
Chapter 7
Dynamics of Nanodroplets on Structured
Surfaces

Markus Rauscher

Abstract Fluids on the nanoscale behave qualitatively different from macroscopic
systems. This becomes particularly evident if a free liquid–liquid or liquid–gas
interface is close to a solid surface such as in the case of nanodroplets. In contrast to
macroscopic drops, hydrodynamic slip, thermal fluctuations, the molecular structure
of the liquid, and the range of the intermolecular interactions are important for
the structure and the dynamics of such open nanofluidic systems. After a review
of the macroscopic modeling and behavior of nonvolatile droplets on structured
substrates, we discuss the static and dynamic peculiarities on the nanoscale with
special emphasis on theory. In particular we show that nanodroplets experience
long-ranged lateral interactions with sharp surface features and that their free energy
might be lower on a less wettable part of the substrate surface. A discussion of
possible experiments for observing these phenomena is followed by a summary and
an outlook.

7.1 Introduction

Droplets are a particularly fascinating manifestation of wetting phenomena which
occur as a result of two fluid phases (e.g., a liquid and a gas or two immiscible
liquids) coming into contact with a solid surface. And they are not only ubiquitous in
our everyday life but also of tremendous technological importance—in many cases
because their formation should be avoided or because they should be removed. But
they can be also used for patterning surfaces. For this reason we have some intuition
how macroscopic droplets on surfaces should behave. In this chapter we show that
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our intuition fails on the nanoscale (see also [1–4]) and we discuss theoretical
approaches to the dynamics of liquids on the nanoscale, simulation methods, and
experimental options.

Speaking of droplets also means speaking about nonvolatile liquids: a drop of
a volatile liquid sitting on a chemically and topographically homogeneous surface
is unstable: it either evaporates or, if the vapor phase is supersaturated, it grows
without bound (or until the vapor reservoir is depleted). As a consequence, wetting
phenomena of nonvolatile liquids are much richer. For example, on a homogeneous
surfaces in contact with a vapor phase one obtains a homogeneous liquid film
of a certain thickness which grows in thickness as one approaches liquid–vapor
coexistence [5,6], whereas a nonvolatile liquid can form droplets. And on structured
substrates one even observes morphological transitions between different droplet
shapes. Strictly speaking, nonvolatility is a question of time scale and in this chapter
we assume that the time scale of evaporation is large as compared to the time scale
of the motion of the nanodroplets.

In the following we speak about liquid droplets surrounded by a thin gas phase
of negligible viscosity on an inert solid substrate. However, apart from the viscous
dissipation in the second liquid phase, the results presented below can be generalized
to a system of two immiscible liquids in a straightforward way.

The following Sect. 7.2 contains a review of the behavior of macroscopic droplets
on chemically (Sect. 7.2.1) and topographically (Sect. 7.2.2) structured substrates,
with particular focus on the aspects which are different on the nanoscale. In Sect. 7.3
the dynamics of nanodroplets on structured substrates is discussed. Section 7.3.1
gives a concise overview of the equilibrium dynamic density functional theory
(DFT) and the effective interface model which describe the equilibrium properties of
nanodroplets. A mesoscopic extension of hydrodynamics is presented in Sect. 7.3.2.
In Sect. 7.3.3 several simulation methods applicable to nanofluidics are compared.
The peculiar behavior of nanodroplets on topographically and chemically structured
substrates is illustrated in Sects. 7.3.4 and 7.3.5, respectively. Section 7.3.6 discusses
experiments which might be capable of observing the dynamics of nanodroplets on
structured substrates. A summary and outlook can be found in Sect. 7.4.

7.2 Macroscopic Droplets

Throughout this section we assume that gravity has a negligible effect on the shape
of the droplets, i.e., that the Bond number Bo = ρ gL2/γ (with the mass density
ρ , the gravitational acceleration g, the surface tension γ , and a characteristic length
scale L) is small. For water droplets this would be the case for radii less than a
millimeter (the capillary length of water is Lcap =

√
γ/(ρ g) = 2.6 mm).

The equilibrium shape of nonvolatile macroscopic droplets on solid substrates is
determined by interface energies [7]. Its free energy is given by

F = ALG γ +ALS γLS +ASG γSG, (7.1)
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Fig. 7.1 A macroscopic liquid droplet of fixed volume V on a flat and homogeneous substrate
forms a hemispherical cap with. The angle θeq between the liquid–gas interface and the substrate
surface is given by Young’s law, i.e., it is determined by the interface tensions γ of the liquid–gas
interface ALG, γLS of the liquid–substrate interface ALS, and γSG of the substrate–gas interface ASG.
Here γLG = γSG and therefore θeq = 90◦

with the area of the liquid–substrate interface ALS, the area of the liquid–gas
interface ALG, and the area of the substrate–gas interface ASG. The corresponding
interface tensions are γLS, γ = γLG, and γSG, respectively. Fixing the total substrate
area A= ASG+ALS as well as the liquid volume V and minimizing F with respect to
the shape of the liquid–gas interface lead to Young’s law for the equilibrium contact
angle θeq

cosθeq =
γSG − γLS

γ
(7.2)

and to the Euler–Lagrange equation

2γ HLG + p = 0, (7.3)

which states that the Laplace pressure is constant on the liquid–gas interface. HLG is
the mean curvature of the liquid–gas interface and p is the hydrostatic pressure in the
droplet. The pressure p is the Lagrange multiplier which fixes the liquid volume V .
Therefore the liquid–gas interface has a constant mean curvature and in the case of a
flat substrate (7.3) together with Young’s equation (7.2) as boundary condition leads
to a spherical cap as shown in Fig. 7.1 for the example of θeq = 90◦.

7.2.1 Chemically Structured Substrates

On homogeneous substrates the free energy of the droplet is independent of the
position of the droplet. This is also the case for droplet positions on a homogeneous
part of a substrate, e.g., on a hydrophilic or on a hydrophobic patch of a chemically
structured substrate, or on a flat region of a topographically structured substrate.
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On a chemically heterogeneous substrate this is no longer true. In this case,
the contributions from the substrate surface to the free energy in (7.1) have to be
replaced by an integral over the substrate surface

F = ALG γ +
∫

ALS

γLS(r)dA+

∫

ASG

γSG(r)dA. (7.4)

On a chemically heterogeneous substrate the interface energies γLS(r) and γSG(r)
depend on the position r on the surface. If a droplet is positioned on a chemical step
between a hydrophilic region and a hydrophobic region, it will move to hydrophilic
side and it stops as soon as the complete liquid–substrate interface rests on the
hydrophilic part [8] (unless the initial shape of the droplet is far from equilibrium
which can result in the droplet being situated completely on the more hydrophobic
part of the surface after the initial shape relaxation where it will simply stay [9]).
On a surface with a continuous variation of the wetting properties (a so-called
chemical gradient), drops can move over distances greater than their diameter
[10–12].

Chemically structured substrates have been suggested as an alternative to closed
channels for microfluidic applications. This approach is based on the macroscopic
observation that nonvolatile liquids on a hydrophobic substrate patterned with
hydrophilic stripes will stay on these so-called chemical channels [13, 14] even if
driven along the channels [15–17].

7.2.2 Topographically Structured Substrates

As mentioned above, the free energy of a droplet is independent of the droplet
position only if the substrate is homogeneous and flat. The free energy of a droplet
on a topographically structured substrate is also given by (7.1); however, calculating
the first variation of F with respect to the shape of the liquid–gas interface and
the position of the three-phase contact-line is a nontrivial task. Finite element
codes such as the SURFACE EVOLVER can be used to determine the equilibrium
shape of droplets numerically [18]. Topographically structured substrates have many
technological applications: roughness modifies the wetting properties leading to
superhydrophilic (for θeq < 90◦) or superhydrophobic (surfaces for θeq > 90◦)
surfaces (the first ones are suggested as anti-fogging coatings and the latter ones
have self-cleaning properties) [19–22]. As a result gradients in the roughness are
expected to induce the motion of droplets in the same way as the chemical gradients
mentioned above [23].

Grooves in surfaces can guide liquids in a way similar to chemical channels [24–
26]. This is based on the observation that droplets are pinned by edges on surfaces.
It has been already observed by Gibbs [27] that at the edge the contact angle is ill
defined as shown in Fig. 7.2. It can be measured with respect to either of the sides
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Fig. 7.2 The three-phase contact-line of a droplet approaching an edge in the substrate (here from
left to right) advances only if the angle of the liquid–gas interface with the substrate is larger than
the equilibrium contact angle θeq. At the edge the contact angle is ambiguous and in order to move
down the slope of the edge it has to increase from θeq to θeq +α , with the angle of the slope α

of the edge. In order to overcome the edge the contact angle with the down-hill side
of the edge has to be larger than the equilibrium contact angle θeq [28]. Actually
it has to be even larger than the so-called advancing contact angle, which is larger
than θeq. Even a rounded edge can pin a three phase contact line; however, the
pinning strength depends on the edge shape [29]. Pinning at defects is the main
reason for the difference of contact angle if the three phase contact line is receding
(e.g., in dewetting) or advancing (e.g., for spreading droplets). Only recently it has
become possible to directly measure the pinning strength of individual nanoscale
defects [30].

Topographically structures can also trigger morphological phase transitions of
the shape of droplets, e.g., between drops and filaments in rectangular grooves
[24, 26]. And on fibers one observes a transition from a symmetric barrel shape
for large volumes and small contact angles to an asymmetric clamshell shape for
small volumes and large contact angles [31].

7.2.3 Dynamics

For radii larger than a micron the dynamics of nonvolatile liquid droplets is well
described by macroscopic hydrodynamic equations. Here we focus on incompress-
ible simple Newtonian liquids surrounded by a vapor or gas of negligible viscosity
and density. On the micron-scale the Reynolds number Re = ρ U L/η (with a
characteristic velocity U and the liquid viscosity η) is much smaller than one and
the liquid velocity u(r, t) as well as the pressure p(r, t) can be determined by solving
the Stokes equation

∇p = η ∇2u (7.5)

together with the incompressibility condition

∇ ·u = 0. (7.6)
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For incompressible nonvolatile liquids the normal velocity v= n̂ ·u of the moving
liquid–gas interface is given by the component of the liquid velocity normal to the
interface (n̂ denotes the outward normal vector at the liquid–gas interface). In the
Monge parameterization z = h(x,y, t) the nonlinearity of this kinematic condition
becomes apparent:

∂t h = uz − ux ∂xh− uy ∂yh at ALG. (7.7)

At the surface of impermeable substrates the normal component of the liquid
velocity vanishes. Macroscopically it is valid to assume that the tangential velocity
is also zero [32]. With the substrate surface at rest this leads to a Dirichlet type
boundary condition at the substrate interface

u = 0 at ALS. (7.8)

Here we assume that the viscosity and pressure of the gas phase are negligible
such that the tangential forces on the liquid–vapor interface vanish and the normal
component of the stress tensor is balanced by the Laplace pressure from (7.3).
In summary we have

σ · n̂ = 2γ HLG n̂ at ALG, (7.9)

with the stress tensor of an incompressible Newtonian fluid

σi j =−pδi j +η (∂ jui + ∂iu j) . (7.10)

Up to the motion of the three-phase contact-line between liquid, gas, and
substrate, the dynamics of a macroscopic droplet is well described by (7.5) to (7.10).
Within these equations, the stress σ and also the dissipation in a moving three-
phase contact-line diverges. As a consequence it should not move [5, 33] although
everyday experience tells that it does [34]. This is an artifact of this macroscopic
model.

7.3 Nanofluidics

On the nanoscale, phenomena which are either irrelevant or summarized in
hydrodynamic boundary conditions come into play which lead to qualitative
changes in the equilibrium properties as well as in the dynamics of liquids. These
are on one hand the finite range of intermolecular forces, thermal fluctuations, and
the molecular structure of the liquid which also strongly influence static wetting
properties and on the other hand hydrodynamic slip which strongly influences the
dynamics [1, 3, 4]. In the following we show how to augment the hydrodynamic
equations presented in Sect. 7.2 such that they can be used to describe the dynamics
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Fig. 7.3 For the clarity of the presentation, we consider a structured substrate aligned with
the xy-plane and we assume that the liquid–gas interface can be parameterized by the Monge
parameterization z = h(x,y, t)

of nanodroplets. Unfortunately it is not yet possible to include the effects of the
molecular structure of the liquid into dynamical theories. The static molecular
structure of liquids is well understood [35].

For the clarity of the presentation, in the following we consider a (structured)
substrate aligned with the xy-plane of our coordinate system and we assume
that the liquid–gas interface has no overhangs such that we can use the Monge
parameterization z = h(x,y, t) as illustrated in Fig. 7.3.

7.3.1 Density Functional Theory

Great progress has been made in understanding wetting phenomena by using the
classical DFT for inhomogeneous systems [36]. One can show that there exists a
functional Ω[ρ ] which is minimized by the equilibrium density distribution of a
grand canonical ensemble of classical particles (i.e., a system of a given volume
V in thermal and chemical equilibrium with a bath at a given temperature T and
chemical potential μ). For a one-component system of indistinguishable particle
this functional has the form

Ω[ρ ] = Fid[ρ ]+Fext[ρ ]+Fex[ρ ]− μ
∫

V
ρ(r)d3r, (7.11)

with the ideal gas part (Λ = h/
√

2π mkB T with the Planck constant h, the
Boltzmann constant kB, the molecular mass m is the thermal de Broglie wavelength)

Fid[ρ ] = kB T
∫

V
ρ(r)

(
ln
(
ρ(r)Λ3)− 1

)
d3r, (7.12)

with the contribution due to an external potential Φext(r) which also describes the
substrate

Fext[ρ ] =
∫

V
ρ(r)Φext(r)d3r, (7.13)
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and with the so-called excess free energy Fex[ρ ] due to the intermolecular
interactions.

The proof of existence of a classical DFT is non-constructive and Fex[ρ ] is only
known exactly in two cases: for ideal gases (Fex[ρ ] = 0) and for a one-dimensional
system of hard particles [37]. But rather sophisticated functionals for hard-sphere
systems are available [38, 39]. The advantage of these functionals is that they can
even capture the molecular structure of the liquid such as layering effects near
hard walls. We want to use the DFT results to understand not only the equilibrium
properties of droplets but also their dynamics.

Unfortunately, it is not possible up to now to include effects of the molecular
structure of the liquid into hydrodynamic theory. However, one can make significant
progress by splitting the intermolecular interaction potential into a short-ranged,
hard repulsive part and a long-ranged attractive part Φatt(r). One effectively gets a
system of hard spheres with soft attractions. If one further neglects short distance
correlations in the liquid due to packing effects, one can use a local approximation
for the hard sphere part of the density functional leading to

Fex[ρ ] =
∫

V

(
fHS (ρ(r))+

1
2

ρ(r)
∫

Φatt(|r− r′|)ρ(r′)d3r′
)

d3r, (7.14)

with the Carnahan–Starling expression fHS(ρ) = kB T ρ
(

ln(ρΛ3)− 1+ 4η−3η2

(1−η)2

)

and the packing fraction η = 4π
3 R3 ρ [35]. The (effective) particle radius R depends

on the temperature and on details of the repulsive part of the intermolecular
interactions.

In a liquid film the liquid density rises from zero right at the substrate surface
to the bulk liquid density ρL within a few molecular diameters. Far from critical
points the liquid–gas interface has a width of the order of a few molecular diameters.
Within this interface the density changes gradually from the bulk liquid density to
the bulk gas density ρG.

On a mesoscopic length scale the density distribution of liquid molecules within
a film of thickness h is reasonably well approximated by step-like profile

ρstep(z,h) =

⎧
⎨

⎩

0, for z < 0
ρL, for 0 < z < h
ρG, for h < z

. (7.15)

The density of a film of laterally varying thickness h(x,y) is given by ρstep(z,h(x,y)).
Therefore, the density is parameterized by the film thickness h(x,y) and the density
functional in (7.11) reduces to a functional of h(x,y), which is called effective
interface Hamiltonian [6, 40]. If the curvature of the liquid–gas interface HLG

is small (i.e., if the radii of curvature are large as compared to the range of
the intermolecular interactions), the surface tension can be written in a local
approximation leading to
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H [h] =
∫ (

γ
√

1+(∇h)2 +ω(x,y,h(x,y))− ph(x,y)

)
dxdy. (7.16)

The so-called effective interface potential ω(x,y,z) describes the effective inter-
action between the liquid–substrate and the liquid–gas interface and the pressure
p is proportional to the chemical potential μ at liquid–gas coexistence. Far
from the substrate surface ω(x,y,z) goes to zero. The Euler–Lagrange equation
corresponding to (7.16)

2γ HLG +Π(x,y,z)+ p = 0 at z = h(x,y), (7.17)

with the disjoining pressure Π(x,y,z) = ∂ω(x,y,z)/∂ z, balances the pressure, the
Laplace pressure, and the disjoining pressure at the liquid–gas interface.

Although strictly speaking the DFT is only valid for grand canonical systems,
it can be used to describe nonvolatile liquids (i.e., canonical ensembles) if one
interprets the pressure in (7.17) as the Lagrange multiplier which fixes the liquid
volume. In this sense (7.17) generalizes (7.3) to the nanoscale.

Assuming additive and pairwise interactions, the disjoining pressure can be
expressed in terms of the attractive part Φatt of the liquid–liquid interaction potential
and the liquid–substrate interaction potential Φsub as an integral over the substrate
volume [41]

Π(r) =
∫

substrate

(
ρ2

L Φatt(r− r′)−ρL ρS(r)Φsub(r)
)

d3r. (7.18)

The external potential in (7.13) is given by Φext(r) =
∫

subs. ρS(r)Φsub(r− r′)d3r′,
with the substrate density ρS(r). For inhomogeneous substrates the substrate density
depends on the position in the substrate. Assuming power law potentials ∼ r−α

each integration increases the exponent by one. Therefore the contribution from
the bulk of the substrate (after integration with respect to x, y, and z) is ∼ r−α+3

and therefore the one with the largest exponent and the longest interaction range.
In experiments the wetting properties of surfaces are often modified by thin coatings.
The contribution of such a thin coating to the disjoining pressure is then calculated
by effectively integrating with respect to x and y only such that it is ∼ r−α+2, i.e.,
much weaker and shorter in range than the contribution from the bulk. Thick liquid
films therefore only “see” the bulk of the underlying substrate.

For Lennard-Jones type interaction potentials (the long-ranged attractive part of
which is given by (non-retarded) van-der-Waals type dispersion forces) the effective
interface potential of a homogeneous and flat substrate have the form

ω(z) =
AH

z2 +
B
z3 +

C
z8 , (7.19)

with the Hamaker constant AH and C > 0. AH > 0 and B< 0 correspond to the rather
generic case of a substrate with a first order wetting transition and AH < 0 and B = 0
to a substrate that exhibits critical wetting (see Fig. 7.4). In (7.18) one can generate
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Fig. 7.4 The effective interface potential ω(z) of a flat and homogeneous partially wetting
substrate as a function of the distance z from the substrate surface has a minimum of depth −ω0
at z = h0. Shown are two examples, one with positive Hamaker constant AH > 0 (full red line) and
one with negative Hamaker constant AH < 0 (dashed blue line)

the term proportional to B by assuming a very thin layer of a different material at
the substrate surface. In real systems this term is also generated by the atomistic
structure of the substrate and therefore it is rather generic [42]. For partially wetting
substrates ω(z) has a minimum at z = h0 of depth ω0 =−ω(h0). By integrating the
Euler–Lagrange equation (7.17) for a drop of infinite size (i.e., for p = 0) one can
show that γSG − γLS = γ −ω0 and therefore

cosθeq = 1− ω0

γ
. (7.20)

The deeper the minimum of ω(z), the larger the macroscopic equilibrium contact
angle θeq. ω0 > 2γ corresponds to complete drying and ω0 = 0 (i.e., if ω(z) does
not have a minimum at finite distance from the substrate) corresponds to complete
wetting θeq = 0◦.

Figure 7.5 shows the disjoining pressure for van-der-Waals type dispersion forces
in the vicinity of a straight topographic step of height s = 3h0 in an otherwise
homogeneous substrate [43]. The material parameters in (a) and (b) are chosen such
that the effective interface potential far from the step (|x| → ∞) is given by the solid
and dashed line in Fig. 7.4, respectively. The system is translationally invariant in
y-direction. For AH > 0 (Fig. 7.5a) the disjoining pressure is positive for large z. Far
from the step, as a function of z there is a local maximum at a distance of about 3h0

from the surface and there is a local minimum at a distance of about 1.15h0. As one
approaches the edge from the left, the minimum becomes deeper and the maximum
higher. For AH < 0 (Fig. 7.5b) the disjoining pressure is negative for large z. Far
from the step, as a function of z there is only a minimum at a distance of about
1.2h0 from the substrate. As one approaches the step from the left, the minimum
becomes more shallow.

Figure 7.5 clearly shows that on the nanoscale the topographic step induces a
lateral variation of the disjoining pressure. For van-der-Waals type forces and for
large |x| (and finite z) we have Π(x,z)−Πhom(z) ∼ Ah s/x4, with the disjoining
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Fig. 7.5 The disjoining pressure Π(x, z) at a straight topographic step of height s = 3h0 which is
aligned with the y-axis for (a) AH > 0 and (b) AH < 0. The parameters are chosen such that the
corresponding effective interface potentials far from the step (i.e., for x → ∞) are those shown in
Fig. 7.4. The substrate is shown in black. In the white region next to the substrate the disjoining
pressure is extremely large. The upper boundary of the white region roughly corresponds to the
contour line Π(x, z) = 0. In (a) the disjoining pressure is positive for large z and in (b) it is negative

pressure of the flat and homogeneous substrate Πhom(z) = lim|x|→∞ Π(x,z). As we
will see later, a nanodroplet placed in the vicinity of such a step will experience a
lateral force and the sign of this force depends on the sign of AH.

7.3.2 Mesoscopic Hydrodynamics

Equation (7.17) not only allows to calculate the equilibrium shape of nanodroplets
but it can be also used to generalize the stress boundary condition for the Stokes
flow (7.9): the normal component of the stress tensor in the liquid is balanced by the
Laplace pressure and the disjoining pressure

σ · n̂ = (2γHLG +Π) n̂ at ALG. (7.21)

Equation (7.21) effectively takes into account the long-ranged nature of
intermolecular interactions. And it has been shown, that, e.g., dewetting dynamics
of thin films can be modeled quantitatively using this approach [44, 45].

Thermal fluctuations can be phenomenologically modeled by a randomly
fluctuating stress tensor S(r, t) of zero mean 〈S(r, t)〉 = 0 and correlation
function [46]
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〈
Si j(r, t)Slm(r

′, t ′)
〉
= 2η kB T δ (r− r′)δ (t − t ′)(δil δ jm + δim δ jl). (7.22)

The amplitude of the noise is dictated by the fluctuation dissipation theorem. This
form proposed can also be derived from the deterministic Boltzmann equation
in a long-wave approximation [47]. Noisy hydrodynamical equations have been
discussed in the context of turbulence in randomly stirred liquids [48,49] as well as
for the onset of instabilities in Rayleigh–Bénard convection [50] and Taylor–Couette
flow [51]. Since the right-hand side of the Stokes equation (7.5) is the divergence of
the deviatoric part of the stress tensor, we get

∇p = η ∇2u+∇ ·S. (7.23)

It has been shown that including thermal fluctuations is crucial for understanding
spinodal dewetting of thin films [52], i.e., when a soft mode is present in the system,
or in order to overcome energetic barriers. If there is no barrier (or if it is to high to
be overcome by thermal fluctuations) and if there is no soft mode, the main effect
of thermal fluctuations in a droplet or in a thin film is capillary waves, which can
lead to an effective steric repulsion of the liquid–gas interface from the wall, for a
review see [53]. This effect can be summarized into the effective interface potential
such that in the following we will not explicitly discuss the influence of thermal
fluctuations on the dynamics of nanodroplets.

Slip at the liquid–substrate interface is a result of structural changes in a liquid
in the direct vicinity of an interface. These structural changes lead to changes in the
rheology of the liquid. Another reason for slip is the weak coupling of a liquid to
a hydrophobic substrate. If one extrapolates the flow profile in a droplet (e.g., ux(z)
on a flat substrate located in the xy-plane) to the substrate surface, one sometimes
finds that the height z at which the velocity goes to zero is negative, i.e., at a point
within the substrate. The depth b at which ux(b) = 0 is called the slip length and for
simple liquid it is usually on the nanometer scale [32]. Therefore it is irrelevant for
macroscopic systems. However, it has been shown that hydrodynamic slip strongly
influences dewetting phenomena [54–56].

On the length scale of a few inter-atomic distances and above, slip can be
effectively described by replacing (7.8) by a Navier slip boundary condition

u⊥ = 0 and u‖ = b∇⊥u‖ at ALS. (7.24)

Here u⊥ = u · n̂S denotes the component of the flow field perpendicular to the
substrate surface (which has to be zero for impermeable substrates) and u‖ =
u−u⊥ n̂S the components (two in three dimensions) parallel to the substrate surface.
∇⊥ = n̂S ·∇ is the derivative in the direction normal to the substrate surface and
n̂S denotes the normal vector to the substrate surface pointing into the liquid. The
Navier slip boundary states that the slip velocity u‖ is proportional to the shear stress
in the direction parallel to the substrate surface σ · n̂S.
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7.3.3 Simulation Methods

Equations (7.5), (7.6), (7.7), (7.21), and (7.24) form a nonlinear moving boundary
value problem. Solving these equations is further complicated by the fact that
the dynamics of nanodroplets is dominated by surface tension, which requires
precise calculation of the curvature (i.e., of the second derivative) of the liquid–
gas interface. In addition, the disjoining pressure is rather stiff (i.e., it has steep
gradients) in the vicinity of the substrate surface.

In a thin film geometry the typical lateral length scale L‖ parallel to the
substrate surface is much larger than the typical length scale L⊥ perpendicular to
the substrate surface. In the so-called lubrication approximation for L⊥/L‖ → 0
some of these complications can be overcome [33]. This approximation has been
used to model thin film flow on topographically [57–62] and chemically [63–
65] structured substrates. The disjoining pressure in the vicinity of a substrate
surface structure varies on the same small length scale L⊥ in normal as well as
in lateral direction. Therefore, in the lubrication approximation, the long-ranged
lateral variation of the disjoining pressure becomes short-ranged and the lubrication
approximation is not suitable for modeling the lateral interaction of a droplet with
a substrate structure. However, it has been very successfully used to model the
dynamics of liquids on homogeneous substrates [44, 45].

Lattice Boltzmann (LB) simulations have become a very valuable tool for
simulating free surface flows [66–70], which has been successfully used to study
liquids in contact with structured substrates [71–81]. But although the LB method is
often called “mesoscopic” because the free interface between the two fluid phases
(between liquid and gas or between two immiscible liquids) is diffuse with a width
of a few lattice constants, it is essentially a method to solve macroscopic free
interface problems. In most LB simulations of multiphase flows the width of the
interface is unphysically large, which, in particular, can influence the dynamics
of the three phase contact line. Although it is in principle possible to include
arbitrary external potentials, long-ranged intermolecular interactions in the form of
an effective interface potential have not been included into the method. One obstacle
is the weak but finite compressibility of existing LB methods. In addition, in LB
simulations, the material parameters are tightly coupled to the lattice size and to
the simulation time step which makes it a nontrivial task to use LB for nanoscale
systems.

In phase filed methods the free interface is also diffuse. The motion of the free
interface is modeled by coupling a phase field which has a value of, e.g., +1 in
the liquid phase and −1 in the gas phase (alternatively 0 and +1) to the Navier
Stokes equations [82]. This method has been used to describe the dynamics of
droplets [83] and thin films [84–86]. Within the thin film approximation derived
from a phase field model also long-ranged intermolecular interactions have been
taken into account [87, 88]. However, all the efforts up to now have been targeting
homogeneous substrates only.
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The linearity of the Stokes equation (7.5) can be used to turn the moving
boundary value problem (7.5), (7.7), (7.21), and (7.24) into an integral equation
on the surfaces and interfaces surrounding the liquid. Although this method has
been successfully used to describe the motion of three-dimensional droplets [89–
92], for clarity we focus on the simpler two-dimensional case in the following.
With the stream function ψ(x,z), with ux = ∂zψ and uz = −∂xψ , and the vorticity
ϖ = ∂zux − ∂xuz one can write the Stokes equation (7.5) in its biharmonic form

∇4ψ = 0 and ∇2ϖ = 0. (7.25)

The vorticity and the stream function are coupled via ∇2ψ = ϖ . Using the Green’s
functions to the equations in (7.25) one can write ψ and ϖ inside the liquid as an
integral over the surfaces surrounding the liquid [93]. The boundary conditions can
also be written in terms of the ψ and ϖ and one obtains a set of equations for the
dynamics of the free surface which only involves the values of ψ and ϖ on the
surface [94]. Modeling the dynamics of droplets with this scheme requires explicit
front tracking, but it is possible to use this method to simulate the dynamics of two-
dimensional nanodroplets on structured substrates [2].

All the results on the dynamics of nanodroplets on structured substrates to be
discussed below are based on the equilibrium DFT in (7.11) or on linking DFT
to hydrodynamics. However, density functionals are not known exactly and the
mesoscopic hydrodynamic (7.5), (7.6), (7.7), (7.21), and (7.24) the shear stress
σ (see (7.10)) is considered in a local approximation only. In a more consistent
description of the dynamics of a liquid on a length scale at which the finite range of
intermolecular interactions matters, the non-locality of the stress tensor should be
taken into account.

For over-damped Brownian dynamics (a model for the dynamics of suspended
colloidal particles) there is a systematic dynamic extension of the equilibrium DFT.
This dynamic DFT is based on an equilibrium approximation for the two-particle
correlation function [95–97]. Although several attempts towards a dynamical DFT
for simple liquids have been made [98, 99], the main obstacle has not been
overcome: in liquids the dominant contribution to the viscosity comes from the
distortion of the two point correlation function in a shear flow [100, 101] and the
equilibrium approximation used for the dynamic DFT for Brownian particles would
set this contribution to exactly zero.

Great insight into the molecular structure and dynamics of liquids can be
provided by molecular dynamics (MD) simulations [102], i.e., by solving Newton’s
equations of motion for all atoms in the system. The reason why quantum effects
are negligible in most liquids (except for ultra-cold Helium) is that the thermal
wavelength Λ = h/

√
2π mkB T (see (7.12)) is smaller than the average distance

of the molecules. The molecular dynamics of both free surface liquid flow on
chemically [16, 17, 81, 103, 104] and topographically [105–108] structured surfaces
has been studied using MD simulations. Although the length scale considered in MD
simulations is necessarily on the nanoscale the effect of the long range of dispersion
forces on the dynamics of thin films and droplets is ignored in MD simulations.
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This is because the range of intermolecular interactions has to be truncated in order
to reduce the computational costs. Without truncation each molecule interacts with
each other molecule and for N molecules N (N − 1) interaction forces have to be
calculated in each time step. If the interaction is truncated (typically at two or three
typical molecular distances) the number of force calculations per time step grows
only linearly with N and not quadratically.

However, for extremely small systems it might be possible to avoid to truncate
the range of interactions. In order to avoid finite size effects one has to keep the
gas density low if one wants to keep the number of particles small even in a big
simulation box. This can be achieved by considering chain molecules consisting of
a few atoms rather than atomic systems [16, 81].

7.3.4 Topographically Structured Substrates

In the vicinity of topographical steps one observes that nanodroplets move laterally
[43, 109]. The direction of motion, however, does not depend on the value of
the equilibrium contact angle far from the step but on the sign of the Hamaker
constant AH. Near the step shown in Fig. 7.5a nanodroplets move to the left on
both sides of the step and in the case shown in Fig. 7.5b to the right, i.e., step up
for AH > 0 and step down for AH < 0, respectively. Since the lateral variation of
the disjoining pressure is long-ranged, droplets moving away from the step do never
stop. However, the droplet velocity decreases rapidly as a function of the distance
from the step.

Droplets moving towards the step do not cross it. From the top there is an energy
barrier (similar to the Ehrlich–Schwoebel-barrier for an adatom on the terrace of
a vicinal crystal surface [110, 111]): to overcome the edge the drop has to deform
in such a way that surface area increases which results in an increase of the free
energy. This is also true in a macroscopic picture (see Sect. 7.2) or for purely
short-ranged interactions. Two-dimensional droplets approaching the step from the
bottom stop right in front of the wedge (see Fig. 7.6c) rather than moving into the
wedge, although this configuration should represent the global energetic minimum.
It is not clear whether this is an artifact of the two-dimensional system or whether
there is also a barrier for a three-dimensional droplet. Attempts to directly minimize
the droplet free energy in (7.16) using finite element methods [18] (Fig. 7.6a shows
a snapshot of an intermediate state of the minimization procedure) have not been
conclusive on this respect due to numerical stability problems. However, as shown
in Fig. 7.6b, after a rapid initial shape relaxation, during energy minimization the
center of mass of the droplet moves in the direction expected for a steepest decent
algorithm, i.e., towards the step.

The lateral motion of nanodroplets can be understood as the motion of a droplet
on a chemical gradient surface [10, 11] if one defines a “local equilibrium contact
angle” by generalizing (7.20) to heterogeneous substrates
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Fig. 7.6 (a) A nanodroplet at the base of a topographic step of height s = 40h0 with AH > 0 and
an equilibrium contact angle θeq = 90◦. The droplet is connected to a wetting film which covers the
whole surface. The shape of the droplet was minimized with the SURFACE EVOLVER [18] which
uses a steepest decent algorithm. (b) The inset shows the horizontal distance of the droplet’s center
of mass from the step as it evolves in the process of minimization. The position of the droplet has
not reached its minimum yet. The existence of an energetic barrier for the droplet to move into the
step could not be confirmed or ruled out on the basis of the numerical data. (c) Initial (dashed line,
after shape relaxation) and final (full line) state of a two-dimensional boundary element simulation
of a droplet at the base of a very high step with AH > 0 and θeq = 90◦ [43]

cosθeq(x) = 1+
∫ ∞

h0(x)

Π(x,z)
γ

dz = 1+
ωmin(x)

γ
, (7.26)

with h0(x) defined via Π(x,h0(x)) = 0 and ∂zΠ(x,h(x)) < 0. In other words,
ω(x,h0(x)) = ωmin(x) with ωmin(x) = min0<z<∞ ω(x,z). Figure 7.7 shows ωmin(x)
for the two steps shown in Fig. 7.5. Apart from the immediate vicinity of the
step edge, for positive Hamaker constants ωmin(x) increases from right to left and
for negative Hamaker constants ωmin(x) increases from left to right. In order to
calculate the actual value of θeq(x) one further has to specify ω0/γ . For ω0/γ = 1
one has θeq = 90◦ far from the step. The resulting position-dependent contact angle
is indicated on the right abszissa of Fig. 7.7. Since far from critical points h0 is a
microscopic length (between an Ångsrøm and a nanometer) the equilibrium contact
angle changes by a few degrees over a few nanometers, i.e., the gradient of θeq(x)
is much larger than on macroscopic chemical gradient surfaces [10]. Therefore it is
not surprising to see the nanodroplets migrate.
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Fig. 7.7 The value of the minimum of ω(x, z) as a function of z for fixed x plotted vs. x for the
cases of AH > 0 (full red line, see Fig. 7.5a) and AH < 0 (dashed blue line, see Fig. 7.5b). The data
points between x/h0 = −1 and x/h0 = 2 (shaded region) are not shown since they are to close to
the step to be meaningful. The horizontal line indicates the value expected for large distances from
the step. An increasing value of ωmin(x) corresponds to a decreasing value of θeq(x). Therefore
θeq(x) increases from left to right for AH > 0 (apart from the interval 2 < x/h0 < 4.14) and it
decreases for AH < 0. The corresponding values of θeq(x) for a substrate with θeq = 90◦ (i.e., for
ω0/γ = 1) far from the step are given at the right abszissa

For x > 0 the curve for AH > 0 has a maximum near x/h0 ≈ 4. This corresponds
to a minimum of θeq(x). One might be tempted to interpret this as the signature of
an energy barrier for a droplet coming from the right. However, this would be an
over-interpretation of the simple picture of a step-induced chemical gradient.

Figure 7.6 shows that within the effective interface model, the step edge is
covered by a thin wetting film. On partially wetting substrates the thickness of
this film can be a nanometer (1.3 nm for molten polystyrene on silicon [44]), but
it is usually on the order of an atomic diameter or even less. This means that it is
a layer of adsorbed molecules rather than a liquid film. Nevertheless, this wetting
film leads to an effective rounding of the step edge. On the nanoscale the three
phase contact line is not pinned at the step edge as shown in Fig. 7.2 but it moves
continuously around the edge [112]. However, this has only a small effect on the
pinning strength of an edge as does macroscopic rounding of the edge.

The situation is different at step edges. As the step height approaches zero,
the disjoining pressure (see for example Fig. 7.5) converges steadily to that of a
homogeneous flat substrate (for z > 0). In this limit the wetting film on the vertical
wall (α = 90◦) of the step (see Fig. 7.6 for a hight step) smoothly turns into a
horizontal line and the slope of the steepest part of the film smoothly becomes
zero. However, this means that the step effectively becomes a step with a slanted
wall α < 90◦ which, according to the macroscopic argument illustrated in Fig. 7.2,
pins the three phase contact line much weaker. This is also observed in dewetting
experiments on substrates with nanometric steps [113]. In this case the critical step
height for pinning of the receding contact line was on the order of the radius of
gyration of the polymer molecules. The effective interface model described above
results in a similar threshold value for the step height.
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Fig. 7.8 The effective interface potential in the vicinity of a straight chemical step formed by
merging two quarter spaces. The left part (x < 0 and z < 0) is made of the material in Fig. 7.5a
with AH > 0 and the right part (x > 0 and z < 0) of the material in Fig. 7.5b with AH < 0. ω0
and therefore θeq far from the step is equal on both sides. In the top part ωmin(x) is shown (full
green line) as well as the asymptotic value far from the step (black dashed line). The corresponding
values of θeq(x) for a substrate with θeq = 90◦ (i.e., for ω0/γ = 1) far from the step are given at the
right abszissa

7.3.5 Chemically Structured Substrates

Using the techniques described above it has been shown that nanodroplets in the
vicinity of chemical steps exhibit a similar behavior if the step separates two parts
of the substrate which consist of different bulk materials [114, 115]. This is the
case, e.g., if one cuts a compound material consisting of inclusions embedded in a
matrix, or if one fuses two bulk samples and polishes the surface. In these cases,
the Hamaker constants differ on the two sides of the step and one gets the same
type of long-ranged lateral interaction of the droplet with the step as in the case of
the topographic step.

Figure 7.8 shows the effective interface potential in the vicinity of a straight
chemical step formed by merging two materials with the same equilibrium contact
angle, i.e., ωmin(+∞) = ωmin(−∞) = ω0. However, the Hamaker constant on the
left side is positive and on the right side it is negative. One can clearly see how the
left-hand side influences the effective interface potential on the right-hand side and
vice versa. For example, close to the step but on its right hand side ω(x,z) is positive
far from the substrate (i.e., for large z) even though the underlying substrate has a
negative Hamaker constant. ωmin(x) is shown in the upper part of Fig. 7.8. On both
sides of the step ωmin(x) decreases as for increasing x (apart from a narrow region
in the direct vicinity of the step. As a consequence, θeq(x) increases from left to
right and therefore a nanodroplet moves from right to left. However, coming from
the right-hand side, it stops before crossing the step.
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In general one observes that nanodroplets move towards the side with the larger
Hamaker constant if they start at a certain distance from the step (i.e., if they
do not span the step), independent of θeq far from the step [114]. If the more
wettable substrate has a larger Hamaker constant, a droplet starting on the less
wettable substrate has a chance to cross the chemical step and move away from
the step on the more wettable side. However, whether there is a barrier depends on
subtle details.

The direction of motion of nanodroplets spanning the chemical step also depends
on the droplet size [115]. For the simple picture of heterogeneity-induced chemical
gradient in (7.26) to hold, the droplets have to be so high that the effective interface
potential at their apex is negligible. In this case, the energy of a droplet on a
substrate with a smaller equilibrium contact angle is smaller than on a substrate
with a larger equilibrium contact angle. If the droplet is much smaller this is not
necessarily the case. A two-dimensional boundary element simulation of a 5 nm
high drop of molten polystyrene (a nonvolatile liquid with a high viscosity such that
the dynamics of films and droplets can be observed experimentally [44, 52]) on a
silicone substrate with a chemical step formed between two regions covered with
silicone oxide layers of different thickness shows that the droplet moves to the side
with the larger equilibrium contact angle although the Hamaker constants are equal
(they are determined by the silicon substrate).

7.3.6 Experimental Perspectives

The dynamics of nanodroplets on structured substrates has not been directly
observed yet. One only knows that nanodroplets preferentially condense at topo-
graphic steps [116, 117]. One challenge is to prepare suitable substrates, i.e.,
well-defined topographic and chemical structures. Topographic structures can be
produced, e.g., with photolithographic techniques which have been developed for
microelectronic devices, and high aspect ratios can be reached. A large number of
methods is available for generating a chemical step separating a hydrophilic from
a hydrophobic region on a surface (e.g., the boundary between a coated and a non-
coated part of the substrate). But in many cases this also leads to a topographic step.
However, oxidizing the end groups of self-assembled silane monolayers using the
metallic tip of an atomic force microscope allows to prepare well-defined wettability
patterns with a 30 nm spatial resolution and with a negligible topographic signature
(below 3 Å) [118–120]. The caveat of this method is that only the short-ranged part
of the intermolecular interactions is spatially modulated such that the long-ranged
lateral interactions between nanodroplets and chemical steps discussed above are
negligible in this case.

The main challenge for an experimental verification of the peculiar behavior
of nanodroplets at chemical and topographical steps is to prepare and position
nanodroplets with nanoscale resolution and then to observe these structures with
sufficient spatial and temporal resolution but without influencing them.
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Positioning of nanodroplets with nanometer lateral resolution can be achieved
with a nano dispenser [121]: the hollow and liquid-loaded tip of an atomic force
microscope acts as a pen and allows to deposit droplets with sub-zeptoliter volumes
(a cube with 10 nm edge length). Depending of the tip aperture one can reproducibly
obtain droplets with diameters down to 70 nm. However, after the transfer of the
liquid to the substrate the droplet takes some time to relax its shape [122], and the
time scale for this shape relaxation might be comparable to the lateral migration
time.

Another option for producing nanodroplets is to pattern a thin film of a material
which has a melting point lower than that of the substrate, e.g., by using electron-
beam or ion-beam lithography. Regular arrays of islands can be also produced by
colloidal monolayer lithography [123]: a densely packed monolayer of colloidal
particles is used as a template such that triangular islands form in the gap between
three particles. The lateral length scale is controlled by the size of the colloids and
islands with an edge length of a few hundred nanometers to a few microns. The
volume of the droplets is then controlled by the layer thickness. After annealing
the islands turn into nanodroplets. However, as in the case of the nanodispenser the
shape relaxation takes time. Melting the islands will speed up shape relaxation but,
e.g., for metallic films, the surface tension is so high and the viscosity is so low that
inertia comes into play and the droplet actually jump off the substrate [124, 125].
This is an intriguing method for producing nanoparticles but for the purpose of
studying the dynamics of nanodroplets this should be avoided.

Nanodroplets are to small to be observed in optical microscopy. X-rays and
neutrons are well-established tools for nondestructive structural analysis but scat-
tering methods are hardly suitable for determining the position and shape of an
individual droplet and the lack of optical elements limits the resolution of X-ray
microscopes. Droplets can be condensed onto surfaces in environmental scanning
electron microscopes [126] and they can be observed with high temporal resolution.
Spatial resolution of up to a few nanometers is possible but only under optimal
conditions and not when imaging soft materials such as droplets.

Scanning probe microscopes have developed into a valuable tool for observing
the structure and dynamics of liquid films and droplets (see for example [44, 116,
117]). However, the temporal resolution is fairly low (on the order of minutes,
depending on resolution and scan area) and for low viscosity liquids it is difficult to
rule out that the tip influences the droplet. However, by quickly freezing the liquid
droplet at least the final shape and position of the droplet can be imaged but thermal
expansion has to be taken into account.

7.4 Summary and Outlook

Nanodroplets are intriguing objects which behave sometimes in counterintuitive
ways—at least this is what theory predicts. These findings are based on static
equilibrium DFT and on hydrodynamic equations augmented with features which
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are relevant on the nanoscale but which are negligible or summarized into boundary
conditions on the macroscopic scale (e.g., the equilibrium contact angle, see
Fig. 7.1). These are in particular hydrodynamic slip, thermal fluctuations, and
the finite range of intermolecular interactions. Neglecting thermal fluctuations, in
the stationary limit these mesoscopic hydrodynamic equations lead to the droplet
shapes predicted by the DFT. Most functionals are mean field and thus fluctuation
effects, in particular capillary waves, are not included.

While hydrodynamic slip plays an important role for the dynamics of the
liquid within a moving three phase contact line, it is not to be expected that it
changes the qualitative behavior of nanodroplets as this is driven predominantly
by the energetics. And it has been shown that the same is true for thermal
fluctuations, although they might help to overcome pinning. The main player are
the long-ranged dispersion forces. On homogeneous substrates they are summarized
into the effective interface potential ω(z) (see Fig. 7.4) which also determines
the equilibrium wetting behavior of the system. On heterogeneous substrates the
effective interface potential (see Fig. 7.8 for a chemical step) as well as its derivative
with respect to the film thickness, i.e., the disjoining pressure Π (see Fig. 7.5 for
a topographic step) depend on the lateral coordinates as well. This leads to a
lateral force on a nanodroplet. The sign of this force depends only on the sign of
the Hamaker constant AH and at a topographic step nanodroplets are expected to
move in the step-up direction for AH > 0 (see Fig. 7.6) and in step-down direction
for AH < 0.

At a chemical step the droplets should move towards the side with the larger
Hamaker constant. This can be understood if one interprets the lateral variation of
the effective interface potential as an effective chemical gradient, i.e., a laterally
varying equilibrium contact angle (see Fig. 7.7 for a topographic step and Fig. 7.8
for a chemical step). The behavior at chemical steps is particularly intriguing as it is
independent of the equilibrium contact angles far from the step: it can happen that
the droplet moves towards the less wettable side. However, in this case it does not
cross the step. In particular at chemical steps there is also a strong size dependence.
While the free energy of a macroscopic droplet is always smaller on the side with
the smaller equilibrium contact angle, for extremely small droplets the situation can
be reversed (for an example see Fig. 7.9).

Since this peculiar behavior of nanodroplets is driven by free energy gradients,
it is not specific to liquids. Molecular dynamics simulations of gold clusters on
graphite with steps show a strong interaction of the step edges with the clusters, but
the interactions are purely short-ranged and the steps were only one atom high [127].
On substrates with higher steps and for non-metallic clusters the same phenomena
discussed above should be observable.

The development of experimental techniques will determine whether the peculiar
dynamics of nanodroplets on structured substrates will ever be observed directly.
Maybe clusters are better candidates since they can be studied under high vacuum
and in clean conditions on atomically smooth surfaces. However, understanding
nanofluidics will be more and more important in order to push the progressive
miniaturization of microelectronic, micromechanical, and microfluidic devices even
further.
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at the chemical step between a silicon substrate with a thin and a thick oxide layer [115]. The
Hamaker constant is equal on both sides. Shown are the initial (dashed line) and final (full line)
position of the droplet. Larger droplets move to the left
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