
Chapter 15

Queueing Analysis in Health Care

Linda Green

Abstract Many organizations, such as banks, airlines, telecommunications

companies, and police departments, routinely use queueing models to help

determine capacity levels needed to respond to experienced demands in a timely

fashion. Though queueing analysis has been used in hospitals and other health care

settings, its use in this sector is not widespread. Yet given the pervasiveness of

delays in health care and the fact that many health care facilities are trying to meet

increasing demands with tightly constrained resources, queueing models can be

very useful in developing more effective policies for bed allocation and staffing,

and in identifying other opportunities for improving service. Queueing analysis is

also a key tool in estimating capacity requirements for possible future scenarios,

including demand surges due to new diseases or acts of terrorism. This chapter

describes basic queueing models as well as some simple modifications and exten-

sions that are particularly useful in the health care setting, and gives examples of

their use. The critical issue of data requirements is also discussed, as well as model

choice, model-building, and the interpretation and use of results.

Keywords Queueing • Capacity management • Staffing • Hospitals

1 Introduction

1.1 Why Is Queueing Analysis Helpful in Health care?

Health care is riddled with delays. Almost all of us have waited for days or weeks to

get an appointment with a physician or schedule a procedure, and upon arrival we
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wait some more time until being seen. In hospitals, it is not unusual to find patients

waiting for beds in hallways, and delays for surgery or diagnostic tests are common.

Delays are the result of a disparity between demand for a service and the

capacity available to meet that demand. Usually this mismatch is temporary

and due to natural variability in the timing of demands and in the duration of

time needed to provide service. A simple example would be a health care clinic

where patients walk in without appointments in an unpredictable fashion and

require anything from a flu shot to the setting of a broken limb. This variability

and the interaction between the arrival and service processes make the dynamics

of service systems very complex. Consequently, it is impossible to predict levels of

congestion or to determine how much capacity is needed to achieve some desired

level of performance without the help of a queueing model.

Queueing theory was developed by A.K. Erlang in 1904 to help determine the

capacity requirements of the Danish telephone system (see Brockmeyer

et al. 1948). It has since been applied to a large range of service industries including

banks, airlines, and telephone call centers (e.g., Brewton 1989; Stern and Hersh

1980; Holloran and Byrne 1986; Brusco et al. 1995; Brigandi et al. 1994) as well as

emergency systems such as police patrol, fire, and ambulances (e.g., Larson 1972;

Kolesar et al. 1975; Chelst and Barlach 1981; Green and Kolesar 1984; Taylor and

Huxley 1989). It has also been applied in various health care settings as we will

discuss later in this chapter. Queueing models can be very useful in identifying

appropriate levels of staff, equipment, and beds as well as in making decisions

about resource allocation and the design of new services.

Unlike simulation methodologies, discussed in Chap. 9, queueing models

require very little data and result in relatively simple formulae for predicting

various performance measures such as mean delay or probability of waiting more

than a given amount of time before being served. This means that they are easier

and cheaper to use and can be more readily used to find “optimal” solutions rather

than just estimating the system performance for a given scenario.

Timely access has been identified as one of the key elements of health care

quality (Institute of Medicine 2001) and consequently, decreasing delays has

become a focus in many health care institutions. Given the financial constraints

that exist in many of these facilities, queueing analysis can be an extremely

valuable tool in utilizing resources in the most cost-effective way to reduce delays.

The primary goal of this chapter is to provide a basic understanding of queueing

theory and some of the specific queueing models that can be helpful in designing

and managing health care systems. For more detail on specific models that are

commonly used, a textbook on queueing theory such as Hall (1991) is

recommended.

Before discussing past and potential uses of queueing models in health care, it is

important to first understand some queueing theory fundamentals.

362 L. Green

http://dx.doi.org/10.1007/978-1-4614-9512-3_9


1.2 Queueing System Fundamentals

A basic queueing system is a service system where “customers” arrive to a bank of

“servers” and require some service from one of them. It is important to understand

that a “customer” is whatever entity is waiting for service and does not have to be a

person. For example, in a “back-office” situation such as the reading of radiologic

images, the “customers” might be the images waiting to be read. Similarly, a

“server” is the person or thing that provides the service. So when analyzing delays

for patients in the emergency department (ED) awaiting admission to the hospital,

the relevant servers would be inpatient beds.

If all servers are busy upon a customer’s arrival, they must join a queue. Though

queues are often physical lines of people or things, they can also be invisible as with

telephone calls waiting on hold. The rule that determines the order in which queued

customers are served is called the queue discipline. The most common discipline is

the familiar first-come, first-served (FCFS) rule, but other disciplines are often used

to increase efficiency or reduce the delay for more time-sensitive customers. For

example, in an ED, the triage system is an example of a priority queue discipline.
Priority disciplines may be preemptive or non-preemptive, depending upon whether

a service in progress can be interrupted when a customer with a higher priority

arrives. In most queueing models, the assumption is made that there is no limit on

the number of customers that can be waiting for service, i.e., there is an infinite
waiting room. This is a good assumption when customers do not physically join a

queue, as in a telephone call center, or when the physical space where customers

wait is large compared to the number of customers who are usually waiting for

service. Even if there is no capacity limit on waiting room, in some cases new

arrivals who see a long queue may “balk” and not join the queue. This might happen

in a walk-in clinic. A related characteristic that is incorporated in some queueing

systems is “reneging” which occurs when customers grow inpatient and leave the

queue before being served. An example of this behavior is found in some EDs

where the patients who renege are often referred to as “left without being seen”.

Finally, queues may be organized in various ways. In most cases, we will

consider a single line that feeds into all servers. But sometimes each server has

his/her own queue as may be the case for a primary care office in which patients

have their own physician. This is usually referred to as queues in parallel. In other

situations, we may want to consider a network design in which customers receive

service from different types of servers in a sequential manner. For example, a

surgical inpatient requires an operating room (OR), then a bed in the recovery unit,

followed by a bed in a surgical intensive care unit (ICU), and/or other part of the

hospital. However, it might still make sense to analyze a single queue in these

situations to determine the capacity requirements of a single type of resource,

particularly if there is reason to believe that the resource is a bottleneck.

A queueing model is a mathematical description of a queueing system which

makes some specific assumptions about the probabilistic nature of the arrival and

service processes, the number and type of servers, and the queue discipline and
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organization. There are countless variations possible, but some queueing models

are more widely used and we will focus on these in this chapter. For these models,

as well as many others, there are formulae available that enable the fast calculation

of various performance measures that can be used to help design a new service

system or improve an existing one.

2 Basic Queueing Principles and Models

Most of queueing theory deals with system performance in steady-state. That is,
most queueing models assume that the system has been operating with the same

arrival, service time and other characteristics for a sufficiently long time that the

probability distribution for the queue length and customer delay is independent of

time. Clearly, there are many service systems, including health care systems, for

which there are time-of-day, day-of-week or seasonality affects. In this section, we

will assume that we are looking at systems in steady state and in subsequent

sections, we will discuss how to deal with systems that have some time-varying

characteristics.

2.1 Delays, Utilization, and System Size

In queueing theory, utilization, defined as the average number of busy servers

divided by the total number of servers times 100, is an important measure. From

a managerial perspective, utilization is often seen as a measure of productivity and

therefore it is considered desirable for it to be high. For example, in hospital bed

planning, utilization is called occupancy level and historically, an average hospital

occupancy level of 85 % has been used as the minimum level for the states to make

a determination under Certificate of Need (CON) regulations that more beds might

be needed (see Brecher and Speizio 1995). Since the actual average occupancy rate

for nonprofit hospitals has recently been about 66 %, there has been a widely held

perception in the health care community that there are too many hospital beds.

Largely because of this perception, the number of hospital beds has decreased

almost 25 % in the last 20 years.

But determining bed capacity based on occupancy levels can result in very long

waiting times for beds (Green 2003). In all queueing systems, the higher the

average utilization level, the longer the wait times. However, it is important to

note that this relationship is nonlinear. This is illustrated in Fig. 15.1 which shows

the fundamental relationship between delays and utilization for a queueing system.

There are three critical observations we can make from this figure. First, as average

utilization (e.g., occupancy rate) increases, average delays increase at an increasing

rate. Second, there is an “elbow” in the curve after which the average delay

increases more dramatically in response to even small increases in utilization.
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Finally, the average delay approaches infinity as utilization approaches one. (It is

important to note that this assumes there is no constraint on how long the queue can

get and that customers continue to join and remain in the queue.)

The exact location of the elbow in the curve depends upon two critical charac-

teristics of the system: variability and size. Variability generally exists in both the

time between arrivals and the duration of service times and is usually measured by

the ratio of the standard deviation to the mean, called the coefficient of variation

(CV). The higher the degree of variability in the system, the more to the left the

elbow will be so that delays will be worse for the same utilization level. System size

is defined as the ratio of the average demand over the average service time, which is

a determinant of the number of servers needed. The larger the system, the closer the

elbow will be to 100 %, so that delays will be smaller for the same utilization level.

These basic queueing principles have several important implications for plan-

ning or evaluating capacity in a service system. First, the average total capacity,

defined as the number of servers times the rate at which each server can serve

customers, must be strictly greater than the average demand. In other words, unless

average utilization is strictly less than 100 %, the system will be “unstable” and the

queue will continue to grow. Though this fact may appear counter-intuitive on the

surface, it has been well known by operations professionals for decades. So if an

emergency room has ten patients arriving per hour on average and each health care

provider (physician or physician assistant) can treat two patients per hour, a

minimum of six providers is needed. (Of course, in many contexts, if arrivals see

a long queue they may not join it or they may renege after waiting a long time. If so,

the system may stabilize even if the average demand exceeds the average capacity.)

Second, the smaller the system, the longer the delays for a given utilization level. In

other words, queueing systems have economies of scale so that, for example, larger

hospitals can operate at higher utilization levels than smaller ones yet maintain

similar levels of congestion and delays. Finally, the greater the variability in the

service time (e.g., length-of-stay), the longer the delays at a given utilization level.

So a clinic or physician office that specializes in for example vision testing or

Average
Delay

100%
Utilization

0

Fig. 15.1 Trade-off between average delay and utilization in a queueing system
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mammography will experience shorter patient waits than a university based clinic

of the same size and with the same provider utilization that treats a broad variety of

illnesses and injuries. These properties will be more specifically illustrated when we

discuss applications of queueing models.

2.2 Some Simple But Useful Queueing Models

2.2.1 The Poisson Process

In specifying a queueing model, we must make assumptions about the probabilistic

nature of the arrival and service processes. The most common assumption to make

about arrivals is that they follow a Poisson process. The name comes from the fact

that the number of arrivals in any given time period has a Poisson distribution. So if

N(t) is the number of arrivals during a time period of duration t and N(t) has a

Poisson distribution,

Probability N tð Þ ¼ nf g ¼ e�λt λtð Þn=n!

where λ is called the rate and is the expected number of arrivals per unit time. For

example, if λ ¼ 10 customers per hour, then the expected number of arrivals in any

60 min interval is 10 and the expected number to arrive in a 15 min interval is 2.5.

Notice that these are averages so that λ need not have an integer value. Another way
to characterize the Poisson process is that the time between consecutive arrivals,

called the interarrival time, has an exponential distribution. So if IA is the

interarrival time of a Poisson process with rate λ,

Probability IA � tf g ¼ 1� e�λt

and l/λ is the average time between arrivals.

An important property of the exponential distribution is that it is “memoryless”.

This means that the time of the next arrival is independent of when the last arrival

occurred. This property also leads to the fact that if the arrival process is Poisson,

the number of arrivals in any given time interval is independent of the number in

any other nonoverlapping time interval. Conversely, it can be shown analytically

that if customers arrive independently from one another, the arrival process is a

Poisson process. For this reason, the Poisson process is considered the most

“random” arrival process.

In determining whether the Poisson process is a reasonable model for arrivals in

a specific service system, it is useful to consider its three defining properties:

1. Customers arrive one at a time.

2. The probability that a customer arrives at any time is independent of when other

customers arrived.

3. The probability that a customer arrives at a given time is independent of the time.
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In most contexts, customers generally do arrive one at a time. Though there may

be events, such as a major accident, that trigger multiple simultaneous arrivals, this

is likely to be an exceptional circumstance which will not significantly affect the

usefulness of this modeling assumption. Intuitively, the second property is also

often a reasonable assumption. For example, in an emergency room, where the

population of potential patients is very large, it is unlikely that someone arriving

with a broken arm has anything to do with someone else’s injury or illness, or that

the fact that the number of patients who arrived between 9 a.m. and 10 a.m. was four

provides information about the number of patients that are likely to arrive between

10 a.m. and 11 a.m. Again, there may be occasional exceptions, such as a flu

outbreak, for which there is an exogenous factor responsible for generating multiple

arrivals over a time period. However, this assumption is still likely to be a

reasonable one in most situations. The third property may be more suspect. More

typically, the average arrival rate varies over the day so that, e.g., it is more likely

for an arrival to occur in the morning than in the middle of the night. Certain days of

the week may be busier than others as well. However, we may be able to use the

standard Poisson process as a good model for a shorter interval of time during

which the arrival rate is fairly constant. We will discuss this in more detail in a

subsequent section.

So the assumption of a Poisson process will generally be a good one when the

three properties above are a reasonable description of the service system in ques-

tion. However, it is possible to perform more rigorous tests to determine if it is a

good fit. The simplest tests are based on the relationship of the standard deviation to

the mean of the two distributions involved in the Poisson process. Since the

variance (square of the standard deviation) of the Poisson distribution is equal to

its mean, we can examine the number of arrivals in each fixed interval of time (e.g.,

30 min) and determine whether the ratio of the mean to the variance is close to one.

Alternatively, since the exponential distribution is characterized by its standard

deviation being equal to its mean, we can look at the interarrival times and compute

the ratio of the standard deviation to the mean to see if it is close to one. Hall (1991)

describes goodness of fit tests in greater detail.

Many real arrival and demand processes have been empirically shown to be very

well approximated by a Poisson process. Among these are demands for emergency

services such as police, fire and ambulance, arrivals to banks and other retail

establishments, and arrivals of telephone calls to customer service call centers.

Because of its prevalence and its assumption of independent arrivals, the Poisson

process is the most commonly used arrival process in modeling service systems. It

is also a convenient assumption to make in terms of data collection since it is

characterized by a single parameter—its rate λ. In health care, the Poisson process

has been verified to be a good representation of unscheduled arrivals to various

parts of the hospital including ICUs, obstetrics units and EDs (Young 1965; Kim

et al. 1999; Green et al. 2005).
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2.2.2 The M/M/s Model

The most commonly used queueing model is the M/M/s or Erlang delay model.

This model assumes a single queue with unlimited waiting room that feeds into

s identical servers. Customers arrive according to a Poisson process with a constant

rate, and the service duration (e.g., LOS or provider time associated with a patient)

has an exponential distribution. (These two assumptions are often called Markov-

ian, hence the use of the two “M’s” in the notation used for the model.)

One advantage of using theM/M/smodel is that it requires only three parameters

and so it can be used to obtain performance estimates with very little data. Given an

average arrival rate, λ, an average service duration, l/μ, and the number of servers, s,
easy-to-compute formulae are available to obtain performance measures such as

the probability that an arrival will experience a positive delay, pD, or the average

delay, Wq:

pD ¼ 1�
Xs�1

n¼0

pn ð15:1Þ

Wq ¼ pD= 1� ρsμð Þ½ � ð15:2Þ

for

ρ ¼ λ=sμ ð15:3Þ

and

pn ¼

λn

n!μn
p0 1 � n � sð Þ

λn

sn�ss!μn
p0 n � sð Þ

8
>>><
>>>:

ð15:4Þ

where

p0 ¼
Xs�1

n¼0

ρsð Þn
n!

þ ρsssþ1

s! s� ρsð Þ

" #�1

ρ < 1 ð15:5Þ

Note that ρ is the average utilization for this queueing system and the equation is

only valid when the utilization is strictly less than one. Also note that average delay

increases as utilization approaches one. These quantitative observations support the

discussion of utilization and delays in the previous section.

Many other measures of performance can be calculated as well and many of the

formulae for both the M/M/s and other common queueing models are available in

software packages or are easily programmable on spreadsheets. One common

368 L. Green



performance constraint is often referred to as the service level—a requirement that

x % of customers start service within y time units. For example, many customer call

centers have a target service level that 85 % of calls be answered within 20 s. The

delay is always measured from the time of the demand for service (e.g., patient

registered in the ED) to the time at which service begins (e.g., a provider is

available to treat that patient). It is important to note that the model’s delay

predictions pertain only to waiting times due to the unavailability of the server.

2.2.3 Some Useful Extensions of the M/M/s Model

There are several variations on the basicM/M/s queueing model. One important one

for many health care organizations is the M/M/s with priorities. While the funda-

mental model assumes that customers are indistinguishable and are served FCFS,

the priority model assumes that customers have differing time-sensitivities and are

allocated to two or more service classes i ¼ 1, 2, . . ., N, and that customers are

served in priority order with 1 being the highest priority and N the lowest. Within

any given class, customers are served FCFS. But when there is a queue and a server

becomes available, a customer belonging to class i will be served only if there are

no waiting customers of class 1, . . ., i � 1. A priority queueing model would be

appropriate if a facility is interested in identifying the capacity needed to assure a

targeted service level for the highest priority customers. For examples, in an ED,

while many arriving patients would not incur any particular harm if they had to wait

more than an hour to be seen by a physician, some fraction, who are emergent or

urgent, need a physician’s care sooner to prevent serious clinical consequences. In

this case, a priority queueing model could be used to answer a question like: How

many physicians are needed to assure that 90 % of emergent and urgent patients will

be seen by a physician within 45 min?

There are two types of priority queueing disciplines: preemptive and

non-preemptive. In the preemptive model, if a higher priority customer arrives

when all servers are busy and a lower priority customer is being served, the lower

priority customer’s service will be interrupted (preempted) so that the higher

priority customer can begin service immediately. The preempted customer must

then wait for another server to become free to resume service. In the

non-preemptive model, new arrivals cannot preempt customers already in service.

While priority queueing models are usually either purely preemptive or

non-preemptive, it is possible to model a service system that has both preemptive

and non-preemptive customer classes. This might be appropriate for a hospital ED

where the normal triage system which classifies patients as emergent, urgent or

nonurgent is usually assumed to be non-preemptive, but will use a preemptive

discipline for certain urgent patients whose conditions are extremely time-sensitive,

such as stroke victims. In addition to the usual input parameters for the M/M/s
model, priority models also require the fraction of customers in each of the priority

classes.
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Another common variant of the M/M/s model assumes a finite capacity K � s
and is notated as M/M/s/K. In this model, if a customer arrives when there are

K customers already in the system (being served and waiting), the customer cannot

join the queue and must leave. A common application of this would be a telephone

trunk line feeding into a call center. Such a system has a finite number of spaces for

calls being served or on hold and when a new call comes in and all the spaces are

already taken, the new arrival hears a busy signal and hangs up. A similar phenom-

enon might occur in a walk-in health clinic which has a waiting room with a fixed

number of seats. Though some patients may choose to wait even if there is no seat

available upon arrival, many patients may leave and try to return at a less busy time.

Customers who are “blocked” from joining the queue are called “lost” and may

show up again or never return. In these types of systems, queueing analysis might

be used to help determine how large the waiting or holding area should be so that

the number of customers who are blocked is kept to an acceptably low level.

A specific special case of these finite capacity models is the one where K ¼ s so
that there is no waiting room for those who arrive when all servers are busy. These

are called pure “loss” models and they are often used to analyze service systems in

which it is considered either impractical or very undesirable to have any customers

wait to begin service. For example, Shmueli, Sprung and Kaplan (2003) used a loss

model to analyze the impact of various admissions policies to ICU facilities.

2.3 The M/G/1 and G/G/s Models

An important characteristic of the exponential distribution used in theM/M/s is that
the standard distribution equals the mean and so the CV of the service time equals

one. If the actual CV of service is a bit less than or greater than one, theM/M/s will
still give good estimates of delay. However, if the CV is substantially different than

one, the M/M/s may significantly underestimate or overestimate actual delays.

(Recall that if variability is lower, the model will overestimate delays while the

converse is true if variability is greater.) In this case, if the arrival process is

Poisson, and there is only one server, the average delay can still be calculated for

any service distribution through use of the following formula for what is known as

the M/G/1 system:

Wq ¼ λρ= 1� ρð Þ½ � 1þ CV2 Sð Þ� �
=2

� � ð15:6Þ

where CV2(S) is the square of the coefficient of variation of the service time.

Clearly, this formula requires knowledge of the standard deviation of the service

time in addition to the mean in order to compute CV2(S). This formula also

illustrates the impact of variability on delays. Notice that, as mentioned previously,

as the coefficient of variation of the service time increases, so does the average

delay.
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Though there are no exact formula for non-Markovian multi-server queues, there

are some good, simple approximations. One such approximation (Allen 1978) is

given by:

Wq ¼ Wq,M=M=s CV2 Að Þ þ CV2 Sð Þ� �
=2 ð15:7Þ

where CV2(A) is the square of the coefficient of variation of the arrival time and

Wq,M/M/s is the expected delay for anM/M/s system, (15.2). So this formula requires

the standard deviation of the interarrival time as well and again demonstrates that

more variability results in longer delays.

3 Analyses of Fixed Capacity: How Many Hospital Beds?

Many resources in health care facilities have a fixed capacity over a long period of

time. These are usually “things” rather than people: beds, operating rooms, imaging

machines, etc. Queueing models are not always appropriate for analyzing such

resources. In particular, if the patients for a resource are scheduled into fixed time

slots, there is little or no likelihood of congestion unless patients routinely come late

or the time slots are not large enough to accommodate most patients. An example of

this would be a magnetic resonance imaging (MRI) facility which is only used by

scheduled outpatients. It should be noted that the use of an appointment system can

be an effective way to minimize or eliminate variability in the arrival stream of a

service system and therefore minimize delays. See Chapter for more on appoint-

ment systems.

However, the difficulty of managing many health care facilities is that the

demand for resources is unscheduled and hence random, yet timely care is impor-

tant. This is the case for many parts of a hospital that deal primarily with

nonelective admissions. In these cases, queueing models can be very helpful in

identifying long-term capacity needs.

3.1 Applying the M/M/s Model

To illustrate the use of a queueing model for evaluating capacity, consider an

obstetrics unit. Since it is generally operated independently of other services, its

capacity needs, e.g., number of postpartum beds, can be determined without regard

to other parts of the hospital. It is also one for which the use of a standard M/M/s
queueing model is quite good. Most obstetrics patients are unscheduled and the

assumption of Poisson arrivals has been shown to be a good one in studies of

unscheduled hospital admissions (Young 1965). In addition, the CV of length of
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stay is typically very close to 1.0 (Green and Nguyen 2001) satisfying the service

time assumption of the M/M/s model.

A queueing model may be used either descriptively or prescriptively. As an

example of the descriptive case, we can take the current operating characteristics of

a given obstetrics unit: arrival rate, average LOS, and number of beds; and use these

in (15.1) to determine the probability that an arriving patient will not find a bed

available. Let us assume that Big City Hospital’s obstetrics unit has an average

arrival rate of λ ¼ 14.8 patients per day, an average LOS of 1/μ ¼ 2.9 days, and

s ¼ 56 beds. Then the M/M/s formula for probability of delay (15.1) produces an

estimate of approximately 4 %. To use the M/M/s prescriptively to find the

minimum number of beds needed to attain a target probability of delay, we can

enter (15.1) in a spreadsheet and produce a table of results for a broad range of bed

capacities to find the one that best meets the desired target. Table 15.1 is a partial

table of results for our example obstetrics unit.

Though there is no standard delay target, Schneider (1981) suggested that given

their emergent status, the probability of delay for an obstetrics bed should not

exceed 1 %. Applying this criterion, Table 15.1 indicates that this unit has at least

60 beds. Table 15.1 also shows the utilization level for each choice of servers and

that at 60 beds, this level is 71.5 %. This is what hospitals call the average

occupancy level and it is well below the 85 % level that many hospitals and health

care policy officials consider the minimum target level. It is also below the

maximum level of 75 % recommended by the American College of Obstetrics

Table 15.1 Probability

of (Delay) and utilization

for obstetrics unit

No. beds Pr (Delay) Utilization

45 0.666 0.953

46 0.541 0.933

47 0.435 0.913

48 0.346 0.894

49 0.272 0.875

50 0.212 0.858

51 0.163 0.841

52 0.124 0.825

53 0.093 0.809

54 0.069 0.794

55 0.051 0.78

56 0.037 0.766

57 0.026 0.753

58 0.018 0.74

59 0.013 0.727

60 0.009 0.715

61 0.006 0.703

62 0.004 0.692

63 0.003 0.681

64 0.002 0.67

65 0.001 0.66
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and Gynecology (ACOG) to assure timely access to a bed (Freeman and Poland

1997). So does this example show that as long as an obstetrics unit operates below

this ACOG occupancy level of 75 %, the fraction of patients who will be delayed in

getting a bed will be very low?

3.2 The Problem with Using Target Occupancy Levels

Hospital capacity decisions traditionally have been made, both at the government

and institutional levels, based on target occupancy levels—the average percentage

of occupied beds. Historically, the most commonly used occupancy target has been

85 %. Estimates of the number of “excess” beds in the USA, as well as in individual

states and communities, usually have been based on this “optimal” occupancy

figure (Brecher and Speizio 1995, p. 55). In addition, low occupancy levels are

often viewed as indicative of operational inefficiency and potential financial prob-

lems. So hospital administrators generally view higher occupancy levels as desir-

able. However, as we saw previously in this chapter, higher occupancy levels result

in longer delays and so basing capacity on target occupancy levels can lead to

undesirable levels of access for patients.

In the basicM/M/s model is used to demonstrate the implications of using target

occupancy levels to determine capacity in both obstetrics and ICU units in New

York State. Figure 1 from that paper (shown below as Fig. 15.2) shows the

distribution of average occupancy rates for 148 obstetrics units in New York

State for 1997. These data, representing nearly all obstetrics units in New York,

were obtained from Institutional Cost Reports (ICRs), and unlike most other

published data, reflect staffed beds rather than certified beds. The graph shows

that many maternity units had low average occupancy levels with the overall
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average occupancy level for the study hospitals was only 60 %, which, based on the

ACOG standard, would imply significant excess capacity. Applying this 75 %

standard to the 1997 data, 117 of the 148 New York state hospitals had “excess”

beds, while 27 had insufficient beds.

However, if one considers a bed delay target as a more appropriate measure of

capacity needs, the conclusions can be quite different. Now the number of beds in

each unit becomes a major factor since, for a given occupancy level, delays increase

as unit size decreases. While obstetrics units usually are not the smallest units in a

hospital, there are many small hospitals, particularly in rural areas, and the units in

these facilities may contain only five to ten beds. Of the New York state hospitals

considered here, more than 50 % had maternity units with 25 or fewer beds.

In the M/M/s model, probability of delay is a function of only two parameters:

s and ρ, which in our context is the number of beds and occupancy level. Each of the

three curves shown in Fig. 15.3 represents a specific probability of delay as a

function of these two variables as generated by (15.1). Thus, using the unit size

and occupancy level reported on the ICR report for a given maternity unit, we can

determine from this figure if the probability of delay meets or exceeds any one of

these targets. For example, if a maternity unit has 15 beds and an occupancy level of

45 %, it would fall below all three curves and hence have a probability of delay less

than 0.01 or 1 %, meeting all three targets.

Doing this for every hospital in the database, 30 hospitals had insufficient

capacity based on even the most slack delay target of 10 %. (It is interesting to

note that two of the hospitals that would be considered over utilized under the 75 %

occupancy standard had sufficient capacity under this delay standard.) Tightening
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the probability of delay target to 5 %, yields 48 obstetrics units that do not meet this

standard. And adopting a maximum probability of delay of 1 % as was suggested in

the only publication identified as containing a delay standard for obstetrics beds

(Schneider 1981), results in 59, or 40 %, of all New York state maternity units with

insufficient capacity.

How many hospitals in New York State had maternity units large enough to

achieve the ACOG-suggested 75 % occupancy level and also meet a specified

probability of delay standard? Using Fig. 15.3, we see that for a 10 % target, an

obstetrics unit would need to have at least 28 beds, a size that exists in only 40 % of

the state hospitals. For a 5 % standard, the minimum number of beds needed is 41, a

size achieved in only 14 % of the hospitals; for a 1 % standard, at least 67 beds are

needed, leaving only 3 of the 148 or 2 % of the hospitals of sufficient size.

3.3 Choosing a Delay Standard

As the previous analysis illustrates, the number of required beds can change

substantially depending upon what level of delay is considered tolerable. There is

no single right choice and in choosing a delay standard, several factors are relevant.

First, what is the expected delay of those patients who experience a delay? This

performance measure can be easily calculated once both the probability of delay

(15.1) and the average or mean delay (15.2) are known. Specifically,

Expected delay of delayed customers ¼ Wq=pD ð15:8Þ

So returning to our obstetrics example above, Table 15.1 shows that the average

delay is 0.008 days (note that since the input was expressed in days, so is the output)

which multiplying by 24 gives us 0.19 h. So dividing this by the probability of delay

of 0.04 results in an expected delay for delayed patients of about 4.75 h. This may

indicate that the probability of delay standard should be lower. This, of course,

should be considered in light of what this level of congestion means for the

particular hospital.

What are the possible consequences of congestion? In the obstetrics case, while

patients in some hospitals remain in the same bed through labor, delivery, recovery,

and postpartum, in most maternity units, there are separate areas for some or all of

these stages of birth. Therefore, a delay for an obstetrics bed often means that a

postpartum patient will remain in a recovery bed longer than necessary. This, of

course, may cause a backup in the labor and delivery areas so that newly arriving

patients may have to wait on gurneys in hallways or in the emergency room. Some

hospitals have overflow beds in a nearby unit that is opened (staffed) when all

regular beds are full. (This is likely the case for the five hospitals that reported

average occupancy levels exceeding 100 %.) While these effects of congestion

likely pose no medical threat for most patients who experience normal births, there

could be adverse clinical consequences in cases in which there are complications.
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In particular, whether patients are placed in hallways or overflow units, the nursing

staff is likely to be severely strained, thereby limiting the quantity and quality of

personal attention. Even if a hospital is able to obtain additional staffing, it is

usually by using agency nurses who are more expensive and not as familiar with

the physical or operating environment, thereby jeopardizing quality of patient care.

In addition, telemetry devices, such as fetal monitors that are usually in labor and

delivery rooms, may be unavailable in other locations, thus compromising the

ability to monitor often need the resources of an intensive care vital body functions

of both mother and baby. Finally, it is worth noting that such results of congestion

may negatively affect patients’ perceptions of service quality.

Of course, all major capacity decisions need to be made in light of financial

constraints, competing demands, and predictions concerning future demands for the

service.

3.4 Planning for Predictable Changes in Demand

When making capacity decisions about resources that will be used over several

years, it is clearly necessary to consider how conditions may change over that

period of time. So in determining the choice of arrival rate or average LOS for a

queueing analysis of a hospital unit, it would be important to engage in analyses and

discussion to gauge how these parameters may change and then run the model to

determine the sensitivity of capacity levels to these changes.

However, what may not be so obvious is the need to consider the changes in the

arrival rate that are likely to occur on a regular basis due to predictable day-of-week

or time-of-year patterns. For example, obstetrics units often experience a significant

degree of seasonality in admissions. An analysis performed on data from a 56-bed

maternity unit at Beth Israel Deaconess Hospital in Boston (Green and Nguyen

2001) revealed that the average occupancy levels varied from a low of about 68 %

in January to about 88 % in July. As indicated by Fig. 15.4, the M/M/s model

estimate of the probability of delay of getting a bed for an obstetrics patient giving

birth in January is likely to be negligible with this capacity. However, in July, the

same model estimates this delay to be about 25 %. And if, as is likely, there are

several days when actual arrivals exceed this latter monthly average by say 10 %,

this delay probability would shoot up to over 65 %. The result of such substantial

delays can vary from backups into the labor rooms and patients on stretchers in the

hallways to the early discharge of patients. Clearly, hospitals need to plan for this

type of predictable demand increase by keeping extra bed capacity that can be used

during peak times, or by using “swing” beds that can be shared by clinical units that

have countercyclical demand patterns.

Most hospital units experience different arrival rates for different days of the

week. For example, in one surgical intensive care unit, the average admissions per

day over a 6 month period varied from a low of 1.44 for Sundays to a high of 4.40

for Fridays. Using the average arrival rate over the week of 3.34 in a queueing
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model would indicate that given the 12 bed capacity of this unit, the probability of

delay for a bed was about 39 %, indicating serious congestion. However, this is very

misleading because delays will be significantly greater in the middle of the week

and quite small earlier in the week due to the large differences in the admissions

rates (Green and Nguyen 2001). This illustrates a situation in which a steady-state

queueing model is inappropriate for estimating the magnitude and timing of delays

and for which a simulation model will be far more accurate.

It is important to note that while in the obstetrics unit case, most arrivals are

unscheduled and cannot be controlled, in the surgical unit case, the converse is true

since most surgeries are elective. So while there is little that can be done to

minimize the seasonal variability in arrivals for the former, the intra-week variabil-

ity of the surgical unit could be reduced by adjusting the scheduling of surgeries so

as to smooth out the demand over the week. This would result in higher average

levels of bed occupancy and shorter delays for beds.

3.5 Using Queueing Models to Quantify the Benefits
of Flexibility

Health care facilities often have to make a choice as to the extent to which resources

should be dedicated to specific patient types. For example, should there be a

imaging facility just for the use of inpatients, or for emergency patients? Should

there be a “fast-track” unit in the emergency room to deal with simpler, nonurgent

cases. How many distinct clinical service units should be used for hospital
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inpatients? In many of these situations, a queueing analysis can be useful in

evaluating the potential trade-offs between more flexible and more specialized

facilities.

For example, seriously ill patients arriving to a hospital ED often experience

serious delays in being admitted due to highly variable patient demands and

insufficient inpatient bed capacity. Yet hospitals are often reluctant or unable to

add capacity because of cost pressures, regulatory constraints, or a shortage of

appropriate personnel. This makes it extremely important to use existing capacity

most efficiently. Increasing bed flexibility can be a key strategy in alleviating

congestion. For example, hospitals vary in the degree to which they segregate

patients by diagnostic type. While all hospitals have separate units for pediatrics,

obstetrics and psychiatric patients, some also have distinct units for clinical services

such as cardiology, neurology, oncology, urology, neurosurgery, etc. Other hospi-

tals may make no such distinctions and simply designate all of these as medical/

surgical beds. What are the implications of these differing bed assignment policies

on delays for beds?

As mentioned in Sect. 2.1, service systems have economies of scale and so in

general, the less specialized the beds, the larger the pool of beds that can be used for

any type of patient, and therefore fewer beds should be needed to achieve a given

standard of delay. In other words, if one hospital has 100 general medical/surgical

beds, and another has the same 100 beds, but allocated into ten distinct clinical

services, each of which can only be used for patients falling into the appropriate

category, the second hospital will likely have considerably longer delays for beds

(which usually show up as longer stays in the ED) and lower average occupancy

levels than the first. This is pretty clear once you consider that by creating separate

categories of beds, there is the possibility of patients waiting for beds even when

beds are available if they are the “wrong” kind. This also happens when beds are

distinguished by capability, for example telemetry beds.

Clearly, there are many instances in which there are compelling clinical and/or

managerial reasons for maintaining particular patient types in specialized units.

From a medical perspective, there may be benefits derived from having patients

clustered by diagnostic categories in dedicated units managed and staffed by

specialized nurses. These include shorter LOS, fewer adverse events and fewer

readmits. Yet many hospital managers believe that nurses can be successfully cross-

trained and that increasing bed flexibility is ultimately in the best interests of

patients by increasing speedy access to beds and minimizing the number of bed

transfers. By incorporating waiting times, percentage of “off-placements” and the

effects on LOS, queueing models can be used to better evaluate the benefits of

greater versus less specialization of beds or any other resource. This would be done

by simply modeling the general-use unit as a single multi-server queueing system

fed and comparing the results to those from modeling each distinct service as an

independent queue. In the latter case, the overall patient delay can be obtained from

an arrival rate weighted average of the individual queue delays (see e.g., Green and

Nguyen 2001).
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4 Analyses of Flexible Capacity: Determining Staffing

Levels to Meet Time-Varying Demands

As mentioned previously, health care facilities generally experience very different

levels of demand over the day, over the week, and even over the year. Many

facilities adjust their staffing—e.g., physicians, nurses, technicians, housekeeping

staff—in order to respond to the demands in a timely fashion at minimal cost. This

is often done without the help of a quantitative model and can lead to an inefficient

and ineffective allocation of resources. Here we use the example of determining

physician staffing levels in an ED to illustrate how queueing models can be used to

improve performance in these types of situations.

4.1 Data Collection and Model Choices

In order to use a queueing model to determine how to adjust staffing to meet time-

varying demands, it is first necessary to collect fairly detailed data on the volume of

demand that must be handled by that staff by time-of-day and day-of-week. In

collecting demand data, the goal is twofold. First, and most obviously, the data will

be used to parameterize the queueing model. However, before that can be done, it

must first be determined how many staffing models are needed. That is, will staffing

be identical for all days of the week or vary from day to day? For example, in a

study conducted in the ED of a mid-size urban hospital in New York City (Green

et al. 2005), the overall volume varied from a low of 63 patients per day on

Saturdays to a high of 72 per day on Monday. This degree of variation indicated

that the then-current policy of identical staffing levels for all days of the week was

likely suboptimal. However, it was deemed impractical to have a different provider

schedule every day and so it was decided to use queueing analyses to develop two

schedules: weekday and weekend. This required aggregating ED arrival data into

these two groups. For each, demand data was then collected for each hour of the day

using the hospital’s admissions database to understand the degree of variation over

the day (see Fig. 15.5). This level of detail also allows for the use of queueing

analysis to determine the impact of different shift starting times on delays and/or

staffing levels.

A queueing model also requires an average provider service time per patient,

which must include the times of all activities related to a patient. In the ED, these

activities include direct patient care, review of X-rays and lab tests, phone calls,

charting, and speaking with other providers or consults. In many, if not most,

hospitals, these data are not routinely collected. At the time of the study, provider

service times were not recorded and had to be estimated indirectly from direct

observation and historical productivity data.
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4.2 Constructing the Queueing Models

Since the M/M/s model assumes that the arrival rate does not change over the day,

actual service systems that have time-varying demands typically use this model as

part of a SIPP (stationary independent period-by-period) approach to determine

how to vary staffing to meet changing demand. The SIPP approach begins by

dividing the workday into staffing periods, e.g., 1, 2, 4, or 8 h. Then a series of

M/M/s models are constructed, one for each staffing period. Each of these period-

specific models is independently solved for the minimum number of servers needed

to meet the service target in that period. The service target might be a desired

maximum mean delay or probability of delay standard. However, recent research

has shown that the SIPP approach is often unreliable, particularly when average

service times are 30 min or more, and that a simple modification, called Lag SIPP,
is often more effective in identifying staffing levels that achieve the desired

performance standard (Green et al. 2001). This is because in many service systems

with time-varying arrival rates, the time of peak congestion significantly lags the

time of the peak in the arrival rate (Green et al. 1991). While the standard SIPP
approach ignores this phenomenon, the Lag SIPP method incorporates an estima-

tion of this lag and thus does a better job of identifying staffing levels to limit

delays. For the M/M/s model, the lag can be well approximated by an average

service time.
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4.3 Choosing a Delay Standard and Applying
the Queueing Results

In our ED physician staffing study, the Lag SIPP approach was applied by first

advancing the arrival rate curve by our estimate of the average physician time per

patient, 30 min. We then constructed a series ofM/M/smodels for each 2-h staffing

interval, using the average arrival rate for each based on the time-advanced curve

and the average 30 min service time. The delay standard we choose was that no

more than 20 % of patients wait more than 1 h before being seen by a provider. The

use of 1 h is consistent with the time standards associated with emergent and urgent

patient groups used in the National Hospital Ambulatory Medical Care Survey

(McCaig and Burt 2004). The 20 % criterion reflects the approximate percentage of

nonurgent arrivals at the study institution.

The modeling results gave the number of ED physicians needed in each of the

2-h staffing intervals to meet the delay standard. In total, 58 physician-hours were

needed on weekdays to achieve the desired service standard, which represented an

increase of 3 h over the existing staffing level of 55 h. Model runs for the weekend

indicated that the target performance standard could be achieved with a total of

53 provider-hours. In both these cases, the queueing analyses suggested that some

physician hours should be switched from the middle of the night to much earlier in

the day. A more subtle change suggested by the model was that the increase in

staffing level to handle the morning surge in demand needed to occur earlier than in

the original schedule. Though resource limitations and physician availability

prevented the staffing suggested by the queueing analyses from being implemented

exactly, the insights gained from these analyses were used to develop new provider

schedules. More specifically, as a result of the analyses one physician was moved

from the overnight shift to an afternoon shift, 4 h were moved from the weekends

and added to the Monday and Tuesday afternoon shifts (since these were the two

busiest days of the week) and a shift that previously started at noon was moved to

10 a.m. These changes led to shorter average delays and a reduced fraction of

patient that left before being seen by a physician.

5 Using Queueing Models to Improve Health care

Delivery: Opportunities and Challenges

As this chapter has illustrated, service systems are very complex due to both

predictable and unpredictable sources of variability in both the demands for service

and the time it takes to serve those demands. In health care facilities, decisions on

how and when to allocate staff, equipment, beds, and other resources in order to

minimize delays experienced by patients are often even more difficult than in other

service industries due to cost constraints on the one hand and the potentially serious

adverse consequences of delays on the other hand. Therefore, it is imperative that
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these decisions should be as informed as possible and rely upon the best method-

ologies available to gain insights into the impact of various alternatives.

Queueing theory is a very powerful and very practical tool because queueing

models require relatively little data and are simple and fast to use. Because of this

simplicity and speed, they can be used to quickly evaluate and compare various

alternatives for providing service. Beyond the most basic issue of determining how

much capacity is needed to achieve a specified service standard, queueing models

can also be useful in gaining insights on the appropriate degree of specialization or

flexibility to use in organizing resources, or on the impact of various priority

schemes for determining service order among patients.

On the other hand, though queueing models do not require much data, the type of

operational data needed as input to a queueing model is often unavailable in health

care settings. Specifically, though demand or arrival data are often recorded, service

times are usually not documented. So a queueing analysis might require a data

collection effort to estimate, for example, the time that a care provider spends with a

patient. However, as information technology systems become more prevalent in

health care, this type of data will be increasingly available.

In developing the data inputs for a model, it is also very important to make sure

that all of the data needed for the model is collected and/or estimated. On the

demand side, this means including all demands for care, including the ones that may

not have been met in the past because of inadequate capacity. For example, in a

hospital ED, some patients who are forced to wait a long time before seeing a

physician leave the ED before being seen. If these are not captured in the data

collection system that is being used to measure demands, the model will underes-

timate the capacity needed to meet the desired performance standard. On the service

side, it is important to include all of the time spent by the servers that is directly

associated with caring for the patient. For a physician, this may include reviewing

medical history and test results in addition to direct examination of the patient.

In addition to data, a queueing analysis of a particular health care system

requires the identification of one or more delay measures that are most important

to service excellence for that facility. These measures should reflect both patient

perspectives as well as clinical realities. For example, though hospital ED arrivals

with nonurgent problems may not require care within an hour or so from a clinical

perspective, clearly very long waits to see a physician will result in high levels of

dissatisfaction, and perhaps even departure, which could ultimately lead to lost

revenue. Trying to decide on what might be a reasonable delay standard in a specific

health care facility is not trivial due to a lack of knowledge of both patient

expectations as well as the impact of delays on clinical outcomes for most health

problems.

In summary, health care managers are increasingly aware of the need to use their

resources as efficiently as possible in order to continue to assure that their institu-

tions survive and prosper. This is particularly true in light of the growing threat of

sudden and severe demand surges due to outbreaks of epidemics such as SARS and

avian flu, or terrorist incidents. As this chapter has attempted to demonstrate,

effective capacity management is critical to this objective as well as to improving
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patients’ ability to receive the most appropriate care in a timely fashion. Yet

effective capacity management must deal with complexities such as trade-offs

between bed flexibility and quality of care, demands from competing sources and

types of patients, time-varying demands, and the often differing perspectives of

administrators, physicians, nurses and patients. All of these are chronic and perva-

sive challenges affecting the ability of hospital managers to control the cost and

improve the quality of health care delivery. To meet these challenges, managers

must be informed by operational and performance data and use these data in models

to gain insights that cannot be obtained from experience and intuition alone.

Queueing analysis is one of the most practical and effective tools for understanding

and aiding decision-making in managing critical resources and should become as

widely used in the health care community as it is in other major service sectors.
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