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Sleep-Focused Interventions: Investigating
the Effects of Sleep Restriction

on Energy Balance
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Abstract Obesity has reached epidemic proportions, and excess body weight and
adiposity have been linked to many adverse health conditions including various
cancers. Rising obesity rates over the last few decades have been paralleled by con-
comitant reductions in nocturnal sleep duration, and epidemiological evidence has
demonstrated a relationship between short sleep and increased weight gain and obesity.
Causality cannot be inferred from these studies however, so laboratory-based inter-
ventions are essential to determine the nature of the short sleep-obesity link. The aim
of this chapter is to summarize and evaluate the clinical intervention studies which
altered sleep either by partially restricting sleep episode length or by completely
eliminating the sleep episode to investigate the resulting effects on energy balance.
Specific energy balance parameters considered include energy expenditure, subjec-
tive hunger/appetite ratings, appetite-regulating hormones, and food intake. Most
studies support a role of short sleep in increasing food intake, but the results on
energy expenditure, hunger, and hormonal regulation of food intake are less consistent.
This chapter critically evaluates how methodological differences may contribute to
discrepancies and inconsistencies between study results, with an emphasis on the
roles of sex, the state of energy balance of study participants, and the timing of
manipulated sleep schedules within the intervention studies.
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Introduction

Obesity has reached epidemic proportions worldwide, and a recent estimate
indicates that almost a third of the adult population in the United States is obese
(body mass index [BMI] >30 kg/m?) [1]. Obesity is a problem that has been linked
to adverse health outcomes, including cardiovascular disease, diabetes, and overall
reductions in life expectancy. Moreover, epidemiological evidence has demon-
strated an association between obesity and increased risk of developing a variety
of cancer types, including cancers of the esophagus, colon, breast, endometrium,
kidney, liver, and pancreas [2]. Clearly understanding the various factors which con-
tribute to the increased prevalence of obesity will therefore have widespread ramifi-
cations for many aspects of public health, including cancer.

One such potential contributor is sleep, which researchers increasingly point to
as having a functional role in maintaining proper metabolism in addition to its more
well-established roles in cognition and brain function. Over the past few decades,
the drastic increase in the prevalence of obesity has been reflected by substantial
decreases in the amount of sleep being obtained. For example, whereas in 1960
modal sleep duration was observed to be 8—8.9 h/night, by 2004 more than 30 % of
adults aged 30-64 years reported sleeping <6 h/night [3]. More recently, the results
of a large, cross-sectional population-based study of adults in the United States
showed that 7.8 % report sleeping <5 h/night, 28.3 % report sleeping <6 h/night,
and 59.1 % of those surveyed report sleeping <7 h/night [4].

These decreases in nocturnal sleep duration are likely due to modern technological
advances, including widespread use of television and computers at night, and other
light-emitting and alerting electronic appliances. Indeed, striking data from the
2011 Sleep in America Poll conducted by the National Sleep Foundation indicate
that 95 % of those surveyed use some type of light-emitting electronic device, such
as television, computer, cell phone, or tablet in the hour before going to sleep [5].
Exposure to bright, artificial light during the hours preceding bedtime can signifi-
cantly suppress the release of the sleep-promoting hormone melatonin, which can
delay sleep initiation and shorten sleep duration [6]. Related to this is the case of
shift workers, who are exposed to high levels of ambient lighting during nighttime
hours and frequently experience curtailment of sleep length by 1-4 h/night [7].
These workers show increased BMI and obesity prevalence compared to day workers
[8, 9]. Additionally, a disproportionately high incidence of breast cancer was found
in shift-working women [10]. One hypothesized mechanism underlying this asso-
ciation was exposure to light at night and subsequent melatonin suppression which
can promote breast cancer development [11]. However, the contributions of chronic
sleep restriction and obesity in individuals with atypical work schedules have not
been established. Interestingly, it was recently observed that exposure to light at
night is associated with higher odds of obesity and dyslipidemia [12], which further
suggests an interaction between short sleep, obesity, and cancer.

Mounting epidemiological evidence supports the association between short sleep
duration and the development of obesity, with increased odds of obesity observed in
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individuals habitually sleeping <7 h/night [13, 14]. Despite the associations,
observational studies alone cannot establish a direct link between reduced sleep
duration and increased obesity. Indeed, some authors have questioned the clinical
relevance of the epidemiological studies and remain skeptical of the proposed causal
links between short sleep and obesity [15]. It becomes apparent, therefore, that sleep-
focused intervention studies are necessary to clearly determine the role of short sleep
as a contributor to the development of obesity. An understanding of the mechanisms
underlying this relationship will help determine if short sleep is a modifiable risk
factor that affects obesity risk [16] and could potentially lead to targeted lifestyle
treatment options for body weight management efforts.

This chapter will focus on laboratory-based clinical intervention studies which
manipulated the duration of sleep to determine the resulting effects on energy
balance-related parameters. We will consider studies that altered sleep either by
partially restricting sleep episode length or by completely eliminating the sleep
episode. The specific energy balance parameters included are energy expenditure
(EE), hunger/appetite, appetite-regulating hormones, and food intake. A particular
focus of this chapter will be on the specific methodological differences that char-
acterize the various intervention studies and how these methodological differences
may contribute to discrepancies and inconsistencies in the literature. Our aim,
therefore, is to critically review the literature of laboratory-based sleep-focused
intervention studies to more fully examine the functional implications of sleep
restriction on energy balance while considering the confounding effects of differ-
ences in methods used in the various trials.

Energy Balance and Obesity

In practical terms, body weight gain and obesity are thought to develop as a conse-
quence of excessive food intake and/or reduced physical activity [17]. Body weight
stability is achieved when energy intake is equal to the energy output. Thus, energy
balance is the quantifiable relationship between the intake and output of energy
from the body. A major goal of the laboratory-based clinical intervention studies
described in this chapter is to mechanistically support or disprove the epidemiological
evidence in determining if sleep restriction is a causal factor in the pathway to
obesity. If so, sleep restriction is expected to result in an energy imbalance such that
energy intake is increased relative to EE (i.e., energy intake >energy output).

Total EE (TEE) is the summation of several components, including resting meta-
bolic rate (RMR; the amount of energy fueling the body at rest), the thermic effect
of food (TEF; energy associated with absorption and metabolism of food), and
physical activity (PA; voluntary activity like exercise and non-exercise activity)
[17]. The amount of food and composition of meals consumed under ad libitum
conditions, either via totally free access or during a test meal, is a method of quan-
tifying energy intake. Related to food intake is the hormonal and cognitive control
of hunger and appetite. Thus, while measures of circulating appetite-regulating
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hormones, as well as current levels of subjective hunger and appetite, do not assess
energy intake, per se, they represent an important aspect of the controls of food
intake. It should be pointed out that while some have determined how sleep restric-
tion conditions affect a calculated value of energy balance [18, 19], most researchers
have rather investigated how sleep can influence the various components of energy
balance (e.g., RMR, TEF, food intake) or energy balance-regulating factors
(e.g., hunger, hormones).

Methodological Issues: Factors Which Can Influence Energy
Balance Parameters or Their Assessment

A variety of issues arise when attempting to compare the results across various
intervention studies which have used different methodological approaches to
address the question of how sleep restriction affects energy balance. The following
sections will systematically address the various methods used for experimental
manipulation and data collection and their potential effects on the expression of
the outcome variables, including EE, hunger, appetite-regulating hormones, and
food intake.

Sleep Duration and Timing Effects

One of the most important aspects to consider when comparing across sleep-focused
interventions is the nature of the manipulation, i.e., the duration of the sleep episode
that is allowed. The most extreme case of sleep restriction is total sleep deprivation
wherein sleep is completely eliminated for >24 h [20-24]. Partial sleep restriction,
a model of sleep curtailment that is a closer approximation of what is experienced
in daily life, allows for sleep episodes that are less than the “typical” sleep episode
length (7-8 h/night) and ranges from an allowance of 3 h/night to 5.5 h/night in the
studies included in this chapter [18, 19, 25-33]. Though not discussed here, it should
be noted that some intervention studies have utilized manipulations which were
designed to disturb sleep quality or the relative expression of specific sleep stages
without affecting total sleep duration [34-36].

Hormone secretion within the hypothalamic-pituitary axis (HPA), which can
affect metabolism and energy balance, is affected by the presence or absence of
sleep, per se. Growth hormone and prolactin are observed to increase during sleep,
whereas secretion of thyroid-stimulating hormone is inhibited by sleep [3]. Cortisol
secretion is increased following total sleep deprivation [3], although the results are
less consistent for partial sleep restriction [37]. Distinct sleep stages, as illustrated
by cortical electroencephalographic activity, also play a role in the peripheral and
central regulation of hormones and physiology, as slow-wave sleep (SWS) increases
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GH release and decreases sympathetic nerve activity [3], whereas rapid eye movement
(REM) sleep appears to be associated with orexin (hypocretin) release [38]. A sleep
stage-specific alteration in EE has also been reported [39]. The effects of total
sleep deprivation may therefore be quite distinct from more moderate, partial
sleep deprivation in which some sleep is allowed.

Related to the duration of the sleep episode is the length of the exposure to the
sleep manipulation. Most studies of acute total sleep deprivation are 1 day [20-23],
which may be similar to real-life circumstances in which it is rare to have total sleep
elimination for longer than 24 h. Within the clinical laboratory setting, an even more
realistic approximation of common real-life circumstances may be a chronic exposure
to a milder partial sleep curtailment. Nonetheless, experimental designs have not been
uniform, and sleep curtailment manipulations have lasted for as little 1 day to as long
as 14 days [18, 19, 25-33]. Short-term sleep restriction may have different metabolic
effects than longer-term periods where the body has time to habituate to a new sleep
regimen and achieve a new equilibrium. This has not been studied thus far.

Although it may be less apparent than sleep episode length, the timing or sched-
uling of in-lab sleep opportunities may influence the expression of energy balance-
related parameters. One common practice is to center the timing of the restricted
sleep episode at the same or a similar clock time as the habitual/baseline sleep epi-
sode. For example, researchers may compare a short sleep episode scheduled from
0200 to 0600 h with a normal length episode scheduled from 0000 to 0800 h [25] or
compare sleep episodes occurring at 0100-0500 h with those occurring at 2200—
0800 h [29]. Alternatively, sleep duration may be restricted by eliminating the early
portion of the sleep episode and anchoring sleep time to the wake time of the habit-
ual sleep condition. An example of this would be comparing a short sleep episode
scheduled from 0400 to 0800 h to a habitual sleep episode occurring from 2200 to
0800 h [30, 32]. A third option, used by at least one study, is to anchor the sleep
episode to bedtime, such as from 2230 to 0400 h for short sleep and from 2230 to
0600 h for habitual sleep [22].

Sleep episode timing is important to consider since sleep is not a uniform process,
and the amount and presence of specific sleep stages throughout the night are not
constant. A sleep-regulatory interaction between circadian and homeostatic mecha-
nisms [40] dictates that SWS, under a homeostatic regulation, is highest at the start
of the sleep episode (regardless of clock time), whereas REM sleep expression,
under a circadian regulation, is highest during the early morning hours [41].
Depending on the specifics of the experimental sleep manipulation, the amount of
REM sleep may be disproportionately reduced compared to SWS which is expected
to be conserved, as may be the case when short sleep episodes are anchored at the
start or middle of habitual sleep. These nuances in the timing of the sleep episode
are important since a growing body of literature is revealing that sleep architecture
plays a role in energy balance regulation [42, 43]. Specifically, REM sleep expres-
sion has been demonstrated to be inversely related to hunger ratings and intake of
fat and carbohydrate [42]. Moreover, recent epidemiological studies have described
an effect of sleep episode timing on food intake and BMI [44, 45].
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Methodology of Measurements

Measures of Energy Expenditure

In considering the effects of sleep restriction on energy output, researchers have
typically focused on TEE and two of its main components, RMR and postprandial
EE, or the TEF. TEE can be measured with the use of doubly labeled water (DLW)
[18, 19] and also via whole-room indirect calorimetry (metabolic chamber) [21].
Whereas both can be used to estimate EE over a 24-h period, important differences
between the two methods exist. DLW is best suited for measures of long-term
free-living EE, whereas indirect calorimetry may be more suited for use within the
controlled laboratory environment. However, most researchers may not have access
to metabolic chambers at their facilities, and metabolic carts are used to measure
RMR by indirect calorimetry over short periods (up to several hours). Caution
should be used when making comparisons of TEE measured by each method, since
it was observed that free-living EE estimated with DLW was 15 % greater than TEE
measured in a metabolic chamber [46]. This is likely due to restricted movements
within the confines of a small room. Participants’ PA levels are greatly reduced
when they are restricted to the small room for 24-h metabolic recordings, compared
to free-living conditions. To assess free-living PA, researchers have typically
employed either wrist- [27] or waist-worn [18, 25] actigraphy. Of course, the site of
attachment of actigraphic recording devices may influence recorded activity levels.
Calmly sitting and reading or using the computer may manifest as high activity for
wrist-placed recordings but minimal for waist-based recordings, though one study
found that wrist actigraphy is a slightly more accurate estimate of calorimetry-based
EE than waist placement [47]. Moreover, translation of activity counts to actual
caloric expenditure relies on algorithms that have their own inherent errors. RMR
[18-20, 26] and TEF [19, 20] are almost uniformly measured via indirect calorim-
etry using a ventilated hood metabolic cart.

Measures of Hunger/Appetite

In the laboratory setting, subjective ratings of hunger and appetite in response to
sleep restriction have been made using either visual analogue scales (VAS) or Likert
scales. A VAS typically consists of a bipolar horizontal 10-cm line, with one side
expressing minimal extreme and the other side maximal extreme, on which partici-
pants rate their current level of hunger (or appetite) along the continuum. A Likert
scale is a numeric rating scale on which participants select their current level of
hunger (or appetite) by selecting a number between two extreme values. Both the
VAS and Likert scales have been established as valid and reliable measurement
tools and are thought to yield comparable results [48].

The timing of hunger/appetite assessments may influence the reported results.
Indeed, a circadian rhythm of leptin secretion has been described [49] which is
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likely to drive a variation of hunger/satiety across the 24-h day. Moreover, food
intake has an effect on subjective hunger. It may therefore be difficult to compare
the results from ratings taken at one time point, e.g., in the morning in a fasted state
[20, 22, 31], with those taken in the evening before dinner [28], 15-30 min before
each meal [23], or throughout the day [18, 25, 27, 30].

Measures of Appetite-Regulating Hormones

As was described for appetite ratings, the timing and frequency of the sampling of
appetite-regulating hormones is an important experimental detail to consider. This
is particularly true for leptin, a satiety hormone, which, as described, circulates with
an endogenous circadian rhythmicity [49]. Accordingly, a number of researchers
have sampled plasma leptin in response to sleep restriction continuously over a
>24-h span [18-20, 23, 24, 33] or repeatedly across the daytime and evening but not
throughout the night [27, 29, 30]. Some studies discussed here included several
leptin measurements selectively taken during the morning [22, 31, 32] or single
morning and evening measurements to approximate the diurnal variation [28].
Similar considerations should be made for ghrelin, the other appetite-regulating
hormone whose secretion has been most extensively studied in response to sleep
restriction. Plasma ghrelin has been sampled in the context of sleep restriction
across the 24-h day [18-20] or repeatedly across the daytime and evening but not
throughout the night [27, 29]. Importantly, ghrelin, an appetite-stimulating hormone,
is affected by food intake, showing a preprandial rise and a postprandial fall in its
levels [50]. This should be considered when comparing the results of the study
which sampled ghrelin selectively in the morning under fasting conditions [22] with
the aforementioned studies with continuous sampling. It should also be noted that
whereas most studies measured total ghrelin, only two have reported on active ghrelin
levels in response to sleep restriction and these show different results [51, 52].
Auvailability of food and presentation of meals during the intervention period also
makes the comparison of appetite-regulating hormones between studies difficult,
since many of these hormones respond to energy intake. As stated, ghrelin levels
decrease after a meal [50], whereas leptin levels are stimulated by food intake [53].
Most of the studies investigating the leptin or ghrelin response to sleep restriction
presented food in fixed, standardized meals [18, 20, 28, 30, 31, 33], although others
allowed for ad libitum food intake [19, 27, 32] and one sampled hormones under
conditions of constant intravenous glucose infusion [29]. Unrestricted access to
energy intake will often lead to a relative positive energy balance between restricted
and habitual sleep, since sleep restriction leads to overeating relative to habitual
sleep duration (see below) [18, 19, 25]. This can explain discordant hormonal
responses to sleep restriction between studies and would also be expected to explain
differences in hunger and appetite ratings, as discussed above. On the other hand, at
least one sleep restriction study was conducted under a state of mild negative energy
balance [51], which can also affect hormone levels and appetite regulation. In that
case, however, food intake was matched during both sleep phases, and the degree of
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energy imbalance was equivalent under restricted and habitual sleep. In general,
however, most studies did not determine and report energy balance state. Additionally,
utilizing controlled feeding in sleep restriction experiments does not necessarily
guarantee stable energy balance between sleep phase conditions. Specifically, partici-
pants can be over- or underfed, even on a controlled diet, due to slight inaccuracies in
energy requirement estimation equations [54].

Measures of Food Intake

The effects of sleep restriction on food intake are assessed by allowing participants to
eat freely while measuring total energy consumed and the macronutrient composi-
tion of what is eaten. Typically, food is weighed by the investigator before and after
meals to determine consumption, and the nutritional content is determined with
computer software [18-20, 25, 27]. Differences in the method of food presentation,
however, may account for slight discrepancies in the literature. In the studies to
date, food intake was measured with buffet/constant availability of food [27], food
served in excess at fixed meal times [19, 20, 25], or under conditions of complete
participant control over food selection and eating time [18].

Sex Effects

Sex-based differences can contribute to interindividual variability when exploring
the interaction between sleep and energy balance. Important changes in physiology,
hormone secretion, and behavior across the menstrual cycle in premenopausal
women can also affect this relationship.

Whereas sleep macrostructure appears not to be affected by sex [55], sleep
complaints are more prevalent in women who are 1.5-2 times more likely to report
insomnia symptoms than men [56]. Alterations in sleep across the menstrual cycle
have been reported, with reduced REM sleep observed during the postovulatory
luteal phase compared to the preovulatory follicular phase [57]. Body temperature
and thermoregulation are also significantly modulated by both sex [55] and men-
strual phase [55, 58].

Sex-based differences in EE are not widespread [59], although decreased RMR
has been observed in women compared to men [60]. In terms of menstrual cycle,
some have demonstrated increases in 24-h EE [61, 62] and TEF [62] during the
luteal phase compared to the follicular phase. Women have higher fasting serum
leptin levels compared to men at similar total body fat mass [63], and they have a
higher 24-h leptin profile [64]. Leptin levels appear to have a menstrual phase varia-
tion, with increased levels observed during the luteal phase compared to the follicu-
lar phase [65, 66]. Sex-based differences in ghrelin levels, however, have been
inconsistently observed [67, 68], and ghrelin appears to be stable across the men-
strual cycle [69]. Daily energy requirements are higher for men than women, and
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this is reflected in the significantly increased daily energy intake observed in men
compared to women after controlling for age, height, and weight [70]. Food intake
is often observed to have a menstrual cycle variation, with increased intake during
the luteal phase compared to the follicular phase, though inconsistencies also exist
[71]. Taken together, it is therefore important to be aware of the sex distribution
within each study as well as phase of the menstrual cycle when measurements are
taken when ovulating women were included. Although it is acceptable for studies to
make assessments within subjects at the same phase of the menstrual cycle, this
does not discriminate whether there are menstrual cycle phase effects on the impact
of sleep duration on energy balance parameters. For example, it is possible that
sleep restriction could have a greater impact on food intake in women studied in the
luteal phase compared to those studied in the follicular since the luteal phase is a
phase of relative hyperphagia. Such menstrual phase effects have not been studied
to date. Furthermore, enrolling and testing women regardless of the phase of the
menstrual cycle could attenuate the effects observed.

Sleep and Energy Balance

Sleep Restriction and Energy Expenditure

Methodological details and findings of studies which have focused on the effects of
sleep restriction on EE are summarized in Table 11.1.

Four investigations included measures of RMR [18-20, 26]. St-Onge and col-
leagues exposed male and female participants to a time in bed (TIB) of either 9 h
(2200-0700 h) or 4 h (0100-0500 h) for 4 days before measuring RMR in the morn-
ing via indirect calorimetry [18]. No significant differences were observed between
conditions. A study by Buxton and colleagues compared RMR measured via indi-
rect calorimetry at ~0820 h after either 10-h or 5-h TIB (sleep episodes centered at
0300 h) for 7 days and also observed no between-condition differences [26].
Similarly, Nedeltcheva and colleagues also observed no difference in RMR after
awakening when comparing between 8.5-h and 5.5-h TIB (sleep episodes centered
at habitual sleep midpoint) for 14 days [19]. The only instance of an effect on RMR
was reported by Benedict and colleagues [20]. In that study, RMR recorded in the
morning from 0745 to 0815 h was significantly reduced after one night of total sleep
elimination compared to an 8-h (2300-0700 h) sleep opportunity. This indicates that
RMR is not likely to be a factor which influences energy balance under conditions
of chronic partial sleep restriction, although a complete elimination of sleep does
seem to affect next-morning metabolism.

The results of the latter two studies by Nedeltcheva et al. [19] and Benedict et al. [20]
demonstrate that, similar to the effects observed in RMR, an effect of sleep on TEF
was only observed after a night of total sleep deprivation as opposed to a milder
partial sleep curtailment. Specifically, TEF was unchanged after sleeping 5.5 h/night
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or 8.5 h/night for 14 days [19] but was significantly decreased after a night of sleep
elimination compared to after an 8-h sleep opportunity [20].

Two of the studies described above [18, 19] utilized DLW to assess daily TEE.
No significant changes in TEE were observed either after 4 days of restricting sleep
to 4 h/night [18] or after 14 days of restricting sleep to 5.5 h/night [19]. A study
conducted by Jung and colleagues in a metabolic chamber [21] compared TEE
throughout 24 h when an 8-h sleep episode was allowed (sleep timing based on
participants’ habitual sleep schedule) and when sleep was eliminated. TEE was
significantly increased during sleep elimination compared to sleep allowance condi-
tions. Increases were mainly observed during the habitual night, which supports a
role of sleep in energy conservation [21]. Critical differences between these studies
include the use of DLW or metabolic chamber for EE measures and the use of partial
or total sleep deprivation.

Free-living PA under sleep-restricted conditions has been measured with the use of
actigraphy. Two of these studies with somewhat similar experimental designs report
contradictory results [25, 27]. Both studies included men exclusively. Schmid et al.
found lower daytime PA after 2 days of 4.25-h TIB compared to 8.25-h TIB [27]. This
study utilized wrist-worn actigraphy, and short sleep timing was anchored to habitual
wake-up time (habitual, 2245-0700 h; short, 0245-0700 h) [27]. Conversely, Brondel
et al. found increased afternoon-to-evening (1215-2015 h) PA after 2 days of 4-h TIB
compared to 8-h TIB [25]. The Brondel et al. [25] study, on the other hand, utilized
waist-worn actigraphy, and short sleep timing was anchored to the midpoint of
habitual sleep (habitual, 0000—-0800 h; short, 02000600 h). St-Onge et al. observed
that less percentage of time was spent in heavy and very heavy activity after short
(4-h TIB, 0100-0500 h) vs. habitual (9-h TIB, 2200-0700 h) sleep, when PA was
assessed in men and women with waist-worn actigraphy [18].

Taken together, the findings of the studies described above suggest that a few
nights of moderate partial sleep restriction do not have a large effect on energy
metabolism. In contrast, a single night of total sleep elimination results in a
wakefulness-associated increase in nocturnal EE. A speculative extension of this
finding is that it may lead to compensatory decreases in next-day RMR [16]. Though
contradictory results are present, partial sleep restriction may reduce the intensity
and amount of PA, which could be a contributor in the pathway to obesity.

Sleep Restriction and Hunger/Appetite

Methodological details and findings of studies which have focused on the effects of
sleep restriction on ratings of hunger/appetite are summarized in Table 11.2.

As described above, subjective hunger is commonly assessed in response to
sleep curtailment, as a preliminary means of determining the effects of sleep restric-
tion on energy intake. Omisade and colleagues exposed 15 women to 3-h TIB
(0500-0800 h) or 10-h TIB (2200-0800 h) for 1 day and observed that hunger was
not altered when assessed once at 1830 h [28]. Spiegel and colleagues reported
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significantly increased hunger as assessed continuously across the day when a group of
men were exposed to 4-h TIB (0100-0500 h) compared to 10-h TIB (2200-0800 h)
for 2 days [29]. Similarly, Brondel and colleagues reported significantly increased
preprandial hunger values before breakfast and dinner after 2 days of short (4-h TIB,
0100-0500 h) vs. habitual (8-h TIB, 0000—-0800 h) sleep [25]. No differences in hun-
ger were observed in studies by Schmid et al. [27] and St-Onge et al. [18] comparing
sleep durations of 4.25 h/night (0245-0700 h) vs. 8.25 h/night (2245-0700 h) and
4 h/night (0100-0500 h) vs. 9 h/night (2200-0700 h), respectively. Reynolds and
colleagues exposed a group of men to 4-h TIB (0400-0800 h) for 5 days and found
no change in hunger assessed throughout the day when compared to the baseline
sleep condition of 10-h TIB (2200-0800 h) [30]. A similar study by van Leeuwen
and colleagues exposed men to 4-h TIB (0300-0700 h) and 8-h TIB (2300-0700 h)
for 5 days and found no difference in hunger when assessed at 0730 h in a fasted
state [31].

The effects of total sleep deprivation on subjective hunger have also been
investigated. Schmid et al. assessed hunger in a group of men at 0730 h in the fasted
state after a night of 7.5-h TIB (2230-0600 h), a night of 5-h TIB (2230-0330 h),
and after total sleep elimination. The authors noted an incremental impact of sleep
restriction on subjective hunger: compared to the full sleep episode, participants
reported double the hunger rating after total sleep elimination and ~50 % increased
hunger (though not statistically significant) after short sleep compared to habitual
sleep [22]. The study by Benedict et al., exposing men to 1 night of total sleep
deprivation, also found increased hunger when compared to measures taken after
habitual sleep length [20]. On the other hand, a study by Pejovic and colleagues
including both men and women found no effect of sleep elimination on hunger
when compared to an 8-h sleep opportunity [23].

Differences in experimental design may account for some of the discrepancies
observed in the results on the impact of sleep restriction on subjective hunger. In the
studies which compared short and habitual sleep conditions, those which anchored
the short sleep episode to the time of habitual awakening reported no effect on hunger
[27, 28, 30, 31]. Conversely, the studies which did observe a significant increase in
hunger during restriction anchored short sleep timing to the midpoint of the habitual
sleep episode, thereby cutting off the last 2-3 h of the sleep episode in the short
sleep condition [25, 29]. Recalling the aforementioned circadian variation of REM
sleep [41], it is assumed that the elimination of the latter portion of the sleep episode
to achieve partial restriction will result in a significant decrease in the expression of
REM sleep. This is important, since a recent study from our laboratory observed
that REM sleep duration is inversely related to hunger [42]. Increased hunger under
sleep curtailment in the Spiegel et al. [29] and Brondel et al. [25] studies may there-
fore be explained by the reduction of REM sleep, which is not expected to be
observed in the other sleep restriction studies which maintained a similar wake-up
time between short and habitual duration conditions. A caveat to this hypothesis is
that the restricted sleep condition in the St-Onge et al. study was also anchored to
the midpoint of habitual sleep and no effect of sleep duration was noted on hunger
and appetite ratings [18]. Nevertheless, the inclusion of women in that study



220 M.-P. St-Onge and A. Shechter

complicates a direct comparison with the Spiegel and Brondel studies, which were
done exclusively with male participants. Interestingly, out of the three studies which
compared hunger between total sleep elimination and habitual sleep conditions,
those which included men exclusively observed significant effects of sleep deprivation
[20, 22], whereas no differences were observed between elimination and habitual
conditions when women were also included [23].

Subjective appetite after partial sleep restriction was assessed in four studies to
date [18, 27, 29, 30]. No effect of 2- and 5-day partial sleep restriction was observed
on appetite ratings in the studies by Schmid et al. [27] and Reynolds et al. [30],
which included only men and anchored the short sleep episode to the time of habitual
awakening (wake times in both conditions maintained at 0700 h and 0800 h, respec-
tively). Similar to what was observed for hunger ratings, Spiegel et al. reported
increased appetite for sweet, salty, and starchy food in men exposed to 2 days of
short sleep (episodes anchored to the midpoint of sleep) [29]. No changes in appe-
tite were observed by St-Onge et al. who exposed men and women to 3 days of short
sleep (episodes anchored to the midpoint of sleep) [18].

As was seen for EE, the effects of a night of total sleep deprivation appear to
induce substantial increases in hunger and appetite ratings, whereas the effects of
partial sleep restriction remain less defined. In the study by Spiegel and colleagues,
which was the first to report increased hunger and appetite after sleep restriction,
participants were fed via constant intravenous glucose infusion throughout the mea-
surement period [29]. The findings of that study are the most robust of all reported,
and their particular method of administering calories could have amplified the
effects of sleep restriction above what was induced by others. The effects of sleep
restriction on subjective perceptions of hunger and appetite may also be modulated
by sex, since differences between short and habitual sleep are more commonly
observed in studies which included only male participants.

Sleep Restriction and Appetite-Regulating Hormones

Methodological details and findings of studies which have focused on the effects of
sleep restriction on appetite-regulating hormones are summarized in Table 11.3.

Various circulating peptides and hormones have been demonstrated to play a role
in the regulation of hunger, appetite, satiety, and food intake. These include hypo-
thalamic factors (e.g., neuropeptide Y and agouti-related peptide), gut hormones
(e.g., ghrelin, glucagon-like peptide-1 [GLP-1], peptide YY [PYY], and cholecys-
tokinin), and adiposity signals (e.g., leptin and adiponectin) [72]. Leptin and ghrelin
have been the most widely studied appetite-regulating hormones within the context
of experimental sleep restriction studies. In fact, of all the energy balance-related
parameters discussed in this chapter, the effects of sleep restriction on leptin have
probably been studied the most. Though they will not be discussed here, two studies
with inconsistent findings have investigated adiponectin levels in response to sleep
restriction [23, 51], and PYY and GLP-1 have been sampled after sleep curtailment
in one study [51].
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In their innovative study, Spiegel and colleagues [29] were among the first to
report altered leptin in response to partial sleep restriction. They exposed men to 2
days of 4-h TIB (0100-0500 h) or 10-h TIB (2200-0800 h) and noted a significant
decrease in leptin, as measured continuously throughout the day, after short sleep.
In a similar study by the same group [33], leptin levels were again compared between
4-h TIB and 10-h TIB, but the exposure was extended to 6 days. Samples were
obtained regularly over 24 h. The authors noted a decrease in leptin levels and a 2-h
advance in the time of leptin peak in response to short sleep. Schmid et al. [27]
observed no difference in leptin levels across the day after short (4.25 h, 0245-0700 h)
or habitual (8.25 h, 2245-0700 h) sleep for 2 days. Similarly, studies by St-Onge
etal. [51] and Nedeltcheva et al. [19] found no effect on leptin levels sampled across
24 h in response to short sleep for 3 [51] or 14 days [19].

Some studies, however, noted increases in leptin after partial sleep restriction.
A study by Omisade and colleagues [28] exposed women to 3-h (0500-0800 h) or
10-h TIB (2200-0800 h) for 1 day and sampled salivary leptin at 0830 h and 2000 h
to approximate a diurnal variation of the hormone. They observed an increase in
morning leptin levels compared to baseline sleep, but no change in evening levels.
Simpson and colleagues [32] studied men and women under 4-h TIB (0400-0800 h)
and 10-h TIB (2200-0800 h) for 5 days. They obtained a single blood draw between
1030 and 1200 h and observed an increase in response to short sleep. Reynolds and
colleagues [30] utilized a similar design (sleep durations, schedule, and length of
exposure) as Simpson et al. [32] and also noted an increase in leptin after short sleep
when sampling across the day in men. Another similarly designed study by van
Leeuwen et al. [31], comparing 4-h TIB (0300-0700 h) to 8-h TIB (2300-0700 h)
for 5 days, sampled leptin at 0730 h and observed an increase in short vs. habitual
sleep episodes.

Comparing between 1 day of 7.5-h TIB (2230-0600 h), 5-h TIB (2230-0400),
and sleep elimination, Schmid et al. [22] found no difference in leptin when sam-
pled in the morning. Similarly, Benedict et al. [20] compared between one night
each of sleep elimination and habitual sleep in men and noted no change in leptin
levels sampled across 24 h. On the contrary, Pejovic et al. [23] compared leptin
levels sampled across 24 h in men and women after one night of sleep elimination
or habitual sleep and observed an increase in levels after total sleep deprivation.
In a slightly different design, Mullington and colleagues [24] sampled leptin levels
continuously over a baseline day and 3 days of total sleep deprivation and noted that
the amplitude of the circadian variation was reduced during sleep elimination com-
pared to habitual sleep. The authors concluded that sleeping may have a role in
controlling the nocturnal rise in leptin levels and that increased nocturnal eating
may be a consequence of this attenuated nocturnal increase [24].

Thus, while widely studied, the effects of sleep curtailment on leptin secretion
are inconsistent, and the reasons for this are not clear. Feeding protocols utilized in
these studies varied and included either controlled feeding [20, 28, 33, 51], partici-
pant self-selection [19, 22, 23, 27], or constant intravenous glucose infusion [29].
Unfortunately, a pattern is not apparent between feeding protocols. Likewise, differ-
ences in the timing and frequency of sampling (either morning fasted, throughout the
day, or across 24 h) are also likely to systematically contribute to disparate results.
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Nevertheless, increased awakening during sleep restriction intervention is associated
with prolonged light exposure, which can delay the central circadian pacemaker [6].
It would therefore be important to sample continuously throughout the 24-h cycle to
observe the dynamics of the secretory profile. Interestingly, each of the partial
restriction studies that observed increases in leptin anchored the timing of short
sleep episode to habitual wake-up time [28, 30-32], whereas the two studies by
Spiegel et al. (exclusively studying men), which found a decrease in leptin, anchored
short sleep to the center of the night [29, 33]. Similar decreases might have been
expected in the St-Onge et al. [51] and Nedeltcheva et al. [19] studies which anchored
the short sleep episode to the center of the night. However, these latter studies
included both men and women. Together, the results may suggest that the effects of
sleep restriction on leptin secretion are affected by the timing of sleep or subtle altera-
tions in sleep architecture. A modulatory effect of sex is also possible.

In a finding mechanistically consistent with their initial observation of decreased
leptin, Spiegel and colleagues [29] reported an increase in ghrelin in a group of men
in response to 2-day exposure to 4-h TIB (0100-0500 h) compared to 10-h TIB
(2200-0800 h). The ghrelin findings reported by St-Onge et al. [51] are somewhat
consistent with that report: studying men and women, after 3-day exposure to 4-h
TIB (0100-0500 h) and 9-h TIB (2200-0700 h), increases in fasting and morning
levels were observed after short sleep, selectively in men but not women. Neither
Schmid et al. [27] nor Nedeltcheva et al. [19], on the other hand, reported any
changes in ghrelin after restricting sleep to 4.25 h/night for 2 days or 5.5 h/night for
14 days, respectively. Sampling in the morning between 0700 and 0730 h, another
study by Schmid et al. [22] observed a trend for increased ghrelin in response to 5-h
TIB (2230-0330) compared to 7.5-h TIB (2230-0600 h) and a significant increase
in ghrelin in response to total sleep deprivation compared to habitual sleep. Sampling
across 24 h during a day of habitual sleep and a day of total sleep elimination,
Benedict et al. [20] observed reduced ghrelin levels at 1300 h but increased ghrelin
levels at 0430-0730 h in sleep elimination compared to habitual sleep duration.

While the findings are mixed, increased ghrelin is often reported in response to
sleep length curtailment, particularly in the morning [20, 22, 51]. Sex appears to
have a modulatory role in regulating the effects of sleep restriction on ghrelin levels.
St-Onge et al. [51] found a strong sex effect for ghrelin, with increased levels in
response to short sleep in men but not women, which is in agreement with others
who studied men exclusively [20, 22, 29]. The Nedeltcheva et al. study [19], which
also included both men and women, reported no effect of sleep duration on ghrelin
levels. Importantly, the study by St-Onge et al. was large enough to allow separate
analyses by sex (males, n=14; females, n=13), whereas the study by Nedeltcheva
et al. may have been underpowered to allow separate sex comparisons (males, n=6;
females, n=5). The studies which observed increased ghrelin in men anchored
either the short sleep episode to the middle of the night [29, 51] or the time of
habitual lights-out [22], thereby eliminating sleep from the final 2-3 h of the night,
whereas the study not observing a change in ghrelin in men anchored short sleep to
the time of habitual awakening [27]. Thus, again, a role of sleep timing or the
expression of sleep architecture influencing the effects of sleep length curtailment
on appetite-hormone levels is possible.
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Sleep Restriction and Food Intake

Methodological details and findings of studies which have focused on the effects of
sleep restriction on food intake are summarized in Table 11.4.

A critical aspect that should be accurately measured when researchers are con-
cerned with energy balance is food intake. Accordingly, in addition to measuring
subjective ratings of hunger/appetite and the circulation of appetite-regulating hor-
mones, five laboratory-based sleep restriction intervention studies have measured
food intake [18-20, 25, 27]. In the study by Brondel and colleagues [25], food
intake was measured after 1-day exposure to short (4-h TIB, 0200-0600 h) or habit-
ual sleep length (8-h TIB, 00000800 h). Afternoon and evening food intake was
self-recorded, and ad libitum intake of in-lab breakfast and lunch was assessed.
Energy intake was significantly increased in restricted compared to habitual sleep.
In the study by Schmid and colleagues [27], food intake was measured after 2-day
exposure to short (4.25-h TIB, 0245-0700 h) or habitual sleep length (8.25-h TIB,
2245-0700 h). Food was presented as a buffet breakfast until 1100 h, a snack buffet
from 1100 h onward, and free access to meals on request. No differences in energy
intake were observed. St-Onge et al. [18] included both men and women and mea-
sured food intake after 4-day exposure to short (4-h TIB, 0100-0500 h) or habitual
(9-h TIB, 2200-0700 h) sleep duration. Participants were given free access to a
variety of foods available in the lab and were given $25 to purchase food from local
markets. The amount and timing of eating was decided by the participant. Energy
intake was significantly increased after sleep restriction. Nedeltcheva and col-
leagues [19] also measured food intake in both men and women after exposure to 14
days of short (5.5-h TIB) or habitual (8.5-h TIB) sleep duration (timing centered at
the midpoint of sleep). Participants were served meals at fixed times in excess and
also had unlimited access to a snack bar with palatable snacks and soft drinks.
Energy intake from snacks was increased after short sleep, compared to habitual
sleep duration. Benedict and colleagues [20] compared food consumed by men
from a buffet offered at 1730 h after one night of total sleep deprivation or a night
of habitual sleep (2300-0700 h). No difference in energy consumed from this dinner
buffet was seen.

Increased energy consumed under ad libitum conditions after sleep curtailment
compared to habitual sleep duration was observed in three out of four studies which
utilized partial sleep restriction. The Schmid et al. study [27] was the only partial
curtailment study which did not report increased energy consumed. Interestingly, it
is also the only study which anchored short sleep timing to habitual wake-up time,
whereas the remaining three studies [18, 19, 25] centered restricted sleep to the
midpoint of habitual sleep. This may imply that sleep timing or subtle changes in
the expression of sleep architecture may influence food intake, or an interaction
between sleep timing and sleep duration is important. The specific food presenta-
tion of the Benedict et al. study [20], namely, a single eating opportunity at 1730 h
instead of access throughout the day, may account for the unexpected lack of a
significant effect of total sleep deprivation on food intake.
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Macronutrient composition of the food eaten was also measured in each of the
five aforementioned studies that assessed ad libitum energy consumption [18-20,
25, 27]. Increased fat intake was observed in response to partial sleep restriction in
the Brondel et al. [25], Schmid et al. [27], and St-Onge et al. [18] studies, and
increased saturated fat intake was also observed in the latter [18]. The Nedeltcheva
et al. study [19] reported increased intake of carbohydrate, but not fat, after short vs.
habitual sleep duration and selective increase in snack food intake but not meals.
The Benedict et al. study [20] which failed to detect differences in energy intake
after a night of total sleep deprivation compared to a night of habitual sleep also did
not detect any between-condition differences in macronutrient intake. This is likely
due to its distinct methodological approach, described above.

Increased consumption of energy and fat seems to be the most consistently
observed changes in an energy balance parameter in response to partial sleep restric-
tion. Increases in energy intake beyond the energy which is expended by either
metabolic processes or PA are therefore a viable link in establishing a causal path-
way from sleep restriction to the development of obesity. Data obtained from the
laboratory-based intervention studies described above support much of the epide-
miological data, showing that short sleep is associated with a high-fat diet [73] and
excess snacking [74].

Conclusions: Considerations and Future Steps

The results from the laboratory-based clinical intervention studies described in this
chapter lend support to the epidemiological evidence showing an association
between short sleep duration and increased prevalence of obesity. Although some
results remain equivocal, experimental reduction of sleep duration was demon-
strated to causally relate to parameters which would support a positive energy bal-
ance. As described in the introduction, a state of energy imbalance would exist
when energy intake is not equal to energy output. Positive energy balance arises
when food intake is excessive enough to surpass EE or, conversely, when EE is
reduced to a level below normal energy intake. Based on the evidence described
here, it appears that sleep restriction may affect energy balance mainly via energy
input rather than EE. Specifically, the intervention studies have been convincing in
demonstrating a causal link between reduced sleep duration and increased food
intake. Reduced PA (which would be a logical consequence of increased daytime
sleepiness) has been reported by some, although partial sleep restriction does not
appear to affect RMR. To date, only one study has utilized a metabolic chamber to
investigate 24-h EE in response to total sleep restriction. This tool should be used in
the context of partial sleep curtailment to look more closely at TEE but also sleeping
metabolic rate and non-exercise activity thermogenesis, which have not yet been
described under short sleep conditions.

As far as the mechanism by which reduced sleep duration leads to increased food
intake, the authors have mainly considered an alteration in the hormonal control of
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appetite and hunger. Conflicting results have been presented for leptin, a
satiety-signaling hormone, although increases in ghrelin, an appetite-stimulating
hormone, may be more uniformly observed. A potential modulation by sex on the
interaction between short sleep and appetite hormones may exist, however, indicat-
ing a need for more intervention studies which are powered to detect differences
between men and women. Indeed, within young, ovulating females, the menstrual
cycle and its associated variations in hormones and physiology may further influence
food intake or possibly EE in response to sleep restriction. Energy balance state itself
is known to influence leptin and ghrelin. Under unrestricted feeding conditions,
sleep-deprived participants are expected to consume excess food, leading to a posi-
tive energy balance state. Going forward, then, it will be important to conduct studies
under highly controlled energy intake conditions which help determine the interac-
tion between short sleep and energy balance on the hormonal control of food intake.

In real-life conditions, individuals who are habitually exposed to short sleep may
have increased daily food intake because their prolonged wake episodes may afford
them increased opportunities to eat. While this has not been extensively studied in
the laboratory, one study considering this observed that nocturnal eating episodes
(past the time of habitual bedtime) were present in ~27 % of participants [18]. It has
recently been reported in observational studies that the timing of food intake is
related to increased BMI [44] and reduced weight loss effectiveness [75]. This
observation may be related to a study in mice showing that animals fed a high-fat
diet during their inactive phase gained more weight than mice fed during their habit-
ual active phase [76]. The effects of sleep restriction on the temporal distribution
of food intake, under ad libitum and unrestricted conditions, should therefore be
further pursued. Such studies may also have practical ramifications for the health
of night shift workers, since these individuals often experience shortened sleep
episodes, unusual feeding-fasting behavior characterized by nocturnal eating, and
increased risk of weight gain and cancer.

As discussed in this chapter, small differences in the scheduling of the sleep
within the intervention studies may influence specific energy balance outcomes.
This implies that not just sleep duration alone but also the timing of sleep episodes
should be considered as playing a role in the regulation of metabolism and body
weight. Indeed, researchers have been paying increasing attention to this: an obser-
vational study found that individuals with later sleep schedules tended to have
higher energy intakes throughout the day than those whose midpoint of sleep was
earlier [44], and a laboratory-based manipulation study illustrated that sleep restric-
tion combined with a chronic circadian misalignment resulted in reduced RMR and
altered glucose homeostasis [52]. The problem of circadian misalignment, short
sleep, and delayed sleep and meal timing is not limited to shift workers and presents
an important health risk for a large portion of the population. More work should be
done to determine if sleep timing affects energy balance and how it may be involved
in the causal pathway to obesity.

Chronic partial sleep restriction likely leads to a state of positive energy balance,
which can ultimately result in excess weight gain and obesity. Furthermore, obesity is
associated with increased risk of a variety of cancers [2], which may suggest a role of
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sleep restriction in cancer as well. This role may be directly causal or indirectly, via
increased risk of obesity. As described, shift workers, who experience reduced sleep
duration combined with a circadian disruption, are at an increased risk of obesity and
cancer development. Related to this, recent epidemiological work has shown an asso-
ciation between “social jet lag” (i.e., the discrepancy between sleep episode timing
between work and free days that often results in sleep loss) and obesity [77], and
chronic jet lag conditions increase tumor progression in mice [78]. An important
angle of research may be to further assess the markers of cancer risk in the context of
experimental sleep restriction studies. The effects of sleep episode schedule, in addi-
tion to duration, on the development of obesity, adverse metabolic outcomes, and
cancer should be further studied with controlled laboratory interventions.

In conclusion, accumulating evidence from intervention studies has been
delineating the ways in which restricted sleep duration may lead to obesity, cor-
roborating much of the epidemiological studies on this sleep-obesity link.
Nonetheless, many inconsistencies and questions within the laboratory-based data
still remain, owing mainly to important methodological differences between studies.
It is necessary that researchers continue to explore the mechanisms underlying the
relationship between sleep and energy balance, as this line of research will continue
to have major public health implications for various medical conditions, including,
but not limited to, obesity and cancer.
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