
Chapter 16

Rapid Distribution of Medical Supplies

Maged Dessouky, Fernando Ordóñez, Hongzhong Jia, and Zhihong Shen

Abstract Some important issues in the design of an efficient pharmaceutical

supply chain involve deciding where to place the warehouses/inventories and

how to route distribution vehicles. Solving appropriate facility location and vehicle

routing problems can ensure the design of a logistic network capable of rapid

distribution of medical supplies. In particular, both these problems must be solved

in coordination to quickly disburse medical supplies in response to a large-scale

emergency. In this chapter, we present models to solve facility location and vehicle

routing problems in the context of a response to a large-scale emergency. We

illustrate the approach on a hypothetical anthrax emergency in Los Angeles County.
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1 Introduction

Rapid distribution of medical supplies plays a critical role in assuring the effec-

tiveness and efficiency of the healthcare system. The medical supply distribution

involves the movement of a large volume of different items that usually must be

delivered rapidly. For example, in the USA, the distribution system must serve

more than 130,000 pharmacy outlets every day on demand and a typical pharmacy

relies on the distributors to have more than 10,000 SKUs accessible for delivery,

often within 12 h (HDMA 2005).

In broad terms, most pharmaceuticals distributed in the USA go through a supply

chain that comprises the following steps (Belson 2005):
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• Manufacturers produce various pharmaceuticals necessitated by demand.

• Distributors manage large warehouses and control the movement of supplies

from manufacturers to the retailers.

• Retailers, including hospitals, clinics, independent pharmacies, chain pharma-

cies, and grocery stores, sell or dispense the pharmaceuticals to customers.

The pharmaceutical supply chain is relatively complex compared to the supply

chains for other products, particularly when considering the strict deadline and

sufficiency requirements. Different information technologies such as product iden-

tification, bar coding, usage related information, and electronic identification have

been applied to facilitate the rapid distribution of the pharmaceuticals in the supply

chain (Belson 2005). Furthermore, logistic and inventory control of the pharma-

ceuticals have also been widely investigated in the research community in the past

decades; for example, see Rebidas et al. (1999), Rubin and Keller (1983), and

McAllister (1985).

It is the design of the distribution system in particular, that most significantly

affects the rapid disbursement of pharmaceuticals, directly impacting the quality of

healthcare. The design of an effective distribution system comprises the careful

consideration of two strategic planning issues:

• Where to place the facilities including warehouses and inventories in support of

rapid distribution of the medical supplies

• What is the best strategy to distribute the medical supplies and what routes need

to be used?

Operations research models play an important role in addressing these logistical

problems for distribution systems. At the heart of both questions there is a trans-

portation network to distribute the medical supplies. The question of where to place

warehouses/inventories is essentially a facility location problem within this supply

network, while the disbursement of supplies can be posed as a vehicle routing

problem (VRP) on this network. The benefits of modeling and solving the facility

location problem and vehicle routing problem are twofold. First, from a planning

perspective, the models and solutions can aid planners to optimally determine the

facility locations and vehicle routes and thus maximize the efficiency and effec-

tiveness of the pharmaceutical supply chain system as a whole. Second, these plans

can become well tested operating policies, which can further improve performance.

Clearly, the plans need to be flexible enough to accommodate contingencies of

daily operations. For the plans to be robust, they must take into consideration the

stochastic nature of the problem such as uncertain demand, traffic conditions, etc.

Large-scale emergencies create situations that demand a rapid distribution of

medical supplies and thus require an efficient and coordinated solution to both the

facility location and vehicle routing problems. In particular, the response to a large-

scale emergency must take into consideration that:

• A huge demand for medical supplies appears within a short time period and thus

large quantities of medical supplies must be brought to the affected area.

• The local first-responders and resources will be overwhelmed.
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• Although tremendous in their magnitude, large-scale emergencies occur with

low frequency.

An additional parallel distribution system is envisioned in response to large-

scale emergencies such as earthquakes, terrorist events, etc. as massive supplies that

are brought to the affected area have to be rapidly disbursed among the affected

population. Indeed, many countries maintain national stockpiles of medical sup-

plies that can be delivered in push packages to the Emergency Staging Area (ESA)

in case of a large-scale emergency. For example, to address emergencies of

infectious disease outbreak, the federal government of the USA maintains a Stra-

tegic National Stockpile (SNS) which contains about 300 million doses of smallpox

vaccines and enough antibiotic to treat 20 million people for anthrax (CDC website

2005). Furthermore, a vendor managed inventory system (VMI) has also been

developed to augment the SNS from pharmaceutical vendors to ESAs within

21–36 h. During a large-scale emergency, the medical supplies at the national

stockpile and VMI require direct delivery and disbursement to ESAs and dispensing

centers from which the population could receive the medical supplies. Rapid

delivery and disbursement of the large volume of supplies need careful planning

and professional execution to save lives, particularly in high-density urban regions

like Southern California.

In this chapter, we analyze the facility location and vehicle routing problems,

which are crucial for a rapid distribution of medical supplies in response to large-

scale emergencies. We use the anthrax disease as an emergency example to

investigate the problems of determining where to locate the staging areas to receive

the national stockpile and how to route the vehicles to distribute the medical

supplies. The rest of the chapter is organized as follows: Section 2 presents a

literature review of the facility location and vehicle routing problems that are

related to emergency services. In Section 3, we describe an anthrax emergency

example in a metropolitan area and then analyze the requirements for locating the

facilities and routing the vehicles for rapid medical supply distribution. In Section 4,

we propose a facility location model and a vehicle routing model that address the

characteristics of an anthrax emergency. In Section 5, we demonstrate how the

proposed models can be used to solve the facility location problem and the VRP.

The solutions, including the selected staging areas and vehicle routes to store and

distribute the medical supplies, are discussed. Finally, we conclude the chapter and

give future research directions in Sect. 6.

2 Literature Review

Facility location problems and VRPs have been extensively investigated by differ-

ent researchers and practitioners. In this section, we review the prior work that is

related to different emergencies settings.
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2.1 Review of Facility Location Problems

Various location models have been proposed to formulate different facility location

problems for emergency services. Based on the objectives, these location models

can be classified into covering models, P-median models, and P-center models.

2.1.1 Covering Models

Covering models are the most widespread location models for formulating the

emergency facility location problem. The objective of covering models is to

provide “coverage” to the demand points. A demand point is considered as covered

only if a facility is available to service the demand point within a distance limit.

Figure 16.1 presents an illustration of an infeasible covering problem, where the

coverage area of a facility is indicated by circles around the four selected locations.

Toregas et al. (1971) first proposed the location set covering problem (LSCP),

aiming to locate the least number of facilities to cover all demand points. Since all

the demand points need to be covered in the LSCP, the resources required for

facilities could be excessive. Recognizing this problem, Church and ReVelle (1974)

and White and Case (1974) developed the MCLP model that does not require full

coverage to all demand points. Instead, the model seeks the maximal coverage with

a given number of facilities. The MCLP and different variants of it have been

extensively used to solve various emergency service location problems (see e.g.,

Benedict 1983, and Hogan and ReVelle 1986).

Research on emergency service covering models has also been extended to

incorporate the stochastic and probabilistic characteristics of emergency situations

so as to capture the complexity and uncertainty of these problems. Examples of

these stochastic models can be found in recent papers by Goldberg and Paz (1991),

ReVelle et al. (1996), and Beraldi and Ruszczynski (2002). There are several

Distance requirement

Selected facility Unselected facility

Fig. 16.1 Covering

problem example
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approaches to model stochastic emergency service covering problems. The first

approach is to use chance constrained models (Chapman and White 1974). Daskin

(1983) used an estimated parameter (q) to represent the probability that at least one

server is free to serve the requests from any demand point. He formulated the

Maximum Expected Covering Location Problem (MEXCLP) to place P facilities

on a network with the goal to maximize the expected value of population coverage.

ReVelle and Hogan (1986) later enhanced the MEXCLP and proposed the Proba-

bilistic Location Set Covering Problem (PLSCP). In the PLSCP, a server busy

fraction and a service reliability factor are defined for the demand points. Then the

locations of the facilities are determined such that the probability of service being

available within a specified distance is maximized. The MEXCLP and PLSCP later

were further modified to tackle other EMS location problems by ReVelle and

Hogan (MALP) (1989a), Bianchi and Church (MOFLEET) (1988), Batta

et al. (AMEXCLP) (1989), Goldberg et al. (1990), and Repede and Bernardo

(TIMEXCLP) (1994). A summary and review to the chance constrained emergency

service location models can be found in ReVelle (1989).

Another approach to modeling stochastic emergency medical service (EMS)

covering problems is to use scenario planning to represent possible values for

parameters that may vary over the planning horizon in different emergency situa-

tions. A compromise decision is made to optimize the expected/worst-case perfor-

mance or expected/worse-case regret across all scenarios. For example, Schilling

(1982) extended the MCLP by incorporating scenarios to maximize the covered

demands over all possible scenarios. Individual scenarios are respectively used to

identify a range of good location decisions. A compromise decision is made to the

final location configuration that is common to all scenarios in the horizon.

2.1.2 P-Median Models

Another important way to measure the effectiveness of facility location is by

evaluating the average (total) distance between the demand points and the facilities.

When the average (total) distance decreases, the accessibility and effectiveness of

the facilities increase. This relationship applies to both private and public facilities

such as supermarkets, post offices, as well as emergency service centers, for which

proximity is desirable. The P-median problem takes this measure into account and

is defined as: minimize the average (total) distance between the demands and the

selected facilities. We illustrate a P-median model in Fig. 16.2. The total cost of the

solution presented is the sum of the distance between demand points and selected

locations represented by the black lines.

Since its formulation, the P-median model has been enhanced and applied to a

wide range of emergency facility location problems. Carbone (1974) formulated a

deterministic P-median model with the objective of minimizing the distance trav-

eled by a number of users to fixed public facilities such as medical or day-care

centers. Recognizing the number of users at each demand node is uncertain, the

author further extended the deterministic P-median model to a chance constrained
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model. The model seeks to maximize a threshold and meanwhile ensure the

probability that the total travel distance is below the threshold is smaller than a

specified level a. Paluzzi (2004) discussed and tested a P-median based on a

heuristic location model for placing emergency service facilities for the city of

Carbondale, IL. The goal of this model is to determine the optimal location for

placing a new fire station by minimizing the total aggregate distance from the

demand sites to the fire station.

One major application of the P-median models is to dispatch EMS units such as

ambulances during emergencies. For example, Carson and Batta (1990) proposed a

P-median model to find the dynamic ambulance positioning strategy for campus

emergency service. Mandell (1998) developed a P-median model and used priority

dispatching to optimally locate emergency units for a tiered EMS system that

consists of advanced life-support (ALS) units and basic life-support (BLS) units.

Uncertainties have also been considered in many P-median models.

Mirchandani (1980) examined a P-median problem to locate fire-fighting emer-

gency units with consideration of stochastic travel characteristics and demand

patterns. Serra and Marianov (1998) implemented a P-median model and intro-

duced the concept of regret and minmax objectives. The authors explicitly

addressed in their model the issue of locating facilities when there are uncertainties

in demand, travel time or distance.

2.1.3 P-Center Models

In contrast to the P-median models, which concentrate on optimizing the overall

(or average) performance of the system, the P-center model attempts to minimize

the worst performance of the system and thus is also known as minimax model. The

P-center model considers a demand point is served by its nearest facility and

therefore full coverage to all demand points is always achieved. In the last several

decades, the P-center model and its extensions have been investigated and applied

Maximal distance

Selected facility Unselected facility

Fig. 16.2 P-median/P-

center problem example
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in the context of locating facilities such as EMS centers, hospitals, fire station, and

other public facilities, The objective function for the P-center model of the location

solution in Fig. 16.2 quantifies only the longest distance between a demand point

and a selected location.

In order to locate a given number of emergency facilities along a road network,

Garfinkel et al. (1977) examined the fundamental properties of the P-center prob-
lem. He modeled the P-center problem using integer programming and the problem

was successfully solved by using a binary search technique and a combination of

exact tests and heuristics. ReVelle and Hogan (1989b) formulated a P-center
problem to locate facilities so as to minimize the maximum distance within

which EMS service is available with α reliability. System congestion is considered

and a derived server busy probability is used to constrain the service reliability level

that must be satisfied for all demands. Stochastic P-center models have also been

formulated for EMS location problems. For example, Hochbaum and Pathria

(1998) considered the emergency facility location problem that must minimize

the maximum distance on the network across all time periods. The cost and distance

between the locations vary in each discrete time period. The authors used

k underlying networks to represent different periods and provided a polynomial

time 3-approximation algorithm to obtain the solution for each problem. Talmar

(2002) utilized a P-center model to locate and dispatch three emergency rescue

helicopters to serve the growing EMS demands from accidents of tourist activities

such as skiing, hiking and climbing at the north and south end of the Alpine

mountain ranges. One of the model’s aims is to minimize the maximum (worst)

response times and the author used effective heuristics to solve the problem.

2.2 Review of VRPs

Routing vehicles in response to a large-scale emergency typically include various

uncertainties such as stochastic demands and/or travel times. In this section, we first

review the literature on the stochastic vehicle routing problem (SVRP). We then

review other vehicle routing/dispatching problems in the literature that have been

formulated for emergency situations.

2.2.1 Stochastic Vehicle Routing Problems (SVRPs)

SVRPs differ from the deterministic VRPs in several aspects, such as problem

formulations and solution techniques. SVRPs are usually divided, according to the

uncertainties in consideration, into SVRPs with stochastic customers and/or

demands, and SVRPs with stochastic travel time and/or service time.

The VRP with stochastic customers (VRPSC) addresses the probabilistic pres-

ence of customers (see e.g., Jezequel (1985), Jaillet (1987), and Jaillet and Odoni
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(1988). Bertsimas (1988) gave a systematic analysis to this problem. The proper-

ties, the bounds, and the heuristics to solve the problem were also presented.

The VRP with stochastic demand (VRPSD) captures the uncertainty of customer

demands (i.e., the demands at the individual delivery (pickup) locations behave as

random variables). An early investigation on the VRPSD comes from Stewart and

Golden (1983), who applied the chance constraint modeling and resource methods

to model the problem. Dror and Trudeau (1986) later illustrated the effects of route

failure on the expected cost of a route, as well as the impact that a redirection of the

predesigned route has on the expected cost. In the late 1980s and early 1990s, along

with the conventional stochastic programming framework, Markovian Decision

Processes for single-stage and multi-stage stochastic models were introduced by

Dror (1989, 1993) to investigate the VRPSD. Another major contribution to the

study of VRPSD comes from Bertsimas (1988, 1992). Their work illustrates

different recourse policies that could be applied to re-optimize the routes. More

recently, a re-optimization based routing policy for the VRPSD has been demon-

strated by Secomandi (2001). In their work, a rollout algorithm is proposed to

improve a given a priori solution.

The vehicle routing problem with stochastic customers and demands (VRPSCD)

combines the VRPSC and the VRPSD. Early work on this topic includes Jezequel

(1985), Jaillet (1987), and Jaillet and Odoni (1988). Motivated by applications in

strategic planning and distribution systems, Bertsimas (1992) constructed an a

priori customer visit sequence with minimal expected total distance and analyzed

the problem using a variety of theoretical approaches. Gendreau et al. (1995)

proposed a L-shaped method for the VRPSCD and solved it to optimality for

instances of up to 46 customers. Another strategy to account for the demand

uncertainties is to develop a waiting strategy for vehicles to strategically wait at

predetermined locations in order to maximize the probability of meeting any future

anticipated demand (Branke et al. 2005).

VRP with stochastic travel time (VRPSTT) addresses the unknown knowledge

of the road conditions. Systematic research on the VRP with service time and travel

time (VRPSSTT) has been done by Laporte et al. (1992). They proposed three

models for the VRPSTT: chance constrained model, 3-index recourse model, and

2-index recourse model. The VRPSSTT model was also applied by Lambert

et al. (1992), and Hadjiconstrantinou and Roberts (2002) to optimize the customer

service in the banking and other commercial systems. Jula et al. (2005) has

developed an approximate solution approach for random travel times with hard

time windows. Their approximation approach is based on developing estimations

for the first two moments of the arrival time distribution.

2.2.2 Vehicle Locating/Routing/Dispatching for Emergency Services

Emergency service systems (e.g., police, fire, etc.) need to dispatch their response

units to service requests. In an emergency, the primary objective is to save lives,

and thus sending response units to the incident site at the earliest time has the
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highest priority. However the requests for emergency services are usually

unpredictable and furthermore they come with a relatively low frequency. There-

fore the planner is generally faced with two major problems. First, an allocation

problem in which the response units that are sent for service need to be determined;

and second, a re-deployment problem in which the available response units need to

be deployed at the potential sites in preparation to incoming requests needs to be

determined.

One important thrust and cornerstone in vehicle locating/routing/dispatching for

emergency services is the development and application of the queuing approach.

The most well known queuing models for emergency service problems are the

hypercube and the approximated hypercube by Larson (1974, 1975), which con-

sider the congestions of the system by calculating the steady-state busy fractions of

servers on a network. The hypercube model can be used to evaluate a wide variety

of output performance such as vehicle utilization, average travel time, inter-district

service performance, etc. Particularly important in the hypercube models is the

incorporation of state-dependent interactions among vehicles that preclude appli-

cations of traditional vehicle locating/routing/dispatching models. Larson (1979)

and Brandeau and Larson (1986) further extended and applied the hypercube

models with locate-allocate heuristics for optimizing many realistic EMS systems.

For example, these extended models have been successfully used to optimize the

ambulance deployment problems in Boston and the EMS systems in New York.

Based on the hypercube queuing model, Jarvis (1977) developed a descriptive

model for operation characteristics of an EMS system with a given configuration

of resources and a vehicle locating/dispatching model for determining the place-

ment of ambulances to minimize average response time or other geographically

based variables. Marianov and ReVelle (1996) created a realistic vehicle locating/

dispatching model for emergency systems based on results from queuing theory. In

their model, the travel times or distances along arcs of the network are considered as

random variables. The goal is to place a limited numbers of emergency vehicles,

such as ambulances, in a way as to maximize the calls for service. Queueing models

formulating other theoretical and practical problems have also been reported by

Berman and Larson (1985), Batta (1989), and Burwell et al. (1993).

3 A Large-Scale Emergency: An Anthrax Attack

In this section, we use an anthrax attack emergency to demonstrate the character-

istics of a large-scale emergency. We then derive the requirements for the facility

location problem and vehicle routing problem for the medical supply distribution in

a large-scale emergency. Note that different emergency scenarios may require

different response plans. The area in which we consider the anthrax attack emer-

gency is Los Angeles (LA) County, which consists of 2054 census tracts and a total

population of 9.5 million. In addition, we identify a number of potential eligible
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medical supply facility sites (see Fig. 16.3) and the goal is to select some of these

eligible facility sites as the staging areas to dispense the vaccinations.

3.1 Characteristics of an Anthrax Emergency

Anthrax is an acute infectious disease caused by a spore-forming bacterium. The

anthrax spores can be used as a bioterrorist weapon, as was the case in 2001, when

Bacillus anthracis spores had been intentionally distributed through the postal

system causing 22 cases of anthrax emergency, including 5 deaths (CDC website

2005). If the anthrax spores had been disseminated in an airborne manner through

airplanes or from high buildings, thousands of people and hundreds of blocks would

have been severely affected. Anthrax causes disease after inoculation of open or

minor wounds, ingestion, or inhalation of the spores. At the earliest sign of disease,

patients should be treated with antibiotics and other necessary medications to

maximize patient survival. Otherwise, shock and death could ensue within

24–48 h. Although no cases of person-to-person transmission of inhalation anthrax

have ever been reported, cutaneous transmissions have occurred. Early treatment of

anthrax disease is usually curative and significant for recovery. For example,

Fig. 16.3 Los Angeles county
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patients with cutaneous anthrax have reported case fatality rates of 20 % without

antibiotic treatment and less than 1 % with it (CDC website 2005).

The impact of an anthrax attack to the population can be tremendous. First,

thousands of people could be directly infected by the disease at the incident site.

Second, the affected area could quickly spread from the original incident site to a

much larger region by the movement of the infected but unaware people because

the anthrax attack is usually covert and the appearance of the disease symptom may

lag the attack from hours to days. Third, after an anthrax disease emergency

becomes known in public, people may panic and become scared. They may request

medical treatment or vaccination even if they are not actually infected or not in a

high-risk situation.

Huge demands for medical supplies could occur in a short time period after the

anthrax attack. Blanket medical service coverage and mass vaccination may be

necessary to all the population in a region. As such, a large amount of vaccines may

be required. However an anthrax emergency has a low occurrence frequency and it

is very expensive for any local region to maintain massive medical supplies for such

a rare event. Therefore, large volumes of medical supplies for such an emergency

are usually not stored at local sites. Instead, they are inventoried by the government

at national stockpiles which consist of large quantities of medications, vaccines,

and antibiotics to protect the public. The national stockpile is organized as push

packages for flexible response and immediate deployment to a designated site

within 12 h (e.g., the SNS of the USA). Once delivered to the local areas, the

stockpiles can be repackaged and distributed to various demand points though the

local dispensing centers (staging areas). The overall process of a rapid medical

supply distribution for a large-scale emergency can be depicted as follows in

Fig. 16.4. The details for each procedure in this process are described in the

following sections.

It should be noted that anthrax is not contagious from person to person and the

medical service coverage should depend on the actual disease spreading pattern.

For example, if the attack can be detected at an early stage and the infected people

can be identified and quarantined in a timely manner, then only the areas near the

incident site need to be serviced with medical supplies. In this example we consider

the worst case scenario and assume that the delayed detection of the attack has

caused intractable population movements, and thus a blanket medical service

coverage to all the areas is required. The logistical problem for such a worst case

scenario is much more challenging than other scenarios in which only a portion of a

region needs to be provided with medical supplies. Also note that the blanket

medical service coverage is similarly applicable to contagious emergencies such

as smallpox. During a contagious disease outbreak, it is possible that some areas are

more critical than others due to certain disease spreading pattern. However, a mass

vaccination to all the areas may be desired since it could effectively stem the

disease transmission among the population (CDC 2005).
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3.2 Requirements to Facility Location Deployment

As mentioned in the last section, the medical supplies are usually not stored at the

local level, and during an anthrax emergency the national stockpile will be called to

service the demands at the local areas. Therefore, the primary goal of the facility

location problem is to determine a number of local staging areas so that the supplies

from the national stockpile can be received, repackaged, and distributed.

The deployment of medical facility sites (staging areas) in response to a large-

scale emergency must account for massive service requirements. In most traditional

facility location problems, each individual demand point is covered only by one

facility given the fact that demand does not appear in large amounts. However, in

the event of an anthrax emergency, if a mass vaccination to the population is

necessary, the demands for medical services will be significant. As a result, a

redundant and dispersed placement of the facilities (staging areas) is required so

that more medical supplies could be mobilized to service different demand points to

reduce mortality and morbidity.

Another important aspect of the facility locations for the anthrax emergency is

the fact that given the occurrence of the emergency at an area, the resources of a

number of facilities will be applied to quell the impact of the emergency, not only

those located closest to the emergency site. This implies that there are different

types of coverage, or quality of coverage, which can be classified in terms of the

distance (time) between facilities and demand points. Thus, a facility that is close to

a demand point provides a better quality of coverage to that demand point than a

facility located far from that demand point. When planning the emergency medical

services, it is important to consider adequate staging areas of various qualities for

each demand point.

Furthermore, potential demand areas for medical services need to be categorized

in a different way than other regular emergencies. Each demand area has distinct

attributes, such as population density, economic importance, geographical feature,

Eligible staging
areas

Population

Population
National
Stockpile

National
Stockpile

National
Stockpile

Regional
Central Depots

Selected local staging
areas (dispensing centers)

Determine locations

Medical service
Medical service

Push packages

Push packages
Push packages

Determine vehicle routes

Fig. 16.4 Medical supply distribution process
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weather pattern, etc. Therefore, different requirements of facility quantity and

quality should be assigned for each demand point so that all demand points can

be serviced in a balanced and optimal manner. For example, for the demand points

at a downwind and populous downtown area, a larger quantity of facilities should

be located at a relatively better quality level, as opposed to the demand points at an

upwind and/or less populous area.

Moreover, the facility location objective for an anthrax disease emergency

should be carefully defined. An anthrax emergency is bound to impact lives

regardless of the solution. Thus care should be taken in prioritizing one solution

over another. Since the blanket medical service coverage and mass vaccination may

be carried out, all the demand points in the affected areas need to be serviced

simultaneously. To optimize the overall performance of the medical distribution

system, it is desirable that the total (average) distance from all demand points to the

staging areas be minimized. Thus, a P-median model with multiple facility quan-

tity-of- coverage and quality-of-coverage requirements is applicable. It is important

to note the model that is selected should be in accordance with the characteristics of

the emergency, and different models may be suitable for different emergency

scenarios. For example, for the emergency of a dirty bomb attack in which only a

portion of a region needs be serviced by the medical supplies, the covering model

may be more applicable since the model ensures a maximal population coverage by

the medical supply facilities.

Finally, the selection of eligible staging area sites for the anthrax emergency

must consider a different set of criteria that are used for regular emergencies. For

instance, the facilities should have easy access to more than one major road/

highway including egress and ingress. The sites should be secure and invulnerable

to damages caused by the emergencies. In this paper we consider eligible staging

area sites as given.

3.3 Requirements to Vehicle Routing

In an anthrax emergency, the primary goal of vehicle routing is to deliver the

medical supplies to the affected areas as soon as possible. To reach this goal, a fast

and efficient vehicle routing/dispatching plan needs to be executed. To maximize

life-saving in an anthrax emergency, medications, antibiotics, and vaccines should

be administered to the affected population within a specified time limit (within

24–36 h). This implies that vehicles need to have a hard time-window for medical

supply delivery. To minimize the loss of life at any demand area, the medical

supplies must be sent to the demand area within this hard time-window. Note that

although a hard time-window is used to model the VRP for the anthrax emergency,

it may not always be applicable to other emergencies. For example, for a contagious

disease outbreak, such as smallpox, the demand for medical supplies could be a

continuous function of time. In such a case, a soft time- window approach may be

more suitable to model the VRP.
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The input parameters to the vehicle routing problem in the anthrax emergency

have a probabilistic/stochastic nature. For example, the traffic conditions may

change and therefore the vehicle travel times can be highly uncertain. In addition,

the demands for medical services may be stochastic because of the way the disease

disseminates, the wind direction, the geographic conditions, etc. As such, the

vehicle routing problem needs to capture the demand uncertainties and provide a

robust solution that performs well in a variable environment.

Moreover, because of the massive service requirements, the demand at a location

is not necessarily satisfied by a single truckload. As such, the vehicle routing

problem for the anthrax emergency should allow for split delivery (i.e., a point

can be visited more than once if the demand exceeds the load capacity of available

vehicles). Also, the VRP for the anthrax emergency should be a multi-depot

problem since many local depots are dispersed across a region. However, unlike

the traditional multi-depot VRP, which requires each vehicle to return to its

origination depot, the vehicles are now allowed to return to any depot for reloading

and then continue serving other demand points. This requirement enables the

vehicles to distribute the medical supplies in a more flexible manner.

Finally, the primary objective of the vehicle routing problem during the emer-

gency should be the minimization of loss of lives, which is caused by minimizing

the unmet demands for the medical service.

As mentioned before, the facility location and vehicle routing models can be

used as a planning tool to determine the optimal staging areas and vehicle routes

considering the probabilistic/stochastic nature of the emergency. These plans can

serve as practical drills for the first responders to prepare and train them for a

possible emergency, and they may be to be altered in the event that an emergency

has occurred once the characteristics of the emergency become known.

4 Mathematical Model Formulations

Based on the analysis stated in the last section, we now formulate a facility location

model and a vehicle routing model that take into account the characteristics of the

anthrax disease emergency. Generalizations of the models discussed in this section

can found in Jia et al. (2005) for the facility location problem and Shen et al. (2005)

for the vehicle routing problem.

4.1 Formulation of the Facility Location Model

To formulate the facility location model, we use I to denote the set of demand points

and J to denote the set of eligible facility sites (staging areas). Indexed on these sets
we define two types of integer variables:
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Decision variables:

xj ¼ 1

0

�
if a facility is placed at site j; otherwise

zij ¼ 1

0

�
if a facility j services demand point i; otherwise

Furthermore, we define the following parameters:

Input Parameters:

Popi ¼ the population of demand point i

dij ¼ the distance between demand point i and facility location j

Dt ¼ the distance limit within which a facility could service demand point i

Ni ¼ {j|dij � Di}, the set of eligible facility sites that are located within the distance limit and thus

are able to service demand point i

Qi ¼ the required number of facilities that must be assigned to demand point i so that i is
considered as covered

P ¼ the maximal number of facilities that can be placed in J

We can now formulate the model to locate P facilities to service the population

during an anthrax emergency, requiring that Qi facilities service demand point

i with the same quality.

Minimize
X
i∈I

X
j∈J

Popidij zij ð16:1Þ

Subject to: X
j∈J

xj � P ð16:2Þ

X
j∈Ni

zij � Qi 8i∈I, ð16:3Þ

zij � xj 8i∈I, j∈J, ð16:4Þ

xj, zij ¼ 0; 1f g 8i∈I, j∈J, ð16:5Þ

The objective (16.1), as mentioned in Sect. 3.2, is to minimize the total demand-

weighted distance between the demand points and the facilities. Constraint (16.2)

states that there are P facilities to be located in a set J of possible locations.

Constraint (16.3) ensures that demand point i is assigned with a required quantity

(Qi) of facilities servicing it. This constraint also requires that all the facilities

assigned to demand point i need to be located within the given distance limit.

Constraint (16.4) allows assignment only to the sites at which facilities have been

located. Finally constraint (16.5) enforces the integrality of variables Zij and xi
Consider now the problem with multiple quality-of-coverage requirements at

each demand point. Let us assume that at demand point i we must have Q1
i , Q

2
i ,

. . ., Qq
i , facilities for each quality from 1 to q, where quality Q1

i represents the
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facilities that are closest to demand point i, Q2
i are the facilities located farther than

those of quality 1, and so on. Thus the facility location model needs to be modified

as follows:

1. Objective function: Since multiple quality-of-coverage is considered, the objec-

tive function needs to be optimized across different quality levels. Because the

facilities with a higher quality level (i.e., closer to the demand points) are usually

considered to be more crucial in servicing the demand points, as opposed to the

facilities with lower quality levels (i.e., farther from the demand points), we

introduce a weight parameter, hr, to prioritize the importance of the facilities at

each different quality level r. Also we modify Zij to zrij in order to differentiate

the facilities that are servicing the demand points at different quality levels.

Thus, we obtain the modified objective function:

Minimize
X
r

X
i∈I

X
j∈J

hrPopidijz
r
ij ð16:6Þ

2. Constraints: First, the group of constraints (16.3) needs to be changed to:X
j∈N r

i

z rij � Qr
i 8i∈I, r ¼ 1, . . . q ð16:7Þ

The modified constraints state that, for each demand point, there must be more

than a required quantity of facilities at each quality level so that this demand

point can be considered as properly serviced. In addition, to avoid repeated

assignment of a facility to any demand point for different quality requirements,

we introduce another group of constraints:X
r

z rij � 1 8i∈I, j∈J ð16:8Þ

As such, the modified objective (16.6), together with the constraints (112),

(16.4), (16.5), (16.7), and (16.8), can be used to formulate the facility location

problem for the anthrax emergency with multiple facility quantity- of-coverage and

quality-of-coverage requirements. Note that in the problem formulation, all the Zij,
Qi and Ni need to be correspondingly changed to zrij, Q

r
i and Nr

i .

Exact algorithms have been developed in the literature to solve different facility

location problems; for example, see Holmberg (1999). However exact algorithms

can only solve small problem instances in a reasonable computational time. There-

fore, to solve the location problems for large-scale emergencies, efficient heuristics,

such as greedy algorithms, genetic algorithms, or Tabu search, should be used.

References to the heuristics for traditional location problems can be found in Jain

et al. (2002) and Jaramillo et al. (2002).
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4.2 Formulation of the Vehicle Routing Model

To formulate the vehicle routing model, we use K, I, J, and A to denote the sets of

vehicles, demand points, facility sites, and medical supply items. In addition, we

use node 0 as a dummy node to represent a virtual/imaginary central depot that is

linked to each real depot (facility site). The cost or travel times on these links is set

to be a large number. The dummy node is useful in representing the availability of

vehicles. To conveniently denote different node combinations in the medical supply

network, we further define set C ¼ I [ J [ {node _ 0}, and set RO ¼ I [ J.
Furthermore, indexed on these sets, we define the following deterministic param-

eters. Note that different from the facility location problem, in which the index i is
defined as demand point i and the index j is defined as facility site j, here the indices
i and j are defined as any node from set C, which could be either a demand point or a

facility site (depot).

Deterministic Parameters:

ni ¼ the initial number of vehicles at facility site (depot) i

Wa ¼ the unit weight of medical supply item a

Ca,k ¼ the load capacity of vehicle k for medical supply item a

ea,i ¼ the earliest service start time for medical supply item a at demand point i

la,j ¼ the latest service start time for medical supply item a at demand point i

Sa,i ¼ the amount of medical supply item a supplied at facility site (depot) i

ri ¼ the service (loading/unloading) time at node i, including both the demand points and the

facility sites

We use M as a large constant to transform nonlinear terms to linear ones for the

time window constraints. In addition, the parameter αD is used to represent the

upper bound of unsatisfactory rate for demands at each demand point and αT is used
to denote the upper bound of total traveling time for each vehicle. These two

parameters represent the probabilistic violation on the demand and travel time

constraints.

As mentioned in the previous section, uncertainties exist in the anthrax emer-

gency. We consider the following two parameters as stochastic variables.

Stochastic Parameters:

τi,j,k ¼ the time required for vehicle k to travel from point i to j

ζa,i ¼ the demand for medical supply item a at demand point i

Finally, four groups of decision variables are defined as follows:

Decision variables:

Xi, j,k ¼ 1

0

�
if vehicle k traverses arc (ij):otherwise

Ya,i,j,k ¼ the amount of medical supply item a traversing arc (i,j) using vehicle k

Ua,t ¼ the amount of unsatisfied demand for medical supply item a at demand point i

Ti,k ¼ the service start time for vehicle k at demand point i
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Based on these parameters and variables, we are now in a position to formulate

the stochastic vehicle routing problem, with the objective to minimize the unmet

demands over all the demand points.

Minimize
X
a∈A

X
i∈I

Ua, i ð16:9Þ

Subject to: X
k∈K

X0, i,k � ni 8i∈J ð16:10Þ

X
j∈1

Xi, j,k ¼ 1 8i∈J, k∈K, ð16:11Þ

X
j∈I

Xj, i,k ¼ 1 8i∈J, k∈K, ð16:12Þ

X
j∈RO

Xi, j,k ¼
X
j∈RO

Xj, i,k 8i∈I, k∈K, ð16:13Þ

P τ Ti,k þ ri þ τi, j,k � Tj,k

� ��� � 1� Xi, j,k

� �
M

� � � 1� αT 8i, j∈C ð16:14Þ

sa, i �
X
k∈K

X
j∈C

Ya, i, j,k �
X
j∈C

Ya, j, i,k

" #
� 0 8a∈A,8i∈J ð16:15Þ

Ya, 0, i,k þ Ya, i, 0,k ¼ 0 8a∈A, 8i∈RO, k∈K ð16:16Þ

Xi, j,kck �
X
a

waYa, i, j,k 8 i; jf g � RO, k∈K, a∈A ð16:17Þ

ea, i
X

j∈Δþ ið Þ
Xi, j,k � Ti,k � la, i

X
j∈Δþ ið Þ

Xi, j,k 8a∈A,8i, j∈C ð16:18Þ

P ζ
X
k∈K

X
j∈C

Ya, j, i,k �
X
j∈C

Ya, i, j,k

" #����� � Ua, i � ζa, i � 0

( )
� 1� αD

8a∈A,8i∈I

ð16:19Þ

Xi, j,k ¼ 0; 1f g; Ya, i, j,k � 0;Ua, i � 0; Ti,k � 0; ð16:20Þ

Constraints (16.10)–(16.14) characterize the vehicle flow on the medical

distribution network. Constraint (16.10) states that the number of vehicles in service

should not exceed the number of vehicles available at each depot at the beginning

of the planning horizon. The number of vehicles in service is the total number

of vehicles flowing from the dummy central depot 0 to each facility site. Con-

straints (16.11) and (16.12) specify that each vehicle can flow from and to only one

facility site (depot). Constraint (16.13) states that all vehicles that flow into
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any demand point must also flow out of it. Constraint (16.14) is a chance

constraint for the service start times at the demand points. The inner part, (Ti,k + ri
+ τi,j,k � Tj,k) � (1 � Xi,j,k)M guarantees the schedule feasibility with respect to

time considerations. Constraint (16.15) gives the balanced material flow requirement

for the facility sites. Constraint (16.16) prohibits the medical supply items flow from

and to the dummy node. Constraint (16.17) allows the medical supply item to flow as

long as there are sufficient vehicle capacities. It establishes the connection between

the medical supply flow and vehicle flow. Constraint (16.18) gives the hard time

window constraint on each demand point. Chance constraint (16.19) enforces the

balanced material flow requirement for the demand points from a probabilistic

perspective. It states that a small probability of unmet demands at each demand

point is allowed within a threshold level. Finally constraint (16.20) enforces the

integrality and non-negativity constraints on the variables.

5 Problem Solution and Analyses

In the preceding section, the facility location problem and the VRP for the anthrax

disease emergency have been formulated. In this section, we first specify illustrative

values for the input parameters and then we show how these proposed models could

be applied to solve the facility location problem and the VRP for the anthrax

emergency.

5.1 Facility Location Problem

5.1.1 Parameter Specification

There are 2054 census tracts and 9.5 million people in Los Angeles County. To

define the demand distribution for medical services during an anthrax disease

emergency, we use the day-time population density pattern that is available for

Los Angeles County (ESRI website 2005). Furthermore, we use the centroid of

each census tract as a demand point to represent the aggregated population in this

tract. Thus we obtain 2054 discrete demand points that have different population

densities. We assume that, in the anthrax emergency, the people at different demand

points need to visit the selected facilities (staging areas) for vaccination. Note that

although we assume that all the population at the demand points need to be serviced

by the medical supplies, during an emergency, a more accurate demand pattern for

medical supplies can be obtained by using schools, shopping malls and offices as

indicators to assess the actual disease exposure.

To determine the staging areas that can be used to receive, repackage, and

distribute the medical supplies from the national stockpile to the demand points,

we identify 30 eligible facility sites. We assume that the resource limitation allows

only 10 eligible facility sites to be selected to services the demand points (P ¼ 10).
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To ensure effective and efficient medical supply distribution, each demand point

needs to be serviced by a required quantity of facilities that are located at each

quality level. In practice, different quality levels should be defined for different

demand points, based on the attributes of each point such as population density,

political/economic importance, etc. In this example, for simplicity, we define a

uniform quality requirement for all demand points; that is, each demand point needs

two quality levels and the distance requirements for the first and second quality

levels are 35 miles and 60 miles, respectively.

Furthermore, we specify the facility quantity requirement at each quality level

for each demand point as follows:

1. Qi ¼ 1 if the population of demand point i is less than 4,000.

2. Qi ¼ 2, if the population of demand point i is between 4,000 and 8,000.

3. Qi ¼ 3, if the population of demand point i is greater than 8,000.

Finally, we specify the distances (times) between each pair of demand point and

facility site. In practice, the roadway system should be used to define the distances

since the medical supplies will be transported by vehicles during the emergency.

However, for simplicity, in this illustrative example, we use the straight line

distances between the demand points and facility sites.

5.1.2 Solution and Analyses

Based on the input parameters defined above, we solve the facility location problem

for the anthrax emergency. The solution is depicted in Fig. 16.5. The problem was

solved to optimality using a commercial integer program solver, CPLEX 8.1. The

stars in the diagram represent the selected facilities.

In this solution, each demand point is covered by a required quantity of facilities

at each of the two quality levels. Therefore, the demand points can be sufficiently

serviced by the facilities in an efficient manner. The average distance from the

demand points to their servicing facilities at quality level 1 is 25.8 miles; and

the average distance at quality level 2 is 50.2 miles. Since the weighted total distance

between the demand points and the facilities has been minimized (as defined by the

objective function), the effectiveness of facility service performance is optimized.

It should be noted that a tight definition of the input parameters may lead to the

facility location problem being infeasible; that is, no subset of P facilities is able to

service all demand points within the defined quality levels (distance requirements).

In this case, any one of the following four adjustments in the parameters can be

made to make the problem feasible:

1. Increase the parameter P, i.e., the number of facilities that can be selected.

2. Relax the distance requirements, within which the facilities need to be located to

service the demand points.

3. Drop the insignificant demand points (e.g., the ones with a low population

density) from the problem constraints so that the limited resources (facilities)

can be leveraged to the other demand points.
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5.2 Vehicle Routing Problem (VRP)

5.2.1 Parameter Specification

After the facility sites (staging areas) have been determined, the solution is used as

input parameters for the vehicle routing problem. In the anthrax emergency exam-

ple, the 10 selected facility sites from the location problem are the demand points

for the vehicle routing problem. To illustrate the VRP, for simplicity, we will use a

single depot (i.e., Los Angeles International Airport as the central distribution

warehouse) and a uniform capacity for each of a total of three vehicles to route

and service the 10 staging facilities.

We calculate the demand on each selected facility by summing up the population

in the tracts that are covered by the facility. The population size will be used as the

criterion to specify the demand size; for example, 1 box of 100,000-dose anthrax

vaccine is needed for every 100,000 people. As we stated in the previous section,

the demand of each facility is stochastic. The exponential distribution, p(x) ¼
e(A–x)/B IB (where the mean is A + B and variance is B2), is assumed with the

mean value set according to the population density. The standard deviation is set to

be 20 % of its mean value at each facility.

Fig. 16.5 Solution to the facility location problem
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Furthermore, we assume an exponential distribution for the travel times between

each pair of facility and central depot. Their mean values are specified as propor-

tional to the Euclidean distances between them. We also set the standard deviation

to be 20 % of the mean value of the travel time on each leg of the connection. Such

an exponential distribution gives a lower bound and an upper bound for the travel

time, which reasonably reflects the fact that travel time is constrained by the

physical distance and the maximal speed of the vehicle, and could be prolonged

by different traffic conditions.

Shock and death caused by untreated anthrax exposure could ensue within

24–48 h, and the dispatching from the central warehouse to the 10 selected local

staging facilities is just one chain of the whole process of dispensing medical

supplies. Hence we use a hard time window constraint of up to half of the required

time for treatment (i.e., 12 h) to finish this placement.

Finally, we assume the total supply at the depot can meet 120 % of the

summation of the mean value of the demand quantity at all points. However,

since the demand is stochastic, it is possible that the demand cannot be fully

satisfied in some cases.

5.2.2 Solution and Analyses

The routing problem is solved based on the parameters specified in the previous

section and its result is compared with that of a deterministic formulation to show

the advantage of our chance-constraint model.

The CPLEX solver was used to optimally solve both the deterministic and

chance-constraint models to optimality with the given parameters. The determin-

istic model uses the mean value of the demand quantity and travel time to eliminate

uncertainties.

To compare the routing solutions, we generate exponential random variables

with the mean and variance specified above for the demand and travel time. For

each generated scenario we solve a linear optimization problem to obtain the

quantities of supply that minimize the total unmet demand with fixed routing

solutions obtained above and constrained by the deadline and the total available

quantity at the depot. The comparison shows that out of the 50 test cases, the

deterministic routes generate 18 unmet demand cases with an average unmet

demand of 9.94 while the chance-constraint routes only generate 2 unmet demand

cases with an average unmet demand of 5.50. The chance-constraint routes

outperform the deterministic ones because of the conservative nature of the

chance-constraint model, which leads to balanced routes with similar number of

nodes. The deterministic routes are more prone to have uneven number of nodes on

different paths. We observe that this property makes the chance-constraint solution

more robust and competitive than the deterministic one especially for the test cases

that deviate far away from the mean value.
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6 Conclusions and Future Directions

Facility location and vehicle routing are important issues in designing the medical

supply distribution system, particularly for large-scale emergencies. This chapter

has two primary goals. The first is to review different location models and vehicle

routing models in the literature that are related to regular emergency services such

as police, fire, etc. The second goal is to present tailored location and vehicle

routing models to design rapid distribution systems of medical supplies in response

to a large-scale emergency. An illustrative example of an anthrax emergency was

discussed to show how the proposed models can be used to determine the facilities

locations and vehicle routes for rapid medical supply distribution during the

emergency.

In this chapter, we consider an emergency due to an anthrax attack as a

representative large-scale emergency. We discuss the characteristics of large-

scale emergencies and their requirements for the facility location and vehicle

routing problems in the context of this particular emergency. However, other

types of emergencies (e.g., chemical incident, dirty bomb attack, contagious disease

outbreak) may involve different characteristics and thus will lead to different

requirements on the problem formulations and solutions. For example, an emer-

gency caused by a dirty bomb attack may impact not only the population, but also

the medical supply facilities themselves. Therefore, reduced service capability of

the facilities needs to be taken into account. A chemical incident may need

instantaneous medical service to the infected people, and therefore medical supplies

may need to be pre-positioned at a local level for immediate deployment. An open

research question is how to develop an overall response plan that takes into

consideration all the different possible scenarios. Is it more efficient and cost

effective to develop a single strategy that is robust to the different possibilities or

is it better to develop a separate plan for each possible emergency?

Another research direction is to develop efficient algorithms to solve the facility

location and vehicle routing problems. In this chapter, the formulated problems

were of relatively small size (i.e., 30 eligible facility sites, 10 selected staging areas,

1 central depot, and 3 vehicles) so the optimal solutions could be readily found

using commercially available optimization software. However, for modeling more

realistic and larger scenarios, the problem size of the models will increase signif-

icantly so that it becomes computationally prohibitive to obtain an optimal solution.

Future research direction should also focus on developing efficient heuristics which

can identify near optimal solutions to the large problems within a reasonable

computational time.
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