aγ ) ≤ αr

} ⊂ {
B ∈ A : h(B,A) ≤ r

}
.

When combined with (3.13), this inclusion implies that A \An is porous in (A, h).
Set F = ⋂∞

n=1 An. Clearly, A \ F is σ -porous in (A, h). By property (P1), each
A ∈ F is contractive. �

3.2 Attractive Sets

In this section, we study nonexpansive mappings which are contractive with respect
to a given subset of their domain.

Assume that (X,‖ · ‖) is a Banach space and that K is a closed, bounded and
convex subset of X. Once again, denote by A the set of all mappings A : K → K

such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K. (3.14)
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For each x ∈ K and each subset E ⊂ K , let

ρ(x,E) = inf
{‖x − y‖ : y ∈ E

}
. (3.15)

Let F be a nonempty, closed and convex subset of K . Denote by A(F ) the set of
all A ∈A such that Ax = x for all x ∈ F . Clearly, A(F ) is a closed subset of (A, h).
In what follows we consider the complete metric space (A(F ), h).

An operator A ∈ A(F ) is said to be contractive with respect to F if there exists a
decreasing function φA : [0, d(K)] → [0,1] such that

φA(t) < 1 for all t ∈ (
0, d(K)

]
(3.16)

and

ρ(Ax,F ) ≤ φA
(
ρ(x,F )

)
ρ(x,F ) for all x ∈ K. (3.17)

We now show that if A(F ) contains a retraction, then the complement of the set
of contractive mappings (with respect to F ) in A(F ) is σ -porous. This result was
also obtained in [137].

Theorem 3.3 Assume that there exists Q ∈A(F ) such that

Q(K) = F. (3.18)

Then there exists a set F ⊂ A(F ) such that A(F ) \ F is σ -porous in (A(F ), h) and
each B ∈F is contractive with respect to F .

Proof For each natural number n, denote by An the set of all A ∈ A(F ) which have
the following property:

(P2) There exists κ ∈ (0,1) such that ρ(Ax,F ) ≤ κρ(x,F ) for all x ∈ K such that
ρ(x,F ) ≥ min{d(K),1}/n. Define

F =
∞⋂

n=1

An. (3.19)

Clearly, each element of F is contractive with respect to F . We need to show that
A(F ) \An is porous in (A(F ), h) for all integers n ≥ 1. To this end, let n ≥ 1 be an
integer and set

α = (
d(K) + 1

)−1 min
{
d(K),1

}
(16n)−1. (3.20)

Let A ∈A(F ) and r ∈ (0,1]. Set

γ = 2−1r
(
d(K) + 1

)−1 (3.21)

and define

Aγ x = (1 − γ )Ax + γQx, x ∈ K. (3.22)
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It is obvious that Aγ ∈ A(F ). By (3.22),

h(A,Aγ ) ≤ sup
{‖Aγ x − Ax‖ : x ∈ K

}

≤ γ sup
{‖Ax − Qx‖ : x ∈ K

} ≤ γ d(K). (3.23)

Let B ∈A(F ) be such that

h(Aγ ,B) ≤ αr. (3.24)

Then by (3.24), (3.23), (3.21), and (3.20),

h(A,B) ≤ h(A,Aγ ) + h(Aγ ,B) ≤ γ d(K) + αr

< 1/2r + r/2 ≤ r.

Thus (3.24) implies that h(A,B) ≤ r and

{
C ∈ A(F ) : h(Aγ ,C) ≤ αr

}

⊂ {
C ∈A(F ) : h(A,C) ≤ r

}
. (3.25)

Let x ∈ K with

ρ(x,F ) ≥ min
{
d(K),1

}
/n. (3.26)

For each ε > 0, there exists z ∈ F such that ρ(x,F ) + ε ≥ ‖x − z‖, and by (3.22)
and (3.18),

ρ(Aγ x,F ) = ρ
(
(1 − γ )Ax + γQx,F

)

≤ (
(1 − γ )Ax + Qx

) − (
(1 − γ )z + γQx

) ≤ (1 − γ )‖Ax − z‖
≤ (1 − γ )‖x − z‖ ≤ (1 − γ )ρ(x,F ) + ε(1 − γ ).

Since ε is an arbitrary positive number, we conclude that

ρ(Aγ x,F ) ≤ (1 − γ )ρ(x,F ).

Since |ρ(y1,F ) − ρ(y2,F )| ≤ ‖y1 − y2‖ for all y1, y2 ∈ K , it follows from (3.24)
that

ρ(Bx,F ) ≤ ‖Aγ x − Bx‖ + ρ(Aγ x,F ) ≤ αr + ρ(Aγ x,F )

≤ αr + (1 − γ )ρ(x,F ),

and

ρ(Bx,F ) ≤ (1 − γ )ρ(x,F ) + αr.

It now follows from this inequality, (3.26), (3.20) and (3.21) that
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ρ(Bx,F ) ≤ ρ(x,F )
(
1 − γ + αr

(
ρ(x,F )

)−1)

≤ ρ(x,F )
[
1 − 2−1r

(
d(K) + 1

)−1 + αr
(
min

{
d(K),1

}
/n

)−1]

≤ ρ(x,F )
[
1 − r2−1(d(K) + 1

)−1 + r
(
16

(
d(K) + 1

))−1]

≤ ρ(x,F )
(
1 − r4−1d(K + 1)−1).

Thus

ρ(Bx,F ) ≤ ρ(x,F )
(
1 − r4−1(d(K) + 1

)−1)

for each x ∈ K satisfying (3.26). This fact implies that B ∈ An. Since this inclusion
holds for any B satisfying (3.24), combining it with (3.25) we obtain that

{
C ∈A(F ) : h(Aγ ,C) ≤ αr

} ⊂ {
C ∈A(F ) : h(A,C) ≤ r

} ∩An.

This shows that A(F ) \An is indeed porous in (A(F ), h). �

3.3 Attractive Subsets of Unbounded Spaces

In this section we continue to study nonexpansive mappings which are contractive
with respect to a given subset of their domain.

Assume that (X,ρ) is a hyperbolic complete metric space and that K is a closed
(not necessarily bounded) and ρ-convex subset of X. Denote by A the set of all
mappings A : K → K such that

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K. (3.27)

For each x ∈ K and each subset E ⊂ K , let ρ(x,E) = inf{ρ(x, y) : y ∈ E}. For
each x ∈ K and each r > 0, set

B(x, r) = {
y ∈ K : ρ(x, y) ≤ r

}
. (3.28)

Fix θ ∈ K . For the set A we consider the uniformity determined by the following
base:

E(n, ε) = {
(A,B) ∈ A×A : ρ(Ax,Bx) ≤ ε, x ∈ B(θ,n)

}
, (3.29)

where ε > 0 and n is a natural number. Clearly the space A with this uniformity is
metrizable and complete. We equip the space A with the topology induced by this
uniformity.

Let F be a nonempty, closed and ρ-convex subset of K . Denote by A(F ) the set
of all A ∈ A such that Ax = x for all x ∈ F . Clearly, A(F ) is a closed subset of A.
We consider the topological subspace A(F ) ⊂ A with the relative topology.
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An operator A ∈ A(F ) is said to be contractive with respect to F if for any natural
number n there exists a decreasing function φA

n : [0,∞) → [0,1] such that

φA
n (t) < 1 for all t > 0 (3.30)

and

ρ(Ax,F ) ≤ φA
n

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ,n). (3.31)

Clearly, this definition does not depend on our choice of θ .
We begin our discussion of such mappings by proving that the set F attracts all

the iterates of A. This result was obtained in [131].

Theorem 3.4 Let A ∈ A(F ) be contractive with respect to F . Then there exists
B ∈ A(F ) such that B(K) = F and Anx → Bx as n → ∞, uniformly on B(θ,m)

for any natural number m.

Proof We may assume without loss of generality that θ ∈ F . Then for each real
r > 0,

C
(
B(θ, r)

) ⊂ B(θ, r) for all C ∈A(F ). (3.32)

Let r be a natural number. To prove the theorem, it is sufficient to show that there
exists B : B(θ, r) → F such that

Anx → Bx as n → ∞, uniformly on B(θ, r). (3.33)

There exists a decreasing function φA
r : [0,∞) → [0,1] such that

φA
r (t) < 1 for all t > 0 (3.34)

and

ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ, r). (3.35)

Let ε ∈ (0,1). Choose a natural number m ≥ 4 such that

φA
r (εr)m < 8−1ε. (3.36)

Let x ∈ B(θ, r). We will show that

ρ
(
Amx,F

)
< εr. (3.37)

Assume the contrary. Then for each i = 0, . . . ,m, ρ(Aix,F ) ≥ εr , and by (3.35)
and (3.32),

Aix ∈ B(θ, r), ρ
(
Ai+1x,F

) ≤ φA
r

(
ρ
(
Aix,F

))
ρ
(
Aix,F

)

≤ φA
r (εr)ρ

(
Aix,F

)
.
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When combined with (3.36), these inequalities imply that

ρ
(
Amx,F

) ≤ φA
r (εr)mρ(x,F ) ≤ 8−1ερ(x, θ) ≤ 8−1εr,

a contradiction. Therefore (3.27) is valid and for each x ∈ B(θ, r), there exists
Cε(x) ∈ F such that ρ(Amx,Cεx) < εr . This implies that for each x ∈ B(θ, r),

ρ
(
Aix,Cεx

)
< εr for all integers i ≥ m. (3.38)

Since ε is an arbitrary number in (0,1), we conclude that for each x ∈ B(θ, r),
{Aix}∞i=1 is a Cauchy sequence and there exists Bx = limi→∞ Aix. Clearly,

ρ
(
Bx,Cε(x)

) ≤ εr for all x ∈ B(θ, r). (3.39)

Since (3.39) is true for any ε in (0,1), we conclude that B(B(θ, r)) ⊂ F .
By (3.39) and (3.38), for each x ∈ B(θ, r),

ρ
(
Aix,Bx

) ≤ 2εr for all integers i ≥ m.

Finally, since ε ∈ (0,1) is arbitrary, we conclude that (3.33) is valid. This completes
the proof of Theorem 3.4. �

Proposition 3.5 Assume that A,B ∈ A(F ) and that A is contractive with respect
to F . Then AB and BA are also contractive with respect to F .

Proof We may assume that θ ∈ F . Then for each real r > 0,

C
(
B(θ, r)

) ⊂ B(θ, r) for all C ∈A(F ). (3.40)

Fix r > 0. There exists a decreasing function φA
r : [0,∞) → [0,1] such that

φA
r (t) < 1 for all t > 0 (3.41)

and

ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ, r). (3.42)

By (3.42), for each x ∈ B(θ, r),

ρ(BAx,F ) = inf
{
ρ(BAx,y) : y ∈ F

} ≤ inf
{
ρ(Ax,y) : y ∈ F

}

= ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ).

Therefore BA is contractive with respect to F .
Let now x belong to B(θ, r). By (3.42) and (3.40), Bx ∈ B(θ, r) and

ρ(ABx,F ) ≤ φA
r

(
ρ(Bx,F )

)
ρ(Bx,F ). (3.43)



3.3 Attractive Subsets of Unbounded Spaces 127

There are two cases: (1) ρ(Bx,F ) ≥ 2−1ρ(x,F ); (2) ρ(Bx,F ) < 2−1ρ(x,F ). In
the first case, we have by (3.43),

ρ(ABx,F ) ≤ φA
r

(
2−1ρ(x,F )

)
ρ(Bx,F ) ≤ φA

r

(
2−1ρ(x,F )

)
ρ(x,F ),

and in the second case, (3.43) implies that

ρ(ABx,F ) ≤ ρ(Bx,F ) ≤ 2−1ρ(x,F ).

Thus in both cases we obtain that

ρ(ABx,F ) ≤ max
{
φA

r

(
2−1ρ(x,F )

)
,2−1}ρ(x,F )

= ψ
(
ρ(x,F )

)
ρ(x,F ),

where ψ(t) = max{φA
r (2−1t),2−1}, t ∈ [0,∞). Therefore AB is also contractive

with respect to F . Proposition 3.5 is proved. �

We now show that if A(F ) contains a retraction, then almost all the mappings in
A(F ) are contractive with respect to F .

Theorem 3.6 Assume that there exists

Q ∈ A(F ) such that Q(K) = F. (3.44)

Then there exists a set F ⊂ A(F ) which is a countable intersection of open and
everywhere dense sets in A(F ) such that each B ∈ F is contractive with respect
to F .

Proof We may assume that θ ∈ F . Then for each real r > 0,

C
(
B(θ, r)

) ⊂ B(θ, r) for all C ∈A(F ). (3.45)

For each A ∈A(F ) and each γ ∈ (0,1), define Aγ ∈A(F ) by

Aγ x = (1 − γ )Ax ⊕ γQx, x ∈ K. (3.46)

Clearly, for each A ∈ A(F ), Aγ → A as γ → 0+ in A(F ). Therefore the set {Aγ :
A ∈ A(F ), γ ∈ (0,1)} is everywhere dense in A(F ).

Let A ∈A(F ) and γ ∈ (0,1). Evidently,

ρ(Aγ x,F ) = inf
y∈F

{
ρ
(
(1 − γ )Ax ⊕ γQx,y

)}

≤ inf
y∈F

{
ρ
(
(1 − γ )Ax ⊕ γQx, (1 − γ )y ⊕ γQx

)}

≤ inf
y∈F

{
(1 − γ )ρ(Ax,y)

} ≤ (1 − γ )ρ(x,F )
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for all x ∈ K . Thus

ρ(Aγ x,F ) ≤ (1 − γ )ρ(x,F ) for all x ∈ K. (3.47)

For each integer i ≥ 1, denote by U(A,γ, i) an open neighborhood of Aγ in A(F )

for which

U(A,γ, i) ⊂ {
B ∈A(F ) : (B,Aγ ) ∈ E

(
2i ,8−iγ

)}
(3.48)

(see (3.29)).
We will show that for each A ∈ A(F ), each γ ∈ (0,1) and each integer i ≥ 1, the

following property holds:

P(2) For each B ∈ U(A,γ, i) and each x ∈ B(θ,2i ) satisfying ρ(x,F ) ≥ 4−i , the
inequality ρ(Bx,F ) ≤ (1 − 2−1γ )ρ(x,F ) is true.

Indeed, let A ∈ A(F ), γ ∈ (0,1) and let i ≥ 1 be an integer. Assume that

B ∈ U(A,γ, i), x ∈ B
(
θ,2i

)
and ρ(x,F ) ≥ 4−i . (3.49)

Using (3.47), (3.48) and (3.49), we see that

ρ(Bx,F ) ≤ ρ(Aγ x,F ) + 8−iγ ≤ (1 − γ )ρ(x,F ) + 8−iγ

≤ (1 − γ )ρ(x,F ) + 2−1γρ(x,F ) ≤ (
1 − 2−1γ

)
ρ(x,F ).

Thus property P(2) holds for each A ∈A(F ), each γ ∈ (0,1) and each integer i ≥ 1.
Define

F =
∞⋂

q=1

⋃{
U(A,γ, i) : A ∈A(F ), γ ∈ (0,1), i ≥ q

}
.

Clearly, F is a countable intersection of open and everywhere dense sets in A(F ).
Let B ∈ F . To show that B is contractive with respect to F , it is sufficient to

show that for each r > 0 and each ε ∈ (0,1), there is κ ∈ (0,1) such that

ρ(Bx,F ) ≤ κρ(x,F ) for each x ∈ B(θ, r) satisfying ρ(x,F ) ≥ ε.

Let r > 0 and ε ∈ (0,1). Choose a natural number q such that

2q > 8r and 2−q < 8−1ε.

There exist A ∈ A(F ), γ ∈ (0,1) and an integer i ≥ q such that B ∈ U(A,γ, i). By
property P(2), for each x ∈ B(θ, r) ⊂ B(θ,2i ) satisfying ρ(x,F ) ≥ ε > 2−i , the
following inequality holds:

ρ(Bx,F ) ≤ (
1 − 2−1γ

)
ρ(x,F ).

Thus B is contractive with respect to F . This completes the proof of Theorem 3.6. �
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3.4 A Contractive Mapping with no Strictly Contractive Powers

Let

X = [0,1] and ρ(x, y) = |x − y| for each x, y ∈ X.

In this section, which is based on [155], we construct a contractive mapping A :
[0,1] → [0,1] such that none of its powers is a strict contraction.

We begin by setting

A(0) = 0. (3.50)

Next, we define, for each natural number n, the mapping A on the interval [(n +
1)−1, n−1] by

A
(
(n + 1)−1 + t

) = (n + 2)−1 + t
(
n−1 − (n + 1)−1)−1(

(n + 1)−1 − (n + 2)−1)

for all t ∈ [
0, n−1 − (n + 1)−1]. (3.51)

It is clear that for each natural number n,

A
(
n−1) = (n + 1)−1, (3.52)

the restriction of A to the interval [(n + 1)−1, n−1] is affine, and that the mapping
A : [0,1] → [0,1] is well defined.

First, we show that A is nonexpansive, that is, |Ax − Ay| ≤ |x − y| for all x, y ∈
[0,1].

Indeed, if x ∈ [0,1], then

∣∣Ax − A(0)
∣∣ ≤ |x|. (3.53)

Assume now that n is a natural number and that

x, y ∈ [
(n + 1)−1, n−1]. (3.54)

By (3.51) and (3.54),

|Ax − Ay|
= ∣∣(n + 2)−1 + (

x − (n + 1)−1)(n−1 − (n + 1)−1)−1(
(n + 1)−1 − (n + 2)−1)

− [
(n + 2)−1 + (

y − (n + 1)−1)(n−1 − (n + 1)−1)−1

× (
(n + 1)−1 − (n + 2)−1)]∣∣

= |x − y|(n−1 − (n + 1)−1)−1(
(n + 1)−1 − (n + 2)−1)

= |x − y|n(n + 1)
(
(n + 1)(n + 2)

)−1 = |x − y|n(n + 2)−1.
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Thus for each natural number n and each x, y ∈ [(n + 1)−1, n−1],
|Ax − Ay| ≤ |x − y|n(n + 2)−1. (3.55)

Together with (3.53) this last inequality implies that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0,1], (3.56)

as claimed.
Next, we show that the power Am is not a strict contraction for any integer m ≥ 1.

Assume the converse. Then there would exist a natural number m and c ∈ (0,1) such
that for each x, y ∈ [0,1],

∣∣Amx − Amy
∣∣ ≤ c|x − y|. (3.57)

Since

(m + i)(m + i + 1)i−1(i + 1)−1 → 1 as i → ∞,

there is an integer p ≥ 4 such that

p(p + 1) > (p + m)(p + m + 1)c. (3.58)

By (3.52), (3.50) and (3.58),

Am
(
p−1) − Am

(
(p + 1)−1)

= (p + m)−1 − (p + m + 1)−1 = (p + m)−1(p + m + 1)−1

> cp−1(p + 1)−1 = c
(
p−1 − (p + 1)−1),

which contradicts (3.57).
The contradiction we have reached proves that Am is not a strict contraction for

any integer m ≥ 1.
Finally, we show that A is contractive. Let ε ∈ (0,1). We claim that there exists

c ∈ (0,1) such that

|Ax − Ay| ≤ c|x − y| for each x, y ∈ [0,1] satisfying |x − y| ≥ ε. (3.59)

Indeed, choose a natural number p ≥ 4 such that

p > 18ε−2, (3.60)

and assume that

x, y ∈ [0,1] and |x − y| ≥ ε. (3.61)

We may assume without loss of generality that

y > x. (3.62)
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There are two cases:

x < (4p)−1; (3.63)

x ≥ (4p)−1. (3.64)

Assume that (3.63) holds. There exists a natural number n such that

(1 + n)−1 < y ≤ n−1. (3.65)

By (3.65), (3.62) and (3.61),

ε ≤ y ≤ 1/n, (n + 2)−1 ≥ (3n)−1 ≥ ε/3. (3.66)

By (3.65) and (3.51),

Ay = (n + 2)−1 + (
y − (n + 1)−1)(n−1 − (n + 1)−1)−1(

(n + 1)−1 − (n + 2)−1)

= (n + 2)−1 + (
y − (n + 1)−1)n(n + 1)(n + 1)−1(n + 2)−1

≤ y − (n + 1)−1 + (n + 2)−1

and

y − Ay ≥ (n + 1)−1(n + 2)−1.

When combined with (3.66), the above inequality implies that

Ay − Ax ≤ Ay ≤ y − (n + 1)−1(n + 2)−1 ≤ y − (n + 2)−2 ≤ y − ε2/9. (3.67)

By (3.63), (3.60) and (3.67),

(
1 − 18−1ε2)(y − x) ≥ (

1 − 18−1ε2)y − x ≥ (
1 − 18−1ε2)y − (4p)−1

≥ y − ε2/18 − (4p)−1 ≥ y − ε2/18 − ε2/18

≥ Ay − Ax.

Thus we have shown that if (3.63) holds, then

|Ax − Ay| ≤ (
1 − ε2/18

)|x − y|. (3.68)

Now assume that (3.64) holds. By (3.64) and (3.62),

x, y ∈ [
(4p)−1,1

]
.

In view of (3.55), the Lipschitz constant of the restriction of A to the interval
[(4p)−1,1] does not exceed (4p + 2)(4p + 4)−1 and therefore we have

|Ax − Ay| ≤ (4p + 2)(4p + 4)−1|x − y|.
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By this inequality and (3.68), we see that, in both cases,

|Ax − Ay| ≤ max
{(

1 − ε2/18
)
, (4p + 2)(4p + 4)−1}|x − y|.

Since this inequality holds for each x, y ∈ X satisfying (3.61), we conclude that
(3.59) is satisfied and therefore A is contractive.

3.5 A Power Convergent Mapping with no Contractive Powers

Let X = [0,1] and let ρ(x, y) = |x − y| for all x, y ∈ X. In this section, which is
based on [155], we construct a mapping A : [0,1] → [0,1] such that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0,1],
Anx → 0 as n → ∞, uniformly on [0,1],

and for each integer m ≥ 0, the power Am is not contractive.
To this end, let

A(0) = 0 (3.69)

and for t ∈ [2−1,1], set

A(t) = t − 1/4. (3.70)

Clearly,

A(1) = 3/4 and A(1/2) = 1/4. (3.71)

For t ∈ [4−1,2−1), set

A(t) = 4−1 − 16−1 + (
t − 4−1)4−1. (3.72)

Clearly, A is continuous on [4−1,1] and

A
(
4−1) = 4−1 − 16−1. (3.73)

Now let n ≥ 2 be a natural number. We define the mapping A on the interval
[2−2n

,2−2n−1] as follows. For each t ∈ [2−2n+1,2−2n−1], set

A(t) = t − 2−2n

. (3.74)

Clearly,

A
(
2−2n+1) = 2−2n

and A
(
2−2n−1) = 2−2n−1 − 2−2n

. (3.75)

For t ∈ [2−2n
,2−2n+1), set
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A(t) = 2−2n − 2−2n+1 + (
t − 2−2n)

22n(
2−2n+1)

= 2−2n − 2−2n+1 + 2−2n(
t − 2−2n)

. (3.76)

It is clear that

A
(
2−2n) = 2−2n − 2−2n+1

and

lim
t→(2−2n+1)+

A(t) = 2−2n − 2−2n+1 + 2−2n(
2−2n+1 − 2−2n) = 2−2n

. (3.77)

It follows from (3.74)–(3.77) that the mapping A is continuous on each one of
the intervals [2−2n

,2−2n−1 ], n = 2,3, . . . . It is not difficult to check that A is well
defined on [0,1] and that it is increasing.

By (3.70) and (3.72), for each x ∈ [1/4,1] we have Ax < x. We will now show
that this inequality holds for all x ∈ (0,1].

Let n ≥ 2 be an integer and let x ∈ [2−2n
,2−2n−1 ]. It is clear that Ax < x if

x ∈ [2−2n+1,2−2n−1]. If x ∈ [2−2n
,2−2n+1), then by (3.74) and (3.75),

Ax < A
(
2−2n+1) ≤ 2−2n ≤ x.

Thus Ax < x for all x ∈ [2−2n
,2−2n−1] and for any integer n ≥ 2. Therefore we have

indeed shown that

Ax < x for all x ∈ (0,1], (3.78)

as claimed.
Next, we will show that

|Ax − Ay| ≤ |x − y| for each x, y ∈ [0,1]. (3.79)

If x = 0 and y > 0, then

|Ay − Ax| = Ay ≤ y = |y − x|. (3.80)

Assume that x, y ∈ (0,1]. Note that the restrictions of the mapping A to the interval
[1/4,1] and to all of the intervals [2−2n,2−2n−1 ], where n ≥ 2 is an integer, are
Lipschitz with Lipschitz constant one. This obviously implies that the mapping A is
1-Lipschitz on all of (0,1]. Therefore (3.79) is true.

Let x ∈ (0,1]. By (3.78), the sequence {Anx}∞n=1 is decreasing and there exists
the limit

x∗ = lim
n→∞Anx.

Clearly, Ax∗ = x∗. If x∗ > 0, then by (3.78), Ax∗ < x∗, a contradiction. Thus x∗ = 0
and limn→∞ An(1) = 0. Since the mapping A is increasing, this implies that

Anx → 0 as n → ∞, uniformly on [0,1].
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Finally, we will show that for each integer m ≥ 1, the power Am is not contractive.
Indeed, let m ≥ 1 be an integer. It is sufficient to show that there exist x, y ∈ [0,1]

such that

x �= y and
∣∣Am − Amy

∣∣ = |x − y|.
To this end, choose a natural number n ≥ m + 4 such that

22n−1 − 3 ≥ m + 2. (3.81)

Using induction and (3.74), we show that for each integer i ∈ {1, . . . ,22n−1 − 2},

Ai
(
2−2n−1) = 2−2n−1 − i2−2n ≥ 2−2n+1

and

Ai
(
2−2n−1) ∈ [

2−2n+1,2−2n−1].

Put

x = 2−2n−1
and y = A

(
2−2n−1)

.

Then for i = 1, . . . ,22n−1 − 3, we have

∣∣Aix − Aiy
∣∣ = |x − y|,

and in view of (3.81),
∣∣Amx − Amy

∣∣ = |x − y|.
Thus the power Am is not contractive, as asserted.

3.6 A Mapping with Nonuniformly Convergent Powers

In [155] we proved the following result.

Theorem 3.7 Let (X,ρ) be a compact metric space, let a mapping A : X → X

satisfy

ρ(Ax,Ay) ≤ ρ(x, y) for each x, y ∈ X, (3.82)

and let xA ∈ X satisfy

Anx → xA as n → ∞, for each x ∈ X.

Then Anx → xA as n → ∞, uniformly on X.
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Proof Let ε > 0. For each x ∈ X, there is a natural number n(x) such that

ρ
(
Anx,xA

) ≤ ε/2 for all integers n ≥ n(x). (3.83)

Let

x, y ∈ X with ρ(x, y) < ε/2. (3.84)

By (3.83) and (3.84), for each integer n ≥ n(x),

ρ
(
Any,xA

) ≤ ρ
(
Any,Anx

) + ρ
(
Anx,xA

)
< ε/2 + ε/2.

Thus the following property holds:

(P) For each x ∈ X, each integer n ≥ n(x), and each y ∈ X satisfying ρ(x, y) <

ε/2, we have

ρ
(
Any,xA

)
< ε.

Since X is compact, there exist finitely many points x1, . . . , xq ∈ X such that

q⋃

i=1

{
y ∈ X : ρ(y, xi) < ε/2

} = X.

Assume that y ∈ X and that the integer n ≥ max{n(xi) : i = 1, . . . , q}. Then there is
j ∈ {1, . . . , q} such that ρ(y, xj ) < ε/2. By property (P),

ρ
(
Any,xA

)
< ε.

This completes the proof of Theorem 3.7. �

The following example was constructed in [155].
Let X be the set of all sequences (x1, x2, . . . , xn, . . . ) such that

∑∞
i=1 |xi | ≤ 1

and set

ρ(x, y) = ρ
(
(xi), (yi)

) =
∞∑

i=1

|xi − yi |.

In other words, (X,ρ) is the closed unit ball of �1. Clearly, (X,ρ) is a complete
metric space. Define

A(x1, x2, . . . , xn, . . . ) = (x2, x2, . . . , xn, . . . ), x = (x1, x2, . . . ) ∈ X.

Then the mapping A is nonexpansive, and for each x ∈ X, Anx → 0 as n → ∞.
However, if n is a natural number and en is the n-th unit vector of X, then

ρ(Anen+1,0) = 1.
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3.7 Two Results in Metric Fixed Point Theory

In this section, which is based on [115], we establish two fixed point theorems for
certain mappings of contractive type. The first result is concerned with the case
where such mappings take a nonempty and closed subset of a complete metric space
X into X, and the second with an application of the continuation method to the case
where they satisfy the Leray-Schauder boundary condition in Banach spaces.

The following result was obtained in [115].

Theorem 3.8 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for each x, y ∈ K, (3.85)

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that K0 ⊂ K is a nonempty and bounded set with the following property:

(P1) For each natural number n, there exists xn ∈ K0 such that T ixn is defined for
all i = 1, . . . , n.

Then

(A) the mapping T has a unique fixed point x̄ in K ;
(B) For each M,ε > 0, there exist δ > 0 and a natural number k such that for each

integer n ≥ k and each sequence {xi}ni=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M and ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1,

we have

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.86)

Proof of Theorem 3.8(A) The uniqueness of x̄ is obvious. To establish its existence,
let xn ∈ K0 be, for each natural number n, the point provided by property (P1). Fix
θ0 ∈ K . Since K0 is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.87)

Let ε > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n > k is an integer and if an integer i satisfies k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

) ≤ ε. (3.88)

Assume the contrary. Then for each natural number k, there exist natural numbers
nk and ik such that

k ≤ ik < nk and ρ
(
T ikxnk

, T ik+1xnk

)
> ε. (3.89)
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Choose a natural number k such that

k >
(
ε
(
1 − φ(ε)

))−1(
2c0 + ρ(θ,T θ)

)
. (3.90)

By (3.89) and (3.85),

ρ
(
T ixnk

, T i+1xnk

)
> ε, i = 0, . . . , ik. (3.91)

(Here we use the notation that T 0z = z for all z ∈ K .) It follows from (3.85), (3.91)
and the monotonicity of φ that for all i = 0, . . . , ik − 1,

ρ
(
T i+2xnk

, T i+1xnk

) ≤ φ
(
ρ
(
T i+1xnk

, T ixnk

))
ρ
(
T i+1xnk

, T ixnk

)

≤ φ(ε)ρ
(
T i+1xnk

, T ixnk

)

and

ρ
(
T i+2xnk

, T i+1xnk

) − ρ
(
T i+1xnk

, T ixnk

)

≤ (
φ(ε) − 1

)
ρ
(
T i+1xnk

, T ixnk

)
< −(

1 − φ(ε)
)
ε. (3.92)

Inequalities (3.92) and (3.89) imply that

−ρ(xnk
, T xnk

) ≤ ρ
(
T ik+1xnk

, T ik xnk

) − ρ(xnk
, T xnk

)

=
ik−1∑

i=0

[
ρ
(
T i+2xnk

, T i+1xnk

) − ρ
(
T i+1xnk

, T ixnk

)]

≤ −(
1 − φ(ε)ε

)
ik ≤ −k

(
1 − φ(ε)

)
ε

and

k
(
1 − φ(ε)

)
ε ≤ ρ(xnk

, T xnk
). (3.93)

In view of (3.93), (3.85) and (3.87),

k
(
1 − φ(ε)

)
ε ≤ ρ(xnk

, T xnk
)

≤ ρ(xnk
, θ) + ρ(θ,T θ) + ρ(T θ,T xnk

) ≤ c0 + ρ(θ,T θ) + c0

and

k ≤ (
ε
(
1 − φ(ε)

))−1(2c0 + ρ(θ,T θ)
)
.

This contradicts (3.90). The contradiction we have reached proves that for each
ε > 0, there exists a natural number k such that (P2) holds.

Now let δ > 0 be given. We show that there exists a natural number k such that
the following property holds:

(P3) If n > k is an integer and if integers i, j satisfy k ≤ i, j < n, then

ρ
(
T ixn, T

jxn

) ≤ δ.
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To this end, choose a positive number

ε < 4−1δ
(
1 − φ(δ)

)
. (3.94)

We have already shown that there exists a natural number k such that (P2) holds.
Assume that the natural numbers n, i and j satisfy

n > k and k ≤ i, j < n. (3.95)

We claim that ρ(T ixn, T
jxn) ≤ δ.

Assume the contrary. Then

ρ
(
T ixn, T

jxn

)
> δ. (3.96)

By (P2), (3.95), (3.85), (3.96) and the monotonicity of φ,

ρ
(
T ixn, T

jxn

) ≤ ρ
(
T ixn, T

i+1xn

) + ρ
(
T i+1xn,T

j+1xn

) + ρ
(
T j+1xn,T

jxn

)

≤ ε + ρ
(
T i+1xn,T

j+1xn

) + ε

≤ 2ε + φ
(
ρ
(
T ixn, T

jxn

))
ρ
(
T ixn, T

jxn

)

≤ 2ε + φ(δ)ρ
(
T ixn, T

jxn

)
.

Together with (3.94) this implies that

ρ
(
T ixn, T

jxn

) ≤ 2ε
(
1 − φ(δ)

)−1
< δ,

a contradiction. Thus we have shown that for each δ > 0, there exists a natural
number k such that (P3) holds.

Let ε > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P4) If n1, n2 ≥ k are integers, then ρ(T kxn1, T
kxn2) ≤ ε.

Choose a natural number k such that

k >
((

1 − φ(ε)
)
(ε)

)−14c0 (3.97)

and assume that the integers n1 and n2 satisfy

n1, n2 ≥ k. (3.98)

We claim that ρ(T kxn1, T
kxn2) ≤ ε. Assume the contrary. Then

ρ
(
T kxn1 , T

kxn2

)
> ε.

Together with (3.85) this implies that

ρ
(
T ixn1, T

ixn2

)
> ε, i = 0, . . . , k. (3.99)
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By (3.85), (3.99) and the monotonicity of φ, we have for i = 0, . . . , k − 1,

ρ
(
T i+1xn1, T

i+1xn2

) ≤ φ
(
ρ
(
T ixn1, T

ixn2

))
ρ
(
T ixn1, T

ixn2

)

≤ φ(ε)ρ
(
T ixn1, T

ixn2

)

and

ρ
(
T i+1xn1 , T

i+1xn2

) − ρ
(
T ixn1 , T

ixn2

)

≤ (
φ(ε) − 1

)
ρ
(
T ixn1 , T

ixn2

) ≤ −(
1 − φ(ε)

)
ε.

This implies that

−ρ(xn1, xn2) ≤ ρ
(
T kxn1, T

kxn2

) − ρ(xn1 , xn2)

=
k−1∑

i=0

[
ρ
(
T i+1xn1 , T

i+1xn2

) − ρ
(
T ixn1 , T

ixn2

)] ≤ −k
(
1 − φ(ε)

)
ε.

Together with (3.87) this implies that

k
(
1 − φ(ε)

)
ε ≤ ρ(xn1, xn2) ≤ ρ(xn1, θ) + ρ(θ, xn2) ≤ 2c0.

This contradicts (3.97). Thus we have shown that

ρ
(
T kxn1 , T

kxn2

) ≤ ε.

In other words, there exists a natural number k for which (P4) holds.
Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T k1xn1, T

k1xn2

) ≤ ε/4 for all integers n1, n2 ≥ k1. (3.100)

By (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

) ≤ ε/4 for all natural numbers n, j, i satisfying k2 ≤ i, j < n.

(3.101)

Assume now that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.102)

We claim that

ρ
(
T ixn1 , T

j xn2

) ≤ ε.

By (3.100), (3.102) and (3.85),

ρ
(
T k1+k2xn1, T

k1+k2xn2

) ≤ ρ
(
T k1xn1, T

k1xn2

) ≤ ε/4. (3.103)

In view of (3.102) and (3.101),

ρ
(
T k1+k2xn1, T

ixn1

) ≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

) ≤ ε/4.
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Together with (3.103) these inequalities imply that

ρ
(
T ixn1, T

jxn2

)

≤ ρ
(
T ixn1 , T

k1+k2xn1

) + ρ
(
T k1+k2xn1, T

k1+k2xn2

) + ρ
(
T k1+k2xn2, T

jxn2

)

< ε.

Thus we have shown that the following property holds:

(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1, T

j xn2

) ≤ ε

for all natural numbers n1, n2 ≥ k(ε), i ∈ [k(ε), n1) and j ∈ [k(ε), n2).

Consider the two sequences {T n−2xn}∞n=2 and {T n−1xn}∞n=2. Property (P5) im-
plies that both of them are Cauchy and that

lim
n→∞ρ

(
T n−1xn,T

n−2xn

) = 0.

Therefore there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

) = lim
n→∞ρ

(
x̄, T n−1xn

) = 0.

Since the mapping T is continuous, T x̄ = x̄ and assertion (A) is proved. �

Proof of Theorem 3.8(B) For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
. (3.104)

Choose δ0 > 0 such that

δ0 < M
(
1 − φ(M/2)

)
/4. (3.105)

Assume that

y ∈ K ∩ B(x̄,M), z ∈ X and ρ(z,T y) ≤ δ0. (3.106)

By (3.106) and (3.85),

ρ(x̄, z) ≤ ρ(x̄, T y) + ρ(T y, z) ≤ ρ(T x̄, T y) + δ0

≤ φ
(
ρ(x̄, y)

)
ρ(x̄, y) + δ0. (3.107)

There are two cases:

ρ(y, x̄) ≤ M/2; (3.108)

ρ(y, x̄) > M/2. (3.109)
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Assume that (3.108) holds. By (3.107), (3.108) and (3.105),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M. (3.110)

If (3.109) holds, then by (3.107), (3.106), (3.109) and the monotonicity of φ,

ρ(x̄, z) ≤ δ0 + φ(M/2)ρ(x̄, y) ≤ δ0 + φ(M/2)M

< (M/4)
(
1 − φ(M/2)

) + φ(M/2)M ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

ρ(x̄, z) ≤ M for each z ∈ X and y ∈ K ∩ B(x̄,M)

satisfying ρ(z,T y) ≤ δ0. (3.111)

Since M is any positive number, we conclude that there is δ1 > 0 such that

ρ(x̄, z) ≤ ε for each z ∈ X and y ∈ K ∩ B(x̄, ε)

satisfying ρ(z,T y) ≤ δ1. (3.112)

Choose a positive number δ such that

δ < min
{
δ0, δ1, ε

(
1 − φ(ε)

)
4−1} (3.113)

and a natural number k such that

k > 4(M + 1)
(
1 − φ(ε)ε

)−1 + 4. (3.114)

Let n ≥ k be a natural number and assume that {xi}ni=0 ⊂ K satisfies

ρ(x0, x̄) ≤ M and ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1. (3.115)

We claim that (3.86) holds. By (3.111), (3.115) and the inequality δ < δ0 (see
(3.113)),

{xi}ki=0 ⊂ B(x̄,M). (3.116)

Assume that (3.86) does not hold. Then there is an integer j such that

j ∈ {k,n} and ρ(xj , x̄) > ε. (3.117)

By (3.117), (3.115), (3.112) and (3.113),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.118)

Let i ∈ {0, . . . , j − 1}. By (3.115), (3.118), the monotonicity of φ, (3.113) and
(3.85),
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ρ(xi+1, x̄) ≤ ρ(xi+1, T xi) + ρ(T xi, T x̄) ≤ δ + φ
(
ρ(xi, x̄)

)
ρ(xi, x̄)

≤ δ + φ(ε)ρ(xi, x̄)

and

ρ(xi+1, x̄) − ρ(xi, x̄) ≤ δ − (
1 − φ(ε)

)
ρ(xi, x̄) ≤ δ − (

1 − φ(ε)
)
ε

≤ −(
1 − φ(ε)

)
ε/2.

By (3.115) and (3.117) and the above inequalities,

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

] ≤ −j
(
1 − φ(ε)ε/2

) ≤ −k
(
1 − φ(ε)

)
ε/2.

This contradicts (3.114). The contradiction we have reached proves (3.86) and as-
sertion (B). �

Let G be a nonempty subset of a Banach space (Y,‖ · ‖). In [64] J. A. Gatica
and W. A. Kirk proved that if T : G → Y is a strict contraction, then T must have
a unique fixed point x1, under the additional assumptions that the origin is in the
interior Int(G) of G and that T satisfies a certain boundary condition known as the
Leray-Schauder condition:

T x �= λx ∀x ∈ ∂G,∀λ > 1. (L-S)

Here G is not necessarily convex or bounded. Their proof was nonconstructive.
Later, M. Frigon, A. Granas and Z. E. A. Guennoun [61], and M. Frigon [60] proved
that if xt is the unique fixed point of tT , then, in fact, the mapping t → xt is Lip-
schitz, so it gives a partial way to approximate x1. Our second result in this sec-
tion, which was also obtained in [115], extends these theorems to the case where T

merely satisfies (3.85).

Theorem 3.9 Let G be a nonempty subset of a Banach space Y with 0 ∈ Int(G).
Suppose that T : G → X is nonexpansive and that it satisfies condition (L-S). Then
for each t ∈ [0,1), the mapping tT : G → X has a unique fixed point xt ∈ Int(G)

and the mapping t → xt is Lipschitz on [0, b] for any 0 < b < 1. If, in addition, T

satisfies (3.85), then it has a unique fixed point x1 ∈ G and the mapping t → xt is
continuous on [0,1]. In particular, x1 = limt→1− xt .

Proof In the first part of the proof we assume that T is nonexpansive, i.e., it satisfies
(3.85) with φ identically equal to one.

Let S ⊂ [0,1) be the following set:

S = {
t ∈ [0,1) : tT has a unique fixed point xt ∈ Int(G)

}
.
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Since tT is a strict contraction for each t ∈ [0,1), it has at most one fixed point. In
order to prove the first part of this theorem, we have to show that S = [0,1). Since
0 ∈ S by assumption and since [0,1) is connected, it is enough to show that S is
both open and closed.

1. S is open: Let t0 ∈ S. From the definition of S it is clear that t0 < 1, so there
is a real number q such that t0 < q < 1. Let xt0 ∈ Int(G) be the unique fixed point
of t0T .

Since Int(G) is open, there is r > 0 such that the closed ball B[xt0 , r] of radius r

and center xt0 is contained in Int(G). We have, for all x ∈ B[xt0 , r] and t ∈ [0,1),

‖tT x − xt0‖ ≤ ‖tT x − tT xt0‖ + |t − t0|‖T xt0‖ + ‖t0T xt0 − xt0‖
≤ t‖x − xt0‖ + |t − t0|‖T xt0‖ ≤ tr + |t − t0|

(‖T xt0‖ + 1
)
. (3.119)

Suppose that t ∈ [0,1) satisfies

|t − t0| < min

{
r(1 − q)

1 + ‖T xt0‖
, q − t0

}
. (3.120)

Then t < q and

|t − t0| ≤ r(1 − t)

1 + ‖T xt0‖
,

so ‖tT x − xt0‖ ≤ r by (3.119). Consequently, the closed ball B[xt0, r] is invariant
under tT , and the Banach fixed point theorem ensures that tT has a unique fixed
point xt ∈ B[xt0, r] ⊂ Int(G). Thus t ∈ S for all t ∈ [0,1) satisfying (3.120).

2. S is closed: Suppose t0 ∈ [0,1) is a limit point of S. We have to prove that
t0 ∈ S, and since 0 ∈ S we can assume that t0 > 0. There is a sequence (tn)n in [0,1)

such that t0 = limn→∞ tn, and since t0 < 1, there is 0 < q < 1 such that tn < q for n

large enough. Define

A0 := {
xt : t ∈ S ∩ [0, q]}.

The set A0 is not empty since 0 ∈ A0. In addition, if t ∈ S ∩ [0, q], then

‖xt‖ = ‖tT xt‖ ≤ q
(‖T xt − T 0‖ + ‖T 0‖) ≤ qφ

(‖xt − 0‖)‖xt − 0‖ + q‖T 0‖.
Therefore

‖xt‖ ≤ q‖T 0‖
1 − φ(‖xt‖)q ≤ ‖T 0‖

1 − q
, (3.121)

so A0 is a bounded set, and since T is Lipschitz, T (A0) is also bounded, say by M .
We will show that (xtn)n is a Cauchy sequence which converges to the fixed point xt0

of t0T . Indeed, since xtn and xtm are the fixed points of tnT and tmT , respectively,
it follows that

‖xtn − xtm‖ = ‖tnT xtn − tmT xtm‖ ≤ |tn − tm|‖T xtn‖ + ‖tmT xtn − tmT xtm‖
≤ |tn − tm|M + tmφ

(‖xtn − xtm‖)‖xtn − xtm‖.
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Hence

‖xtn − xtm‖ ≤ |tn − tm|M
1 − tmφ(‖xtn − xtm‖) ≤ |tn − tm|M

1 − q
. (3.122)

Since tn → t0 as n → ∞, we see that (xtn)n is indeed Cauchy and hence con-
verges to xt0 ∈ G. Using again the equality tnT xtn = xtn , we obtain

‖t0T xt0 − xt0‖ ≤ ‖t0T xt0 − t0T xtn‖ + ‖t0T xtn − tnT xtn‖ + ‖tnT xtn − xt0‖
= t0‖T xt0 − T xtn‖ + |t0 − tn|‖T xtn‖ + ‖xtn − xt0‖
≤ ‖xt0 − xtn‖ + |t0 − tn|M + ‖xtn − xt0‖ → 0,

so t0T xt0 = xt0 , i.e., xt0 is indeed a fixed point of t0T . It remains to show that
xt0 ∈ Int(G), and this follows from the (L-S) condition: since T xt0 = 1

t0
xt0 , so (L-S)

implies that xt0 /∈ ∂G (recall that 0 < t0 < 1). Hence S is closed, as claimed.
The fact that the mapping t → xt is Lipschitz on the interval [0, b] for any 0 <

b < 1 follows from (3.122).
Suppose now that T satisfies (3.85) with φ(t) < 1 for all positive t . Let (tn)n be

a sequence in [0,1) such that tn → t0 = 1. The set A0 (and hence the set T (A0))
remain bounded also when q = 1, because if ‖xt‖ ≥ 1, then in (3.121) we get
‖xt‖ ≤ ‖T 0‖

1−φ(1)
, so in any case ‖xt‖ ≤ max (1,

‖T 0‖
1−φ(1)

) (recall that φ(t) < 1). Now,
in order to prove that x1 := limt→1−1 xt exists, note first that (xtn)n is Cauchy if
tn → 1, because otherwise there is ε > 0 and a subsequence (call it again tn) such
that ‖xt2n+1 − xt2n+2‖ ≥ ε, but from (3.122) we obtain

‖xt2n+1 − xt2n+2‖ ≤ |t2n+1 − t2n+2|M
1 − t2n+2φ(ε)

→ 0,

a contradiction. Now, all these sequences approach the same limit because for any
two such sequences

(xtn)n, (xsn)n,

the interlacing sequence (t1, s1, t2, s2, . . .) → 1, so (xt1, xs1, xt2, xs2, . . .) is also
Cauchy. The fact that x1 is a fixed point of T is proved as above (here, however,
one cannot use (L-S) to conclude that x1 ∈ Int(G), and indeed it may happen that
x1 ∈ ∂G as the mapping T : [−1,∞) → R, defined by T x = x−1

2 , shows). �

3.8 A Result on Rakotch Contractions

In this section, which is based on [160], we establish fixed point and convergence
theorems for certain mappings of contractive type which take a closed subset of a
complete metric space X into X.

Let K be a nonempty and closed subset of a complete metric space (X,ρ). For
each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
.
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In the following result, which was obtained in [160], we provide a new sufficient
condition for the existence and approximation of the unique fixed point of a con-
tractive mapping which maps a nonempty and closed subset of a complete metric
space X into X.

Theorem 3.10 Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K, (3.123)

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that there exists a sequence {xn}∞n=1 ⊂ K such that

lim
n→∞ρ(xn,T xn) = 0. (3.124)

Then there exists a unique x̄ ∈ K such that T x̄ = x̄.

Proof The uniqueness of x̄ is obvious. To establish its existence, let ε ∈ (0,1) be
given and choose a positive number γ such that

γ <
(
1 − φ(ε)

)
ε/8. (3.125)

By (3.124), there is a natural number n0 such that

ρ(xn,T xn) < γ for all integers n ≥ n0. (3.126)

Assume that the integers m,n ≥ n0. We claim that ρ(xm,xn) ≤ ε. Assume the
contrary. Then

ρ(xm,xn) > ε. (3.127)

By (3.125), (3.123), (3.127), the monotonicity of φ, and (3.126),

ρ(xm,xn) ≤ ρ(xm,T xm) + ρ(T xm,T xn) + ρ(T xn, xn)

≤ 2γ + φ
(
ρ(xm,xn)

)
ρ(xm,xn) ≤ 2γ + φ(ε)ρ(xm,xn)

= ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn) + 2γ

< ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn) + (

1 − φ(ε)
)
ε/4

≤ ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn)(3/4)

= ρ(xm,xn)
[
(1/4) + φ(ε)(3/4)

]
< ρ(xm,xn),

a contradiction.
The contradiction we have reached proves that ρ(xm,xn) ≤ ε for all integers

m,n ≥ n0, as claimed.
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Since ε is an arbitrary number in (0,1), we conclude that {xn}∞n=1 is a Cauchy se-
quence and there exists x̄ ∈ X such that limn→∞ xn = x̄. By (3.123), for all integers
n ≥ 1,

ρ(T x̄, x̄) ≤ ρ(T x̄, T xn) + ρ(T xn, xn) + ρ(xn, x̄)

≤ 2ρ(xn, x̄) + ρ(T xn, xn) → 0 as n → ∞.

This concludes the proof of Theorem 3.10. �

In the following result, which was also obtained in [160], we present another
proof of the fixed point theorem established in Theorem 1(A) of [115]. This proof
is based on Theorem 3.10.

Theorem 3.11 Let T : K → X satisfy

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K,

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that K0 ⊂ K is a nonempty and bounded set with the following property:
For each natural number n, there exists yn ∈ K0 such that T iyn is defined for all

i = 1, . . . , n.
Then the mapping T has a unique fixed point x̄ in K .

Proof By Theorem 3.10, it is sufficient to show that for each ε ∈ (0,1), there is
x ∈ K such that ρ(x,T x) < ε. Indeed, let ε ∈ (0,1). There is M > 0 such that

ρ(y0, yi) ≤ M, i = 1,2, . . . . (3.128)

By (3.123) and (3.128), for each integer i ≥ 1,

ρ(yi, T yi) ≤ ρ(yi, y0) + ρ(y0, T y0) + ρ(Ty0, T yi) ≤ 2M + ρ(y0, T y0). (3.129)

Choose a natural number q ≥ 4 such that

(q − 1)ε
(
1 − φ(ε)

)
> 4M + 2ρ(y0, T y0). (3.130)

Set T 0z = z, z ∈ K .
We claim that ρ(T q−1yq,T qyq) < ε. Assume the contrary. Then by (3.123),

ρ
(
T iyq, T i+1yq

) ≥ ε, i = 0, . . . , q − 1. (3.131)

In view of (3.123), (3.131) and the monotonicity of φ, we have for i = 0, . . . , q − 2,

ρ
(
T i+1yq,T i+2yq

) ≤ φ
(
ρ
(
T iyq, T i+1yq

))
ρ
(
T iyq, T i+1yq

)

≤ φ(ε)ρ
(
T iyq, T i+1yq

)
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and

ρ
(
T iyq, T i+1yq

) − ρ
(
T i+1yq,T i+2yq

) ≥ (
1 − φ(ε)

)
ρ
(
T iyq, T i+1yq

)

≥ (
1 − φ(ε)

)
ε. (3.132)

By (3.129) and (3.132),

2M + ρ(y0, T y0) ≥ ρ(yq, T yq) − ρ
(
T q−1yq,T qyq

)

≥
q−2∑

i=0

[
ρ
(
T iyq, T i+1yq

) − ρ
(
T i+1yq,T i+2yq

)]

≥ (q − 1)
(
1 − φ(ε)

)
ε

and

2M + ρ(y0, T y0) ≥ (q − 1)
(
1 − φ(ε)

)
ε.

This contradicts (3.130). The contradiction we have reached shows that

ρ
(
T q−1yq,T qyq

)
< ε,

as claimed. Theorem 3.11 is proved. �

In the following result, also obtained in [160], we establish a convergence re-
sult for (unrestricted) infinite products of mappings which satisfy a weak form of
condition (3.123).

Theorem 3.12 Let φ : [0,∞) → [0,1] be a monotonically decreasing function
such that φ(t) < 1 for all t > 0.

Let

x̄ ∈ K, Ti : K → X, i = 0,1, . . . , Ti x̄ = x̄, i = 0,1, . . . , (3.133)

and assume that

ρ(Tix, x̄) ≤ φ
(
ρ(x, x̄)

)
ρ(x, x̄) for each x ∈ K, i = 0,1, . . . . (3.134)

Then for each M,ε > 0, there exist δ > 0 and a natural number k such that for each
integer n ≥ k, each mapping r : {0,1, . . . , n − 1} → {0,1, . . . }, and each sequence
{xi}n−1

i=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M and ρ(xi+1, Tr(i)xi) ≤ δ, i = 0, . . . , n − 1,

we have

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.135)
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Proof Choose δ0 > 0 such that

δ0 < M
(
1 − φ(M/2)

)
/4. (3.136)

Assume that

y ∈ K ∩ B(x̄,M), i ∈ {0,1, . . . }, z ∈ X and ρ(z,Tiy) ≤ δ0. (3.137)

By (3.137) and (3.134),

ρ(x̄, z) ≤ ρ(x̄, Tiy) + ρ(Ti, z) ≤ φ
(
ρ(x̄, y)

)
ρ(x̄, y) + δ0. (3.138)

There are two cases:

ρ(y, x̄) ≤ M/2 (3.139)

and

ρ(y, x̄) > M/2. (3.140)

Assume that (3.139) holds. Then by (3.138), (3.139) and (3.136),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M. (3.141)

If (3.140) holds, then by (3.138), (3.137), (3.136) and the monotonicity of φ,

ρ(x̄, z) ≤ δ0 + φ(M/2)ρ(x̄, y) ≤ δ0 + φ(M/2)M

< (M/4)
(
1 − φ(M/2)

) + φ(M/2)M ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

if y ∈ K ∩ B(x̄,M), i ∈ {0,1, . . . }, z ∈ X,ρ(z,Tiy) ≤ δ0, then ρ(x̄, z) ≤ M.

(3.142)

Since M is any positive number, we conclude that there is δ1 > 0 such that

if y ∈ K ∩ B(x̄, ε), i ∈ {0,1, . . . }, z ∈ X,ρ(z,Tiy) ≤ δ1, then ρ(x̄, z) ≤ ε.

(3.143)

Now choose a positive number δ such that

δ < min
{
δ0, δ1, ε

(
1 − φ(ε)

)
4−1} (3.144)

and a natural number k such that

k > 4(M + 1)
((

1 − φ(ε)
)
ε
)−1 + 4. (3.145)
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Let n ≥ k be a natural number. Assume that r : {0, . . . , n − 1} → {0,1, . . . } and that

{xi}n−1
i=0 ⊂ K

satisfies

ρ(x0, x̄) ≤ M and ρ(xi+1, Tr(i)xi) ≤ δ, i = 0, . . . , n − 1. (3.146)

We claim that (3.135) holds. By (3.142), (3.146) and the inequality δ < δ0,

{xi}ni=0 ⊂ B(x̄,M). (3.147)

Assume to the contrary that (3.135) does not hold. Then there is an integer j such
that

j ∈ {k, . . . , n} and ρ(xj , x̄) > ε. (3.148)

By (3.148) and (3.134),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.149)

Let i ∈ {0, . . . , j − 1}. By (3.146), (3.134) and the monotonicity of φ,

ρ(xi+1, x̄) ≤ ρ(xi+1, Tr(i)xi) + ρ(Tr(i)xi, x̄) ≤ δ + φ
(
ρ(xi, x̄)

)
ρ(xi, x̄)

≤ δ + φ(ε)ρ(xi, x̄).

When combined with (3.144) and (3.49), this implies that

ρ(xi+1, x̄) − ρ(xi, x̄) ≤ δ − (
1 − φ(ε)

)
ρ(xi, x̄) ≤ δ − (

1 − φ(ε)
)
ε

< −(
1 − φ(ε)

)
ε/2. (3.150)

Finally, by (3.146), (3.150) and (3.148),

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

] ≤ −j
(
1 − φ(ε)

)
ε/2 ≤ −k

(
1 − φ(ε)

)
ε/2.

This contradicts (3.145). The contradiction we have reached proves (3.135) and
Theorem 3.12 itself. �

3.9 Asymptotic Contractions

In this section, which is based on [8], we provide sufficient conditions for the iterates
of an asymptotic contraction on a complete metric space X to converge to its unique
fixed point, uniformly on each bounded subset of X.
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Let (X,d) be a complete metric space. The following theorem is the main result
of Chen [40]. It improves upon Kirk’s original theorem [83]. In this connection, see
also [6] and [76].

Theorem 3.13 Let T : X → X be such that

d
(
T nx,T ny

) ≤ φn

(
d(x, y)

)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞) → [0,∞) and
limn→∞ φn = φ, uniformly on any bounded interval [0, b]. Suppose that φ is up-
per semicontinuous and that φ(t) < t for all t > 0. Furthermore, suppose that there
exists a positive integer n∗ such that φn∗ is upper semicontinuous and φn∗(0) = 0. If
there exists x0 ∈ X which has a bounded orbit O(x0) = {x0, T x0, T

2x0, . . . }, then
T has a unique fixed point x∗ ∈ X and limn→∞ T nx = x∗ for all x ∈ X.

Note that Theorem 3.13 does not provide us with uniform convergence of the
iterates of T on bounded subsets of X, although this does hold for many classes of
mappings of contractive type (e.g., [23, 114]). This property is important because it
yields stability of the convergence of iterates even in the presence of computational
errors [35]. In this section we show that this conclusion can be derived in the setting
of Theorem 3.13 if for each natural number n, the function φn is assumed to be
bounded on any bounded interval. To this end, we first prove a somewhat more
general result (Theorem 3.14) which, when combined with Theorem 3.13, yields
our strengthening of Chen’s result (Theorem 3.15).

Theorem 3.14 Let x∗ ∈ X be a fixed point of T : X → X. Assume that

d
(
T nx, x∗

) ≤ φn

(
d(x, x∗)

)
for all x ∈ X and all natural numbers n, (3.151)

where φn : [0,∞) → [0,∞) and limn→∞ φn = φ, uniformly on any bounded inter-
val [0, b]. Suppose that φ is upper semicontinuous and φ(t) < t for all t > 0. Then
T nx → x∗ as n → ∞, uniformly on each bounded subset of X.

Theorem 3.15 Let T : X → X be such that

d
(
T nx,T ny

) ≤ φn

(
d(x, y)

)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞) → [0,∞) and
limn→∞ φn = φ, uniformly on any bounded interval [0, b]. Suppose that φ is up-
per semicontinuous and φ(t) < t for all t > 0. Furthermore, suppose that there
exists a positive integer n∗ such that φn∗ is upper semicontinuous and φn∗(0) = 0. If
there exists x0 ∈ X which has a bounded orbit O(x0) = {x0, T x0, T

2x0, . . . }, then T

has a unique fixed point x∗ ∈ X and limn→∞ T nx = x∗, uniformly on each bounded
subset of X.
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Proof of Theorem 3.14 We may assume without loss of generality that φ(0) = 0 and
φn(0) = 0 for all integers n ≥ 1.

For each x ∈ X and each r > 0, set

B(x, r) = {
y ∈ X : d(x, y) ≤ r

}
.

We first prove three lemmata.

Lemma 3.16 Let K > 0. Then there exists a natural number q̄ such that for all
integers s ≥ q̄ ,

T s
(
B(x∗,K)

) ⊂ B(x∗,K + 1).

Proof There exists a natural number q̄ such that for all integers s ≥ q̄ ,

∣∣ψs(t) − φ(t)
∣∣ < 1 for all t ∈ [0,K].

Let s ≥ q̄ be an integer. Then for all x ∈ B(x∗,K),

d
(
T sx, x∗

) ≤ φs

(
d(x, x∗)

)
< φ

(
d(x, x∗)

) + 1 < d(x, x∗) + 1 < K + 1.

Lemma 3.16 is proved. �

Lemma 3.17 Let 0 < ε1 < ε0. Then there exists a natural number q such that for
each integer j ≥ q ,

T j
(
B(x∗, ε1)

) ⊂ B(x∗, ε0).

Proof There exists an integer q ≥ 1 such that for each integer j ≥ q ,

∣∣φj (t) − φ(t)
∣∣ < (ε0 − ε1)/2 for all t ∈ [0, ε0]. (3.152)

Assume that

j ∈ {q, q + 1, . . . } and x ∈ B(x∗, ε1).

By (3.151) and (3.152),

d
(
T jx, x∗

) ≤ φj

(
d(x, x∗)

)
< φ

(
d(x, x∗)

) + (ε0 − ε1)/2

≤ ε1 + (ε0 − ε1)/2 = (ε0 + ε1)/2.

Lemma 3.17 is proved. �

Lemma 3.18 Let K,ε > 0 be given. Then there exists a natural number q such that
for each x ∈ B(x∗,K),

min
{
d
(
T jx, x∗

) : j = 1, . . . , q
} ≤ ε.
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Proof By Lemma 3.16, there is a natural number q̄ such that

T n
(
B(x∗,K)

) ⊂ B(x∗,K + 1) for all natural numbers n ≥ q̄. (3.153)

We may assume without loss of generality that ε < K/8. Since the function t −φ(t),
t ∈ (0,∞), is lower semicontinuous and positive, there is

δ ∈ (0, ε/8) (3.154)

such that

t − φ(t) ≥ 2δ for all t ∈ [ε/2,K + 1]. (3.155)

There is a natural number s ≥ q̄ such that
∣
∣φ(t) − φs(t)

∣
∣ ≤ δ for all t ∈ [0,K + 1]. (3.156)

By (3.155) and (3.156), we have, for all t ∈ [ε/2,K + 1],
φs(t) ≤ φ(t) + δ ≤ t − 2δ + δ = t − δ. (3.157)

In view of (3.156) and (3.154), we have, for all t ∈ [0, ε/2],
φs(t) ≤ φ(t) + δ ≤ t + δ ≤ ε/2 + δ < (3/4)ε. (3.158)

Choose a natural number p such that

p > 4 + δ−1(K + 1). (3.159)

Let

x ∈ B(x∗,K). (3.160)

We will show that

min
{
d
(
T jx, x∗

) : j = 1,2, . . . , ps
} ≤ ε. (3.161)

Assume the contrary. Then

d
(
T jx, x∗

)
> ε for all j = s, . . . , ps. (3.162)

By (3.160) and(3.153),

T jx ∈ B(x∗,K + 1), j = s, . . . , ps. (3.163)

Let a natural number i satisfy i ≤ p − 1. By (3.162) and (3.163),

d
(
T isx, x∗

)
> ε and d

(
T isx, x∗

) ≤ K + 1. (3.164)

It follows from (3.151), (3.164) and (3.157) that

d
(
T s

(
T isx

)
, x∗

) ≤ φs

(
d
(
T isx, x∗

)) ≤ d
(
T isx, x∗

) − δ.
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Thus for each natural number i ≤ p − 1,

d
(
T (i+1)sx, x∗

) ≤ d
(
T isx, x∗

) − δ.

This inequality implies that

d
(
T psx, x∗

) ≤ d
(
T (p−1)sx, x∗

) − δ ≤ · · · ≤ d
(
T sx, x∗

) − (p − 1)δ.

When combined with (3.163) and (3.159), this implies, in turn, that

d
(
T psx, x∗

) ≤ K + 1 − (p − 1)δ < 0.

The contradiction we have reached proves (3.161) and completes the proof of
Lemma 3.18. �

Completion of the proof of Theorem 3.14 Let K,ε > 0 be given. Choose ε1 ∈ (0, ε).
By Lemma 3.17, there exists a natural number q1 such that

T j
(
B(x∗, ε1)

) ⊂ B(x∗, ε) for all integers j ≥ q1. (3.165)

By Lemma 3.18, there exists a natural number q2 such that

min
{
d
(
T jx, x∗

) : j = 1, . . . , q2
} ≤ ε1 for all x ∈ B(x∗,K). (3.166)

Assume that

x ∈ B(x∗,K).

By (3.166), there is a natural number j1 ≤ q2 such that

d
(
T j1x, x∗

) ≤ ε1. (3.167)

In view of (3.167) and (3.165),

T j
(
T j1x

) ∈ B(x∗, ε) for all integers j ≥ q1. (3.168)

Inclusion (3.168) and the inequality j1 ≤ q2 now imply that

T ix ∈ B(x∗, ε) for all integers i ≥ q1 + q2.

Theorem 3.14 is proved. �

3.10 Uniform Convergence of Iterates

Let (X,d) be a complete metric space. The following theorem [9] is the main result
of this section. In contrast with Theorem 3.14, here we only assume that a subse-
quence of {φn}∞n=1 converges to φ.
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Theorem 3.19 Let x∗ ∈ X be a fixed point of T : X → X. Assume that

d
(
T nx, x∗

) ≤ φn

(
d(x, x∗)

)
(3.169)

for all x ∈ X and all natural numbers n, where the functions φn : [0,∞) → [0,∞),
n = 1,2, . . . , satisfy the following conditions:

(i) For each b > 0, there is a natural number nb such that

sup
{
φn(t) : t ∈ [0, b] and all n ≥ nb

}
< ∞; (3.170)

(ii) there exist an upper semicontinuous function φ : [0,∞) → [0,∞) satisfying
φ(t) < t for all t > 0 and a strictly increasing sequence of natural numbers
{mk}∞k=1 such that limk→∞ φmk

= φ, uniformly on any bounded interval [0, b].
Then T nx → x∗ as n → ∞, uniformly on any bounded subset of X.

Proof Set T 0x = x for all x ∈ X. For each x ∈ X and each r > 0, set

B(x, r) = {
z ∈ X : d(x, z) ≤ r

}
. (3.171)

Let M > 0 and ε ∈ (0,1) be given. By (i), there are M1 > M and an integer n1 ≥ 1
such that

φi(t) ≤ M1 for all t ∈ [0,M + 1] and all integers i ≥ n1. (3.172)

In view of (3.169) and (3.172), for each x ∈ B(x∗,M) and each integer n ≥ n1,

d(Tnx, x∗) ≤ φn

(
d(x, x∗)

) ≤ M1. (3.173)

Since the function t − φ(t) is lower semicontinuous, there is δ > 0 such that

δ < ε/8 (3.174)

and

t − φ(t) ≥ 2δ, t ∈ [ε/8,4M1 + 4]. (3.175)

By (ii), there is an integer n2 ≥ 2n1 + 2 such that

∣∣φn2(t) − φ(t)
∣∣ ≤ δ, t ∈ [0,4M1 + 4]. (3.176)

Assume that

x ∈ B(x∗,M1 + 4). (3.177)

If d(x, x∗) ≤ ε/8, then it follows from (3.169), (3.174), (3.176) and (3.177) that

d
(
T n2x, x∗

) ≤ φn2

(
d(x, x∗)

) ≤ φ
(
d(x, x∗)

) + δ ≤ d(x, x∗) + δ < ε/4.
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If d(x, x∗) ≥ ε/8, then relations (3.169), (3.175), (3.176) and (3.177) imply that

d
(
T n2x, x∗

) ≤ φn2

(
d(x, x∗)

) ≤ φ
(
d(x, x∗)

)+ δ ≤ d(x, x∗)−2δ + δ = d(x, x∗)− δ.

Thus in both cases we have

d
(
T n2x, x∗

) ≤ max
{
d(x, x∗) − δ, ε/4

}
. (3.178)

Now choose a natural number q > 2 such that

q > (8 + 2M1)δ
−1. (3.179)

Assume that

x ∈ B(x∗,M1 + 4) and T in2x ∈ B(x∗,M1 + 4), i = 1, . . . , q − 1. (3.180)

We claim that

min
{
d
(
T jn2x, x∗

) : j = 1, . . . , q
} ≤ ε/4. (3.181)

Assume the contrary. Then by (3.178) and (3.180), for each j = 1, . . . , q , we have

d
(
T jn2x, x∗

) ≤ d
(
T (j−1)n2x, x∗

) − δ

and

d
(
T qn2x, x∗

) ≤ d
(
T (q−1)n2x, x∗

) − δ ≤ · · · ≤ d(x, x∗) − qδ ≤ M1 + 4 − qδ.

This contradicts (3.179). The contradiction we have reached proves (3.181).
Assume that an integer j satisfies 1 ≤ j ≤ q − 1 and

d
(
T jn2x, x∗

) ≤ ε/4.

When combined with (3.178) and (3.180), this implies that

d
(
T (j+1)n2x, x∗

) ≤ max
{
d
(
T jn2x, x∗

) − δ, ε/4
} ≤ ε/4.

It follows from this inequality and (3.181) that

d
(
T qn2x, x∗

) ≤ ε/4 (3.182)

for all points x satisfying (3.177).
Assume now that x ∈ B(x∗,M) and let an integer s be such that s ≥ n1 + qn2.

By (3.173),

T ix ∈ B(x∗,M1) for all integers i ≥ n1

and

T s−qn2x ∈ B(x∗,M1). (3.183)
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Since T sx = T qn2(T s−qn2x), it follows from (3.182) and (3.183) that

d
(
T sx, x∗

) = d
(
T qn2

(
T s−qn2x

)
, x∗

)
< ε/4.

This completes the proof of Theorem 3.19. �

The following result, which was also obtained in [9], is an extension of Theo-
rem 3.19.

Theorem 3.20 Let x∗ ∈ X be a fixed point of T : X → X. Assume that {mk}∞k=1 is
a strictly increasing sequence of natural numbers such that

d
(
T mkx, x∗

) ≤ φmk

(
d(x, x∗)

)

for all x ∈ X and all natural numbers k, where T and the functions φmk
: [0,∞) →

[0,∞), k = 1,2, . . . , satisfy the following conditions:

(i) For each M > 0, there is M1 > 0 such that

T i
(
B(x∗,M)

) ⊂ B(x∗,M1) for each integer i ≥ 0;
(ii) there exists an upper semicontinuous function φ : [0,∞) → [0,∞) satisfying

φ(t) < t for all t > 0 such that limk→∞ φmk
= φ, uniformly on any bounded

interval [0, b].
Then T nx → x∗ as n → ∞, uniformly on any bounded subset of X.

Proof Let i be a natural number such that i �= mk for all natural numbers k. For
each t ≥ 0, set

φi(t) = sup
{
d
(
T ix, x∗

) : x ∈ B(x∗, t)
}
.

Clearly, φi(t) is finite for all t ≥ 0. It is easy to see that all the assumptions of
Theorem 3.19 hold. Therefore Theorem 3.19 implies that T nx → x∗ as n → ∞,
uniformly on all bounded subsets of X. Theorem 3.20 is proved. �

Now we show that Theorem 3.19 has a converse.
Assume now that T : X → X, x∗ ∈ X, T nx → x∗ as n → ∞, uniformly on all

bounded subsets of X, and that T (C) is bounded for any bounded C ⊂ X. We claim
that T necessarily satisfies all the hypotheses of Theorem 3.19 with an appropriate
sequence {φn}∞n=1.

Indeed, fix a natural number n and for all t ≥ 0, set

φn(t) = sup
{
d
(
T nx, x∗

) : x ∈ B(x∗, t)
}
.

Clearly, φn(t) is finite for all t ≥ 0 and all natural numbers n, and

d
(
T nx, x∗

) ≤ φn

(
d(x, x∗)

)
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for all x ∈ X and all natural numbers n. It is also obvious that φn → 0 as n → ∞,
uniformly on any bounded subinterval of [0,∞), and that for any b > 0,

sup
{
φn(t) : t ∈ [0, b], n ≥ 1

}
< ∞.

Thus all the assumptions of Theorem 3.19 hold with φ(t) = 0 identically.

3.11 Well-Posedness of Fixed Point Problems

Let (K,ρ) be a bounded complete metric space. We say that the fixed point problem
for a mapping A : K → K is well posed if there exists a unique xA ∈ K such that
AxA = xA and the following property holds:

if {xn}∞n=1 ⊂ K and ρ(xn,Axn) → 0 as n → ∞, then ρ(xn, xA) → 0 as n → ∞.
The notion of well-posedness is of central importance in many areas of Math-

ematics and its applications. In our context this notion was studied in [50], where
generic well-posedness of the fixed point problem is established for the space of
nonexpansive self-mappings of K .

In this section, which is based on [139], we first show (Theorem 3.21) that the
fixed point problem is well posed for any contractive self-mapping of K . Since it is
known that in Banach spaces (see Theorem 3.2) almost all nonexpansive mappings
are contractive in the sense of Baire’s categories, the generic well-posedness of the
fixed point problem for the space of nonexpansive self-mappings of K follows im-
mediately in this case. In our second result (Theorem 3.22) we show that the fixed
point problem is well posed as soon as the uniformly continuous self-mapping of K

has a unique fixed point which is the uniform limit of every sequence of iterates.
Let (K,ρ) be a bounded complete metric space. Define

d(K) = sup
{
ρ(x, y) : x, y ∈ K

}
. (3.184)

Recall that a mapping A : K → K is contractive if there exists a decreasing func-
tion φ : [0, d(K)] → [0,1] such that

φ(t) < 1, t ∈ (
0, d(K)

]
(3.185)

and

ρ(Ax,Ay) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K. (3.186)

Theorem 3.21 Assume that a mapping A : K → K is contractive. Then the fixed
point problem for A is well posed.

Proof Since the mapping A is contractive, there exists a decreasing function φ :
[0, d(K)] → [0,1] such that (3.185) and (3.186) hold. By Theorem 3.1, there exists
a unique xA ∈ K such that

AxA = xA. (3.187)
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Let {xn}∞n=1 ⊂ K satisfy

lim
n→∞ρ(xn,Axn) = 0. (3.188)

We claim that xn → xA as n → ∞. Assume the contrary. By extracting a subse-
quence, if necessary, we may assume without loss of generality that there exists
ε > 0 such that

ρ(xn, xA) ≥ ε for all integers n ≥ 1. (3.189)

Then it follows from (3.187), (3.186), (3.189) and the monotonicity of the function
φ that for all integers n ≥ 1,

ρ(xA, xn) ≤ ρ(xA,Axn) + ρ(Axn, xn) ≤ ρ(Axn, xn) + φ
(
ρ(xn, xA)

)
ρ(xn, xA)

≤ ρ(Axn, xn) + φ(ε)ρ(xA, xn). (3.190)

Inequalities (3.190) and (3.189) imply that for all integers n ≥ 1,

ε
(
1 − φ(ε)

) ≤ (
1 − φ(ε)

)
ρ(xA, xn) ≤ ρ(Axn, xn),

a contradiction (see (3.188)). The contradiction we have reached proves Theo-
rem 3.21. �

Theorem 3.22 Assume that A : K → K is a uniformly continuous mapping,
xA ∈ K , AxA = xA, and that Anx → xA as n → ∞, uniformly on K . Then the
fixed point problem for the mapping A is well posed.

Proof Let ε > 0 be given. In order to prove this theorem, it is sufficient to show that
there exists δ > 0 such that for each y ∈ K satisfying ρ(y,Ay) < δ, the inequality
ρ(y, xA) < ε is true.

There exists a natural number n0 ≥ 3 such that

ρ
(
Anx,xA

) ≤ ε/8 for any x ∈ K and any integer n ≥ n0. (3.191)

Set

δ0 = ε(8n0)
−1. (3.192)

Using induction, we define a sequence of positive numbers {δi}∞i=0 such that for any
integer i ≥ 0,

δi+1 < δi (3.193)

and

if x, y ∈ K and ρ(x, y) ≤ δi+1, then ρ(Ax,Ay) ≤ δi . (3.194)

We now show that if y ∈ K satisfies ρ(y,Ay) < δn0 , then ρ(y, xA) < ε/2. Indeed,
let y ∈ K satisfy

ρ(y,Ay) < δn0 . (3.195)
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It follows from the definition of the sequence {δi}∞i=0 (see (3.193), (3.194)) and
(3.195) that for any integer j ∈ [1, n0],

ρ
(
Ajy,Aj+1y

) ≤ δn0−j . (3.196)

Relations (3.196), (3.193) and (3.192) imply that

ρ
(
y,An0+1y

) ≤
n0∑

j=0

ρ
(
Ajy,Aj+1y

) ≤ (n0 + 1)δ0 < ε/4. (3.197)

(Here we use the notation A0x = x for all x ∈ K .) It follows from (3.197) and the
definition of n0 (see (3.191)) that

ρ(y, xA) ≤ ρ
(
y,An0+1y

) + ρ
(
An0+1y, xA

)
< ε/4 + ε/8 < ε/2.

Thus we have indeed shown that if y ∈ K satisfies ρ(y,Ay) < δn0 , then ρ(y, xA) <

ε/2. This completes the proof of Theorem 3.22. �

3.12 A Class of Mappings of Contractive Type

Let (X,ρ) be a complete metric space. In this section, which is based on [158],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a contractive mapping which maps a nonempty, closed subset of X

into X.

Theorem 3.23 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
for each x, y ∈ K, (3.198)

where φ : [0,∞) → [0,∞) is upper semicontinuous and satisfies φ(t) < t for all
t > 0.

Assume further that K0 ⊂ K is a nonempty and bounded set with the following
property:

(P1) For each natural number n, there exists xn ∈ K0 such that T nxn is defined.

Then the following assertions hold.

(A) There exists a unique x̄ ∈ K such that T x̄ = x̄.
(B) Let M,ε > 0. Then there exist δ > 0 and a natural number k such that for each

integer n ≥ k and each sequence {xi}ni=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M
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and

ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1,

the inequality ρ(xi, x̄) ≤ ε holds for i = k, . . . , n.

Proof (A) The uniqueness of x̄ is obvious. To establish its existence, we may and
shall assume that φ(0) = 0.

For each natural number n, let xn be as guaranteed by (P1). Fix θ ∈ K . Since K0
is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.199)

Let ε > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n and i are integers such that k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

) ≤ ε.

Assume the contrary. Then for each natural number k, there exist natural numbers
nk and ik such that

k ≤ ik < nk and ρ
(
T ikxnk

, T ik+1xnk

)
> ε. (3.200)

Since the function t − φ(t) is positive for all t > 0 and lower semicontinuous, there
is γ > 0 such that

t − φ(t) ≥ γ for all t ∈ [
ε/2,2c0 + ρ(θ,T θ) + ε

]
. (3.201)

Choose a natural number k such that

k > γ −1(2c0 + ρ(θ,T θ)
)
. (3.202)

Then (3.200) holds. By (3.200) and (3.198),

ρ
(
T ixnk

, T i+1xnk

)
> ε, i = 0, . . . , ik. (3.203)

(Here we use the convention that T 0z = z for all z ∈ K .) By (3.198),

ρ(xnk
, T xnk

) ≥ ρ
(
T ixnk

, T i+1xnk

)

for each integer i satisfying 0 ≤ i < ik. (3.204)

By (P1), (3.199) and (3.198),

ρ(xnk
, T xnk

) ≤ ρ(xnk
, θ) + ρ(θ,T θ) + ρ(T θ,T xnk

)

≤ c0 + ρ(θ,T θ) + c0. (3.205)
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Together with (3.203) and (3.204) this implies that

ε < ρ
(
T ixnk

, T i+1xnk

) ≤ 2c0 + ρ(θ,T θ) for all i = 0, . . . , ik. (3.206)

It follows from (3.198), (3.206) and (3.201) that for all i = 0, . . . , ik − 1,

ρ
(
T i+2xnk

, T i+1xnk

) ≤ φ
(
ρ
(
T i+1xnk

, T ixnk

)) ≤ ρ
(
T i+1xnk

, T ixnk

) − γ.

When combined with (3.205) and (3.200), this implies that

−ρ(θ,T θ) − 2c0 ≤ −ρ(xnk
, T xnk

) ≤ ρ
(
T ik+1xnk

, T ik xnk

) − ρ(xnk
, T xnk

)

=
ik−1∑

i=0

[
ρ
(
T i+2xnk

, T i+1xnk

) − ρ
(
T i+1xnk

, T ixnk

)]

≤ −γ ik ≤ −kγ

and

kγ ≤ 2c0 + ρ(θ,T θ).

This contradicts (3.202). The contradiction we have reached proves the existence of
a natural number k such that property (P2) holds.

Now let δ > 0 be given. We will show that there exists a natural number k such
that the following property holds:

(P3) If n, i and j are integers such that k ≤ i, j < n, then

ρ
(
T ixn, T

jxn

) ≤ δ.

Assume to the contrary that there is no natural number k for which (P3) holds.
Then for each natural number k, there exist natural numbers nk , ik and jk such

that

k ≤ ik < jk < nk (3.207)

and

ρ
(
T ikxnk

, T jkxnk

)
> δ.

We may assume without loss of generality that for each natural number k, the fol-
lowing property holds:

If an integer j satisfies ik ≤ j < jk , then

ρ
(
T ikxnk

, T j xnk

) ≤ δ. (3.208)

We have already shown that there exists a natural number k0 such that (P2) holds
with k = k0 and ε = δ.

Assume now that k is a natural number. It follows from (3.207) and (3.208) that
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δ < ρ
(
T ikxnk

, T jkxnk

) ≤ ρ
(
T jkxnk

, T jk−1xnk

) + ρ
(
T jk−1xnk

, T ik xnk

)

≤ ρ
(
T jkxnk

, T jk−1xnk

) + δ. (3.209)

By property (P2),

lim
k→∞ρ

(
T jkxnk

, T jk−1xnk

) = 0.

When combined with (3.209), this implies that

lim
k→∞ρ

(
T ikxnk

, T jkxnk

) = δ. (3.210)

By (3.207), for each integer k ≥ 1,

δ < ρ
(
T ikxnk

, T jkxnk

)

≤ ρ
(
T ikxnk

, T ik+1xnk

) + ρ
(
T ik+1xnk

, T jk+1xnk

) + ρ
(
T jk+1xnk

, T jkxnk

)

≤ ρ
(
T ikxnk

, T ik+1xnk

) + ρ
(
T jk+1xnk

, T jkxnk

) + φ
(
ρ
(
T ikxnk

, T jkxnk

))
.

(3.211)

Since by (P2),

lim
k→∞ρ

(
T ikxnk

, T ik+1xnk

) = lim
k→∞ρ

(
T jkxnk

, T jk+1xnk

) = 0,

(3.210) and (3.211) imply that δ ≤ φ(δ), a contradiction.
The contradiction we have reached proves that there exists a natural number k

such that (P3) holds.
Let ε > 0 be given. We will show that there exists a natural number k such that

the following property holds:

(P4) If the integers n1, n2 > k, then ρ(T kxn1, T
kxn2) ≤ ε.

Assume the contrary. Then for each integer k ≥ 1, there are integers n
(k)
1 , n

(k)
2 > k

such that

ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)
> ε. (3.212)

By (P1), (3.198) and (3.199), the sequence
{
ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)}∞
k=1

is bounded. Set

δ = lim sup
k→∞

ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)
. (3.213)

By definition, there exists a strictly increasing sequence of natural numbers {ki}∞i=1
such that

δ = lim
i→∞ρ

(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

)
. (3.214)



3.12 A Class of Mappings of Contractive Type 163

By (3.212) and (3.213),

δ ≥ ε. (3.215)

By (3.198), for each natural number i,

ρ
(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

) ≤ ρ
(
T ki+1x

n
(ki )

1
, T ki x

n
(ki )

1

)

+ ρ
(
T ki+1x

n
(ki )

1
, T ki+1x

n
(ki )

2

) + ρ
(
T ki+1x

n
(ki )

2
, T ki x

n
(ki )

2

)

≤ ρ
(
T ki+1x

n
(ki )

1
, T ki x

n
(ki )

1

) + ρ
(
T ki+1x

n
(ki )

2
, T ki x

n
(ki )

2

)

+ φ
(
ρ
(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

))
. (3.216)

By property (P2),

lim
i→∞ρ

(
T ki+1x

n
(ki )

j

, T ki x
n

(ki )

j

) = 0, j = 1,2. (3.217)

Now it follows from (3.216), (3.217), (3.204) and (3.215) that ε ≤ δ ≤ φ(δ), a con-
tradiction. This contradiction implies that there is indeed a natural number k such
that (P4) holds, as claimed.

Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T k1xn1, T

k1xn2

) ≤ ε/4 for all integers n1, n2 ≥ k1. (3.218)

By (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

) ≤ ε/4 for all natural numbers n, i, j satisfying k2 ≤ i, j < n.

(3.219)

Assume that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.220)

We claim that ρ(T ixn1, T
j xn2) ≤ ε. By (3.198), (3.218) and (3.220),

ρ
(
T k1+k2xn1, T

k1+k2xn2

) ≤ ρ
(
T k1xn1, T

k1xn2

) ≤ ε/4. (3.221)

In view of (3.219) and (3.220),

ρ
(
T k1+k2xn1, T

ixn1

) ≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

) ≤ ε/4. (3.222)

Inequalities (3.222) and (3.221) imply that

ρ
(
T ixn1, T

j xn2

) ≤ ρ
(
T ixn1, T

k1+k2xn1

) + ρ
(
T k1+k2xn1, T

k1+k2xn2

)

+ ρ
(
T k1+k2xn2, T

j xn2

)
< ε.

Thus we have shown that the following property holds:
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(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1 , T

j xn2

) ≤ ε for all natural numbers n1, n2, i and j

such that

n1, n2 > k(ε), i ∈ [
k(ε), n1

)
and j ∈ [

k(ε), n2
)
.

Consider now the sequences {T n−2xn}∞n=3 and {T n−1xn}∞n=3. Property (P5) im-
plies that both of them are Cauchy sequences and that

lim
n→∞ρ

(
T n−2xn,T

n−1xn

) = 0.

Hence there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

) = lim
t→∞ρ

(
x̄, T n−1xn

) = 0.

Since the mapping T is continuous, it follows that T x̄ = x̄. Thus part (A) of our
theorem is proved.

We now turn to the proof of part (B). Clearly,

inf
{
t − φ(t) : t ∈ [M/2,M]} > 0.

Choose a positive number δ0 such that

δ0 < min
{
M/2, inf

{
t − φ(t) : t ∈ [M/2,M]}/4

}
. (3.223)

For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
.

Assume that

y ∈ K ∩ B(x̄,M), z ∈ X and ρ(z,T y) ≤ δ0. (3.224)

By (3.224) and (3.198),

ρ(x̄, z) ≤ ρ(x̄, T y) + ρ(T y, z) ≤ ρ(T x̄, T y) + δ0 ≤ φ
(
ρ(x̄, y)

) + δ0. (3.225)

There are two cases:

ρ(y, x̄) ≤ M/2; (3.226)

ρ(y, x̄) > M/2. (3.227)

Assume that (3.226) holds. By (3.225), (3.226), (3.198) and (3.223),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M.
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Assume that (3.227) holds. Then by (3.223), (3.225), (3.224) and (3.227),

ρ(x̄, z) ≤ δ0 + φ
(
ρ(x̄, y)

)
<

[
ρ(x̄, y) − φ

(
ρ(x̄, y)

)]
4−1 + φ

(
ρ(x̄, y)

)

< ρ(x̄, y) ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

ρ(x̄, z) ≤ M for each z ∈ X such that

there exists y ∈ K ∩ B(x̄,M) satisfying ρ(z,T y) ≤ δ0. (3.228)

Since M is an arbitrary positive number, we may conclude that there is δ1 > 0 so
that

ρ(x̄, z) ≤ ε for each z ∈ X such that

there exists y ∈ K ∩ B(x̄, ε) satisfying ρ(z,T y) ≤ δ1. (3.229)

Choose a positive number δ such that

δ < min
{
δ0, δ1,4−1 inf

{
t − φ(t) : t ∈ [ε,M + ε + 1]}} (3.230)

and a natural number k such that

k > 2(M + 1)δ−1 + 2. (3.231)

Assume that n is a natural number such that n ≥ k and that {xi}ni=0 ⊂ K satisfies

ρ(x0, x̄) ≤ M, ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1. (3.232)

We claim that

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.233)

By (3.228), (3.230) and (3.232),

{xi}ni=0 ⊂ B(x̄,M). (3.234)

Assume that (3.233) does not hold. Then there is an integer j such that

j ∈ {k, . . . , n} and ρ(xj , x̄) > ε. (3.235)

By (3.229), (3.230) and (3.232),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.236)

Let i ∈ {0, . . . , j − 1}. By (3.232), (3.198), (3.234), (3.236) and (3.230),

ρ(xi+1, x̄) ≤ ρ(xi+1, T xi) + ρ(T xi, T x̄) ≤ δ + φ
(
ρ(xi, x̄)

)

< φ
(
ρ(xi, x̄)

) + 4−1(ρ(xi, x̄) − φ
(
ρ(xi, x̄)

))
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< φ
(
ρ(xi, x̄)

) + 2−1(ρ(xi, x̄) − φ
(
ρ(xi, x̄)

)) − δ

≤ ρ(xi, x̄) − δ.

When combined with (3.232) and (3.235), this implies that

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

] ≤ −jδ ≤ −kδ.

Thus

kδ ≤ M

which contradicts (3.231).
Hence (3.233) is true, as claimed, and part (B) of our theorem is also proved. �

3.13 A Fixed Point Theorem for Matkowski Contractions

Let (X,ρ) be a complete metric space. In this section, which is based on [159],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a Matkowski contraction [99] which maps a nonempty and closed
subset of X into X.

Theorem 3.24 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
for each x, y ∈ K, (3.237)

where φ : [0,∞) → [0,∞) is increasing and satisfies limn→∞ φn(t) = 0 for all
t > 0. Assume that K0 ⊂ K is a nonempty and bounded set with the following prop-
erty:

(P1) For each natural number n, there exists xn ∈ K0 such that T nxn is defined.

Then the following assertions hold.

(A) There exists a unique x̄ ∈ K such that T x̄ = x̄.
(B) Let M,ε > 0. Then there exists a natural number k such that for each sequence

{xi}ni=0 ⊂ K with n ≥ k satisfying

ρ(x0, x̄) ≤ M and T xi = xi+1, i = 0, . . . , n − 1,

the inequality ρ(xi, x̄) ≤ ε holds for all i = k, . . . , n.
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Proof For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
. (3.238)

(A) Since φn(t) → 0 as n → ∞ for all t > 0, and since φ is increasing, we have

φ(t) < t for all t > 0. (3.239)

This implies the uniqueness of x̄. Clearly, φ(0) = 0.
For each natural number n, let xn be as guaranteed by property (P1). Fix θ ∈ K .

Since K0 is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.240)

Let ε > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P2) If the integers i and n satisfy k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

) ≤ ε.

By (3.236) and (3.240), for each z ∈ K0,

ρ(z,T z) ≤ ρ(z, θ) + ρ(θ,T θ) + ρ(T θ,T z)

≤ 2ρ(z, θ) + ρ(θ,T θ) ≤ 2c0 + ρ(θ,T θ). (3.241)

Clearly, there is a natural number k such that

φk
(
2c0 + ρ(θ,T θ)

)
< ε. (3.242)

Assume now that the integers i and n satisfy k ≤ i < n.
By (3.236), (3.239), (3.241), the choice of xn, and (3.242),

ρ
(
T ixn, T

i+1xn

) ≤ ρ
(
T kxn,T

k+1xn

) ≤ φk
(
ρ(xn,T xn)

)

≤ φk
(
2c0 + ρ(θ,T θ)

)
< ε.

Thus property (P2) holds for this k.
Let δ > 0 be given. We claim that there exists a natural number k such that the

following property holds:

(P3) If the integers i, j and n satisfy k ≤ i < j < n, then

ρ
(
T ixn, T

jxn

) ≤ δ.

Indeed, by (3.239),

φ(δ) < δ. (3.243)

By (P2) and (3.243), there is a natural number k such that (P2) holds with ε =
δ − φ(δ).
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Assume now that the integers i and n satisfy k ≤ i < n. In view of the choice of
k and property (P2) with ε = δ − φ(δ), we have

ρ
(
T ixn, T

i+1xn

) ≤ δ − φ(δ). (3.244)

Now let

x ∈ K ∩ B
(
T ixn, δ

)
. (3.245)

It follows from (3.236), (3.244) and (3.245) that

ρ
(
T x,T ixn

) ≤ ρ
(
T x,T i+1xn

) + ρ
(
T i+1xn,T

ixn

) ≤ φ
(
ρ
(
x,T ixn

)) + δ − φ(δ)

≤ δ.

Thus

T
(
K ∩ B

(
T ixn, δ

)) ⊂ B
(
T ixn, δ

)
,

and if an integer j satisfies i < j < n, then ρ(T ixn, T
jxn) ≤ δ. Hence property (P3)

does hold, as claimed.
Let ε > 0 be given. We will show that there exists a natural number k such that

the following property holds:

(P4) If the integers n1, n2 and i satisfy k ≤ i ≤ min{n1, n2}, then

ρ
(
T ixn1 , T

ixn2

) ≤ ε.

Indeed, there exists a natural number k such that

φi(2c0) < ε for all integers i ≥ k. (3.246)

Assume now that the natural numbers n1, n2 and i satisfy

k ≤ i ≤ min{n1, n2}. (3.247)

By (3.236), (3.240) and (3.246),

ρ
(
T ixn1, T

ixn2

) ≤ φi
(
ρ(xn1, xn2)

) ≤ φi(2c0) < ε.

Thus property (P4) indeed holds.
Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T ixn1, T

ixn2

) ≤ ε/4 for all integers n1, n2 ≥ k1

and all integers i satisfying k1 ≤ i ≤ min{n1, n2}. (3.248)

By property (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

) ≤ ε/4 for all natural numbers n, i, j satisfying k2 ≤ i, j < n.

(3.249)
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Assume that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.250)

We claim that

ρ
(
T ixn1 , T

j xn2

) ≤ ε.

By (3.238), (3.243), (3.248) and (3.250),

ρ
(
T k1+k2xn1, T

k1+k2xn2

) ≤ ρ
(
T k1xn1, T

k1xn2

) ≤ ε/4. (3.251)

In view of (3.249) and (3.250),

ρ
(
T k1+k2xn1, T

ixn1

) ≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

) ≤ ε/4.

When combined with (3.251), this implies that

ρ
(
T ixn1, T

j xn2

) ≤ ρ
(
T ixn1, T

k1+k2xn1

) + ρ
(
T k1+k2xn1, T

k1+k2xn2

)

+ ρ
(
T k1+k2xn2, T

j xn2

)

≤ ε/4 + ε/4 + ε/4 < ε.

Thus we have shown that the following property holds:

(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1, T

j xn2

) ≤ ε

for all natural numbers n1, n2 > k(ε), i ∈ [k(ε), n1) and j ∈ [k(ε), n2).

Consider now the sequences {T n−2xn}∞n=3 and {T n−1xn}∞n=3. Property (P5) im-
plies that these sequences are Cauchy sequences and that

lim
n→∞ρ

(
T n−2xn,T

n−1xn

) = 0.

Hence there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

) = lim
n→∞ρ

(
x̄, T n−1xn

) = 0.

Since the mapping T is continuous, T x̄ = x̄ and part (A) is proved.
(B) Since T is a Matkowski contraction, there is a natural number k such that

φk(M) < ε.
Assume that a point x0 ∈ B(x̄,M), an integer n ≥ k, and that T ix0 is defined for

all i = 0, . . . , n. Then T ix0 ∈ K , i = 0, . . . , n − 1, and by (3.236),

ρ
(
T kx0, x̄

) ≤ φk
(
ρ(x0, x̄)

) ≤ φk(M) < ε.

By (3.236) and (3.239), we have for i = k, . . . , n,

ρ
(
T ix0, x̄

) ≤ ρ
(
T kx0, x̄

) ≤ ε.

Thus part (B) of our theorem is also proved. �
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3.14 Jachymski-Schröder-Stein Contractions

Suppose that (X,d) is a complete metric space, N0 is a natural number, and φ :
[0,∞) → [0,∞) is a function which is upper semicontinuous from the right and
satisfies φ(t) < t for all t > 0. We call a mapping T : X → X for which

min
{
d
(
T ix, T iy

) : i ∈ {1, . . . ,N0}
} ≤ φ

(
d(x, y)

)
for all x, y ∈ X (3.252)

a Jachymski-Schröder-Stein contraction (with respect to φ).
Condition (3.252) was introduced in [78]. Such mappings with φ(t) = γ t for

some γ ∈ (0,1) have recently been of considerable interest [10, 78, 79, 100, 101,
174]. In this section, which is based on [161], we study general Jachymski-Schröder-
Stein contractions and prove two fixed point theorems for them (Theorems 3.25 and
3.26 below). In our first result we establish convergence of iterates to a fixed point,
and in the second this conclusion is strengthened to obtain uniform convergence
on bounded subsets of X. This last type of convergence is useful in the study of
inexact orbits [35]. Our theorems contain the (by now classical) results in [23] as
well as Theorem 2 in [78]. In contrast with that theorem, in Theorem 3.25 we only
assume that φ is upper semicontinuous from the right and we do not assume that
lim inft→∞(t − φ(t)) > 0. Moreover, our arguments are completely different from
those presented in [78], where the Cantor Intersection Theorem was used. We re-
mark in passing that Cantor’s theorem was also used in this context in [65] (cf. also
[68]).

Theorem 3.25 Let (X,d) be a complete metric space and let T : X → X be
a Jachymski-Schröder-Stein contraction. Assume there is x0 ∈ X such that T is
uniformly continuous on the orbit {T ix0 : i = 1,2, . . . }. Then there exists x̄ =
limi→∞ T ix0 in (X,d). Moreover, if T is continuous at x̄, then x̄ is the unique
fixed point of T .

Proof Set

T 0x = x, x ∈ X. (3.253)

We are going to define a sequence of nonnegative integers {ki}∞i=0 by induction. Set
k0 = 0. Assume that i ≥ 0 is an integer, and that the integer ki ≥ 0 has already been
defined. Clearly, there exists an integer ki+1 such that

1 ≤ ki+1 − ki ≤ N0 (3.254)

and

d
(
T ki+1x0, T

ki+1+1x0
) = min

{
d
(
T j+ki x0, T

j+ki+1x0
) : j = 1, . . . ,N0

}
. (3.255)

By (3.252), (3.254) and (3.255), the sequence {d(T kj x0, T
kj +1x0)}∞j=0 is decreas-

ing. Set

r = lim
j→∞d

(
T kj x0, T

kj +1x0
)
. (3.256)
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Assume that r > 0. Then by (3.252), (3.254) and (3.255), for each integer j ≥ 0,

d
(
T kj+1x0, T

kj+1+1x0
) ≤ φ

(
d
(
T kj x0, T

kj +1x0
))

.

When combined with (3.256), the monotonicity of the sequence

{
d
(
T kj x0, T

kj +1x0
)}∞

j=0,

and the upper semicontinuity from the right of φ, this inequality implies that

r ≤ lim sup
j→∞

φ
(
d
(
T kj x0, T

kj +1x0
)) ≤ φ(r),

a contradiction. Thus r = 0 and

lim
j→∞d

(
T kj x0, T

kj +1x0
) = 0. (3.257)

We claim that, in fact,

lim
i→∞d

(
T ix0, T

i+1x0
) = 0.

Indeed, let ε > 0 be given. Since T is uniformly continuous on the set

Ω := {
T ix0 : i = 1,2, . . .

}
, (3.258)

there is

ε0 ∈ (0, ε) (3.259)

such that

if x, y ∈ Ω, i ∈ {1, . . . ,N0}, d(x, y) ≤ ε0, then d
(
T ix,T iy

) ≤ ε. (3.260)

By (3.257), there is a natural number j0 such that

d
(
T kj x0, T

kj +1x0
) ≤ ε0 for all integers j ≥ j0. (3.261)

Let p be an integer such that

p ≥ kj0 + N0.

Then by (3.254) there is an integer j ≥ j0 such that

kj < p ≤ kj + N0. (3.262)

By (3.261) and the inequality j ≥ j0,

d
(
T kj x0, T

kj +1x0
) ≤ ε0.
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Together with (3.262) and (3.261), this implies that

d
(
T px0, T

p+1x0
) ≤ ε.

Thus this inequality holds for any integer p ≥ kj0 + N0 and we conclude that

lim
p→∞d

(
T px0, T

p+1x0
) = 0, (3.263)

as claimed.
Now we show that {T ix0}∞i=1 is a Cauchy sequence. Assume the contrary. Then

there exists ε > 0 such that for each natural number p, there exist integers mp >

np ≥ p such that

d
(
T mpx0, T

npx0
) ≥ ε. (3.264)

We may assume without loss of generality that for each natural number p,

d
(
T ix0, T

npx0
)
< ε for all integers i satisfying np < i < mp. (3.265)

By (3.264) and (3.265), for any integer p ≥ 1,

ε ≤ d
(
T mpx0, T

npx0
) ≤ d

(
T mpx0, T

mp−1x0
) + d

(
T mp−1x0, T

npx0
)

≤ d
(
T mpx0, T

mp−1x0
) + ε.

When combined with (3.263), this implies that

lim
p→∞d

(
T mpx0, T

npx0
) = ε. (3.266)

Let δ > 0 be given. By (3.263), there is an integer p0 ≥ 1 such that

d
(
T i+1x0, T

ix0
) ≤ δ(4N0)

−1 for all integers i ≥ p0. (3.267)

Let p ≥ p0 be an integer. By (3.263), there is j ∈ {1, . . . ,N0} such that

d
(
T mp+j x0, T

np+j x0
) ≤ φ

(
d
(
T mpx0, T

npx0
))

. (3.268)

By the inequalities mp > np ≥ p, (3.267) and (3.268),

d
(
T mpx0, T

npx0
) ≤

j−1∑

i=0

d
(
T mp+ix0, T

mp+i+1x0
) + d

(
T mp+j x0, T

np+j x0
)

+
j−1∑

i=0

d
(
T np+ix0, T

np+i+1x0
)

≤ 2jδ(4N0)
−1 + φ

(
d
(
T mpx0, T

npx0
))

< δ + φ
(
d
(
T mpx0, T

npx0
))

. (3.269)
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By (3.266), (3.269), (3.264), and the upper semicontinuity from the right of φ,

ε = lim
p→∞d

(
T mpx0, T

npx0
) ≤ δ + lim sup

p→∞
φ
(
d
(
T mpx0, T

npx0
)) ≤ δ + φ(ε).

Since δ is an arbitrary positive number, we conclude that ε ≤ φ(ε). The contradic-
tion we have reached proves that {T ix0}∞i=1 is indeed a Cauchy sequence. Set

x̄ = lim
i→∞T ix0.

Clearly, if T is continuous, then T x̄ = x̄ and x̄ is the unique fixed point of T . The-
orem 3.25 is proved. �

For each x ∈ X and r > 0, set

B(x, r) = {
z ∈ X : ρ(x, z) ≤ r

}
.

Theorem 3.26 Let (X,d) be a complete metric space and let T : X → X be a
Jachymski-Schröder-Stein contraction with respect to the function φ : [0,∞) →
[0,∞). Assume that φ is upper semicontinuous, T is uniformly continuous on the
set {T ix : i = 1,2, . . . } for each x ∈ X, and that T is continuous on X. Then there
exists a unique fixed point x̄ of T such that T nx → x̄ as n → ∞, uniformly on
bounded subsets of X.

Proof By Theorem 3.25, T has a unique fixed point x̄ and

T nx → x̄ as n → ∞ for all x ∈ X. (3.270)

Let r > 0 be given. We claim that T nx → x̄ as n → ∞, uniformly on B(x̄, r).
Indeed, let

ε ∈ (0, r). (3.271)

Since T is continuous, there is

ε0 ∈ (0, ε) (3.272)

such that

if x ∈ X,d(x, x̄) ≤ ε0, i ∈ {1, . . . ,N0}, then d
(
T ix, x̄

) ≤ ε. (3.273)

Since φ is upper semicontinuous, there is

δ ∈ (0, ε0) (3.274)

such that

if t ∈ [ε0, r], then t − φ(t) ≥ δ. (3.275)
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Choose a natural number N1 such that

N1δ > 2r. (3.276)

Assume that

x ∈ X, d(x̄, x) ≤ r. (3.277)

We will show that

d
(
x̄, T ix

) ≤ ε for all integers i ≥ N0 + N0N1. (3.278)

To this end, set k0 = 0. Define by induction an increasing sequence of integers
{ki}∞i=1 such that

ki+1 − ki ∈ [1,N0], d
(
T ki+1x, x̄

) = min
{
d
(
T j+ki x, x̄

) : j ∈ {1, . . . ,N0}
}
.

(3.279)

By (3.252) and (3.279), the sequence {d(T ki x, x̄)}∞i=0 is decreasing. We claim that
d(T kN1 x, x̄) ≤ ε0.

Assume the contrary. Then by (3.277) and (3.252),

r ≥ d
(
T kj x, x̄

)
> ε0, j = 0, . . . ,N1. (3.280)

By (3.279), (3.252), (3.280) and (3.275), we have for j = 0, . . . ,N1,

d
(
T kj x, x̄

) − d
(
T kj +1x, x̄

) ≥ d
(
T kj x, x̄

) − φ
(
d
(
T kj x, x̄

)) ≥ δ. (3.281)

Together with (3.277), this implies that

r ≥ d
(
T k0x, x̄

) − d
(
T kN1+1x, x̄

) ≥ δ(N1 + 1),

which contradicts (3.276). The contradiction we have reached and the monotonicity
of the sequence {d(T kj x, x̄)}∞j=0 show that there is p ∈ {0,1, . . . ,N1} such that

d
(
T kj x, x̄

) ≤ ε0 for all integers j ≥ p. (3.282)

Assume that i ≥ N0 + N0N1 is an integer. By (3.279), there is an integer j ≥ 0
such that

kj ≤ i < kj+1. (3.283)

By (3.279), (3.283) and the choice of p,

(j + 1)N0 > i,

j + 1 > i/N0 ≥ N1 + 1,

and

j > N1 ≥ p. (3.284)
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By (3.284) and (3.282), d(T kj x, x̄) ≤ ε0. Together with (3.283), (3.279), (3.272)
and (3.273), this inequality implies that

d
(
x̄, T ix

) ≤ ε,

as claimed. Theorem 3.26 is proved. �

3.15 Two Results on Jachymski-Schröder-Stein Contractions

Suppose that (X,d) is a complete metric space, N0 is a natural number, and φ :
[0,∞) → [0,∞) is a function. In this section we continue to study Jachymski-
Schröder-Stein contractions (with respect to φ) T : X → X for which

min
{
d
(
T ix, T iy

) : i ∈ {1, . . . ,N0}
} ≤ φ

(
d(x, y)

)
for all x, y ∈ X. (3.285)

In the previous section we studied general Jachymski-Schröder-Stein contrac-
tions, where φ is upper semicontinuous from the right and satisfies φ(t) < 1 for all
positive t . In this section, which is based on [162], we study the case where φ is
increasing and satisfies

lim
n→∞φ(t)n = 0 (3.286)

for all t > 0. Here φn = φn−1 ◦ φ for all integers n ≥ 1. This condition on φ origi-
nates in Matkowski’s fixed point theorem [99].

More precisely, we establish two fixed point theorems (Theorems 3.27 and 3.28
below). In our first result we prove convergence of iterates to a fixed point, and in the
second this conclusion is strengthened to obtain uniform convergence on bounded
subsets of X.

Theorem 3.27 Let (X,d) be a complete metric space and T : X → X be
a Jachymski-Schröder-Stein contraction such that φ is increasing and satisfies
(3.286). Let x0 ∈ X. Assume there is x0 ∈ X such that T is uniformly continuous on
the orbit {T ix0 : i = 1,2, . . . }. Then there exists x̄ = limi→∞ T ix0. Moreover, if T

is continuous at x̄, then x̄ is the unique fixed point of T .

Proof Since φn(t) → 0 s n → ∞ for t > 0,

φ(ε) < ε for any ε > 0. (3.287)

Set T 0x = x, x ∈ X. Using induction, we now define a sequence of nonnegative
integers {ki}∞i=0. Set k0 = 0. Assume that i ≥ 0 is an integer and that the integer
ki ≥ 0 has already been defined. Clearly, by (3.286) there exists an integer ki+1
such that

1 ≤ ki+1 − ki ≤ N0 (3.288)
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and

d
(
T ki+1x0, T

ki+1+1x0
) = min

{
d
(
T j+ki x0, T

j+ki+1x0
) : i = 1, . . . ,N0

}
. (3.289)

By (3.285), (3.287), (3.288) and (3.289), the sequence {d(T kj x0, T
kj +1x0)}∞j=0 is

decreasing and for any integer i ≥ 0,

d
(
T ki+1x0, T

ki+1+1x0
) ≤ φ

(
d
(
T ki x0, T

ki+1x0
))

. (3.290)

Since φ is indecreasing, it follows from (3.290) and (3.285) that for any integer
j ≥ 1,

d
(
T kj x0, T

kj +1x0
) ≤ φj

(
d(x0, T x0)

) → 0 as j → ∞.

Thus

lim
j→∞d

(
T kj x0, T

kj +1x0
) = 0. (3.291)

We claim that

lim
i→∞d

(
T ix0, T

i+1x0
) = 0.

Let ε > 0 be given. Since T is uniformly continuous on the set

Ω := {
T ix0 : i = 1,2, . . .

}
, (3.292)

there is

ε0 ∈ (0, ε) (3.293)

such that

if x, y ∈ Ω, i ∈ {1, . . . ,N0}, d(x, y) ≤ ε0, then d
(
T ix,T iy

) ≤ ε. (3.294)

By (3.291), there is a natural number j0 such that

d
(
T kj x0, T

kj +1x0
) ≤ ε0 for all integers j ≥ j0. (3.295)

Consider an integer

p ≥ kj0 + N0. (3.296)

Then by (3.288) and (3.296), there is an integer j ≥ j0 such that

kj < p ≤ kj + N0. (3.297)

By (3.295) and the inequality j ≥ j0, we have

d
(
T k+j x0, T

kj +1x0
) ≤ ε0.

Together with (3.294) and (3.297) this implies

d
(
T px0, T

p+1x0
) ≤ ε.
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Since this inequality holds for any integer p ≥ kj0 + N0, we conclude that

lim
p→∞d

(
T px0, T

p+1x0
) = 0, (3.298)

as claimed.
Next we show that {T ix0}∞i=1 is a Cauchy sequence. To this end, let ε > 0 be

given. By (3.287),

φ(ε) < ε. (3.299)

By (3.299), there exists ε0 > 0 such that

ε0 <
(
ε − φ(ε)

)
4−1. (3.300)

By (3.298), there exists a natural number n0 such that

if the integers i, j ≥ n0, |i − j | ≤ 2N0 + 2, then d
(
T ix0, T

j x0
) ≤ ε0. (3.301)

We show that for each pair of integers i, j ≥ n0,

d
(
T ix0, T

j x0
) ≤ ε.

Assume the contrary. Then there exist integers p,q ≥ n0 such that

d
(
T px0, T

qx0
)
> ε. (3.302)

We may assume without loss of generality that

p < q.

We also may assume without loss of generality that

if an integer i satisfies p ≤ i < q, then d
(
T ix0, T

px0
) ≤ ε. (3.303)

By (3.302), (3.301) and (3.300),

q − p > 2N0 + 2

and

q − N0 > p + N0 + 2. (3.304)

By (3.303) and (3.304),

d
(
T q−N0x0, T

px0
) ≤ ε. (3.305)

There is s ∈ {1, . . . ,N0} such that

d
(
T q−N0+sx0, T

p+sx0
) = min

{
d
(
T q−N0+j x0, T

p+j x0
) : j ∈ {1, . . . ,N0}

}
.

(3.306)
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By (3.285), (3.305) and (3.306),

d
(
T q−N0+sx0, T

p+sx0
) ≤ φ

(
d
(
T q−N0x0, T

px0
)) ≤ φ(ε). (3.307)

Hence,

d
(
T qx0, T

px0
) ≤ d

(
T px0, T

p+sx0
)

+ d
(
T p+sx0, T

q−N0+sx0
) + d

(
T q−N0+sx0, T

qx0
)

≤ d
(
T px0, T

p+sx0
) + φ(ε) + d

(
T q−N0+sx0, T

qx0
)
. (3.308)

By (3.301) and (3.304) and the choice of s,

d
(
T px0, T

p+sx0
)
, d

(
T q−N0+s , T qx0

) ≤ ε0. (3.309)

By (3.299), (3.300), (3.308) and (3.309),

d
(
T qx0, T

px0
) ≤ 2ε0 + φ(ε) ≤ 2−1ε + 2−1φ(ε) < ε.

However, the inequality above contradicts (3.302). The contradiction we have
reached proves that

d
(
T ix0, T

j x0
) ≤ ε for all integers i, j ≥ n0.

Since ε is an arbitrary positive number, we conclude that {T ix0}∞i=1 is indeed a
Cauchy sequence and there exists x̄ = limi→∞ T ix0.

Clearly, if T is continuous, then x̄ is a fixed point of T and it is the unique fixed
point of T .

This completes the proof of Theorem 3.27. �

Theorem 3.28 Let (X,d) be a complete metric space and T : X → X be
a Jachymski-Schröder-Stein contraction such that φ is increasing and satisfies
(3.286). Assume that T is continuous on X and uniformly continuous on the or-
bit {T ix : i = 1,2, . . . } for each x ∈ X. Then there exists a unique fixed point x̄ of
T and T nx → x̄ as n → ∞, uniformly on all bounded subsets of X.

Proof By Theorem 3.27, there exists a unique fixed point of T . Let r > 0 be given.
We claim that T nx → x̄ as n → ∞, uniformly on the ball B(x̄, r) = {y ∈ X :
ρ(x̄, y) ≤ r}.

Indeed, let ε ∈ (0, r). Clearly, there exists a number ε0 ∈ (0, ε) such that

if x ∈ X,d(x, x̄) ≤ ε0, i ∈ {1, . . . ,N0}, then d
(
T ix, x̄

) ≤ ε. (3.310)

By (3.286), there is a natural number n0 such that

φn0(r) < ε0. (3.311)



3.15 Two Results on Jachymski-Schröder-Stein Contractions 179

Let x ∈ X satisfy d(x, x̄) ≤ r . Set k0 = 0. We now define by induction an in-
creasing sequence of integers {ki}∞i=0 such that for all integers i ≥ 0,

ki+1 − ki ∈ [1,N0],
d
(
T ki+1x, x̄

) = min
{
d
(
T ki+j x, x̄

) : j ∈ {1, . . . ,N0}
}
. (3.312)

By (3.312), (3.285) and (3.287), the sequence {d(T ki x, x̄)}∞i=1 is decreasing.
For each integer i ≥ 0,

d
(
T ki+1x, x̄

) ≤ φ
(
d
(
T ki x, x̄

))
. (3.313)

By (3.313) and the choice of x, for each integer m ≥ 1,

d
(
T kmx, x̄

) ≤ φm
(
d(x, x̄)

) ≤ φm(r).

By (3.287) and (3.311), for each integer m ≥ n0,

d
(
T kmx, x̄

) ≤ φm(r) ≤ φn0(r) < ε0. (3.314)

Assume now that i ≥ N0(n0 + 2) is an integer. By (3.312), there is an integer j ≥ 0
such that

kj ≤ i < kj+1. (3.315)

By (3.312) and (3.315),

(j + 1)N0 > i, j + 1 > iN−1
0 ≥ n0 + 2, j > n0.

Together with (3.314) this implies that

d
(
T kj x, x̄

)
< ε0.

When combined with (3.315), (3.312) and (3.310), this implies that

d
(
T ix, x̄

)
> ε.

Theorem 3.28 is proved. �
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